Merge git://git.infradead.org/iommu-2.6
[pandora-kernel.git] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <asm/cacheflush.h>
40 #include <asm/iommu.h>
41 #include "pci.h"
42
43 #define ROOT_SIZE               VTD_PAGE_SIZE
44 #define CONTEXT_SIZE            VTD_PAGE_SIZE
45
46 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
48
49 #define IOAPIC_RANGE_START      (0xfee00000)
50 #define IOAPIC_RANGE_END        (0xfeefffff)
51 #define IOVA_START_ADDR         (0x1000)
52
53 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
54
55 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
56
57 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
58 #define DMA_32BIT_PFN           IOVA_PFN(DMA_32BIT_MASK)
59 #define DMA_64BIT_PFN           IOVA_PFN(DMA_64BIT_MASK)
60
61 /* global iommu list, set NULL for ignored DMAR units */
62 static struct intel_iommu **g_iommus;
63
64 static int rwbf_quirk;
65
66 /*
67  * 0: Present
68  * 1-11: Reserved
69  * 12-63: Context Ptr (12 - (haw-1))
70  * 64-127: Reserved
71  */
72 struct root_entry {
73         u64     val;
74         u64     rsvd1;
75 };
76 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
77 static inline bool root_present(struct root_entry *root)
78 {
79         return (root->val & 1);
80 }
81 static inline void set_root_present(struct root_entry *root)
82 {
83         root->val |= 1;
84 }
85 static inline void set_root_value(struct root_entry *root, unsigned long value)
86 {
87         root->val |= value & VTD_PAGE_MASK;
88 }
89
90 static inline struct context_entry *
91 get_context_addr_from_root(struct root_entry *root)
92 {
93         return (struct context_entry *)
94                 (root_present(root)?phys_to_virt(
95                 root->val & VTD_PAGE_MASK) :
96                 NULL);
97 }
98
99 /*
100  * low 64 bits:
101  * 0: present
102  * 1: fault processing disable
103  * 2-3: translation type
104  * 12-63: address space root
105  * high 64 bits:
106  * 0-2: address width
107  * 3-6: aval
108  * 8-23: domain id
109  */
110 struct context_entry {
111         u64 lo;
112         u64 hi;
113 };
114
115 static inline bool context_present(struct context_entry *context)
116 {
117         return (context->lo & 1);
118 }
119 static inline void context_set_present(struct context_entry *context)
120 {
121         context->lo |= 1;
122 }
123
124 static inline void context_set_fault_enable(struct context_entry *context)
125 {
126         context->lo &= (((u64)-1) << 2) | 1;
127 }
128
129 #define CONTEXT_TT_MULTI_LEVEL 0
130
131 static inline void context_set_translation_type(struct context_entry *context,
132                                                 unsigned long value)
133 {
134         context->lo &= (((u64)-1) << 4) | 3;
135         context->lo |= (value & 3) << 2;
136 }
137
138 static inline void context_set_address_root(struct context_entry *context,
139                                             unsigned long value)
140 {
141         context->lo |= value & VTD_PAGE_MASK;
142 }
143
144 static inline void context_set_address_width(struct context_entry *context,
145                                              unsigned long value)
146 {
147         context->hi |= value & 7;
148 }
149
150 static inline void context_set_domain_id(struct context_entry *context,
151                                          unsigned long value)
152 {
153         context->hi |= (value & ((1 << 16) - 1)) << 8;
154 }
155
156 static inline void context_clear_entry(struct context_entry *context)
157 {
158         context->lo = 0;
159         context->hi = 0;
160 }
161
162 /*
163  * 0: readable
164  * 1: writable
165  * 2-6: reserved
166  * 7: super page
167  * 8-10: available
168  * 11: snoop behavior
169  * 12-63: Host physcial address
170  */
171 struct dma_pte {
172         u64 val;
173 };
174
175 static inline void dma_clear_pte(struct dma_pte *pte)
176 {
177         pte->val = 0;
178 }
179
180 static inline void dma_set_pte_readable(struct dma_pte *pte)
181 {
182         pte->val |= DMA_PTE_READ;
183 }
184
185 static inline void dma_set_pte_writable(struct dma_pte *pte)
186 {
187         pte->val |= DMA_PTE_WRITE;
188 }
189
190 static inline void dma_set_pte_snp(struct dma_pte *pte)
191 {
192         pte->val |= DMA_PTE_SNP;
193 }
194
195 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
196 {
197         pte->val = (pte->val & ~3) | (prot & 3);
198 }
199
200 static inline u64 dma_pte_addr(struct dma_pte *pte)
201 {
202         return (pte->val & VTD_PAGE_MASK);
203 }
204
205 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
206 {
207         pte->val |= (addr & VTD_PAGE_MASK);
208 }
209
210 static inline bool dma_pte_present(struct dma_pte *pte)
211 {
212         return (pte->val & 3) != 0;
213 }
214
215 /* devices under the same p2p bridge are owned in one domain */
216 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
217
218 /* domain represents a virtual machine, more than one devices
219  * across iommus may be owned in one domain, e.g. kvm guest.
220  */
221 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
222
223 struct dmar_domain {
224         int     id;                     /* domain id */
225         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
226
227         struct list_head devices;       /* all devices' list */
228         struct iova_domain iovad;       /* iova's that belong to this domain */
229
230         struct dma_pte  *pgd;           /* virtual address */
231         spinlock_t      mapping_lock;   /* page table lock */
232         int             gaw;            /* max guest address width */
233
234         /* adjusted guest address width, 0 is level 2 30-bit */
235         int             agaw;
236
237         int             flags;          /* flags to find out type of domain */
238
239         int             iommu_coherency;/* indicate coherency of iommu access */
240         int             iommu_snooping; /* indicate snooping control feature*/
241         int             iommu_count;    /* reference count of iommu */
242         spinlock_t      iommu_lock;     /* protect iommu set in domain */
243         u64             max_addr;       /* maximum mapped address */
244 };
245
246 /* PCI domain-device relationship */
247 struct device_domain_info {
248         struct list_head link;  /* link to domain siblings */
249         struct list_head global; /* link to global list */
250         u8 bus;                 /* PCI bus numer */
251         u8 devfn;               /* PCI devfn number */
252         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
253         struct dmar_domain *domain; /* pointer to domain */
254 };
255
256 static void flush_unmaps_timeout(unsigned long data);
257
258 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
259
260 #define HIGH_WATER_MARK 250
261 struct deferred_flush_tables {
262         int next;
263         struct iova *iova[HIGH_WATER_MARK];
264         struct dmar_domain *domain[HIGH_WATER_MARK];
265 };
266
267 static struct deferred_flush_tables *deferred_flush;
268
269 /* bitmap for indexing intel_iommus */
270 static int g_num_of_iommus;
271
272 static DEFINE_SPINLOCK(async_umap_flush_lock);
273 static LIST_HEAD(unmaps_to_do);
274
275 static int timer_on;
276 static long list_size;
277
278 static void domain_remove_dev_info(struct dmar_domain *domain);
279
280 #ifdef CONFIG_DMAR_DEFAULT_ON
281 int dmar_disabled = 0;
282 #else
283 int dmar_disabled = 1;
284 #endif /*CONFIG_DMAR_DEFAULT_ON*/
285
286 static int __initdata dmar_map_gfx = 1;
287 static int dmar_forcedac;
288 static int intel_iommu_strict;
289
290 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
291 static DEFINE_SPINLOCK(device_domain_lock);
292 static LIST_HEAD(device_domain_list);
293
294 static struct iommu_ops intel_iommu_ops;
295
296 static int __init intel_iommu_setup(char *str)
297 {
298         if (!str)
299                 return -EINVAL;
300         while (*str) {
301                 if (!strncmp(str, "on", 2)) {
302                         dmar_disabled = 0;
303                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
304                 } else if (!strncmp(str, "off", 3)) {
305                         dmar_disabled = 1;
306                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
307                 } else if (!strncmp(str, "igfx_off", 8)) {
308                         dmar_map_gfx = 0;
309                         printk(KERN_INFO
310                                 "Intel-IOMMU: disable GFX device mapping\n");
311                 } else if (!strncmp(str, "forcedac", 8)) {
312                         printk(KERN_INFO
313                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
314                         dmar_forcedac = 1;
315                 } else if (!strncmp(str, "strict", 6)) {
316                         printk(KERN_INFO
317                                 "Intel-IOMMU: disable batched IOTLB flush\n");
318                         intel_iommu_strict = 1;
319                 }
320
321                 str += strcspn(str, ",");
322                 while (*str == ',')
323                         str++;
324         }
325         return 0;
326 }
327 __setup("intel_iommu=", intel_iommu_setup);
328
329 static struct kmem_cache *iommu_domain_cache;
330 static struct kmem_cache *iommu_devinfo_cache;
331 static struct kmem_cache *iommu_iova_cache;
332
333 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
334 {
335         unsigned int flags;
336         void *vaddr;
337
338         /* trying to avoid low memory issues */
339         flags = current->flags & PF_MEMALLOC;
340         current->flags |= PF_MEMALLOC;
341         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
342         current->flags &= (~PF_MEMALLOC | flags);
343         return vaddr;
344 }
345
346
347 static inline void *alloc_pgtable_page(void)
348 {
349         unsigned int flags;
350         void *vaddr;
351
352         /* trying to avoid low memory issues */
353         flags = current->flags & PF_MEMALLOC;
354         current->flags |= PF_MEMALLOC;
355         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
356         current->flags &= (~PF_MEMALLOC | flags);
357         return vaddr;
358 }
359
360 static inline void free_pgtable_page(void *vaddr)
361 {
362         free_page((unsigned long)vaddr);
363 }
364
365 static inline void *alloc_domain_mem(void)
366 {
367         return iommu_kmem_cache_alloc(iommu_domain_cache);
368 }
369
370 static void free_domain_mem(void *vaddr)
371 {
372         kmem_cache_free(iommu_domain_cache, vaddr);
373 }
374
375 static inline void * alloc_devinfo_mem(void)
376 {
377         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
378 }
379
380 static inline void free_devinfo_mem(void *vaddr)
381 {
382         kmem_cache_free(iommu_devinfo_cache, vaddr);
383 }
384
385 struct iova *alloc_iova_mem(void)
386 {
387         return iommu_kmem_cache_alloc(iommu_iova_cache);
388 }
389
390 void free_iova_mem(struct iova *iova)
391 {
392         kmem_cache_free(iommu_iova_cache, iova);
393 }
394
395
396 static inline int width_to_agaw(int width);
397
398 /* calculate agaw for each iommu.
399  * "SAGAW" may be different across iommus, use a default agaw, and
400  * get a supported less agaw for iommus that don't support the default agaw.
