rt2x00: Remove usage of IEEE80211_CONF_CHANGE_BEACON_INTERVAL
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64                                H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         mutex_lock(&rt2x00dev->csr_mutex);
127
128         /*
129          * Wait until the RF becomes available, afterwards we
130          * can safely write the new data into the register.
131          */
132         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133                 reg = 0;
134                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140                 rt2x00_rf_write(rt2x00dev, word, value);
141         }
142
143         mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147                                 const u8 command, const u8 token,
148                                 const u8 arg0, const u8 arg1)
149 {
150         u32 reg;
151
152         mutex_lock(&rt2x00dev->csr_mutex);
153
154         /*
155          * Wait until the MCU becomes available, afterwards we
156          * can safely write the new data into the register.
157          */
158         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169         }
170
171         mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg;
179
180         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184         eeprom->reg_data_clock =
185             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186         eeprom->reg_chip_select =
187             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192         struct rt2x00_dev *rt2x00dev = eeprom->data;
193         u32 reg = 0;
194
195         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198                            !!eeprom->reg_data_clock);
199         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200                            !!eeprom->reg_chip_select);
201
202         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207         .owner  = THIS_MODULE,
208         .csr    = {
209                 .read           = rt2x00pci_register_read,
210                 .write          = rt2x00pci_register_write,
211                 .flags          = RT2X00DEBUGFS_OFFSET,
212                 .word_base      = CSR_REG_BASE,
213                 .word_size      = sizeof(u32),
214                 .word_count     = CSR_REG_SIZE / sizeof(u32),
215         },
216         .eeprom = {
217                 .read           = rt2x00_eeprom_read,
218                 .write          = rt2x00_eeprom_write,
219                 .word_base      = EEPROM_BASE,
220                 .word_size      = sizeof(u16),
221                 .word_count     = EEPROM_SIZE / sizeof(u16),
222         },
223         .bbp    = {
224                 .read           = rt61pci_bbp_read,
225                 .write          = rt61pci_bbp_write,
226                 .word_base      = BBP_BASE,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt61pci_rf_write,
233                 .word_base      = RF_BASE,
234                 .word_size      = sizeof(u32),
235                 .word_count     = RF_SIZE / sizeof(u32),
236         },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 #ifdef CONFIG_RT2X00_LIB_RFKILL
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243         u32 reg;
244
245         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248 #else
249 #define rt61pci_rfkill_poll     NULL
250 #endif /* CONFIG_RT2X00_LIB_RFKILL */
251
252 #ifdef CONFIG_RT2X00_LIB_LEDS
253 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
254                                    enum led_brightness brightness)
255 {
256         struct rt2x00_led *led =
257             container_of(led_cdev, struct rt2x00_led, led_dev);
258         unsigned int enabled = brightness != LED_OFF;
259         unsigned int a_mode =
260             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
261         unsigned int bg_mode =
262             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
263
264         if (led->type == LED_TYPE_RADIO) {
265                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
266                                    MCU_LEDCS_RADIO_STATUS, enabled);
267
268                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
269                                     (led->rt2x00dev->led_mcu_reg & 0xff),
270                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
271         } else if (led->type == LED_TYPE_ASSOC) {
272                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
274                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
275                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
276
277                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
278                                     (led->rt2x00dev->led_mcu_reg & 0xff),
279                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
280         } else if (led->type == LED_TYPE_QUALITY) {
281                 /*
282                  * The brightness is divided into 6 levels (0 - 5),
283                  * this means we need to convert the brightness
284                  * argument into the matching level within that range.
285                  */
286                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
287                                     brightness / (LED_FULL / 6), 0);
288         }
289 }
290
291 static int rt61pci_blink_set(struct led_classdev *led_cdev,
292                              unsigned long *delay_on,
293                              unsigned long *delay_off)
294 {
295         struct rt2x00_led *led =
296             container_of(led_cdev, struct rt2x00_led, led_dev);
297         u32 reg;
298
299         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
300         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
301         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
302         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
303
304         return 0;
305 }
306
307 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
308                              struct rt2x00_led *led,
309                              enum led_type type)
310 {
311         led->rt2x00dev = rt2x00dev;
312         led->type = type;
313         led->led_dev.brightness_set = rt61pci_brightness_set;
314         led->led_dev.blink_set = rt61pci_blink_set;
315         led->flags = LED_INITIALIZED;
316 }
317 #endif /* CONFIG_RT2X00_LIB_LEDS */
318
319 /*
320  * Configuration handlers.
321  */
322 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
323                                      struct rt2x00lib_crypto *crypto,
324                                      struct ieee80211_key_conf *key)
325 {
326         struct hw_key_entry key_entry;
327         struct rt2x00_field32 field;
328         u32 mask;
329         u32 reg;
330
331         if (crypto->cmd == SET_KEY) {
332                 /*
333                  * rt2x00lib can't determine the correct free
334                  * key_idx for shared keys. We have 1 register
335                  * with key valid bits. The goal is simple, read
336                  * the register, if that is full we have no slots
337                  * left.
338                  * Note that each BSS is allowed to have up to 4
339                  * shared keys, so put a mask over the allowed
340                  * entries.
341                  */
342                 mask = (0xf << crypto->bssidx);
343
344                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
345                 reg &= mask;
346
347                 if (reg && reg == mask)
348                         return -ENOSPC;
349
350                 key->hw_key_idx += reg ? ffz(reg) : 0;
351
352                 /*
353                  * Upload key to hardware
354                  */
355                 memcpy(key_entry.key, crypto->key,
356                        sizeof(key_entry.key));
357                 memcpy(key_entry.tx_mic, crypto->tx_mic,
358                        sizeof(key_entry.tx_mic));
359                 memcpy(key_entry.rx_mic, crypto->rx_mic,
360                        sizeof(key_entry.rx_mic));
361
362                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
363                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
364                                               &key_entry, sizeof(key_entry));
365
366                 /*
367                  * The cipher types are stored over 2 registers.
368                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
369                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
370                  * Using the correct defines correctly will cause overhead,
371                  * so just calculate the correct offset.
372                  */
373                 if (key->hw_key_idx < 8) {
374                         field.bit_offset = (3 * key->hw_key_idx);
375                         field.bit_mask = 0x7 << field.bit_offset;
376
377                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
378                         rt2x00_set_field32(&reg, field, crypto->cipher);
379                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
380                 } else {
381                         field.bit_offset = (3 * (key->hw_key_idx - 8));
382                         field.bit_mask = 0x7 << field.bit_offset;
383
384                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
385                         rt2x00_set_field32(&reg, field, crypto->cipher);
386                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
387                 }
388
389                 /*
390                  * The driver does not support the IV/EIV generation
391                  * in hardware. However it doesn't support the IV/EIV
392                  * inside the ieee80211 frame either, but requires it
393                  * to be provided seperately for the descriptor.
394                  * rt2x00lib will cut the IV/EIV data out of all frames
395                  * given to us by mac80211, but we must tell mac80211
396                  * to generate the IV/EIV data.
397                  */
398                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399         }
400
401         /*
402          * SEC_CSR0 contains only single-bit fields to indicate
403          * a particular key is valid. Because using the FIELD32()
404          * defines directly will cause a lot of overhead we use
405          * a calculation to determine the correct bit directly.
406          */
407         mask = 1 << key->hw_key_idx;
408
409         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
410         if (crypto->cmd == SET_KEY)
411                 reg |= mask;
412         else if (crypto->cmd == DISABLE_KEY)
413                 reg &= ~mask;
414         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
415
416         return 0;
417 }
418
419 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
420                                        struct rt2x00lib_crypto *crypto,
421                                        struct ieee80211_key_conf *key)
422 {
423         struct hw_pairwise_ta_entry addr_entry;
424         struct hw_key_entry key_entry;
425         u32 mask;
426         u32 reg;
427
428         if (crypto->cmd == SET_KEY) {
429                 /*
430                  * rt2x00lib can't determine the correct free
431                  * key_idx for pairwise keys. We have 2 registers
432                  * with key valid bits. The goal is simple, read
433                  * the first register, if that is full move to
434                  * the next register.
