Pull ec into release branch
[pandora-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
55         /* ZD1211B */
56         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
57         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
58         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
59         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
60         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
62         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
63         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
66         /* "Driverless" devices that need ejecting */
67         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
68         {}
69 };
70
71 MODULE_LICENSE("GPL");
72 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
73 MODULE_AUTHOR("Ulrich Kunitz");
74 MODULE_AUTHOR("Daniel Drake");
75 MODULE_VERSION("1.0");
76 MODULE_DEVICE_TABLE(usb, usb_ids);
77
78 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
79 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
80
81 /* USB device initialization */
82
83 static int request_fw_file(
84         const struct firmware **fw, const char *name, struct device *device)
85 {
86         int r;
87
88         dev_dbg_f(device, "fw name %s\n", name);
89
90         r = request_firmware(fw, name, device);
91         if (r)
92                 dev_err(device,
93                        "Could not load firmware file %s. Error number %d\n",
94                        name, r);
95         return r;
96 }
97
98 static inline u16 get_bcdDevice(const struct usb_device *udev)
99 {
100         return le16_to_cpu(udev->descriptor.bcdDevice);
101 }
102
103 enum upload_code_flags {
104         REBOOT = 1,
105 };
106
107 /* Ensures that MAX_TRANSFER_SIZE is even. */
108 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
109
110 static int upload_code(struct usb_device *udev,
111         const u8 *data, size_t size, u16 code_offset, int flags)
112 {
113         u8 *p;
114         int r;
115
116         /* USB request blocks need "kmalloced" buffers.
117          */
118         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
119         if (!p) {
120                 dev_err(&udev->dev, "out of memory\n");
121                 r = -ENOMEM;
122                 goto error;
123         }
124
125         size &= ~1;
126         while (size > 0) {
127                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
128                         size : MAX_TRANSFER_SIZE;
129
130                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
131
132                 memcpy(p, data, transfer_size);
133                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
134                         USB_REQ_FIRMWARE_DOWNLOAD,
135                         USB_DIR_OUT | USB_TYPE_VENDOR,
136                         code_offset, 0, p, transfer_size, 1000 /* ms */);
137                 if (r < 0) {
138                         dev_err(&udev->dev,
139                                "USB control request for firmware upload"
140                                " failed. Error number %d\n", r);
141                         goto error;
142                 }
143                 transfer_size = r & ~1;
144
145                 size -= transfer_size;
146                 data += transfer_size;
147                 code_offset += transfer_size/sizeof(u16);
148         }
149
150         if (flags & REBOOT) {
151                 u8 ret;
152
153                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
154                         USB_REQ_FIRMWARE_CONFIRM,
155                         USB_DIR_IN | USB_TYPE_VENDOR,
156                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
157                 if (r != sizeof(ret)) {
158                         dev_err(&udev->dev,
159                                 "control request firmeware confirmation failed."
160                                 " Return value %d\n", r);
161                         if (r >= 0)
162                                 r = -ENODEV;
163                         goto error;
164                 }
165                 if (ret & 0x80) {
166                         dev_err(&udev->dev,
167                                 "Internal error while downloading."
168                                 " Firmware confirm return value %#04x\n",
169                                 (unsigned int)ret);
170                         r = -ENODEV;
171                         goto error;
172                 }
173                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
174                         (unsigned int)ret);
175         }
176
177         r = 0;
178 error:
179         kfree(p);
180         return r;
181 }
182
183 static u16 get_word(const void *data, u16 offset)
184 {
185         const __le16 *p = data;
186         return le16_to_cpu(p[offset]);
187 }
188
189 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
190                        const char* postfix)
191 {
192         scnprintf(buffer, size, "%s%s",
193                 device_type == DEVICE_ZD1211B ?
