zd1211rw: remove URB_SHORT_NOT_OK flag in zd_usb_iowrite16v_async()
[pandora-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/skbuff.h>
29 #include <linux/usb.h>
30 #include <linux/workqueue.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static struct usb_device_id usb_ids[] = {
39         /* ZD1211 */
40         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66         /* ZD1211B */
67         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98         /* "Driverless" devices that need ejecting */
99         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101         {}
102 };
103
104 MODULE_LICENSE("GPL");
105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106 MODULE_AUTHOR("Ulrich Kunitz");
107 MODULE_AUTHOR("Daniel Drake");
108 MODULE_VERSION("1.0");
109 MODULE_DEVICE_TABLE(usb, usb_ids);
110
111 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
112 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
113
114 /* USB device initialization */
115 static void int_urb_complete(struct urb *urb);
116
117 static int request_fw_file(
118         const struct firmware **fw, const char *name, struct device *device)
119 {
120         int r;
121
122         dev_dbg_f(device, "fw name %s\n", name);
123
124         r = request_firmware(fw, name, device);
125         if (r)
126                 dev_err(device,
127                        "Could not load firmware file %s. Error number %d\n",
128                        name, r);
129         return r;
130 }
131
132 static inline u16 get_bcdDevice(const struct usb_device *udev)
133 {
134         return le16_to_cpu(udev->descriptor.bcdDevice);
135 }
136
137 enum upload_code_flags {
138         REBOOT = 1,
139 };
140
141 /* Ensures that MAX_TRANSFER_SIZE is even. */
142 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
143
144 static int upload_code(struct usb_device *udev,
145         const u8 *data, size_t size, u16 code_offset, int flags)
146 {
147         u8 *p;
148         int r;
149
150         /* USB request blocks need "kmalloced" buffers.
151          */
152         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
153         if (!p) {
154                 dev_err(&udev->dev, "out of memory\n");
155                 r = -ENOMEM;
156                 goto error;
157         }
158
159         size &= ~1;
160         while (size > 0) {
161                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
162                         size : MAX_TRANSFER_SIZE;
163
164                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
165
166                 memcpy(p, data, transfer_size);
167                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
168                         USB_REQ_FIRMWARE_DOWNLOAD,
169                         USB_DIR_OUT | USB_TYPE_VENDOR,
170                         code_offset, 0, p, transfer_size, 1000 /* ms */);
171                 if (r < 0) {
172                         dev_err(&udev->dev,
173                                "USB control request for firmware upload"
174                                " failed. Error number %d\n", r);
175                         goto error;
176                 }
177                 transfer_size = r & ~1;
178
179                 size -= transfer_size;
180                 data += transfer_size;
181                 code_offset += transfer_size/sizeof(u16);
182         }
183
184         if (flags & REBOOT) {
185                 u8 ret;
186
187                 /* Use "DMA-aware" buffer. */
188                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
189                         USB_REQ_FIRMWARE_CONFIRM,
190                         USB_DIR_IN | USB_TYPE_VENDOR,
191                         0, 0, p, sizeof(ret), 5000 /* ms */);
192                 if (r != sizeof(ret)) {
193                         dev_err(&udev->dev,
194                                 "control request firmeware confirmation failed."
195                                 " Return value %d\n", r);
196                         if (r >= 0)
197                                 r = -ENODEV;
198                         goto error;
199                 }
200                 ret = p[0];
201                 if (ret & 0x80) {
202                         dev_err(&udev->dev,
203                                 "Internal error while downloading."
204                                 " Firmware confirm return value %#04x\n",
205                                 (unsigned int)ret);
206                         r = -ENODEV;
207                         goto error;
208                 }
209                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
210                         (unsigned int)ret);
211         }
212
213         r = 0;
214 error:
215         kfree(p);
216         return r;
217 }
218
219 static u16 get_word(const void *data, u16 offset)
220 {
221         const __le16 *p = data;
222         return le16_to_cpu(p[offset]);
223 }
224
225 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
226                        const char* postfix)
227 {
228         scnprintf(buffer, size, "%s%s",
229                 usb->is_zd1211b ?
230                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
231                 postfix);
232         return buffer;
233 }
234
235 static int handle_version_mismatch(struct zd_usb *usb,
236         const struct firmware *ub_fw)
237 {
238         struct usb_device *udev = zd_usb_to_usbdev(usb);
239         const struct firmware *ur_fw = NULL;
240         int offset;
241         int r = 0;
242         char fw_name[128];
243
244         r = request_fw_file(&ur_fw,
245                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
246                 &udev->dev);
247         if (r)
248                 goto error;
249
250         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
251         if (r)
252                 goto error;
253
254         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
255         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
256                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
257
258         /* At this point, the vendor driver downloads the whole firmware
259          * image, hacks around with version IDs, and uploads it again,
260          * completely overwriting the boot code. We do not do this here as
261          * it is not required on any tested devices, and it is suspected to
262          * cause problems. */
263 error:
264         release_firmware(ur_fw);
265         return r;
266 }
267
268 static int upload_firmware(struct zd_usb *usb)
269 {
270         int r;
271         u16 fw_bcdDevice;
272         u16 bcdDevice;
273         struct usb_device *udev = zd_usb_to_usbdev(usb);
274         const struct firmware *ub_fw = NULL;
275         const struct firmware *uph_fw = NULL;
276         char fw_name[128];
277
278         bcdDevice = get_bcdDevice(udev);
279
280         r = request_fw_file(&ub_fw,
281                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
282                 &udev->dev);
283         if (r)
284                 goto error;
285
286         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
287
288         if (fw_bcdDevice != bcdDevice) {
289                 dev_info(&udev->dev,
290                         "firmware version %#06x and device bootcode version "
291                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
292                 if (bcdDevice <= 0x4313)
293                         dev_warn(&udev->dev, "device has old bootcode, please "
294                                 "report success or failure\n");
295
296                 r = handle_version_mismatch(usb, ub_fw);
297                 if (r)
298                         goto error;
299         } else {
300                 dev_dbg_f(&udev->dev,
301                         "firmware device id %#06x is equal to the "
302                         "actual device id\n", fw_bcdDevice);
303         }
304
305
306         r = request_fw_file(&uph_fw,
307                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
308                 &udev->dev);
309         if (r)
310                 goto error;
311
312         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
313         if (r) {
314                 dev_err(&udev->dev,
315                         "Could not upload firmware code uph. Error number %d\n",
316                         r);
317         }
318
319         /* FALL-THROUGH */
320 error:
321         release_firmware(ub_fw);
322         release_firmware(uph_fw);
323         return r;
324 }
325
326 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
327 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
328 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
329 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
330 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
331 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
