rt2x00: Implement support for 802.11n
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Radio control handlers.
34  */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37         int status;
38
39         /*
40          * Don't enable the radio twice.
41          * And check if the hardware button has been disabled.
42          */
43         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44             test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45                 return 0;
46
47         /*
48          * Initialize all data queues.
49          */
50         rt2x00queue_init_queues(rt2x00dev);
51
52         /*
53          * Enable radio.
54          */
55         status =
56             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57         if (status)
58                 return status;
59
60         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62         rt2x00leds_led_radio(rt2x00dev, true);
63         rt2x00led_led_activity(rt2x00dev, true);
64
65         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67         /*
68          * Enable RX.
69          */
70         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72         /*
73          * Start the TX queues.
74          */
75         ieee80211_wake_queues(rt2x00dev->hw);
76
77         return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83                 return;
84
85         /*
86          * Stop the TX queues in mac80211.
87          */
88         ieee80211_stop_queues(rt2x00dev->hw);
89         rt2x00queue_stop_queues(rt2x00dev);
90
91         /*
92          * Disable RX.
93          */
94         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96         /*
97          * Disable radio.
98          */
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101         rt2x00led_led_activity(rt2x00dev, false);
102         rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107         /*
108          * When we are disabling the RX, we should also stop the link tuner.
109          */
110         if (state == STATE_RADIO_RX_OFF)
111                 rt2x00link_stop_tuner(rt2x00dev);
112
113         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115         /*
116          * When we are enabling the RX, we should also start the link tuner.
117          */
118         if (state == STATE_RADIO_RX_ON)
119                 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 {
124         struct rt2x00_dev *rt2x00dev =
125             container_of(work, struct rt2x00_dev, filter_work);
126
127         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
128 }
129
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131                                           struct ieee80211_vif *vif)
132 {
133         struct rt2x00_dev *rt2x00dev = data;
134         struct rt2x00_intf *intf = vif_to_intf(vif);
135         struct ieee80211_bss_conf conf;
136         int delayed_flags;
137
138         /*
139          * Copy all data we need during this action under the protection
140          * of a spinlock. Otherwise race conditions might occur which results
141          * into an invalid configuration.
142          */
143         spin_lock(&intf->lock);
144
145         memcpy(&conf, &vif->bss_conf, sizeof(conf));
146         delayed_flags = intf->delayed_flags;
147         intf->delayed_flags = 0;
148
149         spin_unlock(&intf->lock);
150
151         /*
152          * It is possible the radio was disabled while the work had been
153          * scheduled. If that happens we should return here immediately,
154          * note that in the spinlock protected area above the delayed_flags
155          * have been cleared correctly.
156          */
157         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158                 return;
159
160         if (delayed_flags & DELAYED_UPDATE_BEACON)
161                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162
163         if (delayed_flags & DELAYED_CONFIG_ERP)
164                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165
166         if (delayed_flags & DELAYED_LED_ASSOC)
167                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
168 }
169
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 {
172         struct rt2x00_dev *rt2x00dev =
173             container_of(work, struct rt2x00_dev, intf_work);
174
175         /*
176          * Iterate over each interface and perform the
177          * requested configurations.
178          */
179         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180                                             rt2x00lib_intf_scheduled_iter,
181                                             rt2x00dev);
182 }
183
184 /*
185  * Interrupt context handlers.
186  */
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188                                       struct ieee80211_vif *vif)
189 {
190         struct rt2x00_dev *rt2x00dev = data;
191         struct rt2x00_intf *intf = vif_to_intf(vif);
192
193         if (vif->type != NL80211_IFTYPE_AP &&
194             vif->type != NL80211_IFTYPE_ADHOC &&
195             vif->type != NL80211_IFTYPE_MESH_POINT &&
196             vif->type != NL80211_IFTYPE_WDS)
197                 return;
198
199         /*
200          * Clean up the beacon skb.
201          */
202         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203         intf->beacon->skb = NULL;
204
205         spin_lock(&intf->lock);
206         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207         spin_unlock(&intf->lock);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213                 return;
214
215         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216                                                    rt2x00lib_beacondone_iter,
217                                                    rt2x00dev);
218
219         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222
223 void rt2x00lib_txdone(struct queue_entry *entry,
224                       struct txdone_entry_desc *txdesc)
225 {
226         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
231         u8 rate_idx, rate_flags;
232
233         /*
234          * Unmap the skb.
235          */
236         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
237
238         /*
239          * Remove L2 padding which was added during
240          */
241         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
242                 rt2x00queue_payload_align(entry->skb, true, header_length);
243
244         /*
245          * If the IV/EIV data was stripped from the frame before it was
246          * passed to the hardware, we should now reinsert it again because
247          * mac80211 will expect the the same data to be present it the
248          * frame as it was passed to us.
