Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/linville/wireles...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34                                         struct queue_entry *entry)
35 {
36         unsigned int frame_size;
37         unsigned int reserved_size;
38         struct sk_buff *skb;
39         struct skb_frame_desc *skbdesc;
40
41         /*
42          * The frame size includes descriptor size, because the
43          * hardware directly receive the frame into the skbuffer.
44          */
45         frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47         /*
48          * Reserve a few bytes extra headroom to allow drivers some moving
49          * space (e.g. for alignment), while keeping the skb aligned.
50          */
51         reserved_size = 8;
52
53         /*
54          * Allocate skbuffer.
55          */
56         skb = dev_alloc_skb(frame_size + reserved_size);
57         if (!skb)
58                 return NULL;
59
60         skb_reserve(skb, reserved_size);
61         skb_put(skb, frame_size);
62
63         /*
64          * Populate skbdesc.
65          */
66         skbdesc = get_skb_frame_desc(skb);
67         memset(skbdesc, 0, sizeof(*skbdesc));
68         skbdesc->entry = entry;
69
70         if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
71                 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
72                                                   skb->data,
73                                                   skb->len,
74                                                   DMA_FROM_DEVICE);
75                 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
76         }
77
78         return skb;
79 }
80
81 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
82 {
83         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
84
85         skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
86                                           DMA_TO_DEVICE);
87         skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
88 }
89 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
90
91 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
92 {
93         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
94
95         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
96                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
97                                  DMA_FROM_DEVICE);
98                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
99         }
100
101         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
102                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
103                                  DMA_TO_DEVICE);
104                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
105         }
106 }
107
108 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
109 {
110         rt2x00queue_unmap_skb(rt2x00dev, skb);
111         dev_kfree_skb_any(skb);
112 }
113
114 void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
115                                       struct txentry_desc *txdesc)
116 {
117         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
118         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
119         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
120         struct ieee80211_rate *rate =
121             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
122         const struct rt2x00_rate *hwrate;
123         unsigned int data_length;
124         unsigned int duration;
125         unsigned int residual;
126
127         memset(txdesc, 0, sizeof(*txdesc));
128
129         /*
130          * Initialize information from queue
131          */
132         txdesc->queue = entry->queue->qid;
133         txdesc->cw_min = entry->queue->cw_min;
134         txdesc->cw_max = entry->queue->cw_max;
135         txdesc->aifs = entry->queue->aifs;
136
137         /* Data length should be extended with 4 bytes for CRC */
138         data_length = entry->skb->len + 4;
139
140         /*
141          * Check whether this frame is to be acked.
142          */
143         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
144                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
145
146         /*
147          * Check if this is a RTS/CTS frame
148          */
149         if (ieee80211_is_rts(hdr->frame_control) ||
150             ieee80211_is_cts(hdr->frame_control)) {
151                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
152                 if (ieee80211_is_rts(hdr->frame_control))
153                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
154                 else
155                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
156                 if (tx_info->control.rts_cts_rate_idx >= 0)
157                         rate =
158                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
159         }
160
161         /*
162          * Determine retry information.
163          */
164         txdesc->retry_limit = tx_info->control.retry_limit;
165         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
166                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
167
168         /*
169          * Check if more fragments are pending
170          */
171         if (ieee80211_has_morefrags(hdr->frame_control)) {
172                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
173                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
174         }
175
176         /*
177          * Beacons and probe responses require the tsf timestamp
178          * to be inserted into the frame.
179          */
180         if (ieee80211_is_beacon(hdr->frame_control) ||
181             ieee80211_is_probe_resp(hdr->frame_control))
182                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
183
184         /*
185          * Determine with what IFS priority this frame should be send.
186          * Set ifs to IFS_SIFS when the this is not the first fragment,
187          * or this fragment came after RTS/CTS.
188          */
189         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
190                 txdesc->ifs = IFS_SIFS;
191         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
192                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
193                 txdesc->ifs = IFS_BACKOFF;
194         } else {
195                 txdesc->ifs = IFS_SIFS;
196         }
197
198         /*
199          * PLCP setup
200          * Length calculation depends on OFDM/CCK rate.
201          */
202         hwrate = rt2x00_get_rate(rate->hw_value);
203         txdesc->signal = hwrate->plcp;
204         txdesc->service = 0x04;
205
206         if (hwrate->flags & DEV_RATE_OFDM) {
207                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
208
209                 txdesc->length_high = (data_length >> 6) & 0x3f;
210                 txdesc->length_low = data_length & 0x3f;
211         } else {
212                 /*
213                  * Convert length to microseconds.
214                  */
215                 residual = get_duration_res(data_length, hwrate->bitrate);
216                 duration = get_duration(data_length, hwrate->bitrate);
217
218                 if (residual != 0) {
219                         duration++;
220
221                         /*
222                          * Check if we need to set the Length Extension
223                          */
224                         if (hwrate->bitrate == 110 && residual <= 30)
225                                 txdesc->service |= 0x80;
226                 }
227
228                 txdesc->length_high = (duration >> 8) & 0xff;
229                 txdesc->length_low = duration & 0xff;
230
231                 /*
232                  * When preamble is enabled we should set the
233                  * preamble bit for the signal.
