Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35
36 #define rdev_err(rdev, fmt, ...)                                        \
37         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...)                                       \
39         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...)                                       \
41         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...)                                        \
43         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
50
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
54
55 /*
56  * struct regulator_map
57  *
58  * Used to provide symbolic supply names to devices.
59  */
60 struct regulator_map {
61         struct list_head list;
62         const char *dev_name;   /* The dev_name() for the consumer */
63         const char *supply;
64         struct regulator_dev *regulator;
65 };
66
67 /*
68  * struct regulator
69  *
70  * One for each consumer device.
71  */
72 struct regulator {
73         struct device *dev;
74         struct list_head list;
75         int uA_load;
76         int min_uV;
77         int max_uV;
78         char *supply_name;
79         struct device_attribute dev_attr;
80         struct regulator_dev *rdev;
81 };
82
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85                 struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93
94 static const char *rdev_get_name(struct regulator_dev *rdev)
95 {
96         if (rdev->constraints && rdev->constraints->name)
97                 return rdev->constraints->name;
98         else if (rdev->desc->name)
99                 return rdev->desc->name;
100         else
101                 return "";
102 }
103
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
106 {
107         struct regulator *regulator = NULL;
108         struct regulator_dev *rdev;
109
110         mutex_lock(&regulator_list_mutex);
111         list_for_each_entry(rdev, &regulator_list, list) {
112                 mutex_lock(&rdev->mutex);
113                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
114                         if (regulator->dev == dev) {
115                                 mutex_unlock(&rdev->mutex);
116                                 mutex_unlock(&regulator_list_mutex);
117                                 return regulator;
118                         }
119                 }
120                 mutex_unlock(&rdev->mutex);
121         }
122         mutex_unlock(&regulator_list_mutex);
123         return NULL;
124 }
125
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128                                    int *min_uV, int *max_uV)
129 {
130         BUG_ON(*min_uV > *max_uV);
131
132         if (!rdev->constraints) {
133                 rdev_err(rdev, "no constraints\n");
134                 return -ENODEV;
135         }
136         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137                 rdev_err(rdev, "operation not allowed\n");
138                 return -EPERM;
139         }
140
141         if (*max_uV > rdev->constraints->max_uV)
142                 *max_uV = rdev->constraints->max_uV;
143         if (*min_uV < rdev->constraints->min_uV)
144                 *min_uV = rdev->constraints->min_uV;
145
146         if (*min_uV > *max_uV)
147                 return -EINVAL;
148
149         return 0;
150 }
151
152 /* Make sure we select a voltage that suits the needs of all
153  * regulator consumers
154  */
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156                                      int *min_uV, int *max_uV)
157 {
158         struct regulator *regulator;
159
160         list_for_each_entry(regulator, &rdev->consumer_list, list) {
161                 if (*max_uV > regulator->max_uV)
162                         *max_uV = regulator->max_uV;
163                 if (*min_uV < regulator->min_uV)
164                         *min_uV = regulator->min_uV;
165         }
166
167         if (*min_uV > *max_uV)
168                 return -EINVAL;
169
170         return 0;
171 }
172
173 /* current constraint check */
174 static int regulator_check_current_limit(struct regulator_dev *rdev,
175                                         int *min_uA, int *max_uA)
176 {
177         BUG_ON(*min_uA > *max_uA);
178
179         if (!rdev->constraints) {
180                 rdev_err(rdev, "no constraints\n");
181                 return -ENODEV;
182         }
183         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184                 rdev_err(rdev, "operation not allowed\n");
185                 return -EPERM;
186         }
187
188         if (*max_uA > rdev->constraints->max_uA)
189                 *max_uA = rdev->constraints->max_uA;
190         if (*min_uA < rdev->constraints->min_uA)
191                 *min_uA = rdev->constraints->min_uA;
192
193         if (*min_uA > *max_uA)
194                 return -EINVAL;
195
196         return 0;
197 }
198
199 /* operating mode constraint check */
200 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
201 {
202         switch (mode) {
203         case REGULATOR_MODE_FAST:
204         case REGULATOR_MODE_NORMAL:
205         case REGULATOR_MODE_IDLE:
206         case REGULATOR_MODE_STANDBY:
207                 break;
208         default:
209                 return -EINVAL;
210         }
211
212         if (!rdev->constraints) {
213                 rdev_err(rdev, "no constraints\n");
214                 return -ENODEV;
215         }
216         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217                 rdev_err(rdev, "operation not allowed\n");
218                 return -EPERM;
219         }
220         if (!(rdev->constraints->valid_modes_mask & mode)) {
221                 rdev_err(rdev, "invalid mode %x\n", mode);
222                 return -EINVAL;
223         }
224         return 0;
225 }
226
227 /* dynamic regulator mode switching constraint check */
228 static int regulator_check_drms(struct regulator_dev *rdev)
229 {
230         if (!rdev->constraints) {
231                 rdev_err(rdev, "no constraints\n");
232                 return -ENODEV;
233         }
234         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
235                 rdev_err(rdev, "operation not allowed\n");
236                 return -EPERM;
237         }
238         return 0;
239 }
240
241 static ssize_t device_requested_uA_show(struct device *dev,
242                              struct device_attribute *attr, char *buf)
243 {
244         struct regulator *regulator;
245
246         regulator = get_device_regulator(dev);
247         if (regulator == NULL)
248                 return 0;
249
250         return sprintf(buf, "%d\n", regulator->uA_load);
251 }
252
253 static ssize_t regulator_uV_show(struct device *dev,
254                                 struct device_attribute *attr, char *buf)
255 {
256         struct regulator_dev *rdev = dev_get_drvdata(dev);
257         ssize_t ret;
258
259         mutex_lock(&rdev->mutex);
260         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
261         mutex_unlock(&rdev->mutex);
262
263         return ret;
264 }
265 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
266
267 static ssize_t regulator_uA_show(struct device *dev,
268                                 struct device_attribute *attr, char *buf)
269 {
270         struct regulator_dev *rdev = dev_get_drvdata(dev);
271
272         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
273 }
274 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
275
276 static ssize_t regulator_name_show(struct device *dev,
277                              struct device_attribute *attr, char *buf)
278 {
279         struct regulator_dev *rdev = dev_get_drvdata(dev);
280
281         return sprintf(buf, "%s\n", rdev_get_name(rdev));
282 }
283
284 static ssize_t regulator_print_opmode(char *buf, int mode)
285 {
286         switch (mode) {
287         case REGULATOR_MODE_FAST:
288                 return sprintf(buf, "fast\n");
289         case REGULATOR_MODE_NORMAL:
290                 return sprintf(buf, "normal\n");
291         case REGULATOR_MODE_IDLE:
292                 return sprintf(buf, "idle\n");
293         case REGULATOR_MODE_STANDBY:
294                 return sprintf(buf, "standby\n");
295         }
296         return sprintf(buf, "unknown\n");
297 }
298
299 static ssize_t regulator_opmode_show(struct device *dev,
300                                     struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
305 }
306 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
307
308 static ssize_t regulator_print_state(char *buf, int state)
309 {
310         if (state > 0)
311                 return sprintf(buf, "enabled\n");
312         else if (state == 0)
313                 return sprintf(buf, "disabled\n");
314         else
315                 return sprintf(buf, "unknown\n");
316 }
317
318 static ssize_t regulator_state_show(struct device *dev,
319                                    struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322         ssize_t ret;
323
324         mutex_lock(&rdev->mutex);
325         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
326         mutex_unlock(&rdev->mutex);
327
328         return ret;
329 }
330 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
331
332 static ssize_t regulator_status_show(struct device *dev,
333                                    struct device_attribute *attr, char *buf)
334 {
335         struct regulator_dev *rdev = dev_get_drvdata(dev);
336         int status;
337         char *label;
338
339         status = rdev->desc->ops->get_status(rdev);
340         if (status < 0)
341                 return status;
342
343         switch (status) {
344         case REGULATOR_STATUS_OFF:
345                 label = "off";
346                 break;
347         case REGULATOR_STATUS_ON:
348                 label = "on";
349                 break;
350         case REGULATOR_STATUS_ERROR:
351                 label = "error";
352                 break;
353         case REGULATOR_STATUS_FAST:
354                 label = "fast";
355                 break;
356         case REGULATOR_STATUS_NORMAL:
357                 label = "normal";
358                 break;
359         case REGULATOR_STATUS_IDLE:
360                 label = "idle";
361                 break;
362         case REGULATOR_STATUS_STANDBY:
363                 label = "standby";
364                 break;
365         default:
366                 return -ERANGE;
367         }
368
369         return sprintf(buf, "%s\n", label);
370 }
371 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
372
373 static ssize_t regulator_min_uA_show(struct device *dev,
374                                     struct device_attribute *attr, char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         if (!rdev->constraints)
379                 return sprintf(buf, "constraint not defined\n");
380
381         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
382 }
383 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
384
385 static ssize_t regulator_max_uA_show(struct device *dev,
386                                     struct device_attribute *attr, char *buf)
387 {
388         struct regulator_dev *rdev = dev_get_drvdata(dev);
389
390         if (!rdev->constraints)
391                 return sprintf(buf, "constraint not defined\n");
392
393         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
394 }
395 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
396
397 static ssize_t regulator_min_uV_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         if (!rdev->constraints)
403                 return sprintf(buf, "constraint not defined\n");
404
405         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
406 }
407 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
408
409 static ssize_t regulator_max_uV_show(struct device *dev,
410                                     struct device_attribute *attr, char *buf)
411 {
412         struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414         if (!rdev->constraints)
415                 return sprintf(buf, "constraint not defined\n");
416
417         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
418 }
419 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
420
421 static ssize_t regulator_total_uA_show(struct device *dev,
422                                       struct device_attribute *attr, char *buf)
423 {
424         struct regulator_dev *rdev = dev_get_drvdata(dev);
425         struct regulator *regulator;
426         int uA = 0;
427
428         mutex_lock(&rdev->mutex);
429         list_for_each_entry(regulator, &rdev->consumer_list, list)
430                 uA += regulator->uA_load;
431         mutex_unlock(&rdev->mutex);
432         return sprintf(buf, "%d\n", uA);
433 }
434 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
435
436 static ssize_t regulator_num_users_show(struct device *dev,
437                                       struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440         return sprintf(buf, "%d\n", rdev->use_count);
441 }
442
443 static ssize_t regulator_type_show(struct device *dev,
444                                   struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         switch (rdev->desc->type) {
449         case REGULATOR_VOLTAGE:
450                 return sprintf(buf, "voltage\n");
451         case REGULATOR_CURRENT:
452                 return sprintf(buf, "current\n");
453         }
454         return sprintf(buf, "unknown\n");
455 }
456
457 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
458                                 struct device_attribute *attr, char *buf)
459 {
460         struct regulator_dev *rdev = dev_get_drvdata(dev);
461
462         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
463 }
464 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
465                 regulator_suspend_mem_uV_show, NULL);
466
467 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
468                                 struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
473 }
474 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
475                 regulator_suspend_disk_uV_show, NULL);
476
477 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
478                                 struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
483 }
484 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
485                 regulator_suspend_standby_uV_show, NULL);
486
487 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
488                                 struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_opmode(buf,
493                 rdev->constraints->state_mem.mode);
494 }
495 static DEVICE_ATTR(suspend_mem_mode, 0444,
496                 regulator_suspend_mem_mode_show, NULL);
497
498 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
499                                 struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_opmode(buf,
504                 rdev->constraints->state_disk.mode);
505 }
506 static DEVICE_ATTR(suspend_disk_mode, 0444,
507                 regulator_suspend_disk_mode_show, NULL);
508
509 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
510                                 struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return regulator_print_opmode(buf,
515                 rdev->constraints->state_standby.mode);
516 }
517 static DEVICE_ATTR(suspend_standby_mode, 0444,
518                 regulator_suspend_standby_mode_show, NULL);
519
520 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
521                                    struct device_attribute *attr, char *buf)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524
525         return regulator_print_state(buf,
526                         rdev->constraints->state_mem.enabled);
527 }
528 static DEVICE_ATTR(suspend_mem_state, 0444,
529                 regulator_suspend_mem_state_show, NULL);
530
531 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
532                                    struct device_attribute *attr, char *buf)
533 {
534         struct regulator_dev *rdev = dev_get_drvdata(dev);
535
536         return regulator_print_state(buf,
537                         rdev->constraints->state_disk.enabled);
538 }
539 static DEVICE_ATTR(suspend_disk_state, 0444,
540                 regulator_suspend_disk_state_show, NULL);
541
542 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
543                                    struct device_attribute *attr, char *buf)
544 {
545         struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547         return regulator_print_state(buf,
548                         rdev->constraints->state_standby.enabled);
549 }
550 static DEVICE_ATTR(suspend_standby_state, 0444,
551                 regulator_suspend_standby_state_show, NULL);
552
553
554 /*
555  * These are the only attributes are present for all regulators.