194                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
195                 postfix);
196         return buffer;
197 }
198
199 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
200         const struct firmware *ub_fw)
201 {
202         const struct firmware *ur_fw = NULL;
203         int offset;
204         int r = 0;
205         char fw_name[128];
206
207         r = request_fw_file(&ur_fw,
208                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
209                 &udev->dev);
210         if (r)
211                 goto error;
212
213         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
214         if (r)
215                 goto error;
216
217         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
218         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
219                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
220
221         /* At this point, the vendor driver downloads the whole firmware
222          * image, hacks around with version IDs, and uploads it again,
223          * completely overwriting the boot code. We do not do this here as
224          * it is not required on any tested devices, and it is suspected to
225          * cause problems. */
226 error:
227         release_firmware(ur_fw);
228         return r;
229 }
230
231 static int upload_firmware(struct usb_device *udev, u8 device_type)
232 {
233         int r;
234         u16 fw_bcdDevice;
235         u16 bcdDevice;
236         const struct firmware *ub_fw = NULL;
237         const struct firmware *uph_fw = NULL;
238         char fw_name[128];
239
240         bcdDevice = get_bcdDevice(udev);
241
242         r = request_fw_file(&ub_fw,
243                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
244                 &udev->dev);
245         if (r)
246                 goto error;
247
248         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
249
250         if (fw_bcdDevice != bcdDevice) {
251                 dev_info(&udev->dev,
252                         "firmware version %#06x and device bootcode version "
253                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
254                 if (bcdDevice <= 0x4313)
255                         dev_warn(&udev->dev, "device has old bootcode, please "
256                                 "report success or failure\n");
257
258                 r = handle_version_mismatch(udev, device_type, ub_fw);
259                 if (r)
260                         goto error;
261         } else {
262                 dev_dbg_f(&udev->dev,
263                         "firmware device id %#06x is equal to the "
264                         "actual device id\n", fw_bcdDevice);
265         }
266
267
268         r = request_fw_file(&uph_fw,
269                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
270                 &udev->dev);
271         if (r)
272                 goto error;
273
274         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
275         if (r) {
276                 dev_err(&udev->dev,
277                         "Could not upload firmware code uph. Error number %d\n",
278                         r);
279         }
280
281         /* FALL-THROUGH */
282 error:
283         release_firmware(ub_fw);
284         release_firmware(uph_fw);
285         return r;
286 }
287
288 #define urb_dev(urb) (&(urb)->dev->dev)
289
290 static inline void handle_regs_int(struct urb *urb)
291 {
292         struct zd_usb *usb = urb->context;
293         struct zd_usb_interrupt *intr = &usb->intr;
294         int len;
295
296         ZD_ASSERT(in_interrupt());
297         spin_lock(&intr->lock);
298
299         if (intr->read_regs_enabled) {
300                 intr->read_regs.length = len = urb->actual_length;
301
302                 if (len > sizeof(intr->read_regs.buffer))
303                         len = sizeof(intr->read_regs.buffer);
304                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
305                 intr->read_regs_enabled = 0;
306                 complete(&intr->read_regs.completion);
307                 goto out;
308         }
309
310         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
311 out:
312         spin_unlock(&intr->lock);
313 }
314
315 static inline void handle_retry_failed_int(struct urb *urb)
316 {
317         struct zd_usb *usb = urb->context;
318         struct zd_mac *mac = zd_usb_to_mac(usb);
319         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
320
321         ieee->stats.tx_errors++;
322         ieee->ieee_stats.tx_retry_limit_exceeded++;
323         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
324 }
325
326
327 static void int_urb_complete(struct urb *urb)
328 {
329         int r;
330         struct usb_int_header *hdr;
331
332         switch (urb->status) {
333         case 0:
334                 break;
335         case -ESHUTDOWN:
336         case -EINVAL:
337         case -ENODEV:
338         case -ENOENT:
339         case -ECONNRESET:
340         case -EPIPE:
341                 goto kfree;
342         default:
343                 goto resubmit;
344         }
345
346         if (urb->actual_length < sizeof(hdr)) {
347                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
348                 goto resubmit;
349         }
350
351         hdr = urb->transfer_buffer;
352         if (hdr->type != USB_INT_TYPE) {
353                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
354                 goto resubmit;
355         }
356
357         switch (hdr->id) {
358         case USB_INT_ID_REGS:
359                 handle_regs_int(urb);
360                 break;
361         case USB_INT_ID_RETRY_FAILED:
362                 handle_retry_failed_int(urb);
363                 break;
364         default:
365                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
366                         (unsigned int)hdr->id);
367                 goto resubmit;
368         }
369
370 resubmit:
371         r = usb_submit_urb(urb, GFP_ATOMIC);
