Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91
92         /*
93          * Start watchdog monitoring.
94          */
95         rt2x00link_start_watchdog(rt2x00dev);
96
97         return 0;
98 }
99
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103                 return;
104
105         /*
106          * Stop watchdog monitoring.
107          */
108         rt2x00link_stop_watchdog(rt2x00dev);
109
110         /*
111          * Stop all queues
112          */
113         rt2x00link_stop_agc(rt2x00dev);
114         rt2x00link_stop_tuner(rt2x00dev);
115         rt2x00queue_stop_queues(rt2x00dev);
116         rt2x00queue_flush_queues(rt2x00dev, true);
117
118         /*
119          * Disable radio.
120          */
121         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123         rt2x00led_led_activity(rt2x00dev, false);
124         rt2x00leds_led_radio(rt2x00dev, false);
125 }
126
127 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128                                           struct ieee80211_vif *vif)
129 {
130         struct rt2x00_dev *rt2x00dev = data;
131         struct rt2x00_intf *intf = vif_to_intf(vif);
132
133         /*
134          * It is possible the radio was disabled while the work had been
135          * scheduled. If that happens we should return here immediately,
136          * note that in the spinlock protected area above the delayed_flags
137          * have been cleared correctly.
138          */
139         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140                 return;
141
142         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143                 rt2x00queue_update_beacon(rt2x00dev, vif);
144 }
145
146 static void rt2x00lib_intf_scheduled(struct work_struct *work)
147 {
148         struct rt2x00_dev *rt2x00dev =
149             container_of(work, struct rt2x00_dev, intf_work);
150
151         /*
152          * Iterate over each interface and perform the
153          * requested configurations.
154          */
155         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156                                             rt2x00lib_intf_scheduled_iter,
157                                             rt2x00dev);
158 }
159
160 static void rt2x00lib_autowakeup(struct work_struct *work)
161 {
162         struct rt2x00_dev *rt2x00dev =
163             container_of(work, struct rt2x00_dev, autowakeup_work.work);
164
165         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166                 return;
167
168         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
170         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
171 }
172
173 /*
174  * Interrupt context handlers.
175  */
176 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177                                      struct ieee80211_vif *vif)
178 {
179         struct rt2x00_dev *rt2x00dev = data;
180         struct sk_buff *skb;
181
182         /*
183          * Only AP mode interfaces do broad- and multicast buffering
184          */
185         if (vif->type != NL80211_IFTYPE_AP)
186                 return;
187
188         /*
189          * Send out buffered broad- and multicast frames
190          */
191         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192         while (skb) {
193                 rt2x00mac_tx(rt2x00dev->hw, skb);
194                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195         }
196 }
197
198 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199                                         struct ieee80211_vif *vif)
200 {
201         struct rt2x00_dev *rt2x00dev = data;
202
203         if (vif->type != NL80211_IFTYPE_AP &&
204             vif->type != NL80211_IFTYPE_ADHOC &&
205             vif->type != NL80211_IFTYPE_MESH_POINT &&
206             vif->type != NL80211_IFTYPE_WDS)
207                 return;
208
209         /*
210          * Update the beacon without locking. This is safe on PCI devices
211          * as they only update the beacon periodically here. This should
212          * never be called for USB devices.
213          */
214         WARN_ON(rt2x00_is_usb(rt2x00dev));
215         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225                                                    rt2x00lib_bc_buffer_iter,
226                                                    rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237                                                    rt2x00lib_beaconupdate_iter,
238                                                    rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249                                                    rt2x00lib_beaconupdate_iter,
250                                                    rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_dmastart(struct queue_entry *entry)
255 {
256         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257         rt2x00queue_index_inc(entry, Q_INDEX);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
260
261 void rt2x00lib_dmadone(struct queue_entry *entry)
262 {
263         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
268
269 void rt2x00lib_txdone(struct queue_entry *entry,
270                       struct txdone_entry_desc *txdesc)
271 {
272         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275         unsigned int header_length, i;
276         u8 rate_idx, rate_flags, retry_rates;
277         u8 skbdesc_flags = skbdesc->flags;
278         bool success;
279
280         /*
281          * Unmap the skb.