556  * Other attributes are a function of regulator functionality.
557  */
558 static struct device_attribute regulator_dev_attrs[] = {
559         __ATTR(name, 0444, regulator_name_show, NULL),
560         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
561         __ATTR(type, 0444, regulator_type_show, NULL),
562         __ATTR_NULL,
563 };
564
565 static void regulator_dev_release(struct device *dev)
566 {
567         struct regulator_dev *rdev = dev_get_drvdata(dev);
568         kfree(rdev);
569 }
570
571 static struct class regulator_class = {
572         .name = "regulator",
573         .dev_release = regulator_dev_release,
574         .dev_attrs = regulator_dev_attrs,
575 };
576
577 /* Calculate the new optimum regulator operating mode based on the new total
578  * consumer load. All locks held by caller */
579 static void drms_uA_update(struct regulator_dev *rdev)
580 {
581         struct regulator *sibling;
582         int current_uA = 0, output_uV, input_uV, err;
583         unsigned int mode;
584
585         err = regulator_check_drms(rdev);
586         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
587             (!rdev->desc->ops->get_voltage &&
588              !rdev->desc->ops->get_voltage_sel) ||
589             !rdev->desc->ops->set_mode)
590                 return;
591
592         /* get output voltage */
593         output_uV = _regulator_get_voltage(rdev);
594         if (output_uV <= 0)
595                 return;
596
597         /* get input voltage */
598         input_uV = 0;
599         if (rdev->supply)
600                 input_uV = _regulator_get_voltage(rdev);
601         if (input_uV <= 0)
602                 input_uV = rdev->constraints->input_uV;
603         if (input_uV <= 0)
604                 return;
605
606         /* calc total requested load */
607         list_for_each_entry(sibling, &rdev->consumer_list, list)
608                 current_uA += sibling->uA_load;
609
610         /* now get the optimum mode for our new total regulator load */
611         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
612                                                   output_uV, current_uA);
613
614         /* check the new mode is allowed */
615         err = regulator_check_mode(rdev, mode);
616         if (err == 0)
617                 rdev->desc->ops->set_mode(rdev, mode);
618 }
619
620 static int suspend_set_state(struct regulator_dev *rdev,
621         struct regulator_state *rstate)
622 {
623         int ret = 0;
624         bool can_set_state;
625
626         can_set_state = rdev->desc->ops->set_suspend_enable &&
627                 rdev->desc->ops->set_suspend_disable;
628
629         /* If we have no suspend mode configration don't set anything;
630          * only warn if the driver actually makes the suspend mode
631          * configurable.
632          */
633         if (!rstate->enabled && !rstate->disabled) {
634                 if (can_set_state)
635                         rdev_warn(rdev, "No configuration\n");
636                 return 0;
637         }
638
639         if (rstate->enabled && rstate->disabled) {
640                 rdev_err(rdev, "invalid configuration\n");
641                 return -EINVAL;
642         }
643
644         if (!can_set_state) {
645                 rdev_err(rdev, "no way to set suspend state\n");
646                 return -EINVAL;
647         }
648
649         if (rstate->enabled)
650                 ret = rdev->desc->ops->set_suspend_enable(rdev);
651         else
652                 ret = rdev->desc->ops->set_suspend_disable(rdev);
653         if (ret < 0) {
654                 rdev_err(rdev, "failed to enabled/disable\n");
655                 return ret;
656         }
657
658         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
659                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
660                 if (ret < 0) {
661                         rdev_err(rdev, "failed to set voltage\n");
662                         return ret;
663                 }
664         }
665
666         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
667                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
668                 if (ret < 0) {
669                         rdev_err(rdev, "failed to set mode\n");
670                         return ret;
671                 }
672         }
673         return ret;
674 }
675
676 /* locks held by caller */
677 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
678 {
679         if (!rdev->constraints)
680                 return -EINVAL;
681
682         switch (state) {
683         case PM_SUSPEND_STANDBY:
684                 return suspend_set_state(rdev,
685                         &rdev->constraints->state_standby);
686         case PM_SUSPEND_MEM:
687                 return suspend_set_state(rdev,
688                         &rdev->constraints->state_mem);
689         case PM_SUSPEND_MAX:
690                 return suspend_set_state(rdev,
691                         &rdev->constraints->state_disk);
692         default:
693                 return -EINVAL;
694         }
695 }
696
697 static void print_constraints(struct regulator_dev *rdev)
698 {
699         struct regulation_constraints *constraints = rdev->constraints;
700         char buf[80] = "";
701         int count = 0;
702         int ret;
703
704         if (constraints->min_uV && constraints->max_uV) {
705                 if (constraints->min_uV == constraints->max_uV)
706                         count += sprintf(buf + count, "%d mV ",
707                                          constraints->min_uV / 1000);
708                 else
709                         count += sprintf(buf + count, "%d <--> %d mV ",
710                                          constraints->min_uV / 1000,
711                                          constraints->max_uV / 1000);
712         }
713
714         if (!constraints->min_uV ||
715             constraints->min_uV != constraints->max_uV) {
716                 ret = _regulator_get_voltage(rdev);
717                 if (ret > 0)
718                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
719         }
720
721         if (constraints->min_uA && constraints->max_uA) {
722                 if (constraints->min_uA == constraints->max_uA)
723                         count += sprintf(buf + count, "%d mA ",
724                                          constraints->min_uA / 1000);
725                 else
726                         count += sprintf(buf + count, "%d <--> %d mA ",
727                                          constraints->min_uA / 1000,
728                                          constraints->max_uA / 1000);
729         }
730
731         if (!constraints->min_uA ||
732             constraints->min_uA != constraints->max_uA) {
733                 ret = _regulator_get_current_limit(rdev);
734                 if (ret > 0)
735                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
736         }
737
738         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
739                 count += sprintf(buf + count, "fast ");
740         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
741                 count += sprintf(buf + count, "normal ");
742         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
743                 count += sprintf(buf + count, "idle ");
744         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
745                 count += sprintf(buf + count, "standby");
746
747         rdev_info(rdev, "%s\n", buf);
748 }
749
750 static int machine_constraints_voltage(struct regulator_dev *rdev,
751         struct regulation_constraints *constraints)
752 {
753         struct regulator_ops *ops = rdev->desc->ops;
754         int ret;
755
756         /* do we need to apply the constraint voltage */
757         if (rdev->constraints->apply_uV &&
758             rdev->constraints->min_uV == rdev->constraints->max_uV) {
759                 ret = _regulator_do_set_voltage(rdev,
760                                                 rdev->constraints->min_uV,
761                                                 rdev->constraints->max_uV);
762                 if (ret < 0) {
763                         rdev_err(rdev, "failed to apply %duV constraint\n",
764                                  rdev->constraints->min_uV);
765                         rdev->constraints = NULL;
766                         return ret;
767                 }
768         }
769
770         /* constrain machine-level voltage specs to fit
771          * the actual range supported by this regulator.
