Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Radio control handlers.
37  */
38 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
39 {
40         int status;
41
42         /*
43          * Don't enable the radio twice.
44          * And check if the hardware button has been disabled.
45          */
46         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
47                 return 0;
48
49         /*
50          * Initialize all data queues.
51          */
52         rt2x00queue_init_queues(rt2x00dev);
53
54         /*
55          * Enable radio.
56          */
57         status =
58             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
59         if (status)
60                 return status;
61
62         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
63
64         rt2x00leds_led_radio(rt2x00dev, true);
65         rt2x00led_led_activity(rt2x00dev, true);
66
67         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
68
69         /*
70          * Enable queues.
71          */
72         rt2x00queue_start_queues(rt2x00dev);
73         rt2x00link_start_tuner(rt2x00dev);
74         rt2x00link_start_agc(rt2x00dev);
75
76         /*
77          * Start watchdog monitoring.
78          */
79         rt2x00link_start_watchdog(rt2x00dev);
80
81         return 0;
82 }
83
84 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
85 {
86         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
87                 return;
88
89         /*
90          * Stop watchdog monitoring.
91          */
92         rt2x00link_stop_watchdog(rt2x00dev);
93
94         /*
95          * Stop all queues
96          */
97         rt2x00link_stop_agc(rt2x00dev);
98         rt2x00link_stop_tuner(rt2x00dev);
99         rt2x00queue_stop_queues(rt2x00dev);
100         rt2x00queue_flush_queues(rt2x00dev, true);
101
102         /*
103          * Disable radio.
104          */
105         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
106         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
107         rt2x00led_led_activity(rt2x00dev, false);
108         rt2x00leds_led_radio(rt2x00dev, false);
109 }
110
111 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
112                                           struct ieee80211_vif *vif)
113 {
114         struct rt2x00_dev *rt2x00dev = data;
115         struct rt2x00_intf *intf = vif_to_intf(vif);
116
117         /*
118          * It is possible the radio was disabled while the work had been
119          * scheduled. If that happens we should return here immediately,
120          * note that in the spinlock protected area above the delayed_flags
121          * have been cleared correctly.
122          */
123         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
124                 return;
125
126         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
127                 rt2x00queue_update_beacon(rt2x00dev, vif);
128 }
129
130 static void rt2x00lib_intf_scheduled(struct work_struct *work)
131 {
132         struct rt2x00_dev *rt2x00dev =
133             container_of(work, struct rt2x00_dev, intf_work);
134
135         /*
136          * Iterate over each interface and perform the
137          * requested configurations.
138          */
139         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
140                                             rt2x00lib_intf_scheduled_iter,
141                                             rt2x00dev);
142 }
143
144 static void rt2x00lib_autowakeup(struct work_struct *work)
145 {
146         struct rt2x00_dev *rt2x00dev =
147             container_of(work, struct rt2x00_dev, autowakeup_work.work);
148
149         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
150                 return;
151
152         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
153                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
154         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
155 }
156
157 /*
158  * Interrupt context handlers.
159  */
160 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
161                                      struct ieee80211_vif *vif)
162 {
163         struct rt2x00_dev *rt2x00dev = data;
164         struct sk_buff *skb;
165
166         /*
167          * Only AP mode interfaces do broad- and multicast buffering
168          */
169         if (vif->type != NL80211_IFTYPE_AP)
170                 return;
171
172         /*
173          * Send out buffered broad- and multicast frames
174          */
175         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
176         while (skb) {
177                 rt2x00mac_tx(rt2x00dev->hw, skb);
178                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
179         }
180 }
181
182 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
183                                         struct ieee80211_vif *vif)
184 {
185         struct rt2x00_dev *rt2x00dev = data;
186
187         if (vif->type != NL80211_IFTYPE_AP &&
188             vif->type != NL80211_IFTYPE_ADHOC &&
189             vif->type != NL80211_IFTYPE_MESH_POINT &&
190             vif->type != NL80211_IFTYPE_WDS)
191                 return;
192
193         /*
194          * Update the beacon without locking. This is safe on PCI devices
195          * as they only update the beacon periodically here. This should
196          * never be called for USB devices.