401  */
402 int iommu_calculate_agaw(struct intel_iommu *iommu)
403 {
404         unsigned long sagaw;
405         int agaw = -1;
406
407         sagaw = cap_sagaw(iommu->cap);
408         for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
409              agaw >= 0; agaw--) {
410                 if (test_bit(agaw, &sagaw))
411                         break;
412         }
413
414         return agaw;
415 }
416
417 /* in native case, each domain is related to only one iommu */
418 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
419 {
420         int iommu_id;
421
422         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
423
424         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
425         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
426                 return NULL;
427
428         return g_iommus[iommu_id];
429 }
430
431 static void domain_update_iommu_coherency(struct dmar_domain *domain)
432 {
433         int i;
434
435         domain->iommu_coherency = 1;
436
437         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
438         for (; i < g_num_of_iommus; ) {
439                 if (!ecap_coherent(g_iommus[i]->ecap)) {
440                         domain->iommu_coherency = 0;
441                         break;
442                 }
443                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
444         }
445 }
446
447 static void domain_update_iommu_snooping(struct dmar_domain *domain)
448 {
449         int i;
450
451         domain->iommu_snooping = 1;
452
453         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
454         for (; i < g_num_of_iommus; ) {
455                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
456                         domain->iommu_snooping = 0;
457                         break;
458                 }
459                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
460         }
461 }
462
463 /* Some capabilities may be different across iommus */
464 static void domain_update_iommu_cap(struct dmar_domain *domain)
465 {
466         domain_update_iommu_coherency(domain);
467         domain_update_iommu_snooping(domain);
468 }
469
470 static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
471 {
472         struct dmar_drhd_unit *drhd = NULL;
473         int i;
474
475         for_each_drhd_unit(drhd) {
476                 if (drhd->ignored)
477                         continue;
478
479                 for (i = 0; i < drhd->devices_cnt; i++)
480                         if (drhd->devices[i] &&
481                             drhd->devices[i]->bus->number == bus &&
482                             drhd->devices[i]->devfn == devfn)
483                                 return drhd->iommu;
484
485                 if (drhd->include_all)
486                         return drhd->iommu;
487         }
488
489         return NULL;
490 }
491
492 static void domain_flush_cache(struct dmar_domain *domain,
493                                void *addr, int size)
494 {
495         if (!domain->iommu_coherency)
496                 clflush_cache_range(addr, size);
497 }
498
499 /* Gets context entry for a given bus and devfn */
500 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
501                 u8 bus, u8 devfn)
502 {
503         struct root_entry *root;
504         struct context_entry *context;
505         unsigned long phy_addr;
506         unsigned long flags;
507
508         spin_lock_irqsave(&iommu->lock, flags);
509         root = &iommu->root_entry[bus];
510         context = get_context_addr_from_root(root);
511         if (!context) {
512                 context = (struct context_entry *)alloc_pgtable_page();
513                 if (!context) {
514                         spin_unlock_irqrestore(&iommu->lock, flags);
515                         return NULL;
516                 }
517                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
518                 phy_addr = virt_to_phys((void *)context);
519                 set_root_value(root, phy_addr);
520                 set_root_present(root);
521                 __iommu_flush_cache(iommu, root, sizeof(*root));
522         }
523         spin_unlock_irqrestore(&iommu->lock, flags);
524         return &context[devfn];
525 }
526
527 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
528 {
529         struct root_entry *root;
530         struct context_entry *context;
531         int ret;
532         unsigned long flags;
533
534         spin_lock_irqsave(&iommu->lock, flags);
535         root = &iommu->root_entry[bus];
536         context = get_context_addr_from_root(root);
537         if (!context) {
538                 ret = 0;
539                 goto out;
540         }
541         ret = context_present(&context[devfn]);
542 out:
543         spin_unlock_irqrestore(&iommu->lock, flags);
544         return ret;
545 }
546
547 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
548 {
549         struct root_entry *root;
550         struct context_entry *context;
551         unsigned long flags;
552
553         spin_lock_irqsave(&iommu->lock, flags);
554         root = &iommu->root_entry[bus];
555         context = get_context_addr_from_root(root);
556         if (context) {
557                 context_clear_entry(&context[devfn]);
558                 __iommu_flush_cache(iommu, &context[devfn], \
559                         sizeof(*context));
560         }
561         spin_unlock_irqrestore(&iommu->lock, flags);
562 }
563
564 static void free_context_table(struct intel_iommu *iommu)
565 {
566         struct root_entry *root;
567         int i;
568         unsigned long flags;
569         struct context_entry *context;
570
571         spin_lock_irqsave(&iommu->lock, flags);
572         if (!iommu->root_entry) {
573                 goto out;
574         }
575         for (i = 0; i < ROOT_ENTRY_NR; i++) {
576                 root = &iommu->root_entry[i];
577                 context = get_context_addr_from_root(root);
578                 if (context)
579                         free_pgtable_page(context);
580         }
581         free_pgtable_page(iommu->root_entry);
582         iommu->root_entry = NULL;
583 out:
584         spin_unlock_irqrestore(&iommu->lock, flags);
585 }
586
587 /* page table handling */
588 #define LEVEL_STRIDE            (9)
589 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
590
591 static inline int agaw_to_level(int agaw)
592 {
593         return agaw + 2;
594 }
595
596 static inline int agaw_to_width(int agaw)
597 {
598         return 30 + agaw * LEVEL_STRIDE;
599
600 }
601
602 static inline int width_to_agaw(int width)
603 {
604         return (width - 30) / LEVEL_STRIDE;
605 }
606
607 static inline unsigned int level_to_offset_bits(int level)
608 {
609         return (12 + (level - 1) * LEVEL_STRIDE);
610 }
611
612 static inline int address_level_offset(u64 addr, int level)
613 {
614         return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
615 }
616
617 static inline u64 level_mask(int level)
618 {
619         return ((u64)-1 << level_to_offset_bits(level));
620 }
621
622 static inline u64 level_size(int level)
623 {
624         return ((u64)1 << level_to_offset_bits(level));
625 }
626
627 static inline u64 align_to_level(u64 addr, int level)
628 {
629         return ((addr + level_size(level) - 1) & level_mask(level));
630 }
631
632 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
633 {
634         int addr_width = agaw_to_width(domain->agaw);
635         struct dma_pte *parent, *pte = NULL;
636         int level = agaw_to_level(domain->agaw);
637         int offset;
638         unsigned long flags;
639
640         BUG_ON(!domain->pgd);
641
642         addr &= (((u64)1) << addr_width) - 1;
643         parent = domain->pgd;
644
645         spin_lock_irqsave(&domain->mapping_lock, flags);
646         while (level > 0) {
647                 void *tmp_page;
648
649                 offset = address_level_offset(addr, level);
650                 pte = &parent[offset];
651                 if (level == 1)
652                         break;
653
654                 if (!dma_pte_present(pte)) {
655                         tmp_page = alloc_pgtable_page();
656
657                         if (!tmp_page) {
658                                 spin_unlock_irqrestore(&domain->mapping_lock,
659                                         flags);
660                                 return NULL;
661                         }
662                         domain_flush_cache(domain, tmp_page, PAGE_SIZE);
663                         dma_set_pte_addr(pte, virt_to_phys(tmp_page));
664                         /*
665                          * high level table always sets r/w, last level page
666                          * table control read/write
667                          */
668                         dma_set_pte_readable(pte);
669                         dma_set_pte_writable(pte);
670                         domain_flush_cache(domain, pte, sizeof(*pte));
671                 }
672                 parent = phys_to_virt(dma_pte_addr(pte));
673                 level--;
674         }
675
676         spin_unlock_irqrestore(&domain->mapping_lock, flags);
677         return pte;
678 }
679
680 /* return address's pte at specific level */
681 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
682                 int level)
683 {
684         struct dma_pte *parent, *pte = NULL;
685         int total = agaw_to_level(domain->agaw);
686         int offset;
687
688         parent = domain->pgd;
689         while (level <= total) {
690                 offset = address_level_offset(addr, total);
691                 pte = &parent[offset];
692                 if (level == total)
693                         return pte;
694
695                 if (!dma_pte_present(pte))
696                         break;
697                 parent = phys_to_virt(dma_pte_addr(pte));
698                 total--;
699         }
700         return NULL;
701 }
702
703 /* clear one page's page table */
704 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
705 {
706         struct dma_pte *pte = NULL;
707
708         /* get last level pte */
709         pte = dma_addr_level_pte(domain, addr, 1);
710
711         if (pte) {
712                 dma_clear_pte(pte);
713                 domain_flush_cache(domain, pte, sizeof(*pte));
714         }
715 }
716
717 /* clear last level pte, a tlb flush should be followed */
718 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
719 {
720         int addr_width = agaw_to_width(domain->agaw);
721         int npages;
722
723         start &= (((u64)1) << addr_width) - 1;
724         end &= (((u64)1) << addr_width) - 1;
725         /* in case it's partial page */
726         start = PAGE_ALIGN(start);
727         end &= PAGE_MASK;
728         npages = (end - start) / VTD_PAGE_SIZE;
729
730         /* we don't need lock here, nobody else touches the iova range */
731         while (npages--) {
732                 dma_pte_clear_one(domain, start);
733                 start += VTD_PAGE_SIZE;
734         }
735 }
736
737 /* free page table pages. last level pte should already be cleared */
738 static void dma_pte_free_pagetable(struct dmar_domain *domain,
739         u64 start, u64 end)
740 {
741         int addr_width = agaw_to_width(domain->agaw);
742         struct dma_pte *pte;
743         int total = agaw_to_level(domain->agaw);
744         int level;
745         u64 tmp;
746
747         start &= (((u64)1) << addr_width) - 1;
748         end &= (((u64)1) << addr_width) - 1;
749
750         /* we don't need lock here, nobody else touches the iova range */
751         level = 2;
752         while (level <= total) {
753                 tmp = align_to_level(start, level);
754                 if (tmp >= end || (tmp + level_size(level) > end))
755                         return;
756
757                 while (tmp < end) {
758                         pte = dma_addr_level_pte(domain, tmp, level);
759                         if (pte) {
760                                 free_pgtable_page(
761                                         phys_to_virt(dma_pte_addr(pte)));
762                                 dma_clear_pte(pte);
763                                 domain_flush_cache(domain, pte, sizeof(*pte));
764                         }
765                         tmp += level_size(level);
766                 }
767                 level++;
768         }
769         /* free pgd */
770         if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
771                 free_pgtable_page(domain->pgd);
772                 domain->pgd = NULL;
773         }
774 }
775
776 /* iommu handling */
777 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
778 {
779         struct root_entry *root;
780         unsigned long flags;
781
782         root = (struct root_entry *)alloc_pgtable_page();
783         if (!root)
784                 return -ENOMEM;
785
786         __iommu_flush_cache(iommu, root, ROOT_SIZE);
787
788         spin_lock_irqsave(&iommu->lock, flags);
789         iommu->root_entry = root;
790         spin_unlock_irqrestore(&iommu->lock, flags);
791
792         return 0;
793 }
794
795 static void iommu_set_root_entry(struct intel_iommu *iommu)
796 {
797         void *addr;
798         u32 cmd, sts;
799         unsigned long flag;
800
801         addr = iommu->root_entry;
802
803         spin_lock_irqsave(&iommu->register_lock, flag);
804         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
805
806         cmd = iommu->gcmd | DMA_GCMD_SRTP;
807         writel(cmd, iommu->reg + DMAR_GCMD_REG);
808
809         /* Make sure hardware complete it */
810         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
811                 readl, (sts & DMA_GSTS_RTPS), sts);
812
813         spin_unlock_irqrestore(&iommu->register_lock, flag);
814 }
815
816 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
817 {
818         u32 val;
819         unsigned long flag;
820
821         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
822                 return;
823         val = iommu->gcmd | DMA_GCMD_WBF;
824
825         spin_lock_irqsave(&iommu->register_lock, flag);
826         writel(val, iommu->reg + DMAR_GCMD_REG);
827
828         /* Make sure hardware complete it */
829         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
830                         readl, (!(val & DMA_GSTS_WBFS)), val);
831
832         spin_unlock_irqrestore(&iommu->register_lock, flag);
833 }
834
835 /* return value determine if we need a write buffer flush */
836 static int __iommu_flush_context(struct intel_iommu *iommu,
837         u16 did, u16 source_id, u8 function_mask, u64 type,
838         int non_present_entry_flush)
839 {
840         u64 val = 0;
841         unsigned long flag;
842
843         /*
844          * In the non-present entry flush case, if hardware doesn't cache
845          * non-present entry we do nothing and if hardware cache non-present
846          * entry, we flush entries of domain 0 (the domain id is used to cache
847          * any non-present entries)
848          */
849         if (non_present_entry_flush) {
850                 if (!cap_caching_mode(iommu->cap))
851                         return 1;
852                 else
853                         did = 0;
854         }
855
856         switch (type) {
857         case DMA_CCMD_GLOBAL_INVL:
858                 val = DMA_CCMD_GLOBAL_INVL;
859                 break;
860         case DMA_CCMD_DOMAIN_INVL:
861                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
862                 break;
863         case DMA_CCMD_DEVICE_INVL:
864                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
865                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
866                 break;
867         default:
868                 BUG();
869         }
870         val |= DMA_CCMD_ICC;
871
872         spin_lock_irqsave(&iommu->register_lock, flag);
873         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
874
875         /* Make sure hardware complete it */
876         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
877                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
878
879         spin_unlock_irqrestore(&iommu->register_lock, flag);
880
881         /* flush context entry will implicitly flush write buffer */
882         return 0;
883 }
884
885 /* return value determine if we need a write buffer flush */
886 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
887         u64 addr, unsigned int size_order, u64 type,
888         int non_present_entry_flush)
889 {
890         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
891         u64 val = 0, val_iva = 0;
892         unsigned long flag;
893
894         /*
895          * In the non-present entry flush case, if hardware doesn't cache
896          * non-present entry we do nothing and if hardware cache non-present
897          * entry, we flush entries of domain 0 (the domain id is used to cache
898          * any non-present entries)
899          */
900         if (non_present_entry_flush) {
901                 if (!cap_caching_mode(iommu->cap))
902                         return 1;
903                 else
904                         did = 0;
905         }
906
907         switch (type) {
908         case DMA_TLB_GLOBAL_FLUSH:
909                 /* global flush doesn't need set IVA_REG */
910                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
911                 break;
912         case DMA_TLB_DSI_FLUSH:
913                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
914                 break;
915         case DMA_TLB_PSI_FLUSH:
916                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
917                 /* Note: always flush non-leaf currently */
918                 val_iva = size_order | addr;
919                 break;
920         default:
921                 BUG();
922         }
923         /* Note: set drain read/write */
924 #if 0
925         /*
926          * This is probably to be super secure.. Looks like we can
927          * ignore it without any impact.
