pandora: defconfig: update
[pandora-kernel.git] / drivers / net / wireless / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2010  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * tmis program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17  *
18  * Tme full GNU General Public License is included in this distribution in the
19  * file called LICENSE.
20  *
21  * Contact Information:
22  * wlanfae <wlanfae@realtek.com>
23  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24  * Hsinchu 300, Taiwan.
25  *
26  * Larry Finger <Larry.Finger@lwfinger.net>
27  *
28  *****************************************************************************/
29
30 #include <linux/export.h>
31 #include "wifi.h"
32 #include "efuse.h"
33
34 static const u8 MAX_PGPKT_SIZE = 9;
35 static const u8 PGPKT_DATA_SIZE = 8;
36 static const int EFUSE_MAX_SIZE = 512;
37
38 static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
39
40 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
41         {0, 0, 0, 2},
42         {0, 1, 0, 2},
43         {0, 2, 0, 2},
44         {1, 0, 0, 1},
45         {1, 0, 1, 1},
46         {1, 1, 0, 1},
47         {1, 1, 1, 3},
48         {1, 3, 0, 17},
49         {3, 3, 1, 48},
50         {10, 0, 0, 6},
51         {10, 3, 0, 1},
52         {10, 3, 1, 1},
53         {11, 0, 0, 28}
54 };
55
56 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
57                                     u8 *value);
58 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
59                                     u16 *value);
60 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
61                                     u32 *value);
62 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
63                                      u8 value);
64 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
65                                      u16 value);
66 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
67                                      u32 value);
68 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
69                                         u8 *data);
70 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
71                                         u8 data);
72 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
73 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
74                                         u8 *data);
75 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
76                                  u8 word_en, u8 *data);
77 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
78                                         u8 *targetdata);
79 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
80                                        u16 efuse_addr, u8 word_en, u8 *data);
81 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
82                                         u8 pwrstate);
83 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
84 static u8 efuse_calculate_word_cnts(u8 word_en);
85
86 void efuse_initialize(struct ieee80211_hw *hw)
87 {
88         struct rtl_priv *rtlpriv = rtl_priv(hw);
89         u8 bytetemp;
90         u8 temp;
91
92         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
93         temp = bytetemp | 0x20;
94         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
95
96         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
97         temp = bytetemp & 0xFE;
98         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
99
100         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
101         temp = bytetemp | 0x80;
102         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
103
104         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
105
106         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
107
108 }
109
110 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
111 {
112         struct rtl_priv *rtlpriv = rtl_priv(hw);
113         u8 data;
114         u8 bytetemp;
115         u8 temp;
116         u32 k = 0;
117         const u32 efuse_len =
118                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
119
120         if (address < efuse_len) {
121                 temp = address & 0xFF;
122                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
123                                temp);
124                 bytetemp = rtl_read_byte(rtlpriv,
125                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
126                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
127                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
128                                temp);
129
130                 bytetemp = rtl_read_byte(rtlpriv,
131                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
132                 temp = bytetemp & 0x7F;
133                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
134                                temp);
135
136                 bytetemp = rtl_read_byte(rtlpriv,
137                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
138                 while (!(bytetemp & 0x80)) {
139                         bytetemp = rtl_read_byte(rtlpriv,
140                                                  rtlpriv->cfg->
141                                                  maps[EFUSE_CTRL] + 3);
142                         k++;
143                         if (k == 1000) {
144                                 k = 0;
145                                 break;
146                         }
147                 }
148                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
149                 return data;
150         } else
151                 return 0xFF;
152
153 }
154 EXPORT_SYMBOL(efuse_read_1byte);
155
156 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
157 {
158         struct rtl_priv *rtlpriv = rtl_priv(hw);
159         u8 bytetemp;
160         u8 temp;
161         u32 k = 0;
162         const u32 efuse_len =
163                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
164
165         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
166                  ("Addr=%x Data =%x\n", address, value));
167
168         if (address < efuse_len) {
169                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
170
171                 temp = address & 0xFF;