249          */
250         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
251                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
252
253         /*
254          * Send frame to debugfs immediately, after this call is completed
255          * we are going to overwrite the skb->cb array.
256          */
257         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
258
259         /*
260          * Update TX statistics.
261          */
262         rt2x00dev->link.qual.tx_success +=
263             test_bit(TXDONE_SUCCESS, &txdesc->flags);
264         rt2x00dev->link.qual.tx_failed +=
265             test_bit(TXDONE_FAILURE, &txdesc->flags);
266
267         rate_idx = skbdesc->tx_rate_idx;
268         rate_flags = skbdesc->tx_rate_flags;
269
270         /*
271          * Initialize TX status
272          */
273         memset(&tx_info->status, 0, sizeof(tx_info->status));
274         tx_info->status.ack_signal = 0;
275         tx_info->status.rates[0].idx = rate_idx;
276         tx_info->status.rates[0].flags = rate_flags;
277         tx_info->status.rates[0].count = txdesc->retry + 1;
278         tx_info->status.rates[1].idx = -1; /* terminate */
279
280         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
281                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
282                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
283                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
284                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
285         }
286
287         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
288                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
289                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
290                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
291                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
292         }
293
294         /*
295          * Only send the status report to mac80211 when TX status was
296          * requested by it. If this was a extra frame coming through
297          * a mac80211 library call (RTS/CTS) then we should not send the
298          * status report back.
299          */
300         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
301                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
302         else
303                 dev_kfree_skb_irq(entry->skb);
304
305         /*
306          * Make this entry available for reuse.
307          */
308         entry->skb = NULL;
309         entry->flags = 0;
310
311         rt2x00dev->ops->lib->clear_entry(entry);
312
313         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
314         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
315
316         /*
317          * If the data queue was below the threshold before the txdone
318          * handler we must make sure the packet queue in the mac80211 stack
319          * is reenabled when the txdone handler has finished.
320          */
321         if (!rt2x00queue_threshold(entry->queue))
322                 ieee80211_wake_queue(rt2x00dev->hw, qid);
323 }
324 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
325
326 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
327                                         struct rxdone_entry_desc *rxdesc)
328 {
329         struct ieee80211_supported_band *sband;
330         const struct rt2x00_rate *rate;
331         unsigned int i;
332         int signal;
333         int type;
334
335         /*
336          * For non-HT rates the MCS value needs to contain the
337          * actually used rate modulation (CCK or OFDM).
338          */
339         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
340                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
341         else
342                 signal = rxdesc->signal;
343
344         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
345
346         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
347         for (i = 0; i < sband->n_bitrates; i++) {
348                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
349
350                 if (((type == RXDONE_SIGNAL_PLCP) &&
351                      (rate->plcp == signal)) ||
352                     ((type == RXDONE_SIGNAL_BITRATE) &&
353                       (rate->bitrate == signal)) ||
354                     ((type == RXDONE_SIGNAL_MCS) &&
355                       (rate->mcs == signal))) {
356                         return i;
357                 }
358         }
359
360         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
361                 "signal=0x%.4x, type=%d.\n", signal, type);
362         return 0;
363 }
364
365 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
366                       struct queue_entry *entry)
367 {
368         struct rxdone_entry_desc rxdesc;
369         struct sk_buff *skb;
370         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
371         unsigned int header_length;
372         bool l2pad;
373         int rate_idx;
374         /*
375          * Allocate a new sk_buffer. If no new buffer available, drop the
376          * received frame and reuse the existing buffer.
377          */
378         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
379         if (!skb)
380                 return;
381
382         /*
383          * Unmap the skb.
384          */
385         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
386
387         /*
388          * Extract the RXD details.
389          */
390         memset(&rxdesc, 0, sizeof(rxdesc));
391         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
392
393         /* Trim buffer to correct size */
394         skb_trim(entry->skb, rxdesc.size);
395
396         /*
397          * The data behind the ieee80211 header must be
398          * aligned on a 4 byte boundary.
399          */
400         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
401         l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
402
403         /*
404          * Hardware might have stripped the IV/EIV/ICV data,
405          * in that case it is possible that the data was
406          * provided seperately (through hardware descriptor)
407          * in which case we should reinsert the data into the frame.
408          */
409         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
410             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
411                 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
412                                           &rxdesc);
413         else
414                 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
415
416         /*
417          * Check if the frame was received using HT. In that case,
418          * the rate is the MCS index and should be passed to mac80211
419          * directly. Otherwise we need to translate the signal to
420          * the correct bitrate index.