928          */
929         if (cap_read_drain(iommu->cap))
930                 val |= DMA_TLB_READ_DRAIN;
931 #endif
932         if (cap_write_drain(iommu->cap))
933                 val |= DMA_TLB_WRITE_DRAIN;
934
935         spin_lock_irqsave(&iommu->register_lock, flag);
936         /* Note: Only uses first TLB reg currently */
937         if (val_iva)
938                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
939         dmar_writeq(iommu->reg + tlb_offset + 8, val);
940
941         /* Make sure hardware complete it */
942         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
943                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
944
945         spin_unlock_irqrestore(&iommu->register_lock, flag);
946
947         /* check IOTLB invalidation granularity */
948         if (DMA_TLB_IAIG(val) == 0)
949                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
950         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
951                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
952                         (unsigned long long)DMA_TLB_IIRG(type),
953                         (unsigned long long)DMA_TLB_IAIG(val));
954         /* flush iotlb entry will implicitly flush write buffer */
955         return 0;
956 }
957
958 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
959         u64 addr, unsigned int pages, int non_present_entry_flush)
960 {
961         unsigned int mask;
962
963         BUG_ON(addr & (~VTD_PAGE_MASK));
964         BUG_ON(pages == 0);
965
966         /* Fallback to domain selective flush if no PSI support */
967         if (!cap_pgsel_inv(iommu->cap))
968                 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
969                                                 DMA_TLB_DSI_FLUSH,
970                                                 non_present_entry_flush);
971
972         /*
973          * PSI requires page size to be 2 ^ x, and the base address is naturally
974          * aligned to the size
975          */
976         mask = ilog2(__roundup_pow_of_two(pages));
977         /* Fallback to domain selective flush if size is too big */
978         if (mask > cap_max_amask_val(iommu->cap))
979                 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
980                         DMA_TLB_DSI_FLUSH, non_present_entry_flush);
981
982         return iommu->flush.flush_iotlb(iommu, did, addr, mask,
983                                         DMA_TLB_PSI_FLUSH,
984                                         non_present_entry_flush);
985 }
986
987 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
988 {
989         u32 pmen;
990         unsigned long flags;
991
992         spin_lock_irqsave(&iommu->register_lock, flags);
993         pmen = readl(iommu->reg + DMAR_PMEN_REG);
994         pmen &= ~DMA_PMEN_EPM;
995         writel(pmen, iommu->reg + DMAR_PMEN_REG);
996
997         /* wait for the protected region status bit to clear */
998         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
999                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1000
1001         spin_unlock_irqrestore(&iommu->register_lock, flags);
1002 }
1003
1004 static int iommu_enable_translation(struct intel_iommu *iommu)
1005 {
1006         u32 sts;
1007         unsigned long flags;
1008
1009         spin_lock_irqsave(&iommu->register_lock, flags);
1010         writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
1011
1012         /* Make sure hardware complete it */
1013         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1014                 readl, (sts & DMA_GSTS_TES), sts);
1015
1016         iommu->gcmd |= DMA_GCMD_TE;
1017         spin_unlock_irqrestore(&iommu->register_lock, flags);
1018         return 0;
1019 }
1020
1021 static int iommu_disable_translation(struct intel_iommu *iommu)
1022 {
1023         u32 sts;
1024         unsigned long flag;
1025
1026         spin_lock_irqsave(&iommu->register_lock, flag);
1027         iommu->gcmd &= ~DMA_GCMD_TE;
1028         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1029
1030         /* Make sure hardware complete it */
1031         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1032                 readl, (!(sts & DMA_GSTS_TES)), sts);
1033
1034         spin_unlock_irqrestore(&iommu->register_lock, flag);
1035         return 0;
1036 }
1037
1038
1039 static int iommu_init_domains(struct intel_iommu *iommu)
1040 {
1041         unsigned long ndomains;
1042         unsigned long nlongs;
1043
1044         ndomains = cap_ndoms(iommu->cap);
1045         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1046         nlongs = BITS_TO_LONGS(ndomains);
1047
1048         /* TBD: there might be 64K domains,
1049          * consider other allocation for future chip
1050          */
1051         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1052         if (!iommu->domain_ids) {
1053                 printk(KERN_ERR "Allocating domain id array failed\n");
1054                 return -ENOMEM;
1055         }
1056         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1057                         GFP_KERNEL);
1058         if (!iommu->domains) {
1059                 printk(KERN_ERR "Allocating domain array failed\n");
1060                 kfree(iommu->domain_ids);
1061                 return -ENOMEM;
1062         }
1063
1064         spin_lock_init(&iommu->lock);
1065
1066         /*
1067          * if Caching mode is set, then invalid translations are tagged
1068          * with domainid 0. Hence we need to pre-allocate it.
1069          */
1070         if (cap_caching_mode(iommu->cap))
1071                 set_bit(0, iommu->domain_ids);
1072         return 0;
1073 }
1074
1075
1076 static void domain_exit(struct dmar_domain *domain);
1077 static void vm_domain_exit(struct dmar_domain *domain);
1078
1079 void free_dmar_iommu(struct intel_iommu *iommu)
1080 {
1081         struct dmar_domain *domain;
1082         int i;
1083         unsigned long flags;
1084
1085         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1086         for (; i < cap_ndoms(iommu->cap); ) {
1087                 domain = iommu->domains[i];
1088                 clear_bit(i, iommu->domain_ids);
1089
1090                 spin_lock_irqsave(&domain->iommu_lock, flags);
1091                 if (--domain->iommu_count == 0) {
1092                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1093                                 vm_domain_exit(domain);
1094                         else
1095                                 domain_exit(domain);
1096                 }
1097                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1098
1099                 i = find_next_bit(iommu->domain_ids,
1100                         cap_ndoms(iommu->cap), i+1);
1101         }
1102
1103         if (iommu->gcmd & DMA_GCMD_TE)
1104                 iommu_disable_translation(iommu);
1105
1106         if (iommu->irq) {
1107                 set_irq_data(iommu->irq, NULL);
1108                 /* This will mask the irq */
1109                 free_irq(iommu->irq, iommu);
1110                 destroy_irq(iommu->irq);
1111         }
1112
1113         kfree(iommu->domains);
1114         kfree(iommu->domain_ids);
1115
1116         g_iommus[iommu->seq_id] = NULL;
1117
1118         /* if all iommus are freed, free g_iommus */
1119         for (i = 0; i < g_num_of_iommus; i++) {
1120                 if (g_iommus[i])
1121                         break;
1122         }
1123
1124         if (i == g_num_of_iommus)
1125                 kfree(g_iommus);
1126
1127         /* free context mapping */
1128         free_context_table(iommu);
1129 }
1130
1131 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1132 {
1133         unsigned long num;
1134         unsigned long ndomains;
1135         struct dmar_domain *domain;
1136         unsigned long flags;
1137
1138         domain = alloc_domain_mem();
1139         if (!domain)
1140                 return NULL;
1141
1142         ndomains = cap_ndoms(iommu->cap);
1143
1144         spin_lock_irqsave(&iommu->lock, flags);
1145         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1146         if (num >= ndomains) {
1147                 spin_unlock_irqrestore(&iommu->lock, flags);
1148                 free_domain_mem(domain);
1149                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1150                 return NULL;
1151         }
1152
1153         set_bit(num, iommu->domain_ids);
1154         domain->id = num;
1155         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1156         set_bit(iommu->seq_id, &domain->iommu_bmp);
1157         domain->flags = 0;
1158         iommu->domains[num] = domain;
1159         spin_unlock_irqrestore(&iommu->lock, flags);
1160
1161         return domain;
1162 }
1163
1164 static void iommu_free_domain(struct dmar_domain *domain)
1165 {
1166         unsigned long flags;
1167         struct intel_iommu *iommu;
1168
1169         iommu = domain_get_iommu(domain);
1170
1171         spin_lock_irqsave(&iommu->lock, flags);
1172         clear_bit(domain->id, iommu->domain_ids);
1173         spin_unlock_irqrestore(&iommu->lock, flags);
1174 }
1175
1176 static struct iova_domain reserved_iova_list;
1177 static struct lock_class_key reserved_alloc_key;
1178 static struct lock_class_key reserved_rbtree_key;
1179
1180 static void dmar_init_reserved_ranges(void)
1181 {
1182         struct pci_dev *pdev = NULL;
1183         struct iova *iova;
1184         int i;
1185         u64 addr, size;
1186
1187         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1188
1189         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1190                 &reserved_alloc_key);
1191         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1192                 &reserved_rbtree_key);
1193
1194         /* IOAPIC ranges shouldn't be accessed by DMA */
1195         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1196                 IOVA_PFN(IOAPIC_RANGE_END));
1197         if (!iova)
1198                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1199
1200         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1201         for_each_pci_dev(pdev) {
1202                 struct resource *r;
1203
1204                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1205                         r = &pdev->resource[i];
1206                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1207                                 continue;
1208                         addr = r->start;
1209                         addr &= PAGE_MASK;
1210                         size = r->end - addr;
1211                         size = PAGE_ALIGN(size);
1212                         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1213                                 IOVA_PFN(size + addr) - 1);
1214                         if (!iova)
1215                                 printk(KERN_ERR "Reserve iova failed\n");
1216                 }
1217         }
1218
1219 }
1220
1221 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1222 {
1223         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1224 }
1225
1226 static inline int guestwidth_to_adjustwidth(int gaw)
1227 {
1228         int agaw;
1229         int r = (gaw - 12) % 9;
1230
1231         if (r == 0)
1232                 agaw = gaw;
1233         else
1234                 agaw = gaw + 9 - r;
1235         if (agaw > 64)
1236                 agaw = 64;
1237         return agaw;
1238 }
1239
1240 static int domain_init(struct dmar_domain *domain, int guest_width)
1241 {
1242         struct intel_iommu *iommu;
1243         int adjust_width, agaw;
1244         unsigned long sagaw;
1245
1246         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1247         spin_lock_init(&domain->mapping_lock);
1248         spin_lock_init(&domain->iommu_lock);
1249
1250         domain_reserve_special_ranges(domain);
1251
1252         /* calculate AGAW */
1253         iommu = domain_get_iommu(domain);
1254         if (guest_width > cap_mgaw(iommu->cap))
1255                 guest_width = cap_mgaw(iommu->cap);
1256         domain->gaw = guest_width;
1257         adjust_width = guestwidth_to_adjustwidth(guest_width);
1258         agaw = width_to_agaw(adjust_width);
1259         sagaw = cap_sagaw(iommu->cap);
