[PATCH] zd1211rw: cleanups
[pandora-kernel.git] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* zd_mac.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/wireless.h>
21 #include <linux/usb.h>
22 #include <linux/jiffies.h>
23 #include <net/ieee80211_radiotap.h>
24
25 #include "zd_def.h"
26 #include "zd_chip.h"
27 #include "zd_mac.h"
28 #include "zd_ieee80211.h"
29 #include "zd_netdev.h"
30 #include "zd_rf.h"
31 #include "zd_util.h"
32
33 static void ieee_init(struct ieee80211_device *ieee);
34 static void softmac_init(struct ieee80211softmac_device *sm);
35
36 static void housekeeping_init(struct zd_mac *mac);
37 static void housekeeping_enable(struct zd_mac *mac);
38 static void housekeeping_disable(struct zd_mac *mac);
39
40 int zd_mac_init(struct zd_mac *mac,
41                 struct net_device *netdev,
42                 struct usb_interface *intf)
43 {
44         struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
45
46         memset(mac, 0, sizeof(*mac));
47         spin_lock_init(&mac->lock);
48         mac->netdev = netdev;
49
50         ieee_init(ieee);
51         softmac_init(ieee80211_priv(netdev));
52         zd_chip_init(&mac->chip, netdev, intf);
53         housekeeping_init(mac);
54         return 0;
55 }
56
57 static int reset_channel(struct zd_mac *mac)
58 {
59         int r;
60         unsigned long flags;
61         const struct channel_range *range;
62
63         spin_lock_irqsave(&mac->lock, flags);
64         range = zd_channel_range(mac->regdomain);
65         if (!range->start) {
66                 r = -EINVAL;
67                 goto out;
68         }
69         mac->requested_channel = range->start;
70         r = 0;
71 out:
72         spin_unlock_irqrestore(&mac->lock, flags);
73         return r;
74 }
75
76 int zd_mac_init_hw(struct zd_mac *mac, u8 device_type)
77 {
78         int r;
79         struct zd_chip *chip = &mac->chip;
80         u8 addr[ETH_ALEN];
81         u8 default_regdomain;
82
83         r = zd_chip_enable_int(chip);
84         if (r)
85                 goto out;
86         r = zd_chip_init_hw(chip, device_type);
87         if (r)
88                 goto disable_int;
89
90         zd_get_e2p_mac_addr(chip, addr);
91         r = zd_write_mac_addr(chip, addr);
92         if (r)
93                 goto disable_int;
94         ZD_ASSERT(!irqs_disabled());
95         spin_lock_irq(&mac->lock);
96         memcpy(mac->netdev->dev_addr, addr, ETH_ALEN);
97         spin_unlock_irq(&mac->lock);
98
99         r = zd_read_regdomain(chip, &default_regdomain);
100         if (r)
101                 goto disable_int;
102         if (!zd_regdomain_supported(default_regdomain)) {
103                 dev_dbg_f(zd_mac_dev(mac),
104                           "Regulatory Domain %#04x is not supported.\n",
105                           default_regdomain);
106                 r = -EINVAL;
107                 goto disable_int;
108         }
109         spin_lock_irq(&mac->lock);
110         mac->regdomain = mac->default_regdomain = default_regdomain;
111         spin_unlock_irq(&mac->lock);
112         r = reset_channel(mac);
113         if (r)
114                 goto disable_int;
115
116         /* We must inform the device that we are doing encryption/decryption in
117          * software at the moment. */
118         r = zd_set_encryption_type(chip, ENC_SNIFFER);
119         if (r)
120                 goto disable_int;
121
122         r = zd_geo_init(zd_mac_to_ieee80211(mac), mac->regdomain);
123         if (r)
124                 goto disable_int;
125
126         r = 0;
127 disable_int:
128         zd_chip_disable_int(chip);
129 out:
130         return r;
131 }
132
133 void zd_mac_clear(struct zd_mac *mac)
134 {
135         zd_chip_clear(&mac->chip);
136         ZD_ASSERT(!spin_is_locked(&mac->lock));
137         ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
138 }
139
140 static int reset_mode(struct zd_mac *mac)
141 {
142         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
143         struct zd_ioreq32 ioreqs[3] = {
144                 { CR_RX_FILTER, STA_RX_FILTER },
145                 { CR_SNIFFER_ON, 0U },
146         };
147
148         if (ieee->iw_mode == IW_MODE_MONITOR) {
149                 ioreqs[0].value = 0xffffffff;
150                 ioreqs[1].value = 0x1;
151                 ioreqs[2].value = ENC_SNIFFER;
152         }
153
154         return zd_iowrite32a(&mac->chip, ioreqs, 3);
155 }
156
157 int zd_mac_open(struct net_device *netdev)
158 {
159         struct zd_mac *mac = zd_netdev_mac(netdev);
160         struct zd_chip *chip = &mac->chip;
161         int r;
162
163         r = zd_chip_enable_int(chip);
164         if (r < 0)
165                 goto out;
166
167         r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
168         if (r < 0)
169                 goto disable_int;
170         r = reset_mode(mac);
171         if (r)
172                 goto disable_int;
173         r = zd_chip_switch_radio_on(chip);
174         if (r < 0)
175                 goto disable_int;
176         r = zd_chip_set_channel(chip, mac->requested_channel);
177         if (r < 0)
178                 goto disable_radio;
179         r = zd_chip_enable_rx(chip);
180         if (r < 0)
181                 goto disable_radio;
182         r = zd_chip_enable_hwint(chip);
183         if (r < 0)
184                 goto disable_rx;
185
186         housekeeping_enable(mac);
187         ieee80211softmac_start(netdev);
188         return 0;
189 disable_rx:
190         zd_chip_disable_rx(chip);
191 disable_radio:
192         zd_chip_switch_radio_off(chip);
193 disable_int:
194         zd_chip_disable_int(chip);
195 out:
196         return r;
197 }
198
199 int zd_mac_stop(struct net_device *netdev)
200 {
201         struct zd_mac *mac = zd_netdev_mac(netdev);
202         struct zd_chip *chip = &mac->chip;
203
204         netif_stop_queue(netdev);
205
206         /*
207          * The order here deliberately is a little different from the open()
208          * method, since we need to make sure there is no opportunity for RX
209          * frames to be processed by softmac after we have stopped it.
