Merge branch 'for-linus' of git://neil.brown.name/md
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91
92         /*
93          * Start watchdog monitoring.
94          */
95         rt2x00link_start_watchdog(rt2x00dev);
96
97         return 0;
98 }
99
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103                 return;
104
105         /*
106          * Stop watchdog monitoring.
107          */
108         rt2x00link_stop_watchdog(rt2x00dev);
109
110         /*
111          * Stop all queues
112          */
113         rt2x00link_stop_agc(rt2x00dev);
114         rt2x00link_stop_tuner(rt2x00dev);
115         rt2x00queue_stop_queues(rt2x00dev);
116         rt2x00queue_flush_queues(rt2x00dev, true);
117
118         /*
119          * Disable radio.
120          */
121         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123         rt2x00led_led_activity(rt2x00dev, false);
124         rt2x00leds_led_radio(rt2x00dev, false);
125 }
126
127 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128                                           struct ieee80211_vif *vif)
129 {
130         struct rt2x00_dev *rt2x00dev = data;
131         struct rt2x00_intf *intf = vif_to_intf(vif);
132
133         /*
134          * It is possible the radio was disabled while the work had been
135          * scheduled. If that happens we should return here immediately,
136          * note that in the spinlock protected area above the delayed_flags
137          * have been cleared correctly.
138          */
139         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140                 return;
141
142         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143                 rt2x00queue_update_beacon(rt2x00dev, vif);
144 }
145
146 static void rt2x00lib_intf_scheduled(struct work_struct *work)
147 {
148         struct rt2x00_dev *rt2x00dev =
149             container_of(work, struct rt2x00_dev, intf_work);
150
151         /*
152          * Iterate over each interface and perform the
153          * requested configurations.
154          */
155         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156                                             rt2x00lib_intf_scheduled_iter,
157                                             rt2x00dev);
158 }
159
160 static void rt2x00lib_autowakeup(struct work_struct *work)
161 {
162         struct rt2x00_dev *rt2x00dev =
163             container_of(work, struct rt2x00_dev, autowakeup_work.work);
164
165         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166                 return;
167
168         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
170         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
171 }
172
173 /*
174  * Interrupt context handlers.
175  */
176 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177                                      struct ieee80211_vif *vif)
178 {
179         struct rt2x00_dev *rt2x00dev = data;
180         struct sk_buff *skb;
181
182         /*
183          * Only AP mode interfaces do broad- and multicast buffering
184          */
185         if (vif->type != NL80211_IFTYPE_AP)
186                 return;
187
188         /*
189          * Send out buffered broad- and multicast frames
190          */
191         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192         while (skb) {
193                 rt2x00mac_tx(rt2x00dev->hw, skb);
194                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195         }
196 }
197
198 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199                                         struct ieee80211_vif *vif)
200 {
201         struct rt2x00_dev *rt2x00dev = data;
202
203         if (vif->type != NL80211_IFTYPE_AP &&
204             vif->type != NL80211_IFTYPE_ADHOC &&
205             vif->type != NL80211_IFTYPE_MESH_POINT &&
206             vif->type != NL80211_IFTYPE_WDS)
207                 return;
208
209         /*
210          * Update the beacon without locking. This is safe on PCI devices
211          * as they only update the beacon periodically here. This should
212          * never be called for USB devices.
213          */
214         WARN_ON(rt2x00_is_usb(rt2x00dev));
215         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225                                                    rt2x00lib_bc_buffer_iter,
226                                                    rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237                                                    rt2x00lib_beaconupdate_iter,
238                                                    rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249                                                    rt2x00lib_beaconupdate_iter,
250                                                    rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_dmastart(struct queue_entry *entry)
255 {
256         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257         rt2x00queue_index_inc(entry, Q_INDEX);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
260
261 void rt2x00lib_dmadone(struct queue_entry *entry)
262 {
263         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
268
269 void rt2x00lib_txdone(struct queue_entry *entry,
270                       struct txdone_entry_desc *txdesc)
271 {
272         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275         unsigned int header_length, i;
276         u8 rate_idx, rate_flags, retry_rates;
277         u8 skbdesc_flags = skbdesc->flags;
278         bool success;
279
280         /*
281          * Unmap the skb.