282          */
283         rt2x00queue_unmap_skb(entry);
284
285         /*
286          * Remove the extra tx headroom from the skb.
287          */
288         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
289
290         /*
291          * Signal that the TX descriptor is no longer in the skb.
292          */
293         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
294
295         /*
296          * Determine the length of 802.11 header.
297          */
298         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
299
300         /*
301          * Remove L2 padding which was added during
302          */
303         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304                 rt2x00queue_remove_l2pad(entry->skb, header_length);
305
306         /*
307          * If the IV/EIV data was stripped from the frame before it was
308          * passed to the hardware, we should now reinsert it again because
309          * mac80211 will expect the same data to be present it the
310          * frame as it was passed to us.
311          */
312         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
314
315         /*
316          * Send frame to debugfs immediately, after this call is completed
317          * we are going to overwrite the skb->cb array.
318          */
319         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
320
321         /*
322          * Determine if the frame has been successfully transmitted.
323          */
324         success =
325             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
327
328         /*
329          * Update TX statistics.
330          */
331         rt2x00dev->link.qual.tx_success += success;
332         rt2x00dev->link.qual.tx_failed += !success;
333
334         rate_idx = skbdesc->tx_rate_idx;
335         rate_flags = skbdesc->tx_rate_flags;
336         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337             (txdesc->retry + 1) : 1;
338
339         /*
340          * Initialize TX status
341          */
342         memset(&tx_info->status, 0, sizeof(tx_info->status));
343         tx_info->status.ack_signal = 0;
344
345         /*
346          * Frame was send with retries, hardware tried
347          * different rates to send out the frame, at each
348          * retry it lowered the rate 1 step except when the
349          * lowest rate was used.
350          */
351         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352                 tx_info->status.rates[i].idx = rate_idx - i;
353                 tx_info->status.rates[i].flags = rate_flags;
354
355                 if (rate_idx - i == 0) {
356                         /*
357                          * The lowest rate (index 0) was used until the
358                          * number of max retries was reached.
359                          */
360                         tx_info->status.rates[i].count = retry_rates - i;
361                         i++;
362                         break;
363                 }
364                 tx_info->status.rates[i].count = 1;
365         }
366         if (i < (IEEE80211_TX_MAX_RATES - 1))
367                 tx_info->status.rates[i].idx = -1; /* terminate */
368
369         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370                 if (success)
371                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
372                 else
373                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
374         }
375
376         /*
377          * Every single frame has it's own tx status, hence report
378          * every frame as ampdu of size 1.
379          *
380          * TODO: if we can find out how many frames were aggregated
381          * by the hw we could provide the real ampdu_len to mac80211
382          * which would allow the rc algorithm to better decide on
383          * which rates are suitable.
384          */
385         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388                 tx_info->status.ampdu_len = 1;
389                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
390
391                 if (!success)
392                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
393         }
394
395         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396                 if (success)
397                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398                 else
399                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
400         }
401
402         /*
403          * Only send the status report to mac80211 when it's a frame
404          * that originated in mac80211. If this was a extra frame coming
405          * through a mac80211 library call (RTS/CTS) then we should not
406          * send the status report back.
407          */
408         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411                 else
412                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413         } else
414                 dev_kfree_skb_any(entry->skb);
415
416         /*
417          * Make this entry available for reuse.
418          */
419         entry->skb = NULL;
420         entry->flags = 0;
421
422         rt2x00dev->ops->lib->clear_entry(entry);
423
424         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
425
426         /*
427          * If the data queue was below the threshold before the txdone
428          * handler we must make sure the packet queue in the mac80211 stack
429          * is reenabled when the txdone handler has finished.