172                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
173                                temp);
174                 bytetemp = rtl_read_byte(rtlpriv,
175                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
176
177                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
178                 rtl_write_byte(rtlpriv,
179                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
180
181                 bytetemp = rtl_read_byte(rtlpriv,
182                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
183                 temp = bytetemp | 0x80;
184                 rtl_write_byte(rtlpriv,
185                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
186
187                 bytetemp = rtl_read_byte(rtlpriv,
188                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
189
190                 while (bytetemp & 0x80) {
191                         bytetemp = rtl_read_byte(rtlpriv,
192                                                  rtlpriv->cfg->
193                                                  maps[EFUSE_CTRL] + 3);
194                         k++;
195                         if (k == 100) {
196                                 k = 0;
197                                 break;
198                         }
199                 }
200         }
201
202 }
203
204 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
205 {
206         struct rtl_priv *rtlpriv = rtl_priv(hw);
207         u32 value32;
208         u8 readbyte;
209         u16 retry;
210
211         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
212                        (_offset & 0xff));
213         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
214         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
215                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
216
217         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
218         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
219                        (readbyte & 0x7f));
220
221         retry = 0;
222         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
224                 value32 = rtl_read_dword(rtlpriv,
225                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
226                 retry++;
227         }
228
229         udelay(50);
230         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
231
232         *pbuf = (u8) (value32 & 0xff);
233 }
234
235 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
236 {
237         struct rtl_priv *rtlpriv = rtl_priv(hw);
238         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
239         u8 *efuse_tbl;
240         u8 rtemp8[1];
241         u16 efuse_addr = 0;
242         u8 offset, wren;
243         u16 i;
244         u16 j;
245         const u16 efuse_max_section =
246                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
247         const u32 efuse_len =
248                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
249         u16 **efuse_word;
250         u16 efuse_utilized = 0;
251         u8 efuse_usage;
252
253         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
254                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
255                          ("read_efuse(): Invalid offset(%#x) with read "
256                           "bytes(%#x)!!\n", _offset, _size_byte));
257                 return;
258         }
259
260         /* allocate memory for efuse_tbl and efuse_word */
261         efuse_tbl = kmalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
262                             sizeof(u8), GFP_ATOMIC);
263         if (!efuse_tbl)
264                 return;
265         efuse_word = kmalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
266         if (!efuse_word)
267                 goto done;
268         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
269                 efuse_word[i] = kmalloc(efuse_max_section * sizeof(u16),
270                                         GFP_ATOMIC);
271                 if (!efuse_word[i])
272                         goto done;
273         }
274
275         for (i = 0; i < efuse_max_section; i++)
276                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
277                         efuse_word[j][i] = 0xFFFF;
278
279         read_efuse_byte(hw, efuse_addr, rtemp8);
280         if (*rtemp8 != 0xFF) {
281                 efuse_utilized++;
282                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
283                         ("Addr=%d\n", efuse_addr));
284                 efuse_addr++;
285         }
286
287         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
288                 offset = ((*rtemp8 >> 4) & 0x0f);
289
290                 if (offset < efuse_max_section) {
291                         wren = (*rtemp8 & 0x0f);
292                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293                                 ("offset-%d Worden=%x\n", offset, wren));
294
295                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296                                 if (!(wren & 0x01)) {
297                                         RTPRINT(rtlpriv, FEEPROM,
298                                                 EFUSE_READ_ALL, ("Addr=%d\n",
299                                                                  efuse_addr));
300
301                                         read_efuse_byte(hw, efuse_addr, rtemp8);
302                                         efuse_addr++;
303                                         efuse_utilized++;
304                                         efuse_word[i][offset] =
305                                                          (*rtemp8 & 0xff);
306
307                                         if (efuse_addr >= efuse_len)
308                                                 break;
309
310                                         RTPRINT(rtlpriv, FEEPROM,
311                                                 EFUSE_READ_ALL, ("Addr=%d\n",
312                                                                  efuse_addr));
313
314                                         read_efuse_byte(hw, efuse_addr, rtemp8);
315                                         efuse_addr++;
316                                         efuse_utilized++;