772          */
773         if (ops->list_voltage && rdev->desc->n_voltages) {
774                 int     count = rdev->desc->n_voltages;
775                 int     i;
776                 int     min_uV = INT_MAX;
777                 int     max_uV = INT_MIN;
778                 int     cmin = constraints->min_uV;
779                 int     cmax = constraints->max_uV;
780
781                 /* it's safe to autoconfigure fixed-voltage supplies
782                    and the constraints are used by list_voltage. */
783                 if (count == 1 && !cmin) {
784                         cmin = 1;
785                         cmax = INT_MAX;
786                         constraints->min_uV = cmin;
787                         constraints->max_uV = cmax;
788                 }
789
790                 /* voltage constraints are optional */
791                 if ((cmin == 0) && (cmax == 0))
792                         return 0;
793
794                 /* else require explicit machine-level constraints */
795                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
796                         rdev_err(rdev, "invalid voltage constraints\n");
797                         return -EINVAL;
798                 }
799
800                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
801                 for (i = 0; i < count; i++) {
802                         int     value;
803
804                         value = ops->list_voltage(rdev, i);
805                         if (value <= 0)
806                                 continue;
807
808                         /* maybe adjust [min_uV..max_uV] */
809                         if (value >= cmin && value < min_uV)
810                                 min_uV = value;
811                         if (value <= cmax && value > max_uV)
812                                 max_uV = value;
813                 }
814
815                 /* final: [min_uV..max_uV] valid iff constraints valid */
816                 if (max_uV < min_uV) {
817                         rdev_err(rdev, "unsupportable voltage constraints\n");
818                         return -EINVAL;
819                 }
820
821                 /* use regulator's subset of machine constraints */
822                 if (constraints->min_uV < min_uV) {
823                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
824                                  constraints->min_uV, min_uV);
825                         constraints->min_uV = min_uV;
826                 }
827                 if (constraints->max_uV > max_uV) {
828                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
829                                  constraints->max_uV, max_uV);
830                         constraints->max_uV = max_uV;
831                 }
832         }
833
834         return 0;
835 }
836
837 /**
838  * set_machine_constraints - sets regulator constraints
839  * @rdev: regulator source
840  * @constraints: constraints to apply
841  *
842  * Allows platform initialisation code to define and constrain
843  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
844  * Constraints *must* be set by platform code in order for some
845  * regulator operations to proceed i.e. set_voltage, set_current_limit,
846  * set_mode.
847  */
848 static int set_machine_constraints(struct regulator_dev *rdev,
849         const struct regulation_constraints *constraints)
850 {
851         int ret = 0;
852         struct regulator_ops *ops = rdev->desc->ops;
853
854         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
855                                     GFP_KERNEL);
856         if (!rdev->constraints)
857                 return -ENOMEM;
858
859         ret = machine_constraints_voltage(rdev, rdev->constraints);
860         if (ret != 0)
861                 goto out;
862
863         /* do we need to setup our suspend state */
864         if (constraints->initial_state) {
865                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
866                 if (ret < 0) {
867                         rdev_err(rdev, "failed to set suspend state\n");
868                         rdev->constraints = NULL;
869                         goto out;
870                 }
871         }
872
873         if (constraints->initial_mode) {
874                 if (!ops->set_mode) {
875                         rdev_err(rdev, "no set_mode operation\n");
876                         ret = -EINVAL;
877                         goto out;
878                 }
879
880                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
881                 if (ret < 0) {
882                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
883                         goto out;
884                 }
885         }
886
887         /* If the constraints say the regulator should be on at this point
888          * and we have control then make sure it is enabled.
889          */
890         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
891             ops->enable) {
892                 ret = ops->enable(rdev);
893                 if (ret < 0) {
894                         rdev_err(rdev, "failed to enable\n");
895                         rdev->constraints = NULL;
896                         goto out;
897                 }
898         }
899
900         print_constraints(rdev);
901 out:
902         return ret;
903 }
904
905 /**
906  * set_supply - set regulator supply regulator
907  * @rdev: regulator name
908  * @supply_rdev: supply regulator name
909  *
910  * Called by platform initialisation code to set the supply regulator for this
911  * regulator. This ensures that a regulators supply will also be enabled by the
912  * core if it's child is enabled.
913  */
914 static int set_supply(struct regulator_dev *rdev,
915         struct regulator_dev *supply_rdev)
916 {
917         int err;
918
919         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
920                                 "supply");
921         if (err) {
922                 rdev_err(rdev, "could not add device link %s err %d\n",
923                          supply_rdev->dev.kobj.name, err);
924                        goto out;
925         }
926         rdev->supply = supply_rdev;
927         list_add(&rdev->slist, &supply_rdev->supply_list);
928 out:
929         return err;
930 }
931
932 /**
933  * set_consumer_device_supply - Bind a regulator to a symbolic supply
934  * @rdev:         regulator source
935  * @consumer_dev: device the supply applies to
936  * @consumer_dev_name: dev_name() string for device supply applies to
937  * @supply:       symbolic name for supply
938  *
939  * Allows platform initialisation code to map physical regulator
940  * sources to symbolic names for supplies for use by devices.  Devices
941  * should use these symbolic names to request regulators, avoiding the
942  * need to provide board-specific regulator names as platform data.
943  *
944  * Only one of consumer_dev and consumer_dev_name may be specified.
945  */
946 static int set_consumer_device_supply(struct regulator_dev *rdev,
947         struct device *consumer_dev, const char *consumer_dev_name,
948         const char *supply)
949 {
950         struct regulator_map *node;
951         int has_dev;
952
953         if (consumer_dev && consumer_dev_name)
954                 return -EINVAL;
955
956         if (!consumer_dev_name && consumer_dev)
957                 consumer_dev_name = dev_name(consumer_dev);
958
959         if (supply == NULL)
960                 return -EINVAL;
961
962         if (consumer_dev_name != NULL)
963                 has_dev = 1;
964         else
965                 has_dev = 0;
966
967         list_for_each_entry(node, &regulator_map_list, list) {
968                 if (node->dev_name && consumer_dev_name) {
969                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
970                                 continue;
971                 } else if (node->dev_name || consumer_dev_name) {
972                         continue;
973                 }
974
975                 if (strcmp(node->supply, supply) != 0)
976                         continue;
977
978                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
979                         dev_name(&node->regulator->dev),
980                         node->regulator->desc->name,
981                         supply,
982                         dev_name(&rdev->dev), rdev_get_name(rdev));
983                 return -EBUSY;
984         }
985
986         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
987         if (node == NULL)
988                 return -ENOMEM;
989
990         node->regulator = rdev;
991         node->supply = supply;
992
993         if (has_dev) {
994                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
995                 if (node->dev_name == NULL) {
996                         kfree(node);
997                         return -ENOMEM;
998                 }
999         }
1000
1001         list_add(&node->list, &regulator_map_list);
1002         return 0;
1003 }
1004
1005 static void unset_regulator_supplies(struct regulator_dev *rdev)
1006 {
1007         struct regulator_map *node, *n;
1008
1009         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1010                 if (rdev == node->regulator) {
1011                         list_del(&node->list);
1012                         kfree(node->dev_name);
1013                         kfree(node);
1014                 }
1015         }
1016 }
1017
1018 #define REG_STR_SIZE    32
1019
1020 static struct regulator *create_regulator(struct regulator_dev *rdev,
1021                                           struct device *dev,
1022                                           const char *supply_name)
1023 {
1024         struct regulator *regulator;
1025         char buf[REG_STR_SIZE];
1026         int err, size;
1027
1028         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1029         if (regulator == NULL)
1030                 return NULL;
1031
1032         mutex_lock(&rdev->mutex);
1033         regulator->rdev = rdev;
1034         list_add(&regulator->list, &rdev->consumer_list);
1035
1036         if (dev) {
1037                 /* create a 'requested_microamps_name' sysfs entry */
1038                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1039                         supply_name);
1040                 if (size >= REG_STR_SIZE)
1041                         goto overflow_err;
1042
1043                 regulator->dev = dev;
1044                 sysfs_attr_init(&regulator->dev_attr.attr);
1045                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1046                 if (regulator->dev_attr.attr.name == NULL)
1047                         goto attr_name_err;
1048
1049                 regulator->dev_attr.attr.mode = 0444;
1050                 regulator->dev_attr.show = device_requested_uA_show;
1051                 err = device_create_file(dev, &regulator->dev_attr);
1052                 if (err < 0) {
1053                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1054                         goto attr_name_err;
1055                 }
1056
1057                 /* also add a link to the device sysfs entry */
1058                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059                                  dev->kobj.name, supply_name);
1060                 if (size >= REG_STR_SIZE)
1061                         goto attr_err;
1062
1063                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064                 if (regulator->supply_name == NULL)
1065                         goto attr_err;
1066
1067                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068                                         buf);
1069                 if (err) {
1070                         rdev_warn(rdev, "could not add device link %s err %d\n",
1071                                   dev->kobj.name, err);
1072                         goto link_name_err;
1073                 }
1074         }
1075         mutex_unlock(&rdev->mutex);
1076         return regulator;
1077 link_name_err:
1078         kfree(regulator->supply_name);
1079 attr_err:
1080         device_remove_file(regulator->dev, &regulator->dev_attr);
1081 attr_name_err:
1082         kfree(regulator->dev_attr.attr.name);
1083 overflow_err:
1084         list_del(&regulator->list);
1085         kfree(regulator);
1086         mutex_unlock(&rdev->mutex);
1087         return NULL;
1088 }
1089
1090 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1091 {
1092         if (!rdev->desc->ops->enable_time)
1093                 return 0;
1094         return rdev->desc->ops->enable_time(rdev);
1095 }
1096
1097 /* Internal regulator request function */
1098 static struct regulator *_regulator_get(struct device *dev, const char *id,
1099                                         int exclusive)
1100 {
1101         struct regulator_dev *rdev;
1102         struct regulator_map *map;
1103         struct regulator *regulator = ERR_PTR(-ENODEV);
1104         const char *devname = NULL;
1105         int ret;
1106
1107         if (id == NULL) {
1108                 pr_err("get() with no identifier\n");
1109                 return regulator;
1110         }
1111
1112         if (dev)
1113                 devname = dev_name(dev);
1114
1115         mutex_lock(&regulator_list_mutex);
1116
1117         list_for_each_entry(map, &regulator_map_list, list) {
1118                 /* If the mapping has a device set up it must match */
1119                 if (map->dev_name &&
1120                     (!devname || strcmp(map->dev_name, devname)))
1121                         continue;
1122
1123                 if (strcmp(map->supply, id) == 0) {
1124                         rdev = map->regulator;
1125                         goto found;
1126                 }
1127         }
1128
1129         if (board_wants_dummy_regulator) {
1130                 rdev = dummy_regulator_rdev;
1131                 goto found;
1132         }
1133
1134 #ifdef CONFIG_REGULATOR_DUMMY
1135         if (!devname)
1136                 devname = "deviceless";
1137
1138         /* If the board didn't flag that it was fully constrained then
1139          * substitute in a dummy regulator so consumers can continue.