1260         if (!test_bit(agaw, &sagaw)) {
1261                 /* hardware doesn't support it, choose a bigger one */
1262                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1263                 agaw = find_next_bit(&sagaw, 5, agaw);
1264                 if (agaw >= 5)
1265                         return -ENODEV;
1266         }
1267         domain->agaw = agaw;
1268         INIT_LIST_HEAD(&domain->devices);
1269
1270         if (ecap_coherent(iommu->ecap))
1271                 domain->iommu_coherency = 1;
1272         else
1273                 domain->iommu_coherency = 0;
1274
1275         if (ecap_sc_support(iommu->ecap))
1276                 domain->iommu_snooping = 1;
1277         else
1278                 domain->iommu_snooping = 0;
1279
1280         domain->iommu_count = 1;
1281
1282         /* always allocate the top pgd */
1283         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1284         if (!domain->pgd)
1285                 return -ENOMEM;
1286         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1287         return 0;
1288 }
1289
1290 static void domain_exit(struct dmar_domain *domain)
1291 {
1292         u64 end;
1293
1294         /* Domain 0 is reserved, so dont process it */
1295         if (!domain)
1296                 return;
1297
1298         domain_remove_dev_info(domain);
1299         /* destroy iovas */
1300         put_iova_domain(&domain->iovad);
1301         end = DOMAIN_MAX_ADDR(domain->gaw);
1302         end = end & (~PAGE_MASK);
1303
1304         /* clear ptes */
1305         dma_pte_clear_range(domain, 0, end);
1306
1307         /* free page tables */
1308         dma_pte_free_pagetable(domain, 0, end);
1309
1310         iommu_free_domain(domain);
1311         free_domain_mem(domain);
1312 }
1313
1314 static int domain_context_mapping_one(struct dmar_domain *domain,
1315                 u8 bus, u8 devfn)
1316 {
1317         struct context_entry *context;
1318         unsigned long flags;
1319         struct intel_iommu *iommu;
1320         struct dma_pte *pgd;
1321         unsigned long num;
1322         unsigned long ndomains;
1323         int id;
1324         int agaw;
1325
1326         pr_debug("Set context mapping for %02x:%02x.%d\n",
1327                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1328         BUG_ON(!domain->pgd);
1329
1330         iommu = device_to_iommu(bus, devfn);
1331         if (!iommu)
1332                 return -ENODEV;
1333
1334         context = device_to_context_entry(iommu, bus, devfn);
1335         if (!context)
1336                 return -ENOMEM;
1337         spin_lock_irqsave(&iommu->lock, flags);
1338         if (context_present(context)) {
1339                 spin_unlock_irqrestore(&iommu->lock, flags);
1340                 return 0;
1341         }
1342
1343         id = domain->id;
1344         pgd = domain->pgd;
1345
1346         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1347                 int found = 0;
1348
1349                 /* find an available domain id for this device in iommu */
1350                 ndomains = cap_ndoms(iommu->cap);
1351                 num = find_first_bit(iommu->domain_ids, ndomains);
1352                 for (; num < ndomains; ) {
1353                         if (iommu->domains[num] == domain) {
1354                                 id = num;
1355                                 found = 1;
1356                                 break;
1357                         }
1358                         num = find_next_bit(iommu->domain_ids,
1359                                             cap_ndoms(iommu->cap), num+1);
1360                 }
1361
1362                 if (found == 0) {
1363                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1364                         if (num >= ndomains) {
1365                                 spin_unlock_irqrestore(&iommu->lock, flags);
1366                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1367                                 return -EFAULT;
1368                         }
1369
1370                         set_bit(num, iommu->domain_ids);
1371                         iommu->domains[num] = domain;
1372                         id = num;
1373                 }
1374
1375                 /* Skip top levels of page tables for
1376                  * iommu which has less agaw than default.
1377                  */
1378                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1379                         pgd = phys_to_virt(dma_pte_addr(pgd));
1380                         if (!dma_pte_present(pgd)) {
1381                                 spin_unlock_irqrestore(&iommu->lock, flags);
1382                                 return -ENOMEM;
1383                         }
1384                 }
1385         }
1386
1387         context_set_domain_id(context, id);
1388         context_set_address_width(context, iommu->agaw);
1389         context_set_address_root(context, virt_to_phys(pgd));
1390         context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1391         context_set_fault_enable(context);
1392         context_set_present(context);
1393         domain_flush_cache(domain, context, sizeof(*context));
1394
1395         /* it's a non-present to present mapping */
1396         if (iommu->flush.flush_context(iommu, domain->id,
1397                 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1398                 DMA_CCMD_DEVICE_INVL, 1))
1399                 iommu_flush_write_buffer(iommu);
1400         else
1401                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1402
1403         spin_unlock_irqrestore(&iommu->lock, flags);
1404
1405         spin_lock_irqsave(&domain->iommu_lock, flags);
1406         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1407                 domain->iommu_count++;
1408                 domain_update_iommu_cap(domain);
1409         }
1410         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1411         return 0;
1412 }
1413
1414 static int
1415 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1416 {
1417         int ret;
1418         struct pci_dev *tmp, *parent;
1419
1420         ret = domain_context_mapping_one(domain, pdev->bus->number,
1421                 pdev->devfn);
1422         if (ret)
1423                 return ret;
1424
1425         /* dependent device mapping */
1426         tmp = pci_find_upstream_pcie_bridge(pdev);
1427         if (!tmp)
1428                 return 0;
1429         /* Secondary interface's bus number and devfn 0 */
1430         parent = pdev->bus->self;
1431         while (parent != tmp) {
1432                 ret = domain_context_mapping_one(domain, parent->bus->number,
1433                         parent->devfn);
1434                 if (ret)
1435                         return ret;
1436                 parent = parent->bus->self;
1437         }
1438         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1439                 return domain_context_mapping_one(domain,
1440                         tmp->subordinate->number, 0);
1441         else /* this is a legacy PCI bridge */
1442                 return domain_context_mapping_one(domain,
1443                         tmp->bus->number, tmp->devfn);
1444 }
1445
1446 static int domain_context_mapped(struct pci_dev *pdev)
1447 {
1448         int ret;
1449         struct pci_dev *tmp, *parent;
1450         struct intel_iommu *iommu;
1451
1452         iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1453         if (!iommu)
1454                 return -ENODEV;
1455
1456         ret = device_context_mapped(iommu,
1457                 pdev->bus->number, pdev->devfn);
1458         if (!ret)
1459                 return ret;
1460         /* dependent device mapping */
1461         tmp = pci_find_upstream_pcie_bridge(pdev);
1462         if (!tmp)
1463                 return ret;
1464         /* Secondary interface's bus number and devfn 0 */
1465         parent = pdev->bus->self;
1466         while (parent != tmp) {
1467                 ret = device_context_mapped(iommu, parent->bus->number,
1468                         parent->devfn);
1469                 if (!ret)
1470                         return ret;
1471                 parent = parent->bus->self;
1472         }
1473         if (tmp->is_pcie)
1474                 return device_context_mapped(iommu,
1475                         tmp->subordinate->number, 0);
1476         else
1477                 return device_context_mapped(iommu,
1478                         tmp->bus->number, tmp->devfn);
1479 }
1480
1481 static int
1482 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1483                         u64 hpa, size_t size, int prot)
1484 {
1485         u64 start_pfn, end_pfn;
1486         struct dma_pte *pte;
1487         int index;
1488         int addr_width = agaw_to_width(domain->agaw);
1489
1490         hpa &= (((u64)1) << addr_width) - 1;
1491
1492         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1493                 return -EINVAL;
1494         iova &= PAGE_MASK;
1495         start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1496         end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1497         index = 0;
1498         while (start_pfn < end_pfn) {
1499                 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1500                 if (!pte)
1501                         return -ENOMEM;
1502                 /* We don't need lock here, nobody else
1503                  * touches the iova range
1504                  */
1505                 BUG_ON(dma_pte_addr(pte));
1506                 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1507                 dma_set_pte_prot(pte, prot);
1508                 if (prot & DMA_PTE_SNP)
1509                         dma_set_pte_snp(pte);
1510                 domain_flush_cache(domain, pte, sizeof(*pte));
1511                 start_pfn++;
1512                 index++;
1513         }
1514         return 0;
1515 }
1516
1517 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1518 {
1519         if (!iommu)
1520                 return;
1521
1522         clear_context_table(iommu, bus, devfn);
1523         iommu->flush.flush_context(iommu, 0, 0, 0,
1524                                            DMA_CCMD_GLOBAL_INVL, 0);
1525         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1526                                          DMA_TLB_GLOBAL_FLUSH, 0);
1527 }
1528
1529 static void domain_remove_dev_info(struct dmar_domain *domain)
1530 {
1531         struct device_domain_info *info;
1532         unsigned long flags;
1533         struct intel_iommu *iommu;
1534
1535         spin_lock_irqsave(&device_domain_lock, flags);
1536         while (!list_empty(&domain->devices)) {
1537                 info = list_entry(domain->devices.next,
1538                         struct device_domain_info, link);
1539                 list_del(&info->link);
1540                 list_del(&info->global);
1541                 if (info->dev)
1542                         info->dev->dev.archdata.iommu = NULL;
1543                 spin_unlock_irqrestore(&device_domain_lock, flags);
1544
1545                 iommu = device_to_iommu(info->bus, info->devfn);
1546                 iommu_detach_dev(iommu, info->bus, info->devfn);
1547                 free_devinfo_mem(info);
1548
1549                 spin_lock_irqsave(&device_domain_lock, flags);
1550         }
1551         spin_unlock_irqrestore(&device_domain_lock, flags);
1552 }
1553
1554 /*
1555  * find_domain
1556  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1557  */
1558 static struct dmar_domain *
1559 find_domain(struct pci_dev *pdev)
1560 {
1561         struct device_domain_info *info;
1562
1563         /* No lock here, assumes no domain exit in normal case */
1564         info = pdev->dev.archdata.iommu;
1565         if (info)
1566                 return info->domain;
1567         return NULL;
1568 }
1569
1570 /* domain is initialized */
1571 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1572 {
1573         struct dmar_domain *domain, *found = NULL;
1574         struct intel_iommu *iommu;
1575         struct dmar_drhd_unit *drhd;
1576         struct device_domain_info *info, *tmp;
1577         struct pci_dev *dev_tmp;
1578         unsigned long flags;
1579         int bus = 0, devfn = 0;