372         if (r) {
373                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
374                 goto kfree;
375         }
376         return;
377 kfree:
378         kfree(urb->transfer_buffer);
379 }
380
381 static inline int int_urb_interval(struct usb_device *udev)
382 {
383         switch (udev->speed) {
384         case USB_SPEED_HIGH:
385                 return 4;
386         case USB_SPEED_LOW:
387                 return 10;
388         case USB_SPEED_FULL:
389         default:
390                 return 1;
391         }
392 }
393
394 static inline int usb_int_enabled(struct zd_usb *usb)
395 {
396         unsigned long flags;
397         struct zd_usb_interrupt *intr = &usb->intr;
398         struct urb *urb;
399
400         spin_lock_irqsave(&intr->lock, flags);
401         urb = intr->urb;
402         spin_unlock_irqrestore(&intr->lock, flags);
403         return urb != NULL;
404 }
405
406 int zd_usb_enable_int(struct zd_usb *usb)
407 {
408         int r;
409         struct usb_device *udev;
410         struct zd_usb_interrupt *intr = &usb->intr;
411         void *transfer_buffer = NULL;
412         struct urb *urb;
413
414         dev_dbg_f(zd_usb_dev(usb), "\n");
415
416         urb = usb_alloc_urb(0, GFP_NOFS);
417         if (!urb) {
418                 r = -ENOMEM;
419                 goto out;
420         }
421
422         ZD_ASSERT(!irqs_disabled());
423         spin_lock_irq(&intr->lock);
424         if (intr->urb) {
425                 spin_unlock_irq(&intr->lock);
426                 r = 0;
427                 goto error_free_urb;
428         }
429         intr->urb = urb;
430         spin_unlock_irq(&intr->lock);
431
432         /* TODO: make it a DMA buffer */
433         r = -ENOMEM;
434         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
435         if (!transfer_buffer) {
436                 dev_dbg_f(zd_usb_dev(usb),
437                         "couldn't allocate transfer_buffer\n");
438                 goto error_set_urb_null;
439         }
440
441         udev = zd_usb_to_usbdev(usb);
442         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
443                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
444                          int_urb_complete, usb,
445                          intr->interval);
446
447         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
448         r = usb_submit_urb(urb, GFP_NOFS);
449         if (r) {
450                 dev_dbg_f(zd_usb_dev(usb),
451                          "Couldn't submit urb. Error number %d\n", r);
452                 goto error;
453         }
454
455         return 0;
456 error:
457         kfree(transfer_buffer);
458 error_set_urb_null:
459         spin_lock_irq(&intr->lock);
460         intr->urb = NULL;
461         spin_unlock_irq(&intr->lock);
462 error_free_urb:
463         usb_free_urb(urb);
464 out:
465         return r;
466 }
467
468 void zd_usb_disable_int(struct zd_usb *usb)
469 {
470         unsigned long flags;
471         struct zd_usb_interrupt *intr = &usb->intr;
472         struct urb *urb;
473
474         spin_lock_irqsave(&intr->lock, flags);
475         urb = intr->urb;
476         if (!urb) {
477                 spin_unlock_irqrestore(&intr->lock, flags);
478                 return;
479         }
480         intr->urb = NULL;
481         spin_unlock_irqrestore(&intr->lock, flags);
482
483         usb_kill_urb(urb);
484         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
485         usb_free_urb(urb);
486 }
487
488 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
489                              unsigned int length)
490 {
491         int i;
492         struct zd_mac *mac = zd_usb_to_mac(usb);
493         const struct rx_length_info *length_info;
494
495         if (length < sizeof(struct rx_length_info)) {
496                 /* It's not a complete packet anyhow. */
497                 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
498                 ieee->stats.rx_errors++;
499                 ieee->stats.rx_length_errors++;
500                 return;
501         }
502         length_info = (struct rx_length_info *)
503                 (buffer + length - sizeof(struct rx_length_info));
504
505         /* It might be that three frames are merged into a single URB
506          * transaction. We have to check for the length info tag.
507          *
508          * While testing we discovered that length_info might be unaligned,
509          * because if USB transactions are merged, the last packet will not
510          * be padded. Unaligned access might also happen if the length_info
511          * structure is not present.
512          */
513         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
514         {
515                 unsigned int l, k, n;
516                 for (i = 0, l = 0;; i++) {
517                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
518                         if (k == 0)
519                                 return;
520                         n = l+k;
521                         if (n > length)
522                                 return;
523                         zd_mac_rx_irq(mac, buffer+l, k);
524                         if (i >= 2)
525                                 return;
526                         l = (n+3) & ~3;
527                 }
528         } else {
529                 zd_mac_rx_irq(mac, buffer, length);
530         }
531 }
532
533 static void rx_urb_complete(struct urb *urb)
534 {
535         struct zd_usb *usb;
536         struct zd_usb_rx *rx;
537         const u8 *buffer;
538         unsigned int length;
539
540         switch (urb->status) {
541         case 0:
542                 break;
543         case -ESHUTDOWN:
544         case -EINVAL:
545         case -ENODEV:
546         case -ENOENT:
547         case -ECONNRESET:
548         case -EPIPE:
549                 return;
550         default:
551                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
552                 goto resubmit;
