Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81                                       USB_VENDOR_REQUEST_IN, offset,
82                                       value, length, timeout);
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111                                       USB_VENDOR_REQUEST_OUT, offset,
112                                       value, length, timeout);
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
142                 goto exit_fail;
143
144         /*
145          * Write the data into the BBP.
146          */
147         reg = 0;
148         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
149         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
150         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
151
152         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
153
154         mutex_unlock(&rt2x00dev->usb_cache_mutex);
155
156         return;
157
158 exit_fail:
159         mutex_unlock(&rt2x00dev->usb_cache_mutex);
160
161         ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
162 }
163
164 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
165                                const unsigned int word, u8 *value)
166 {
167         u16 reg;
168
169         mutex_lock(&rt2x00dev->usb_cache_mutex);
170
171         /*
172          * Wait until the BBP becomes ready.
173          */
174         reg = rt2500usb_bbp_check(rt2x00dev);
175         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
176                 goto exit_fail;
177
178         /*
179          * Write the request into the BBP.
180          */
181         reg = 0;
182         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
183         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
184
185         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
186
187         /*
188          * Wait until the BBP becomes ready.
189          */
190         reg = rt2500usb_bbp_check(rt2x00dev);
191         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
192                 goto exit_fail;
193
194         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
196
197         mutex_unlock(&rt2x00dev->usb_cache_mutex);
198
199         return;
200
201 exit_fail:
202         mutex_unlock(&rt2x00dev->usb_cache_mutex);
203
204         ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
205         *value = 0xff;
206 }
207
208 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
209                                const unsigned int word, const u32 value)
210 {
211         u16 reg;
212         unsigned int i;
213
214         if (!word)
215                 return;
216
217         mutex_lock(&rt2x00dev->usb_cache_mutex);
218
219         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
220                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
221                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
222                         goto rf_write;
223                 udelay(REGISTER_BUSY_DELAY);
224         }
225
226         mutex_unlock(&rt2x00dev->usb_cache_mutex);
227         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
228         return;
229
230 rf_write:
231         reg = 0;
232         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
233         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
234
235         reg = 0;
236         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
237         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
238         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
239         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
240
241         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
242         rt2x00_rf_write(rt2x00dev, word, value);
243
244         mutex_unlock(&rt2x00dev->usb_cache_mutex);
245 }
246
247 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
248 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
249
250 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
251                                const unsigned int word, u32 *data)
252 {
253         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
254 }
255
256 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
257                                 const unsigned int word, u32 data)
258 {
259         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
260 }
261
262 static const struct rt2x00debug rt2500usb_rt2x00debug = {
263         .owner  = THIS_MODULE,
264         .csr    = {
265                 .read           = rt2500usb_read_csr,
266                 .write          = rt2500usb_write_csr,
267                 .word_size      = sizeof(u16),
268                 .word_count     = CSR_REG_SIZE / sizeof(u16),
269         },
270         .eeprom = {
271                 .read           = rt2x00_eeprom_read,
272                 .write          = rt2x00_eeprom_write,
273                 .word_size      = sizeof(u16),
274                 .word_count     = EEPROM_SIZE / sizeof(u16),
275         },
276         .bbp    = {
277                 .read           = rt2500usb_bbp_read,
278                 .write          = rt2500usb_bbp_write,
279                 .word_size      = sizeof(u8),
280                 .word_count     = BBP_SIZE / sizeof(u8),
281         },
282         .rf     = {
283                 .read           = rt2x00_rf_read,
284                 .write          = rt2500usb_rf_write,
285                 .word_size      = sizeof(u32),
286                 .word_count     = RF_SIZE / sizeof(u32),
287         },
288 };
289 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
290
291 #ifdef CONFIG_RT2500USB_LEDS
292 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
293                                      enum led_brightness brightness)
294 {
295         struct rt2x00_led *led =
296             container_of(led_cdev, struct rt2x00_led, led_dev);
297         unsigned int enabled = brightness != LED_OFF;
298         u16 reg;
299
300         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
301
302         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
303                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
304         else if (led->type == LED_TYPE_ACTIVITY)
305                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
306
307         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
308 }
309
310 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
311                                unsigned long *delay_on,
312                                unsigned long *delay_off)
313 {
314         struct rt2x00_led *led =
315             container_of(led_cdev, struct rt2x00_led, led_dev);
316         u16 reg;
317
318         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
319         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
320         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
321         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
322
323         return 0;
324 }
325 #endif /* CONFIG_RT2500USB_LEDS */
326
327 /*
328  * Configuration handlers.
329  */
330 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
331                                     const unsigned int filter_flags)
332 {
333         u16 reg;
334
335         /*
336          * Start configuration steps.
337          * Note that the version error will always be dropped
338          * and broadcast frames will always be accepted since
339          * there is no filter for it at this time.
340          */
341         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
342         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
343                            !(filter_flags & FIF_FCSFAIL));
344         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
345                            !(filter_flags & FIF_PLCPFAIL));
346         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
347                            !(filter_flags & FIF_CONTROL));
348         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
349                            !(filter_flags & FIF_PROMISC_IN_BSS));
350         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
351                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
352                            !rt2x00dev->intf_ap_count);
353         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
354         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
355                            !(filter_flags & FIF_ALLMULTI));
356         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
357         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
358 }
359
360 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
361                                   struct rt2x00_intf *intf,
362                                   struct rt2x00intf_conf *conf,
363                                   const unsigned int flags)
364 {
365         unsigned int bcn_preload;
366         u16 reg;
367
368         if (flags & CONFIG_UPDATE_TYPE) {
369                 /*
370                  * Enable beacon config
371                  */
372                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
373                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
374                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
375                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
376                                    2 * (conf->type != IEEE80211_IF_TYPE_STA));
377                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
378
379                 /*
380                  * Enable synchronisation.