1580
1581         domain = find_domain(pdev);
1582         if (domain)
1583                 return domain;
1584
1585         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1586         if (dev_tmp) {
1587                 if (dev_tmp->is_pcie) {
1588                         bus = dev_tmp->subordinate->number;
1589                         devfn = 0;
1590                 } else {
1591                         bus = dev_tmp->bus->number;
1592                         devfn = dev_tmp->devfn;
1593                 }
1594                 spin_lock_irqsave(&device_domain_lock, flags);
1595                 list_for_each_entry(info, &device_domain_list, global) {
1596                         if (info->bus == bus && info->devfn == devfn) {
1597                                 found = info->domain;
1598                                 break;
1599                         }
1600                 }
1601                 spin_unlock_irqrestore(&device_domain_lock, flags);
1602                 /* pcie-pci bridge already has a domain, uses it */
1603                 if (found) {
1604                         domain = found;
1605                         goto found_domain;
1606                 }
1607         }
1608
1609         /* Allocate new domain for the device */
1610         drhd = dmar_find_matched_drhd_unit(pdev);
1611         if (!drhd) {
1612                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1613                         pci_name(pdev));
1614                 return NULL;
1615         }
1616         iommu = drhd->iommu;
1617
1618         domain = iommu_alloc_domain(iommu);
1619         if (!domain)
1620                 goto error;
1621
1622         if (domain_init(domain, gaw)) {
1623                 domain_exit(domain);
1624                 goto error;
1625         }
1626
1627         /* register pcie-to-pci device */
1628         if (dev_tmp) {
1629                 info = alloc_devinfo_mem();
1630                 if (!info) {
1631                         domain_exit(domain);
1632                         goto error;
1633                 }
1634                 info->bus = bus;
1635                 info->devfn = devfn;
1636                 info->dev = NULL;
1637                 info->domain = domain;
1638                 /* This domain is shared by devices under p2p bridge */
1639                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1640
1641                 /* pcie-to-pci bridge already has a domain, uses it */
1642                 found = NULL;
1643                 spin_lock_irqsave(&device_domain_lock, flags);
1644                 list_for_each_entry(tmp, &device_domain_list, global) {
1645                         if (tmp->bus == bus && tmp->devfn == devfn) {
1646                                 found = tmp->domain;
1647                                 break;
1648                         }
1649                 }
1650                 if (found) {
1651                         free_devinfo_mem(info);
1652                         domain_exit(domain);
1653                         domain = found;
1654                 } else {
1655                         list_add(&info->link, &domain->devices);
1656                         list_add(&info->global, &device_domain_list);
1657                 }
1658                 spin_unlock_irqrestore(&device_domain_lock, flags);
1659         }
1660
1661 found_domain:
1662         info = alloc_devinfo_mem();
1663         if (!info)
1664                 goto error;
1665         info->bus = pdev->bus->number;
1666         info->devfn = pdev->devfn;
1667         info->dev = pdev;
1668         info->domain = domain;
1669         spin_lock_irqsave(&device_domain_lock, flags);
1670         /* somebody is fast */
1671         found = find_domain(pdev);
1672         if (found != NULL) {
1673                 spin_unlock_irqrestore(&device_domain_lock, flags);
1674                 if (found != domain) {
1675                         domain_exit(domain);
1676                         domain = found;
1677                 }
1678                 free_devinfo_mem(info);
1679                 return domain;
1680         }
1681         list_add(&info->link, &domain->devices);
1682         list_add(&info->global, &device_domain_list);
1683         pdev->dev.archdata.iommu = info;
1684         spin_unlock_irqrestore(&device_domain_lock, flags);
1685         return domain;
1686 error:
1687         /* recheck it here, maybe others set it */
1688         return find_domain(pdev);
1689 }
1690
1691 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1692                                       unsigned long long start,
1693                                       unsigned long long end)
1694 {
1695         struct dmar_domain *domain;
1696         unsigned long size;
1697         unsigned long long base;
1698         int ret;
1699
1700         printk(KERN_INFO
1701                 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1702                 pci_name(pdev), start, end);
1703         /* page table init */
1704         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1705         if (!domain)
1706                 return -ENOMEM;
1707
1708         /* The address might not be aligned */
1709         base = start & PAGE_MASK;
1710         size = end - base;
1711         size = PAGE_ALIGN(size);
1712         if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1713                         IOVA_PFN(base + size) - 1)) {
1714                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1715                 ret = -ENOMEM;
1716                 goto error;
1717         }
1718
1719         pr_debug("Mapping reserved region %lx@%llx for %s\n",
1720                 size, base, pci_name(pdev));
1721         /*
1722          * RMRR range might have overlap with physical memory range,
1723          * clear it first
1724          */
1725         dma_pte_clear_range(domain, base, base + size);
1726
1727         ret = domain_page_mapping(domain, base, base, size,
1728                 DMA_PTE_READ|DMA_PTE_WRITE);
1729         if (ret)
1730                 goto error;
1731
1732         /* context entry init */
1733         ret = domain_context_mapping(domain, pdev);
1734         if (!ret)
1735                 return 0;
1736 error:
1737         domain_exit(domain);
1738         return ret;
1739
1740 }
1741
1742 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1743         struct pci_dev *pdev)
1744 {
1745         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1746                 return 0;
1747         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1748                 rmrr->end_address + 1);
1749 }
1750
1751 #ifdef CONFIG_DMAR_GFX_WA
1752 struct iommu_prepare_data {
1753         struct pci_dev *pdev;
1754         int ret;
1755 };
1756
1757 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1758                                          unsigned long end_pfn, void *datax)
1759 {
1760         struct iommu_prepare_data *data;
1761
1762         data = (struct iommu_prepare_data *)datax;
1763
1764         data->ret = iommu_prepare_identity_map(data->pdev,
1765                                 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1766         return data->ret;
1767
1768 }
1769
1770 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1771 {
1772         int nid;
1773         struct iommu_prepare_data data;
1774
1775         data.pdev = pdev;
1776         data.ret = 0;
1777
1778         for_each_online_node(nid) {
1779                 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1780                 if (data.ret)
1781                         return data.ret;
1782         }
1783         return data.ret;
1784 }
1785
1786 static void __init iommu_prepare_gfx_mapping(void)
1787 {
1788         struct pci_dev *pdev = NULL;
1789         int ret;
1790
1791         for_each_pci_dev(pdev) {
1792                 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1793                                 !IS_GFX_DEVICE(pdev))
1794                         continue;
1795                 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1796                         pci_name(pdev));
1797                 ret = iommu_prepare_with_active_regions(pdev);
1798                 if (ret)
1799                         printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1800         }
1801 }
1802 #else /* !CONFIG_DMAR_GFX_WA */
1803 static inline void iommu_prepare_gfx_mapping(void)
1804 {
1805         return;
1806 }
1807 #endif
1808
1809 #ifdef CONFIG_DMAR_FLOPPY_WA
1810 static inline void iommu_prepare_isa(void)
1811 {
1812         struct pci_dev *pdev;
1813         int ret;
1814
1815         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1816         if (!pdev)
1817                 return;
1818
1819         printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1820         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1821
1822         if (ret)
1823                 printk(KERN_ERR "IOMMU: Failed to create 0-64M identity map, "
1824                         "floppy might not work\n");
1825
1826 }
1827 #else
1828 static inline void iommu_prepare_isa(void)
1829 {
1830         return;
1831 }
1832 #endif /* !CONFIG_DMAR_FLPY_WA */
1833
1834 static int __init init_dmars(void)
1835 {
1836         struct dmar_drhd_unit *drhd;
1837         struct dmar_rmrr_unit *rmrr;
1838         struct pci_dev *pdev;
1839         struct intel_iommu *iommu;
1840         int i, ret;
1841
1842         /*
1843          * for each drhd
1844          *    allocate root
1845          *    initialize and program root entry to not present
1846          * endfor
1847          */
1848         for_each_drhd_unit(drhd) {
1849                 g_num_of_iommus++;
1850                 /*
1851                  * lock not needed as this is only incremented in the single
1852                  * threaded kernel __init code path all other access are read
1853                  * only
1854                  */
1855         }
1856
1857         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1858                         GFP_KERNEL);
1859         if (!g_iommus) {
1860                 printk(KERN_ERR "Allocating global iommu array failed\n");
1861                 ret = -ENOMEM;
1862                 goto error;
1863         }
1864
1865         deferred_flush = kzalloc(g_num_of_iommus *
1866                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
1867         if (!deferred_flush) {
1868                 kfree(g_iommus);
1869                 ret = -ENOMEM;
1870                 goto error;
1871         }
1872
1873         for_each_drhd_unit(drhd) {
1874                 if (drhd->ignored)
1875                         continue;
1876
1877                 iommu = drhd->iommu;
1878                 g_iommus[iommu->seq_id] = iommu;
1879
1880                 ret = iommu_init_domains(iommu);
1881                 if (ret)
1882                         goto error;
1883
1884                 /*
1885                  * TBD:
1886                  * we could share the same root & context tables
1887                  * amoung all IOMMU's. Need to Split it later.
1888                  */
1889                 ret = iommu_alloc_root_entry(iommu);
1890                 if (ret) {
1891                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
1892                         goto error;
1893                 }
1894         }
1895
1896         /*
1897          * Start from the sane iommu hardware state.
1898          */
1899         for_each_drhd_unit(drhd) {
1900                 if (drhd->ignored)
1901                         continue;
1902
1903                 iommu = drhd->iommu;
1904
1905                 /*
1906                  * If the queued invalidation is already initialized by us
1907                  * (for example, while enabling interrupt-remapping) then
1908                  * we got the things already rolling from a sane state.
1909                  */
1910                 if (iommu->qi)
1911                         continue;
1912
1913                 /*
1914                  * Clear any previous faults.
1915                  */
1916                 dmar_fault(-1, iommu);
1917                 /*
1918                  * Disable queued invalidation if supported and already enabled
1919                  * before OS handover.