435                  * When both registers are full, we drop the key,
436                  * otherwise we use the first invalid entry.
437                  */
438                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
439                 if (reg && reg == ~0) {
440                         key->hw_key_idx = 32;
441                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
442                         if (reg && reg == ~0)
443                                 return -ENOSPC;
444                 }
445
446                 key->hw_key_idx += reg ? ffz(reg) : 0;
447
448                 /*
449                  * Upload key to hardware
450                  */
451                 memcpy(key_entry.key, crypto->key,
452                        sizeof(key_entry.key));
453                 memcpy(key_entry.tx_mic, crypto->tx_mic,
454                        sizeof(key_entry.tx_mic));
455                 memcpy(key_entry.rx_mic, crypto->rx_mic,
456                        sizeof(key_entry.rx_mic));
457
458                 memset(&addr_entry, 0, sizeof(addr_entry));
459                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
460                 addr_entry.cipher = crypto->cipher;
461
462                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
463                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464                                               &key_entry, sizeof(key_entry));
465
466                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
467                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
468                                               &addr_entry, sizeof(addr_entry));
469
470                 /*
471                  * Enable pairwise lookup table for given BSS idx,
472                  * without this received frames will not be decrypted
473                  * by the hardware.
474                  */
475                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
476                 reg |= (1 << crypto->bssidx);
477                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
478
479                 /*
480                  * The driver does not support the IV/EIV generation
481                  * in hardware. However it doesn't support the IV/EIV
482                  * inside the ieee80211 frame either, but requires it
483                  * to be provided seperately for the descriptor.
484                  * rt2x00lib will cut the IV/EIV data out of all frames
485                  * given to us by mac80211, but we must tell mac80211
486                  * to generate the IV/EIV data.
487                  */
488                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
489         }
490
491         /*
492          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
493          * a particular key is valid. Because using the FIELD32()
494          * defines directly will cause a lot of overhead we use
495          * a calculation to determine the correct bit directly.
496          */
497         if (key->hw_key_idx < 32) {
498                 mask = 1 << key->hw_key_idx;
499
500                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
501                 if (crypto->cmd == SET_KEY)
502                         reg |= mask;
503                 else if (crypto->cmd == DISABLE_KEY)
504                         reg &= ~mask;
505                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
506         } else {
507                 mask = 1 << (key->hw_key_idx - 32);
508
509                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
510                 if (crypto->cmd == SET_KEY)
511                         reg |= mask;
512                 else if (crypto->cmd == DISABLE_KEY)
513                         reg &= ~mask;
514                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
515         }
516
517         return 0;
518 }
519
520 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
521                                   const unsigned int filter_flags)
522 {
523         u32 reg;
524
525         /*
526          * Start configuration steps.
527          * Note that the version error will always be dropped
528          * and broadcast frames will always be accepted since
529          * there is no filter for it at this time.
530          */
531         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
532         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
533                            !(filter_flags & FIF_FCSFAIL));
534         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
535                            !(filter_flags & FIF_PLCPFAIL));
536         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
537                            !(filter_flags & FIF_CONTROL));
538         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
539                            !(filter_flags & FIF_PROMISC_IN_BSS));
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
541                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
542                            !rt2x00dev->intf_ap_count);
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
545                            !(filter_flags & FIF_ALLMULTI));
546         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
547         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
548                            !(filter_flags & FIF_CONTROL));
549         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
550 }
551
552 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
553                                 struct rt2x00_intf *intf,
554                                 struct rt2x00intf_conf *conf,
555                                 const unsigned int flags)
556 {
557         unsigned int beacon_base;
558         u32 reg;
559
560         if (flags & CONFIG_UPDATE_TYPE) {
561                 /*
562                  * Clear current synchronisation setup.
563                  * For the Beacon base registers we only need to clear
564                  * the first byte since that byte contains the VALID and OWNER
565                  * bits which (when set to 0) will invalidate the entire beacon.
566                  */
567                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
568                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
569
570                 /*
571                  * Enable synchronisation.
572                  */
573                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
574                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
575                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
576                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
577                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
578         }
579
580         if (flags & CONFIG_UPDATE_MAC) {
581                 reg = le32_to_cpu(conf->mac[1]);
582                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
583                 conf->mac[1] = cpu_to_le32(reg);
584
585                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
586                                               conf->mac, sizeof(conf->mac));
587         }
588
589         if (flags & CONFIG_UPDATE_BSSID) {
590                 reg = le32_to_cpu(conf->bssid[1]);
591                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
592                 conf->bssid[1] = cpu_to_le32(reg);
593
594                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
595                                               conf->bssid, sizeof(conf->bssid));
596         }
597 }
598
599 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
600                                struct rt2x00lib_erp *erp)
601 {
602         u32 reg;
603
604         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
605         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
606         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
607         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
608
609         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
610         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
611         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
612                            !!erp->short_preamble);
613         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
614
615         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
616
617         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
618         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
619                            erp->beacon_int * 16);
620         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
621
622         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
623         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
624         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
625
626         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
627         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
628         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
629         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
630         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
631 }
632
633 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
634                                       struct antenna_setup *ant)
635 {
636         u8 r3;
637         u8 r4;
638         u8 r77;
639
640         rt61pci_bbp_read(rt2x00dev, 3, &r3);
641         rt61pci_bbp_read(rt2x00dev, 4, &r4);
642         rt61pci_bbp_read(rt2x00dev, 77, &r77);
643
644         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
645                           rt2x00_rf(&rt2x00dev->chip, RF5325));
646
647         /*
648          * Configure the RX antenna.
649          */
650         switch (ant->rx) {
651         case ANTENNA_HW_DIVERSITY:
652                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
653                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
654                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
655                 break;
656         case ANTENNA_A:
657                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
658                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
659                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
660                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
661                 else
662                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663                 break;
664         case ANTENNA_B:
665         default:
666                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
667                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
668                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
669                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
670                 else
671                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
672                 break;
673         }
674
675         rt61pci_bbp_write(rt2x00dev, 77, r77);
676         rt61pci_bbp_write(rt2x00dev, 3, r3);
677         rt61pci_bbp_write(rt2x00dev, 4, r4);
678 }
679
680 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
681                                       struct antenna_setup *ant)
682 {
683         u8 r3;
684         u8 r4;
685         u8 r77;
686
687         rt61pci_bbp_read(rt2x00dev, 3, &r3);
688         rt61pci_bbp_read(rt2x00dev, 4, &r4);
689         rt61pci_bbp_read(rt2x00dev, 77, &r77);
690
691         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
692                           rt2x00_rf(&rt2x00dev->chip, RF2529));
693         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
694                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
695
696         /*
697          * Configure the RX antenna.
698          */
699         switch (ant->rx) {
700         case ANTENNA_HW_DIVERSITY:
701                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
702                 break;
703         case ANTENNA_A:
704                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
705                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
706                 break;
707         case ANTENNA_B:
708         default:
709                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
710                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
711                 break;
712         }
713
714         rt61pci_bbp_write(rt2x00dev, 77, r77);
715         rt61pci_bbp_write(rt2x00dev, 3, r3);
716         rt61pci_bbp_write(rt2x00dev, 4, r4);
717 }
718
719 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
720                                            const int p1, const int p2)
721 {
722         u32 reg;
723
724         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
725
726         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
727         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
728
729         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
730         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
731
732         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
733 }
734
735 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
736                                         struct antenna_setup *ant)
737 {
738         u8 r3;
739         u8 r4;
740         u8 r77;
741
742         rt61pci_bbp_read(rt2x00dev, 3, &r3);
743         rt61pci_bbp_read(rt2x00dev, 4, &r4);
744         rt61pci_bbp_read(rt2x00dev, 77, &r77);
745
746         /*
747          * Configure the RX antenna.