317                                         efuse_word[i][offset] |=
318                                             (((u16)*rtemp8 << 8) & 0xff00);
319
320                                         if (efuse_addr >= efuse_len)
321                                                 break;
322                                 }
323
324                                 wren >>= 1;
325                         }
326                 }
327
328                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329                         ("Addr=%d\n", efuse_addr));
330                 read_efuse_byte(hw, efuse_addr, rtemp8);
331                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332                         efuse_utilized++;
333                         efuse_addr++;
334                 }
335         }
336
337         for (i = 0; i < efuse_max_section; i++) {
338                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339                         efuse_tbl[(i * 8) + (j * 2)] =
340                             (efuse_word[j][i] & 0xff);
341                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342                             ((efuse_word[j][i] >> 8) & 0xff);
343                 }
344         }
345
346         for (i = 0; i < _size_byte; i++)
347                 pbuf[i] = efuse_tbl[_offset + i];
348
349         rtlefuse->efuse_usedbytes = efuse_utilized;
350         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
351         rtlefuse->efuse_usedpercentage = efuse_usage;
352         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353                                       (u8 *)&efuse_utilized);
354         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355                                       (u8 *)&efuse_usage);
356 done:
357         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358                 kfree(efuse_word[i]);
359         kfree(efuse_word);
360         kfree(efuse_tbl);
361 }
362
363 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
364 {
365         struct rtl_priv *rtlpriv = rtl_priv(hw);
366         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367         u8 section_idx, i, Base;
368         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369         bool wordchanged, result = true;
370
371         for (section_idx = 0; section_idx < 16; section_idx++) {
372                 Base = section_idx * 8;
373                 wordchanged = false;
374
375                 for (i = 0; i < 8; i = i + 2) {
376                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
377                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
378                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
379                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
380                                                                    1])) {
381                                 words_need++;
382                                 wordchanged = true;
383                         }
384                 }
385
386                 if (wordchanged)
387                         hdr_num++;
388         }
389
390         totalbytes = hdr_num + words_need * 2;
391         efuse_used = rtlefuse->efuse_usedbytes;
392
393         if ((totalbytes + efuse_used) >=
394             (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
395                 result = false;
396
397         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398                  ("efuse_shadow_update_chk(): totalbytes(%#x), "
399                   "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
400                   totalbytes, hdr_num, words_need, efuse_used));
401
402         return result;
403 }
404
405 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
406                        u16 offset, u32 *value)
407 {
408         if (type == 1)
409                 efuse_shadow_read_1byte(hw, offset, (u8 *) value);
410         else if (type == 2)
411                 efuse_shadow_read_2byte(hw, offset, (u16 *) value);
412         else if (type == 4)
413                 efuse_shadow_read_4byte(hw, offset, (u32 *) value);
414
415 }
416
417 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
418                                 u32 value)
419 {
420         if (type == 1)
421                 efuse_shadow_write_1byte(hw, offset, (u8) value);
422         else if (type == 2)
423                 efuse_shadow_write_2byte(hw, offset, (u16) value);
424         else if (type == 4)
425                 efuse_shadow_write_4byte(hw, offset, value);
426
427 }
428
429 bool efuse_shadow_update(struct ieee80211_hw *hw)
430 {
431         struct rtl_priv *rtlpriv = rtl_priv(hw);
432         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
433         u16 i, offset, base;
434         u8 word_en = 0x0F;
435         u8 first_pg = false;
436
437         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
438
439         if (!efuse_shadow_update_chk(hw)) {
440                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
441                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
442                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
443                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
444
445                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
446                          ("<---efuse out of capacity!!\n"));
447                 return false;
448         }
449         efuse_power_switch(hw, true, true);
450
451         for (offset = 0; offset < 16; offset++) {
452
453                 word_en = 0x0F;
454                 base = offset * 8;
455
456                 for (i = 0; i < 8; i++) {
457                         if (first_pg) {
458
459                                 word_en &= ~(BIT(i / 2));
460
461                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
462                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
463                         } else {
464
465                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
466                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
467                                         word_en &= ~(BIT(i / 2));
468
469                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
470                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