332
333 /* Read data from device address space using "firmware interface" which does
334  * not require firmware to be loaded. */
335 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
336 {
337         int r;
338         struct usb_device *udev = zd_usb_to_usbdev(usb);
339         u8 *buf;
340
341         /* Use "DMA-aware" buffer. */
342         buf = kmalloc(len, GFP_KERNEL);
343         if (!buf)
344                 return -ENOMEM;
345         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
346                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
347                 buf, len, 5000);
348         if (r < 0) {
349                 dev_err(&udev->dev,
350                         "read over firmware interface failed: %d\n", r);
351                 goto exit;
352         } else if (r != len) {
353                 dev_err(&udev->dev,
354                         "incomplete read over firmware interface: %d/%d\n",
355                         r, len);
356                 r = -EIO;
357                 goto exit;
358         }
359         r = 0;
360         memcpy(data, buf, len);
361 exit:
362         kfree(buf);
363         return r;
364 }
365
366 #define urb_dev(urb) (&(urb)->dev->dev)
367
368 static inline void handle_regs_int(struct urb *urb)
369 {
370         struct zd_usb *usb = urb->context;
371         struct zd_usb_interrupt *intr = &usb->intr;
372         int len;
373         u16 int_num;
374
375         ZD_ASSERT(in_interrupt());
376         spin_lock(&intr->lock);
377
378         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
379         if (int_num == CR_INTERRUPT) {
380                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
381                 spin_lock(&mac->lock);
382                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
383                                 USB_MAX_EP_INT_BUFFER);
384                 spin_unlock(&mac->lock);
385                 schedule_work(&mac->process_intr);
386         } else if (intr->read_regs_enabled) {
387                 intr->read_regs.length = len = urb->actual_length;
388
389                 if (len > sizeof(intr->read_regs.buffer))
390                         len = sizeof(intr->read_regs.buffer);
391                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
392                 intr->read_regs_enabled = 0;
393                 complete(&intr->read_regs.completion);
394                 goto out;
395         }
396
397 out:
398         spin_unlock(&intr->lock);
399 }
400
401 static void int_urb_complete(struct urb *urb)
402 {
403         int r;
404         struct usb_int_header *hdr;
405
406         switch (urb->status) {
407         case 0:
408                 break;
409         case -ESHUTDOWN:
410         case -EINVAL:
411         case -ENODEV:
412         case -ENOENT:
413         case -ECONNRESET:
414         case -EPIPE:
415                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
416                 return;
417         default:
418                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
419                 goto resubmit;
420         }
421
422         if (urb->actual_length < sizeof(hdr)) {
423                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
424                 goto resubmit;
425         }
426
427         hdr = urb->transfer_buffer;
428         if (hdr->type != USB_INT_TYPE) {
429                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
430                 goto resubmit;
431         }
432
433         switch (hdr->id) {
434         case USB_INT_ID_REGS:
435                 handle_regs_int(urb);
436                 break;
437         case USB_INT_ID_RETRY_FAILED:
438                 zd_mac_tx_failed(urb);
439                 break;
440         default:
441                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
442                         (unsigned int)hdr->id);
443                 goto resubmit;
444         }
445
446 resubmit:
447         r = usb_submit_urb(urb, GFP_ATOMIC);
448         if (r) {
449                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
450                           urb, r);
451                 /* TODO: add worker to reset intr->urb */
452         }
453         return;
454 }
455
456 static inline int int_urb_interval(struct usb_device *udev)
457 {
458         switch (udev->speed) {
459         case USB_SPEED_HIGH:
460                 return 4;
461         case USB_SPEED_LOW:
462                 return 10;
463         case USB_SPEED_FULL:
464         default:
465                 return 1;
466         }
467 }
468
469 static inline int usb_int_enabled(struct zd_usb *usb)
470 {
471         unsigned long flags;
472         struct zd_usb_interrupt *intr = &usb->intr;
473         struct urb *urb;
474
475         spin_lock_irqsave(&intr->lock, flags);
476         urb = intr->urb;
477         spin_unlock_irqrestore(&intr->lock, flags);
478         return urb != NULL;
479 }
480
481 int zd_usb_enable_int(struct zd_usb *usb)
482 {
483         int r;
484         struct usb_device *udev = zd_usb_to_usbdev(usb);
485         struct zd_usb_interrupt *intr = &usb->intr;
486         struct urb *urb;
487
488         dev_dbg_f(zd_usb_dev(usb), "\n");
489
490         urb = usb_alloc_urb(0, GFP_KERNEL);
491         if (!urb) {
492                 r = -ENOMEM;
493                 goto out;
494         }
495
496         ZD_ASSERT(!irqs_disabled());
497         spin_lock_irq(&intr->lock);
498         if (intr->urb) {
499                 spin_unlock_irq(&intr->lock);
500                 r = 0;
501                 goto error_free_urb;
502         }
503         intr->urb = urb;
504         spin_unlock_irq(&intr->lock);
505
506         r = -ENOMEM;
507         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
508                                           GFP_KERNEL, &intr->buffer_dma);
509         if (!intr->buffer) {
510                 dev_dbg_f(zd_usb_dev(usb),
511                         "couldn't allocate transfer_buffer\n");
512                 goto error_set_urb_null;
513         }
514
515         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
516                          intr->buffer, USB_MAX_EP_INT_BUFFER,
517                          int_urb_complete, usb,
518                          intr->interval);
519         urb->transfer_dma = intr->buffer_dma;
520         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
521
522         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
523         r = usb_submit_urb(urb, GFP_KERNEL);
524         if (r) {
525                 dev_dbg_f(zd_usb_dev(usb),
526                          "Couldn't submit urb. Error number %d\n", r);
527                 goto error;
528         }
529
530         return 0;
531 error:
532         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
533                           intr->buffer, intr->buffer_dma);
534 error_set_urb_null:
535         spin_lock_irq(&intr->lock);
536         intr->urb = NULL;
537         spin_unlock_irq(&intr->lock);
538 error_free_urb:
539         usb_free_urb(urb);
540 out:
541         return r;
542 }
543
544 void zd_usb_disable_int(struct zd_usb *usb)
545 {
546         unsigned long flags;
547         struct usb_device *udev = zd_usb_to_usbdev(usb);
548         struct zd_usb_interrupt *intr = &usb->intr;
549         struct urb *urb;
550         void *buffer;
551         dma_addr_t buffer_dma;
552
553         spin_lock_irqsave(&intr->lock, flags);
554         urb = intr->urb;
555         if (!urb) {
556                 spin_unlock_irqrestore(&intr->lock, flags);
557                 return;
558         }
559         intr->urb = NULL;
560         buffer = intr->buffer;
561         buffer_dma = intr->buffer_dma;
562         intr->buffer = NULL;
563         spin_unlock_irqrestore(&intr->lock, flags);
564
565         usb_kill_urb(urb);
566         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
567         usb_free_urb(urb);
568
569         if (buffer)
570                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
571                                   buffer, buffer_dma);
572 }
573
574 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
575                              unsigned int length)
576 {
577         int i;
578         const struct rx_length_info *length_info;
579
580         if (length < sizeof(struct rx_length_info)) {
581                 /* It's not a complete packet anyhow. */
582                 printk("%s: invalid, small RX packet : %d\n",
583                        __func__, length);
584                 return;
585         }
586         length_info = (struct rx_length_info *)
587                 (buffer + length - sizeof(struct rx_length_info));
588
589         /* It might be that three frames are merged into a single URB
590          * transaction. We have to check for the length info tag.