748          */
749         switch (ant->rx) {
750         case ANTENNA_A:
751                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
752                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
753                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
754                 break;
755         case ANTENNA_HW_DIVERSITY:
756                 /*
757                  * FIXME: Antenna selection for the rf 2529 is very confusing
758                  * in the legacy driver. Just default to antenna B until the
759                  * legacy code can be properly translated into rt2x00 code.
760                  */
761         case ANTENNA_B:
762         default:
763                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
764                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
765                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
766                 break;
767         }
768
769         rt61pci_bbp_write(rt2x00dev, 77, r77);
770         rt61pci_bbp_write(rt2x00dev, 3, r3);
771         rt61pci_bbp_write(rt2x00dev, 4, r4);
772 }
773
774 struct antenna_sel {
775         u8 word;
776         /*
777          * value[0] -> non-LNA
778          * value[1] -> LNA
779          */
780         u8 value[2];
781 };
782
783 static const struct antenna_sel antenna_sel_a[] = {
784         { 96,  { 0x58, 0x78 } },
785         { 104, { 0x38, 0x48 } },
786         { 75,  { 0xfe, 0x80 } },
787         { 86,  { 0xfe, 0x80 } },
788         { 88,  { 0xfe, 0x80 } },
789         { 35,  { 0x60, 0x60 } },
790         { 97,  { 0x58, 0x58 } },
791         { 98,  { 0x58, 0x58 } },
792 };
793
794 static const struct antenna_sel antenna_sel_bg[] = {
795         { 96,  { 0x48, 0x68 } },
796         { 104, { 0x2c, 0x3c } },
797         { 75,  { 0xfe, 0x80 } },
798         { 86,  { 0xfe, 0x80 } },
799         { 88,  { 0xfe, 0x80 } },
800         { 35,  { 0x50, 0x50 } },
801         { 97,  { 0x48, 0x48 } },
802         { 98,  { 0x48, 0x48 } },
803 };
804
805 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
806                                struct antenna_setup *ant)
807 {
808         const struct antenna_sel *sel;
809         unsigned int lna;
810         unsigned int i;
811         u32 reg;
812
813         /*
814          * We should never come here because rt2x00lib is supposed
815          * to catch this and send us the correct antenna explicitely.
816          */
817         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
818                ant->tx == ANTENNA_SW_DIVERSITY);
819
820         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
821                 sel = antenna_sel_a;
822                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
823         } else {
824                 sel = antenna_sel_bg;
825                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
826         }
827
828         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
829                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
830
831         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
832
833         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
834                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
835         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
836                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
837
838         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
839
840         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
841             rt2x00_rf(&rt2x00dev->chip, RF5325))
842                 rt61pci_config_antenna_5x(rt2x00dev, ant);
843         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
844                 rt61pci_config_antenna_2x(rt2x00dev, ant);
845         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
846                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
847                         rt61pci_config_antenna_2x(rt2x00dev, ant);
848                 else
849                         rt61pci_config_antenna_2529(rt2x00dev, ant);
850         }
851 }
852
853 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
854                                     struct rt2x00lib_conf *libconf)
855 {
856         u16 eeprom;
857         short lna_gain = 0;
858
859         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
860                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
861                         lna_gain += 14;
862
863                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
864                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
865         } else {
866                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
867                         lna_gain += 14;
868
869                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
870                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
871         }
872
873         rt2x00dev->lna_gain = lna_gain;
874 }
875
876 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
877                                    struct rf_channel *rf, const int txpower)
878 {
879         u8 r3;
880         u8 r94;
881         u8 smart;
882
883         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
884         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
885
886         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
887                   rt2x00_rf(&rt2x00dev->chip, RF2527));
888
889         rt61pci_bbp_read(rt2x00dev, 3, &r3);
890         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
891         rt61pci_bbp_write(rt2x00dev, 3, r3);
892
893         r94 = 6;
894         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
895                 r94 += txpower - MAX_TXPOWER;
896         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
897                 r94 += txpower;
898         rt61pci_bbp_write(rt2x00dev, 94, r94);
899
900         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
901         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
902         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
903         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
904
905         udelay(200);
906
907         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
908         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
909         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
910         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
911
912         udelay(200);
913
914         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
915         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
916         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
917         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
918
919         msleep(1);
920 }
921
922 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
923                                    const int txpower)
924 {
925         struct rf_channel rf;
926
927         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
928         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
929         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
930         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
931
932         rt61pci_config_channel(rt2x00dev, &rf, txpower);
933 }
934
935 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
936                                     struct rt2x00lib_conf *libconf)
937 {
938         u32 reg;
939
940         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
941         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
942                            libconf->conf->long_frame_max_tx_count);
943         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
944                            libconf->conf->short_frame_max_tx_count);
945         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
946 }
947
948 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
949                                 struct rt2x00lib_conf *libconf)
950 {
951         enum dev_state state =
952             (libconf->conf->flags & IEEE80211_CONF_PS) ?
953                 STATE_SLEEP : STATE_AWAKE;
954         u32 reg;
955
956         if (state == STATE_SLEEP) {
957                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
958                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
959                                    libconf->conf->beacon_int - 10);
960                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
961                                    libconf->conf->listen_interval - 1);
962                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
963
964                 /* We must first disable autowake before it can be enabled */
965                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
966                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
967
968                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
969                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
970
971                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
972                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
973                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
974
975                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
976         } else {
977                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
978                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
979                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
980                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
981                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
982                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
983
984                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
985                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
986                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
987
988                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
989         }
990 }
991
992 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
993                            struct rt2x00lib_conf *libconf,
994                            const unsigned int flags)
995 {
996         /* Always recalculate LNA gain before changing configuration */
997         rt61pci_config_lna_gain(rt2x00dev, libconf);
998
999         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1000                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1001                                        libconf->conf->power_level);
1002         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1003             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1004                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1005         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1006                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1007         if (flags & IEEE80211_CONF_CHANGE_PS)
1008                 rt61pci_config_ps(rt2x00dev, libconf);
1009 }
1010
1011 /*
1012  * Link tuning
1013  */
1014 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1015                                struct link_qual *qual)
1016 {
1017         u32 reg;
1018
1019         /*
1020          * Update FCS error count from register.
1021          */
1022         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1023         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1024
1025         /*
1026          * Update False CCA count from register.
1027          */
1028         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1029         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1030 }
1031
1032 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1033                                    struct link_qual *qual, u8 vgc_level)
1034 {
1035         if (qual->vgc_level != vgc_level) {
1036                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1037                 qual->vgc_level = vgc_level;
1038                 qual->vgc_level_reg = vgc_level;
1039         }
1040 }
1041
1042 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1043                                 struct link_qual *qual)
1044 {
1045         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1046 }
1047
1048 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1049                                struct link_qual *qual, const u32 count)
1050 {
1051         u8 up_bound;
1052         u8 low_bound;
1053
1054         /*
1055          * Determine r17 bounds.
1056          */
1057         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1058                 low_bound = 0x28;
1059                 up_bound = 0x48;
1060                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1061                         low_bound += 0x10;
1062                         up_bound += 0x10;
1063                 }
1064         } else {
1065                 low_bound = 0x20;
1066                 up_bound = 0x40;
1067                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1068                         low_bound += 0x10;
1069                         up_bound += 0x10;
1070                 }
1071         }
1072
1073         /*
1074          * If we are not associated, we should go straight to the
1075          * dynamic CCA tuning.