210          */
211
212         zd_chip_disable_rx(chip);
213         housekeeping_disable(mac);
214         ieee80211softmac_stop(netdev);
215
216         zd_chip_disable_hwint(chip);
217         zd_chip_switch_radio_off(chip);
218         zd_chip_disable_int(chip);
219
220         return 0;
221 }
222
223 int zd_mac_set_mac_address(struct net_device *netdev, void *p)
224 {
225         int r;
226         unsigned long flags;
227         struct sockaddr *addr = p;
228         struct zd_mac *mac = zd_netdev_mac(netdev);
229         struct zd_chip *chip = &mac->chip;
230
231         if (!is_valid_ether_addr(addr->sa_data))
232                 return -EADDRNOTAVAIL;
233
234         dev_dbg_f(zd_mac_dev(mac),
235                   "Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data));
236
237         r = zd_write_mac_addr(chip, addr->sa_data);
238         if (r)
239                 return r;
240
241         spin_lock_irqsave(&mac->lock, flags);
242         memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN);
243         spin_unlock_irqrestore(&mac->lock, flags);
244
245         return 0;
246 }
247
248 int zd_mac_set_regdomain(struct zd_mac *mac, u8 regdomain)
249 {
250         int r;
251         u8 channel;
252
253         ZD_ASSERT(!irqs_disabled());
254         spin_lock_irq(&mac->lock);
255         if (regdomain == 0) {
256                 regdomain = mac->default_regdomain;
257         }
258         if (!zd_regdomain_supported(regdomain)) {
259                 spin_unlock_irq(&mac->lock);
260                 return -EINVAL;
261         }
262         mac->regdomain = regdomain;
263         channel = mac->requested_channel;
264         spin_unlock_irq(&mac->lock);
265
266         r = zd_geo_init(zd_mac_to_ieee80211(mac), regdomain);
267         if (r)
268                 return r;
269         if (!zd_regdomain_supports_channel(regdomain, channel)) {
270                 r = reset_channel(mac);
271                 if (r)
272                         return r;
273         }
274
275         return 0;
276 }
277
278 u8 zd_mac_get_regdomain(struct zd_mac *mac)
279 {
280         unsigned long flags;
281         u8 regdomain;
282
283         spin_lock_irqsave(&mac->lock, flags);
284         regdomain = mac->regdomain;
285         spin_unlock_irqrestore(&mac->lock, flags);
286         return regdomain;
287 }
288
289 static void set_channel(struct net_device *netdev, u8 channel)
290 {
291         struct zd_mac *mac = zd_netdev_mac(netdev);
292
293         dev_dbg_f(zd_mac_dev(mac), "channel %d\n", channel);
294
295         zd_chip_set_channel(&mac->chip, channel);
296 }
297
298 int zd_mac_request_channel(struct zd_mac *mac, u8 channel)
299 {
300         unsigned long lock_flags;
301         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
302
303         if (ieee->iw_mode == IW_MODE_INFRA)
304                 return -EPERM;
305
306         spin_lock_irqsave(&mac->lock, lock_flags);
307         if (!zd_regdomain_supports_channel(mac->regdomain, channel)) {
308                 spin_unlock_irqrestore(&mac->lock, lock_flags);
309                 return -EINVAL;
310         }
311         mac->requested_channel = channel;
312         spin_unlock_irqrestore(&mac->lock, lock_flags);
313         if (netif_running(mac->netdev))
314                 return zd_chip_set_channel(&mac->chip, channel);
315         else
316                 return 0;
317 }
318
319 u8 zd_mac_get_channel(struct zd_mac *mac)
320 {
321         u8 channel = zd_chip_get_channel(&mac->chip);
322
323         dev_dbg_f(zd_mac_dev(mac), "channel %u\n", channel);
324         return channel;
325 }
326
327 /* If wrong rate is given, we are falling back to the slowest rate: 1MBit/s */
328 static u8 cs_typed_rate(u8 cs_rate)
329 {
330         static const u8 typed_rates[16] = {
331                 [ZD_CS_CCK_RATE_1M]     = ZD_CS_CCK|ZD_CS_CCK_RATE_1M,
