Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status =
112             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         rt2x00leds_led_radio(rt2x00dev, true);
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_start_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->intf_work))
142                 cancel_work_sync(&rt2x00dev->intf_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145
146         /*
147          * Stop the TX queues.
148          */
149         ieee80211_stop_queues(rt2x00dev->hw);
150
151         /*
152          * Disable RX.
153          */
154         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156         /*
157          * Disable radio.
158          */
159         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160         rt2x00leds_led_radio(rt2x00dev, false);
161 }
162
163 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
164 {
165         /*
166          * When we are disabling the RX, we should also stop the link tuner.
167          */
168         if (state == STATE_RADIO_RX_OFF)
169                 rt2x00lib_stop_link_tuner(rt2x00dev);
170
171         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
172
173         /*
174          * When we are enabling the RX, we should also start the link tuner.
175          */
176         if (state == STATE_RADIO_RX_ON &&
177             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
178                 rt2x00lib_start_link_tuner(rt2x00dev);
179 }
180
181 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
182 {
183         enum antenna rx = rt2x00dev->link.ant.active.rx;
184         enum antenna tx = rt2x00dev->link.ant.active.tx;
185         int sample_a =
186             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
187         int sample_b =
188             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
189
190         /*
191          * We are done sampling. Now we should evaluate the results.
192          */
193         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
194
195         /*
196          * During the last period we have sampled the RSSI
197          * from both antenna's. It now is time to determine
198          * which antenna demonstrated the best performance.
199          * When we are already on the antenna with the best
200          * performance, then there really is nothing for us
201          * left to do.
202          */
203         if (sample_a == sample_b)
204                 return;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
207                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
210                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
211
212         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
213 }
214
215 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
216 {
217         enum antenna rx = rt2x00dev->link.ant.active.rx;
218         enum antenna tx = rt2x00dev->link.ant.active.tx;
219         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
220         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
221
222         /*
223          * Legacy driver indicates that we should swap antenna's
224          * when the difference in RSSI is greater that 5. This
225          * also should be done when the RSSI was actually better
226          * then the previous sample.
227          * When the difference exceeds the threshold we should
228          * sample the rssi from the other antenna to make a valid
229          * comparison between the 2 antennas.
230          */
231         if (abs(rssi_curr - rssi_old) < 5)
232                 return;
233
234         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
237                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
240                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
241
242         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
243 }
244
245 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
246 {
247         /*
248          * Determine if software diversity is enabled for
249          * either the TX or RX antenna (or both).
250          * Always perform this check since within the link
251          * tuner interval the configuration might have changed.
252          */
253         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
254         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
255
256         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
257             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
259         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
260             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
261                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
262
263         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
264             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
265                 rt2x00dev->link.ant.flags = 0;
266                 return;
267         }
268
269         /*
270          * If we have only sampled the data over the last period
271          * we should now harvest the data. Otherwise just evaluate
272          * the data. The latter should only be performed once
273          * every 2 seconds.
274          */
275         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
276                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
277         else if (rt2x00dev->link.count & 1)
278                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
279 }
280
281 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
282 {
283         int avg_rssi = rssi;
284
285         /*
286          * Update global RSSI
287          */
288         if (link->qual.avg_rssi)
289                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
290         link->qual.avg_rssi = avg_rssi;
291
292         /*
293          * Update antenna RSSI
294          */
295         if (link->ant.rssi_ant)
296                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
297         link->ant.rssi_ant = rssi;
298 }
299
300 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
301 {
302         if (qual->rx_failed || qual->rx_success)
303                 qual->rx_percentage =
304                     (qual->rx_success * 100) /
305                     (qual->rx_failed + qual->rx_success);
306         else
307                 qual->rx_percentage = 50;
308
309         if (qual->tx_failed || qual->tx_success)
310                 qual->tx_percentage =
311                     (qual->tx_success * 100) /
312                     (qual->tx_failed + qual->tx_success);
313         else
314                 qual->tx_percentage = 50;
315
316         qual->rx_success = 0;
317         qual->rx_failed = 0;
318         qual->tx_success = 0;
319         qual->tx_failed = 0;
320 }
321
322 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
323                                            int rssi)
324 {
325         int rssi_percentage = 0;
326         int signal;
327
328         /*
329          * We need a positive value for the RSSI.
330          */
331         if (rssi < 0)
332                 rssi += rt2x00dev->rssi_offset;
333
334         /*
335          * Calculate the different percentages,
336          * which will be used for the signal.