430          */
431         if (!rt2x00queue_threshold(entry->queue))
432                 rt2x00queue_unpause_queue(entry->queue);
433 }
434 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
435
436 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
437 {
438         struct txdone_entry_desc txdesc;
439
440         txdesc.flags = 0;
441         __set_bit(status, &txdesc.flags);
442         txdesc.retry = 0;
443
444         rt2x00lib_txdone(entry, &txdesc);
445 }
446 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
447
448 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
449 {
450         struct ieee80211_mgmt *mgmt = (void *)data;
451         u8 *pos, *end;
452
453         pos = (u8 *)mgmt->u.beacon.variable;
454         end = data + len;
455         while (pos < end) {
456                 if (pos + 2 + pos[1] > end)
457                         return NULL;
458
459                 if (pos[0] == ie)
460                         return pos;
461
462                 pos += 2 + pos[1];
463         }
464
465         return NULL;
466 }
467
468 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
469                                       struct sk_buff *skb,
470                                       struct rxdone_entry_desc *rxdesc)
471 {
472         struct ieee80211_hdr *hdr = (void *) skb->data;
473         struct ieee80211_tim_ie *tim_ie;
474         u8 *tim;
475         u8 tim_len;
476         bool cam;
477
478         /* If this is not a beacon, or if mac80211 has no powersaving
479          * configured, or if the device is already in powersaving mode
480          * we can exit now. */
481         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
482                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
483                 return;
484
485         /* min. beacon length + FCS_LEN */
486         if (skb->len <= 40 + FCS_LEN)
487                 return;
488
489         /* and only beacons from the associated BSSID, please */
490         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
491             !rt2x00dev->aid)
492                 return;
493
494         rt2x00dev->last_beacon = jiffies;
495
496         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
497         if (!tim)
498                 return;
499
500         if (tim[1] < sizeof(*tim_ie))
501                 return;
502
503         tim_len = tim[1];
504         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
505
506         /* Check whenever the PHY can be turned off again. */
507
508         /* 1. What about buffered unicast traffic for our AID? */
509         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
510
511         /* 2. Maybe the AP wants to send multicast/broadcast data? */
512         cam |= (tim_ie->bitmap_ctrl & 0x01);
513
514         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
515                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
516                                  IEEE80211_CONF_CHANGE_PS);
517 }
518
519 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
520                                         struct rxdone_entry_desc *rxdesc)
521 {
522         struct ieee80211_supported_band *sband;
523         const struct rt2x00_rate *rate;
524         unsigned int i;
525         int signal = rxdesc->signal;
526         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
527
528         switch (rxdesc->rate_mode) {
529         case RATE_MODE_CCK:
530         case RATE_MODE_OFDM:
531                 /*
532                  * For non-HT rates the MCS value needs to contain the
533                  * actually used rate modulation (CCK or OFDM).
534                  */
535                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
536                         signal = RATE_MCS(rxdesc->rate_mode, signal);
537
538                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
539                 for (i = 0; i < sband->n_bitrates; i++) {
540                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
541                         if (((type == RXDONE_SIGNAL_PLCP) &&
542                              (rate->plcp == signal)) ||
543                             ((type == RXDONE_SIGNAL_BITRATE) &&
544                               (rate->bitrate == signal)) ||
545                             ((type == RXDONE_SIGNAL_MCS) &&
546                               (rate->mcs == signal))) {
547                                 return i;
548                         }
549                 }
550                 break;
551         case RATE_MODE_HT_MIX:
552         case RATE_MODE_HT_GREENFIELD:
553                 if (signal >= 0 && signal <= 76)
554                         return signal;
555                 break;
556         default:
557                 break;
558         }
559
560         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
561                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
562                 rxdesc->rate_mode, signal, type);
563         return 0;
564 }
565
566 void rt2x00lib_rxdone(struct queue_entry *entry)
567 {
568         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
569         struct rxdone_entry_desc rxdesc;
570         struct sk_buff *skb;
571         struct ieee80211_rx_status *rx_status;
572         unsigned int header_length;
573         int rate_idx;
574
575         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
576             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
577                 goto submit_entry;
578
579         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
580                 goto submit_entry;
581
582         /*
583          * Allocate a new sk_buffer. If no new buffer available, drop the
584          * received frame and reuse the existing buffer.