1076          */
1077         if (!rt2x00dev->intf_associated)
1078                 goto dynamic_cca_tune;
1079
1080         /*
1081          * Special big-R17 for very short distance
1082          */
1083         if (qual->rssi >= -35) {
1084                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1085                 return;
1086         }
1087
1088         /*
1089          * Special big-R17 for short distance
1090          */
1091         if (qual->rssi >= -58) {
1092                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1093                 return;
1094         }
1095
1096         /*
1097          * Special big-R17 for middle-short distance
1098          */
1099         if (qual->rssi >= -66) {
1100                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1101                 return;
1102         }
1103
1104         /*
1105          * Special mid-R17 for middle distance
1106          */
1107         if (qual->rssi >= -74) {
1108                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1109                 return;
1110         }
1111
1112         /*
1113          * Special case: Change up_bound based on the rssi.
1114          * Lower up_bound when rssi is weaker then -74 dBm.
1115          */
1116         up_bound -= 2 * (-74 - qual->rssi);
1117         if (low_bound > up_bound)
1118                 up_bound = low_bound;
1119
1120         if (qual->vgc_level > up_bound) {
1121                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1122                 return;
1123         }
1124
1125 dynamic_cca_tune:
1126
1127         /*
1128          * r17 does not yet exceed upper limit, continue and base
1129          * the r17 tuning on the false CCA count.
1130          */
1131         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1132                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1133         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1134                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1135 }
1136
1137 /*
1138  * Firmware functions
1139  */
1140 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1141 {
1142         char *fw_name;
1143
1144         switch (rt2x00dev->chip.rt) {
1145         case RT2561:
1146                 fw_name = FIRMWARE_RT2561;
1147                 break;
1148         case RT2561s:
1149                 fw_name = FIRMWARE_RT2561s;
1150                 break;
1151         case RT2661:
1152                 fw_name = FIRMWARE_RT2661;
1153                 break;
1154         default:
1155                 fw_name = NULL;
1156                 break;
1157         }
1158
1159         return fw_name;
1160 }
1161
1162 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1163                                   const u8 *data, const size_t len)
1164 {
1165         u16 fw_crc;
1166         u16 crc;
1167
1168         /*
1169          * Only support 8kb firmware files.
1170          */
1171         if (len != 8192)
1172                 return FW_BAD_LENGTH;
1173
1174         /*
1175          * The last 2 bytes in the firmware array are the crc checksum itself,
1176          * this means that we should never pass those 2 bytes to the crc
1177          * algorithm.
1178          */
1179         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1180
1181         /*
1182          * Use the crc itu-t algorithm.
1183          */
1184         crc = crc_itu_t(0, data, len - 2);
1185         crc = crc_itu_t_byte(crc, 0);
1186         crc = crc_itu_t_byte(crc, 0);
1187
1188         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1189 }
1190
1191 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1192                                  const u8 *data, const size_t len)
1193 {
1194         int i;
1195         u32 reg;
1196
1197         /*
1198          * Wait for stable hardware.
1199          */
1200         for (i = 0; i < 100; i++) {
1201                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1202                 if (reg)
1203                         break;
1204                 msleep(1);
1205         }
1206
1207         if (!reg) {
1208                 ERROR(rt2x00dev, "Unstable hardware.\n");
1209                 return -EBUSY;
1210         }
1211
1212         /*
1213          * Prepare MCU and mailbox for firmware loading.
1214          */
1215         reg = 0;
1216         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1217         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1218         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1219         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1220         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1221
1222         /*
1223          * Write firmware to device.
1224          */
1225         reg = 0;
1226         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1227         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1228         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1229
1230         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1231                                       data, len);
1232
1233         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1234         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1235
1236         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1237         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1238
1239         for (i = 0; i < 100; i++) {
1240                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1241                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1242                         break;
1243                 msleep(1);
1244         }
1245
1246         if (i == 100) {
1247                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1248                 return -EBUSY;
1249         }
1250
1251         /*
1252          * Hardware needs another millisecond before it is ready.
1253          */
1254         msleep(1);
1255
1256         /*
1257          * Reset MAC and BBP registers.
1258          */
1259         reg = 0;
1260         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1261         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1262         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1263
1264         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1265         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1266         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1267         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268
1269         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1270         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1271         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1272
1273         return 0;
1274 }
1275
1276 /*
1277  * Initialization functions.
1278  */
1279 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1280 {
1281         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1282         u32 word;
1283
1284         if (entry->queue->qid == QID_RX) {
1285                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1286
1287                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1288         } else {
1289                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1290
1291                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1292                         rt2x00_get_field32(word, TXD_W0_VALID));
1293         }
1294 }
1295
1296 static void rt61pci_clear_entry(struct queue_entry *entry)
1297 {
1298         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1299         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1300         u32 word;
1301
1302         if (entry->queue->qid == QID_RX) {
1303                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1304                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1305                                    skbdesc->skb_dma);
1306                 rt2x00_desc_write(entry_priv->desc, 5, word);
1307
1308                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1309                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1310                 rt2x00_desc_write(entry_priv->desc, 0, word);
1311         } else {
1312                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1313                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1314                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1315                 rt2x00_desc_write(entry_priv->desc, 0, word);
1316         }
1317 }
1318
1319 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1320 {
1321         struct queue_entry_priv_pci *entry_priv;
1322         u32 reg;
1323
1324         /*
1325          * Initialize registers.
1326          */
1327         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1328         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1329                            rt2x00dev->tx[0].limit);
1330         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1331                            rt2x00dev->tx[1].limit);
1332         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1333                            rt2x00dev->tx[2].limit);
1334         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1335                            rt2x00dev->tx[3].limit);
1336         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1337
1338         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1339         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1340                            rt2x00dev->tx[0].desc_size / 4);
1341         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1342
1343         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1344         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1345         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1346                            entry_priv->desc_dma);
1347         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1348
1349         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1350         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1351         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1352                            entry_priv->desc_dma);
1353         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1354
1355         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1356         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1357         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1358                            entry_priv->desc_dma);
1359         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1360
1361         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1362         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1363         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1364                            entry_priv->desc_dma);
1365         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1366
1367         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1368         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1369         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1370                            rt2x00dev->rx->desc_size / 4);
1371         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1372         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1373
1374         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1375         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1376         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1377                            entry_priv->desc_dma);
1378         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1379
1380         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1381         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1382         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1383         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1384         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1385         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1386
1387         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1388         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1389         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1390         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1391         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1392         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1393
1394         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1395         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1396         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1397
1398         return 0;
1399 }
1400
1401 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1402 {
1403         u32 reg;
1404
1405         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1406         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1407         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1408         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1409         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1410
1411         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1412         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1413         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1414         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1415         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1416         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1417         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1418         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1419         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1420         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1421
1422         /*
1423          * CCK TXD BBP registers
1424          */
1425         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1426         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1427         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1428         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1429         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1430         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1431         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1432         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1433         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1434         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1435
1436         /*
1437          * OFDM TXD BBP registers
1438          */
1439         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1440         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1441         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1442         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1443         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1444         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1445         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1446         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1447
1448         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1449         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1450         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1451         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1452         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1453         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1454
1455         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1456         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1457         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1458         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1459         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1460         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1461
1462         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1463         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1464         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1465         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1466         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1467         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1468         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1469         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1470
1471         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1472
1473         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1474
1475         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1476         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1477         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1478
1479         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1480
1481         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1482                 return -EBUSY;
1483
1484         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1485
1486         /*
1487          * Invalidate all Shared Keys (SEC_CSR0),
1488          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1489          */
1490         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1491         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1492         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1493
1494         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1495         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1496         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1497         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1498
1499         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1500
1501         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1502
1503         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1504
1505         /*
1506          * Clear all beacons
1507          * For the Beacon base registers we only need to clear
1508          * the first byte since that byte contains the VALID and OWNER
1509          * bits which (when set to 0) will invalidate the entire beacon.
1510          */
1511         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1512         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1513         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1514         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1515
1516         /*
1517          * We must clear the error counters.
1518          * These registers are cleared on read,
1519          * so we may pass a useless variable to store the value.