471                                 }
472                         }
473                 }
474
475                 if (word_en != 0x0F) {
476                         u8 tmpdata[8];
477                         memcpy(tmpdata,
478                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
479                                8);
480                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
481                                       ("U-efuse\n"), tmpdata, 8);
482
483                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
484                                                    tmpdata)) {
485                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
486                                          ("PG section(%#x) fail!!\n", offset));
487                                 break;
488                         }
489                 }
490
491         }
492
493         efuse_power_switch(hw, true, false);
494         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
495
496         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
497                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
498                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
499
500         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
501         return true;
502 }
503
504 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
505 {
506         struct rtl_priv *rtlpriv = rtl_priv(hw);
507         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
508
509         if (rtlefuse->autoload_failflag)
510                 memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
511                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
512         else
513                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
514
515         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
516                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
517                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
518
519 }
520 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
521
522 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
523 {
524         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
525
526         efuse_power_switch(hw, true, true);
527
528         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
529
530         efuse_power_switch(hw, true, false);
531
532 }
533
534 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
535 {
536 }
537
538 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
539                                     u16 offset, u8 *value)
540 {
541         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
542         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
543 }
544
545 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
546                                     u16 offset, u16 *value)
547 {
548         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549
550         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
551         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
552
553 }
554
555 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
556                                     u16 offset, u32 *value)
557 {
558         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559
560         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
561         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
562         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
563         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
564 }
565
566 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
567                                      u16 offset, u8 value)
568 {
569         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
570
571         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
572 }
573
574 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
575                                      u16 offset, u16 value)
576 {
577         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
578
579         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
580         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
581
582 }
583
584 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
585                                      u16 offset, u32 value)
586 {
587         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
588
589         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
590             (u8) (value & 0x000000FF);
591         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
592             (u8) ((value >> 8) & 0x0000FF);
593         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
594             (u8) ((value >> 16) & 0x00FF);
595         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
596             (u8) ((value >> 24) & 0xFF);
597
598 }
599
600 static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
601 {
602         struct rtl_priv *rtlpriv = rtl_priv(hw);
603         u8 tmpidx = 0;
604         int result;
605
606         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
607                        (u8) (addr & 0xff));
608         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
609                        ((u8) ((addr >> 8) & 0x03)) |
610                        (rtl_read_byte(rtlpriv,
611                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
612                         0xFC));
613
614         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
615
616         while (!(0x80 & rtl_read_byte(rtlpriv,
617                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
618                && (tmpidx < 100)) {
619                 tmpidx++;
620         }
621
622         if (tmpidx < 100) {
623                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
624                 result = true;
625         } else {
626                 *data = 0xff;
627                 result = false;
628         }
629         return result;
630 }
631
632 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
633 {
634         struct rtl_priv *rtlpriv = rtl_priv(hw);
635         u8 tmpidx = 0;
636
637         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
638                  ("Addr = %x Data=%x\n", addr, data));
639
640         rtl_write_byte(rtlpriv,