421          */
422         if (rxdesc.rate_mode == RATE_MODE_CCK ||
423             rxdesc.rate_mode == RATE_MODE_OFDM) {
424                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
425         } else {
426                 rxdesc.flags |= RX_FLAG_HT;
427                 rate_idx = rxdesc.signal;
428         }
429
430         /*
431          * Update extra components
432          */
433         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
434         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
435
436         rx_status->mactime = rxdesc.timestamp;
437         rx_status->rate_idx = rate_idx;
438         rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
439         rx_status->signal = rxdesc.rssi;
440         rx_status->noise = rxdesc.noise;
441         rx_status->flag = rxdesc.flags;
442         rx_status->antenna = rt2x00dev->link.ant.active.rx;
443
444         /*
445          * Send frame to mac80211 & debugfs.
446          * mac80211 will clean up the skb structure.
447          */
448         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
449         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
450
451         /*
452          * Replace the skb with the freshly allocated one.
453          */
454         entry->skb = skb;
455         entry->flags = 0;
456
457         rt2x00dev->ops->lib->clear_entry(entry);
458
459         rt2x00queue_index_inc(entry->queue, Q_INDEX);
460 }
461 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
462
463 /*
464  * Driver initialization handlers.
465  */
466 const struct rt2x00_rate rt2x00_supported_rates[12] = {
467         {
468                 .flags = DEV_RATE_CCK,
469                 .bitrate = 10,
470                 .ratemask = BIT(0),
471                 .plcp = 0x00,
472                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
473         },
474         {
475                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
476                 .bitrate = 20,
477                 .ratemask = BIT(1),
478                 .plcp = 0x01,
479                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
480         },
481         {
482                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
483                 .bitrate = 55,
484                 .ratemask = BIT(2),
485                 .plcp = 0x02,
486                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
487         },
488         {
489                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
490                 .bitrate = 110,
491                 .ratemask = BIT(3),
492                 .plcp = 0x03,
493                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
494         },
495         {
496                 .flags = DEV_RATE_OFDM,
497                 .bitrate = 60,
498                 .ratemask = BIT(4),
499                 .plcp = 0x0b,
500                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
501         },
502         {
503                 .flags = DEV_RATE_OFDM,
504                 .bitrate = 90,
505                 .ratemask = BIT(5),
506                 .plcp = 0x0f,
507                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
508         },
509         {
510                 .flags = DEV_RATE_OFDM,
511                 .bitrate = 120,
512                 .ratemask = BIT(6),
513                 .plcp = 0x0a,
514                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
515         },
516         {
517                 .flags = DEV_RATE_OFDM,
518                 .bitrate = 180,
519                 .ratemask = BIT(7),
520                 .plcp = 0x0e,
521                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
522         },
523         {
524                 .flags = DEV_RATE_OFDM,
525                 .bitrate = 240,
526                 .ratemask = BIT(8),
527                 .plcp = 0x09,
528                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
529         },
530         {
531                 .flags = DEV_RATE_OFDM,
532                 .bitrate = 360,
533                 .ratemask = BIT(9),
534                 .plcp = 0x0d,
535                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
536         },
537         {
538                 .flags = DEV_RATE_OFDM,
539                 .bitrate = 480,
540                 .ratemask = BIT(10),
541                 .plcp = 0x08,
542                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
543         },
544         {
545                 .flags = DEV_RATE_OFDM,
546                 .bitrate = 540,
547                 .ratemask = BIT(11),
548                 .plcp = 0x0c,
549                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
550         },
551 };
552
553 static void rt2x00lib_channel(struct ieee80211_channel *entry,
554                               const int channel, const int tx_power,
555                               const int value)
556 {
557         entry->center_freq = ieee80211_channel_to_frequency(channel);
558         entry->hw_value = value;
559         entry->max_power = tx_power;
560         entry->max_antenna_gain = 0xff;
561 }
562
563 static void rt2x00lib_rate(struct ieee80211_rate *entry,
564                            const u16 index, const struct rt2x00_rate *rate)
565 {
566         entry->flags = 0;
567         entry->bitrate = rate->bitrate;
568         entry->hw_value =index;
569         entry->hw_value_short = index;
570
571         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
572                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
573 }
574
575 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
576                                     struct hw_mode_spec *spec)
577 {
578         struct ieee80211_hw *hw = rt2x00dev->hw;
579         struct ieee80211_channel *channels;
580         struct ieee80211_rate *rates;
581         unsigned int num_rates;
582         unsigned int i;
583
584         num_rates = 0;
585         if (spec->supported_rates & SUPPORT_RATE_CCK)
586                 num_rates += 4;
587         if (spec->supported_rates & SUPPORT_RATE_OFDM)
588                 num_rates += 8;
589
590         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
591         if (!channels)
592                 return -ENOMEM;
593
594         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
595         if (!rates)
596                 goto exit_free_channels;
597
598         /*
599          * Initialize Rate list.