1520          */
1521         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1522         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1523         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1524
1525         /*
1526          * Reset MAC and BBP registers.
1527          */
1528         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1529         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1530         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1531         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1532
1533         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1534         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1535         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1536         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537
1538         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1539         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1540         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1541
1542         return 0;
1543 }
1544
1545 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1546 {
1547         unsigned int i;
1548         u8 value;
1549
1550         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1551                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1552                 if ((value != 0xff) && (value != 0x00))
1553                         return 0;
1554                 udelay(REGISTER_BUSY_DELAY);
1555         }
1556
1557         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1558         return -EACCES;
1559 }
1560
1561 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1562 {
1563         unsigned int i;
1564         u16 eeprom;
1565         u8 reg_id;
1566         u8 value;
1567
1568         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1569                 return -EACCES;
1570
1571         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1572         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1573         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1574         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1575         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1576         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1577         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1578         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1579         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1580         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1581         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1582         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1583         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1584         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1585         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1586         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1587         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1588         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1589         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1590         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1591         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1592         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1593         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1594         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1595
1596         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1597                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1598
1599                 if (eeprom != 0xffff && eeprom != 0x0000) {
1600                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1601                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1602                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1603                 }
1604         }
1605
1606         return 0;
1607 }
1608
1609 /*
1610  * Device state switch handlers.
1611  */
1612 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1613                               enum dev_state state)
1614 {
1615         u32 reg;
1616
1617         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1618         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1619                            (state == STATE_RADIO_RX_OFF) ||
1620                            (state == STATE_RADIO_RX_OFF_LINK));
1621         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1622 }
1623
1624 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1625                                enum dev_state state)
1626 {
1627         int mask = (state == STATE_RADIO_IRQ_OFF);
1628         u32 reg;
1629
1630         /*
1631          * When interrupts are being enabled, the interrupt registers
1632          * should clear the register to assure a clean state.
1633          */
1634         if (state == STATE_RADIO_IRQ_ON) {
1635                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1636                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1637
1638                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1639                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1640         }
1641
1642         /*
1643          * Only toggle the interrupts bits we are going to use.
1644          * Non-checked interrupt bits are disabled by default.
1645          */
1646         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1647         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1648         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1649         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1650         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1651         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1652
1653         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1654         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1655         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1656         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1657         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1658         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1659         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1660         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1661         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1662         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1663 }
1664
1665 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1666 {
1667         u32 reg;
1668
1669         /*
1670          * Initialize all registers.
1671          */
1672         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1673                      rt61pci_init_registers(rt2x00dev) ||
1674                      rt61pci_init_bbp(rt2x00dev)))
1675                 return -EIO;
1676
1677         /*
1678          * Enable RX.
1679          */
1680         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1681         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1682         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1683
1684         return 0;
1685 }
1686
1687 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1688 {
1689         /*
1690          * Disable power
1691          */
1692         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1693 }
1694
1695 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1696 {
1697         u32 reg;
1698         unsigned int i;
1699         char put_to_sleep;
1700
1701         put_to_sleep = (state != STATE_AWAKE);
1702
1703         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1704         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1705         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1706         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1707
1708         /*
1709          * Device is not guaranteed to be in the requested state yet.
1710          * We must wait until the register indicates that the
1711          * device has entered the correct state.
1712          */
1713         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1714                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1715                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1716                 if (state == !put_to_sleep)
1717                         return 0;
1718                 msleep(10);
1719         }
1720
1721         return -EBUSY;
1722 }
1723
1724 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1725                                     enum dev_state state)
1726 {
1727         int retval = 0;
1728
1729         switch (state) {
1730         case STATE_RADIO_ON:
1731                 retval = rt61pci_enable_radio(rt2x00dev);
1732                 break;
1733         case STATE_RADIO_OFF:
1734                 rt61pci_disable_radio(rt2x00dev);
1735                 break;
1736         case STATE_RADIO_RX_ON:
1737         case STATE_RADIO_RX_ON_LINK:
1738         case STATE_RADIO_RX_OFF:
1739         case STATE_RADIO_RX_OFF_LINK:
1740                 rt61pci_toggle_rx(rt2x00dev, state);
1741                 break;
1742         case STATE_RADIO_IRQ_ON:
1743         case STATE_RADIO_IRQ_OFF:
1744                 rt61pci_toggle_irq(rt2x00dev, state);
1745                 break;
1746         case STATE_DEEP_SLEEP:
1747         case STATE_SLEEP:
1748         case STATE_STANDBY:
1749         case STATE_AWAKE:
1750                 retval = rt61pci_set_state(rt2x00dev, state);
1751                 break;
1752         default:
1753                 retval = -ENOTSUPP;
1754                 break;
1755         }
1756
1757         if (unlikely(retval))
1758                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1759                       state, retval);
1760
1761         return retval;
1762 }
1763
1764 /*
1765  * TX descriptor initialization
1766  */
1767 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1768                                   struct sk_buff *skb,
1769                                   struct txentry_desc *txdesc)
1770 {
1771         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1772         __le32 *txd = skbdesc->desc;
1773         u32 word;
1774
1775         /*
1776          * Start writing the descriptor words.
1777          */
1778         rt2x00_desc_read(txd, 1, &word);
1779         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1780         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1781         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1782         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1783         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1784         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1785                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1786         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1787         rt2x00_desc_write(txd, 1, word);
1788
1789         rt2x00_desc_read(txd, 2, &word);
1790         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1791         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1792         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1793         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1794         rt2x00_desc_write(txd, 2, word);
1795
1796         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1797                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1798                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1799         }
1800
1801         rt2x00_desc_read(txd, 5, &word);
1802         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1803         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1804                            skbdesc->entry->entry_idx);
1805         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1806                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1807         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1808         rt2x00_desc_write(txd, 5, word);
1809
1810         rt2x00_desc_read(txd, 6, &word);
1811         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1812                            skbdesc->skb_dma);
1813         rt2x00_desc_write(txd, 6, word);
1814
1815         if (skbdesc->desc_len > TXINFO_SIZE) {
1816                 rt2x00_desc_read(txd, 11, &word);
1817                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1818                 rt2x00_desc_write(txd, 11, word);
1819         }
1820
1821         rt2x00_desc_read(txd, 0, &word);
1822         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1823         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1824         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1825                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1826         rt2x00_set_field32(&word, TXD_W0_ACK,
1827                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1828         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1829                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1830         rt2x00_set_field32(&word, TXD_W0_OFDM,
1831                            (txdesc->rate_mode == RATE_MODE_OFDM));
1832         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1833         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1834                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1835         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1836                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1837         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1838                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1839         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1840         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1841         rt2x00_set_field32(&word, TXD_W0_BURST,
1842                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1843         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1844         rt2x00_desc_write(txd, 0, word);
1845 }
1846
1847 /*
1848  * TX data initialization
1849  */
1850 static void rt61pci_write_beacon(struct queue_entry *entry)
1851 {
1852         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1853         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1854         unsigned int beacon_base;
1855         u32 reg;
1856
1857         /*
1858          * Disable beaconing while we are reloading the beacon data,
1859          * otherwise we might be sending out invalid data.
1860          */
1861         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1862         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1863         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1864         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1865         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1866
1867         /*
1868          * Write entire beacon with descriptor to register.
1869          */
1870         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1871         rt2x00pci_register_multiwrite(rt2x00dev,
1872                                       beacon_base,
1873                                       skbdesc->desc, skbdesc->desc_len);
1874         rt2x00pci_register_multiwrite(rt2x00dev,
1875                                       beacon_base + skbdesc->desc_len,
1876                                       entry->skb->data, entry->skb->len);
1877
1878         /*
1879          * Clean up beacon skb.