585          */
586         skb = rt2x00queue_alloc_rxskb(entry);
587         if (!skb)
588                 goto submit_entry;
589
590         /*
591          * Unmap the skb.
592          */
593         rt2x00queue_unmap_skb(entry);
594
595         /*
596          * Extract the RXD details.
597          */
598         memset(&rxdesc, 0, sizeof(rxdesc));
599         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
600
601         /*
602          * Check for valid size in case we get corrupted descriptor from
603          * hardware.
604          */
605         if (unlikely(rxdesc.size == 0 ||
606                      rxdesc.size > entry->queue->data_size)) {
607                 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
608                         rxdesc.size, entry->queue->data_size);
609                 dev_kfree_skb(entry->skb);
610                 goto renew_skb;
611         }
612
613         /*
614          * The data behind the ieee80211 header must be
615          * aligned on a 4 byte boundary.
616          */
617         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
618
619         /*
620          * Hardware might have stripped the IV/EIV/ICV data,
621          * in that case it is possible that the data was
622          * provided separately (through hardware descriptor)
623          * in which case we should reinsert the data into the frame.
624          */
625         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
626             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
627                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
628                                           &rxdesc);
629         else if (header_length &&
630                  (rxdesc.size > header_length) &&
631                  (rxdesc.dev_flags & RXDONE_L2PAD))
632                 rt2x00queue_remove_l2pad(entry->skb, header_length);
633
634         /* Trim buffer to correct size */
635         skb_trim(entry->skb, rxdesc.size);
636
637         /*
638          * Translate the signal to the correct bitrate index.
639          */
640         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
641         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
642             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
643                 rxdesc.flags |= RX_FLAG_HT;
644
645         /*
646          * Check if this is a beacon, and more frames have been
647          * buffered while we were in powersaving mode.
648          */
649         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
650
651         /*
652          * Update extra components
653          */
654         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
655         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
656         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
657
658         /*
659          * Initialize RX status information, and send frame
660          * to mac80211.
661          */
662         rx_status = IEEE80211_SKB_RXCB(entry->skb);
663         rx_status->mactime = rxdesc.timestamp;
664         rx_status->band = rt2x00dev->curr_band;
665         rx_status->freq = rt2x00dev->curr_freq;
666         rx_status->rate_idx = rate_idx;
667         rx_status->signal = rxdesc.rssi;
668         rx_status->flag = rxdesc.flags;
669         rx_status->antenna = rt2x00dev->link.ant.active.rx;
670
671         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
672
673 renew_skb:
674         /*
675          * Replace the skb with the freshly allocated one.
676          */
677         entry->skb = skb;
678
679 submit_entry:
680         entry->flags = 0;
681         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
682         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
683             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
684                 rt2x00dev->ops->lib->clear_entry(entry);
685 }
686 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
687
688 /*
689  * Driver initialization handlers.