1140          */
1141         if (!has_full_constraints) {
1142                 pr_warn("%s supply %s not found, using dummy regulator\n",
1143                         devname, id);
1144                 rdev = dummy_regulator_rdev;
1145                 goto found;
1146         }
1147 #endif
1148
1149         mutex_unlock(&regulator_list_mutex);
1150         return regulator;
1151
1152 found:
1153         if (rdev->exclusive) {
1154                 regulator = ERR_PTR(-EPERM);
1155                 goto out;
1156         }
1157
1158         if (exclusive && rdev->open_count) {
1159                 regulator = ERR_PTR(-EBUSY);
1160                 goto out;
1161         }
1162
1163         if (!try_module_get(rdev->owner))
1164                 goto out;
1165
1166         regulator = create_regulator(rdev, dev, id);
1167         if (regulator == NULL) {
1168                 regulator = ERR_PTR(-ENOMEM);
1169                 module_put(rdev->owner);
1170         }
1171
1172         rdev->open_count++;
1173         if (exclusive) {
1174                 rdev->exclusive = 1;
1175
1176                 ret = _regulator_is_enabled(rdev);
1177                 if (ret > 0)
1178                         rdev->use_count = 1;
1179                 else
1180                         rdev->use_count = 0;
1181         }
1182
1183 out:
1184         mutex_unlock(&regulator_list_mutex);
1185
1186         return regulator;
1187 }
1188
1189 /**
1190  * regulator_get - lookup and obtain a reference to a regulator.
1191  * @dev: device for regulator "consumer"
1192  * @id: Supply name or regulator ID.
1193  *
1194  * Returns a struct regulator corresponding to the regulator producer,
1195  * or IS_ERR() condition containing errno.
1196  *
1197  * Use of supply names configured via regulator_set_device_supply() is
1198  * strongly encouraged.  It is recommended that the supply name used
1199  * should match the name used for the supply and/or the relevant
1200  * device pins in the datasheet.
1201  */
1202 struct regulator *regulator_get(struct device *dev, const char *id)
1203 {
1204         return _regulator_get(dev, id, 0);
1205 }
1206 EXPORT_SYMBOL_GPL(regulator_get);
1207
1208 /**
1209  * regulator_get_exclusive - obtain exclusive access to a regulator.
1210  * @dev: device for regulator "consumer"
1211  * @id: Supply name or regulator ID.
1212  *
1213  * Returns a struct regulator corresponding to the regulator producer,
1214  * or IS_ERR() condition containing errno.  Other consumers will be
1215  * unable to obtain this reference is held and the use count for the
1216  * regulator will be initialised to reflect the current state of the
1217  * regulator.
1218  *
1219  * This is intended for use by consumers which cannot tolerate shared
1220  * use of the regulator such as those which need to force the
1221  * regulator off for correct operation of the hardware they are
1222  * controlling.
1223  *
1224  * Use of supply names configured via regulator_set_device_supply() is
1225  * strongly encouraged.  It is recommended that the supply name used
1226  * should match the name used for the supply and/or the relevant
1227  * device pins in the datasheet.
1228  */
1229 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1230 {
1231         return _regulator_get(dev, id, 1);
1232 }
1233 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1234
1235 /**
1236  * regulator_put - "free" the regulator source
1237  * @regulator: regulator source
1238  *
1239  * Note: drivers must ensure that all regulator_enable calls made on this
1240  * regulator source are balanced by regulator_disable calls prior to calling
1241  * this function.
1242  */
1243 void regulator_put(struct regulator *regulator)
1244 {
1245         struct regulator_dev *rdev;
1246
1247         if (regulator == NULL || IS_ERR(regulator))
1248                 return;
1249
1250         mutex_lock(&regulator_list_mutex);
1251         rdev = regulator->rdev;
1252
1253         /* remove any sysfs entries */
1254         if (regulator->dev) {
1255                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1256                 kfree(regulator->supply_name);
1257                 device_remove_file(regulator->dev, &regulator->dev_attr);
1258                 kfree(regulator->dev_attr.attr.name);
1259         }
1260         list_del(&regulator->list);
1261         kfree(regulator);
1262
1263         rdev->open_count--;
1264         rdev->exclusive = 0;
1265
1266         module_put(rdev->owner);
1267         mutex_unlock(&regulator_list_mutex);
1268 }
1269 EXPORT_SYMBOL_GPL(regulator_put);
1270
1271 static int _regulator_can_change_status(struct regulator_dev *rdev)
1272 {
1273         if (!rdev->constraints)
1274                 return 0;
1275
1276         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1277                 return 1;
1278         else
1279                 return 0;
1280 }
1281
1282 /* locks held by regulator_enable() */
1283 static int _regulator_enable(struct regulator_dev *rdev)
1284 {
1285         int ret, delay;
1286
1287         if (rdev->use_count == 0) {
1288                 /* do we need to enable the supply regulator first */
1289                 if (rdev->supply) {
1290                         mutex_lock(&rdev->supply->mutex);
1291                         ret = _regulator_enable(rdev->supply);
1292                         mutex_unlock(&rdev->supply->mutex);
1293                         if (ret < 0) {
1294                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1295                                 return ret;
1296                         }
1297                 }
1298         }
1299
1300         /* check voltage and requested load before enabling */
1301         if (rdev->constraints &&
1302             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1303                 drms_uA_update(rdev);
1304
1305         if (rdev->use_count == 0) {
1306                 /* The regulator may on if it's not switchable or left on */
1307                 ret = _regulator_is_enabled(rdev);
1308                 if (ret == -EINVAL || ret == 0) {
1309                         if (!_regulator_can_change_status(rdev))
1310                                 return -EPERM;
1311
1312                         if (!rdev->desc->ops->enable)
1313                                 return -EINVAL;
1314
1315                         /* Query before enabling in case configuration
1316                          * dependant.  */
1317                         ret = _regulator_get_enable_time(rdev);
1318                         if (ret >= 0) {
1319                                 delay = ret;
1320                         } else {
1321                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1322                                            ret);
1323                                 delay = 0;
1324                         }
1325
1326                         trace_regulator_enable(rdev_get_name(rdev));
1327
1328                         /* Allow the regulator to ramp; it would be useful
1329                          * to extend this for bulk operations so that the
1330                          * regulators can ramp together.  */
1331                         ret = rdev->desc->ops->enable(rdev);
1332                         if (ret < 0)
1333                                 return ret;
1334
1335                         trace_regulator_enable_delay(rdev_get_name(rdev));
1336
1337                         if (delay >= 1000) {
1338                                 mdelay(delay / 1000);
1339                                 udelay(delay % 1000);
1340                         } else if (delay) {
1341                                 udelay(delay);
1342                         }
1343
1344                         trace_regulator_enable_complete(rdev_get_name(rdev));
1345
1346                 } else if (ret < 0) {
1347                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1348                         return ret;
1349                 }
1350                 /* Fallthrough on positive return values - already enabled */
1351         }
1352
1353         rdev->use_count++;
1354
1355         return 0;
1356 }
1357
1358 /**
1359  * regulator_enable - enable regulator output
1360  * @regulator: regulator source
1361  *
1362  * Request that the regulator be enabled with the regulator output at
1363  * the predefined voltage or current value.  Calls to regulator_enable()
1364  * must be balanced with calls to regulator_disable().
1365  *
1366  * NOTE: the output value can be set by other drivers, boot loader or may be
1367  * hardwired in the regulator.
1368  */
1369 int regulator_enable(struct regulator *regulator)
1370 {
1371         struct regulator_dev *rdev = regulator->rdev;
1372         int ret = 0;
1373
1374         mutex_lock(&rdev->mutex);
1375         ret = _regulator_enable(rdev);
1376         mutex_unlock(&rdev->mutex);
1377         return ret;
1378 }
1379 EXPORT_SYMBOL_GPL(regulator_enable);
1380
1381 /* locks held by regulator_disable() */
1382 static int _regulator_disable(struct regulator_dev *rdev,
1383                 struct regulator_dev **supply_rdev_ptr)
1384 {
1385         int ret = 0;
1386         *supply_rdev_ptr = NULL;
1387
1388         if (WARN(rdev->use_count <= 0,
1389                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1390                 return -EIO;
1391
1392         /* are we the last user and permitted to disable ? */
1393         if (rdev->use_count == 1 &&
1394             (rdev->constraints && !rdev->constraints->always_on)) {
1395
1396                 /* we are last user */
1397                 if (_regulator_can_change_status(rdev) &&
1398                     rdev->desc->ops->disable) {
1399                         trace_regulator_disable(rdev_get_name(rdev));
1400
1401                         ret = rdev->desc->ops->disable(rdev);
1402                         if (ret < 0) {
1403                                 rdev_err(rdev, "failed to disable\n");
1404                                 return ret;
1405                         }
1406
1407                         trace_regulator_disable_complete(rdev_get_name(rdev));
1408
1409                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1410                                              NULL);
1411                 }
1412
1413                 /* decrease our supplies ref count and disable if required */
1414                 *supply_rdev_ptr = rdev->supply;
1415
1416                 rdev->use_count = 0;
1417         } else if (rdev->use_count > 1) {
1418
1419                 if (rdev->constraints &&
1420                         (rdev->constraints->valid_ops_mask &
1421                         REGULATOR_CHANGE_DRMS))
1422                         drms_uA_update(rdev);
1423
1424                 rdev->use_count--;
1425         }
1426         return ret;
1427 }
1428
1429 /**
1430  * regulator_disable - disable regulator output
1431  * @regulator: regulator source
1432  *
1433  * Disable the regulator output voltage or current.  Calls to
1434  * regulator_enable() must be balanced with calls to
1435  * regulator_disable().
1436  *
1437  * NOTE: this will only disable the regulator output if no other consumer
1438  * devices have it enabled, the regulator device supports disabling and
1439  * machine constraints permit this operation.
1440  */
1441 int regulator_disable(struct regulator *regulator)
1442 {
1443         struct regulator_dev *rdev = regulator->rdev;
1444         struct regulator_dev *supply_rdev = NULL;
1445         int ret = 0;
1446
1447         mutex_lock(&rdev->mutex);
1448         ret = _regulator_disable(rdev, &supply_rdev);
1449         mutex_unlock(&rdev->mutex);
1450
1451         /* decrease our supplies ref count and disable if required */
1452         while (supply_rdev != NULL) {
1453                 rdev = supply_rdev;
1454
1455                 mutex_lock(&rdev->mutex);
1456                 _regulator_disable(rdev, &supply_rdev);
1457                 mutex_unlock(&rdev->mutex);
1458         }
1459
1460         return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(regulator_disable);
1463
1464 /* locks held by regulator_force_disable() */
1465 static int _regulator_force_disable(struct regulator_dev *rdev,
1466                 struct regulator_dev **supply_rdev_ptr)
1467 {
1468         int ret = 0;
1469
1470         /* force disable */
1471         if (rdev->desc->ops->disable) {
1472                 /* ah well, who wants to live forever... */
1473                 ret = rdev->desc->ops->disable(rdev);
1474                 if (ret < 0) {
1475                         rdev_err(rdev, "failed to force disable\n");
1476                         return ret;
1477                 }
1478                 /* notify other consumers that power has been forced off */
1479                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1480                         REGULATOR_EVENT_DISABLE, NULL);
1481         }
1482
1483         /* decrease our supplies ref count and disable if required */
1484         *supply_rdev_ptr = rdev->supply;
1485
1486         rdev->use_count = 0;
1487         return ret;
1488 }
1489
1490 /**
1491  * regulator_force_disable - force disable regulator output
1492  * @regulator: regulator source
1493  *
1494  * Forcibly disable the regulator output voltage or current.