553         }
554
555         buffer = urb->transfer_buffer;
556         length = urb->actual_length;
557         usb = urb->context;
558         rx = &usb->rx;
559
560         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
561                 /* If there is an old first fragment, we don't care. */
562                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
563                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
564                 spin_lock(&rx->lock);
565                 memcpy(rx->fragment, buffer, length);
566                 rx->fragment_length = length;
567                 spin_unlock(&rx->lock);
568                 goto resubmit;
569         }
570
571         spin_lock(&rx->lock);
572         if (rx->fragment_length > 0) {
573                 /* We are on a second fragment, we believe */
574                 ZD_ASSERT(length + rx->fragment_length <=
575                           ARRAY_SIZE(rx->fragment));
576                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
577                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
578                 handle_rx_packet(usb, rx->fragment,
579                                  rx->fragment_length + length);
580                 rx->fragment_length = 0;
581                 spin_unlock(&rx->lock);
582         } else {
583                 spin_unlock(&rx->lock);
584                 handle_rx_packet(usb, buffer, length);
585         }
586
587 resubmit:
588         usb_submit_urb(urb, GFP_ATOMIC);
589 }
590
591 static struct urb *alloc_urb(struct zd_usb *usb)
592 {
593         struct usb_device *udev = zd_usb_to_usbdev(usb);
594         struct urb *urb;
595         void *buffer;
596
597         urb = usb_alloc_urb(0, GFP_NOFS);
598         if (!urb)
599                 return NULL;
600         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
601                                   &urb->transfer_dma);
602         if (!buffer) {
603                 usb_free_urb(urb);
604                 return NULL;
605         }
606
607         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
608                           buffer, USB_MAX_RX_SIZE,
609                           rx_urb_complete, usb);
610         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
611
612         return urb;
613 }
614
615 static void free_urb(struct urb *urb)
616 {
617         if (!urb)
618                 return;
619         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
620                         urb->transfer_buffer, urb->transfer_dma);
621         usb_free_urb(urb);
622 }
623
624 int zd_usb_enable_rx(struct zd_usb *usb)
625 {
626         int i, r;
627         struct zd_usb_rx *rx = &usb->rx;
628         struct urb **urbs;
629
630         dev_dbg_f(zd_usb_dev(usb), "\n");
631
632         r = -ENOMEM;
633         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
634         if (!urbs)
635                 goto error;
636         for (i = 0; i < URBS_COUNT; i++) {
637                 urbs[i] = alloc_urb(usb);
638                 if (!urbs[i])
639                         goto error;
640         }
641
642         ZD_ASSERT(!irqs_disabled());
643         spin_lock_irq(&rx->lock);
644         if (rx->urbs) {
645                 spin_unlock_irq(&rx->lock);
646                 r = 0;
647                 goto error;
648         }
649         rx->urbs = urbs;
650         rx->urbs_count = URBS_COUNT;
651         spin_unlock_irq(&rx->lock);
652
653         for (i = 0; i < URBS_COUNT; i++) {
654                 r = usb_submit_urb(urbs[i], GFP_NOFS);
655                 if (r)
656                         goto error_submit;
657         }
658
659         return 0;
660 error_submit:
661         for (i = 0; i < URBS_COUNT; i++) {
662                 usb_kill_urb(urbs[i]);
663         }
664         spin_lock_irq(&rx->lock);
665         rx->urbs = NULL;
666         rx->urbs_count = 0;
667         spin_unlock_irq(&rx->lock);
668 error:
669         if (urbs) {
670                 for (i = 0; i < URBS_COUNT; i++)
671                         free_urb(urbs[i]);
672         }
673         return r;
674 }
675
676 void zd_usb_disable_rx(struct zd_usb *usb)
677 {
678         int i;
679         unsigned long flags;
680         struct urb **urbs;
681         unsigned int count;
682         struct zd_usb_rx *rx = &usb->rx;
683
684         spin_lock_irqsave(&rx->lock, flags);
685         urbs = rx->urbs;
686         count = rx->urbs_count;
687         spin_unlock_irqrestore(&rx->lock, flags);
688         if (!urbs)
689                 return;
690
691         for (i = 0; i < count; i++) {
692                 usb_kill_urb(urbs[i]);
693                 free_urb(urbs[i]);
694         }
695         kfree(urbs);
696
697         spin_lock_irqsave(&rx->lock, flags);
698         rx->urbs = NULL;
699         rx->urbs_count = 0;
700         spin_unlock_irqrestore(&rx->lock, flags);
701 }
702
703 static void tx_urb_complete(struct urb *urb)
704 {
705         int r;
706
707         switch (urb->status) {
708         case 0:
709                 break;
710         case -ESHUTDOWN:
711         case -EINVAL:
712         case -ENODEV:
713         case -ENOENT:
714         case -ECONNRESET:
715         case -EPIPE:
716                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
717                 break;
718         default:
719                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
720                 goto resubmit;
721         }
722 free_urb:
723         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
724                         urb->transfer_buffer, urb->transfer_dma);
725         usb_free_urb(urb);
726         return;
727 resubmit:
728         r = usb_submit_urb(urb, GFP_ATOMIC);
729         if (r) {
730                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
731                 goto free_urb;
732         }
733 }
734
735 /* Puts the frame on the USB endpoint. It doesn't wait for
736  * completion. The frame must contain the control set.