690  */
691 const struct rt2x00_rate rt2x00_supported_rates[12] = {
692         {
693                 .flags = DEV_RATE_CCK,
694                 .bitrate = 10,
695                 .ratemask = BIT(0),
696                 .plcp = 0x00,
697                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
698         },
699         {
700                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
701                 .bitrate = 20,
702                 .ratemask = BIT(1),
703                 .plcp = 0x01,
704                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
705         },
706         {
707                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
708                 .bitrate = 55,
709                 .ratemask = BIT(2),
710                 .plcp = 0x02,
711                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
712         },
713         {
714                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
715                 .bitrate = 110,
716                 .ratemask = BIT(3),
717                 .plcp = 0x03,
718                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
719         },
720         {
721                 .flags = DEV_RATE_OFDM,
722                 .bitrate = 60,
723                 .ratemask = BIT(4),
724                 .plcp = 0x0b,
725                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
726         },
727         {
728                 .flags = DEV_RATE_OFDM,
729                 .bitrate = 90,
730                 .ratemask = BIT(5),
731                 .plcp = 0x0f,
732                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
733         },
734         {
735                 .flags = DEV_RATE_OFDM,
736                 .bitrate = 120,
737                 .ratemask = BIT(6),
738                 .plcp = 0x0a,
739                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
740         },
741         {
742                 .flags = DEV_RATE_OFDM,
743                 .bitrate = 180,
744                 .ratemask = BIT(7),
745                 .plcp = 0x0e,
746                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
747         },
748         {
749                 .flags = DEV_RATE_OFDM,
750                 .bitrate = 240,
751                 .ratemask = BIT(8),
752                 .plcp = 0x09,
753                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
754         },
755         {
756                 .flags = DEV_RATE_OFDM,
757                 .bitrate = 360,
758                 .ratemask = BIT(9),
759                 .plcp = 0x0d,
760                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
761         },
762         {
763                 .flags = DEV_RATE_OFDM,
764                 .bitrate = 480,
765                 .ratemask = BIT(10),
766                 .plcp = 0x08,
767                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
768         },
769         {
770                 .flags = DEV_RATE_OFDM,
771                 .bitrate = 540,
772                 .ratemask = BIT(11),
773                 .plcp = 0x0c,
774                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
775         },
776 };
777
778 static void rt2x00lib_channel(struct ieee80211_channel *entry,
779                               const int channel, const int tx_power,
780                               const int value)
781 {
782         /* XXX: this assumption about the band is wrong for 802.11j */
783         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
784         entry->center_freq = ieee80211_channel_to_frequency(channel,
785                                                             entry->band);
786         entry->hw_value = value;
787         entry->max_power = tx_power;
788         entry->max_antenna_gain = 0xff;
789 }
790
791 static void rt2x00lib_rate(struct ieee80211_rate *entry,
792                            const u16 index, const struct rt2x00_rate *rate)
793 {
794         entry->flags = 0;
795         entry->bitrate = rate->bitrate;
796         entry->hw_value = index;
797         entry->hw_value_short = index;
798
799         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
800                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
801 }
802
803 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
804                                     struct hw_mode_spec *spec)
805 {
806         struct ieee80211_hw *hw = rt2x00dev->hw;
807         struct ieee80211_channel *channels;
808         struct ieee80211_rate *rates;
809         unsigned int num_rates;
810         unsigned int i;
811
812         num_rates = 0;
813         if (spec->supported_rates & SUPPORT_RATE_CCK)
814                 num_rates += 4;
815         if (spec->supported_rates & SUPPORT_RATE_OFDM)
816                 num_rates += 8;
817
818         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
819         if (!channels)
820                 return -ENOMEM;
821
822         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
823         if (!rates)
824                 goto exit_free_channels;
825
826         /*
827          * Initialize Rate list.
828          */
829         for (i = 0; i < num_rates; i++)
830                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
831
832         /*
833          * Initialize Channel list.
834          */
835         for (i = 0; i < spec->num_channels; i++) {
836                 rt2x00lib_channel(&channels[i],
837                                   spec->channels[i].channel,
838                                   spec->channels_info[i].max_power, i);
839         }
840
841         /*
842          * Intitialize 802.11b, 802.11g
843          * Rates: CCK, OFDM.
844          * Channels: 2.4 GHz
845          */
846         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
847                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
848                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
849                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
850                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
851                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
852                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
853                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
854                        &spec->ht, sizeof(spec->ht));
855         }
856
857         /*
858          * Intitialize 802.11a
859          * Rates: OFDM.