282          */
283         rt2x00queue_unmap_skb(entry);
284
285         /*
286          * Remove the extra tx headroom from the skb.
287          */
288         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
289
290         /*
291          * Signal that the TX descriptor is no longer in the skb.
292          */
293         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
294
295         /*
296          * Determine the length of 802.11 header.
297          */
298         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
299
300         /*
301          * Remove L2 padding which was added during
302          */
303         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304                 rt2x00queue_remove_l2pad(entry->skb, header_length);
305
306         /*
307          * If the IV/EIV data was stripped from the frame before it was
308          * passed to the hardware, we should now reinsert it again because
309          * mac80211 will expect the same data to be present it the
310          * frame as it was passed to us.
311          */
312         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
314
315         /*
316          * Send frame to debugfs immediately, after this call is completed
317          * we are going to overwrite the skb->cb array.
318          */
319         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
320
321         /*
322          * Determine if the frame has been successfully transmitted.
323          */
324         success =
325             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
327
328         /*
329          * Update TX statistics.
330          */
331         rt2x00dev->link.qual.tx_success += success;
332         rt2x00dev->link.qual.tx_failed += !success;
333
334         rate_idx = skbdesc->tx_rate_idx;
335         rate_flags = skbdesc->tx_rate_flags;
336         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337             (txdesc->retry + 1) : 1;
338
339         /*
340          * Initialize TX status
341          */
342         memset(&tx_info->status, 0, sizeof(tx_info->status));
343         tx_info->status.ack_signal = 0;
344
345         /*
346          * Frame was send with retries, hardware tried
347          * different rates to send out the frame, at each
348          * retry it lowered the rate 1 step except when the
349          * lowest rate was used.
350          */
351         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352                 tx_info->status.rates[i].idx = rate_idx - i;
353                 tx_info->status.rates[i].flags = rate_flags;
354
355                 if (rate_idx - i == 0) {
356                         /*
357                          * The lowest rate (index 0) was used until the
358                          * number of max retries was reached.
359                          */
360                         tx_info->status.rates[i].count = retry_rates - i;
361                         i++;
362                         break;
363                 }
364                 tx_info->status.rates[i].count = 1;
365         }
366         if (i < (IEEE80211_TX_MAX_RATES - 1))
367                 tx_info->status.rates[i].idx = -1; /* terminate */
368
369         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370                 if (success)
371                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
372                 else
373                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
374         }
375
376         /*
377          * Every single frame has it's own tx status, hence report
378          * every frame as ampdu of size 1.
379          *
380          * TODO: if we can find out how many frames were aggregated
381          * by the hw we could provide the real ampdu_len to mac80211
382          * which would allow the rc algorithm to better decide on
383          * which rates are suitable.
384          */
385         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388                 tx_info->status.ampdu_len = 1;
389                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
390
391                 if (!success)
392                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
393         }
394
395         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396                 if (success)
397                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398                 else
399                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
400         }
401
402         /*
403          * Only send the status report to mac80211 when it's a frame
404          * that originated in mac80211. If this was a extra frame coming
405          * through a mac80211 library call (RTS/CTS) then we should not
406          * send the status report back.
407          */
408         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411                 else
412                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413         } else
414                 dev_kfree_skb_any(entry->skb);
415
416         /*
417          * Make this entry available for reuse.
418          */
419         entry->skb = NULL;
420         entry->flags = 0;
421
422         rt2x00dev->ops->lib->clear_entry(entry);
423
424         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
425
426         /*
427          * If the data queue was below the threshold before the txdone
428          * handler we must make sure the packet queue in the mac80211 stack
429          * is reenabled when the txdone handler has finished.