332                 [ZD_CS_CCK_RATE_2M]     = ZD_CS_CCK|ZD_CS_CCK_RATE_2M,
333                 [ZD_CS_CCK_RATE_5_5M]   = ZD_CS_CCK|ZD_CS_CCK_RATE_5_5M,
334                 [ZD_CS_CCK_RATE_11M]    = ZD_CS_CCK|ZD_CS_CCK_RATE_11M,
335                 [ZD_OFDM_RATE_6M]       = ZD_CS_OFDM|ZD_OFDM_RATE_6M,
336                 [ZD_OFDM_RATE_9M]       = ZD_CS_OFDM|ZD_OFDM_RATE_9M,
337                 [ZD_OFDM_RATE_12M]      = ZD_CS_OFDM|ZD_OFDM_RATE_12M,
338                 [ZD_OFDM_RATE_18M]      = ZD_CS_OFDM|ZD_OFDM_RATE_18M,
339                 [ZD_OFDM_RATE_24M]      = ZD_CS_OFDM|ZD_OFDM_RATE_24M,
340                 [ZD_OFDM_RATE_36M]      = ZD_CS_OFDM|ZD_OFDM_RATE_36M,
341                 [ZD_OFDM_RATE_48M]      = ZD_CS_OFDM|ZD_OFDM_RATE_48M,
342                 [ZD_OFDM_RATE_54M]      = ZD_CS_OFDM|ZD_OFDM_RATE_54M,
343         };
344
345         ZD_ASSERT(ZD_CS_RATE_MASK == 0x0f);
346         return typed_rates[cs_rate & ZD_CS_RATE_MASK];
347 }
348
349 /* Fallback to lowest rate, if rate is unknown. */
350 static u8 rate_to_cs_rate(u8 rate)
351 {
352         switch (rate) {
353         case IEEE80211_CCK_RATE_2MB:
354                 return ZD_CS_CCK_RATE_2M;
355         case IEEE80211_CCK_RATE_5MB:
356                 return ZD_CS_CCK_RATE_5_5M;
357         case IEEE80211_CCK_RATE_11MB:
358                 return ZD_CS_CCK_RATE_11M;
359         case IEEE80211_OFDM_RATE_6MB:
360                 return ZD_OFDM_RATE_6M;
361         case IEEE80211_OFDM_RATE_9MB:
362                 return ZD_OFDM_RATE_9M;
363         case IEEE80211_OFDM_RATE_12MB:
364                 return ZD_OFDM_RATE_12M;
365         case IEEE80211_OFDM_RATE_18MB:
366                 return ZD_OFDM_RATE_18M;
367         case IEEE80211_OFDM_RATE_24MB:
368                 return ZD_OFDM_RATE_24M;
369         case IEEE80211_OFDM_RATE_36MB:
370                 return ZD_OFDM_RATE_36M;
371         case IEEE80211_OFDM_RATE_48MB:
372                 return ZD_OFDM_RATE_48M;
373         case IEEE80211_OFDM_RATE_54MB:
374                 return ZD_OFDM_RATE_54M;
375         }
376         return ZD_CS_CCK_RATE_1M;
377 }
378
379 int zd_mac_set_mode(struct zd_mac *mac, u32 mode)
380 {
381         struct ieee80211_device *ieee;
382
383         switch (mode) {
384         case IW_MODE_AUTO:
385         case IW_MODE_ADHOC:
386         case IW_MODE_INFRA:
387                 mac->netdev->type = ARPHRD_ETHER;
388                 break;
389         case IW_MODE_MONITOR:
390                 mac->netdev->type = ARPHRD_IEEE80211_RADIOTAP;
391                 break;
392         default:
393                 dev_dbg_f(zd_mac_dev(mac), "wrong mode %u\n", mode);
394                 return -EINVAL;
395         }
396
397         ieee = zd_mac_to_ieee80211(mac);
398         ZD_ASSERT(!irqs_disabled());
399         spin_lock_irq(&ieee->lock);
400         ieee->iw_mode = mode;
401         spin_unlock_irq(&ieee->lock);
402
403         if (netif_running(mac->netdev))
404                 return reset_mode(mac);
405
406         return 0;
407 }
408
409 int zd_mac_get_mode(struct zd_mac *mac, u32 *mode)
410 {
411         unsigned long flags;
412         struct ieee80211_device *ieee;
413
414         ieee = zd_mac_to_ieee80211(mac);
415         spin_lock_irqsave(&ieee->lock, flags);
416         *mode = ieee->iw_mode;
417         spin_unlock_irqrestore(&ieee->lock, flags);
418         return 0;
419 }
420
421 int zd_mac_get_range(struct zd_mac *mac, struct iw_range *range)
422 {
423         int i;
424         const struct channel_range *channel_range;
425         u8 regdomain;
426
427         memset(range, 0, sizeof(*range));
428
429         /* FIXME: Not so important and depends on the mode. For 802.11g
430          * usually this value is used. It seems to be that Bit/s number is
431          * given here.