860          * Channels: OFDM, UNII, HiperLAN2.
861          */
862         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
863                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
864                     spec->num_channels - 14;
865                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
866                     num_rates - 4;
867                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
868                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
869                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
870                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
871                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
872                        &spec->ht, sizeof(spec->ht));
873         }
874
875         return 0;
876
877  exit_free_channels:
878         kfree(channels);
879         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
880         return -ENOMEM;
881 }
882
883 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
884 {
885         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
886                 ieee80211_unregister_hw(rt2x00dev->hw);
887
888         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
889                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
890                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
891                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
892                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
893         }
894
895         kfree(rt2x00dev->spec.channels_info);
896 }
897
898 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
899 {
900         struct hw_mode_spec *spec = &rt2x00dev->spec;
901         int status;
902
903         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
904                 return 0;
905
906         /*
907          * Initialize HW modes.
908          */
909         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
910         if (status)
911                 return status;
912
913         /*
914          * Initialize HW fields.
915          */
916         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
917
918         /*
919          * Initialize extra TX headroom required.
920          */
921         rt2x00dev->hw->extra_tx_headroom =
922                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
923                       rt2x00dev->ops->extra_tx_headroom);
924
925         /*
926          * Take TX headroom required for alignment into account.
927          */
928         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
929                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
930         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
931                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
932
933         /*
934          * Tell mac80211 about the size of our private STA structure.
935          */
936         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
937
938         /*
939          * Allocate tx status FIFO for driver use.
940          */
941         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
942                 /*
943                  * Allocate the txstatus fifo. In the worst case the tx
944                  * status fifo has to hold the tx status of all entries
945                  * in all tx queues. Hence, calculate the kfifo size as
946                  * tx_queues * entry_num and round up to the nearest
947                  * power of 2.
948                  */
949                 int kfifo_size =
950                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
951                                            rt2x00dev->ops->tx->entry_num *
952                                            sizeof(u32));
953
954                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
955                                      GFP_KERNEL);
956                 if (status)
957                         return status;
958         }
959
960         /*
961          * Initialize tasklets if used by the driver. Tasklets are
962          * disabled until the interrupts are turned on. The driver
963          * has to handle that.
964          */
965 #define RT2X00_TASKLET_INIT(taskletname) \
966         if (rt2x00dev->ops->lib->taskletname) { \
967                 tasklet_init(&rt2x00dev->taskletname, \
968                              rt2x00dev->ops->lib->taskletname, \
969                              (unsigned long)rt2x00dev); \
970         }
971
972         RT2X00_TASKLET_INIT(txstatus_tasklet);
973         RT2X00_TASKLET_INIT(pretbtt_tasklet);
974         RT2X00_TASKLET_INIT(tbtt_tasklet);
975         RT2X00_TASKLET_INIT(rxdone_tasklet);
976         RT2X00_TASKLET_INIT(autowake_tasklet);
977
978 #undef RT2X00_TASKLET_INIT
979
980         /*
981          * Register HW.
982          */
983         status = ieee80211_register_hw(rt2x00dev->hw);
984         if (status)
985                 return status;
986
987         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
988
989         return 0;
990 }
991
992 /*
993  * Initialization/uninitialization handlers.
994  */
995 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
996 {
997         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
998                 return;
999
1000         /*
1001          * Unregister extra components.
1002          */
1003         rt2x00rfkill_unregister(rt2x00dev);
1004
1005         /*
1006          * Allow the HW to uninitialize.
1007          */
1008         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1009
1010         /*
1011          * Free allocated queue entries.
1012          */
1013         rt2x00queue_uninitialize(rt2x00dev);
1014 }
1015
1016 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1017 {
1018         int status;
1019
1020         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1021                 return 0;
1022
1023         /*
1024          * Allocate all queue entries.
1025          */
1026         status = rt2x00queue_initialize(rt2x00dev);
1027         if (status)
1028                 return status;
1029
1030         /*
1031          * Initialize the device.