591          *
592          * While testing we discovered that length_info might be unaligned,
593          * because if USB transactions are merged, the last packet will not
594          * be padded. Unaligned access might also happen if the length_info
595          * structure is not present.
596          */
597         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
598         {
599                 unsigned int l, k, n;
600                 for (i = 0, l = 0;; i++) {
601                         k = get_unaligned_le16(&length_info->length[i]);
602                         if (k == 0)
603                                 return;
604                         n = l+k;
605                         if (n > length)
606                                 return;
607                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
608                         if (i >= 2)
609                                 return;
610                         l = (n+3) & ~3;
611                 }
612         } else {
613                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
614         }
615 }
616
617 static void rx_urb_complete(struct urb *urb)
618 {
619         int r;
620         struct zd_usb *usb;
621         struct zd_usb_rx *rx;
622         const u8 *buffer;
623         unsigned int length;
624
625         switch (urb->status) {
626         case 0:
627                 break;
628         case -ESHUTDOWN:
629         case -EINVAL:
630         case -ENODEV:
631         case -ENOENT:
632         case -ECONNRESET:
633         case -EPIPE:
634                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
635                 return;
636         default:
637                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
638                 goto resubmit;
639         }
640
641         buffer = urb->transfer_buffer;
642         length = urb->actual_length;
643         usb = urb->context;
644         rx = &usb->rx;
645
646         zd_usb_reset_rx_idle_timer(usb);
647
648         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
649                 /* If there is an old first fragment, we don't care. */
650                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
651                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
652                 spin_lock(&rx->lock);
653                 memcpy(rx->fragment, buffer, length);
654                 rx->fragment_length = length;
655                 spin_unlock(&rx->lock);
656                 goto resubmit;
657         }
658
659         spin_lock(&rx->lock);
660         if (rx->fragment_length > 0) {
661                 /* We are on a second fragment, we believe */
662                 ZD_ASSERT(length + rx->fragment_length <=
663                           ARRAY_SIZE(rx->fragment));
664                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
665                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
666                 handle_rx_packet(usb, rx->fragment,
667                                  rx->fragment_length + length);
668                 rx->fragment_length = 0;
669                 spin_unlock(&rx->lock);
670         } else {
671                 spin_unlock(&rx->lock);
672                 handle_rx_packet(usb, buffer, length);
673         }
674
675 resubmit:
676         r = usb_submit_urb(urb, GFP_ATOMIC);
677         if (r)
678                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
679 }
680
681 static struct urb *alloc_rx_urb(struct zd_usb *usb)
682 {
683         struct usb_device *udev = zd_usb_to_usbdev(usb);
684         struct urb *urb;
685         void *buffer;
686
687         urb = usb_alloc_urb(0, GFP_KERNEL);
688         if (!urb)
689                 return NULL;
690         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
691                                     &urb->transfer_dma);
692         if (!buffer) {
693                 usb_free_urb(urb);
694                 return NULL;
695         }
696
697         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
698                           buffer, USB_MAX_RX_SIZE,
699                           rx_urb_complete, usb);
700         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
701
702         return urb;
703 }
704
705 static void free_rx_urb(struct urb *urb)
706 {
707         if (!urb)
708                 return;
709         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
710                           urb->transfer_buffer, urb->transfer_dma);
711         usb_free_urb(urb);
712 }
713
714 static int __zd_usb_enable_rx(struct zd_usb *usb)
715 {
716         int i, r;
717         struct zd_usb_rx *rx = &usb->rx;
718         struct urb **urbs;
719
720         dev_dbg_f(zd_usb_dev(usb), "\n");
721
722         r = -ENOMEM;
723         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
724         if (!urbs)
725                 goto error;
726         for (i = 0; i < RX_URBS_COUNT; i++) {
727                 urbs[i] = alloc_rx_urb(usb);
728                 if (!urbs[i])
729                         goto error;
730         }
731
732         ZD_ASSERT(!irqs_disabled());
733         spin_lock_irq(&rx->lock);
734         if (rx->urbs) {
735                 spin_unlock_irq(&rx->lock);
736                 r = 0;
737                 goto error;
738         }
739         rx->urbs = urbs;
740         rx->urbs_count = RX_URBS_COUNT;
741         spin_unlock_irq(&rx->lock);
742
743         for (i = 0; i < RX_URBS_COUNT; i++) {
744                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
745                 if (r)
746                         goto error_submit;
747         }
748
749         return 0;
750 error_submit:
751         for (i = 0; i < RX_URBS_COUNT; i++) {
752                 usb_kill_urb(urbs[i]);
753         }
754         spin_lock_irq(&rx->lock);
755         rx->urbs = NULL;
756         rx->urbs_count = 0;
757         spin_unlock_irq(&rx->lock);
758 error:
759         if (urbs) {
760                 for (i = 0; i < RX_URBS_COUNT; i++)
761                         free_rx_urb(urbs[i]);
762         }
763         return r;
764 }
765
766 int zd_usb_enable_rx(struct zd_usb *usb)
767 {
768         int r;
769         struct zd_usb_rx *rx = &usb->rx;
770
771         mutex_lock(&rx->setup_mutex);
772         r = __zd_usb_enable_rx(usb);
773         mutex_unlock(&rx->setup_mutex);
774
775         zd_usb_reset_rx_idle_timer(usb);
776
777         return r;
778 }
779
780 static void __zd_usb_disable_rx(struct zd_usb *usb)
781 {
782         int i;
783         unsigned long flags;
784         struct urb **urbs;
785         unsigned int count;
786         struct zd_usb_rx *rx = &usb->rx;
787
788         spin_lock_irqsave(&rx->lock, flags);
789         urbs = rx->urbs;
790         count = rx->urbs_count;
791         spin_unlock_irqrestore(&rx->lock, flags);
792         if (!urbs)
793                 return;
794
795         for (i = 0; i < count; i++) {
796                 usb_kill_urb(urbs[i]);
797                 free_rx_urb(urbs[i]);
798         }
799         kfree(urbs);
800
801         spin_lock_irqsave(&rx->lock, flags);
802         rx->urbs = NULL;
803         rx->urbs_count = 0;
804         spin_unlock_irqrestore(&rx->lock, flags);
805 }
806
807 void zd_usb_disable_rx(struct zd_usb *usb)
808 {
809         struct zd_usb_rx *rx = &usb->rx;
810
811         mutex_lock(&rx->setup_mutex);
812         __zd_usb_disable_rx(usb);
813         mutex_unlock(&rx->setup_mutex);
814
815         cancel_delayed_work_sync(&rx->idle_work);
816 }
817
818 static void zd_usb_reset_rx(struct zd_usb *usb)
819 {
820         bool do_reset;
821         struct zd_usb_rx *rx = &usb->rx;
822         unsigned long flags;
823
824         mutex_lock(&rx->setup_mutex);
825
826         spin_lock_irqsave(&rx->lock, flags);
827         do_reset = rx->urbs != NULL;
828         spin_unlock_irqrestore(&rx->lock, flags);
829
830         if (do_reset) {
831                 __zd_usb_disable_rx(usb);
832                 __zd_usb_enable_rx(usb);
833         }
834
835         mutex_unlock(&rx->setup_mutex);
836
837         if (do_reset)
838                 zd_usb_reset_rx_idle_timer(usb);
839 }
840
841 /**
842  * zd_usb_disable_tx - disable transmission
843  * @usb: the zd1211rw-private USB structure
844  *
845  * Frees all URBs in the free list and marks the transmission as disabled.