432          */
433         range->throughput = 27 * 1000 * 1000;
434
435         range->max_qual.qual = 100;
436         range->max_qual.level = 100;
437
438         /* FIXME: Needs still to be tuned. */
439         range->avg_qual.qual = 71;
440         range->avg_qual.level = 80;
441
442         /* FIXME: depends on standard? */
443         range->min_rts = 256;
444         range->max_rts = 2346;
445
446         range->min_frag = MIN_FRAG_THRESHOLD;
447         range->max_frag = MAX_FRAG_THRESHOLD;
448
449         range->max_encoding_tokens = WEP_KEYS;
450         range->num_encoding_sizes = 2;
451         range->encoding_size[0] = 5;
452         range->encoding_size[1] = WEP_KEY_LEN;
453
454         range->we_version_compiled = WIRELESS_EXT;
455         range->we_version_source = 20;
456
457         ZD_ASSERT(!irqs_disabled());
458         spin_lock_irq(&mac->lock);
459         regdomain = mac->regdomain;
460         spin_unlock_irq(&mac->lock);
461         channel_range = zd_channel_range(regdomain);
462
463         range->num_channels = channel_range->end - channel_range->start;
464         range->old_num_channels = range->num_channels;
465         range->num_frequency = range->num_channels;
466         range->old_num_frequency = range->num_frequency;
467
468         for (i = 0; i < range->num_frequency; i++) {
469                 struct iw_freq *freq = &range->freq[i];
470                 freq->i = channel_range->start + i;
471                 zd_channel_to_freq(freq, freq->i);
472         }
473
474         return 0;
475 }
476
477 static int zd_calc_tx_length_us(u8 *service, u8 cs_rate, u16 tx_length)
478 {
479         static const u8 rate_divisor[] = {
480                 [ZD_CS_CCK_RATE_1M]     =  1,
481                 [ZD_CS_CCK_RATE_2M]     =  2,
482                 [ZD_CS_CCK_RATE_5_5M]   = 11, /* bits must be doubled */
483                 [ZD_CS_CCK_RATE_11M]    = 11,
484                 [ZD_OFDM_RATE_6M]       =  6,
485                 [ZD_OFDM_RATE_9M]       =  9,
486                 [ZD_OFDM_RATE_12M]      = 12,
487                 [ZD_OFDM_RATE_18M]      = 18,
488                 [ZD_OFDM_RATE_24M]      = 24,
489                 [ZD_OFDM_RATE_36M]      = 36,
490                 [ZD_OFDM_RATE_48M]      = 48,
491                 [ZD_OFDM_RATE_54M]      = 54,
492         };
493
494         u32 bits = (u32)tx_length * 8;
495         u32 divisor;
496
497         divisor = rate_divisor[cs_rate];
498         if (divisor == 0)
499                 return -EINVAL;
500
501         switch (cs_rate) {
502         case ZD_CS_CCK_RATE_5_5M:
503                 bits = (2*bits) + 10; /* round up to the next integer */
504                 break;
505         case ZD_CS_CCK_RATE_11M:
506                 if (service) {
507                         u32 t = bits % 11;
508                         *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
509                         if (0 < t && t <= 3) {
510                                 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
511                         }
512                 }
513                 bits += 10; /* round up to the next integer */
514                 break;
515         }
516
517         return bits/divisor;
518 }
519
520 enum {
521         R2M_SHORT_PREAMBLE = 0x01,
522         R2M_11A            = 0x02,
523 };
524
525 static u8 cs_rate_to_modulation(u8 cs_rate, int flags)
526 {
527         u8 modulation;
528
529         modulation = cs_typed_rate(cs_rate);
530         if (flags & R2M_SHORT_PREAMBLE) {
531                 switch (ZD_CS_RATE(modulation)) {
532                 case ZD_CS_CCK_RATE_2M:
533                 case ZD_CS_CCK_RATE_5_5M:
534                 case ZD_CS_CCK_RATE_11M:
535                         modulation |= ZD_CS_CCK_PREA_SHORT;
536                         return modulation;
537                 }
538         }
539         if (flags & R2M_11A) {
540                 if (ZD_CS_TYPE(modulation) == ZD_CS_OFDM)
541                         modulation |= ZD_CS_OFDM_MODE_11A;
542         }
543         return modulation;
544 }
545
546 static void cs_set_modulation(struct zd_mac *mac, struct zd_ctrlset *cs,