197          */
198         WARN_ON(rt2x00_is_usb(rt2x00dev));
199         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
200 }
201
202 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
203 {
204         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
205                 return;
206
207         /* send buffered bc/mc frames out for every bssid */
208         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
209                                                    rt2x00lib_bc_buffer_iter,
210                                                    rt2x00dev);
211         /*
212          * Devices with pre tbtt interrupt don't need to update the beacon
213          * here as they will fetch the next beacon directly prior to
214          * transmission.
215          */
216         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
217                 return;
218
219         /* fetch next beacon */
220         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
221                                                    rt2x00lib_beaconupdate_iter,
222                                                    rt2x00dev);
223 }
224 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
225
226 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
227 {
228         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
229                 return;
230
231         /* fetch next beacon */
232         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
233                                                    rt2x00lib_beaconupdate_iter,
234                                                    rt2x00dev);
235 }
236 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
237
238 void rt2x00lib_dmastart(struct queue_entry *entry)
239 {
240         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
241         rt2x00queue_index_inc(entry, Q_INDEX);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
244
245 void rt2x00lib_dmadone(struct queue_entry *entry)
246 {
247         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
248         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
252
253 void rt2x00lib_txdone(struct queue_entry *entry,
254                       struct txdone_entry_desc *txdesc)
255 {
256         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
257         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
258         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
259         unsigned int header_length, i;
260         u8 rate_idx, rate_flags, retry_rates;
261         u8 skbdesc_flags = skbdesc->flags;
262         bool success;
263
264         /*
265          * Unmap the skb.
266          */
267         rt2x00queue_unmap_skb(entry);
268
269         /*
270          * Remove the extra tx headroom from the skb.
271          */
272         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
273
274         /*
275          * Signal that the TX descriptor is no longer in the skb.
276          */
277         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
278
279         /*
280          * Determine the length of 802.11 header.
281          */
282         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
283
284         /*
285          * Remove L2 padding which was added during
286          */
287         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
288                 rt2x00queue_remove_l2pad(entry->skb, header_length);
289
290         /*
291          * If the IV/EIV data was stripped from the frame before it was
292          * passed to the hardware, we should now reinsert it again because
293          * mac80211 will expect the same data to be present it the
294          * frame as it was passed to us.
295          */
296         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
297                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
298
299         /*
300          * Send frame to debugfs immediately, after this call is completed
301          * we are going to overwrite the skb->cb array.
302          */
303         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
304
305         /*
306          * Determine if the frame has been successfully transmitted.
307          */
308         success =
309             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
310             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
311
312         /*
313          * Update TX statistics.
314          */
315         rt2x00dev->link.qual.tx_success += success;
316         rt2x00dev->link.qual.tx_failed += !success;
317
318         rate_idx = skbdesc->tx_rate_idx;
319         rate_flags = skbdesc->tx_rate_flags;
320         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
321             (txdesc->retry + 1) : 1;
322
323         /*
324          * Initialize TX status
325          */
326         memset(&tx_info->status, 0, sizeof(tx_info->status));
327         tx_info->status.ack_signal = 0;
328
329         /*
330          * Frame was send with retries, hardware tried
331          * different rates to send out the frame, at each
332          * retry it lowered the rate 1 step except when the
333          * lowest rate was used.
334          */
335         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
336                 tx_info->status.rates[i].idx = rate_idx - i;
337                 tx_info->status.rates[i].flags = rate_flags;
338
339                 if (rate_idx - i == 0) {
340                         /*
341                          * The lowest rate (index 0) was used until the
342                          * number of max retries was reached.
343                          */
344                         tx_info->status.rates[i].count = retry_rates - i;
345                         i++;
346                         break;
347                 }
348                 tx_info->status.rates[i].count = 1;
349         }
350         if (i < (IEEE80211_TX_MAX_RATES - 1))
351                 tx_info->status.rates[i].idx = -1; /* terminate */
352
353         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
354                 if (success)
355                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
356                 else
357                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
358         }
359
360         /*
361          * Every single frame has it's own tx status, hence report
362          * every frame as ampdu of size 1.