234                  */
235                 if (rt2x00_get_rate_preamble(rate->hw_value))
236                         txdesc->signal |= 0x08;
237         }
238 }
239 EXPORT_SYMBOL_GPL(rt2x00queue_create_tx_descriptor);
240
241 void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
242                                      struct txentry_desc *txdesc)
243 {
244         struct data_queue *queue = entry->queue;
245         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
246
247         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
248
249         /*
250          * All processing on the frame has been completed, this means
251          * it is now ready to be dumped to userspace through debugfs.
252          */
253         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
254
255         /*
256          * Check if we need to kick the queue, there are however a few rules
257          *      1) Don't kick beacon queue
258          *      2) Don't kick unless this is the last in frame in a burst.
259          *         When the burst flag is set, this frame is always followed
260          *         by another frame which in some way are related to eachother.
261          *         This is true for fragments, RTS or CTS-to-self frames.
262          *      3) Rule 2 can be broken when the available entries
263          *         in the queue are less then a certain threshold.
264          */
265         if (entry->queue->qid == QID_BEACON)
266                 return;
267
268         if (rt2x00queue_threshold(queue) ||
269             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
270                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
271 }
272 EXPORT_SYMBOL_GPL(rt2x00queue_write_tx_descriptor);
273
274 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
275 {
276         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
277         struct txentry_desc txdesc;
278         struct skb_frame_desc *skbdesc;
279
280         if (unlikely(rt2x00queue_full(queue)))
281                 return -EINVAL;
282
283         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
284                 ERROR(queue->rt2x00dev,
285                       "Arrived at non-free entry in the non-full queue %d.\n"
286                       "Please file bug report to %s.\n",
287                       queue->qid, DRV_PROJECT);
288                 return -EINVAL;
289         }
290
291         /*
292          * Copy all TX descriptor information into txdesc,
293          * after that we are free to use the skb->cb array
294          * for our information.
295          */
296         entry->skb = skb;
297         rt2x00queue_create_tx_descriptor(entry, &txdesc);
298
299         /*
300          * skb->cb array is now ours and we are free to use it.
301          */
302         skbdesc = get_skb_frame_desc(entry->skb);
303         memset(skbdesc, 0, sizeof(*skbdesc));
304         skbdesc->entry = entry;
305
306         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
307                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
308                 return -EIO;
309         }
310
311         if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
312                 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
313
314         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
315
316         rt2x00queue_index_inc(queue, Q_INDEX);
317         rt2x00queue_write_tx_descriptor(entry, &txdesc);
318
319         return 0;
320 }
321
322 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
323                                          const enum data_queue_qid queue)
324 {
325         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
326
327         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
328                 return &rt2x00dev->tx[queue];
329
330         if (!rt2x00dev->bcn)
331                 return NULL;
332
333         if (queue == QID_BEACON)
334                 return &rt2x00dev->bcn[0];
335         else if (queue == QID_ATIM && atim)
336                 return &rt2x00dev->bcn[1];
337
338         return NULL;
339 }
340 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
341
342 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
343                                           enum queue_index index)
344 {
345         struct queue_entry *entry;
346         unsigned long irqflags;
347
348         if (unlikely(index >= Q_INDEX_MAX)) {
349                 ERROR(queue->rt2x00dev,
350                       "Entry requested from invalid index type (%d)\n", index);
351                 return NULL;
352         }
353
354         spin_lock_irqsave(&queue->lock, irqflags);
355
356         entry = &queue->entries[queue->index[index]];
357
358         spin_unlock_irqrestore(&queue->lock, irqflags);
359
360         return entry;
361 }
362 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
363
364 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
365 {
366         unsigned long irqflags;
367
368         if (unlikely(index >= Q_INDEX_MAX)) {
369                 ERROR(queue->rt2x00dev,
370                       "Index change on invalid index type (%d)\n", index);
371                 return;
372         }
373
374         spin_lock_irqsave(&queue->lock, irqflags);
375
376         queue->index[index]++;
377         if (queue->index[index] >= queue->limit)
378                 queue->index[index] = 0;
379
380         if (index == Q_INDEX) {
381                 queue->length++;
382         } else if (index == Q_INDEX_DONE) {
383                 queue->length--;
384                 queue->count ++;
385         }
386
387         spin_unlock_irqrestore(&queue->lock, irqflags);
388 }
389
390 static void rt2x00queue_reset(struct data_queue *queue)
391 {
392         unsigned long irqflags;
393
394         spin_lock_irqsave(&queue->lock, irqflags);
395
396         queue->count = 0;
397         queue->length = 0;
398         memset(queue->index, 0, sizeof(queue->index));
399
400         spin_unlock_irqrestore(&queue->lock, irqflags);
401 }
402
403 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
404 {
405         struct data_queue *queue = rt2x00dev->rx;
406         unsigned int i;
407
408         rt2x00queue_reset(queue);
409
410         if (!rt2x00dev->ops->lib->init_rxentry)
411                 return;
412
413         for (i = 0; i < queue->limit; i++)
414                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
415                                                   &queue->entries[i]);
416 }
417
418 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
419 {
420         struct data_queue *queue;
421         unsigned int i;
422
423         txall_queue_for_each(rt2x00dev, queue) {
424                 rt2x00queue_reset(queue);
425
426                 if (!rt2x00dev->ops->lib->init_txentry)
427                         continue;
428
429                 for (i = 0; i < queue->limit; i++)
430                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
431                                                           &queue->entries[i]);
432         }
433 }
434
435 static int rt2x00queue_alloc_entries(struct data_queue *queue,
436                                      const struct data_queue_desc *qdesc)
437 {
438         struct queue_entry *entries;
439         unsigned int entry_size;
440         unsigned int i;
441
442         rt2x00queue_reset(queue);
443
444         queue->limit = qdesc->entry_num;
445         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
446         queue->data_size = qdesc->data_size;
447         queue->desc_size = qdesc->desc_size;
448
449         /*
450          * Allocate all queue entries.