846  */
847 void zd_usb_disable_tx(struct zd_usb *usb)
848 {
849         struct zd_usb_tx *tx = &usb->tx;
850         unsigned long flags;
851
852         atomic_set(&tx->enabled, 0);
853
854         /* kill all submitted tx-urbs */
855         usb_kill_anchored_urbs(&tx->submitted);
856
857         spin_lock_irqsave(&tx->lock, flags);
858         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
859         WARN_ON(tx->submitted_urbs != 0);
860         tx->submitted_urbs = 0;
861         spin_unlock_irqrestore(&tx->lock, flags);
862
863         /* The stopped state is ignored, relying on ieee80211_wake_queues()
864          * in a potentionally following zd_usb_enable_tx().
865          */
866 }
867
868 /**
869  * zd_usb_enable_tx - enables transmission
870  * @usb: a &struct zd_usb pointer
871  *
872  * This function enables transmission and prepares the &zd_usb_tx data
873  * structure.
874  */
875 void zd_usb_enable_tx(struct zd_usb *usb)
876 {
877         unsigned long flags;
878         struct zd_usb_tx *tx = &usb->tx;
879
880         spin_lock_irqsave(&tx->lock, flags);
881         atomic_set(&tx->enabled, 1);
882         tx->submitted_urbs = 0;
883         ieee80211_wake_queues(zd_usb_to_hw(usb));
884         tx->stopped = 0;
885         spin_unlock_irqrestore(&tx->lock, flags);
886 }
887
888 static void tx_dec_submitted_urbs(struct zd_usb *usb)
889 {
890         struct zd_usb_tx *tx = &usb->tx;
891         unsigned long flags;
892
893         spin_lock_irqsave(&tx->lock, flags);
894         --tx->submitted_urbs;
895         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
896                 ieee80211_wake_queues(zd_usb_to_hw(usb));
897                 tx->stopped = 0;
898         }
899         spin_unlock_irqrestore(&tx->lock, flags);
900 }
901
902 static void tx_inc_submitted_urbs(struct zd_usb *usb)
903 {
904         struct zd_usb_tx *tx = &usb->tx;
905         unsigned long flags;
906
907         spin_lock_irqsave(&tx->lock, flags);
908         ++tx->submitted_urbs;
909         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
910                 ieee80211_stop_queues(zd_usb_to_hw(usb));
911                 tx->stopped = 1;
912         }
913         spin_unlock_irqrestore(&tx->lock, flags);
914 }
915
916 /**
917  * tx_urb_complete - completes the execution of an URB
918  * @urb: a URB
919  *
920  * This function is called if the URB has been transferred to a device or an
921  * error has happened.
922  */
923 static void tx_urb_complete(struct urb *urb)
924 {
925         int r;
926         struct sk_buff *skb;
927         struct ieee80211_tx_info *info;
928         struct zd_usb *usb;
929         struct zd_usb_tx *tx;
930
931         skb = (struct sk_buff *)urb->context;
932         info = IEEE80211_SKB_CB(skb);
933         /*
934          * grab 'usb' pointer before handing off the skb (since
935          * it might be freed by zd_mac_tx_to_dev or mac80211)
936          */
937         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
938         tx = &usb->tx;
939
940         switch (urb->status) {
941         case 0:
942                 break;
943         case -ESHUTDOWN:
944         case -EINVAL:
945         case -ENODEV:
946         case -ENOENT:
947         case -ECONNRESET:
948         case -EPIPE:
949                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
950                 break;
951         default:
952                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
953                 goto resubmit;
954         }
955 free_urb:
956         skb_unlink(skb, &usb->tx.submitted_skbs);
957         zd_mac_tx_to_dev(skb, urb->status);
958         usb_free_urb(urb);
959         tx_dec_submitted_urbs(usb);
960         return;
961 resubmit:
962         usb_anchor_urb(urb, &tx->submitted);
963         r = usb_submit_urb(urb, GFP_ATOMIC);
964         if (r) {
965                 usb_unanchor_urb(urb);
966                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
967                 goto free_urb;
968         }
969 }
970
971 /**
972  * zd_usb_tx: initiates transfer of a frame of the device
973  *
974  * @usb: the zd1211rw-private USB structure
975  * @skb: a &struct sk_buff pointer
976  *
977  * This function tranmits a frame to the device. It doesn't wait for
978  * completion. The frame must contain the control set and have all the
979  * control set information available.
980  *
981  * The function returns 0 if the transfer has been successfully initiated.