641                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
642         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
643                        (rtl_read_byte(rtlpriv,
644                          rtlpriv->cfg->maps[EFUSE_CTRL] +
645                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
646
647         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
648         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
649
650         while ((0x80 & rtl_read_byte(rtlpriv,
651                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
652                && (tmpidx < 100)) {
653                 tmpidx++;
654         }
655
656         if (tmpidx < 100)
657                 return true;
658
659         return false;
660 }
661
662 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
663 {
664         struct rtl_priv *rtlpriv = rtl_priv(hw);
665         efuse_power_switch(hw, false, true);
666         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
667         efuse_power_switch(hw, false, false);
668 }
669
670 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
671                                 u8 efuse_data, u8 offset, u8 *tmpdata,
672                                 u8 *readstate)
673 {
674         bool dataempty = true;
675         u8 hoffset;
676         u8 tmpidx;
677         u8 hworden;
678         u8 word_cnts;
679
680         hoffset = (efuse_data >> 4) & 0x0F;
681         hworden = efuse_data & 0x0F;
682         word_cnts = efuse_calculate_word_cnts(hworden);
683
684         if (hoffset == offset) {
685                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
686                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
687                             &efuse_data)) {
688                                 tmpdata[tmpidx] = efuse_data;
689                                 if (efuse_data != 0xff)
690                                         dataempty = true;
691                         }
692                 }
693
694                 if (dataempty) {
695                         *readstate = PG_STATE_DATA;
696                 } else {
697                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
698                         *readstate = PG_STATE_HEADER;
699                 }
700
701         } else {
702                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
703                 *readstate = PG_STATE_HEADER;
704         }
705 }
706
707 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
708 {
709         u8 readstate = PG_STATE_HEADER;
710         bool continual = true;
711         u8 efuse_data, word_cnts = 0;
712         u16 efuse_addr = 0;
713         u8 tmpdata[8];
714
715         if (data == NULL)
716                 return false;
717         if (offset > 15)
718                 return false;
719
720         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
722
723         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
724                 if (readstate & PG_STATE_HEADER) {
725                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
726                             && (efuse_data != 0xFF))
727                                 efuse_read_data_case1(hw, &efuse_addr,
728                                                       efuse_data,
729                                                       offset, tmpdata,
730                                                       &readstate);
731                         else
732                                 continual = false;
733                 } else if (readstate & PG_STATE_DATA) {
734                         efuse_word_enable_data_read(0, tmpdata, data);
735                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
736                         readstate = PG_STATE_HEADER;
737                 }
738
739         }
740
741         if ((data[0] == 0xff) && (data[1] == 0xff) &&
742             (data[2] == 0xff) && (data[3] == 0xff) &&
743             (data[4] == 0xff) && (data[5] == 0xff) &&
744             (data[6] == 0xff) && (data[7] == 0xff))
745                 return false;
746         else
747                 return true;
748
749 }
750
751 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
752                         u8 efuse_data, u8 offset, int *continual,
753                         u8 *write_state, struct pgpkt_struct *target_pkt,
754                         int *repeat_times, int *result, u8 word_en)
755 {
756         struct rtl_priv *rtlpriv = rtl_priv(hw);
757         struct pgpkt_struct tmp_pkt;
758         bool dataempty = true;
759         u8 originaldata[8 * sizeof(u8)];
760         u8 badworden = 0x0F;
761         u8 match_word_en, tmp_word_en;
762         u8 tmpindex;
763         u8 tmp_header = efuse_data;
764         u8 tmp_word_cnts;
765
766         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
767         tmp_pkt.word_en = tmp_header & 0x0F;
768         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
769
770         if (tmp_pkt.offset != target_pkt->offset) {
771                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
772                 *write_state = PG_STATE_HEADER;
773         } else {
774                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
775                         u16 address = *efuse_addr + 1 + tmpindex;
776                         if (efuse_one_byte_read(hw, address,
777                              &efuse_data) && (efuse_data != 0xFF))
778                                 dataempty = false;
779                 }
780
781                 if (dataempty == false) {
782                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
783                         *write_state = PG_STATE_HEADER;
784                 } else {
785                         match_word_en = 0x0F;
786                         if (!((target_pkt->word_en & BIT(0)) |
787                              (tmp_pkt.word_en & BIT(0))))
788                                 match_word_en &= (~BIT(0));
789
790                         if (!((target_pkt->word_en & BIT(1)) |
791                              (tmp_pkt.word_en & BIT(1))))
792                                 match_word_en &= (~BIT(1));
793
794                         if (!((target_pkt->word_en & BIT(2)) |
795                              (tmp_pkt.word_en & BIT(2))))