600          */
601         for (i = 0; i < num_rates; i++)
602                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
603
604         /*
605          * Initialize Channel list.
606          */
607         for (i = 0; i < spec->num_channels; i++) {
608                 rt2x00lib_channel(&channels[i],
609                                   spec->channels[i].channel,
610                                   spec->channels_info[i].tx_power1, i);
611         }
612
613         /*
614          * Intitialize 802.11b, 802.11g
615          * Rates: CCK, OFDM.
616          * Channels: 2.4 GHz
617          */
618         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
619                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
620                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
621                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
622                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
623                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
624                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
625                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
626                        &spec->ht, sizeof(spec->ht));
627         }
628
629         /*
630          * Intitialize 802.11a
631          * Rates: OFDM.
632          * Channels: OFDM, UNII, HiperLAN2.
633          */
634         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
635                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
636                     spec->num_channels - 14;
637                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
638                     num_rates - 4;
639                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
640                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
641                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
642                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
643                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
644                        &spec->ht, sizeof(spec->ht));
645         }
646
647         return 0;
648
649  exit_free_channels:
650         kfree(channels);
651         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
652         return -ENOMEM;
653 }
654
655 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
656 {
657         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
658                 ieee80211_unregister_hw(rt2x00dev->hw);
659
660         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
661                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
662                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
663                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
664                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
665         }
666
667         kfree(rt2x00dev->spec.channels_info);
668 }
669
670 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
671 {
672         struct hw_mode_spec *spec = &rt2x00dev->spec;
673         int status;
674
675         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
676                 return 0;
677
678         /*
679          * Initialize HW modes.
680          */
681         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
682         if (status)
683                 return status;
684
685         /*
686          * Initialize HW fields.
687          */
688         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
689
690         /*
691          * Register HW.
692          */
693         status = ieee80211_register_hw(rt2x00dev->hw);
694         if (status)
695                 return status;
696
697         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
698
699         return 0;
700 }
701
702 /*
703  * Initialization/uninitialization handlers.
704  */
705 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
706 {
707         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
708                 return;
709
710         /*
711          * Unregister extra components.
712          */
713         rt2x00rfkill_unregister(rt2x00dev);
714
715         /*
716          * Allow the HW to uninitialize.
717          */
718         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
719
720         /*
721          * Free allocated queue entries.
722          */
723         rt2x00queue_uninitialize(rt2x00dev);
724 }
725
726 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
727 {
728         int status;
729
730         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
731                 return 0;
732
733         /*
734          * Allocate all queue entries.
735          */
736         status = rt2x00queue_initialize(rt2x00dev);
737         if (status)
738                 return status;
739
740         /*
741          * Initialize the device.
742          */
743         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
744         if (status) {
745                 rt2x00queue_uninitialize(rt2x00dev);
746                 return status;
747         }
748
749         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
750
751         /*
752          * Register the extra components.
753          */
754         rt2x00rfkill_register(rt2x00dev);
755
756         return 0;
757 }
758
759 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
760 {
761         int retval;
762
763         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
764                 return 0;
765
766         /*
767          * If this is the first interface which is added,
768          * we should load the firmware now.
769          */
770         retval = rt2x00lib_load_firmware(rt2x00dev);
771         if (retval)
772                 return retval;
773
774         /*
775          * Initialize the device.
776          */
777         retval = rt2x00lib_initialize(rt2x00dev);
778         if (retval)
779                 return retval;
780
781         rt2x00dev->intf_ap_count = 0;
782         rt2x00dev->intf_sta_count = 0;
783         rt2x00dev->intf_associated = 0;
784
785         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
786
787         return 0;
788 }
789
790 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
791 {
792         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
793                 return;
794
795         /*
796          * Perhaps we can add something smarter here,
797          * but for now just disabling the radio should do.
798          */
799         rt2x00lib_disable_radio(rt2x00dev);
800
801         rt2x00dev->intf_ap_count = 0;
802         rt2x00dev->intf_sta_count = 0;
803         rt2x00dev->intf_associated = 0;
804 }
805
806 /*
807  * driver allocation handlers.