430          */
431         if (!rt2x00queue_threshold(entry->queue))
432                 rt2x00queue_unpause_queue(entry->queue);
433 }
434 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
435
436 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
437 {
438         struct txdone_entry_desc txdesc;
439
440         txdesc.flags = 0;
441         __set_bit(status, &txdesc.flags);
442         txdesc.retry = 0;
443
444         rt2x00lib_txdone(entry, &txdesc);
445 }
446 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
447
448 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
449 {
450         struct ieee80211_mgmt *mgmt = (void *)data;
451         u8 *pos, *end;
452
453         pos = (u8 *)mgmt->u.beacon.variable;
454         end = data + len;
455         while (pos < end) {
456                 if (pos + 2 + pos[1] > end)
457                         return NULL;
458
459                 if (pos[0] == ie)
460                         return pos;
461
462                 pos += 2 + pos[1];
463         }
464
465         return NULL;
466 }
467
468 static void rt2x00lib_sleep(struct work_struct *work)
469 {
470         struct rt2x00_dev *rt2x00dev =
471             container_of(work, struct rt2x00_dev, sleep_work);
472
473         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
474                 return;
475
476         /*
477          * Check again is powersaving is enabled, to prevent races from delayed
478          * work execution.
479          */
480         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
481                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
482                                  IEEE80211_CONF_CHANGE_PS);
483 }
484
485 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
486                                       struct sk_buff *skb,
487                                       struct rxdone_entry_desc *rxdesc)
488 {
489         struct ieee80211_hdr *hdr = (void *) skb->data;
490         struct ieee80211_tim_ie *tim_ie;
491         u8 *tim;
492         u8 tim_len;
493         bool cam;
494
495         /* If this is not a beacon, or if mac80211 has no powersaving
496          * configured, or if the device is already in powersaving mode
497          * we can exit now. */
498         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
499                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
500                 return;
501
502         /* min. beacon length + FCS_LEN */
503         if (skb->len <= 40 + FCS_LEN)
504                 return;
505
506         /* and only beacons from the associated BSSID, please */
507         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
508             !rt2x00dev->aid)
509                 return;
510
511         rt2x00dev->last_beacon = jiffies;
512
513         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
514         if (!tim)
515                 return;
516
517         if (tim[1] < sizeof(*tim_ie))
518                 return;
519
520         tim_len = tim[1];
521         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
522
523         /* Check whenever the PHY can be turned off again. */
524
525         /* 1. What about buffered unicast traffic for our AID? */
526         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
527
528         /* 2. Maybe the AP wants to send multicast/broadcast data? */
529         cam |= (tim_ie->bitmap_ctrl & 0x01);
530
531         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
532                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
533 }
534
535 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
536                                         struct rxdone_entry_desc *rxdesc)
537 {
538         struct ieee80211_supported_band *sband;
539         const struct rt2x00_rate *rate;
540         unsigned int i;
541         int signal = rxdesc->signal;
542         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
543
544         switch (rxdesc->rate_mode) {
545         case RATE_MODE_CCK:
546         case RATE_MODE_OFDM:
547                 /*
548                  * For non-HT rates the MCS value needs to contain the
549                  * actually used rate modulation (CCK or OFDM).
550                  */
551                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
552                         signal = RATE_MCS(rxdesc->rate_mode, signal);
553
554                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
555                 for (i = 0; i < sband->n_bitrates; i++) {
556                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
557                         if (((type == RXDONE_SIGNAL_PLCP) &&
558                              (rate->plcp == signal)) ||
559                             ((type == RXDONE_SIGNAL_BITRATE) &&
560                               (rate->bitrate == signal)) ||
561                             ((type == RXDONE_SIGNAL_MCS) &&
562                               (rate->mcs == signal))) {
563                                 return i;
564                         }
565                 }
566                 break;
567         case RATE_MODE_HT_MIX:
568         case RATE_MODE_HT_GREENFIELD:
569                 if (signal >= 0 && signal <= 76)
570                         return signal;
571                 break;
572         default:
573                 break;
574         }
575
576         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
577                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
578                 rxdesc->rate_mode, signal, type);
579         return 0;
580 }
581
582 void rt2x00lib_rxdone(struct queue_entry *entry)
583 {
584         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
585         struct rxdone_entry_desc rxdesc;
586         struct sk_buff *skb;
587         struct ieee80211_rx_status *rx_status;
588         unsigned int header_length;
589         int rate_idx;
590
591         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
592             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
593                 goto submit_entry;
594
595         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
596                 goto submit_entry;
597
598         /*
599          * Allocate a new sk_buffer. If no new buffer available, drop the
600          * received frame and reuse the existing buffer.