337          */
338         if (rt2x00dev->rssi_offset)
339                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
340
341         /*
342          * Add the individual percentages and use the WEIGHT
343          * defines to calculate the current link signal.
344          */
345         signal = ((WEIGHT_RSSI * rssi_percentage) +
346                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
347                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
348
349         return (signal > 100) ? 100 : signal;
350 }
351
352 static void rt2x00lib_link_tuner(struct work_struct *work)
353 {
354         struct rt2x00_dev *rt2x00dev =
355             container_of(work, struct rt2x00_dev, link.work.work);
356
357         /*
358          * When the radio is shutting down we should
359          * immediately cease all link tuning.
360          */
361         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
362                 return;
363
364         /*
365          * Update statistics.
366          */
367         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
368         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
369             rt2x00dev->link.qual.rx_failed;
370
371         /*
372          * Only perform the link tuning when Link tuning
373          * has been enabled (This could have been disabled from the EEPROM).
374          */
375         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
376                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
377
378         /*
379          * Precalculate a portion of the link signal which is
380          * in based on the tx/rx success/failure counters.
381          */
382         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
383
384         /*
385          * Send a signal to the led to update the led signal strength.
386          */
387         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
388
389         /*
390          * Evaluate antenna setup, make this the last step since this could
391          * possibly reset some statistics.
392          */
393         rt2x00lib_evaluate_antenna(rt2x00dev);
394
395         /*
396          * Increase tuner counter, and reschedule the next link tuner run.
397          */
398         rt2x00dev->link.count++;
399         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
400                            LINK_TUNE_INTERVAL);
401 }
402
403 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
404 {
405         struct rt2x00_dev *rt2x00dev =
406             container_of(work, struct rt2x00_dev, filter_work);
407
408         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
409 }
410
411 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
412                                           struct ieee80211_vif *vif)
413 {
414         struct rt2x00_dev *rt2x00dev = data;
415         struct rt2x00_intf *intf = vif_to_intf(vif);
416         struct sk_buff *skb;
417         struct ieee80211_tx_control control;
418         struct ieee80211_bss_conf conf;
419         int delayed_flags;
420
421         /*
422          * Copy all data we need during this action under the protection
423          * of a spinlock. Otherwise race conditions might occur which results
424          * into an invalid configuration.
425          */
426         spin_lock(&intf->lock);
427
428         memcpy(&conf, &intf->conf, sizeof(conf));
429         delayed_flags = intf->delayed_flags;
430         intf->delayed_flags = 0;
431
432         spin_unlock(&intf->lock);
433
434         if (delayed_flags & DELAYED_UPDATE_BEACON) {
435                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
436                 if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
437                                                              skb, &control))
438                         dev_kfree_skb(skb);
439         }
440
441         if (delayed_flags & DELAYED_CONFIG_ERP)
442                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
443
444         if (delayed_flags & DELAYED_LED_ASSOC)
445                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
446 }
447
448 static void rt2x00lib_intf_scheduled(struct work_struct *work)
449 {
450         struct rt2x00_dev *rt2x00dev =
451             container_of(work, struct rt2x00_dev, intf_work);
452
453         /*
454          * Iterate over each interface and perform the
455          * requested configurations.
456          */
457         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
458                                             rt2x00lib_intf_scheduled_iter,
459                                             rt2x00dev);
460 }
461
462 /*
463  * Interrupt context handlers.
464  */
465 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
466                                       struct ieee80211_vif *vif)
467 {
468         struct rt2x00_intf *intf = vif_to_intf(vif);
469
470         if (vif->type != IEEE80211_IF_TYPE_AP &&
471             vif->type != IEEE80211_IF_TYPE_IBSS)
472                 return;
473
474         spin_lock(&intf->lock);
475         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
476         spin_unlock(&intf->lock);
477 }
478
479 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
480 {
481         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
482                 return;
483
484         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
485                                             rt2x00lib_beacondone_iter,
486                                             rt2x00dev);
487
488         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
489 }
490 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
491
492 void rt2x00lib_txdone(struct queue_entry *entry,
493                       struct txdone_entry_desc *txdesc)
494 {
495         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
496         struct skb_frame_desc *skbdesc;
497         struct ieee80211_tx_status tx_status;
498         int success = !!(txdesc->status == TX_SUCCESS ||
499                          txdesc->status == TX_SUCCESS_RETRY);
500         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
501                       txdesc->status == TX_FAIL_INVALID ||
502                       txdesc->status == TX_FAIL_OTHER);
503
504         /*
505          * Update TX statistics.