547                               struct ieee80211_hdr_4addr *hdr)
548 {
549         struct ieee80211softmac_device *softmac = ieee80211_priv(mac->netdev);
550         u16 ftype = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_ctl));
551         u8 rate, cs_rate;
552         int is_mgt = (ftype == IEEE80211_FTYPE_MGMT) != 0;
553
554         /* FIXME: 802.11a? short preamble? */
555         rate = ieee80211softmac_suggest_txrate(softmac,
556                 is_multicast_ether_addr(hdr->addr1), is_mgt);
557
558         cs_rate = rate_to_cs_rate(rate);
559         cs->modulation = cs_rate_to_modulation(cs_rate, 0);
560 }
561
562 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
563                            struct ieee80211_hdr_4addr *header)
564 {
565         unsigned int tx_length = le16_to_cpu(cs->tx_length);
566         u16 fctl = le16_to_cpu(header->frame_ctl);
567         u16 ftype = WLAN_FC_GET_TYPE(fctl);
568         u16 stype = WLAN_FC_GET_STYPE(fctl);
569
570         /*
571          * CONTROL:
572          * - start at 0x00
573          * - if fragment 0, enable bit 0
574          * - if backoff needed, enable bit 0
575          * - if burst (backoff not needed) disable bit 0
576          * - if multicast, enable bit 1
577          * - if PS-POLL frame, enable bit 2
578          * - if in INDEPENDENT_BSS mode and zd1205_DestPowerSave, then enable
579          *   bit 4 (FIXME: wtf)
580          * - if frag_len > RTS threshold, set bit 5 as long if it isnt
581          *   multicast or mgt
582          * - if bit 5 is set, and we are in OFDM mode, unset bit 5 and set bit
583          *   7
584          */
585
586         cs->control = 0;
587
588         /* First fragment */
589         if (WLAN_GET_SEQ_FRAG(le16_to_cpu(header->seq_ctl)) == 0)
590                 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
591
592         /* Multicast */
593         if (is_multicast_ether_addr(header->addr1))
594                 cs->control |= ZD_CS_MULTICAST;
595
596         /* PS-POLL */
597         if (stype == IEEE80211_STYPE_PSPOLL)
598                 cs->control |= ZD_CS_PS_POLL_FRAME;
599
600         if (!is_multicast_ether_addr(header->addr1) &&
601             ftype != IEEE80211_FTYPE_MGMT &&
602             tx_length > zd_netdev_ieee80211(mac->netdev)->rts)
603         {
604                 /* FIXME: check the logic */
605                 if (ZD_CS_TYPE(cs->modulation) == ZD_CS_OFDM) {
606                         /* 802.11g */
607                         cs->control |= ZD_CS_SELF_CTS;
608                 } else { /* 802.11b */
609                         cs->control |= ZD_CS_RTS;
610                 }
611         }
612
613         /* FIXME: Management frame? */
614 }
615
616 static int fill_ctrlset(struct zd_mac *mac,
617                         struct ieee80211_txb *txb,
618                         int frag_num)
619 {
620         int r;
621         struct sk_buff *skb = txb->fragments[frag_num];
622         struct ieee80211_hdr_4addr *hdr =
623                 (struct ieee80211_hdr_4addr *) skb->data;
624         unsigned int frag_len = skb->len + IEEE80211_FCS_LEN;
625         unsigned int next_frag_len;
626         unsigned int packet_length;
627         struct zd_ctrlset *cs = (struct zd_ctrlset *)
628                 skb_push(skb, sizeof(struct zd_ctrlset));
629
630         if (frag_num+1  < txb->nr_frags) {
631                 next_frag_len = txb->fragments[frag_num+1]->len +
632                                 IEEE80211_FCS_LEN;
633         } else {
634                 next_frag_len = 0;
635         }
636         ZD_ASSERT(frag_len <= 0xffff);
637         ZD_ASSERT(next_frag_len <= 0xffff);
638
639         cs_set_modulation(mac, cs, hdr);
640
641         cs->tx_length = cpu_to_le16(frag_len);
642
643         cs_set_control(mac, cs, hdr);
644
645         packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
646         ZD_ASSERT(packet_length <= 0xffff);
647         /* ZD1211B: Computing the length difference this way, gives us
648          * flexibility to compute the packet length.
649          */
650         cs->packet_length = cpu_to_le16(mac->chip.is_zd1211b ?