601          */
602         skb = rt2x00queue_alloc_rxskb(entry);
603         if (!skb)
604                 goto submit_entry;
605
606         /*
607          * Unmap the skb.
608          */
609         rt2x00queue_unmap_skb(entry);
610
611         /*
612          * Extract the RXD details.
613          */
614         memset(&rxdesc, 0, sizeof(rxdesc));
615         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
616
617         /*
618          * Check for valid size in case we get corrupted descriptor from
619          * hardware.
620          */
621         if (unlikely(rxdesc.size == 0 ||
622                      rxdesc.size > entry->queue->data_size)) {
623                 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
624                         rxdesc.size, entry->queue->data_size);
625                 dev_kfree_skb(entry->skb);
626                 goto renew_skb;
627         }
628
629         /*
630          * The data behind the ieee80211 header must be
631          * aligned on a 4 byte boundary.
632          */
633         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
634
635         /*
636          * Hardware might have stripped the IV/EIV/ICV data,
637          * in that case it is possible that the data was
638          * provided separately (through hardware descriptor)
639          * in which case we should reinsert the data into the frame.
640          */
641         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
642             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
643                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
644                                           &rxdesc);
645         else if (header_length &&
646                  (rxdesc.size > header_length) &&
647                  (rxdesc.dev_flags & RXDONE_L2PAD))
648                 rt2x00queue_remove_l2pad(entry->skb, header_length);
649
650         /* Trim buffer to correct size */
651         skb_trim(entry->skb, rxdesc.size);
652
653         /*
654          * Translate the signal to the correct bitrate index.
655          */
656         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
657         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
658             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
659                 rxdesc.flags |= RX_FLAG_HT;
660
661         /*
662          * Check if this is a beacon, and more frames have been
663          * buffered while we were in powersaving mode.
664          */
665         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
666
667         /*
668          * Update extra components
669          */
670         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
671         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
672         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
673
674         /*
675          * Initialize RX status information, and send frame
676          * to mac80211.
677          */
678         rx_status = IEEE80211_SKB_RXCB(entry->skb);
679         rx_status->mactime = rxdesc.timestamp;
680         rx_status->band = rt2x00dev->curr_band;
681         rx_status->freq = rt2x00dev->curr_freq;
682         rx_status->rate_idx = rate_idx;
683         rx_status->signal = rxdesc.rssi;
684         rx_status->flag = rxdesc.flags;
685         rx_status->antenna = rt2x00dev->link.ant.active.rx;
686
687         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
688
689 renew_skb:
690         /*
691          * Replace the skb with the freshly allocated one.
692          */
693         entry->skb = skb;
694
695 submit_entry:
696         entry->flags = 0;
697         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
698         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
699             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
700                 rt2x00dev->ops->lib->clear_entry(entry);
701 }
702 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
703
704 /*
705  * Driver initialization handlers.