506          */
507         rt2x00dev->link.qual.tx_success += success;
508         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
509
510         /*
511          * Initialize TX status
512          */
513         tx_status.flags = 0;
514         tx_status.ack_signal = 0;
515         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
516         tx_status.retry_count = txdesc->retry;
517         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
518
519         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
520                 if (success)
521                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
522                 else
523                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
524         }
525
526         tx_status.queue_length = entry->queue->limit;
527         tx_status.queue_number = tx_status.control.queue;
528
529         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
530                 if (success)
531                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
532                 else
533                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
534         }
535
536         /*
537          * Send the tx_status to debugfs. Only send the status report
538          * to mac80211 when the frame originated from there. If this was
539          * a extra frame coming through a mac80211 library call (RTS/CTS)
540          * then we should not send the status report back.
541          * If send to mac80211, mac80211 will clean up the skb structure,
542          * otherwise we have to do it ourself.
543          */
544         skbdesc = get_skb_frame_desc(entry->skb);
545         skbdesc->frame_type = DUMP_FRAME_TXDONE;
546
547         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
548
549         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
550                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
551                                             entry->skb, &tx_status);
552         else
553                 dev_kfree_skb(entry->skb);
554         entry->skb = NULL;
555 }
556 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
557
558 void rt2x00lib_rxdone(struct queue_entry *entry,
559                       struct rxdone_entry_desc *rxdesc)
560 {
561         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
562         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
563         struct ieee80211_supported_band *sband;
564         struct ieee80211_hdr *hdr;
565         const struct rt2x00_rate *rate;
566         unsigned int i;
567         int idx = -1;
568         u16 fc;
569
570         /*
571          * Update RX statistics.
572          */
573         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
574         for (i = 0; i < sband->n_bitrates; i++) {
575                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
576
577                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
578                      (rate->plcp == rxdesc->signal)) ||
579                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
580                       (rate->bitrate == rxdesc->signal))) {
581                         idx = i;
582                         break;
583                 }
584         }
585
586         if (idx < 0) {
587                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
588                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
589                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
590                 idx = 0;
591         }
592
593         /*
594          * Only update link status if this is a beacon frame carrying our bssid.
595          */
596         hdr = (struct ieee80211_hdr *)entry->skb->data;
597         fc = le16_to_cpu(hdr->frame_control);
598         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
599                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
600
601         rt2x00dev->link.qual.rx_success++;
602
603         rx_status->rate_idx = idx;
604         rx_status->signal =
605             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
606         rx_status->ssi = rxdesc->rssi;
607         rx_status->flag = rxdesc->flags;
608         rx_status->antenna = rt2x00dev->link.ant.active.rx;
609
610         /*
611          * Send frame to mac80211 & debugfs.
612          * mac80211 will clean up the skb structure.
613          */
614         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
615         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
616         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
617         entry->skb = NULL;
618 }
619 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
620
621 /*
622  * TX descriptor initializer
623  */
624 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
625                              struct sk_buff *skb,
626                              struct ieee80211_tx_control *control)
627 {
628         struct txentry_desc txdesc;
629         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
630         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
631         const struct rt2x00_rate *rate;
632         int tx_rate;
633         int length;
634         int duration;
635         int residual;
636         u16 frame_control;
637         u16 seq_ctrl;
638
639         memset(&txdesc, 0, sizeof(txdesc));
640
641         txdesc.queue = skbdesc->entry->queue->qid;
642         txdesc.cw_min = skbdesc->entry->queue->cw_min;
643         txdesc.cw_max = skbdesc->entry->queue->cw_max;
644         txdesc.aifs = skbdesc->entry->queue->aifs;
645
646         /*
647          * Read required fields from ieee80211 header.
648          */
649         frame_control = le16_to_cpu(hdr->frame_control);
650         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
651
652         tx_rate = control->tx_rate->hw_value;
653
654         /*
655          * Check whether this frame is to be acked
656          */
657         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
658                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
659
660         /*
661          * Check if this is a RTS/CTS frame
662          */
663         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
664                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
665                 if (is_rts_frame(frame_control)) {
666                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
667                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
668                 } else
669                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
670                 if (control->rts_cts_rate)
671                         tx_rate = control->rts_cts_rate->hw_value;
672         }
673
674         rate = rt2x00_get_rate(tx_rate);
675
676         /*
677          * Check if more fragments are pending
678          */
679         if (ieee80211_get_morefrag(hdr)) {
680                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
681                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
682         }
683
684         /*
685          * Beacons and probe responses require the tsf timestamp
686          * to be inserted into the frame.