796                                 match_word_en &= (~BIT(2));
797
798                         if (!((target_pkt->word_en & BIT(3)) |
799                              (tmp_pkt.word_en & BIT(3))))
800                                 match_word_en &= (~BIT(3));
801
802                         if ((match_word_en & 0x0F) != 0x0F) {
803                                 badworden = efuse_word_enable_data_write(
804                                                             hw, *efuse_addr + 1,
805                                                             tmp_pkt.word_en,
806                                                             target_pkt->data);
807
808                                 if (0x0F != (badworden & 0x0F)) {
809                                         u8 reorg_offset = offset;
810                                         u8 reorg_worden = badworden;
811                                         efuse_pg_packet_write(hw, reorg_offset,
812                                                                reorg_worden,
813                                                                originaldata);
814                                 }
815
816                                 tmp_word_en = 0x0F;
817                                 if ((target_pkt->word_en & BIT(0)) ^
818                                     (match_word_en & BIT(0)))
819                                         tmp_word_en &= (~BIT(0));
820
821                                 if ((target_pkt->word_en & BIT(1)) ^
822                                     (match_word_en & BIT(1)))
823                                         tmp_word_en &= (~BIT(1));
824
825                                 if ((target_pkt->word_en & BIT(2)) ^
826                                      (match_word_en & BIT(2)))
827                                         tmp_word_en &= (~BIT(2));
828
829                                 if ((target_pkt->word_en & BIT(3)) ^
830                                      (match_word_en & BIT(3)))
831                                         tmp_word_en &= (~BIT(3));
832
833                                 if ((tmp_word_en & 0x0F) != 0x0F) {
834                                         *efuse_addr = efuse_get_current_size(hw);
835                                         target_pkt->offset = offset;
836                                         target_pkt->word_en = tmp_word_en;
837                                 } else {
838                                         *continual = false;
839                                 }
840                                 *write_state = PG_STATE_HEADER;
841                                 *repeat_times += 1;
842                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
843                                         *continual = false;
844                                         *result = false;
845                                 }
846                         } else {
847                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
848                                 target_pkt->offset = offset;
849                                 target_pkt->word_en = word_en;
850                                 *write_state = PG_STATE_HEADER;
851                         }
852                 }
853         }
854         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
855 }
856
857 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
858                                    int *continual, u8 *write_state,
859                                    struct pgpkt_struct target_pkt,
860                                    int *repeat_times, int *result)
861 {
862         struct rtl_priv *rtlpriv = rtl_priv(hw);
863         struct pgpkt_struct tmp_pkt;
864         u8 pg_header;
865         u8 tmp_header;
866         u8 originaldata[8 * sizeof(u8)];
867         u8 tmp_word_cnts;
868         u8 badworden = 0x0F;
869
870         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
871         efuse_one_byte_write(hw, *efuse_addr, pg_header);
872         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
873
874         if (tmp_header == pg_header) {
875                 *write_state = PG_STATE_DATA;
876         } else if (tmp_header == 0xFF) {
877                 *write_state = PG_STATE_HEADER;
878                 *repeat_times += 1;
879                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
880                         *continual = false;
881                         *result = false;
882                 }
883         } else {
884                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
885                 tmp_pkt.word_en = tmp_header & 0x0F;
886
887                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
888
889                 memset(originaldata, 0xff, 8 * sizeof(u8));
890
891                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
892                         badworden = efuse_word_enable_data_write(hw,
893                                     *efuse_addr + 1, tmp_pkt.word_en,
894                                     originaldata);
895
896                         if (0x0F != (badworden & 0x0F)) {
897                                 u8 reorg_offset = tmp_pkt.offset;
898                                 u8 reorg_worden = badworden;
899                                 efuse_pg_packet_write(hw, reorg_offset,
900                                                       reorg_worden,
901                                                       originaldata);
902                                 *efuse_addr = efuse_get_current_size(hw);
903                         } else {
904                                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
905                                               + 1;
906                         }
907                 } else {
908                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
909                 }
910
911                 *write_state = PG_STATE_HEADER;
912                 *repeat_times += 1;
913                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
914                         *continual = false;
915                         *result = false;
916                 }
917
918                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
919                         ("efuse PG_STATE_HEADER-2\n"));
920         }