1880          */
1881         dev_kfree_skb_any(entry->skb);
1882         entry->skb = NULL;
1883 }
1884
1885 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1886                                   const enum data_queue_qid queue)
1887 {
1888         u32 reg;
1889
1890         if (queue == QID_BEACON) {
1891                 /*
1892                  * For Wi-Fi faily generated beacons between participating
1893                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1894                  */
1895                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1896
1897                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1898                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1899                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1900                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1901                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1902                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1903                 }
1904                 return;
1905         }
1906
1907         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1908         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1909         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1910         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1911         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1912         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1913 }
1914
1915 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1916                                   const enum data_queue_qid qid)
1917 {
1918         u32 reg;
1919
1920         if (qid == QID_BEACON) {
1921                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1922                 return;
1923         }
1924
1925         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1926         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1927         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1928         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1929         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1930         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1931 }
1932
1933 /*
1934  * RX control handlers
1935  */
1936 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1937 {
1938         u8 offset = rt2x00dev->lna_gain;
1939         u8 lna;
1940
1941         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1942         switch (lna) {
1943         case 3:
1944                 offset += 90;
1945                 break;
1946         case 2:
1947                 offset += 74;
1948                 break;
1949         case 1:
1950                 offset += 64;
1951                 break;
1952         default:
1953                 return 0;
1954         }
1955
1956         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1957                 if (lna == 3 || lna == 2)
1958                         offset += 10;
1959         }
1960
1961         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1962 }
1963
1964 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1965                                 struct rxdone_entry_desc *rxdesc)
1966 {
1967         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1968         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1969         u32 word0;
1970         u32 word1;
1971
1972         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1973         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1974
1975         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1976                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1977
1978         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1979                 rxdesc->cipher =
1980                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1981                 rxdesc->cipher_status =
1982                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1983         }
1984
1985         if (rxdesc->cipher != CIPHER_NONE) {
1986                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1987                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1988                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1989
1990                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1991                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1992
1993                 /*
1994                  * Hardware has stripped IV/EIV data from 802.11 frame during
1995                  * decryption. It has provided the data seperately but rt2x00lib
1996                  * should decide if it should be reinserted.
1997                  */
1998                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1999
2000                 /*
2001                  * FIXME: Legacy driver indicates that the frame does
2002                  * contain the Michael Mic. Unfortunately, in rt2x00
2003                  * the MIC seems to be missing completely...
2004                  */
2005                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2006
2007                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2008                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2009                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2010                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2011         }
2012
2013         /*
2014          * Obtain the status about this packet.
2015          * When frame was received with an OFDM bitrate,
2016          * the signal is the PLCP value. If it was received with
2017          * a CCK bitrate the signal is the rate in 100kbit/s.
2018          */
2019         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2020         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2021         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2022
2023         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2024                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2025         else
2026                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2027         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2028                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2029 }
2030
2031 /*
2032  * Interrupt functions.
2033  */
2034 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2035 {
2036         struct data_queue *queue;
2037         struct queue_entry *entry;
2038         struct queue_entry *entry_done;
2039         struct queue_entry_priv_pci *entry_priv;
2040         struct txdone_entry_desc txdesc;
2041         u32 word;
2042         u32 reg;
2043         u32 old_reg;
2044         int type;
2045         int index;
2046
2047         /*
2048          * During each loop we will compare the freshly read
2049          * STA_CSR4 register value with the value read from
2050          * the previous loop. If the 2 values are equal then
2051          * we should stop processing because the chance it
2052          * quite big that the device has been unplugged and
2053          * we risk going into an endless loop.
2054          */
2055         old_reg = 0;
2056
2057         while (1) {
2058                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2059                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2060                         break;
2061
2062                 if (old_reg == reg)
2063                         break;
2064                 old_reg = reg;
2065
2066                 /*
2067                  * Skip this entry when it contains an invalid
2068                  * queue identication number.
2069                  */
2070                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2071                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2072                 if (unlikely(!queue))
2073                         continue;
2074
2075                 /*
2076                  * Skip this entry when it contains an invalid
2077                  * index number.
2078                  */
2079                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2080                 if (unlikely(index >= queue->limit))
2081                         continue;
2082
2083                 entry = &queue->entries[index];
2084                 entry_priv = entry->priv_data;
2085                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2086
2087                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2088                     !rt2x00_get_field32(word, TXD_W0_VALID))
2089                         return;
2090
2091                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2092                 while (entry != entry_done) {
2093                         /* Catch up.
2094                          * Just report any entries we missed as failed.
2095                          */
2096                         WARNING(rt2x00dev,
2097                                 "TX status report missed for entry %d\n",
2098                                 entry_done->entry_idx);
2099
2100                         txdesc.flags = 0;
2101                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2102                         txdesc.retry = 0;
2103
2104                         rt2x00lib_txdone(entry_done, &txdesc);
2105                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2106                 }
2107
2108                 /*
2109                  * Obtain the status about this packet.
2110                  */
2111                 txdesc.flags = 0;
2112                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2113                 case 0: /* Success, maybe with retry */
2114                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2115                         break;
2116                 case 6: /* Failure, excessive retries */
2117                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2118                         /* Don't break, this is a failed frame! */
2119                 default: /* Failure */
2120                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2121                 }
2122                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2123
2124                 rt2x00lib_txdone(entry, &txdesc);
2125         }
2126 }
2127
2128 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2129 {
2130         struct rt2x00_dev *rt2x00dev = dev_instance;
2131         u32 reg_mcu;
2132         u32 reg;
2133
2134         /*
2135          * Get the interrupt sources & saved to local variable.
2136          * Write register value back to clear pending interrupts.
2137          */
2138         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2139         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2140
2141         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2142         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2143
2144         if (!reg && !reg_mcu)
2145                 return IRQ_NONE;
2146
2147         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2148                 return IRQ_HANDLED;
2149
2150         /*
2151          * Handle interrupts, walk through all bits
2152          * and run the tasks, the bits are checked in order of
2153          * priority.
2154          */
2155
2156         /*
2157          * 1 - Rx ring done interrupt.
2158          */
2159         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2160                 rt2x00pci_rxdone(rt2x00dev);
2161
2162         /*
2163          * 2 - Tx ring done interrupt.
2164          */
2165         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2166                 rt61pci_txdone(rt2x00dev);
2167
2168         /*
2169          * 3 - Handle MCU command done.
2170          */
2171         if (reg_mcu)
2172                 rt2x00pci_register_write(rt2x00dev,
2173                                          M2H_CMD_DONE_CSR, 0xffffffff);
2174
2175         return IRQ_HANDLED;
2176 }
2177
2178 /*
2179  * Device probe functions.
2180  */
2181 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2182 {
2183         struct eeprom_93cx6 eeprom;
2184         u32 reg;
2185         u16 word;
2186         u8 *mac;
2187         s8 value;
2188
2189         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2190
2191         eeprom.data = rt2x00dev;
2192         eeprom.register_read = rt61pci_eepromregister_read;
2193         eeprom.register_write = rt61pci_eepromregister_write;
2194         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2195             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2196         eeprom.reg_data_in = 0;
2197         eeprom.reg_data_out = 0;
2198         eeprom.reg_data_clock = 0;
2199         eeprom.reg_chip_select = 0;
2200
2201         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2202                                EEPROM_SIZE / sizeof(u16));
2203
2204         /*
2205          * Start validation of the data that has been read.