687          */
688         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
689             is_probe_resp(frame_control))
690                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
691
692         /*
693          * Determine with what IFS priority this frame should be send.
694          * Set ifs to IFS_SIFS when the this is not the first fragment,
695          * or this fragment came after RTS/CTS.
696          */
697         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
698             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
699                 txdesc.ifs = IFS_SIFS;
700         else
701                 txdesc.ifs = IFS_BACKOFF;
702
703         /*
704          * PLCP setup
705          * Length calculation depends on OFDM/CCK rate.
706          */
707         txdesc.signal = rate->plcp;
708         txdesc.service = 0x04;
709
710         length = skbdesc->data_len + FCS_LEN;
711         if (rate->flags & DEV_RATE_OFDM) {
712                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
713
714                 txdesc.length_high = (length >> 6) & 0x3f;
715                 txdesc.length_low = length & 0x3f;
716         } else {
717                 /*
718                  * Convert length to microseconds.
719                  */
720                 residual = get_duration_res(length, rate->bitrate);
721                 duration = get_duration(length, rate->bitrate);
722
723                 if (residual != 0) {
724                         duration++;
725
726                         /*
727                          * Check if we need to set the Length Extension
728                          */
729                         if (rate->bitrate == 110 && residual <= 30)
730                                 txdesc.service |= 0x80;
731                 }
732
733                 txdesc.length_high = (duration >> 8) & 0xff;
734                 txdesc.length_low = duration & 0xff;
735
736                 /*
737                  * When preamble is enabled we should set the
738                  * preamble bit for the signal.
739                  */
740                 if (rt2x00_get_rate_preamble(tx_rate))
741                         txdesc.signal |= 0x08;
742         }
743
744         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
745
746         /*
747          * Update queue entry.
748          */
749         skbdesc->entry->skb = skb;
750
751         /*
752          * The frame has been completely initialized and ready
753          * for sending to the device. The caller will push the
754          * frame to the device, but we are going to push the
755          * frame to debugfs here.
756          */
757         skbdesc->frame_type = DUMP_FRAME_TX;
758         rt2x00debug_dump_frame(rt2x00dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
761
762 /*
763  * Driver initialization handlers.
764  */
765 const struct rt2x00_rate rt2x00_supported_rates[12] = {
766         {
767                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
768                 .bitrate = 10,
769                 .ratemask = BIT(0),
770                 .plcp = 0x00,
771         },
772         {
773                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
774                 .bitrate = 20,
775                 .ratemask = BIT(1),
776                 .plcp = 0x01,
777         },
778         {
779                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
780                 .bitrate = 55,
781                 .ratemask = BIT(2),
782                 .plcp = 0x02,
783         },
784         {
785                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
786                 .bitrate = 110,
787                 .ratemask = BIT(3),
788                 .plcp = 0x03,
789         },
790         {
791                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
792                 .bitrate = 60,
793                 .ratemask = BIT(4),
794                 .plcp = 0x0b,
795         },
796         {
797                 .flags = DEV_RATE_OFDM,
798                 .bitrate = 90,
799                 .ratemask = BIT(5),
800                 .plcp = 0x0f,
801         },
802         {
803                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
804                 .bitrate = 120,
805                 .ratemask = BIT(6),
806                 .plcp = 0x0a,
807         },
808         {
809                 .flags = DEV_RATE_OFDM,
810                 .bitrate = 180,
811                 .ratemask = BIT(7),
812                 .plcp = 0x0e,
813         },
814         {
815                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
816                 .bitrate = 240,
817                 .ratemask = BIT(8),
818                 .plcp = 0x09,
819         },
820         {
821                 .flags = DEV_RATE_OFDM,
822                 .bitrate = 360,
823                 .ratemask = BIT(9),
824                 .plcp = 0x0d,
825         },
826         {
827                 .flags = DEV_RATE_OFDM,
828                 .bitrate = 480,
829                 .ratemask = BIT(10),
830                 .plcp = 0x08,
831         },
832         {
833                 .flags = DEV_RATE_OFDM,
834                 .bitrate = 540,
835                 .ratemask = BIT(11),
836                 .plcp = 0x0c,
837         },
838 };
839
840 static void rt2x00lib_channel(struct ieee80211_channel *entry,
841                               const int channel, const int tx_power,
842                               const int value)
843 {
844         entry->center_freq = ieee80211_channel_to_frequency(channel);
845         entry->hw_value = value;
846         entry->max_power = tx_power;
847         entry->max_antenna_gain = 0xff;
848 }
849
850 static void rt2x00lib_rate(struct ieee80211_rate *entry,
851                            const u16 index, const struct rt2x00_rate *rate)
852 {
853         entry->flags = 0;
854         entry->bitrate = rate->bitrate;