737  */
738 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
739 {
740         int r;
741         struct usb_device *udev = zd_usb_to_usbdev(usb);
742         struct urb *urb;
743         void *buffer;
744
745         urb = usb_alloc_urb(0, GFP_ATOMIC);
746         if (!urb) {
747                 r = -ENOMEM;
748                 goto out;
749         }
750
751         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
752                                   &urb->transfer_dma);
753         if (!buffer) {
754                 r = -ENOMEM;
755                 goto error_free_urb;
756         }
757         memcpy(buffer, frame, length);
758
759         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
760                           buffer, length, tx_urb_complete, NULL);
761         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
762
763         r = usb_submit_urb(urb, GFP_ATOMIC);
764         if (r)
765                 goto error;
766         return 0;
767 error:
768         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
769                         urb->transfer_dma);
770 error_free_urb:
771         usb_free_urb(urb);
772 out:
773         return r;
774 }
775
776 static inline void init_usb_interrupt(struct zd_usb *usb)
777 {
778         struct zd_usb_interrupt *intr = &usb->intr;
779
780         spin_lock_init(&intr->lock);
781         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
782         init_completion(&intr->read_regs.completion);
783         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
784 }
785
786 static inline void init_usb_rx(struct zd_usb *usb)
787 {
788         struct zd_usb_rx *rx = &usb->rx;
789         spin_lock_init(&rx->lock);
790         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
791                 rx->usb_packet_size = 512;
792         } else {
793                 rx->usb_packet_size = 64;
794         }
795         ZD_ASSERT(rx->fragment_length == 0);
796 }
797
798 static inline void init_usb_tx(struct zd_usb *usb)
799 {
800         /* FIXME: at this point we will allocate a fixed number of urb's for
801          * use in a cyclic scheme */
802 }
803
804 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
805                  struct usb_interface *intf)
806 {
807         memset(usb, 0, sizeof(*usb));
808         usb->intf = usb_get_intf(intf);
809         usb_set_intfdata(usb->intf, netdev);
810         init_usb_interrupt(usb);
811         init_usb_tx(usb);
812         init_usb_rx(usb);
813 }
814
815 void zd_usb_clear(struct zd_usb *usb)
816 {
817         usb_set_intfdata(usb->intf, NULL);
818         usb_put_intf(usb->intf);
819         ZD_MEMCLEAR(usb, sizeof(*usb));
820         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
821 }
822
823 static const char *speed(enum usb_device_speed speed)
824 {
825         switch (speed) {
826         case USB_SPEED_LOW:
827                 return "low";
828         case USB_SPEED_FULL:
829                 return "full";
830         case USB_SPEED_HIGH:
831                 return "high";
832         default:
833                 return "unknown speed";
834         }
835 }
836
837 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
838 {
839         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
840                 le16_to_cpu(udev->descriptor.idVendor),
841                 le16_to_cpu(udev->descriptor.idProduct),
842                 get_bcdDevice(udev),
843                 speed(udev->speed));
844 }
845
846 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
847 {
848         struct usb_device *udev = interface_to_usbdev(usb->intf);
849         return scnprint_id(udev, buffer, size);
850 }
851
852 #ifdef DEBUG
853 static void print_id(struct usb_device *udev)
854 {
855         char buffer[40];
856
857         scnprint_id(udev, buffer, sizeof(buffer));
858         buffer[sizeof(buffer)-1] = 0;
859         dev_dbg_f(&udev->dev, "%s\n", buffer);
860 }
861 #else
862 #define print_id(udev) do { } while (0)
863 #endif
864
865 static int eject_installer(struct usb_interface *intf)
866 {
867         struct usb_device *udev = interface_to_usbdev(intf);
868         struct usb_host_interface *iface_desc = &intf->altsetting[0];
869         struct usb_endpoint_descriptor *endpoint;
870         unsigned char *cmd;
871         u8 bulk_out_ep;
872         int r;
873
874         /* Find bulk out endpoint */
875         endpoint = &iface_desc->endpoint[1].desc;
876         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
877             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
878             USB_ENDPOINT_XFER_BULK) {
879                 bulk_out_ep = endpoint->bEndpointAddress;
880         } else {
881                 dev_err(&udev->dev,
882                         "zd1211rw: Could not find bulk out endpoint\n");
883                 return -ENODEV;
884         }
885
886         cmd = kzalloc(31, GFP_KERNEL);
887         if (cmd == NULL)
888                 return -ENODEV;
889
890         /* USB bulk command block */
891         cmd[0] = 0x55;  /* bulk command signature */
892         cmd[1] = 0x53;  /* bulk command signature */
893         cmd[2] = 0x42;  /* bulk command signature */
894         cmd[3] = 0x43;  /* bulk command signature */
895         cmd[14] = 6;    /* command length */
896
897         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
898         cmd[19] = 0x2;  /* eject disc */
899
900         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
901         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
902                 cmd, 31, NULL, 2000);
903         kfree(cmd);
904         if (r)
905                 return r;
906
907         /* At this point, the device disconnects and reconnects with the real
908          * ID numbers. */
909
910         usb_set_intfdata(intf, NULL);
911         return 0;
912 }
913
914 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
915 {
916         int r;