363          *
364          * TODO: if we can find out how many frames were aggregated
365          * by the hw we could provide the real ampdu_len to mac80211
366          * which would allow the rc algorithm to better decide on
367          * which rates are suitable.
368          */
369         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
370             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
371                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
372                 tx_info->status.ampdu_len = 1;
373                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
374
375                 if (!success)
376                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
377         }
378
379         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
380                 if (success)
381                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
382                 else
383                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
384         }
385
386         /*
387          * Only send the status report to mac80211 when it's a frame
388          * that originated in mac80211. If this was a extra frame coming
389          * through a mac80211 library call (RTS/CTS) then we should not
390          * send the status report back.
391          */
392         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
393                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
394                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
395                 else
396                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
397         } else
398                 dev_kfree_skb_any(entry->skb);
399
400         /*
401          * Make this entry available for reuse.
402          */
403         entry->skb = NULL;
404         entry->flags = 0;
405
406         rt2x00dev->ops->lib->clear_entry(entry);
407
408         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
409
410         /*
411          * If the data queue was below the threshold before the txdone
412          * handler we must make sure the packet queue in the mac80211 stack
413          * is reenabled when the txdone handler has finished.
414          */
415         if (!rt2x00queue_threshold(entry->queue))
416                 rt2x00queue_unpause_queue(entry->queue);
417 }
418 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
419
420 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
421 {
422         struct txdone_entry_desc txdesc;
423
424         txdesc.flags = 0;
425         __set_bit(status, &txdesc.flags);
426         txdesc.retry = 0;
427
428         rt2x00lib_txdone(entry, &txdesc);
429 }
430 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
431
432 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
433 {
434         struct ieee80211_mgmt *mgmt = (void *)data;
435         u8 *pos, *end;
436
437         pos = (u8 *)mgmt->u.beacon.variable;
438         end = data + len;
439         while (pos < end) {
440                 if (pos + 2 + pos[1] > end)
441                         return NULL;
442
443                 if (pos[0] == ie)
444                         return pos;
445
446                 pos += 2 + pos[1];
447         }
448
449         return NULL;
450 }
451
452 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
453                                       struct sk_buff *skb,
454                                       struct rxdone_entry_desc *rxdesc)
455 {
456         struct ieee80211_hdr *hdr = (void *) skb->data;
457         struct ieee80211_tim_ie *tim_ie;
458         u8 *tim;
459         u8 tim_len;
460         bool cam;
461
462         /* If this is not a beacon, or if mac80211 has no powersaving
463          * configured, or if the device is already in powersaving mode
464          * we can exit now. */
465         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
466                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
467                 return;
468
469         /* min. beacon length + FCS_LEN */
470         if (skb->len <= 40 + FCS_LEN)
471                 return;
472
473         /* and only beacons from the associated BSSID, please */
474         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
475             !rt2x00dev->aid)
476                 return;
477
478         rt2x00dev->last_beacon = jiffies;
479
480         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
481         if (!tim)
482                 return;
483
484         if (tim[1] < sizeof(*tim_ie))
485                 return;
486
487         tim_len = tim[1];
488         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
489
490         /* Check whenever the PHY can be turned off again. */
491
492         /* 1. What about buffered unicast traffic for our AID? */
493         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
494
495         /* 2. Maybe the AP wants to send multicast/broadcast data? */
496         cam |= (tim_ie->bitmap_ctrl & 0x01);
497
498         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
499                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
500                                  IEEE80211_CONF_CHANGE_PS);
501 }
502
503 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
504                                         struct rxdone_entry_desc *rxdesc)
505 {
506         struct ieee80211_supported_band *sband;
507         const struct rt2x00_rate *rate;
508         unsigned int i;
509         int signal = rxdesc->signal;
510         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
511
512         switch (rxdesc->rate_mode) {
513         case RATE_MODE_CCK:
514         case RATE_MODE_OFDM:
515                 /*
516                  * For non-HT rates the MCS value needs to contain the
517                  * actually used rate modulation (CCK or OFDM).