855         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
856         entry->hw_value_short = entry->hw_value;
857
858         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
859                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
860                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
861         }
862 }
863
864 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
865                                     struct hw_mode_spec *spec)
866 {
867         struct ieee80211_hw *hw = rt2x00dev->hw;
868         struct ieee80211_channel *channels;
869         struct ieee80211_rate *rates;
870         unsigned int num_rates;
871         unsigned int i;
872         unsigned char tx_power;
873
874         num_rates = 0;
875         if (spec->supported_rates & SUPPORT_RATE_CCK)
876                 num_rates += 4;
877         if (spec->supported_rates & SUPPORT_RATE_OFDM)
878                 num_rates += 8;
879
880         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
881         if (!channels)
882                 return -ENOMEM;
883
884         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
885         if (!rates)
886                 goto exit_free_channels;
887
888         /*
889          * Initialize Rate list.
890          */
891         for (i = 0; i < num_rates; i++)
892                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
893
894         /*
895          * Initialize Channel list.
896          */
897         for (i = 0; i < spec->num_channels; i++) {
898                 if (spec->channels[i].channel <= 14) {
899                         if (spec->tx_power_bg)
900                                 tx_power = spec->tx_power_bg[i];
901                         else
902                                 tx_power = spec->tx_power_default;
903                 } else {
904                         if (spec->tx_power_a)
905                                 tx_power = spec->tx_power_a[i];
906                         else
907                                 tx_power = spec->tx_power_default;
908                 }
909
910                 rt2x00lib_channel(&channels[i],
911                                   spec->channels[i].channel, tx_power, i);
912         }
913
914         /*
915          * Intitialize 802.11b, 802.11g
916          * Rates: CCK, OFDM.
917          * Channels: 2.4 GHz
918          */
919         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
920                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
921                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
922                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
923                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
924                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
925                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
926         }
927
928         /*
929          * Intitialize 802.11a
930          * Rates: OFDM.
931          * Channels: OFDM, UNII, HiperLAN2.
932          */
933         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
934                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
935                     spec->num_channels - 14;
936                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
937                     num_rates - 4;
938                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
939                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
940                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
941                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
942         }
943
944         return 0;
945
946  exit_free_channels:
947         kfree(channels);
948         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
949         return -ENOMEM;
950 }
951
952 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
953 {
954         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
955                 ieee80211_unregister_hw(rt2x00dev->hw);
956
957         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
958                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
959                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
960                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
961                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
962         }
963 }
964
965 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
966 {
967         struct hw_mode_spec *spec = &rt2x00dev->spec;
968         int status;
969
970         /*
971          * Initialize HW modes.
972          */
973         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
974         if (status)
975                 return status;
976
977         /*
978          * Register HW.
979          */
980         status = ieee80211_register_hw(rt2x00dev->hw);
981         if (status) {
982                 rt2x00lib_remove_hw(rt2x00dev);
983                 return status;
984         }
985
986         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
987
988         return 0;
989 }
990
991 /*
992  * Initialization/uninitialization handlers.
993  */
994 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
995 {
996         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
997                 return;
998
999         /*
1000          * Unregister extra components.
1001          */
1002         rt2x00rfkill_unregister(rt2x00dev);
1003
1004         /*
1005          * Allow the HW to uninitialize.
1006          */
1007         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1008
1009         /*
1010          * Free allocated queue entries.
1011          */
1012         rt2x00queue_uninitialize(rt2x00dev);
1013 }
1014
1015 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1016 {
1017         int status;
1018
1019         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1020                 return 0;
1021
1022         /*
1023          * Allocate all queue entries.