2206          */
2207         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2208         if (!is_valid_ether_addr(mac)) {
2209                 random_ether_addr(mac);
2210                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2211         }
2212
2213         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2214         if (word == 0xffff) {
2215                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2216                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2217                                    ANTENNA_B);
2218                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2219                                    ANTENNA_B);
2220                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2221                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2224                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2225                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2226         }
2227
2228         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2229         if (word == 0xffff) {
2230                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2231                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2232                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2233                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2234                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2235                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2236                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2237                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2238                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2239         }
2240
2241         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2242         if (word == 0xffff) {
2243                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2244                                    LED_MODE_DEFAULT);
2245                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2246                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2247         }
2248
2249         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2250         if (word == 0xffff) {
2251                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2252                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2253                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2254                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2255         }
2256
2257         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2258         if (word == 0xffff) {
2259                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2260                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2261                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2262                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2263         } else {
2264                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2265                 if (value < -10 || value > 10)
2266                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2267                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2268                 if (value < -10 || value > 10)
2269                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2270                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2271         }
2272
2273         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2274         if (word == 0xffff) {
2275                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2276                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2277                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2278                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2279         } else {
2280                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2281                 if (value < -10 || value > 10)
2282                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2283                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2284                 if (value < -10 || value > 10)
2285                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2286                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2287         }
2288
2289         return 0;
2290 }
2291
2292 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2293 {
2294         u32 reg;
2295         u16 value;
2296         u16 eeprom;
2297
2298         /*
2299          * Read EEPROM word for configuration.
2300          */
2301         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2302
2303         /*
2304          * Identify RF chipset.
2305          */
2306         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2307         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2308         rt2x00_set_chip_rf(rt2x00dev, value, reg);
2309
2310         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2311             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2312             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2313             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2314                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2315                 return -ENODEV;
2316         }
2317
2318         /*
2319          * Determine number of antenna's.
2320          */
2321         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2322                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2323
2324         /*
2325          * Identify default antenna configuration.
2326          */
2327         rt2x00dev->default_ant.tx =
2328             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2329         rt2x00dev->default_ant.rx =
2330             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2331
2332         /*
2333          * Read the Frame type.
2334          */
2335         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2336                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2337
2338         /*
2339          * Detect if this device has an hardware controlled radio.
2340          */
2341 #ifdef CONFIG_RT2X00_LIB_RFKILL
2342         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2343                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2344 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2345
2346         /*
2347          * Read frequency offset and RF programming sequence.
2348          */
2349         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2350         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2351                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2352
2353         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2354
2355         /*
2356          * Read external LNA informations.
2357          */
2358         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2359
2360         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2361                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2362         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2363                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2364
2365         /*
2366          * When working with a RF2529 chip without double antenna
2367          * the antenna settings should be gathered from the NIC
2368          * eeprom word.
2369          */
2370         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2371             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2372                 rt2x00dev->default_ant.rx =
2373                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2374                 rt2x00dev->default_ant.tx =
2375                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2376
2377                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2378                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2379                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2380                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2381         }
2382
2383         /*
2384          * Store led settings, for correct led behaviour.
2385          * If the eeprom value is invalid,
2386          * switch to default led mode.
2387          */
2388 #ifdef CONFIG_RT2X00_LIB_LEDS
2389         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2390         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2391
2392         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2393         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2394         if (value == LED_MODE_SIGNAL_STRENGTH)
2395                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2396                                  LED_TYPE_QUALITY);
2397
2398         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2399         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2400                            rt2x00_get_field16(eeprom,
2401                                               EEPROM_LED_POLARITY_GPIO_0));
2402         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2403                            rt2x00_get_field16(eeprom,
2404                                               EEPROM_LED_POLARITY_GPIO_1));
2405         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2406                            rt2x00_get_field16(eeprom,
2407                                               EEPROM_LED_POLARITY_GPIO_2));
2408         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2409                            rt2x00_get_field16(eeprom,
2410                                               EEPROM_LED_POLARITY_GPIO_3));
2411         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2412                            rt2x00_get_field16(eeprom,
2413                                               EEPROM_LED_POLARITY_GPIO_4));
2414         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2415                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2416         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2417                            rt2x00_get_field16(eeprom,
2418                                               EEPROM_LED_POLARITY_RDY_G));
2419         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2420                            rt2x00_get_field16(eeprom,
2421                                               EEPROM_LED_POLARITY_RDY_A));
2422 #endif /* CONFIG_RT2X00_LIB_LEDS */
2423
2424         return 0;
2425 }
2426
2427 /*
2428  * RF value list for RF5225 & RF5325
2429  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2430  */
2431 static const struct rf_channel rf_vals_noseq[] = {
2432         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2433         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2434         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2435         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2436         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2437         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2438         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2439         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2440         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2441         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2442         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2443         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2444         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2445         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2446
2447         /* 802.11 UNI / HyperLan 2 */
2448         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2449         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2450         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2451         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2452         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2453         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2454         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2455         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2456
2457         /* 802.11 HyperLan 2 */
2458         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2459         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2460         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2461         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2462         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2463         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2464         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2465         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2466         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2467         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2468
2469         /* 802.11 UNII */
2470         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2471         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2472         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2473         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2474         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2475         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2476
2477         /* MMAC(Japan)J52 ch 34,38,42,46 */
2478         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2479         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2480         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2481         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2482 };
2483
2484 /*
2485  * RF value list for RF5225 & RF5325
2486  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2487  */
2488 static const struct rf_channel rf_vals_seq[] = {
2489         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2490         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2491         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2492         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2493         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2494         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2495         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2496         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2497         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2498         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2499         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2500         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2501         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2502         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2503
2504         /* 802.11 UNI / HyperLan 2 */
2505         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2506         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2507         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2508         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2509         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2510         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2511         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2512         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2513
2514         /* 802.11 HyperLan 2 */
2515         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2516         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2517         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2518         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2519         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2520         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2521         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2522         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2523         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2524         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2525
2526         /* 802.11 UNII */
2527         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2528         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2529         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2530         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2531         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2532         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2533
2534         /* MMAC(Japan)J52 ch 34,38,42,46 */
2535         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2536         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2537         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2538         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2539 };
2540
2541 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2542 {
2543         struct hw_mode_spec *spec = &rt2x00dev->spec;
2544         struct channel_info *info;
2545         char *tx_power;
2546         unsigned int i;
2547
2548         /*
2549          * Initialize all hw fields.
2550          */
2551         rt2x00dev->hw->flags =
2552             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2553             IEEE80211_HW_SIGNAL_DBM |
2554             IEEE80211_HW_SUPPORTS_PS |
2555             IEEE80211_HW_PS_NULLFUNC_STACK;
2556         rt2x00dev->hw->extra_tx_headroom = 0;
2557
2558         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2559         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2560                                 rt2x00_eeprom_addr(rt2x00dev,
2561                                                    EEPROM_MAC_ADDR_0));
2562
2563         /*
2564          * Initialize hw_mode information.
2565          */
2566         spec->supported_bands = SUPPORT_BAND_2GHZ;
2567         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2568
2569         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2570                 spec->num_channels = 14;
2571                 spec->channels = rf_vals_noseq;
2572         } else {
2573                 spec->num_channels = 14;
2574                 spec->channels = rf_vals_seq;
2575         }
2576
2577         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2578             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2579                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2580                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2581         }
2582
2583         /*
2584          * Create channel information array
2585          */
2586         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2587         if (!info)
2588                 return -ENOMEM;
2589
2590         spec->channels_info = info;
2591
2592         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2593         for (i = 0; i < 14; i++)
2594                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2595
2596         if (spec->num_channels > 14) {
2597                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2598                 for (i = 14; i < spec->num_channels; i++)
2599                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2600         }
2601
2602         return 0;
2603 }
2604
2605 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2606 {
2607         int retval;
2608
2609         /*
2610          * Allocate eeprom data.
2611          */
2612         retval = rt61pci_validate_eeprom(rt2x00dev);
2613         if (retval)
2614                 return retval;
2615
2616         retval = rt61pci_init_eeprom(rt2x00dev);
2617         if (retval)
2618                 return retval;
2619
2620         /*
2621          * Initialize hw specifications.
2622          */
2623         retval = rt61pci_probe_hw_mode(rt2x00dev);
2624         if (retval)
2625                 return retval;
2626
2627         /*
2628          * This device requires firmware and DMA mapped skbs.