917         struct usb_device *udev = interface_to_usbdev(intf);
918         struct net_device *netdev = NULL;
919
920         print_id(udev);
921
922         if (id->driver_info & DEVICE_INSTALLER)
923                 return eject_installer(intf);
924
925         switch (udev->speed) {
926         case USB_SPEED_LOW:
927         case USB_SPEED_FULL:
928         case USB_SPEED_HIGH:
929                 break;
930         default:
931                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
932                 r = -ENODEV;
933                 goto error;
934         }
935
936         usb_reset_device(interface_to_usbdev(intf));
937
938         netdev = zd_netdev_alloc(intf);
939         if (netdev == NULL) {
940                 r = -ENOMEM;
941                 goto error;
942         }
943
944         r = upload_firmware(udev, id->driver_info);
945         if (r) {
946                 dev_err(&intf->dev,
947                        "couldn't load firmware. Error number %d\n", r);
948                 goto error;
949         }
950
951         r = usb_reset_configuration(udev);
952         if (r) {
953                 dev_dbg_f(&intf->dev,
954                         "couldn't reset configuration. Error number %d\n", r);
955                 goto error;
956         }
957
958         /* At this point the interrupt endpoint is not generally enabled. We
959          * save the USB bandwidth until the network device is opened. But
960          * notify that the initialization of the MAC will require the
961          * interrupts to be temporary enabled.
962          */
963         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
964         if (r) {
965                 dev_dbg_f(&intf->dev,
966                          "couldn't initialize mac. Error number %d\n", r);
967                 goto error;
968         }
969
970         r = register_netdev(netdev);
971         if (r) {
972                 dev_dbg_f(&intf->dev,
973                          "couldn't register netdev. Error number %d\n", r);
974                 goto error;
975         }
976
977         dev_dbg_f(&intf->dev, "successful\n");
978         dev_info(&intf->dev,"%s\n", netdev->name);
979         return 0;
980 error:
981         usb_reset_device(interface_to_usbdev(intf));
982         zd_netdev_free(netdev);
983         return r;
984 }
985
986 static void disconnect(struct usb_interface *intf)
987 {
988         struct net_device *netdev = zd_intf_to_netdev(intf);
989         struct zd_mac *mac = zd_netdev_mac(netdev);
990         struct zd_usb *usb = &mac->chip.usb;
991
992         /* Either something really bad happened, or we're just dealing with
993          * a DEVICE_INSTALLER. */
994         if (netdev == NULL)
995                 return;
996
997         dev_dbg_f(zd_usb_dev(usb), "\n");
998
999         zd_netdev_disconnect(netdev);
1000
1001         /* Just in case something has gone wrong! */
1002         zd_usb_disable_rx(usb);
1003         zd_usb_disable_int(usb);
1004
1005         /* If the disconnect has been caused by a removal of the
1006          * driver module, the reset allows reloading of the driver. If the
1007          * reset will not be executed here, the upload of the firmware in the
1008          * probe function caused by the reloading of the driver will fail.
1009          */
1010         usb_reset_device(interface_to_usbdev(intf));
1011
1012         zd_netdev_free(netdev);
1013         dev_dbg(&intf->dev, "disconnected\n");
1014 }
1015
1016 static struct usb_driver driver = {
1017         .name           = "zd1211rw",
1018         .id_table       = usb_ids,
1019         .probe          = probe,
1020         .disconnect     = disconnect,
1021 };
1022
1023 struct workqueue_struct *zd_workqueue;
1024
1025 static int __init usb_init(void)
1026 {
1027         int r;
1028
1029         pr_debug("%s usb_init()\n", driver.name);
1030
1031         zd_workqueue = create_singlethread_workqueue(driver.name);
1032         if (zd_workqueue == NULL) {
1033                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1034                 return -ENOMEM;
1035         }
1036
1037         r = usb_register(&driver);
1038         if (r) {
1039                 destroy_workqueue(zd_workqueue);
1040                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1041                        driver.name, r);
1042                 return r;
1043         }
1044
1045         pr_debug("%s initialized\n", driver.name);
1046         return 0;
1047 }
1048
1049 static void __exit usb_exit(void)
1050 {
1051         pr_debug("%s usb_exit()\n", driver.name);
1052         usb_deregister(&driver);
1053         destroy_workqueue(zd_workqueue);
1054 }
1055
1056 module_init(usb_init);
1057 module_exit(usb_exit);
1058
1059 static int usb_int_regs_length(unsigned int count)
1060 {
1061         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1062 }
1063
1064 static void prepare_read_regs_int(struct zd_usb *usb)
1065 {
1066         struct zd_usb_interrupt *intr = &usb->intr;
1067
1068         spin_lock_irq(&intr->lock);
1069         intr->read_regs_enabled = 1;
1070         INIT_COMPLETION(intr->read_regs.completion);
1071         spin_unlock_irq(&intr->lock);
1072 }
1073
1074 static void disable_read_regs_int(struct zd_usb *usb)
1075 {
1076         struct zd_usb_interrupt *intr = &usb->intr;
1077
1078         spin_lock_irq(&intr->lock);
1079         intr->read_regs_enabled = 0;
1080         spin_unlock_irq(&intr->lock);
1081 }
1082
1083 static int get_results(struct zd_usb *usb, u16 *values,
1084                        struct usb_req_read_regs *req, unsigned int count)
1085 {
1086         int r;
1087         int i;
1088         struct zd_usb_interrupt *intr = &usb->intr;
1089         struct read_regs_int *rr = &intr->read_regs;
1090         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1091
1092         spin_lock_irq(&intr->lock);
1093
1094         r = -EIO;
1095         /* The created block size seems to be larger than expected.