1024          */
1025         status = rt2x00queue_initialize(rt2x00dev);
1026         if (status)
1027                 return status;
1028
1029         /*
1030          * Initialize the device.
1031          */
1032         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1033         if (status)
1034                 goto exit;
1035
1036         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1037
1038         /*
1039          * Register the extra components.
1040          */
1041         rt2x00rfkill_register(rt2x00dev);
1042
1043         return 0;
1044
1045 exit:
1046         rt2x00lib_uninitialize(rt2x00dev);
1047
1048         return status;
1049 }
1050
1051 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1052 {
1053         int retval;
1054
1055         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1056                 return 0;
1057
1058         /*
1059          * If this is the first interface which is added,
1060          * we should load the firmware now.
1061          */
1062         retval = rt2x00lib_load_firmware(rt2x00dev);
1063         if (retval)
1064                 return retval;
1065
1066         /*
1067          * Initialize the device.
1068          */
1069         retval = rt2x00lib_initialize(rt2x00dev);
1070         if (retval)
1071                 return retval;
1072
1073         /*
1074          * Enable radio.
1075          */
1076         retval = rt2x00lib_enable_radio(rt2x00dev);
1077         if (retval) {
1078                 rt2x00lib_uninitialize(rt2x00dev);
1079                 return retval;
1080         }
1081
1082         rt2x00dev->intf_ap_count = 0;
1083         rt2x00dev->intf_sta_count = 0;
1084         rt2x00dev->intf_associated = 0;
1085
1086         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1087
1088         return 0;
1089 }
1090
1091 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1092 {
1093         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1094                 return;
1095
1096         /*
1097          * Perhaps we can add something smarter here,
1098          * but for now just disabling the radio should do.
1099          */
1100         rt2x00lib_disable_radio(rt2x00dev);
1101
1102         rt2x00dev->intf_ap_count = 0;
1103         rt2x00dev->intf_sta_count = 0;
1104         rt2x00dev->intf_associated = 0;
1105
1106         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1107 }
1108
1109 /*
1110  * driver allocation handlers.
1111  */
1112 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1113 {
1114         int retval = -ENOMEM;
1115
1116         /*
1117          * Make room for rt2x00_intf inside the per-interface
1118          * structure ieee80211_vif.
1119          */
1120         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1121
1122         /*
1123          * Let the driver probe the device to detect the capabilities.
1124          */
1125         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1126         if (retval) {
1127                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1128                 goto exit;
1129         }
1130
1131         /*
1132          * Initialize configuration work.
1133          */
1134         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1135         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1136         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1137
1138         /*
1139          * Allocate queue array.
1140          */
1141         retval = rt2x00queue_allocate(rt2x00dev);
1142         if (retval)
1143                 goto exit;
1144
1145         /*
1146          * Initialize ieee80211 structure.
1147          */
1148         retval = rt2x00lib_probe_hw(rt2x00dev);
1149         if (retval) {
1150                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1151                 goto exit;
1152         }
1153
1154         /*
1155          * Register extra components.
1156          */
1157         rt2x00leds_register(rt2x00dev);
1158         rt2x00rfkill_allocate(rt2x00dev);
1159         rt2x00debug_register(rt2x00dev);
1160
1161         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1162
1163         return 0;
1164
1165 exit:
1166         rt2x00lib_remove_dev(rt2x00dev);
1167
1168         return retval;
1169 }
1170 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1171
1172 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1173 {
1174         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1175
1176         /*
1177          * Disable radio.
1178          */
1179         rt2x00lib_disable_radio(rt2x00dev);
1180
1181         /*
1182          * Uninitialize device.
1183          */
1184         rt2x00lib_uninitialize(rt2x00dev);
1185
1186         /*
1187          * Free extra components
1188          */
1189         rt2x00debug_deregister(rt2x00dev);
1190         rt2x00rfkill_free(rt2x00dev);
1191         rt2x00leds_unregister(rt2x00dev);
1192
1193         /*
1194          * Free ieee80211_hw memory.
1195          */
1196         rt2x00lib_remove_hw(rt2x00dev);
1197
1198         /*
1199          * Free firmware image.
1200          */
1201         rt2x00lib_free_firmware(rt2x00dev);
1202
1203         /*
1204          * Free queue structures.