706  */
707 const struct rt2x00_rate rt2x00_supported_rates[12] = {
708         {
709                 .flags = DEV_RATE_CCK,
710                 .bitrate = 10,
711                 .ratemask = BIT(0),
712                 .plcp = 0x00,
713                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
714         },
715         {
716                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
717                 .bitrate = 20,
718                 .ratemask = BIT(1),
719                 .plcp = 0x01,
720                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
721         },
722         {
723                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
724                 .bitrate = 55,
725                 .ratemask = BIT(2),
726                 .plcp = 0x02,
727                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
728         },
729         {
730                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
731                 .bitrate = 110,
732                 .ratemask = BIT(3),
733                 .plcp = 0x03,
734                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
735         },
736         {
737                 .flags = DEV_RATE_OFDM,
738                 .bitrate = 60,
739                 .ratemask = BIT(4),
740                 .plcp = 0x0b,
741                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
742         },
743         {
744                 .flags = DEV_RATE_OFDM,
745                 .bitrate = 90,
746                 .ratemask = BIT(5),
747                 .plcp = 0x0f,
748                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
749         },
750         {
751                 .flags = DEV_RATE_OFDM,
752                 .bitrate = 120,
753                 .ratemask = BIT(6),
754                 .plcp = 0x0a,
755                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
756         },
757         {
758                 .flags = DEV_RATE_OFDM,
759                 .bitrate = 180,
760                 .ratemask = BIT(7),
761                 .plcp = 0x0e,
762                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
763         },
764         {
765                 .flags = DEV_RATE_OFDM,
766                 .bitrate = 240,
767                 .ratemask = BIT(8),
768                 .plcp = 0x09,
769                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
770         },
771         {
772                 .flags = DEV_RATE_OFDM,
773                 .bitrate = 360,
774                 .ratemask = BIT(9),
775                 .plcp = 0x0d,
776                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
777         },
778         {
779                 .flags = DEV_RATE_OFDM,
780                 .bitrate = 480,
781                 .ratemask = BIT(10),
782                 .plcp = 0x08,
783                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
784         },
785         {
786                 .flags = DEV_RATE_OFDM,
787                 .bitrate = 540,
788                 .ratemask = BIT(11),
789                 .plcp = 0x0c,
790                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
791         },
792 };
793
794 static void rt2x00lib_channel(struct ieee80211_channel *entry,
795                               const int channel, const int tx_power,
796                               const int value)
797 {
798         /* XXX: this assumption about the band is wrong for 802.11j */
799         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
800         entry->center_freq = ieee80211_channel_to_frequency(channel,
801                                                             entry->band);
802         entry->hw_value = value;
803         entry->max_power = tx_power;
804         entry->max_antenna_gain = 0xff;
805 }
806
807 static void rt2x00lib_rate(struct ieee80211_rate *entry,
808                            const u16 index, const struct rt2x00_rate *rate)
809 {
810         entry->flags = 0;
811         entry->bitrate = rate->bitrate;
812         entry->hw_value = index;
813         entry->hw_value_short = index;
814
815         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
816                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
817 }
818
819 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
820                                     struct hw_mode_spec *spec)
821 {
822         struct ieee80211_hw *hw = rt2x00dev->hw;
823         struct ieee80211_channel *channels;
824         struct ieee80211_rate *rates;
825         unsigned int num_rates;
826         unsigned int i;
827
828         num_rates = 0;
829         if (spec->supported_rates & SUPPORT_RATE_CCK)
830                 num_rates += 4;
831         if (spec->supported_rates & SUPPORT_RATE_OFDM)
832                 num_rates += 8;
833
834         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
835         if (!channels)
836                 return -ENOMEM;
837
838         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
839         if (!rates)
840                 goto exit_free_channels;
841
842         /*
843          * Initialize Rate list.
844          */
845         for (i = 0; i < num_rates; i++)
846                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
847
848         /*
849          * Initialize Channel list.
850          */
851         for (i = 0; i < spec->num_channels; i++) {
852                 rt2x00lib_channel(&channels[i],
853                                   spec->channels[i].channel,
854                                   spec->channels_info[i].max_power, i);
855         }
856
857         /*
858          * Intitialize 802.11b, 802.11g
859          * Rates: CCK, OFDM.