1920                  */
1921                 dmar_disable_qi(iommu);
1922         }
1923
1924         for_each_drhd_unit(drhd) {
1925                 if (drhd->ignored)
1926                         continue;
1927
1928                 iommu = drhd->iommu;
1929
1930                 if (dmar_enable_qi(iommu)) {
1931                         /*
1932                          * Queued Invalidate not enabled, use Register Based
1933                          * Invalidate
1934                          */
1935                         iommu->flush.flush_context = __iommu_flush_context;
1936                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
1937                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
1938                                "invalidation\n",
1939                                (unsigned long long)drhd->reg_base_addr);
1940                 } else {
1941                         iommu->flush.flush_context = qi_flush_context;
1942                         iommu->flush.flush_iotlb = qi_flush_iotlb;
1943                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
1944                                "invalidation\n",
1945                                (unsigned long long)drhd->reg_base_addr);
1946                 }
1947         }
1948
1949         /*
1950          * For each rmrr
1951          *   for each dev attached to rmrr
1952          *   do
1953          *     locate drhd for dev, alloc domain for dev
1954          *     allocate free domain
1955          *     allocate page table entries for rmrr
1956          *     if context not allocated for bus
1957          *           allocate and init context
1958          *           set present in root table for this bus
1959          *     init context with domain, translation etc
1960          *    endfor
1961          * endfor
1962          */
1963         for_each_rmrr_units(rmrr) {
1964                 for (i = 0; i < rmrr->devices_cnt; i++) {
1965                         pdev = rmrr->devices[i];
1966                         /* some BIOS lists non-exist devices in DMAR table */
1967                         if (!pdev)
1968                                 continue;
1969                         ret = iommu_prepare_rmrr_dev(rmrr, pdev);
1970                         if (ret)
1971                                 printk(KERN_ERR
1972                                  "IOMMU: mapping reserved region failed\n");
1973                 }
1974         }
1975
1976         iommu_prepare_gfx_mapping();
1977
1978         iommu_prepare_isa();
1979
1980         /*
1981          * for each drhd
1982          *   enable fault log
1983          *   global invalidate context cache
1984          *   global invalidate iotlb
1985          *   enable translation
1986          */
1987         for_each_drhd_unit(drhd) {
1988                 if (drhd->ignored)
1989                         continue;
1990                 iommu = drhd->iommu;
1991
1992                 iommu_flush_write_buffer(iommu);
1993
1994                 ret = dmar_set_interrupt(iommu);
1995                 if (ret)
1996                         goto error;
1997
1998                 iommu_set_root_entry(iommu);
1999
2000                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
2001                                            0);
2002                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2003                                          0);
2004                 iommu_disable_protect_mem_regions(iommu);
2005
2006                 ret = iommu_enable_translation(iommu);
2007                 if (ret)
2008                         goto error;
2009         }
2010
2011         return 0;
2012 error:
2013         for_each_drhd_unit(drhd) {
2014                 if (drhd->ignored)
2015                         continue;
2016                 iommu = drhd->iommu;
2017                 free_iommu(iommu);
2018         }
2019         kfree(g_iommus);
2020         return ret;
2021 }
2022
2023 static inline u64 aligned_size(u64 host_addr, size_t size)
2024 {
2025         u64 addr;
2026         addr = (host_addr & (~PAGE_MASK)) + size;
2027         return PAGE_ALIGN(addr);
2028 }
2029
2030 struct iova *
2031 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2032 {
2033         struct iova *piova;
2034
2035         /* Make sure it's in range */
2036         end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2037         if (!size || (IOVA_START_ADDR + size > end))
2038                 return NULL;
2039
2040         piova = alloc_iova(&domain->iovad,
2041                         size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2042         return piova;
2043 }
2044
2045 static struct iova *
2046 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2047                    size_t size, u64 dma_mask)
2048 {
2049         struct pci_dev *pdev = to_pci_dev(dev);
2050         struct iova *iova = NULL;
2051
2052         if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
2053                 iova = iommu_alloc_iova(domain, size, dma_mask);
2054         else {
2055                 /*
2056                  * First try to allocate an io virtual address in
2057                  * DMA_32BIT_MASK and if that fails then try allocating
2058                  * from higher range
2059                  */
2060                 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
2061                 if (!iova)
2062                         iova = iommu_alloc_iova(domain, size, dma_mask);
2063         }
2064
2065         if (!iova) {
2066                 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2067                 return NULL;
2068         }
2069
2070         return iova;
2071 }
2072
2073 static struct dmar_domain *
2074 get_valid_domain_for_dev(struct pci_dev *pdev)
2075 {
2076         struct dmar_domain *domain;
2077         int ret;
2078
2079         domain = get_domain_for_dev(pdev,
2080                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2081         if (!domain) {
2082                 printk(KERN_ERR
2083                         "Allocating domain for %s failed", pci_name(pdev));
2084                 return NULL;
2085         }
2086
2087         /* make sure context mapping is ok */
2088         if (unlikely(!domain_context_mapped(pdev))) {
2089                 ret = domain_context_mapping(domain, pdev);
2090                 if (ret) {
2091                         printk(KERN_ERR
2092                                 "Domain context map for %s failed",
2093                                 pci_name(pdev));
2094                         return NULL;
2095                 }
2096         }
2097
2098         return domain;
2099 }
2100
2101 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2102                                      size_t size, int dir, u64 dma_mask)
2103 {
2104         struct pci_dev *pdev = to_pci_dev(hwdev);
2105         struct dmar_domain *domain;
2106         phys_addr_t start_paddr;
2107         struct iova *iova;
2108         int prot = 0;
2109         int ret;
2110         struct intel_iommu *iommu;
2111
2112         BUG_ON(dir == DMA_NONE);
2113         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2114                 return paddr;
2115
2116         domain = get_valid_domain_for_dev(pdev);
2117         if (!domain)
2118                 return 0;
2119
2120         iommu = domain_get_iommu(domain);
2121         size = aligned_size((u64)paddr, size);
2122
2123         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2124         if (!iova)
2125                 goto error;
2126
2127         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2128
2129         /*
2130          * Check if DMAR supports zero-length reads on write only
2131          * mappings..
2132          */
2133         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2134                         !cap_zlr(iommu->cap))
2135                 prot |= DMA_PTE_READ;
2136         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2137                 prot |= DMA_PTE_WRITE;
2138         /*
2139          * paddr - (paddr + size) might be partial page, we should map the whole
2140          * page.  Note: if two part of one page are separately mapped, we
2141          * might have two guest_addr mapping to the same host paddr, but this
2142          * is not a big problem
2143          */
2144         ret = domain_page_mapping(domain, start_paddr,
2145                 ((u64)paddr) & PAGE_MASK, size, prot);
2146         if (ret)
2147                 goto error;
2148
2149         /* it's a non-present to present mapping */
2150         ret = iommu_flush_iotlb_psi(iommu, domain->id,
2151                         start_paddr, size >> VTD_PAGE_SHIFT, 1);
2152         if (ret)
2153                 iommu_flush_write_buffer(iommu);
2154
2155         return start_paddr + ((u64)paddr & (~PAGE_MASK));
2156
2157 error:
2158         if (iova)
2159                 __free_iova(&domain->iovad, iova);
2160         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2161                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2162         return 0;
2163 }
2164
2165 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2166                                  unsigned long offset, size_t size,
2167                                  enum dma_data_direction dir,
2168                                  struct dma_attrs *attrs)
2169 {
2170         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2171                                   dir, to_pci_dev(dev)->dma_mask);
2172 }
2173
2174 static void flush_unmaps(void)
2175 {
2176         int i, j;
2177
2178         timer_on = 0;
2179
2180         /* just flush them all */
2181         for (i = 0; i < g_num_of_iommus; i++) {
2182                 struct intel_iommu *iommu = g_iommus[i];
2183                 if (!iommu)
2184                         continue;
2185
2186                 if (deferred_flush[i].next) {
2187                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2188                                                  DMA_TLB_GLOBAL_FLUSH, 0);
2189                         for (j = 0; j < deferred_flush[i].next; j++) {
2190                                 __free_iova(&deferred_flush[i].domain[j]->iovad,
2191                                                 deferred_flush[i].iova[j]);
2192                         }
2193                         deferred_flush[i].next = 0;
2194                 }
2195         }
2196
2197         list_size = 0;
2198 }
2199
2200 static void flush_unmaps_timeout(unsigned long data)
2201 {
2202         unsigned long flags;
2203
2204         spin_lock_irqsave(&async_umap_flush_lock, flags);
2205         flush_unmaps();
2206         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2207 }
2208
2209 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2210 {
2211         unsigned long flags;
2212         int next, iommu_id;
2213         struct intel_iommu *iommu;
2214
2215         spin_lock_irqsave(&async_umap_flush_lock, flags);
2216         if (list_size == HIGH_WATER_MARK)
2217                 flush_unmaps();
2218
2219         iommu = domain_get_iommu(dom);
2220         iommu_id = iommu->seq_id;
2221
2222         next = deferred_flush[iommu_id].next;
2223         deferred_flush[iommu_id].domain[next] = dom;
2224         deferred_flush[iommu_id].iova[next] = iova;
2225         deferred_flush[iommu_id].next++;
2226
2227         if (!timer_on) {
2228                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2229                 timer_on = 1;
2230         }
2231         list_size++;
2232         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2233 }
2234
2235 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2236                              size_t size, enum dma_data_direction dir,
2237                              struct dma_attrs *attrs)
2238 {
2239         struct pci_dev *pdev = to_pci_dev(dev);
2240         struct dmar_domain *domain;
2241         unsigned long start_addr;
2242         struct iova *iova;
2243         struct intel_iommu *iommu;
2244
2245         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2246                 return;
2247         domain = find_domain(pdev);
2248         BUG_ON(!domain);
2249
2250         iommu = domain_get_iommu(domain);
2251
2252         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2253         if (!iova)
2254                 return;
2255
2256         start_addr = iova->pfn_lo << PAGE_SHIFT;
2257         size = aligned_size((u64)dev_addr, size);
2258
2259         pr_debug("Device %s unmapping: %zx@%llx\n",
2260                 pci_name(pdev), size, (unsigned long long)start_addr);
2261
2262         /*  clear the whole page */
2263         dma_pte_clear_range(domain, start_addr, start_addr + size);
2264         /* free page tables */
2265         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2266         if (intel_iommu_strict) {
2267                 if (iommu_flush_iotlb_psi(iommu,
2268                         domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2269                         iommu_flush_write_buffer(iommu);
2270                 /* free iova */
2271                 __free_iova(&domain->iovad, iova);
2272         } else {
2273                 add_unmap(domain, iova);
2274                 /*
2275                  * queue up the release of the unmap to save the 1/6th of the
2276                  * cpu used up by the iotlb flush operation...
2277                  */
2278         }
2279 }
2280
2281 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2282                                int dir)
2283 {
2284         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2285 }
2286
2287 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2288                                   dma_addr_t *dma_handle, gfp_t flags)
2289 {
2290         void *vaddr;
2291         int order;
2292
2293         size = PAGE_ALIGN(size);
2294         order = get_order(size);
2295         flags &= ~(GFP_DMA | GFP_DMA32);
2296
2297         vaddr = (void *)__get_free_pages(flags, order);
2298         if (!vaddr)
2299                 return NULL;
2300         memset(vaddr, 0, size);
2301
2302         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2303                                          DMA_BIDIRECTIONAL,
2304                                          hwdev->coherent_dma_mask);
2305         if (*dma_handle)
2306                 return vaddr;
2307         free_pages((unsigned long)vaddr, order);
2308         return NULL;
2309 }
2310
2311 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2312                                 dma_addr_t dma_handle)
2313 {
2314         int order;
2315
2316         size = PAGE_ALIGN(size);
2317         order = get_order(size);
2318
2319         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2320         free_pages((unsigned long)vaddr, order);
2321 }
2322
2323 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2324                            int nelems, enum dma_data_direction dir,
2325                            struct dma_attrs *attrs)
2326 {
2327         int i;
2328         struct pci_dev *pdev = to_pci_dev(hwdev);
2329         struct dmar_domain *domain;
2330         unsigned long start_addr;
2331         struct iova *iova;
2332         size_t size = 0;
2333         phys_addr_t addr;
2334         struct scatterlist *sg;
2335         struct intel_iommu *iommu;
2336
2337         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2338                 return;
2339
2340         domain = find_domain(pdev);
2341         BUG_ON(!domain);
2342
2343         iommu = domain_get_iommu(domain);
2344
2345         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2346         if (!iova)
2347                 return;
2348         for_each_sg(sglist, sg, nelems, i) {
2349                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2350                 size += aligned_size((u64)addr, sg->length);
2351         }
2352
2353         start_addr = iova->pfn_lo << PAGE_SHIFT;
2354
2355         /*  clear the whole page */
2356         dma_pte_clear_range(domain, start_addr, start_addr + size);
2357         /* free page tables */
2358         dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2359
2360         if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2361                         size >> VTD_PAGE_SHIFT, 0))
2362                 iommu_flush_write_buffer(iommu);
2363
2364         /* free iova */
2365         __free_iova(&domain->iovad, iova);
2366 }
2367
2368 static int intel_nontranslate_map_sg(struct device *hddev,
2369         struct scatterlist *sglist, int nelems, int dir)
2370 {
2371         int i;
2372         struct scatterlist *sg;
2373
2374         for_each_sg(sglist, sg, nelems, i) {
2375                 BUG_ON(!sg_page(sg));
2376                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2377                 sg->dma_length = sg->length;
2378         }
2379         return nelems;
2380 }
2381
2382 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2383                         enum dma_data_direction dir, struct dma_attrs *attrs)
2384 {
2385         phys_addr_t addr;
2386         int i;
2387         struct pci_dev *pdev = to_pci_dev(hwdev);
2388         struct dmar_domain *domain;
2389         size_t size = 0;
2390         int prot = 0;
2391         size_t offset = 0;
2392         struct iova *iova = NULL;
2393         int ret;
2394         struct scatterlist *sg;
2395         unsigned long start_addr;
2396         struct intel_iommu *iommu;
2397
2398         BUG_ON(dir == DMA_NONE);
2399         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2400                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2401
2402         domain = get_valid_domain_for_dev(pdev);
2403         if (!domain)
2404                 return 0;
2405
2406         iommu = domain_get_iommu(domain);
2407
2408         for_each_sg(sglist, sg, nelems, i) {
2409                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2410                 size += aligned_size((u64)addr, sg->length);
2411         }
2412
2413         iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2414         if (!iova) {
2415                 sglist->dma_length = 0;
2416                 return 0;
2417         }
2418
2419         /*
2420          * Check if DMAR supports zero-length reads on write only
2421          * mappings..