982  */
983 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
984 {
985         int r;
986         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
987         struct usb_device *udev = zd_usb_to_usbdev(usb);
988         struct urb *urb;
989         struct zd_usb_tx *tx = &usb->tx;
990
991         if (!atomic_read(&tx->enabled)) {
992                 r = -ENOENT;
993                 goto out;
994         }
995
996         urb = usb_alloc_urb(0, GFP_ATOMIC);
997         if (!urb) {
998                 r = -ENOMEM;
999                 goto out;
1000         }
1001
1002         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1003                           skb->data, skb->len, tx_urb_complete, skb);
1004
1005         info->rate_driver_data[1] = (void *)jiffies;
1006         skb_queue_tail(&tx->submitted_skbs, skb);
1007         usb_anchor_urb(urb, &tx->submitted);
1008
1009         r = usb_submit_urb(urb, GFP_ATOMIC);
1010         if (r) {
1011                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1012                 usb_unanchor_urb(urb);
1013                 skb_unlink(skb, &tx->submitted_skbs);
1014                 goto error;
1015         }
1016         tx_inc_submitted_urbs(usb);
1017         return 0;
1018 error:
1019         usb_free_urb(urb);
1020 out:
1021         return r;
1022 }
1023
1024 static bool zd_tx_timeout(struct zd_usb *usb)
1025 {
1026         struct zd_usb_tx *tx = &usb->tx;
1027         struct sk_buff_head *q = &tx->submitted_skbs;
1028         struct sk_buff *skb, *skbnext;
1029         struct ieee80211_tx_info *info;
1030         unsigned long flags, trans_start;
1031         bool have_timedout = false;
1032
1033         spin_lock_irqsave(&q->lock, flags);
1034         skb_queue_walk_safe(q, skb, skbnext) {
1035                 info = IEEE80211_SKB_CB(skb);
1036                 trans_start = (unsigned long)info->rate_driver_data[1];
1037
1038                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1039                         have_timedout = true;
1040                         break;
1041                 }
1042         }
1043         spin_unlock_irqrestore(&q->lock, flags);
1044
1045         return have_timedout;
1046 }
1047
1048 static void zd_tx_watchdog_handler(struct work_struct *work)
1049 {
1050         struct zd_usb *usb =
1051                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1052         struct zd_usb_tx *tx = &usb->tx;
1053
1054         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1055                 goto out;
1056         if (!zd_tx_timeout(usb))
1057                 goto out;
1058
1059         /* TX halted, try reset */
1060         dev_warn(zd_usb_dev(usb), "TX-stall detected, reseting device...");
1061
1062         usb_queue_reset_device(usb->intf);
1063
1064         /* reset will stop this worker, don't rearm */
1065         return;
1066 out:
1067         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1068                            ZD_TX_WATCHDOG_INTERVAL);
1069 }
1070
1071 void zd_tx_watchdog_enable(struct zd_usb *usb)
1072 {
1073         struct zd_usb_tx *tx = &usb->tx;
1074
1075         if (!tx->watchdog_enabled) {
1076                 dev_dbg_f(zd_usb_dev(usb), "\n");
1077                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1078                                    ZD_TX_WATCHDOG_INTERVAL);
1079                 tx->watchdog_enabled = 1;
1080         }
1081 }
1082
1083 void zd_tx_watchdog_disable(struct zd_usb *usb)
1084 {
1085         struct zd_usb_tx *tx = &usb->tx;
1086
1087         if (tx->watchdog_enabled) {
1088                 dev_dbg_f(zd_usb_dev(usb), "\n");
1089                 tx->watchdog_enabled = 0;
1090                 cancel_delayed_work_sync(&tx->watchdog_work);
1091         }
1092 }
1093
1094 static void zd_rx_idle_timer_handler(struct work_struct *work)
1095 {
1096         struct zd_usb *usb =
1097                 container_of(work, struct zd_usb, rx.idle_work.work);
1098         struct zd_mac *mac = zd_usb_to_mac(usb);
1099
1100         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1101                 return;
1102
1103         dev_dbg_f(zd_usb_dev(usb), "\n");
1104
1105         /* 30 seconds since last rx, reset rx */
1106         zd_usb_reset_rx(usb);
1107 }
1108
1109 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1110 {
1111         struct zd_usb_rx *rx = &usb->rx;
1112
1113         cancel_delayed_work(&rx->idle_work);
1114         queue_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1115 }
1116
1117 static inline void init_usb_interrupt(struct zd_usb *usb)
1118 {
1119         struct zd_usb_interrupt *intr = &usb->intr;
1120
1121         spin_lock_init(&intr->lock);
1122         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1123         init_completion(&intr->read_regs.completion);
1124         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1125 }
1126
1127 static inline void init_usb_rx(struct zd_usb *usb)
1128 {
1129         struct zd_usb_rx *rx = &usb->rx;
1130         spin_lock_init(&rx->lock);
1131         mutex_init(&rx->setup_mutex);
1132         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1133                 rx->usb_packet_size = 512;
1134         } else {
1135                 rx->usb_packet_size = 64;
1136         }
1137         ZD_ASSERT(rx->fragment_length == 0);
1138         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1139 }
1140
1141 static inline void init_usb_tx(struct zd_usb *usb)
1142 {
1143         struct zd_usb_tx *tx = &usb->tx;
1144         spin_lock_init(&tx->lock);
1145         atomic_set(&tx->enabled, 0);
1146         tx->stopped = 0;
1147         skb_queue_head_init(&tx->submitted_skbs);
1148         init_usb_anchor(&tx->submitted);
1149         tx->submitted_urbs = 0;
1150         tx->watchdog_enabled = 0;
1151         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1152 }
1153
1154 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1155                  struct usb_interface *intf)
1156 {
1157         memset(usb, 0, sizeof(*usb));
1158         usb->intf = usb_get_intf(intf);
1159         usb_set_intfdata(usb->intf, hw);
1160         init_usb_anchor(&usb->submitted_cmds);
1161         init_usb_interrupt(usb);
1162         init_usb_tx(usb);
1163         init_usb_rx(usb);
1164 }
1165
1166 void zd_usb_clear(struct zd_usb *usb)
1167 {
1168         usb_set_intfdata(usb->intf, NULL);
1169         usb_put_intf(usb->intf);
1170         ZD_MEMCLEAR(usb, sizeof(*usb));
1171         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1172 }
1173
1174 static const char *speed(enum usb_device_speed speed)
1175 {
1176         switch (speed) {
1177         case USB_SPEED_LOW:
1178                 return "low";
1179         case USB_SPEED_FULL:
1180                 return "full";
1181         case USB_SPEED_HIGH:
1182                 return "high";
1183         default:
1184                 return "unknown speed";
1185         }
1186 }
1187
1188 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1189 {
1190         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1191                 le16_to_cpu(udev->descriptor.idVendor),
1192                 le16_to_cpu(udev->descriptor.idProduct),
1193                 get_bcdDevice(udev),
1194                 speed(udev->speed));
1195 }
1196
1197 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1198 {
1199         struct usb_device *udev = interface_to_usbdev(usb->intf);
1200         return scnprint_id(udev, buffer, size);
1201 }
1202
1203 #ifdef DEBUG
1204 static void print_id(struct usb_device *udev)
1205 {
1206         char buffer[40];
1207
1208         scnprint_id(udev, buffer, sizeof(buffer));
1209         buffer[sizeof(buffer)-1] = 0;
1210         dev_dbg_f(&udev->dev, "%s\n", buffer);
1211 }
1212 #else
1213 #define print_id(udev) do { } while (0)
1214 #endif
1215
1216 static int eject_installer(struct usb_interface *intf)
1217 {
1218         struct usb_device *udev = interface_to_usbdev(intf);
1219         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1220         struct usb_endpoint_descriptor *endpoint;
1221         unsigned char *cmd;
1222         u8 bulk_out_ep;
1223         int r;
1224
1225         /* Find bulk out endpoint */
1226         for (r = 1; r >= 0; r--) {
1227                 endpoint = &iface_desc->endpoint[r].desc;