860          * Channels: 2.4 GHz
861          */
862         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
863                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
864                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
865                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
866                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
867                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
868                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
869                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
870                        &spec->ht, sizeof(spec->ht));
871         }
872
873         /*
874          * Intitialize 802.11a
875          * Rates: OFDM.
876          * Channels: OFDM, UNII, HiperLAN2.
877          */
878         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
879                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
880                     spec->num_channels - 14;
881                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
882                     num_rates - 4;
883                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
884                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
885                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
886                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
887                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
888                        &spec->ht, sizeof(spec->ht));
889         }
890
891         return 0;
892
893  exit_free_channels:
894         kfree(channels);
895         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
896         return -ENOMEM;
897 }
898
899 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
900 {
901         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
902                 ieee80211_unregister_hw(rt2x00dev->hw);
903
904         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
905                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
906                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
907                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
908                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
909         }
910
911         kfree(rt2x00dev->spec.channels_info);
912 }
913
914 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
915 {
916         struct hw_mode_spec *spec = &rt2x00dev->spec;
917         int status;
918
919         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
920                 return 0;
921
922         /*
923          * Initialize HW modes.
924          */
925         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
926         if (status)
927                 return status;
928
929         /*
930          * Initialize HW fields.
931          */
932         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
933
934         /*
935          * Initialize extra TX headroom required.
936          */
937         rt2x00dev->hw->extra_tx_headroom =
938                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
939                       rt2x00dev->ops->extra_tx_headroom);
940
941         /*
942          * Take TX headroom required for alignment into account.
943          */
944         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
945                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
946         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
947                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
948
949         /*
950          * Tell mac80211 about the size of our private STA structure.
951          */
952         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
953
954         /*
955          * Allocate tx status FIFO for driver use.
956          */
957         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
958                 /*
959                  * Allocate the txstatus fifo. In the worst case the tx
960                  * status fifo has to hold the tx status of all entries
961                  * in all tx queues. Hence, calculate the kfifo size as
962                  * tx_queues * entry_num and round up to the nearest
963                  * power of 2.
964                  */
965                 int kfifo_size =
966                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
967                                            rt2x00dev->ops->tx->entry_num *
968                                            sizeof(u32));
969
970                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
971                                      GFP_KERNEL);
972                 if (status)
973                         return status;
974         }
975
976         /*
977          * Initialize tasklets if used by the driver. Tasklets are
978          * disabled until the interrupts are turned on. The driver
979          * has to handle that.
980          */
981 #define RT2X00_TASKLET_INIT(taskletname) \
982         if (rt2x00dev->ops->lib->taskletname) { \
983                 tasklet_init(&rt2x00dev->taskletname, \
984                              rt2x00dev->ops->lib->taskletname, \
985                              (unsigned long)rt2x00dev); \
986         }
987
988         RT2X00_TASKLET_INIT(txstatus_tasklet);
989         RT2X00_TASKLET_INIT(pretbtt_tasklet);
990         RT2X00_TASKLET_INIT(tbtt_tasklet);
991         RT2X00_TASKLET_INIT(rxdone_tasklet);
992         RT2X00_TASKLET_INIT(autowake_tasklet);
993
994 #undef RT2X00_TASKLET_INIT
995
996         /*
997          * Register HW.
998          */
999         status = ieee80211_register_hw(rt2x00dev->hw);
1000         if (status)
1001                 return status;
1002
1003         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * Initialization/uninitialization handlers.
1010  */
1011 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1012 {
1013         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1014                 return;
1015
1016         /*
1017          * Unregister extra components.
1018          */
1019         rt2x00rfkill_unregister(rt2x00dev);
1020
1021         /*
1022          * Allow the HW to uninitialize.
1023          */
1024         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1025
1026         /*
1027          * Free allocated queue entries.
1028          */
1029         rt2x00queue_uninitialize(rt2x00dev);
1030 }
1031
1032 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1033 {
1034         int status;
1035
1036         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1037                 return 0;
1038
1039         /*
1040          * Allocate all queue entries.