1495  * NOTE: this *will* disable the regulator output even if other consumer
1496  * devices have it enabled. This should be used for situations when device
1497  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1498  */
1499 int regulator_force_disable(struct regulator *regulator)
1500 {
1501         struct regulator_dev *supply_rdev = NULL;
1502         int ret;
1503
1504         mutex_lock(&regulator->rdev->mutex);
1505         regulator->uA_load = 0;
1506         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1507         mutex_unlock(&regulator->rdev->mutex);
1508
1509         if (supply_rdev)
1510                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1511
1512         return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(regulator_force_disable);
1515
1516 static int _regulator_is_enabled(struct regulator_dev *rdev)
1517 {
1518         /* If we don't know then assume that the regulator is always on */
1519         if (!rdev->desc->ops->is_enabled)
1520                 return 1;
1521
1522         return rdev->desc->ops->is_enabled(rdev);
1523 }
1524
1525 /**
1526  * regulator_is_enabled - is the regulator output enabled
1527  * @regulator: regulator source
1528  *
1529  * Returns positive if the regulator driver backing the source/client
1530  * has requested that the device be enabled, zero if it hasn't, else a
1531  * negative errno code.
1532  *
1533  * Note that the device backing this regulator handle can have multiple
1534  * users, so it might be enabled even if regulator_enable() was never
1535  * called for this particular source.
1536  */
1537 int regulator_is_enabled(struct regulator *regulator)
1538 {
1539         int ret;
1540
1541         mutex_lock(&regulator->rdev->mutex);
1542         ret = _regulator_is_enabled(regulator->rdev);
1543         mutex_unlock(&regulator->rdev->mutex);
1544
1545         return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1548
1549 /**
1550  * regulator_count_voltages - count regulator_list_voltage() selectors
1551  * @regulator: regulator source
1552  *
1553  * Returns number of selectors, or negative errno.  Selectors are
1554  * numbered starting at zero, and typically correspond to bitfields
1555  * in hardware registers.
1556  */
1557 int regulator_count_voltages(struct regulator *regulator)
1558 {
1559         struct regulator_dev    *rdev = regulator->rdev;
1560
1561         return rdev->desc->n_voltages ? : -EINVAL;
1562 }
1563 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1564
1565 /**
1566  * regulator_list_voltage - enumerate supported voltages
1567  * @regulator: regulator source
1568  * @selector: identify voltage to list
1569  * Context: can sleep
1570  *
1571  * Returns a voltage that can be passed to @regulator_set_voltage(),
1572  * zero if this selector code can't be used on this system, or a
1573  * negative errno.
1574  */
1575 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1576 {
1577         struct regulator_dev    *rdev = regulator->rdev;
1578         struct regulator_ops    *ops = rdev->desc->ops;
1579         int                     ret;
1580
1581         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1582                 return -EINVAL;
1583
1584         mutex_lock(&rdev->mutex);
1585         ret = ops->list_voltage(rdev, selector);
1586         mutex_unlock(&rdev->mutex);
1587
1588         if (ret > 0) {
1589                 if (ret < rdev->constraints->min_uV)
1590                         ret = 0;
1591                 else if (ret > rdev->constraints->max_uV)
1592                         ret = 0;
1593         }
1594
1595         return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1598
1599 /**
1600  * regulator_is_supported_voltage - check if a voltage range can be supported
1601  *
1602  * @regulator: Regulator to check.
1603  * @min_uV: Minimum required voltage in uV.
1604  * @max_uV: Maximum required voltage in uV.
1605  *
1606  * Returns a boolean or a negative error code.
1607  */
1608 int regulator_is_supported_voltage(struct regulator *regulator,
1609                                    int min_uV, int max_uV)
1610 {
1611         int i, voltages, ret;
1612
1613         ret = regulator_count_voltages(regulator);
1614         if (ret < 0)
1615                 return ret;
1616         voltages = ret;
1617
1618         for (i = 0; i < voltages; i++) {
1619                 ret = regulator_list_voltage(regulator, i);
1620
1621                 if (ret >= min_uV && ret <= max_uV)
1622                         return 1;
1623         }
1624
1625         return 0;
1626 }
1627
1628 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1629                                      int min_uV, int max_uV)
1630 {
1631         int ret;
1632         unsigned int selector;
1633
1634         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1635
1636         if (rdev->desc->ops->set_voltage) {
1637                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1638                                                    &selector);
1639
1640                 if (rdev->desc->ops->list_voltage)
1641                         selector = rdev->desc->ops->list_voltage(rdev,
1642                                                                  selector);
1643                 else
1644                         selector = -1;
1645         } else if (rdev->desc->ops->set_voltage_sel) {
1646                 int best_val = INT_MAX;
1647                 int i;
1648
1649                 selector = 0;
1650
1651                 /* Find the smallest voltage that falls within the specified
1652                  * range.
1653                  */
1654                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1655                         ret = rdev->desc->ops->list_voltage(rdev, i);
1656                         if (ret < 0)
1657                                 continue;
1658
1659                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1660                                 best_val = ret;
1661                                 selector = i;
1662                         }
1663                 }
1664
1665                 if (best_val != INT_MAX) {
1666                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1667                         selector = best_val;
1668                 } else {
1669                         ret = -EINVAL;
1670                 }
1671         } else {
1672                 ret = -EINVAL;
1673         }
1674
1675         if (ret == 0)
1676                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1677                                      NULL);
1678
1679         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1680
1681         return ret;
1682 }
1683
1684 /**
1685  * regulator_set_voltage - set regulator output voltage
1686  * @regulator: regulator source
1687  * @min_uV: Minimum required voltage in uV
1688  * @max_uV: Maximum acceptable voltage in uV
1689  *
1690  * Sets a voltage regulator to the desired output voltage. This can be set
1691  * during any regulator state. IOW, regulator can be disabled or enabled.
1692  *
1693  * If the regulator is enabled then the voltage will change to the new value
1694  * immediately otherwise if the regulator is disabled the regulator will
1695  * output at the new voltage when enabled.
1696  *
1697  * NOTE: If the regulator is shared between several devices then the lowest
1698  * request voltage that meets the system constraints will be used.
1699  * Regulator system constraints must be set for this regulator before
1700  * calling this function otherwise this call will fail.
1701  */
1702 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1703 {
1704         struct regulator_dev *rdev = regulator->rdev;
1705         int ret = 0;
1706
1707         mutex_lock(&rdev->mutex);
1708
1709         /* If we're setting the same range as last time the change
1710          * should be a noop (some cpufreq implementations use the same
1711          * voltage for multiple frequencies, for example).
1712          */
1713         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1714                 goto out;
1715
1716         /* sanity check */
1717         if (!rdev->desc->ops->set_voltage &&
1718             !rdev->desc->ops->set_voltage_sel) {
1719                 ret = -EINVAL;
1720                 goto out;
1721         }
1722
1723         /* constraints check */
1724         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1725         if (ret < 0)
1726                 goto out;
1727         regulator->min_uV = min_uV;
1728         regulator->max_uV = max_uV;
1729
1730         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1731         if (ret < 0)
1732                 goto out;
1733
1734         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1735
1736 out:
1737         mutex_unlock(&rdev->mutex);
1738         return ret;
1739 }
1740 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1741
1742 /**
1743  * regulator_sync_voltage - re-apply last regulator output voltage
1744  * @regulator: regulator source
1745  *
1746  * Re-apply the last configured voltage.  This is intended to be used
1747  * where some external control source the consumer is cooperating with
1748  * has caused the configured voltage to change.
1749  */
1750 int regulator_sync_voltage(struct regulator *regulator)
1751 {
1752         struct regulator_dev *rdev = regulator->rdev;
1753         int ret, min_uV, max_uV;
1754
1755         mutex_lock(&rdev->mutex);
1756
1757         if (!rdev->desc->ops->set_voltage &&
1758             !rdev->desc->ops->set_voltage_sel) {
1759                 ret = -EINVAL;
1760                 goto out;
1761         }
1762
1763         /* This is only going to work if we've had a voltage configured. */
1764         if (!regulator->min_uV && !regulator->max_uV) {
1765                 ret = -EINVAL;
1766                 goto out;
1767         }
1768
1769         min_uV = regulator->min_uV;
1770         max_uV = regulator->max_uV;
1771
1772         /* This should be a paranoia check... */
1773         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1774         if (ret < 0)
1775                 goto out;
1776
1777         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1778         if (ret < 0)
1779                 goto out;
1780
1781         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1782
1783 out:
1784         mutex_unlock(&rdev->mutex);
1785         return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1788
1789 static int _regulator_get_voltage(struct regulator_dev *rdev)
1790 {
1791         int sel;
1792
1793         if (rdev->desc->ops->get_voltage_sel) {
1794                 sel = rdev->desc->ops->get_voltage_sel(rdev);
1795                 if (sel < 0)
1796                         return sel;
1797                 return rdev->desc->ops->list_voltage(rdev, sel);
1798         }
1799         if (rdev->desc->ops->get_voltage)
1800                 return rdev->desc->ops->get_voltage(rdev);
1801         else
1802                 return -EINVAL;
1803 }
1804
1805 /**
1806  * regulator_get_voltage - get regulator output voltage
1807  * @regulator: regulator source
1808  *
1809  * This returns the current regulator voltage in uV.
1810  *
1811  * NOTE: If the regulator is disabled it will return the voltage value. This
1812  * function should not be used to determine regulator state.