921 }
922
923 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
924                                  u8 offset, u8 word_en, u8 *data)
925 {
926         struct rtl_priv *rtlpriv = rtl_priv(hw);
927         struct pgpkt_struct target_pkt;
928         u8 write_state = PG_STATE_HEADER;
929         int continual = true, result = true;
930         u16 efuse_addr = 0;
931         u8 efuse_data;
932         u8 target_word_cnts = 0;
933         u8 badworden = 0x0F;
934         static int repeat_times;
935
936         if (efuse_get_current_size(hw) >=
937             (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
938                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939                         ("efuse_pg_packet_write error\n"));
940                 return false;
941         }
942
943         target_pkt.offset = offset;
944         target_pkt.word_en = word_en;
945
946         memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
947
948         efuse_word_enable_data_read(word_en, data, target_pkt.data);
949         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
950
951         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
952
953         while (continual && (efuse_addr <
954                (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
955
956                 if (write_state == PG_STATE_HEADER) {
957                         badworden = 0x0F;
958                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959                                 ("efuse PG_STATE_HEADER\n"));
960
961                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
962                             (efuse_data != 0xFF))
963                                 efuse_write_data_case1(hw, &efuse_addr,
964                                                        efuse_data, offset,
965                                                        &continual,
966                                                        &write_state, &target_pkt,
967                                                        &repeat_times, &result,
968                                                        word_en);
969                         else
970                                 efuse_write_data_case2(hw, &efuse_addr,
971                                                        &continual,
972                                                        &write_state,
973                                                        target_pkt,
974                                                        &repeat_times,
975                                                        &result);
976
977                 } else if (write_state == PG_STATE_DATA) {
978                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
979                                 ("efuse PG_STATE_DATA\n"));
980                         badworden =
981                             efuse_word_enable_data_write(hw, efuse_addr + 1,
982                                                          target_pkt.word_en,
983                                                          target_pkt.data);
984
985                         if ((badworden & 0x0F) == 0x0F) {
986                                 continual = false;
987                         } else {
988                                 efuse_addr += (2 * target_word_cnts) + 1;
989
990                                 target_pkt.offset = offset;
991                                 target_pkt.word_en = badworden;
992                                 target_word_cnts =
993                                     efuse_calculate_word_cnts(target_pkt.
994                                                               word_en);
995                                 write_state = PG_STATE_HEADER;
996                                 repeat_times++;
997                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
998                                         continual = false;
999                                         result = false;
1000                                 }
1001                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1002                                         ("efuse PG_STATE_HEADER-3\n"));
1003                         }
1004                 }
1005         }
1006
1007         if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
1008                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1009                          ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
1010         }
1011
1012         return true;
1013 }
1014
1015 static void efuse_word_enable_data_read(u8 word_en,
1016                                         u8 *sourdata, u8 *targetdata)
1017 {
1018         if (!(word_en & BIT(0))) {
1019                 targetdata[0] = sourdata[0];
1020                 targetdata[1] = sourdata[1];
1021         }
1022
1023         if (!(word_en & BIT(1))) {
1024                 targetdata[2] = sourdata[2];
1025                 targetdata[3] = sourdata[3];
1026         }
1027
1028         if (!(word_en & BIT(2))) {
1029                 targetdata[4] = sourdata[4];
1030                 targetdata[5] = sourdata[5];
1031         }
1032
1033         if (!(word_en & BIT(3))) {
1034                 targetdata[6] = sourdata[6];
1035                 targetdata[7] = sourdata[7];
1036         }
1037 }
1038
1039 static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
1040                                        u16 efuse_addr, u8 word_en, u8 *data)
1041 {
1042         struct rtl_priv *rtlpriv = rtl_priv(hw);
1043         u16 tmpaddr;
1044         u16 start_addr = efuse_addr;
1045         u8 badworden = 0x0F;
1046         u8 tmpdata[8];
1047
1048         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1049         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1050                  ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
1051
1052         if (!(word_en & BIT(0))) {
1053                 tmpaddr = start_addr;
1054                 efuse_one_byte_write(hw, start_addr++, data[0]);
1055                 efuse_one_byte_write(hw, start_addr++, data[1]);
1056
1057                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1058                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1059                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1060                         badworden &= (~BIT(0));