518                  */
519                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
520                         signal = RATE_MCS(rxdesc->rate_mode, signal);
521
522                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
523                 for (i = 0; i < sband->n_bitrates; i++) {
524                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
525                         if (((type == RXDONE_SIGNAL_PLCP) &&
526                              (rate->plcp == signal)) ||
527                             ((type == RXDONE_SIGNAL_BITRATE) &&
528                               (rate->bitrate == signal)) ||
529                             ((type == RXDONE_SIGNAL_MCS) &&
530                               (rate->mcs == signal))) {
531                                 return i;
532                         }
533                 }
534                 break;
535         case RATE_MODE_HT_MIX:
536         case RATE_MODE_HT_GREENFIELD:
537                 if (signal >= 0 && signal <= 76)
538                         return signal;
539                 break;
540         default:
541                 break;
542         }
543
544         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
545                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
546                 rxdesc->rate_mode, signal, type);
547         return 0;
548 }
549
550 void rt2x00lib_rxdone(struct queue_entry *entry)
551 {
552         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
553         struct rxdone_entry_desc rxdesc;
554         struct sk_buff *skb;
555         struct ieee80211_rx_status *rx_status;
556         unsigned int header_length;
557         int rate_idx;
558
559         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
560             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
561                 goto submit_entry;
562
563         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
564                 goto submit_entry;
565
566         /*
567          * Allocate a new sk_buffer. If no new buffer available, drop the
568          * received frame and reuse the existing buffer.
569          */
570         skb = rt2x00queue_alloc_rxskb(entry);
571         if (!skb)
572                 goto submit_entry;
573
574         /*
575          * Unmap the skb.
576          */
577         rt2x00queue_unmap_skb(entry);
578
579         /*
580          * Extract the RXD details.
581          */
582         memset(&rxdesc, 0, sizeof(rxdesc));
583         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
584
585         /*
586          * The data behind the ieee80211 header must be
587          * aligned on a 4 byte boundary.
588          */
589         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
590
591         /*
592          * Hardware might have stripped the IV/EIV/ICV data,
593          * in that case it is possible that the data was
594          * provided separately (through hardware descriptor)
595          * in which case we should reinsert the data into the frame.
596          */
597         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
598             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
599                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
600                                           &rxdesc);
601         else if (header_length &&
602                  (rxdesc.size > header_length) &&
603                  (rxdesc.dev_flags & RXDONE_L2PAD))
604                 rt2x00queue_remove_l2pad(entry->skb, header_length);
605
606         /* Trim buffer to correct size */
607         skb_trim(entry->skb, rxdesc.size);
608
609         /*
610          * Translate the signal to the correct bitrate index.
611          */
612         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
613         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
614             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
615                 rxdesc.flags |= RX_FLAG_HT;
616
617         /*
618          * Check if this is a beacon, and more frames have been
619          * buffered while we were in powersaving mode.
620          */
621         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
622
623         /*
624          * Update extra components
625          */
626         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
627         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
628         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
629
630         /*
631          * Initialize RX status information, and send frame
632          * to mac80211.
633          */
634         rx_status = IEEE80211_SKB_RXCB(entry->skb);
635         rx_status->mactime = rxdesc.timestamp;
636         rx_status->band = rt2x00dev->curr_band;
637         rx_status->freq = rt2x00dev->curr_freq;
638         rx_status->rate_idx = rate_idx;
639         rx_status->signal = rxdesc.rssi;
640         rx_status->flag = rxdesc.flags;
641         rx_status->antenna = rt2x00dev->link.ant.active.rx;
642
643         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
644
645         /*
646          * Replace the skb with the freshly allocated one.
647          */
648         entry->skb = skb;
649
650 submit_entry:
651         entry->flags = 0;
652         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
653         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
654             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
655                 rt2x00dev->ops->lib->clear_entry(entry);
656 }
657 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
658
659 /*
660  * Driver initialization handlers.