451          */
452         entry_size = sizeof(*entries) + qdesc->priv_size;
453         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
454         if (!entries)
455                 return -ENOMEM;
456
457 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
458         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
459             ((__index) * (__psize)) )
460
461         for (i = 0; i < queue->limit; i++) {
462                 entries[i].flags = 0;
463                 entries[i].queue = queue;
464                 entries[i].skb = NULL;
465                 entries[i].entry_idx = i;
466                 entries[i].priv_data =
467                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
468                                             sizeof(*entries), qdesc->priv_size);
469         }
470
471 #undef QUEUE_ENTRY_PRIV_OFFSET
472
473         queue->entries = entries;
474
475         return 0;
476 }
477
478 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
479                                   struct data_queue *queue)
480 {
481         unsigned int i;
482
483         if (!queue->entries)
484                 return;
485
486         for (i = 0; i < queue->limit; i++) {
487                 if (queue->entries[i].skb)
488                         rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
489         }
490 }
491
492 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
493                                     struct data_queue *queue)
494 {
495         unsigned int i;
496         struct sk_buff *skb;
497
498         for (i = 0; i < queue->limit; i++) {
499                 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
500                 if (!skb)
501                         return -ENOMEM;
502                 queue->entries[i].skb = skb;
503         }
504
505         return 0;
506 }
507
508 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
509 {
510         struct data_queue *queue;
511         int status;
512
513         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
514         if (status)
515                 goto exit;
516
517         tx_queue_for_each(rt2x00dev, queue) {
518                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
519                 if (status)
520                         goto exit;
521         }
522
523         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
524         if (status)
525                 goto exit;
526
527         if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
528                 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
529                                                    rt2x00dev->ops->atim);
530                 if (status)
531                         goto exit;
532         }
533
534         status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
535         if (status)
536                 goto exit;
537
538         return 0;
539
540 exit:
541         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
542
543         rt2x00queue_uninitialize(rt2x00dev);
544
545         return status;
546 }
547
548 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
549 {
550         struct data_queue *queue;
551
552         rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
553
554         queue_for_each(rt2x00dev, queue) {
555                 kfree(queue->entries);
556                 queue->entries = NULL;
557         }
558 }
559
560 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
561                              struct data_queue *queue, enum data_queue_qid qid)
562 {
563         spin_lock_init(&queue->lock);
564
565         queue->rt2x00dev = rt2x00dev;
566         queue->qid = qid;
567         queue->aifs = 2;
568         queue->cw_min = 5;
569         queue->cw_max = 10;
570 }
571
572 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
573 {
574         struct data_queue *queue;
575         enum data_queue_qid qid;
576         unsigned int req_atim =
577             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
578
579         /*
580          * We need the following queues:
581          * RX: 1
582          * TX: ops->tx_queues
583          * Beacon: 1
584          * Atim: 1 (if required)
585          */
586         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
587
588         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
589         if (!queue) {
590                 ERROR(rt2x00dev, "Queue allocation failed.\n");
591                 return -ENOMEM;
592         }
593
594         /*
595          * Initialize pointers
596          */
597         rt2x00dev->rx = queue;
598         rt2x00dev->tx = &queue[1];
599         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
600
601         /*
602          * Initialize queue parameters.
603          * RX: qid = QID_RX
604          * TX: qid = QID_AC_BE + index
605          * TX: cw_min: 2^5 = 32.
606          * TX: cw_max: 2^10 = 1024.
607          * BCN: qid = QID_BEACON
608          * ATIM: qid = QID_ATIM
609          */
610         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
611
612         qid = QID_AC_BE;
613         tx_queue_for_each(rt2x00dev, queue)
614                 rt2x00queue_init(rt2x00dev, queue, qid++);
615
616         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
617         if (req_atim)
618                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
619
620         return 0;
621 }
622
623 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
624 {
625         kfree(rt2x00dev->rx);
626         rt2x00dev->rx = NULL;
627         rt2x00dev->tx = NULL;
628         rt2x00dev->bcn = NULL;
629 }