1228                 if (usb_endpoint_dir_out(endpoint) &&
1229                     usb_endpoint_xfer_bulk(endpoint)) {
1230                         bulk_out_ep = endpoint->bEndpointAddress;
1231                         break;
1232                 }
1233         }
1234         if (r == -1) {
1235                 dev_err(&udev->dev,
1236                         "zd1211rw: Could not find bulk out endpoint\n");
1237                 return -ENODEV;
1238         }
1239
1240         cmd = kzalloc(31, GFP_KERNEL);
1241         if (cmd == NULL)
1242                 return -ENODEV;
1243
1244         /* USB bulk command block */
1245         cmd[0] = 0x55;  /* bulk command signature */
1246         cmd[1] = 0x53;  /* bulk command signature */
1247         cmd[2] = 0x42;  /* bulk command signature */
1248         cmd[3] = 0x43;  /* bulk command signature */
1249         cmd[14] = 6;    /* command length */
1250
1251         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1252         cmd[19] = 0x2;  /* eject disc */
1253
1254         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1255         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1256                 cmd, 31, NULL, 2000);
1257         kfree(cmd);
1258         if (r)
1259                 return r;
1260
1261         /* At this point, the device disconnects and reconnects with the real
1262          * ID numbers. */
1263
1264         usb_set_intfdata(intf, NULL);
1265         return 0;
1266 }
1267
1268 int zd_usb_init_hw(struct zd_usb *usb)
1269 {
1270         int r;
1271         struct zd_mac *mac = zd_usb_to_mac(usb);
1272
1273         dev_dbg_f(zd_usb_dev(usb), "\n");
1274
1275         r = upload_firmware(usb);
1276         if (r) {
1277                 dev_err(zd_usb_dev(usb),
1278                        "couldn't load firmware. Error number %d\n", r);
1279                 return r;
1280         }
1281
1282         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1283         if (r) {
1284                 dev_dbg_f(zd_usb_dev(usb),
1285                         "couldn't reset configuration. Error number %d\n", r);
1286                 return r;
1287         }
1288
1289         r = zd_mac_init_hw(mac->hw);
1290         if (r) {
1291                 dev_dbg_f(zd_usb_dev(usb),
1292                          "couldn't initialize mac. Error number %d\n", r);
1293                 return r;
1294         }
1295
1296         usb->initialized = 1;
1297         return 0;
1298 }
1299
1300 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1301 {
1302         int r;
1303         struct usb_device *udev = interface_to_usbdev(intf);
1304         struct zd_usb *usb;
1305         struct ieee80211_hw *hw = NULL;
1306
1307         print_id(udev);
1308
1309         if (id->driver_info & DEVICE_INSTALLER)
1310                 return eject_installer(intf);
1311
1312         switch (udev->speed) {
1313         case USB_SPEED_LOW:
1314         case USB_SPEED_FULL:
1315         case USB_SPEED_HIGH:
1316                 break;
1317         default:
1318                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1319                 r = -ENODEV;
1320                 goto error;
1321         }
1322
1323         r = usb_reset_device(udev);
1324         if (r) {
1325                 dev_err(&intf->dev,
1326                         "couldn't reset usb device. Error number %d\n", r);
1327                 goto error;
1328         }
1329
1330         hw = zd_mac_alloc_hw(intf);
1331         if (hw == NULL) {
1332                 r = -ENOMEM;
1333                 goto error;
1334         }
1335
1336         usb = &zd_hw_mac(hw)->chip.usb;
1337         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1338
1339         r = zd_mac_preinit_hw(hw);
1340         if (r) {
1341                 dev_dbg_f(&intf->dev,
1342                          "couldn't initialize mac. Error number %d\n", r);
1343                 goto error;
1344         }
1345
1346         r = ieee80211_register_hw(hw);
1347         if (r) {
1348                 dev_dbg_f(&intf->dev,
1349                          "couldn't register device. Error number %d\n", r);
1350                 goto error;
1351         }
1352
1353         dev_dbg_f(&intf->dev, "successful\n");
1354         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1355         return 0;
1356 error:
1357         usb_reset_device(interface_to_usbdev(intf));
1358         if (hw) {
1359                 zd_mac_clear(zd_hw_mac(hw));
1360                 ieee80211_free_hw(hw);
1361         }
1362         return r;
1363 }
1364
1365 static void disconnect(struct usb_interface *intf)
1366 {
1367         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1368         struct zd_mac *mac;
1369         struct zd_usb *usb;
1370
1371         /* Either something really bad happened, or we're just dealing with
1372          * a DEVICE_INSTALLER. */
1373         if (hw == NULL)
1374                 return;
1375
1376         mac = zd_hw_mac(hw);
1377         usb = &mac->chip.usb;
1378
1379         dev_dbg_f(zd_usb_dev(usb), "\n");
1380
1381         ieee80211_unregister_hw(hw);
1382
1383         /* Just in case something has gone wrong! */
1384         zd_usb_disable_tx(usb);
1385         zd_usb_disable_rx(usb);
1386         zd_usb_disable_int(usb);
1387
1388         /* If the disconnect has been caused by a removal of the
1389          * driver module, the reset allows reloading of the driver. If the
1390          * reset will not be executed here, the upload of the firmware in the
1391          * probe function caused by the reloading of the driver will fail.
1392          */
1393         usb_reset_device(interface_to_usbdev(intf));
1394
1395         zd_mac_clear(mac);
1396         ieee80211_free_hw(hw);
1397         dev_dbg(&intf->dev, "disconnected\n");
1398 }
1399
1400 static void zd_usb_resume(struct zd_usb *usb)
1401 {
1402         struct zd_mac *mac = zd_usb_to_mac(usb);
1403         int r;
1404
1405         dev_dbg_f(zd_usb_dev(usb), "\n");
1406
1407         r = zd_op_start(zd_usb_to_hw(usb));
1408         if (r < 0) {
1409                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1410                          "with error code %d. Retrying...\n", r);
1411                 if (usb->was_running)
1412                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1413                 usb_queue_reset_device(usb->intf);
1414                 return;
1415         }
1416
1417         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1418                 r = zd_restore_settings(mac);
1419                 if (r < 0) {
1420                         dev_dbg(zd_usb_dev(usb),
1421                                 "failed to restore settings, %d\n", r);
1422                         return;
1423                 }
1424         }
1425 }
1426
1427 static void zd_usb_stop(struct zd_usb *usb)
1428 {
1429         dev_dbg_f(zd_usb_dev(usb), "\n");
1430
1431         zd_op_stop(zd_usb_to_hw(usb));
1432
1433         zd_usb_disable_tx(usb);
1434         zd_usb_disable_rx(usb);
1435         zd_usb_disable_int(usb);
1436
1437         usb->initialized = 0;
1438 }
1439
1440 static int pre_reset(struct usb_interface *intf)
1441 {
1442         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1443         struct zd_mac *mac;
1444         struct zd_usb *usb;
1445
1446         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1447                 return 0;
1448
1449         mac = zd_hw_mac(hw);
1450         usb = &mac->chip.usb;
1451
1452         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1453
1454         zd_usb_stop(usb);
1455
1456         mutex_lock(&mac->chip.mutex);
1457         return 0;
1458 }
1459
1460 static int post_reset(struct usb_interface *intf)
1461 {
1462         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1463         struct zd_mac *mac;
1464         struct zd_usb *usb;
1465
1466         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1467                 return 0;
1468
1469         mac = zd_hw_mac(hw);
1470         usb = &mac->chip.usb;
1471
1472         mutex_unlock(&mac->chip.mutex);
1473
1474         if (usb->was_running)
1475                 zd_usb_resume(usb);
1476         return 0;
1477 }
1478
1479 static struct usb_driver driver = {
1480         .name           = KBUILD_MODNAME,