2422          */
2423         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2424                         !cap_zlr(iommu->cap))
2425                 prot |= DMA_PTE_READ;
2426         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2427                 prot |= DMA_PTE_WRITE;
2428
2429         start_addr = iova->pfn_lo << PAGE_SHIFT;
2430         offset = 0;
2431         for_each_sg(sglist, sg, nelems, i) {
2432                 addr = page_to_phys(sg_page(sg)) + sg->offset;
2433                 size = aligned_size((u64)addr, sg->length);
2434                 ret = domain_page_mapping(domain, start_addr + offset,
2435                         ((u64)addr) & PAGE_MASK,
2436                         size, prot);
2437                 if (ret) {
2438                         /*  clear the page */
2439                         dma_pte_clear_range(domain, start_addr,
2440                                   start_addr + offset);
2441                         /* free page tables */
2442                         dma_pte_free_pagetable(domain, start_addr,
2443                                   start_addr + offset);
2444                         /* free iova */
2445                         __free_iova(&domain->iovad, iova);
2446                         return 0;
2447                 }
2448                 sg->dma_address = start_addr + offset +
2449                                 ((u64)addr & (~PAGE_MASK));
2450                 sg->dma_length = sg->length;
2451                 offset += size;
2452         }
2453
2454         /* it's a non-present to present mapping */
2455         if (iommu_flush_iotlb_psi(iommu, domain->id,
2456                         start_addr, offset >> VTD_PAGE_SHIFT, 1))
2457                 iommu_flush_write_buffer(iommu);
2458         return nelems;
2459 }
2460
2461 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2462 {
2463         return !dma_addr;
2464 }
2465
2466 struct dma_map_ops intel_dma_ops = {
2467         .alloc_coherent = intel_alloc_coherent,
2468         .free_coherent = intel_free_coherent,
2469         .map_sg = intel_map_sg,
2470         .unmap_sg = intel_unmap_sg,
2471         .map_page = intel_map_page,
2472         .unmap_page = intel_unmap_page,
2473         .mapping_error = intel_mapping_error,
2474 };
2475
2476 static inline int iommu_domain_cache_init(void)
2477 {
2478         int ret = 0;
2479
2480         iommu_domain_cache = kmem_cache_create("iommu_domain",
2481                                          sizeof(struct dmar_domain),
2482                                          0,
2483                                          SLAB_HWCACHE_ALIGN,
2484
2485                                          NULL);
2486         if (!iommu_domain_cache) {
2487                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2488                 ret = -ENOMEM;
2489         }
2490
2491         return ret;
2492 }
2493
2494 static inline int iommu_devinfo_cache_init(void)
2495 {
2496         int ret = 0;
2497
2498         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2499                                          sizeof(struct device_domain_info),
2500                                          0,
2501                                          SLAB_HWCACHE_ALIGN,
2502                                          NULL);
2503         if (!iommu_devinfo_cache) {
2504                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2505                 ret = -ENOMEM;
2506         }
2507
2508         return ret;
2509 }
2510
2511 static inline int iommu_iova_cache_init(void)
2512 {
2513         int ret = 0;
2514
2515         iommu_iova_cache = kmem_cache_create("iommu_iova",
2516                                          sizeof(struct iova),
2517                                          0,
2518                                          SLAB_HWCACHE_ALIGN,
2519                                          NULL);
2520         if (!iommu_iova_cache) {
2521                 printk(KERN_ERR "Couldn't create iova cache\n");
2522                 ret = -ENOMEM;
2523         }
2524
2525         return ret;
2526 }
2527
2528 static int __init iommu_init_mempool(void)
2529 {
2530         int ret;
2531         ret = iommu_iova_cache_init();
2532         if (ret)
2533                 return ret;
2534
2535         ret = iommu_domain_cache_init();
2536         if (ret)
2537                 goto domain_error;
2538
2539         ret = iommu_devinfo_cache_init();
2540         if (!ret)
2541                 return ret;
2542
2543         kmem_cache_destroy(iommu_domain_cache);
2544 domain_error:
2545         kmem_cache_destroy(iommu_iova_cache);
2546
2547         return -ENOMEM;
2548 }
2549
2550 static void __init iommu_exit_mempool(void)
2551 {
2552         kmem_cache_destroy(iommu_devinfo_cache);
2553         kmem_cache_destroy(iommu_domain_cache);
2554         kmem_cache_destroy(iommu_iova_cache);
2555
2556 }
2557
2558 static void __init init_no_remapping_devices(void)
2559 {
2560         struct dmar_drhd_unit *drhd;
2561
2562         for_each_drhd_unit(drhd) {
2563                 if (!drhd->include_all) {
2564                         int i;
2565                         for (i = 0; i < drhd->devices_cnt; i++)
2566                                 if (drhd->devices[i] != NULL)
2567                                         break;
2568                         /* ignore DMAR unit if no pci devices exist */
2569                         if (i == drhd->devices_cnt)
2570                                 drhd->ignored = 1;
2571                 }
2572         }
2573
2574         if (dmar_map_gfx)
2575                 return;
2576
2577         for_each_drhd_unit(drhd) {
2578                 int i;
2579                 if (drhd->ignored || drhd->include_all)
2580                         continue;
2581
2582                 for (i = 0; i < drhd->devices_cnt; i++)
2583                         if (drhd->devices[i] &&
2584                                 !IS_GFX_DEVICE(drhd->devices[i]))
2585                                 break;
2586
2587                 if (i < drhd->devices_cnt)
2588                         continue;
2589
2590                 /* bypass IOMMU if it is just for gfx devices */
2591                 drhd->ignored = 1;
2592                 for (i = 0; i < drhd->devices_cnt; i++) {
2593                         if (!drhd->devices[i])
2594                                 continue;
2595                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2596                 }
2597         }
2598 }
2599
2600 int __init intel_iommu_init(void)
2601 {
2602         int ret = 0;
2603
2604         if (dmar_table_init())
2605                 return  -ENODEV;
2606
2607         if (dmar_dev_scope_init())
2608                 return  -ENODEV;
2609
2610         /*
2611          * Check the need for DMA-remapping initialization now.
2612          * Above initialization will also be used by Interrupt-remapping.
2613          */
2614         if (no_iommu || swiotlb || dmar_disabled)
2615                 return -ENODEV;
2616
2617         iommu_init_mempool();
2618         dmar_init_reserved_ranges();
2619
2620         init_no_remapping_devices();
2621
2622         ret = init_dmars();
2623         if (ret) {
2624                 printk(KERN_ERR "IOMMU: dmar init failed\n");
2625                 put_iova_domain(&reserved_iova_list);
2626                 iommu_exit_mempool();
2627                 return ret;
2628         }
2629         printk(KERN_INFO
2630         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2631
2632         init_timer(&unmap_timer);
2633         force_iommu = 1;
2634         dma_ops = &intel_dma_ops;
2635
2636         register_iommu(&intel_iommu_ops);
2637
2638         return 0;
2639 }
2640
2641 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2642                                   struct pci_dev *pdev)
2643 {
2644         struct device_domain_info *info;
2645         unsigned long flags;
2646
2647         info = alloc_devinfo_mem();
2648         if (!info)
2649                 return -ENOMEM;
2650
2651         info->bus = pdev->bus->number;
2652         info->devfn = pdev->devfn;
2653         info->dev = pdev;
2654         info->domain = domain;
2655
2656         spin_lock_irqsave(&device_domain_lock, flags);
2657         list_add(&info->link, &domain->devices);
2658         list_add(&info->global, &device_domain_list);
2659         pdev->dev.archdata.iommu = info;
2660         spin_unlock_irqrestore(&device_domain_lock, flags);
2661
2662         return 0;
2663 }
2664
2665 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
2666                                            struct pci_dev *pdev)
2667 {
2668         struct pci_dev *tmp, *parent;
2669
2670         if (!iommu || !pdev)
2671                 return;
2672
2673         /* dependent device detach */
2674         tmp = pci_find_upstream_pcie_bridge(pdev);
2675         /* Secondary interface's bus number and devfn 0 */
2676         if (tmp) {
2677                 parent = pdev->bus->self;
2678                 while (parent != tmp) {
2679                         iommu_detach_dev(iommu, parent->bus->number,
2680                                 parent->devfn);
2681                         parent = parent->bus->self;
2682                 }
2683                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
2684                         iommu_detach_dev(iommu,
2685                                 tmp->subordinate->number, 0);
2686                 else /* this is a legacy PCI bridge */
2687                         iommu_detach_dev(iommu,
2688                                 tmp->bus->number, tmp->devfn);
2689         }
2690 }
2691
2692 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2693                                           struct pci_dev *pdev)
2694 {
2695         struct device_domain_info *info;
2696         struct intel_iommu *iommu;
2697         unsigned long flags;
2698         int found = 0;
2699         struct list_head *entry, *tmp;
2700
2701         iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2702         if (!iommu)
2703                 return;
2704
2705         spin_lock_irqsave(&device_domain_lock, flags);
2706         list_for_each_safe(entry, tmp, &domain->devices) {
2707                 info = list_entry(entry, struct device_domain_info, link);
2708                 if (info->bus == pdev->bus->number &&
2709                     info->devfn == pdev->devfn) {
2710                         list_del(&info->link);
2711                         list_del(&info->global);
2712                         if (info->dev)
2713                                 info->dev->dev.archdata.iommu = NULL;
2714                         spin_unlock_irqrestore(&device_domain_lock, flags);
2715
2716                         iommu_detach_dev(iommu, info->bus, info->devfn);
2717                         iommu_detach_dependent_devices(iommu, pdev);
2718                         free_devinfo_mem(info);
2719
2720                         spin_lock_irqsave(&device_domain_lock, flags);
2721
2722                         if (found)
2723                                 break;
2724                         else
2725                                 continue;
2726                 }
2727
2728                 /* if there is no other devices under the same iommu
2729                  * owned by this domain, clear this iommu in iommu_bmp
2730                  * update iommu count and coherency
2731                  */
2732                 if (device_to_iommu(info->bus, info->devfn) == iommu)
2733                         found = 1;
2734         }
2735
2736         if (found == 0) {
2737                 unsigned long tmp_flags;
2738                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2739                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2740                 domain->iommu_count--;
2741                 domain_update_iommu_cap(domain);
2742                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2743         }
2744
2745         spin_unlock_irqrestore(&device_domain_lock, flags);
2746 }
2747
2748 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2749 {
2750         struct device_domain_info *info;
2751         struct intel_iommu *iommu;
2752         unsigned long flags1, flags2;
2753
2754         spin_lock_irqsave(&device_domain_lock, flags1);