1041          */
1042         status = rt2x00queue_initialize(rt2x00dev);
1043         if (status)
1044                 return status;
1045
1046         /*
1047          * Initialize the device.
1048          */
1049         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1050         if (status) {
1051                 rt2x00queue_uninitialize(rt2x00dev);
1052                 return status;
1053         }
1054
1055         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1056
1057         /*
1058          * Register the extra components.
1059          */
1060         rt2x00rfkill_register(rt2x00dev);
1061
1062         return 0;
1063 }
1064
1065 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1066 {
1067         int retval;
1068
1069         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1070                 return 0;
1071
1072         /*
1073          * If this is the first interface which is added,
1074          * we should load the firmware now.
1075          */
1076         retval = rt2x00lib_load_firmware(rt2x00dev);
1077         if (retval)
1078                 return retval;
1079
1080         /*
1081          * Initialize the device.
1082          */
1083         retval = rt2x00lib_initialize(rt2x00dev);
1084         if (retval)
1085                 return retval;
1086
1087         rt2x00dev->intf_ap_count = 0;
1088         rt2x00dev->intf_sta_count = 0;
1089         rt2x00dev->intf_associated = 0;
1090
1091         /* Enable the radio */
1092         retval = rt2x00lib_enable_radio(rt2x00dev);
1093         if (retval)
1094                 return retval;
1095
1096         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1097
1098         return 0;
1099 }
1100
1101 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1102 {
1103         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1104                 return;
1105
1106         /*
1107          * Perhaps we can add something smarter here,
1108          * but for now just disabling the radio should do.
1109          */
1110         rt2x00lib_disable_radio(rt2x00dev);
1111
1112         rt2x00dev->intf_ap_count = 0;
1113         rt2x00dev->intf_sta_count = 0;
1114         rt2x00dev->intf_associated = 0;
1115 }
1116
1117 /*
1118  * driver allocation handlers.
1119  */
1120 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1121 {
1122         int retval = -ENOMEM;
1123
1124         spin_lock_init(&rt2x00dev->irqmask_lock);
1125         mutex_init(&rt2x00dev->csr_mutex);
1126
1127         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1128
1129         /*
1130          * Make room for rt2x00_intf inside the per-interface
1131          * structure ieee80211_vif.
1132          */
1133         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1134
1135         /*
1136          * Determine which operating modes are supported, all modes
1137          * which require beaconing, depend on the availability of
1138          * beacon entries.
1139          */
1140         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1141         if (rt2x00dev->ops->bcn->entry_num > 0)
1142                 rt2x00dev->hw->wiphy->interface_modes |=
1143                     BIT(NL80211_IFTYPE_ADHOC) |
1144                     BIT(NL80211_IFTYPE_AP) |
1145                     BIT(NL80211_IFTYPE_MESH_POINT) |
1146                     BIT(NL80211_IFTYPE_WDS);
1147
1148         /*
1149          * Initialize work.
1150          */
1151         rt2x00dev->workqueue =
1152             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1153         if (!rt2x00dev->workqueue) {
1154                 retval = -ENOMEM;
1155                 goto exit;
1156         }
1157
1158         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1159         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1160         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1161
1162         /*
1163          * Let the driver probe the device to detect the capabilities.
1164          */
1165         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1166         if (retval) {
1167                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1168                 goto exit;
1169         }
1170
1171         /*
1172          * Allocate queue array.
1173          */
1174         retval = rt2x00queue_allocate(rt2x00dev);
1175         if (retval)
1176                 goto exit;
1177
1178         /*
1179          * Initialize ieee80211 structure.
1180          */
1181         retval = rt2x00lib_probe_hw(rt2x00dev);
1182         if (retval) {
1183                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1184                 goto exit;
1185         }
1186
1187         /*
1188          * Register extra components.