1813  */
1814 int regulator_get_voltage(struct regulator *regulator)
1815 {
1816         int ret;
1817
1818         mutex_lock(&regulator->rdev->mutex);
1819
1820         ret = _regulator_get_voltage(regulator->rdev);
1821
1822         mutex_unlock(&regulator->rdev->mutex);
1823
1824         return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1827
1828 /**
1829  * regulator_set_current_limit - set regulator output current limit
1830  * @regulator: regulator source
1831  * @min_uA: Minimuum supported current in uA
1832  * @max_uA: Maximum supported current in uA
1833  *
1834  * Sets current sink to the desired output current. This can be set during
1835  * any regulator state. IOW, regulator can be disabled or enabled.
1836  *
1837  * If the regulator is enabled then the current will change to the new value
1838  * immediately otherwise if the regulator is disabled the regulator will
1839  * output at the new current when enabled.
1840  *
1841  * NOTE: Regulator system constraints must be set for this regulator before
1842  * calling this function otherwise this call will fail.
1843  */
1844 int regulator_set_current_limit(struct regulator *regulator,
1845                                int min_uA, int max_uA)
1846 {
1847         struct regulator_dev *rdev = regulator->rdev;
1848         int ret;
1849
1850         mutex_lock(&rdev->mutex);
1851
1852         /* sanity check */
1853         if (!rdev->desc->ops->set_current_limit) {
1854                 ret = -EINVAL;
1855                 goto out;
1856         }
1857
1858         /* constraints check */
1859         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1860         if (ret < 0)
1861                 goto out;
1862
1863         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1864 out:
1865         mutex_unlock(&rdev->mutex);
1866         return ret;
1867 }
1868 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1869
1870 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1871 {
1872         int ret;
1873
1874         mutex_lock(&rdev->mutex);
1875
1876         /* sanity check */
1877         if (!rdev->desc->ops->get_current_limit) {
1878                 ret = -EINVAL;
1879                 goto out;
1880         }
1881
1882         ret = rdev->desc->ops->get_current_limit(rdev);
1883 out:
1884         mutex_unlock(&rdev->mutex);
1885         return ret;
1886 }
1887
1888 /**
1889  * regulator_get_current_limit - get regulator output current
1890  * @regulator: regulator source
1891  *
1892  * This returns the current supplied by the specified current sink in uA.
1893  *
1894  * NOTE: If the regulator is disabled it will return the current value. This
1895  * function should not be used to determine regulator state.
1896  */
1897 int regulator_get_current_limit(struct regulator *regulator)
1898 {
1899         return _regulator_get_current_limit(regulator->rdev);
1900 }
1901 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1902
1903 /**
1904  * regulator_set_mode - set regulator operating mode
1905  * @regulator: regulator source
1906  * @mode: operating mode - one of the REGULATOR_MODE constants
1907  *
1908  * Set regulator operating mode to increase regulator efficiency or improve
1909  * regulation performance.
1910  *
1911  * NOTE: Regulator system constraints must be set for this regulator before
1912  * calling this function otherwise this call will fail.
1913  */
1914 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1915 {
1916         struct regulator_dev *rdev = regulator->rdev;
1917         int ret;
1918         int regulator_curr_mode;
1919
1920         mutex_lock(&rdev->mutex);
1921
1922         /* sanity check */
1923         if (!rdev->desc->ops->set_mode) {
1924                 ret = -EINVAL;
1925                 goto out;
1926         }
1927
1928         /* return if the same mode is requested */
1929         if (rdev->desc->ops->get_mode) {
1930                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1931                 if (regulator_curr_mode == mode) {
1932                         ret = 0;
1933                         goto out;
1934                 }
1935         }
1936
1937         /* constraints check */
1938         ret = regulator_check_mode(rdev, mode);
1939         if (ret < 0)
1940                 goto out;
1941
1942         ret = rdev->desc->ops->set_mode(rdev, mode);
1943 out:
1944         mutex_unlock(&rdev->mutex);
1945         return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(regulator_set_mode);
1948
1949 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1950 {
1951         int ret;
1952
1953         mutex_lock(&rdev->mutex);
1954
1955         /* sanity check */
1956         if (!rdev->desc->ops->get_mode) {
1957                 ret = -EINVAL;
1958                 goto out;
1959         }
1960
1961         ret = rdev->desc->ops->get_mode(rdev);
1962 out:
1963         mutex_unlock(&rdev->mutex);
1964         return ret;
1965 }
1966
1967 /**
1968  * regulator_get_mode - get regulator operating mode
1969  * @regulator: regulator source
1970  *
1971  * Get the current regulator operating mode.
1972  */
1973 unsigned int regulator_get_mode(struct regulator *regulator)
1974 {
1975         return _regulator_get_mode(regulator->rdev);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_get_mode);
1978
1979 /**
1980  * regulator_set_optimum_mode - set regulator optimum operating mode
1981  * @regulator: regulator source
1982  * @uA_load: load current
1983  *
1984  * Notifies the regulator core of a new device load. This is then used by
1985  * DRMS (if enabled by constraints) to set the most efficient regulator
1986  * operating mode for the new regulator loading.
1987  *
1988  * Consumer devices notify their supply regulator of the maximum power
1989  * they will require (can be taken from device datasheet in the power
1990  * consumption tables) when they change operational status and hence power
1991  * state. Examples of operational state changes that can affect power
1992  * consumption are :-
1993  *
1994  *    o Device is opened / closed.
1995  *    o Device I/O is about to begin or has just finished.
1996  *    o Device is idling in between work.
1997  *
1998  * This information is also exported via sysfs to userspace.
1999  *
2000  * DRMS will sum the total requested load on the regulator and change
2001  * to the most efficient operating mode if platform constraints allow.
2002  *
2003  * Returns the new regulator mode or error.
2004  */
2005 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2006 {
2007         struct regulator_dev *rdev = regulator->rdev;
2008         struct regulator *consumer;
2009         int ret, output_uV, input_uV, total_uA_load = 0;
2010         unsigned int mode;
2011
2012         mutex_lock(&rdev->mutex);
2013
2014         regulator->uA_load = uA_load;
2015         ret = regulator_check_drms(rdev);
2016         if (ret < 0)
2017                 goto out;
2018         ret = -EINVAL;
2019
2020         /* sanity check */
2021         if (!rdev->desc->ops->get_optimum_mode)
2022                 goto out;
2023
2024         /* get output voltage */
2025         output_uV = _regulator_get_voltage(rdev);
2026         if (output_uV <= 0) {
2027                 rdev_err(rdev, "invalid output voltage found\n");
2028                 goto out;
2029         }
2030
2031         /* get input voltage */
2032         input_uV = 0;
2033         if (rdev->supply)
2034                 input_uV = _regulator_get_voltage(rdev->supply);
2035         if (input_uV <= 0)
2036                 input_uV = rdev->constraints->input_uV;
2037         if (input_uV <= 0) {
2038                 rdev_err(rdev, "invalid input voltage found\n");
2039                 goto out;
2040         }
2041
2042         /* calc total requested load for this regulator */
2043         list_for_each_entry(consumer, &rdev->consumer_list, list)
2044                 total_uA_load += consumer->uA_load;
2045
2046         mode = rdev->desc->ops->get_optimum_mode(rdev,
2047                                                  input_uV, output_uV,
2048                                                  total_uA_load);
2049         ret = regulator_check_mode(rdev, mode);
2050         if (ret < 0) {
2051                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2052                          total_uA_load, input_uV, output_uV);
2053                 goto out;
2054         }
2055
2056         ret = rdev->desc->ops->set_mode(rdev, mode);
2057         if (ret < 0) {
2058                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2059                 goto out;
2060         }
2061         ret = mode;
2062 out:
2063         mutex_unlock(&rdev->mutex);
2064         return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2067
2068 /**
2069  * regulator_register_notifier - register regulator event notifier
2070  * @regulator: regulator source
2071  * @nb: notifier block
2072  *
2073  * Register notifier block to receive regulator events.
2074  */
2075 int regulator_register_notifier(struct regulator *regulator,
2076                               struct notifier_block *nb)
2077 {
2078         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2079                                                 nb);
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2082
2083 /**
2084  * regulator_unregister_notifier - unregister regulator event notifier
2085  * @regulator: regulator source
2086  * @nb: notifier block
2087  *
2088  * Unregister regulator event notifier block.
2089  */
2090 int regulator_unregister_notifier(struct regulator *regulator,
2091                                 struct notifier_block *nb)
2092 {
2093         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2094                                                   nb);
2095 }
2096 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2097
2098 /* notify regulator consumers and downstream regulator consumers.
2099  * Note mutex must be held by caller.
2100  */
2101 static void _notifier_call_chain(struct regulator_dev *rdev,
2102                                   unsigned long event, void *data)
2103 {
2104         struct regulator_dev *_rdev;
2105
2106         /* call rdev chain first */
2107         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2108
2109         /* now notify regulator we supply */
2110         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2111                 mutex_lock(&_rdev->mutex);
2112                 _notifier_call_chain(_rdev, event, data);
2113                 mutex_unlock(&_rdev->mutex);
2114         }
2115 }
2116
2117 /**
2118  * regulator_bulk_get - get multiple regulator consumers
2119  *
2120  * @dev:           Device to supply
2121  * @num_consumers: Number of consumers to register
2122  * @consumers:     Configuration of consumers; clients are stored here.
2123  *
2124  * @return 0 on success, an errno on failure.
2125  *
2126  * This helper function allows drivers to get several regulator
2127  * consumers in one operation.  If any of the regulators cannot be
2128  * acquired then any regulators that were allocated will be freed
2129  * before returning to the caller.
2130  */
2131 int regulator_bulk_get(struct device *dev, int num_consumers,
2132                        struct regulator_bulk_data *consumers)
2133 {
2134         int i;
2135         int ret;
2136
2137         for (i = 0; i < num_consumers; i++)
2138                 consumers[i].consumer = NULL;
2139
2140         for (i = 0; i < num_consumers; i++) {
2141                 consumers[i].consumer = regulator_get(dev,
2142                                                       consumers[i].supply);
2143                 if (IS_ERR(consumers[i].consumer)) {
2144                         ret = PTR_ERR(consumers[i].consumer);
2145                         dev_err(dev, "Failed to get supply '%s': %d\n",
2146                                 consumers[i].supply, ret);
2147                         consumers[i].consumer = NULL;
2148                         goto err;
2149                 }
2150         }
2151
2152         return 0;
2153
2154 err:
2155         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2156                 regulator_put(consumers[i].consumer);
2157
2158         return ret;
2159 }
2160 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2161
2162 /**
2163  * regulator_bulk_enable - enable multiple regulator consumers
2164  *
2165  * @num_consumers: Number of consumers
2166  * @consumers:     Consumer data; clients are stored here.