1205          */
1206         rt2x00queue_free(rt2x00dev);
1207 }
1208 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1209
1210 /*
1211  * Device state handlers
1212  */
1213 #ifdef CONFIG_PM
1214 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1215 {
1216         int retval;
1217
1218         NOTICE(rt2x00dev, "Going to sleep.\n");
1219         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1220
1221         /*
1222          * Only continue if mac80211 has open interfaces.
1223          */
1224         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1225                 goto exit;
1226         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1227
1228         /*
1229          * Disable radio.
1230          */
1231         rt2x00lib_stop(rt2x00dev);
1232         rt2x00lib_uninitialize(rt2x00dev);
1233
1234         /*
1235          * Suspend/disable extra components.
1236          */
1237         rt2x00leds_suspend(rt2x00dev);
1238         rt2x00rfkill_suspend(rt2x00dev);
1239         rt2x00debug_deregister(rt2x00dev);
1240
1241 exit:
1242         /*
1243          * Set device mode to sleep for power management,
1244          * on some hardware this call seems to consistently fail.
1245          * From the specifications it is hard to tell why it fails,
1246          * and if this is a "bad thing".
1247          * Overall it is safe to just ignore the failure and
1248          * continue suspending. The only downside is that the
1249          * device will not be in optimal power save mode, but with
1250          * the radio and the other components already disabled the
1251          * device is as good as disabled.
1252          */
1253         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1254         if (retval)
1255                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1256                         "continue suspending.\n");
1257
1258         return 0;
1259 }
1260 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1261
1262 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1263                                   struct ieee80211_vif *vif)
1264 {
1265         struct rt2x00_dev *rt2x00dev = data;
1266         struct rt2x00_intf *intf = vif_to_intf(vif);
1267
1268         spin_lock(&intf->lock);
1269
1270         rt2x00lib_config_intf(rt2x00dev, intf,
1271                               vif->type, intf->mac, intf->bssid);
1272
1273
1274         /*
1275          * Master or Ad-hoc mode require a new beacon update.
1276          */
1277         if (vif->type == IEEE80211_IF_TYPE_AP ||
1278             vif->type == IEEE80211_IF_TYPE_IBSS)
1279                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1280
1281         spin_unlock(&intf->lock);
1282 }
1283
1284 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1285 {
1286         int retval;
1287
1288         NOTICE(rt2x00dev, "Waking up.\n");
1289
1290         /*
1291          * Restore/enable extra components.
1292          */
1293         rt2x00debug_register(rt2x00dev);
1294         rt2x00rfkill_resume(rt2x00dev);
1295         rt2x00leds_resume(rt2x00dev);
1296
1297         /*
1298          * Only continue if mac80211 had open interfaces.
1299          */
1300         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1301                 return 0;
1302
1303         /*
1304          * Reinitialize device and all active interfaces.
1305          */
1306         retval = rt2x00lib_start(rt2x00dev);
1307         if (retval)
1308                 goto exit;
1309
1310         /*
1311          * Reconfigure device.
1312          */
1313         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1314         if (!rt2x00dev->hw->conf.radio_enabled)
1315                 rt2x00lib_disable_radio(rt2x00dev);
1316
1317         /*
1318          * Iterator over each active interface to
1319          * reconfigure the hardware.
1320          */
1321         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1322                                             rt2x00lib_resume_intf, rt2x00dev);
1323
1324         /*
1325          * We are ready again to receive requests from mac80211.
1326          */
1327         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1328
1329         /*
1330          * It is possible that during that mac80211 has attempted
1331          * to send frames while we were suspending or resuming.
1332          * In that case we have disabled the TX queue and should
1333          * now enable it again
1334          */
1335         ieee80211_start_queues(rt2x00dev->hw);
1336
1337         /*
1338          * During interface iteration we might have changed the
1339          * delayed_flags, time to handles the event by calling
1340          * the work handler directly.
1341          */
1342         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1343
1344         return 0;
1345
1346 exit:
1347         rt2x00lib_disable_radio(rt2x00dev);
1348         rt2x00lib_uninitialize(rt2x00dev);
1349         rt2x00debug_deregister(rt2x00dev);
1350
1351         return retval;
1352 }
1353 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1354 #endif /* CONFIG_PM */
1355
1356 /*
1357  * rt2x00lib module information.
1358  */
1359 MODULE_AUTHOR(DRV_PROJECT);
1360 MODULE_VERSION(DRV_VERSION);
1361 MODULE_DESCRIPTION("rt2x00 library");
1362 MODULE_LICENSE("GPL");