651                         packet_length - frag_len : packet_length);
652
653         /*
654          * CURRENT LENGTH:
655          * - transmit frame length in microseconds
656          * - seems to be derived from frame length
657          * - see Cal_Us_Service() in zdinlinef.h
658          * - if macp->bTxBurstEnable is enabled, then multiply by 4
659          *  - bTxBurstEnable is never set in the vendor driver
660          *
661          * SERVICE:
662          * - "for PLCP configuration"
663          * - always 0 except in some situations at 802.11b 11M
664          * - see line 53 of zdinlinef.h
665          */
666         cs->service = 0;
667         r = zd_calc_tx_length_us(&cs->service, ZD_CS_RATE(cs->modulation),
668                                  le16_to_cpu(cs->tx_length));
669         if (r < 0)
670                 return r;
671         cs->current_length = cpu_to_le16(r);
672
673         if (next_frag_len == 0) {
674                 cs->next_frame_length = 0;
675         } else {
676                 r = zd_calc_tx_length_us(NULL, ZD_CS_RATE(cs->modulation),
677                                          next_frag_len);
678                 if (r < 0)
679                         return r;
680                 cs->next_frame_length = cpu_to_le16(r);
681         }
682
683         return 0;
684 }
685
686 static int zd_mac_tx(struct zd_mac *mac, struct ieee80211_txb *txb, int pri)
687 {
688         int i, r;
689
690         for (i = 0; i < txb->nr_frags; i++) {
691                 struct sk_buff *skb = txb->fragments[i];
692
693                 r = fill_ctrlset(mac, txb, i);
694                 if (r)
695                         return r;
696                 r = zd_usb_tx(&mac->chip.usb, skb->data, skb->len);
697                 if (r)
698                         return r;
699         }
700
701         /* FIXME: shouldn't this be handled by the upper layers? */
702         mac->netdev->trans_start = jiffies;
703
704         ieee80211_txb_free(txb);
705         return 0;
706 }
707
708 struct zd_rt_hdr {
709         struct ieee80211_radiotap_header rt_hdr;
710         u8  rt_flags;
711         u8  rt_rate;
712         u16 rt_channel;
713         u16 rt_chbitmask;
714 } __attribute__((packed));
715
716 static void fill_rt_header(void *buffer, struct zd_mac *mac,
717                            const struct ieee80211_rx_stats *stats,
718                            const struct rx_status *status)
719 {
720         struct zd_rt_hdr *hdr = buffer;
721
722         hdr->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
723         hdr->rt_hdr.it_pad = 0;
724         hdr->rt_hdr.it_len = cpu_to_le16(sizeof(struct zd_rt_hdr));
725         hdr->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
726                                  (1 << IEEE80211_RADIOTAP_CHANNEL) |
727                                  (1 << IEEE80211_RADIOTAP_RATE));
728
729         hdr->rt_flags = 0;
730         if (status->decryption_type & (ZD_RX_WEP64|ZD_RX_WEP128|ZD_RX_WEP256))
731                 hdr->rt_flags |= IEEE80211_RADIOTAP_F_WEP;
732
733         hdr->rt_rate = stats->rate / 5;
734
735         /* FIXME: 802.11a */
736         hdr->rt_channel = cpu_to_le16(ieee80211chan2mhz(
737                                              _zd_chip_get_channel(&mac->chip)));
738         hdr->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_2GHZ |
739                 ((status->frame_status & ZD_RX_FRAME_MODULATION_MASK) ==
740                 ZD_RX_OFDM ? IEEE80211_CHAN_OFDM : IEEE80211_CHAN_CCK));
741 }
742
743 /* Returns 1 if the data packet is for us and 0 otherwise. */
744 static int is_data_packet_for_us(struct ieee80211_device *ieee,
745                                  struct ieee80211_hdr_4addr *hdr)
746 {
747         struct net_device *netdev = ieee->dev;
748         u16 fc = le16_to_cpu(hdr->frame_ctl);
749
750         ZD_ASSERT(WLAN_FC_GET_TYPE(fc) == IEEE80211_FTYPE_DATA);
751
752         switch (ieee->iw_mode) {
753         case IW_MODE_ADHOC:
754                 if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != 0 ||
755                     memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) != 0)
756                         return 0;
757                 break;
758         case IW_MODE_AUTO:
759         case IW_MODE_INFRA:
760                 if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) !=
761                     IEEE80211_FCTL_FROMDS ||
762                     memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) != 0)
763                         return 0;
764                 break;
765         default:
766                 ZD_ASSERT(ieee->iw_mode != IW_MODE_MONITOR);
767                 return 0;
768         }
769
770         return memcmp(hdr->addr1, netdev->dev_addr, ETH_ALEN) == 0 ||
771                is_multicast_ether_addr(hdr->addr1) ||
772                (netdev->flags & IFF_PROMISC);
773 }
774
775 /* Filters received packets. The function returns 1 if the packet should be
776  * forwarded to ieee80211_rx(). If the packet should be ignored the function
777  * returns 0. If an invalid packet is found the function returns -EINVAL.
778  *
779  * The function calls ieee80211_rx_mgt() directly.
780  *
781  * It has been based on ieee80211_rx_any.