1189          */
1190         rt2x00link_register(rt2x00dev);
1191         rt2x00leds_register(rt2x00dev);
1192         rt2x00debug_register(rt2x00dev);
1193
1194         return 0;
1195
1196 exit:
1197         rt2x00lib_remove_dev(rt2x00dev);
1198
1199         return retval;
1200 }
1201 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1202
1203 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1204 {
1205         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1206
1207         /*
1208          * Disable radio.
1209          */
1210         rt2x00lib_disable_radio(rt2x00dev);
1211
1212         /*
1213          * Stop all work.
1214          */
1215         cancel_work_sync(&rt2x00dev->intf_work);
1216         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1217         cancel_work_sync(&rt2x00dev->sleep_work);
1218         if (rt2x00_is_usb(rt2x00dev)) {
1219                 del_timer_sync(&rt2x00dev->txstatus_timer);
1220                 cancel_work_sync(&rt2x00dev->rxdone_work);
1221                 cancel_work_sync(&rt2x00dev->txdone_work);
1222         }
1223         destroy_workqueue(rt2x00dev->workqueue);
1224
1225         /*
1226          * Free the tx status fifo.
1227          */
1228         kfifo_free(&rt2x00dev->txstatus_fifo);
1229
1230         /*
1231          * Kill the tx status tasklet.
1232          */
1233         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1234         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1235         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1236         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1237         tasklet_kill(&rt2x00dev->autowake_tasklet);
1238
1239         /*
1240          * Uninitialize device.
1241          */
1242         rt2x00lib_uninitialize(rt2x00dev);
1243
1244         /*
1245          * Free extra components
1246          */
1247         rt2x00debug_deregister(rt2x00dev);
1248         rt2x00leds_unregister(rt2x00dev);
1249
1250         /*
1251          * Free ieee80211_hw memory.
1252          */
1253         rt2x00lib_remove_hw(rt2x00dev);
1254
1255         /*
1256          * Free firmware image.
1257          */
1258         rt2x00lib_free_firmware(rt2x00dev);
1259
1260         /*
1261          * Free queue structures.
1262          */
1263         rt2x00queue_free(rt2x00dev);
1264 }
1265 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1266
1267 /*
1268  * Device state handlers
1269  */
1270 #ifdef CONFIG_PM
1271 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1272 {
1273         NOTICE(rt2x00dev, "Going to sleep.\n");
1274
1275         /*
1276          * Prevent mac80211 from accessing driver while suspended.
1277          */
1278         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1279                 return 0;
1280
1281         /*
1282          * Cleanup as much as possible.
1283          */
1284         rt2x00lib_uninitialize(rt2x00dev);
1285
1286         /*
1287          * Suspend/disable extra components.
1288          */
1289         rt2x00leds_suspend(rt2x00dev);
1290         rt2x00debug_deregister(rt2x00dev);
1291
1292         /*
1293          * Set device mode to sleep for power management,
1294          * on some hardware this call seems to consistently fail.
1295          * From the specifications it is hard to tell why it fails,
1296          * and if this is a "bad thing".
1297          * Overall it is safe to just ignore the failure and
1298          * continue suspending. The only downside is that the
1299          * device will not be in optimal power save mode, but with
1300          * the radio and the other components already disabled the
1301          * device is as good as disabled.
1302          */
1303         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1304                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1305                         "continue suspending.\n");
1306
1307         return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1310
1311 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1312 {
1313         NOTICE(rt2x00dev, "Waking up.\n");
1314
1315         /*
1316          * Restore/enable extra components.
1317          */
1318         rt2x00debug_register(rt2x00dev);
1319         rt2x00leds_resume(rt2x00dev);
1320
1321         /*
1322          * We are ready again to receive requests from mac80211.
1323          */
1324         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1325
1326         return 0;
1327 }
1328 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1329 #endif /* CONFIG_PM */
1330
1331 /*
1332  * rt2x00lib module information.
1333  */
1334 MODULE_AUTHOR(DRV_PROJECT);
1335 MODULE_VERSION(DRV_VERSION);
1336 MODULE_DESCRIPTION("rt2x00 library");
1337 MODULE_LICENSE("GPL");