1481         .id_table       = usb_ids,
1482         .probe          = probe,
1483         .disconnect     = disconnect,
1484         .pre_reset      = pre_reset,
1485         .post_reset     = post_reset,
1486 };
1487
1488 struct workqueue_struct *zd_workqueue;
1489
1490 static int __init usb_init(void)
1491 {
1492         int r;
1493
1494         pr_debug("%s usb_init()\n", driver.name);
1495
1496         zd_workqueue = create_singlethread_workqueue(driver.name);
1497         if (zd_workqueue == NULL) {
1498                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1499                 return -ENOMEM;
1500         }
1501
1502         r = usb_register(&driver);
1503         if (r) {
1504                 destroy_workqueue(zd_workqueue);
1505                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1506                        driver.name, r);
1507                 return r;
1508         }
1509
1510         pr_debug("%s initialized\n", driver.name);
1511         return 0;
1512 }
1513
1514 static void __exit usb_exit(void)
1515 {
1516         pr_debug("%s usb_exit()\n", driver.name);
1517         usb_deregister(&driver);
1518         destroy_workqueue(zd_workqueue);
1519 }
1520
1521 module_init(usb_init);
1522 module_exit(usb_exit);
1523
1524 static int usb_int_regs_length(unsigned int count)
1525 {
1526         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1527 }
1528
1529 static void prepare_read_regs_int(struct zd_usb *usb)
1530 {
1531         struct zd_usb_interrupt *intr = &usb->intr;
1532
1533         spin_lock_irq(&intr->lock);
1534         intr->read_regs_enabled = 1;
1535         INIT_COMPLETION(intr->read_regs.completion);
1536         spin_unlock_irq(&intr->lock);
1537 }
1538
1539 static void disable_read_regs_int(struct zd_usb *usb)
1540 {
1541         struct zd_usb_interrupt *intr = &usb->intr;
1542
1543         spin_lock_irq(&intr->lock);
1544         intr->read_regs_enabled = 0;
1545         spin_unlock_irq(&intr->lock);
1546 }
1547
1548 static int get_results(struct zd_usb *usb, u16 *values,
1549                        struct usb_req_read_regs *req, unsigned int count)
1550 {
1551         int r;
1552         int i;
1553         struct zd_usb_interrupt *intr = &usb->intr;
1554         struct read_regs_int *rr = &intr->read_regs;
1555         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1556
1557         spin_lock_irq(&intr->lock);
1558
1559         r = -EIO;
1560         /* The created block size seems to be larger than expected.
1561          * However results appear to be correct.
1562          */
1563         if (rr->length < usb_int_regs_length(count)) {
1564                 dev_dbg_f(zd_usb_dev(usb),
1565                          "error: actual length %d less than expected %d\n",
1566                          rr->length, usb_int_regs_length(count));
1567                 goto error_unlock;
1568         }
1569         if (rr->length > sizeof(rr->buffer)) {
1570                 dev_dbg_f(zd_usb_dev(usb),
1571                          "error: actual length %d exceeds buffer size %zu\n",
1572                          rr->length, sizeof(rr->buffer));
1573                 goto error_unlock;
1574         }
1575
1576         for (i = 0; i < count; i++) {
1577                 struct reg_data *rd = &regs->regs[i];
1578                 if (rd->addr != req->addr[i]) {
1579                         dev_dbg_f(zd_usb_dev(usb),
1580                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1581                                  le16_to_cpu(rd->addr),
1582                                  le16_to_cpu(req->addr[i]));
1583                         goto error_unlock;
1584                 }
1585                 values[i] = le16_to_cpu(rd->value);
1586         }
1587
1588         r = 0;
1589 error_unlock:
1590         spin_unlock_irq(&intr->lock);
1591         return r;
1592 }
1593
1594 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1595                      const zd_addr_t *addresses, unsigned int count)
1596 {
1597         int r;
1598         int i, req_len, actual_req_len;
1599         struct usb_device *udev;
1600         struct usb_req_read_regs *req = NULL;
1601         unsigned long timeout;
1602
1603         if (count < 1) {
1604                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1605                 return -EINVAL;
1606         }
1607         if (count > USB_MAX_IOREAD16_COUNT) {
1608                 dev_dbg_f(zd_usb_dev(usb),
1609                          "error: count %u exceeds possible max %u\n",
1610                          count, USB_MAX_IOREAD16_COUNT);
1611                 return -EINVAL;
1612         }
1613         if (in_atomic()) {
1614                 dev_dbg_f(zd_usb_dev(usb),
1615                          "error: io in atomic context not supported\n");
1616                 return -EWOULDBLOCK;
1617         }
1618         if (!usb_int_enabled(usb)) {
1619                 dev_dbg_f(zd_usb_dev(usb),
1620                           "error: usb interrupt not enabled\n");
1621                 return -EWOULDBLOCK;
1622         }
1623
1624         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1625         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1626                      sizeof(__le16) > sizeof(usb->req_buf));
1627         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1628                sizeof(usb->req_buf));
1629
1630         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1631         req = (void *)usb->req_buf;
1632
1633         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1634         for (i = 0; i < count; i++)
1635                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1636
1637         udev = zd_usb_to_usbdev(usb);
1638         prepare_read_regs_int(usb);
1639         r = usb_interrupt_msg(udev, usb_sndintpipe(udev, EP_REGS_OUT),
1640                               req, req_len, &actual_req_len, 50 /* ms */);
1641         if (r) {
1642                 dev_dbg_f(zd_usb_dev(usb),
1643                         "error in usb_interrupt_msg(). Error number %d\n", r);
1644                 goto error;
1645         }
1646         if (req_len != actual_req_len) {
1647                 dev_dbg_f(zd_usb_dev(usb), "error in usb_interrupt_msg()\n"
1648                         " req_len %d != actual_req_len %d\n",
1649                         req_len, actual_req_len);
1650                 r = -EIO;
1651                 goto error;
1652         }
1653
1654         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1655                                               msecs_to_jiffies(50));
1656         if (!timeout) {
1657                 disable_read_regs_int(usb);
1658                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1659                 r = -ETIMEDOUT;
1660                 goto error;
1661         }
1662
1663         r = get_results(usb, values, req, count);
1664 error:
1665         return r;
1666 }
1667
1668 static void iowrite16v_urb_complete(struct urb *urb)
1669 {
1670         struct zd_usb *usb = urb->context;
1671
1672         if (urb->status && !usb->cmd_error)
1673                 usb->cmd_error = urb->status;
1674
1675         if (!usb->cmd_error &&
1676                         urb->actual_length != urb->transfer_buffer_length)
1677                 usb->cmd_error = -EIO;
1678 }
1679
1680 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1681 {
1682         int r = 0;
1683         struct urb *urb = usb->urb_async_waiting;
1684
1685         if (!urb)
1686                 return 0;
1687
1688         usb->urb_async_waiting = NULL;
1689
1690         if (!last)
1691                 urb->transfer_flags |= URB_NO_INTERRUPT;
1692
1693         usb_anchor_urb(urb, &usb->submitted_cmds);
1694         r = usb_submit_urb(urb, GFP_KERNEL);
1695         if (r) {
1696                 usb_unanchor_urb(urb);
1697                 dev_dbg_f(zd_usb_dev(usb),
1698                         "error in usb_submit_urb(). Error number %d\n", r);
1699                 goto error;
1700         }
1701
1702         /* fall-through with r == 0 */
1703 error:
1704         usb_free_urb(urb);
1705         return r;
1706 }
1707
1708 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1709 {
1710         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1711         ZD_ASSERT(usb->urb_async_waiting == NULL);