661  */
662 const struct rt2x00_rate rt2x00_supported_rates[12] = {
663         {
664                 .flags = DEV_RATE_CCK,
665                 .bitrate = 10,
666                 .ratemask = BIT(0),
667                 .plcp = 0x00,
668                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
669         },
670         {
671                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
672                 .bitrate = 20,
673                 .ratemask = BIT(1),
674                 .plcp = 0x01,
675                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
676         },
677         {
678                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
679                 .bitrate = 55,
680                 .ratemask = BIT(2),
681                 .plcp = 0x02,
682                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
683         },
684         {
685                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
686                 .bitrate = 110,
687                 .ratemask = BIT(3),
688                 .plcp = 0x03,
689                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
690         },
691         {
692                 .flags = DEV_RATE_OFDM,
693                 .bitrate = 60,
694                 .ratemask = BIT(4),
695                 .plcp = 0x0b,
696                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
697         },
698         {
699                 .flags = DEV_RATE_OFDM,
700                 .bitrate = 90,
701                 .ratemask = BIT(5),
702                 .plcp = 0x0f,
703                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
704         },
705         {
706                 .flags = DEV_RATE_OFDM,
707                 .bitrate = 120,
708                 .ratemask = BIT(6),
709                 .plcp = 0x0a,
710                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
711         },
712         {
713                 .flags = DEV_RATE_OFDM,
714                 .bitrate = 180,
715                 .ratemask = BIT(7),
716                 .plcp = 0x0e,
717                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
718         },
719         {
720                 .flags = DEV_RATE_OFDM,
721                 .bitrate = 240,
722                 .ratemask = BIT(8),
723                 .plcp = 0x09,
724                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
725         },
726         {
727                 .flags = DEV_RATE_OFDM,
728                 .bitrate = 360,
729                 .ratemask = BIT(9),
730                 .plcp = 0x0d,
731                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
732         },
733         {
734                 .flags = DEV_RATE_OFDM,
735                 .bitrate = 480,
736                 .ratemask = BIT(10),
737                 .plcp = 0x08,
738                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
739         },
740         {
741                 .flags = DEV_RATE_OFDM,
742                 .bitrate = 540,
743                 .ratemask = BIT(11),
744                 .plcp = 0x0c,
745                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
746         },
747 };
748
749 static void rt2x00lib_channel(struct ieee80211_channel *entry,
750                               const int channel, const int tx_power,
751                               const int value)
752 {
753         /* XXX: this assumption about the band is wrong for 802.11j */
754         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
755         entry->center_freq = ieee80211_channel_to_frequency(channel,
756                                                             entry->band);
757         entry->hw_value = value;
758         entry->max_power = tx_power;
759         entry->max_antenna_gain = 0xff;
760 }
761
762 static void rt2x00lib_rate(struct ieee80211_rate *entry,
763                            const u16 index, const struct rt2x00_rate *rate)
764 {
765         entry->flags = 0;
766         entry->bitrate = rate->bitrate;
767         entry->hw_value = index;
768         entry->hw_value_short = index;
769
770         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
771                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
772 }
773
774 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
775                                     struct hw_mode_spec *spec)
776 {
777         struct ieee80211_hw *hw = rt2x00dev->hw;
778         struct ieee80211_channel *channels;
779         struct ieee80211_rate *rates;
780         unsigned int num_rates;
781         unsigned int i;
782
783         num_rates = 0;
784         if (spec->supported_rates & SUPPORT_RATE_CCK)
785                 num_rates += 4;
786         if (spec->supported_rates & SUPPORT_RATE_OFDM)
787                 num_rates += 8;
788
789         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
790         if (!channels)
791                 return -ENOMEM;
792
793         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
794         if (!rates)
795                 goto exit_free_channels;
796
797         /*
798          * Initialize Rate list.
799          */
800         for (i = 0; i < num_rates; i++)
801                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
802
803         /*
804          * Initialize Channel list.