782  */
783 static int filter_rx(struct ieee80211_device *ieee,
784                      const u8 *buffer, unsigned int length,
785                      struct ieee80211_rx_stats *stats)
786 {
787         struct ieee80211_hdr_4addr *hdr;
788         u16 fc;
789
790         if (ieee->iw_mode == IW_MODE_MONITOR)
791                 return 1;
792
793         hdr = (struct ieee80211_hdr_4addr *)buffer;
794         fc = le16_to_cpu(hdr->frame_ctl);
795         if ((fc & IEEE80211_FCTL_VERS) != 0)
796                 return -EINVAL;
797
798         switch (WLAN_FC_GET_TYPE(fc)) {
799         case IEEE80211_FTYPE_MGMT:
800                 if (length < sizeof(struct ieee80211_hdr_3addr))
801                         return -EINVAL;
802                 ieee80211_rx_mgt(ieee, hdr, stats);
803                 return 0;
804         case IEEE80211_FTYPE_CTL:
805                 return 0;
806         case IEEE80211_FTYPE_DATA:
807                 /* Ignore invalid short buffers */
808                 if (length < sizeof(struct ieee80211_hdr_3addr))
809                         return -EINVAL;
810                 return is_data_packet_for_us(ieee, hdr);
811         }
812
813         return -EINVAL;
814 }
815
816 static void update_qual_rssi(struct zd_mac *mac,
817                              const u8 *buffer, unsigned int length,
818                              u8 qual_percent, u8 rssi_percent)
819 {
820         unsigned long flags;
821         struct ieee80211_hdr_3addr *hdr;
822         int i;
823
824         hdr = (struct ieee80211_hdr_3addr *)buffer;
825         if (length < offsetof(struct ieee80211_hdr_3addr, addr3))
826                 return;
827         if (memcmp(hdr->addr2, zd_mac_to_ieee80211(mac)->bssid, ETH_ALEN) != 0)
828                 return;
829
830         spin_lock_irqsave(&mac->lock, flags);
831         i = mac->stats_count % ZD_MAC_STATS_BUFFER_SIZE;
832         mac->qual_buffer[i] = qual_percent;
833         mac->rssi_buffer[i] = rssi_percent;
834         mac->stats_count++;
835         spin_unlock_irqrestore(&mac->lock, flags);
836 }
837
838 static int fill_rx_stats(struct ieee80211_rx_stats *stats,
839                          const struct rx_status **pstatus,
840                          struct zd_mac *mac,
841                          const u8 *buffer, unsigned int length)
842 {
843         const struct rx_status *status;
844
845         *pstatus = status = zd_tail(buffer, length, sizeof(struct rx_status));
846         if (status->frame_status & ZD_RX_ERROR) {
847                 /* FIXME: update? */
848                 return -EINVAL;
849         }
850         memset(stats, 0, sizeof(struct ieee80211_rx_stats));
851         stats->len = length - (ZD_PLCP_HEADER_SIZE + IEEE80211_FCS_LEN +
852                                + sizeof(struct rx_status));
853         /* FIXME: 802.11a */
854         stats->freq = IEEE80211_24GHZ_BAND;
855         stats->received_channel = _zd_chip_get_channel(&mac->chip);
856         stats->rssi = zd_rx_strength_percent(status->signal_strength);
857         stats->signal = zd_rx_qual_percent(buffer,
858                                           length - sizeof(struct rx_status),
859                                           status);
860         stats->mask = IEEE80211_STATMASK_RSSI | IEEE80211_STATMASK_SIGNAL;
861         stats->rate = zd_rx_rate(buffer, status);
862         if (stats->rate)
863                 stats->mask |= IEEE80211_STATMASK_RATE;
864
865         return 0;
866 }
867
868 int zd_mac_rx(struct zd_mac *mac, const u8 *buffer, unsigned int length)
869 {
870         int r;
871         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
872         struct ieee80211_rx_stats stats;
873         const struct rx_status *status;
874         struct sk_buff *skb;
875
876         if (length < ZD_PLCP_HEADER_SIZE + IEEE80211_1ADDR_LEN +
877                      IEEE80211_FCS_LEN + sizeof(struct rx_status))
878                 return -EINVAL;
879
880         r = fill_rx_stats(&stats, &status, mac, buffer, length);
881         if (r)
882                 return r;
883
884         length -= ZD_PLCP_HEADER_SIZE+IEEE80211_FCS_LEN+
885                   sizeof(struct rx_status);
886         buffer += ZD_PLCP_HEADER_SIZE;
887
888         update_qual_rssi(mac, buffer, length, stats.signal, stats.rssi);
889
890         r = filter_rx(ieee, buffer, length, &stats);
891         if (r <= 0)
892                 return r;
893
894         skb = dev_alloc_skb(sizeof(struct zd_rt_hdr) + length);
895         if (!skb)
896                 return -ENOMEM;
897         if (ieee->iw_mode == IW_MODE_MONITOR)
898                 fill_rt_header(skb_put(skb, sizeof(struct zd_rt_hdr)), mac,
899                                &stats, status);
900         memcpy(skb_put(skb, length), buffer, length);
901
902         r = ieee80211_rx(ieee, skb, &stats);
903         if (!r) {
904                 ZD_ASSERT(in_irq());
905                 dev_kfree_skb_irq(skb);
906         }
907         return 0;
908 }
909
910 static int netdev_tx(struct ieee80211_txb *txb, struct net_device *netdev,
911                      int pri)
912 {
913         return zd_mac_tx(zd_netdev_mac(netdev), txb, pri);
914 }
915
916 static void set_security(struct net_device *netdev,
917                          struct ieee80211_security *sec)
918 {
919         struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
920         struct ieee80211_security *secinfo = &ieee->sec;
921         int keyidx;
922
923         dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), "\n");
924
925         for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
926                 if (sec->flags & (1<<keyidx)) {