2167  * @return         0 on success, an errno on failure
2168  *
2169  * This convenience API allows consumers to enable multiple regulator
2170  * clients in a single API call.  If any consumers cannot be enabled
2171  * then any others that were enabled will be disabled again prior to
2172  * return.
2173  */
2174 int regulator_bulk_enable(int num_consumers,
2175                           struct regulator_bulk_data *consumers)
2176 {
2177         int i;
2178         int ret;
2179
2180         for (i = 0; i < num_consumers; i++) {
2181                 ret = regulator_enable(consumers[i].consumer);
2182                 if (ret != 0)
2183                         goto err;
2184         }
2185
2186         return 0;
2187
2188 err:
2189         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2190         for (--i; i >= 0; --i)
2191                 regulator_disable(consumers[i].consumer);
2192
2193         return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2196
2197 /**
2198  * regulator_bulk_disable - disable multiple regulator consumers
2199  *
2200  * @num_consumers: Number of consumers
2201  * @consumers:     Consumer data; clients are stored here.
2202  * @return         0 on success, an errno on failure
2203  *
2204  * This convenience API allows consumers to disable multiple regulator
2205  * clients in a single API call.  If any consumers cannot be enabled
2206  * then any others that were disabled will be disabled again prior to
2207  * return.
2208  */
2209 int regulator_bulk_disable(int num_consumers,
2210                            struct regulator_bulk_data *consumers)
2211 {
2212         int i;
2213         int ret;
2214
2215         for (i = 0; i < num_consumers; i++) {
2216                 ret = regulator_disable(consumers[i].consumer);
2217                 if (ret != 0)
2218                         goto err;
2219         }
2220
2221         return 0;
2222
2223 err:
2224         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2225         for (--i; i >= 0; --i)
2226                 regulator_enable(consumers[i].consumer);
2227
2228         return ret;
2229 }
2230 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2231
2232 /**
2233  * regulator_bulk_free - free multiple regulator consumers
2234  *
2235  * @num_consumers: Number of consumers
2236  * @consumers:     Consumer data; clients are stored here.
2237  *
2238  * This convenience API allows consumers to free multiple regulator
2239  * clients in a single API call.
2240  */
2241 void regulator_bulk_free(int num_consumers,
2242                          struct regulator_bulk_data *consumers)
2243 {
2244         int i;
2245
2246         for (i = 0; i < num_consumers; i++) {
2247                 regulator_put(consumers[i].consumer);
2248                 consumers[i].consumer = NULL;
2249         }
2250 }
2251 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2252
2253 /**
2254  * regulator_notifier_call_chain - call regulator event notifier
2255  * @rdev: regulator source
2256  * @event: notifier block
2257  * @data: callback-specific data.
2258  *
2259  * Called by regulator drivers to notify clients a regulator event has
2260  * occurred. We also notify regulator clients downstream.
2261  * Note lock must be held by caller.
2262  */
2263 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2264                                   unsigned long event, void *data)
2265 {
2266         _notifier_call_chain(rdev, event, data);
2267         return NOTIFY_DONE;
2268
2269 }
2270 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2271
2272 /**
2273  * regulator_mode_to_status - convert a regulator mode into a status
2274  *
2275  * @mode: Mode to convert
2276  *
2277  * Convert a regulator mode into a status.
2278  */
2279 int regulator_mode_to_status(unsigned int mode)
2280 {
2281         switch (mode) {
2282         case REGULATOR_MODE_FAST:
2283                 return REGULATOR_STATUS_FAST;
2284         case REGULATOR_MODE_NORMAL:
2285                 return REGULATOR_STATUS_NORMAL;
2286         case REGULATOR_MODE_IDLE:
2287                 return REGULATOR_STATUS_IDLE;
2288         case REGULATOR_STATUS_STANDBY:
2289                 return REGULATOR_STATUS_STANDBY;
2290         default:
2291                 return 0;
2292         }
2293 }
2294 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2295
2296 /*
2297  * To avoid cluttering sysfs (and memory) with useless state, only
2298  * create attributes that can be meaningfully displayed.
2299  */
2300 static int add_regulator_attributes(struct regulator_dev *rdev)
2301 {
2302         struct device           *dev = &rdev->dev;
2303         struct regulator_ops    *ops = rdev->desc->ops;
2304         int                     status = 0;
2305
2306         /* some attributes need specific methods to be displayed */
2307         if (ops->get_voltage || ops->get_voltage_sel) {
2308                 status = device_create_file(dev, &dev_attr_microvolts);
2309                 if (status < 0)
2310                         return status;
2311         }
2312         if (ops->get_current_limit) {
2313                 status = device_create_file(dev, &dev_attr_microamps);
2314                 if (status < 0)
2315                         return status;
2316         }
2317         if (ops->get_mode) {
2318                 status = device_create_file(dev, &dev_attr_opmode);
2319                 if (status < 0)
2320                         return status;
2321         }
2322         if (ops->is_enabled) {
2323                 status = device_create_file(dev, &dev_attr_state);
2324                 if (status < 0)
2325                         return status;
2326         }
2327         if (ops->get_status) {
2328                 status = device_create_file(dev, &dev_attr_status);
2329                 if (status < 0)
2330                         return status;
2331         }
2332
2333         /* some attributes are type-specific */
2334         if (rdev->desc->type == REGULATOR_CURRENT) {
2335                 status = device_create_file(dev, &dev_attr_requested_microamps);
2336                 if (status < 0)
2337                         return status;
2338         }
2339
2340         /* all the other attributes exist to support constraints;
2341          * don't show them if there are no constraints, or if the
2342          * relevant supporting methods are missing.
2343          */
2344         if (!rdev->constraints)
2345                 return status;
2346
2347         /* constraints need specific supporting methods */
2348         if (ops->set_voltage || ops->set_voltage_sel) {
2349                 status = device_create_file(dev, &dev_attr_min_microvolts);
2350                 if (status < 0)
2351                         return status;
2352                 status = device_create_file(dev, &dev_attr_max_microvolts);
2353                 if (status < 0)
2354                         return status;
2355         }
2356         if (ops->set_current_limit) {
2357                 status = device_create_file(dev, &dev_attr_min_microamps);
2358                 if (status < 0)
2359                         return status;
2360                 status = device_create_file(dev, &dev_attr_max_microamps);
2361                 if (status < 0)
2362                         return status;
2363         }
2364
2365         /* suspend mode constraints need multiple supporting methods */
2366         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2367                 return status;
2368
2369         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2370         if (status < 0)
2371                 return status;
2372         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2373         if (status < 0)
2374                 return status;
2375         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2376         if (status < 0)
2377                 return status;
2378
2379         if (ops->set_suspend_voltage) {
2380                 status = device_create_file(dev,
2381                                 &dev_attr_suspend_standby_microvolts);
2382                 if (status < 0)
2383                         return status;
2384                 status = device_create_file(dev,
2385                                 &dev_attr_suspend_mem_microvolts);
2386                 if (status < 0)
2387                         return status;
2388                 status = device_create_file(dev,
2389                                 &dev_attr_suspend_disk_microvolts);
2390                 if (status < 0)
2391                         return status;
2392         }
2393
2394         if (ops->set_suspend_mode) {
2395                 status = device_create_file(dev,
2396                                 &dev_attr_suspend_standby_mode);
2397                 if (status < 0)
2398                         return status;
2399                 status = device_create_file(dev,
2400                                 &dev_attr_suspend_mem_mode);
2401                 if (status < 0)
2402                         return status;
2403                 status = device_create_file(dev,
2404                                 &dev_attr_suspend_disk_mode);
2405                 if (status < 0)
2406                         return status;
2407         }
2408
2409         return status;
2410 }
2411
2412 static void rdev_init_debugfs(struct regulator_dev *rdev)
2413 {
2414 #ifdef CONFIG_DEBUG_FS
2415         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2416         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2417                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2418                 rdev->debugfs = NULL;
2419                 return;
2420         }
2421
2422         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2423                            &rdev->use_count);
2424         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2425                            &rdev->open_count);
2426 #endif
2427 }
2428
2429 /**
2430  * regulator_register - register regulator
2431  * @regulator_desc: regulator to register
2432  * @dev: struct device for the regulator
2433  * @init_data: platform provided init data, passed through by driver
2434  * @driver_data: private regulator data
2435  *
2436  * Called by regulator drivers to register a regulator.
2437  * Returns 0 on success.