805          */
806         for (i = 0; i < spec->num_channels; i++) {
807                 rt2x00lib_channel(&channels[i],
808                                   spec->channels[i].channel,
809                                   spec->channels_info[i].max_power, i);
810         }
811
812         /*
813          * Intitialize 802.11b, 802.11g
814          * Rates: CCK, OFDM.
815          * Channels: 2.4 GHz
816          */
817         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
818                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
819                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
820                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
821                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
822                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
823                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
824                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
825                        &spec->ht, sizeof(spec->ht));
826         }
827
828         /*
829          * Intitialize 802.11a
830          * Rates: OFDM.
831          * Channels: OFDM, UNII, HiperLAN2.
832          */
833         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
834                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
835                     spec->num_channels - 14;
836                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
837                     num_rates - 4;
838                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
839                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
840                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
841                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
842                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
843                        &spec->ht, sizeof(spec->ht));
844         }
845
846         return 0;
847
848  exit_free_channels:
849         kfree(channels);
850         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
851         return -ENOMEM;
852 }
853
854 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
855 {
856         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
857                 ieee80211_unregister_hw(rt2x00dev->hw);
858
859         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
860                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
861                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
862                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
863                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
864         }
865
866         kfree(rt2x00dev->spec.channels_info);
867 }
868
869 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
870 {
871         struct hw_mode_spec *spec = &rt2x00dev->spec;
872         int status;
873
874         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
875                 return 0;
876
877         /*
878          * Initialize HW modes.
879          */
880         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
881         if (status)
882                 return status;
883
884         /*
885          * Initialize HW fields.
886          */
887         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
888
889         /*
890          * Initialize extra TX headroom required.
891          */
892         rt2x00dev->hw->extra_tx_headroom =
893                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
894                       rt2x00dev->ops->extra_tx_headroom);
895
896         /*
897          * Take TX headroom required for alignment into account.
898          */
899         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
900                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
901         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
902                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
903
904         /*
905          * Allocate tx status FIFO for driver use.
906          */
907         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
908                 /*
909                  * Allocate the txstatus fifo. In the worst case the tx
910                  * status fifo has to hold the tx status of all entries
911                  * in all tx queues. Hence, calculate the kfifo size as
912                  * tx_queues * entry_num and round up to the nearest
913                  * power of 2.
914                  */
915                 int kfifo_size =
916                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
917                                            rt2x00dev->ops->tx->entry_num *
918                                            sizeof(u32));
919
920                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
921                                      GFP_KERNEL);
922                 if (status)
923                         return status;
924         }
925
926         /*
927          * Initialize tasklets if used by the driver. Tasklets are
928          * disabled until the interrupts are turned on. The driver
929          * has to handle that.
930          */
931 #define RT2X00_TASKLET_INIT(taskletname) \
932         if (rt2x00dev->ops->lib->taskletname) { \
933                 tasklet_init(&rt2x00dev->taskletname, \
934                              rt2x00dev->ops->lib->taskletname, \
935                              (unsigned long)rt2x00dev); \
936                 tasklet_disable(&rt2x00dev->taskletname); \
937         }
938
939         RT2X00_TASKLET_INIT(txstatus_tasklet);
940         RT2X00_TASKLET_INIT(pretbtt_tasklet);
941         RT2X00_TASKLET_INIT(tbtt_tasklet);
942         RT2X00_TASKLET_INIT(rxdone_tasklet);
943         RT2X00_TASKLET_INIT(autowake_tasklet);
944
945 #undef RT2X00_TASKLET_INIT
946
947         /*
948          * Register HW.
949          */
950         status = ieee80211_register_hw(rt2x00dev->hw);
951         if (status)
952                 return status;
953
954         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
955
956         return 0;
957 }
958
959 /*
960  * Initialization/uninitialization handlers.
961  */
962 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
963 {
964         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
965                 return;
966
967         /*
968          * Unregister extra components.
969          */
970         rt2x00rfkill_unregister(rt2x00dev);
971
972         /*
973          * Allow the HW to uninitialize.
974          */
975         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
976
977         /*
978          * Free allocated queue entries.