808  */
809 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
810 {
811         int retval = -ENOMEM;
812
813         mutex_init(&rt2x00dev->csr_mutex);
814
815         /*
816          * Make room for rt2x00_intf inside the per-interface
817          * structure ieee80211_vif.
818          */
819         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
820
821         /*
822          * Determine which operating modes are supported, all modes
823          * which require beaconing, depend on the availability of
824          * beacon entries.
825          */
826         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
827         if (rt2x00dev->ops->bcn->entry_num > 0)
828                 rt2x00dev->hw->wiphy->interface_modes |=
829                     BIT(NL80211_IFTYPE_ADHOC) |
830                     BIT(NL80211_IFTYPE_AP) |
831                     BIT(NL80211_IFTYPE_MESH_POINT) |
832                     BIT(NL80211_IFTYPE_WDS);
833
834         /*
835          * Let the driver probe the device to detect the capabilities.
836          */
837         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
838         if (retval) {
839                 ERROR(rt2x00dev, "Failed to allocate device.\n");
840                 goto exit;
841         }
842
843         /*
844          * Initialize configuration work.
845          */
846         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
847         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
848
849         /*
850          * Allocate queue array.
851          */
852         retval = rt2x00queue_allocate(rt2x00dev);
853         if (retval)
854                 goto exit;
855
856         /*
857          * Initialize ieee80211 structure.
858          */
859         retval = rt2x00lib_probe_hw(rt2x00dev);
860         if (retval) {
861                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
862                 goto exit;
863         }
864
865         /*
866          * Register extra components.
867          */
868         rt2x00link_register(rt2x00dev);
869         rt2x00leds_register(rt2x00dev);
870         rt2x00rfkill_allocate(rt2x00dev);
871         rt2x00debug_register(rt2x00dev);
872
873         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
874
875         return 0;
876
877 exit:
878         rt2x00lib_remove_dev(rt2x00dev);
879
880         return retval;
881 }
882 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
883
884 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
885 {
886         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
887
888         /*
889          * Disable radio.
890          */
891         rt2x00lib_disable_radio(rt2x00dev);
892
893         /*
894          * Uninitialize device.
895          */
896         rt2x00lib_uninitialize(rt2x00dev);
897
898         /*
899          * Free extra components
900          */
901         rt2x00debug_deregister(rt2x00dev);
902         rt2x00rfkill_free(rt2x00dev);
903         rt2x00leds_unregister(rt2x00dev);
904
905         /*
906          * Free ieee80211_hw memory.
907          */
908         rt2x00lib_remove_hw(rt2x00dev);
909
910         /*
911          * Free firmware image.
912          */
913         rt2x00lib_free_firmware(rt2x00dev);
914
915         /*
916          * Free queue structures.
917          */
918         rt2x00queue_free(rt2x00dev);
919 }
920 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
921
922 /*
923  * Device state handlers
924  */
925 #ifdef CONFIG_PM
926 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
927 {
928         NOTICE(rt2x00dev, "Going to sleep.\n");
929
930         /*
931          * Prevent mac80211 from accessing driver while suspended.
932          */
933         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
934                 return 0;
935
936         /*
937          * Cleanup as much as possible.
938          */
939         rt2x00lib_uninitialize(rt2x00dev);
940
941         /*
942          * Suspend/disable extra components.
943          */
944         rt2x00leds_suspend(rt2x00dev);
945         rt2x00debug_deregister(rt2x00dev);
946
947         /*
948          * Set device mode to sleep for power management,
949          * on some hardware this call seems to consistently fail.
950          * From the specifications it is hard to tell why it fails,
951          * and if this is a "bad thing".
952          * Overall it is safe to just ignore the failure and
953          * continue suspending. The only downside is that the
954          * device will not be in optimal power save mode, but with
955          * the radio and the other components already disabled the
956          * device is as good as disabled.
957          */
958         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
959                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
960                         "continue suspending.\n");
961
962         return 0;
963 }
964 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
965
966 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
967 {
968         NOTICE(rt2x00dev, "Waking up.\n");
969
970         /*
971          * Restore/enable extra components.
972          */
973         rt2x00debug_register(rt2x00dev);
974         rt2x00leds_resume(rt2x00dev);
975
976         /*
977          * We are ready again to receive requests from mac80211.
978          */
979         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
980
981         return 0;
982 }
983 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
984 #endif /* CONFIG_PM */
985
986 /*
987  * rt2x00lib module information.
988  */
989 MODULE_AUTHOR(DRV_PROJECT);
990 MODULE_VERSION(DRV_VERSION);
991 MODULE_DESCRIPTION("rt2x00 library");
992 MODULE_LICENSE("GPL");