1061         }
1062
1063         if (!(word_en & BIT(1))) {
1064                 tmpaddr = start_addr;
1065                 efuse_one_byte_write(hw, start_addr++, data[2]);
1066                 efuse_one_byte_write(hw, start_addr++, data[3]);
1067
1068                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1069                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1070                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1071                         badworden &= (~BIT(1));
1072         }
1073
1074         if (!(word_en & BIT(2))) {
1075                 tmpaddr = start_addr;
1076                 efuse_one_byte_write(hw, start_addr++, data[4]);
1077                 efuse_one_byte_write(hw, start_addr++, data[5]);
1078
1079                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1080                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1081                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1082                         badworden &= (~BIT(2));
1083         }
1084
1085         if (!(word_en & BIT(3))) {
1086                 tmpaddr = start_addr;
1087                 efuse_one_byte_write(hw, start_addr++, data[6]);
1088                 efuse_one_byte_write(hw, start_addr++, data[7]);
1089
1090                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1091                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1092                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1093                         badworden &= (~BIT(3));
1094         }
1095
1096         return badworden;
1097 }
1098
1099 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1100 {
1101         struct rtl_priv *rtlpriv = rtl_priv(hw);
1102         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1103         u8 tempval;
1104         u16 tmpV16;
1105
1106         if (pwrstate && (rtlhal->hw_type !=
1107                 HARDWARE_TYPE_RTL8192SE)) {
1108                 tmpV16 = rtl_read_word(rtlpriv,
1109                                        rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1110                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1111                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1112                         rtl_write_word(rtlpriv,
1113                                        rtlpriv->cfg->maps[SYS_ISO_CTRL],
1114                                        tmpV16);
1115                 }
1116
1117                 tmpV16 = rtl_read_word(rtlpriv,
1118                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1119                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1120                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1121                         rtl_write_word(rtlpriv,
1122                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1123                 }
1124
1125                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1126                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1127                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1128                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1129                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1130                         rtl_write_word(rtlpriv,
1131                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1132                 }
1133         }
1134
1135         if (pwrstate) {
1136                 if (write) {
1137                         tempval = rtl_read_byte(rtlpriv,
1138                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1139                                                 3);
1140
1141                         if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1142                                 tempval &= 0x0F;
1143                                 tempval |= (VOLTAGE_V25 << 4);
1144                         }
1145
1146                         rtl_write_byte(rtlpriv,
1147                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1148                                        (tempval | 0x80));
1149                 }
1150
1151                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1152                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1153                                                 0x03);
1154                 }
1155
1156         } else {
1157                 if (write) {
1158                         tempval = rtl_read_byte(rtlpriv,
1159                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1160                                                 3);
1161                         rtl_write_byte(rtlpriv,
1162                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1163                                        (tempval & 0x7F));
1164                 }
1165
1166                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1167                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1168                                                 0x02);
1169                 }
1170
1171         }
1172
1173 }
1174
1175 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1176 {
1177         int continual = true;
1178         u16 efuse_addr = 0;
1179         u8 hworden;
1180         u8 efuse_data, word_cnts;
1181
1182         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
1183                && (efuse_addr < EFUSE_MAX_SIZE)) {
1184                 if (efuse_data != 0xFF) {
1185                         hworden = efuse_data & 0x0F;
1186                         word_cnts = efuse_calculate_word_cnts(hworden);
1187                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1188                 } else {
1189                         continual = false;
1190                 }
1191         }
1192
1193         return efuse_addr;
1194 }
1195
1196 static u8 efuse_calculate_word_cnts(u8 word_en)
1197 {
1198         u8 word_cnts = 0;
1199         if (!(word_en & BIT(0)))
1200                 word_cnts++;
1201         if (!(word_en & BIT(1)))
1202                 word_cnts++;
1203         if (!(word_en & BIT(2)))
1204                 word_cnts++;
1205         if (!(word_en & BIT(3)))
1206                 word_cnts++;
1207         return word_cnts;
1208 }
1209