979          */
980         rt2x00queue_uninitialize(rt2x00dev);
981 }
982
983 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
984 {
985         int status;
986
987         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
988                 return 0;
989
990         /*
991          * Allocate all queue entries.
992          */
993         status = rt2x00queue_initialize(rt2x00dev);
994         if (status)
995                 return status;
996
997         /*
998          * Initialize the device.
999          */
1000         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1001         if (status) {
1002                 rt2x00queue_uninitialize(rt2x00dev);
1003                 return status;
1004         }
1005
1006         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1007
1008         /*
1009          * Register the extra components.
1010          */
1011         rt2x00rfkill_register(rt2x00dev);
1012
1013         return 0;
1014 }
1015
1016 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1017 {
1018         int retval;
1019
1020         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1021                 return 0;
1022
1023         /*
1024          * If this is the first interface which is added,
1025          * we should load the firmware now.
1026          */
1027         retval = rt2x00lib_load_firmware(rt2x00dev);
1028         if (retval)
1029                 return retval;
1030
1031         /*
1032          * Initialize the device.
1033          */
1034         retval = rt2x00lib_initialize(rt2x00dev);
1035         if (retval)
1036                 return retval;
1037
1038         rt2x00dev->intf_ap_count = 0;
1039         rt2x00dev->intf_sta_count = 0;
1040         rt2x00dev->intf_associated = 0;
1041
1042         /* Enable the radio */
1043         retval = rt2x00lib_enable_radio(rt2x00dev);
1044         if (retval)
1045                 return retval;
1046
1047         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1048
1049         return 0;
1050 }
1051
1052 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1053 {
1054         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1055                 return;
1056
1057         /*
1058          * Perhaps we can add something smarter here,
1059          * but for now just disabling the radio should do.
1060          */
1061         rt2x00lib_disable_radio(rt2x00dev);
1062
1063         rt2x00dev->intf_ap_count = 0;
1064         rt2x00dev->intf_sta_count = 0;
1065         rt2x00dev->intf_associated = 0;
1066 }
1067
1068 /*
1069  * driver allocation handlers.
1070  */
1071 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1072 {
1073         int retval = -ENOMEM;
1074
1075         spin_lock_init(&rt2x00dev->irqmask_lock);
1076         mutex_init(&rt2x00dev->csr_mutex);
1077
1078         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1079
1080         /*
1081          * Make room for rt2x00_intf inside the per-interface
1082          * structure ieee80211_vif.
1083          */
1084         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1085
1086         /*
1087          * Determine which operating modes are supported, all modes
1088          * which require beaconing, depend on the availability of
1089          * beacon entries.
1090          */
1091         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1092         if (rt2x00dev->ops->bcn->entry_num > 0)
1093                 rt2x00dev->hw->wiphy->interface_modes |=
1094                     BIT(NL80211_IFTYPE_ADHOC) |
1095                     BIT(NL80211_IFTYPE_AP) |
1096                     BIT(NL80211_IFTYPE_MESH_POINT) |
1097                     BIT(NL80211_IFTYPE_WDS);
1098
1099         /*
1100          * Initialize work.
1101          */
1102         rt2x00dev->workqueue =
1103             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1104         if (!rt2x00dev->workqueue) {
1105                 retval = -ENOMEM;
1106                 goto exit;
1107         }
1108
1109         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1110         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1111
1112         /*
1113          * Let the driver probe the device to detect the capabilities.
1114          */
1115         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1116         if (retval) {
1117                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1118                 goto exit;
1119         }
1120
1121         /*
1122          * Allocate queue array.
1123          */
1124         retval = rt2x00queue_allocate(rt2x00dev);
1125         if (retval)
1126                 goto exit;
1127
1128         /*
1129          * Initialize ieee80211 structure.
1130          */
1131         retval = rt2x00lib_probe_hw(rt2x00dev);
1132         if (retval) {
1133                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1134                 goto exit;
1135         }
1136
1137         /*
1138          * Register extra components.