927                         secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
928                         secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
929                         memcpy(secinfo->keys[keyidx], sec->keys[keyidx],
930                                SCM_KEY_LEN);
931                 }
932
933         if (sec->flags & SEC_ACTIVE_KEY) {
934                 secinfo->active_key = sec->active_key;
935                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
936                         "   .active_key = %d\n", sec->active_key);
937         }
938         if (sec->flags & SEC_UNICAST_GROUP) {
939                 secinfo->unicast_uses_group = sec->unicast_uses_group;
940                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
941                         "   .unicast_uses_group = %d\n",
942                         sec->unicast_uses_group);
943         }
944         if (sec->flags & SEC_LEVEL) {
945                 secinfo->level = sec->level;
946                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
947                         "   .level = %d\n", sec->level);
948         }
949         if (sec->flags & SEC_ENABLED) {
950                 secinfo->enabled = sec->enabled;
951                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
952                         "   .enabled = %d\n", sec->enabled);
953         }
954         if (sec->flags & SEC_ENCRYPT) {
955                 secinfo->encrypt = sec->encrypt;
956                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
957                         "   .encrypt = %d\n", sec->encrypt);
958         }
959         if (sec->flags & SEC_AUTH_MODE) {
960                 secinfo->auth_mode = sec->auth_mode;
961                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
962                         "   .auth_mode = %d\n", sec->auth_mode);
963         }
964 }
965
966 static void ieee_init(struct ieee80211_device *ieee)
967 {
968         ieee->mode = IEEE_B | IEEE_G;
969         ieee->freq_band = IEEE80211_24GHZ_BAND;
970         ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION;
971         ieee->tx_headroom = sizeof(struct zd_ctrlset);
972         ieee->set_security = set_security;
973         ieee->hard_start_xmit = netdev_tx;
974
975         /* Software encryption/decryption for now */
976         ieee->host_build_iv = 0;
977         ieee->host_encrypt = 1;
978         ieee->host_decrypt = 1;
979
980         /* FIXME: default to managed mode, until ieee80211 and zd1211rw can
981          * correctly support AUTO */
982         ieee->iw_mode = IW_MODE_INFRA;
983 }
984
985 static void softmac_init(struct ieee80211softmac_device *sm)
986 {
987         sm->set_channel = set_channel;
988 }
989
990 struct iw_statistics *zd_mac_get_wireless_stats(struct net_device *ndev)
991 {
992         struct zd_mac *mac = zd_netdev_mac(ndev);
993         struct iw_statistics *iw_stats = &mac->iw_stats;
994         unsigned int i, count, qual_total, rssi_total;
995
996         memset(iw_stats, 0, sizeof(struct iw_statistics));
997         /* We are not setting the status, because ieee->state is not updated
998          * at all and this driver doesn't track authentication state.
999          */
1000         spin_lock_irq(&mac->lock);
1001         count = mac->stats_count < ZD_MAC_STATS_BUFFER_SIZE ?
1002                 mac->stats_count : ZD_MAC_STATS_BUFFER_SIZE;
1003         qual_total = rssi_total = 0;
1004         for (i = 0; i < count; i++) {
1005                 qual_total += mac->qual_buffer[i];
1006                 rssi_total += mac->rssi_buffer[i];
1007         }
1008         spin_unlock_irq(&mac->lock);
1009         iw_stats->qual.updated = IW_QUAL_NOISE_INVALID;
1010         if (count > 0) {
1011                 iw_stats->qual.qual = qual_total / count;
1012                 iw_stats->qual.level = rssi_total / count;
1013                 iw_stats->qual.updated |=
1014                         IW_QUAL_QUAL_UPDATED|IW_QUAL_LEVEL_UPDATED;
1015         } else {
1016                 iw_stats->qual.updated |=
1017                         IW_QUAL_QUAL_INVALID|IW_QUAL_LEVEL_INVALID;
1018         }
1019         /* TODO: update counter */
1020         return iw_stats;
1021 }
1022
1023 #define LINK_LED_WORK_DELAY HZ
1024
1025 static void link_led_handler(void *p)
1026 {
1027         struct zd_mac *mac = p;
1028         struct zd_chip *chip = &mac->chip;
1029         struct ieee80211softmac_device *sm = ieee80211_priv(mac->netdev);
1030         int is_associated;
1031         int r;
1032
1033         spin_lock_irq(&mac->lock);
1034         is_associated = sm->associnfo.associated != 0;
1035         spin_unlock_irq(&mac->lock);
1036
1037         r = zd_chip_control_leds(chip,
1038                                  is_associated ? LED_ASSOCIATED : LED_SCANNING);
1039         if (r)
1040                 dev_err(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1041
1042         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1043                            LINK_LED_WORK_DELAY);
1044 }
1045
1046 static void housekeeping_init(struct zd_mac *mac)
1047 {
1048         INIT_WORK(&mac->housekeeping.link_led_work, link_led_handler, mac);
1049 }
1050
1051 static void housekeeping_enable(struct zd_mac *mac)
1052 {
1053         dev_dbg_f(zd_mac_dev(mac), "\n");
1054         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1055                            0);
1056 }
1057
1058 static void housekeeping_disable(struct zd_mac *mac)
1059 {
1060         dev_dbg_f(zd_mac_dev(mac), "\n");
1061         cancel_rearming_delayed_workqueue(zd_workqueue,
1062                 &mac->housekeeping.link_led_work);
1063         zd_chip_control_leds(&mac->chip, LED_OFF);
1064 }