2438  */
2439 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2440         struct device *dev, const struct regulator_init_data *init_data,
2441         void *driver_data)
2442 {
2443         static atomic_t regulator_no = ATOMIC_INIT(0);
2444         struct regulator_dev *rdev;
2445         int ret, i;
2446
2447         if (regulator_desc == NULL)
2448                 return ERR_PTR(-EINVAL);
2449
2450         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2451                 return ERR_PTR(-EINVAL);
2452
2453         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2454             regulator_desc->type != REGULATOR_CURRENT)
2455                 return ERR_PTR(-EINVAL);
2456
2457         if (!init_data)
2458                 return ERR_PTR(-EINVAL);
2459
2460         /* Only one of each should be implemented */
2461         WARN_ON(regulator_desc->ops->get_voltage &&
2462                 regulator_desc->ops->get_voltage_sel);
2463         WARN_ON(regulator_desc->ops->set_voltage &&
2464                 regulator_desc->ops->set_voltage_sel);
2465
2466         /* If we're using selectors we must implement list_voltage. */
2467         if (regulator_desc->ops->get_voltage_sel &&
2468             !regulator_desc->ops->list_voltage) {
2469                 return ERR_PTR(-EINVAL);
2470         }
2471         if (regulator_desc->ops->set_voltage_sel &&
2472             !regulator_desc->ops->list_voltage) {
2473                 return ERR_PTR(-EINVAL);
2474         }
2475
2476         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2477         if (rdev == NULL)
2478                 return ERR_PTR(-ENOMEM);
2479
2480         mutex_lock(&regulator_list_mutex);
2481
2482         mutex_init(&rdev->mutex);
2483         rdev->reg_data = driver_data;
2484         rdev->owner = regulator_desc->owner;
2485         rdev->desc = regulator_desc;
2486         INIT_LIST_HEAD(&rdev->consumer_list);
2487         INIT_LIST_HEAD(&rdev->supply_list);
2488         INIT_LIST_HEAD(&rdev->list);
2489         INIT_LIST_HEAD(&rdev->slist);
2490         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2491
2492         /* preform any regulator specific init */
2493         if (init_data->regulator_init) {
2494                 ret = init_data->regulator_init(rdev->reg_data);
2495                 if (ret < 0)
2496                         goto clean;
2497         }
2498
2499         /* register with sysfs */
2500         rdev->dev.class = &regulator_class;
2501         rdev->dev.parent = dev;
2502         dev_set_name(&rdev->dev, "regulator.%d",
2503                      atomic_inc_return(&regulator_no) - 1);
2504         ret = device_register(&rdev->dev);
2505         if (ret != 0) {
2506                 put_device(&rdev->dev);
2507                 goto clean;
2508         }
2509
2510         dev_set_drvdata(&rdev->dev, rdev);
2511
2512         /* set regulator constraints */
2513         ret = set_machine_constraints(rdev, &init_data->constraints);
2514         if (ret < 0)
2515                 goto scrub;
2516
2517         /* add attributes supported by this regulator */
2518         ret = add_regulator_attributes(rdev);
2519         if (ret < 0)
2520                 goto scrub;
2521
2522         /* set supply regulator if it exists */
2523         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2524                 dev_err(dev,
2525                         "Supply regulator specified by both name and dev\n");
2526                 ret = -EINVAL;
2527                 goto scrub;
2528         }
2529
2530         if (init_data->supply_regulator) {
2531                 struct regulator_dev *r;
2532                 int found = 0;
2533
2534                 list_for_each_entry(r, &regulator_list, list) {
2535                         if (strcmp(rdev_get_name(r),
2536                                    init_data->supply_regulator) == 0) {
2537                                 found = 1;
2538                                 break;
2539                         }
2540                 }
2541
2542                 if (!found) {
2543                         dev_err(dev, "Failed to find supply %s\n",
2544                                 init_data->supply_regulator);
2545                         ret = -ENODEV;
2546                         goto scrub;
2547                 }
2548
2549                 ret = set_supply(rdev, r);
2550                 if (ret < 0)
2551                         goto scrub;
2552         }
2553
2554         if (init_data->supply_regulator_dev) {
2555                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2556                 ret = set_supply(rdev,
2557                         dev_get_drvdata(init_data->supply_regulator_dev));
2558                 if (ret < 0)
2559                         goto scrub;
2560         }
2561
2562         /* add consumers devices */
2563         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2564                 ret = set_consumer_device_supply(rdev,
2565                         init_data->consumer_supplies[i].dev,
2566                         init_data->consumer_supplies[i].dev_name,
2567                         init_data->consumer_supplies[i].supply);
2568                 if (ret < 0)
2569                         goto unset_supplies;
2570         }
2571
2572         list_add(&rdev->list, &regulator_list);
2573
2574         rdev_init_debugfs(rdev);
2575 out:
2576         mutex_unlock(&regulator_list_mutex);
2577         return rdev;
2578
2579 unset_supplies:
2580         unset_regulator_supplies(rdev);
2581
2582 scrub:
2583         device_unregister(&rdev->dev);
2584         /* device core frees rdev */
2585         rdev = ERR_PTR(ret);
2586         goto out;
2587
2588 clean:
2589         kfree(rdev);
2590         rdev = ERR_PTR(ret);
2591         goto out;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_register);
2594
2595 /**
2596  * regulator_unregister - unregister regulator
2597  * @rdev: regulator to unregister
2598  *
2599  * Called by regulator drivers to unregister a regulator.
2600  */
2601 void regulator_unregister(struct regulator_dev *rdev)
2602 {
2603         if (rdev == NULL)
2604                 return;
2605
2606         mutex_lock(&regulator_list_mutex);
2607 #ifdef CONFIG_DEBUG_FS
2608         debugfs_remove_recursive(rdev->debugfs);
2609 #endif
2610         WARN_ON(rdev->open_count);
2611         unset_regulator_supplies(rdev);
2612         list_del(&rdev->list);
2613         if (rdev->supply)
2614                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2615         device_unregister(&rdev->dev);
2616         kfree(rdev->constraints);
2617         mutex_unlock(&regulator_list_mutex);
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_unregister);
2620
2621 /**
2622  * regulator_suspend_prepare - prepare regulators for system wide suspend
2623  * @state: system suspend state
2624  *
2625  * Configure each regulator with it's suspend operating parameters for state.
2626  * This will usually be called by machine suspend code prior to supending.
2627  */
2628 int regulator_suspend_prepare(suspend_state_t state)
2629 {
2630         struct regulator_dev *rdev;
2631         int ret = 0;
2632
2633         /* ON is handled by regulator active state */
2634         if (state == PM_SUSPEND_ON)
2635                 return -EINVAL;
2636
2637         mutex_lock(&regulator_list_mutex);
2638         list_for_each_entry(rdev, &regulator_list, list) {
2639
2640                 mutex_lock(&rdev->mutex);
2641                 ret = suspend_prepare(rdev, state);
2642                 mutex_unlock(&rdev->mutex);
2643
2644                 if (ret < 0) {
2645                         rdev_err(rdev, "failed to prepare\n");
2646                         goto out;
2647                 }
2648         }
2649 out:
2650         mutex_unlock(&regulator_list_mutex);
2651         return ret;
2652 }
2653 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2654
2655 /**
2656  * regulator_has_full_constraints - the system has fully specified constraints
2657  *
2658  * Calling this function will cause the regulator API to disable all
2659  * regulators which have a zero use count and don't have an always_on
2660  * constraint in a late_initcall.
2661  *
2662  * The intention is that this will become the default behaviour in a
2663  * future kernel release so users are encouraged to use this facility
2664  * now.
2665  */
2666 void regulator_has_full_constraints(void)
2667 {
2668         has_full_constraints = 1;
2669 }
2670 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2671
2672 /**
2673  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2674  *
2675  * Calling this function will cause the regulator API to provide a
2676  * dummy regulator to consumers if no physical regulator is found,
2677  * allowing most consumers to proceed as though a regulator were
2678  * configured.  This allows systems such as those with software
2679  * controllable regulators for the CPU core only to be brought up more
2680  * readily.
2681  */
2682 void regulator_use_dummy_regulator(void)
2683 {
2684         board_wants_dummy_regulator = true;
2685 }
2686 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2687
2688 /**
2689  * rdev_get_drvdata - get rdev regulator driver data
2690  * @rdev: regulator
2691  *
2692  * Get rdev regulator driver private data. This call can be used in the
2693  * regulator driver context.
2694  */
2695 void *rdev_get_drvdata(struct regulator_dev *rdev)
2696 {
2697         return rdev->reg_data;
2698 }
2699 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2700
2701 /**
2702  * regulator_get_drvdata - get regulator driver data
2703  * @regulator: regulator
2704  *
2705  * Get regulator driver private data. This call can be used in the consumer
2706  * driver context when non API regulator specific functions need to be called.
2707  */
2708 void *regulator_get_drvdata(struct regulator *regulator)
2709 {
2710         return regulator->rdev->reg_data;
2711 }
2712 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2713
2714 /**
2715  * regulator_set_drvdata - set regulator driver data
2716  * @regulator: regulator
2717  * @data: data
2718  */
2719 void regulator_set_drvdata(struct regulator *regulator, void *data)
2720 {
2721         regulator->rdev->reg_data = data;
2722 }
2723 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2724
2725 /**
2726  * regulator_get_id - get regulator ID
2727  * @rdev: regulator
2728  */
2729 int rdev_get_id(struct regulator_dev *rdev)
2730 {
2731         return rdev->desc->id;
2732 }
2733 EXPORT_SYMBOL_GPL(rdev_get_id);
2734
2735 struct device *rdev_get_dev(struct regulator_dev *rdev)
2736 {
2737         return &rdev->dev;
2738 }
2739 EXPORT_SYMBOL_GPL(rdev_get_dev);
2740
2741 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2742 {
2743         return reg_init_data->driver_data;
2744 }
2745 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2746
2747 static int __init regulator_init(void)
2748 {
2749         int ret;
2750
2751         ret = class_register(&regulator_class);
2752
2753 #ifdef CONFIG_DEBUG_FS
2754         debugfs_root = debugfs_create_dir("regulator", NULL);
2755         if (IS_ERR(debugfs_root) || !debugfs_root) {
2756                 pr_warn("regulator: Failed to create debugfs directory\n");
2757                 debugfs_root = NULL;
2758         }
2759 #endif
2760
2761         regulator_dummy_init();
2762
2763         return ret;
2764 }
2765
2766 /* init early to allow our consumers to complete system booting */
2767 core_initcall(regulator_init);
2768
2769 static int __init regulator_init_complete(void)
2770 {
2771         struct regulator_dev *rdev;
2772         struct regulator_ops *ops;
2773         struct regulation_constraints *c;
2774         int enabled, ret;
2775
2776         mutex_lock(&regulator_list_mutex);
2777
2778         /* If we have a full configuration then disable any regulators
2779          * which are not in use or always_on.  This will become the
2780          * default behaviour in the future.
2781          */
2782         list_for_each_entry(rdev, &regulator_list, list) {
2783                 ops = rdev->desc->ops;
2784                 c = rdev->constraints;
2785
2786                 if (!ops->disable || (c && c->always_on))
2787                         continue;
2788
2789                 mutex_lock(&rdev->mutex);
2790
2791                 if (rdev->use_count)
2792                         goto unlock;
2793
2794                 /* If we can't read the status assume it's on. */
2795                 if (ops->is_enabled)
2796                         enabled = ops->is_enabled(rdev);
2797                 else
2798                         enabled = 1;
2799
2800                 if (!enabled)
2801                         goto unlock;
2802
2803                 if (has_full_constraints) {
2804                         /* We log since this may kill the system if it
2805                          * goes wrong. */
2806                         rdev_info(rdev, "disabling\n");
2807                         ret = ops->disable(rdev);
2808                         if (ret != 0) {
2809                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2810                         }
2811                 } else {
2812                         /* The intention is that in future we will
2813                          * assume that full constraints are provided
2814                          * so warn even if we aren't going to do
2815                          * anything here.
2816                          */
2817                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2818                 }
2819
2820 unlock:
2821                 mutex_unlock(&rdev->mutex);
2822         }
2823
2824         mutex_unlock(&regulator_list_mutex);
2825
2826         return 0;
2827 }
2828 late_initcall(regulator_init_complete);