1032          */
1033         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1034         if (status) {
1035                 rt2x00queue_uninitialize(rt2x00dev);
1036                 return status;
1037         }
1038
1039         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1040
1041         /*
1042          * Register the extra components.
1043          */
1044         rt2x00rfkill_register(rt2x00dev);
1045
1046         return 0;
1047 }
1048
1049 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1050 {
1051         int retval;
1052
1053         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1054                 return 0;
1055
1056         /*
1057          * If this is the first interface which is added,
1058          * we should load the firmware now.
1059          */
1060         retval = rt2x00lib_load_firmware(rt2x00dev);
1061         if (retval)
1062                 return retval;
1063
1064         /*
1065          * Initialize the device.
1066          */
1067         retval = rt2x00lib_initialize(rt2x00dev);
1068         if (retval)
1069                 return retval;
1070
1071         rt2x00dev->intf_ap_count = 0;
1072         rt2x00dev->intf_sta_count = 0;
1073         rt2x00dev->intf_associated = 0;
1074
1075         /* Enable the radio */
1076         retval = rt2x00lib_enable_radio(rt2x00dev);
1077         if (retval)
1078                 return retval;
1079
1080         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1081
1082         return 0;
1083 }
1084
1085 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1086 {
1087         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1088                 return;
1089
1090         /*
1091          * Perhaps we can add something smarter here,
1092          * but for now just disabling the radio should do.
1093          */
1094         rt2x00lib_disable_radio(rt2x00dev);
1095
1096         rt2x00dev->intf_ap_count = 0;
1097         rt2x00dev->intf_sta_count = 0;
1098         rt2x00dev->intf_associated = 0;
1099 }
1100
1101 /*
1102  * driver allocation handlers.
1103  */
1104 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1105 {
1106         int retval = -ENOMEM;
1107
1108         spin_lock_init(&rt2x00dev->irqmask_lock);
1109         mutex_init(&rt2x00dev->csr_mutex);
1110
1111         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1112
1113         /*
1114          * Make room for rt2x00_intf inside the per-interface
1115          * structure ieee80211_vif.
1116          */
1117         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1118
1119         /*
1120          * Determine which operating modes are supported, all modes
1121          * which require beaconing, depend on the availability of
1122          * beacon entries.
1123          */
1124         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1125         if (rt2x00dev->ops->bcn->entry_num > 0)
1126                 rt2x00dev->hw->wiphy->interface_modes |=
1127                     BIT(NL80211_IFTYPE_ADHOC) |
1128                     BIT(NL80211_IFTYPE_AP) |
1129                     BIT(NL80211_IFTYPE_MESH_POINT) |
1130                     BIT(NL80211_IFTYPE_WDS);
1131
1132         /*
1133          * Initialize work.
1134          */
1135         rt2x00dev->workqueue =
1136             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1137         if (!rt2x00dev->workqueue) {
1138                 retval = -ENOMEM;
1139                 goto exit;
1140         }
1141
1142         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1143         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1144
1145         /*
1146          * Let the driver probe the device to detect the capabilities.
1147          */
1148         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1149         if (retval) {
1150                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1151                 goto exit;
1152         }
1153
1154         /*
1155          * Allocate queue array.
1156          */
1157         retval = rt2x00queue_allocate(rt2x00dev);
1158         if (retval)
1159                 goto exit;
1160
1161         /*
1162          * Initialize ieee80211 structure.
1163          */
1164         retval = rt2x00lib_probe_hw(rt2x00dev);
1165         if (retval) {
1166                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1167                 goto exit;
1168         }
1169
1170         /*
1171          * Register extra components.
1172          */
1173         rt2x00link_register(rt2x00dev);
1174         rt2x00leds_register(rt2x00dev);
1175         rt2x00debug_register(rt2x00dev);
1176
1177         return 0;
1178
1179 exit:
1180         rt2x00lib_remove_dev(rt2x00dev);
1181
1182         return retval;
1183 }
1184 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1185
1186 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1187 {
1188         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1189
1190         /*
1191          * Disable radio.