1139          */
1140         rt2x00link_register(rt2x00dev);
1141         rt2x00leds_register(rt2x00dev);
1142         rt2x00debug_register(rt2x00dev);
1143
1144         return 0;
1145
1146 exit:
1147         rt2x00lib_remove_dev(rt2x00dev);
1148
1149         return retval;
1150 }
1151 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1152
1153 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1154 {
1155         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1156
1157         /*
1158          * Disable radio.
1159          */
1160         rt2x00lib_disable_radio(rt2x00dev);
1161
1162         /*
1163          * Stop all work.
1164          */
1165         cancel_work_sync(&rt2x00dev->intf_work);
1166         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1167         if (rt2x00_is_usb(rt2x00dev)) {
1168                 del_timer_sync(&rt2x00dev->txstatus_timer);
1169                 cancel_work_sync(&rt2x00dev->rxdone_work);
1170                 cancel_work_sync(&rt2x00dev->txdone_work);
1171         }
1172         destroy_workqueue(rt2x00dev->workqueue);
1173
1174         /*
1175          * Free the tx status fifo.
1176          */
1177         kfifo_free(&rt2x00dev->txstatus_fifo);
1178
1179         /*
1180          * Kill the tx status tasklet.
1181          */
1182         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1183         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1184         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1185         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1186         tasklet_kill(&rt2x00dev->autowake_tasklet);
1187
1188         /*
1189          * Uninitialize device.
1190          */
1191         rt2x00lib_uninitialize(rt2x00dev);
1192
1193         /*
1194          * Free extra components
1195          */
1196         rt2x00debug_deregister(rt2x00dev);
1197         rt2x00leds_unregister(rt2x00dev);
1198
1199         /*
1200          * Free ieee80211_hw memory.
1201          */
1202         rt2x00lib_remove_hw(rt2x00dev);
1203
1204         /*
1205          * Free firmware image.
1206          */
1207         rt2x00lib_free_firmware(rt2x00dev);
1208
1209         /*
1210          * Free queue structures.
1211          */
1212         rt2x00queue_free(rt2x00dev);
1213 }
1214 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1215
1216 /*
1217  * Device state handlers
1218  */
1219 #ifdef CONFIG_PM
1220 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1221 {
1222         NOTICE(rt2x00dev, "Going to sleep.\n");
1223
1224         /*
1225          * Prevent mac80211 from accessing driver while suspended.
1226          */
1227         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1228                 return 0;
1229
1230         /*
1231          * Cleanup as much as possible.
1232          */
1233         rt2x00lib_uninitialize(rt2x00dev);
1234
1235         /*
1236          * Suspend/disable extra components.
1237          */
1238         rt2x00leds_suspend(rt2x00dev);
1239         rt2x00debug_deregister(rt2x00dev);
1240
1241         /*
1242          * Set device mode to sleep for power management,
1243          * on some hardware this call seems to consistently fail.
1244          * From the specifications it is hard to tell why it fails,
1245          * and if this is a "bad thing".
1246          * Overall it is safe to just ignore the failure and
1247          * continue suspending. The only downside is that the
1248          * device will not be in optimal power save mode, but with
1249          * the radio and the other components already disabled the
1250          * device is as good as disabled.
1251          */
1252         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1253                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1254                         "continue suspending.\n");
1255
1256         return 0;
1257 }
1258 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1259
1260 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1261 {
1262         NOTICE(rt2x00dev, "Waking up.\n");
1263
1264         /*
1265          * Restore/enable extra components.
1266          */
1267         rt2x00debug_register(rt2x00dev);
1268         rt2x00leds_resume(rt2x00dev);
1269
1270         /*
1271          * We are ready again to receive requests from mac80211.
1272          */
1273         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1274
1275         return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1278 #endif /* CONFIG_PM */
1279
1280 /*
1281  * rt2x00lib module information.
1282  */
1283 MODULE_AUTHOR(DRV_PROJECT);
1284 MODULE_VERSION(DRV_VERSION);
1285 MODULE_DESCRIPTION("rt2x00 library");
1286 MODULE_LICENSE("GPL");