1712         ZD_ASSERT(!usb->in_async);
1713
1714         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1715
1716         usb->in_async = 1;
1717         usb->cmd_error = 0;
1718         usb->urb_async_waiting = NULL;
1719 }
1720
1721 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1722 {
1723         int r;
1724
1725         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1726         ZD_ASSERT(usb->in_async);
1727
1728         /* Submit last iowrite16v URB */
1729         r = zd_submit_waiting_urb(usb, true);
1730         if (r) {
1731                 dev_dbg_f(zd_usb_dev(usb),
1732                         "error in zd_submit_waiting_usb(). "
1733                         "Error number %d\n", r);
1734
1735                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1736                 goto error;
1737         }
1738
1739         if (timeout)
1740                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1741                                                         timeout);
1742         if (!timeout) {
1743                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1744                 if (usb->cmd_error == -ENOENT) {
1745                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1746                         r = -ETIMEDOUT;
1747                         goto error;
1748                 }
1749         }
1750
1751         r = usb->cmd_error;
1752 error:
1753         usb->in_async = 0;
1754         return r;
1755 }
1756
1757 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1758                             unsigned int count)
1759 {
1760         int r;
1761         struct usb_device *udev;
1762         struct usb_req_write_regs *req = NULL;
1763         int i, req_len;
1764         struct urb *urb;
1765         struct usb_host_endpoint *ep;
1766
1767         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1768         ZD_ASSERT(usb->in_async);
1769
1770         if (count == 0)
1771                 return 0;
1772         if (count > USB_MAX_IOWRITE16_COUNT) {
1773                 dev_dbg_f(zd_usb_dev(usb),
1774                         "error: count %u exceeds possible max %u\n",
1775                         count, USB_MAX_IOWRITE16_COUNT);
1776                 return -EINVAL;
1777         }
1778         if (in_atomic()) {
1779                 dev_dbg_f(zd_usb_dev(usb),
1780                         "error: io in atomic context not supported\n");
1781                 return -EWOULDBLOCK;
1782         }
1783
1784         udev = zd_usb_to_usbdev(usb);
1785
1786         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1787         if (!ep)
1788                 return -ENOENT;
1789
1790         urb = usb_alloc_urb(0, GFP_KERNEL);
1791         if (!urb)
1792                 return -ENOMEM;
1793
1794         req_len = sizeof(struct usb_req_write_regs) +
1795                   count * sizeof(struct reg_data);
1796         req = kmalloc(req_len, GFP_KERNEL);
1797         if (!req) {
1798                 r = -ENOMEM;
1799                 goto error;
1800         }
1801
1802         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1803         for (i = 0; i < count; i++) {
1804                 struct reg_data *rw  = &req->reg_writes[i];
1805                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1806                 rw->value = cpu_to_le16(ioreqs[i].value);
1807         }
1808
1809         usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1810                          req, req_len, iowrite16v_urb_complete, usb,
1811                          ep->desc.bInterval);
1812         urb->transfer_flags |= URB_FREE_BUFFER;
1813
1814         /* Submit previous URB */
1815         r = zd_submit_waiting_urb(usb, false);
1816         if (r) {
1817                 dev_dbg_f(zd_usb_dev(usb),
1818                         "error in zd_submit_waiting_usb(). "
1819                         "Error number %d\n", r);
1820                 goto error;
1821         }
1822
1823         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1824          * of currect batch except for very last.
1825          */
1826         usb->urb_async_waiting = urb;
1827         return 0;
1828 error:
1829         usb_free_urb(urb);
1830         return r;
1831 }
1832
1833 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1834                         unsigned int count)
1835 {
1836         int r;
1837
1838         zd_usb_iowrite16v_async_start(usb);
1839         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1840         if (r) {
1841                 zd_usb_iowrite16v_async_end(usb, 0);
1842                 return r;
1843         }
1844         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1845 }
1846
1847 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1848 {
1849         int r;
1850         struct usb_device *udev;
1851         struct usb_req_rfwrite *req = NULL;
1852         int i, req_len, actual_req_len;
1853         u16 bit_value_template;
1854
1855         if (in_atomic()) {
1856                 dev_dbg_f(zd_usb_dev(usb),
1857                         "error: io in atomic context not supported\n");
1858                 return -EWOULDBLOCK;
1859         }
1860         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1861                 dev_dbg_f(zd_usb_dev(usb),
1862                         "error: bits %d are smaller than"
1863                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1864                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1865                 return -EINVAL;
1866         }
1867         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1868                 dev_dbg_f(zd_usb_dev(usb),
1869                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1870                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1871                 return -EINVAL;
1872         }
1873 #ifdef DEBUG
1874         if (value & (~0UL << bits)) {
1875                 dev_dbg_f(zd_usb_dev(usb),
1876                         "error: value %#09x has bits >= %d set\n",
1877                         value, bits);
1878                 return -EINVAL;
1879         }
1880 #endif /* DEBUG */
1881
1882         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1883
1884         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1885         if (r) {
1886                 dev_dbg_f(zd_usb_dev(usb),
1887                         "error %d: Couldn't read CR203\n", r);
1888                 return r;
1889         }
1890         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1891
1892         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1893         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
1894                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
1895                      sizeof(usb->req_buf));
1896         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
1897                sizeof(usb->req_buf));
1898
1899         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1900         req = (void *)usb->req_buf;
1901
1902         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1903         /* 1: 3683a, but not used in ZYDAS driver */
1904         req->value = cpu_to_le16(2);
1905         req->bits = cpu_to_le16(bits);
1906
1907         for (i = 0; i < bits; i++) {
1908                 u16 bv = bit_value_template;
1909                 if (value & (1 << (bits-1-i)))
1910                         bv |= RF_DATA;
1911                 req->bit_values[i] = cpu_to_le16(bv);
1912         }
1913
1914         udev = zd_usb_to_usbdev(usb);
1915         r = usb_interrupt_msg(udev, usb_sndintpipe(udev, EP_REGS_OUT),
1916                               req, req_len, &actual_req_len, 50 /* ms */);
1917         if (r) {
1918                 dev_dbg_f(zd_usb_dev(usb),
1919                         "error in usb_interrupt_msg(). Error number %d\n", r);
1920                 goto out;
1921         }
1922         if (req_len != actual_req_len) {
1923                 dev_dbg_f(zd_usb_dev(usb), "error in usb_interrupt_msg()"
1924                         " req_len %d != actual_req_len %d\n",
1925                         req_len, actual_req_len);
1926                 r = -EIO;
1927                 goto out;
1928         }
1929
1930         /* FALL-THROUGH with r == 0 */
1931 out:
1932         return r;
1933 }