1096          * However results appear to be correct.
1097          */
1098         if (rr->length < usb_int_regs_length(count)) {
1099                 dev_dbg_f(zd_usb_dev(usb),
1100                          "error: actual length %d less than expected %d\n",
1101                          rr->length, usb_int_regs_length(count));
1102                 goto error_unlock;
1103         }
1104         if (rr->length > sizeof(rr->buffer)) {
1105                 dev_dbg_f(zd_usb_dev(usb),
1106                          "error: actual length %d exceeds buffer size %zu\n",
1107                          rr->length, sizeof(rr->buffer));
1108                 goto error_unlock;
1109         }
1110
1111         for (i = 0; i < count; i++) {
1112                 struct reg_data *rd = &regs->regs[i];
1113                 if (rd->addr != req->addr[i]) {
1114                         dev_dbg_f(zd_usb_dev(usb),
1115                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1116                                  le16_to_cpu(rd->addr),
1117                                  le16_to_cpu(req->addr[i]));
1118                         goto error_unlock;
1119                 }
1120                 values[i] = le16_to_cpu(rd->value);
1121         }
1122
1123         r = 0;
1124 error_unlock:
1125         spin_unlock_irq(&intr->lock);
1126         return r;
1127 }
1128
1129 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1130                      const zd_addr_t *addresses, unsigned int count)
1131 {
1132         int r;
1133         int i, req_len, actual_req_len;
1134         struct usb_device *udev;
1135         struct usb_req_read_regs *req = NULL;
1136         unsigned long timeout;
1137
1138         if (count < 1) {
1139                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1140                 return -EINVAL;
1141         }
1142         if (count > USB_MAX_IOREAD16_COUNT) {
1143                 dev_dbg_f(zd_usb_dev(usb),
1144                          "error: count %u exceeds possible max %u\n",
1145                          count, USB_MAX_IOREAD16_COUNT);
1146                 return -EINVAL;
1147         }
1148         if (in_atomic()) {
1149                 dev_dbg_f(zd_usb_dev(usb),
1150                          "error: io in atomic context not supported\n");
1151                 return -EWOULDBLOCK;
1152         }
1153         if (!usb_int_enabled(usb)) {
1154                  dev_dbg_f(zd_usb_dev(usb),
1155                           "error: usb interrupt not enabled\n");
1156                 return -EWOULDBLOCK;
1157         }
1158
1159         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1160         req = kmalloc(req_len, GFP_NOFS);
1161         if (!req)
1162                 return -ENOMEM;
1163         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1164         for (i = 0; i < count; i++)
1165                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1166
1167         udev = zd_usb_to_usbdev(usb);
1168         prepare_read_regs_int(usb);
1169         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1170                          req, req_len, &actual_req_len, 1000 /* ms */);
1171         if (r) {
1172                 dev_dbg_f(zd_usb_dev(usb),
1173                         "error in usb_bulk_msg(). Error number %d\n", r);
1174                 goto error;
1175         }
1176         if (req_len != actual_req_len) {
1177                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1178                         " req_len %d != actual_req_len %d\n",
1179                         req_len, actual_req_len);
1180                 r = -EIO;
1181                 goto error;
1182         }
1183
1184         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1185                                               msecs_to_jiffies(1000));
1186         if (!timeout) {
1187                 disable_read_regs_int(usb);
1188                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1189                 r = -ETIMEDOUT;
1190                 goto error;
1191         }
1192
1193         r = get_results(usb, values, req, count);
1194 error:
1195         kfree(req);
1196         return r;
1197 }
1198
1199 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1200                       unsigned int count)
1201 {
1202         int r;
1203         struct usb_device *udev;
1204         struct usb_req_write_regs *req = NULL;
1205         int i, req_len, actual_req_len;
1206
1207         if (count == 0)
1208                 return 0;
1209         if (count > USB_MAX_IOWRITE16_COUNT) {
1210                 dev_dbg_f(zd_usb_dev(usb),
1211                         "error: count %u exceeds possible max %u\n",
1212                         count, USB_MAX_IOWRITE16_COUNT);
1213                 return -EINVAL;
1214         }
1215         if (in_atomic()) {
1216                 dev_dbg_f(zd_usb_dev(usb),