2629          */
2630         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2631         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2632         if (!modparam_nohwcrypt)
2633                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2634
2635         /*
2636          * Set the rssi offset.
2637          */
2638         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2639
2640         return 0;
2641 }
2642
2643 /*
2644  * IEEE80211 stack callback functions.
2645  */
2646 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2647                            const struct ieee80211_tx_queue_params *params)
2648 {
2649         struct rt2x00_dev *rt2x00dev = hw->priv;
2650         struct data_queue *queue;
2651         struct rt2x00_field32 field;
2652         int retval;
2653         u32 reg;
2654         u32 offset;
2655
2656         /*
2657          * First pass the configuration through rt2x00lib, that will
2658          * update the queue settings and validate the input. After that
2659          * we are free to update the registers based on the value
2660          * in the queue parameter.
2661          */
2662         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2663         if (retval)
2664                 return retval;
2665
2666         /*
2667          * We only need to perform additional register initialization
2668          * for WMM queues/
2669          */
2670         if (queue_idx >= 4)
2671                 return 0;
2672
2673         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2674
2675         /* Update WMM TXOP register */
2676         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2677         field.bit_offset = (queue_idx & 1) * 16;
2678         field.bit_mask = 0xffff << field.bit_offset;
2679
2680         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2681         rt2x00_set_field32(&reg, field, queue->txop);
2682         rt2x00pci_register_write(rt2x00dev, offset, reg);
2683
2684         /* Update WMM registers */
2685         field.bit_offset = queue_idx * 4;
2686         field.bit_mask = 0xf << field.bit_offset;
2687
2688         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2689         rt2x00_set_field32(&reg, field, queue->aifs);
2690         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2691
2692         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2693         rt2x00_set_field32(&reg, field, queue->cw_min);
2694         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2695
2696         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2697         rt2x00_set_field32(&reg, field, queue->cw_max);
2698         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2699
2700         return 0;
2701 }
2702
2703 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2704 {
2705         struct rt2x00_dev *rt2x00dev = hw->priv;
2706         u64 tsf;
2707         u32 reg;
2708
2709         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2710         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2711         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2712         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2713
2714         return tsf;
2715 }
2716
2717 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2718         .tx                     = rt2x00mac_tx,
2719         .start                  = rt2x00mac_start,
2720         .stop                   = rt2x00mac_stop,
2721         .add_interface          = rt2x00mac_add_interface,
2722         .remove_interface       = rt2x00mac_remove_interface,
2723         .config                 = rt2x00mac_config,
2724         .configure_filter       = rt2x00mac_configure_filter,
2725         .set_key                = rt2x00mac_set_key,
2726         .get_stats              = rt2x00mac_get_stats,
2727         .bss_info_changed       = rt2x00mac_bss_info_changed,
2728         .conf_tx                = rt61pci_conf_tx,
2729         .get_tx_stats           = rt2x00mac_get_tx_stats,
2730         .get_tsf                = rt61pci_get_tsf,
2731 };
2732
2733 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2734         .irq_handler            = rt61pci_interrupt,
2735         .probe_hw               = rt61pci_probe_hw,
2736         .get_firmware_name      = rt61pci_get_firmware_name,
2737         .check_firmware         = rt61pci_check_firmware,
2738         .load_firmware          = rt61pci_load_firmware,
2739         .initialize             = rt2x00pci_initialize,
2740         .uninitialize           = rt2x00pci_uninitialize,
2741         .get_entry_state        = rt61pci_get_entry_state,
2742         .clear_entry            = rt61pci_clear_entry,
2743         .set_device_state       = rt61pci_set_device_state,
2744         .rfkill_poll            = rt61pci_rfkill_poll,
2745         .link_stats             = rt61pci_link_stats,
2746         .reset_tuner            = rt61pci_reset_tuner,
2747         .link_tuner             = rt61pci_link_tuner,
2748         .write_tx_desc          = rt61pci_write_tx_desc,
2749         .write_tx_data          = rt2x00pci_write_tx_data,
2750         .write_beacon           = rt61pci_write_beacon,
2751         .kick_tx_queue          = rt61pci_kick_tx_queue,
2752         .kill_tx_queue          = rt61pci_kill_tx_queue,
2753         .fill_rxdone            = rt61pci_fill_rxdone,
2754         .config_shared_key      = rt61pci_config_shared_key,
2755         .config_pairwise_key    = rt61pci_config_pairwise_key,
2756         .config_filter          = rt61pci_config_filter,
2757         .config_intf            = rt61pci_config_intf,
2758         .config_erp             = rt61pci_config_erp,
2759         .config_ant             = rt61pci_config_ant,
2760         .config                 = rt61pci_config,
2761 };
2762
2763 static const struct data_queue_desc rt61pci_queue_rx = {
2764         .entry_num              = RX_ENTRIES,
2765         .data_size              = DATA_FRAME_SIZE,
2766         .desc_size              = RXD_DESC_SIZE,
2767         .priv_size              = sizeof(struct queue_entry_priv_pci),
2768 };
2769
2770 static const struct data_queue_desc rt61pci_queue_tx = {
2771         .entry_num              = TX_ENTRIES,
2772         .data_size              = DATA_FRAME_SIZE,
2773         .desc_size              = TXD_DESC_SIZE,
2774         .priv_size              = sizeof(struct queue_entry_priv_pci),
2775 };
2776
2777 static const struct data_queue_desc rt61pci_queue_bcn = {
2778         .entry_num              = 4 * BEACON_ENTRIES,
2779         .data_size              = 0, /* No DMA required for beacons */
2780         .desc_size              = TXINFO_SIZE,
2781         .priv_size              = sizeof(struct queue_entry_priv_pci),
2782 };
2783
2784 static const struct rt2x00_ops rt61pci_ops = {
2785         .name           = KBUILD_MODNAME,
2786         .max_sta_intf   = 1,
2787         .max_ap_intf    = 4,
2788         .eeprom_size    = EEPROM_SIZE,
2789         .rf_size        = RF_SIZE,
2790         .tx_queues      = NUM_TX_QUEUES,
2791         .rx             = &rt61pci_queue_rx,
2792         .tx             = &rt61pci_queue_tx,
2793         .bcn            = &rt61pci_queue_bcn,
2794         .lib            = &rt61pci_rt2x00_ops,
2795         .hw             = &rt61pci_mac80211_ops,
2796 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2797         .debugfs        = &rt61pci_rt2x00debug,
2798 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2799 };
2800
2801 /*
2802  * RT61pci module information.
2803  */
2804 static struct pci_device_id rt61pci_device_table[] = {
2805         /* RT2561s */
2806         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2807         /* RT2561 v2 */
2808         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2809         /* RT2661 */
2810         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2811         { 0, }
2812 };
2813
2814 MODULE_AUTHOR(DRV_PROJECT);
2815 MODULE_VERSION(DRV_VERSION);
2816 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2817 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2818                         "PCI & PCMCIA chipset based cards");
2819 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2820 MODULE_FIRMWARE(FIRMWARE_RT2561);
2821 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2822 MODULE_FIRMWARE(FIRMWARE_RT2661);
2823 MODULE_LICENSE("GPL");
2824
2825 static struct pci_driver rt61pci_driver = {
2826         .name           = KBUILD_MODNAME,
2827         .id_table       = rt61pci_device_table,
2828         .probe          = rt2x00pci_probe,
2829         .remove         = __devexit_p(rt2x00pci_remove),
2830         .suspend        = rt2x00pci_suspend,
2831         .resume         = rt2x00pci_resume,
2832 };
2833
2834 static int __init rt61pci_init(void)
2835 {
2836         return pci_register_driver(&rt61pci_driver);
2837 }
2838
2839 static void __exit rt61pci_exit(void)
2840 {
2841         pci_unregister_driver(&rt61pci_driver);
2842 }
2843
2844 module_init(rt61pci_init);
2845 module_exit(rt61pci_exit);