1192          */
1193         rt2x00lib_disable_radio(rt2x00dev);
1194
1195         /*
1196          * Stop all work.
1197          */
1198         cancel_work_sync(&rt2x00dev->intf_work);
1199         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1200         if (rt2x00_is_usb(rt2x00dev)) {
1201                 del_timer_sync(&rt2x00dev->txstatus_timer);
1202                 cancel_work_sync(&rt2x00dev->rxdone_work);
1203                 cancel_work_sync(&rt2x00dev->txdone_work);
1204         }
1205         destroy_workqueue(rt2x00dev->workqueue);
1206
1207         /*
1208          * Free the tx status fifo.
1209          */
1210         kfifo_free(&rt2x00dev->txstatus_fifo);
1211
1212         /*
1213          * Kill the tx status tasklet.
1214          */
1215         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1216         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1217         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1218         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1219         tasklet_kill(&rt2x00dev->autowake_tasklet);
1220
1221         /*
1222          * Uninitialize device.
1223          */
1224         rt2x00lib_uninitialize(rt2x00dev);
1225
1226         /*
1227          * Free extra components
1228          */
1229         rt2x00debug_deregister(rt2x00dev);
1230         rt2x00leds_unregister(rt2x00dev);
1231
1232         /*
1233          * Free ieee80211_hw memory.
1234          */
1235         rt2x00lib_remove_hw(rt2x00dev);
1236
1237         /*
1238          * Free firmware image.
1239          */
1240         rt2x00lib_free_firmware(rt2x00dev);
1241
1242         /*
1243          * Free queue structures.
1244          */
1245         rt2x00queue_free(rt2x00dev);
1246 }
1247 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1248
1249 /*
1250  * Device state handlers
1251  */
1252 #ifdef CONFIG_PM
1253 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1254 {
1255         NOTICE(rt2x00dev, "Going to sleep.\n");
1256
1257         /*
1258          * Prevent mac80211 from accessing driver while suspended.
1259          */
1260         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1261                 return 0;
1262
1263         /*
1264          * Cleanup as much as possible.
1265          */
1266         rt2x00lib_uninitialize(rt2x00dev);
1267
1268         /*
1269          * Suspend/disable extra components.
1270          */
1271         rt2x00leds_suspend(rt2x00dev);
1272         rt2x00debug_deregister(rt2x00dev);
1273
1274         /*
1275          * Set device mode to sleep for power management,
1276          * on some hardware this call seems to consistently fail.
1277          * From the specifications it is hard to tell why it fails,
1278          * and if this is a "bad thing".
1279          * Overall it is safe to just ignore the failure and
1280          * continue suspending. The only downside is that the
1281          * device will not be in optimal power save mode, but with
1282          * the radio and the other components already disabled the
1283          * device is as good as disabled.
1284          */
1285         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1286                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1287                         "continue suspending.\n");
1288
1289         return 0;
1290 }
1291 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1292
1293 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1294 {
1295         NOTICE(rt2x00dev, "Waking up.\n");
1296
1297         /*
1298          * Restore/enable extra components.
1299          */
1300         rt2x00debug_register(rt2x00dev);
1301         rt2x00leds_resume(rt2x00dev);
1302
1303         /*
1304          * We are ready again to receive requests from mac80211.
1305          */
1306         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1307
1308         return 0;
1309 }
1310 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1311 #endif /* CONFIG_PM */
1312
1313 /*
1314  * rt2x00lib module information.
1315  */
1316 MODULE_AUTHOR(DRV_PROJECT);
1317 MODULE_VERSION(DRV_VERSION);
1318 MODULE_DESCRIPTION("rt2x00 library");
1319 MODULE_LICENSE("GPL");