2755         while (!list_empty(&domain->devices)) {
2756                 info = list_entry(domain->devices.next,
2757                         struct device_domain_info, link);
2758                 list_del(&info->link);
2759                 list_del(&info->global);
2760                 if (info->dev)
2761                         info->dev->dev.archdata.iommu = NULL;
2762
2763                 spin_unlock_irqrestore(&device_domain_lock, flags1);
2764
2765                 iommu = device_to_iommu(info->bus, info->devfn);
2766                 iommu_detach_dev(iommu, info->bus, info->devfn);
2767                 iommu_detach_dependent_devices(iommu, info->dev);
2768
2769                 /* clear this iommu in iommu_bmp, update iommu count
2770                  * and capabilities
2771                  */
2772                 spin_lock_irqsave(&domain->iommu_lock, flags2);
2773                 if (test_and_clear_bit(iommu->seq_id,
2774                                        &domain->iommu_bmp)) {
2775                         domain->iommu_count--;
2776                         domain_update_iommu_cap(domain);
2777                 }
2778                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2779
2780                 free_devinfo_mem(info);
2781                 spin_lock_irqsave(&device_domain_lock, flags1);
2782         }
2783         spin_unlock_irqrestore(&device_domain_lock, flags1);
2784 }
2785
2786 /* domain id for virtual machine, it won't be set in context */
2787 static unsigned long vm_domid;
2788
2789 static int vm_domain_min_agaw(struct dmar_domain *domain)
2790 {
2791         int i;
2792         int min_agaw = domain->agaw;
2793
2794         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2795         for (; i < g_num_of_iommus; ) {
2796                 if (min_agaw > g_iommus[i]->agaw)
2797                         min_agaw = g_iommus[i]->agaw;
2798
2799                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2800         }
2801
2802         return min_agaw;
2803 }
2804
2805 static struct dmar_domain *iommu_alloc_vm_domain(void)
2806 {
2807         struct dmar_domain *domain;
2808
2809         domain = alloc_domain_mem();
2810         if (!domain)
2811                 return NULL;
2812
2813         domain->id = vm_domid++;
2814         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2815         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2816
2817         return domain;
2818 }
2819
2820 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2821 {
2822         int adjust_width;
2823
2824         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2825         spin_lock_init(&domain->mapping_lock);
2826         spin_lock_init(&domain->iommu_lock);
2827
2828         domain_reserve_special_ranges(domain);
2829
2830         /* calculate AGAW */
2831         domain->gaw = guest_width;
2832         adjust_width = guestwidth_to_adjustwidth(guest_width);
2833         domain->agaw = width_to_agaw(adjust_width);
2834
2835         INIT_LIST_HEAD(&domain->devices);
2836
2837         domain->iommu_count = 0;
2838         domain->iommu_coherency = 0;
2839         domain->max_addr = 0;
2840
2841         /* always allocate the top pgd */
2842         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2843         if (!domain->pgd)
2844                 return -ENOMEM;
2845         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2846         return 0;
2847 }
2848
2849 static void iommu_free_vm_domain(struct dmar_domain *domain)
2850 {
2851         unsigned long flags;
2852         struct dmar_drhd_unit *drhd;
2853         struct intel_iommu *iommu;
2854         unsigned long i;
2855         unsigned long ndomains;
2856
2857         for_each_drhd_unit(drhd) {
2858                 if (drhd->ignored)
2859                         continue;
2860                 iommu = drhd->iommu;
2861
2862                 ndomains = cap_ndoms(iommu->cap);
2863                 i = find_first_bit(iommu->domain_ids, ndomains);
2864                 for (; i < ndomains; ) {
2865                         if (iommu->domains[i] == domain) {
2866                                 spin_lock_irqsave(&iommu->lock, flags);
2867                                 clear_bit(i, iommu->domain_ids);
2868                                 iommu->domains[i] = NULL;
2869                                 spin_unlock_irqrestore(&iommu->lock, flags);
2870                                 break;
2871                         }
2872                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2873                 }
2874         }
2875 }
2876
2877 static void vm_domain_exit(struct dmar_domain *domain)
2878 {
2879         u64 end;
2880
2881         /* Domain 0 is reserved, so dont process it */
2882         if (!domain)
2883                 return;
2884
2885         vm_domain_remove_all_dev_info(domain);
2886         /* destroy iovas */
2887         put_iova_domain(&domain->iovad);
2888         end = DOMAIN_MAX_ADDR(domain->gaw);
2889         end = end & (~VTD_PAGE_MASK);
2890
2891         /* clear ptes */
2892         dma_pte_clear_range(domain, 0, end);
2893
2894         /* free page tables */
2895         dma_pte_free_pagetable(domain, 0, end);
2896
2897         iommu_free_vm_domain(domain);
2898         free_domain_mem(domain);
2899 }
2900
2901 static int intel_iommu_domain_init(struct iommu_domain *domain)
2902 {
2903         struct dmar_domain *dmar_domain;
2904
2905         dmar_domain = iommu_alloc_vm_domain();
2906         if (!dmar_domain) {
2907                 printk(KERN_ERR
2908                         "intel_iommu_domain_init: dmar_domain == NULL\n");
2909                 return -ENOMEM;
2910         }
2911         if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2912                 printk(KERN_ERR
2913                         "intel_iommu_domain_init() failed\n");
2914                 vm_domain_exit(dmar_domain);
2915                 return -ENOMEM;
2916         }
2917         domain->priv = dmar_domain;
2918
2919         return 0;
2920 }
2921
2922 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
2923 {
2924         struct dmar_domain *dmar_domain = domain->priv;
2925
2926         domain->priv = NULL;
2927         vm_domain_exit(dmar_domain);
2928 }
2929
2930 static int intel_iommu_attach_device(struct iommu_domain *domain,
2931                                      struct device *dev)
2932 {
2933         struct dmar_domain *dmar_domain = domain->priv;
2934         struct pci_dev *pdev = to_pci_dev(dev);
2935         struct intel_iommu *iommu;
2936         int addr_width;
2937         u64 end;
2938         int ret;
2939
2940         /* normally pdev is not mapped */
2941         if (unlikely(domain_context_mapped(pdev))) {
2942                 struct dmar_domain *old_domain;
2943
2944                 old_domain = find_domain(pdev);
2945                 if (old_domain) {
2946                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
2947                                 vm_domain_remove_one_dev_info(old_domain, pdev);
2948                         else
2949                                 domain_remove_dev_info(old_domain);
2950                 }
2951         }
2952
2953         iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2954         if (!iommu)
2955                 return -ENODEV;
2956
2957         /* check if this iommu agaw is sufficient for max mapped address */
2958         addr_width = agaw_to_width(iommu->agaw);
2959         end = DOMAIN_MAX_ADDR(addr_width);
2960         end = end & VTD_PAGE_MASK;
2961         if (end < dmar_domain->max_addr) {
2962                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
2963                        "sufficient for the mapped address (%llx)\n",
2964                        __func__, iommu->agaw, dmar_domain->max_addr);
2965                 return -EFAULT;
2966         }
2967
2968         ret = domain_context_mapping(dmar_domain, pdev);
2969         if (ret)
2970                 return ret;
2971
2972         ret = vm_domain_add_dev_info(dmar_domain, pdev);
2973         return ret;
2974 }
2975
2976 static void intel_iommu_detach_device(struct iommu_domain *domain,
2977                                       struct device *dev)
2978 {
2979         struct dmar_domain *dmar_domain = domain->priv;
2980         struct pci_dev *pdev = to_pci_dev(dev);
2981
2982         vm_domain_remove_one_dev_info(dmar_domain, pdev);
2983 }
2984
2985 static int intel_iommu_map_range(struct iommu_domain *domain,
2986                                  unsigned long iova, phys_addr_t hpa,
2987                                  size_t size, int iommu_prot)
2988 {
2989         struct dmar_domain *dmar_domain = domain->priv;
2990         u64 max_addr;
2991         int addr_width;
2992         int prot = 0;
2993         int ret;
2994
2995         if (iommu_prot & IOMMU_READ)
2996                 prot |= DMA_PTE_READ;
2997         if (iommu_prot & IOMMU_WRITE)
2998                 prot |= DMA_PTE_WRITE;
2999         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3000                 prot |= DMA_PTE_SNP;
3001
3002         max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3003         if (dmar_domain->max_addr < max_addr) {
3004                 int min_agaw;
3005                 u64 end;
3006
3007                 /* check if minimum agaw is sufficient for mapped address */
3008                 min_agaw = vm_domain_min_agaw(dmar_domain);
3009                 addr_width = agaw_to_width(min_agaw);
3010                 end = DOMAIN_MAX_ADDR(addr_width);
3011                 end = end & VTD_PAGE_MASK;
3012                 if (end < max_addr) {
3013                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3014                                "sufficient for the mapped address (%llx)\n",
3015                                __func__, min_agaw, max_addr);
3016                         return -EFAULT;
3017                 }
3018                 dmar_domain->max_addr = max_addr;
3019         }
3020
3021         ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3022         return ret;
3023 }
3024
3025 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3026                                     unsigned long iova, size_t size)
3027 {
3028         struct dmar_domain *dmar_domain = domain->priv;
3029         dma_addr_t base;
3030
3031         /* The address might not be aligned */
3032         base = iova & VTD_PAGE_MASK;
3033         size = VTD_PAGE_ALIGN(size);
3034         dma_pte_clear_range(dmar_domain, base, base + size);
3035
3036         if (dmar_domain->max_addr == base + size)
3037                 dmar_domain->max_addr = base;
3038 }
3039
3040 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3041                                             unsigned long iova)
3042 {
3043         struct dmar_domain *dmar_domain = domain->priv;
3044         struct dma_pte *pte;
3045         u64 phys = 0;
3046
3047         pte = addr_to_dma_pte(dmar_domain, iova);
3048         if (pte)
3049                 phys = dma_pte_addr(pte);
3050
3051         return phys;
3052 }
3053
3054 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3055                                       unsigned long cap)
3056 {
3057         struct dmar_domain *dmar_domain = domain->priv;
3058
3059         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3060                 return dmar_domain->iommu_snooping;
3061
3062         return 0;
3063 }
3064
3065 static struct iommu_ops intel_iommu_ops = {
3066         .domain_init    = intel_iommu_domain_init,
3067         .domain_destroy = intel_iommu_domain_destroy,
3068         .attach_dev     = intel_iommu_attach_device,
3069         .detach_dev     = intel_iommu_detach_device,
3070         .map            = intel_iommu_map_range,
3071         .unmap          = intel_iommu_unmap_range,
3072         .iova_to_phys   = intel_iommu_iova_to_phys,
3073         .domain_has_cap = intel_iommu_domain_has_cap,
3074 };
3075
3076 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3077 {
3078         /*
3079          * Mobile 4 Series Chipset neglects to set RWBF capability,
3080          * but needs it:
3081          */
3082         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3083         rwbf_quirk = 1;
3084 }
3085
3086 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);