1217                         "error: io in atomic context not supported\n");
1218                 return -EWOULDBLOCK;
1219         }
1220
1221         req_len = sizeof(struct usb_req_write_regs) +
1222                   count * sizeof(struct reg_data);
1223         req = kmalloc(req_len, GFP_NOFS);
1224         if (!req)
1225                 return -ENOMEM;
1226
1227         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1228         for (i = 0; i < count; i++) {
1229                 struct reg_data *rw  = &req->reg_writes[i];
1230                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1231                 rw->value = cpu_to_le16(ioreqs[i].value);
1232         }
1233
1234         udev = zd_usb_to_usbdev(usb);
1235         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1236                          req, req_len, &actual_req_len, 1000 /* ms */);
1237         if (r) {
1238                 dev_dbg_f(zd_usb_dev(usb),
1239                         "error in usb_bulk_msg(). Error number %d\n", r);
1240                 goto error;
1241         }
1242         if (req_len != actual_req_len) {
1243                 dev_dbg_f(zd_usb_dev(usb),
1244                         "error in usb_bulk_msg()"
1245                         " req_len %d != actual_req_len %d\n",
1246                         req_len, actual_req_len);
1247                 r = -EIO;
1248                 goto error;
1249         }
1250
1251         /* FALL-THROUGH with r == 0 */
1252 error:
1253         kfree(req);
1254         return r;
1255 }
1256
1257 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1258 {
1259         int r;
1260         struct usb_device *udev;
1261         struct usb_req_rfwrite *req = NULL;
1262         int i, req_len, actual_req_len;
1263         u16 bit_value_template;
1264
1265         if (in_atomic()) {
1266                 dev_dbg_f(zd_usb_dev(usb),
1267                         "error: io in atomic context not supported\n");
1268                 return -EWOULDBLOCK;
1269         }
1270         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1271                 dev_dbg_f(zd_usb_dev(usb),
1272                         "error: bits %d are smaller than"
1273                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1274                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1275                 return -EINVAL;
1276         }
1277         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1278                 dev_dbg_f(zd_usb_dev(usb),
1279                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1280                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1281                 return -EINVAL;
1282         }
1283 #ifdef DEBUG
1284         if (value & (~0UL << bits)) {
1285                 dev_dbg_f(zd_usb_dev(usb),
1286                         "error: value %#09x has bits >= %d set\n",
1287                         value, bits);
1288                 return -EINVAL;
1289         }
1290 #endif /* DEBUG */
1291
1292         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1293
1294         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1295         if (r) {
1296                 dev_dbg_f(zd_usb_dev(usb),
1297                         "error %d: Couldn't read CR203\n", r);
1298                 goto out;
1299         }
1300         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1301
1302         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1303         req = kmalloc(req_len, GFP_NOFS);
1304         if (!req)
1305                 return -ENOMEM;
1306
1307         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1308         /* 1: 3683a, but not used in ZYDAS driver */
1309         req->value = cpu_to_le16(2);
1310         req->bits = cpu_to_le16(bits);
1311
1312         for (i = 0; i < bits; i++) {
1313                 u16 bv = bit_value_template;
1314                 if (value & (1 << (bits-1-i)))
1315                         bv |= RF_DATA;
1316                 req->bit_values[i] = cpu_to_le16(bv);
1317         }
1318
1319         udev = zd_usb_to_usbdev(usb);
1320         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1321                          req, req_len, &actual_req_len, 1000 /* ms */);
1322         if (r) {
1323                 dev_dbg_f(zd_usb_dev(usb),
1324                         "error in usb_bulk_msg(). Error number %d\n", r);
1325                 goto out;
1326         }
1327         if (req_len != actual_req_len) {
1328                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1329                         " req_len %d != actual_req_len %d\n",
1330                         req_len, actual_req_len);
1331                 r = -EIO;
1332                 goto out;
1333         }
1334
1335         /* FALL-THROUGH with r == 0 */
1336 out:
1337         kfree(req);
1338         return r;
1339 }