381                  */
382                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
383                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
384                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
385
386                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
387                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
388                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
389                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
390                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
391         }
392
393         if (flags & CONFIG_UPDATE_MAC)
394                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
395                                               (3 * sizeof(__le16)));
396
397         if (flags & CONFIG_UPDATE_BSSID)
398                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
399                                               (3 * sizeof(__le16)));
400 }
401
402 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
403                                  struct rt2x00lib_erp *erp)
404 {
405         u16 reg;
406
407         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
408         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
410
411         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
412         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
413                            !!erp->short_preamble);
414         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
415 }
416
417 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
418                                      const int basic_rate_mask)
419 {
420         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
421 }
422
423 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
424                                      struct rf_channel *rf, const int txpower)
425 {
426         /*
427          * Set TXpower.
428          */
429         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
430
431         /*
432          * For RT2525E we should first set the channel to half band higher.
433          */
434         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
435                 static const u32 vals[] = {
436                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
437                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
438                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
439                         0x00000902, 0x00000906
440                 };
441
442                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
443                 if (rf->rf4)
444                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
445         }
446
447         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
448         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
449         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
450         if (rf->rf4)
451                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
452 }
453
454 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
455                                      const int txpower)
456 {
457         u32 rf3;
458
459         rt2x00_rf_read(rt2x00dev, 3, &rf3);
460         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
461         rt2500usb_rf_write(rt2x00dev, 3, rf3);
462 }
463
464 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
465                                      struct antenna_setup *ant)
466 {
467         u8 r2;
468         u8 r14;
469         u16 csr5;
470         u16 csr6;
471
472         /*
473          * We should never come here because rt2x00lib is supposed
474          * to catch this and send us the correct antenna explicitely.
475          */
476         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
477                ant->tx == ANTENNA_SW_DIVERSITY);
478
479         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
480         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
481         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
482         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
483
484         /*
485          * Configure the TX antenna.
486          */
487         switch (ant->tx) {
488         case ANTENNA_HW_DIVERSITY:
489                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
490                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
491                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
492                 break;
493         case ANTENNA_A:
494                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
495                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
496                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
497                 break;
498         case ANTENNA_B:
499         default:
500                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
501                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
502                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
503                 break;
504         }
505
506         /*
507          * Configure the RX antenna.
508          */
509         switch (ant->rx) {
510         case ANTENNA_HW_DIVERSITY:
511                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
512                 break;
513         case ANTENNA_A:
514                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
515                 break;
516         case ANTENNA_B:
517         default:
518                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
519                 break;
520         }
521
522         /*
523          * RT2525E and RT5222 need to flip TX I/Q
524          */
525         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
526             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
527                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
528                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
529                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
530
531                 /*
532                  * RT2525E does not need RX I/Q Flip.
533                  */
534                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
535                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
536         } else {
537                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
538                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
539         }
540
541         rt2500usb_bbp_write(rt2x00dev, 2, r2);
542         rt2500usb_bbp_write(rt2x00dev, 14, r14);
543         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
544         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
545 }
546
547 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
548                                       struct rt2x00lib_conf *libconf)
549 {
550         u16 reg;
551
552         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
553         rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
554         rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
555
556         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
557         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
558                            libconf->conf->beacon_int * 4);
559         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
560 }
561
562 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
563                              struct rt2x00lib_conf *libconf,
564                              const unsigned int flags)
565 {
566         if (flags & CONFIG_UPDATE_PHYMODE)
567                 rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
568         if (flags & CONFIG_UPDATE_CHANNEL)
569                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
570                                          libconf->conf->power_level);
571         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
572                 rt2500usb_config_txpower(rt2x00dev,
573                                          libconf->conf->power_level);
574         if (flags & CONFIG_UPDATE_ANTENNA)
575                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
576         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
577                 rt2500usb_config_duration(rt2x00dev, libconf);
578 }
579
580 /*
581  * Link tuning
582  */
583 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
584                                  struct link_qual *qual)
585 {
586         u16 reg;
587
588         /*
589          * Update FCS error count from register.
590          */
591         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
592         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
593
594         /*
595          * Update False CCA count from register.
596          */
597         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
598         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
599 }
600
601 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
602 {
603         u16 eeprom;
604         u16 value;
605
606         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
607         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
608         rt2500usb_bbp_write(rt2x00dev, 24, value);
609
610         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
611         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
612         rt2500usb_bbp_write(rt2x00dev, 25, value);
613
614         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
615         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
616         rt2500usb_bbp_write(rt2x00dev, 61, value);
617
618         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
619         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
620         rt2500usb_bbp_write(rt2x00dev, 17, value);
621
622         rt2x00dev->link.vgc_level = value;
623 }
624
625 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
626 {
627         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
628         u16 bbp_thresh;
629         u16 vgc_bound;
630         u16 sens;
631         u16 r24;
632         u16 r25;
633         u16 r61;
634         u16 r17_sens;
635         u8 r17;
636         u8 up_bound;
637         u8 low_bound;
638
639         /*
640          * Read current r17 value, as well as the sensitivity values
641          * for the r17 register.
642          */
643         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
644         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
645
646         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
647         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
648         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
649
650         /*
651          * If we are not associated, we should go straight to the
652          * dynamic CCA tuning.
653          */
654         if (!rt2x00dev->intf_associated)
655                 goto dynamic_cca_tune;
656
657         /*
658          * Determine the BBP tuning threshold and correctly
659          * set BBP 24, 25 and 61.
660          */
661         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
662         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
663
664         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
665         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
666         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
667
668         if ((rssi + bbp_thresh) > 0) {
669                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
670                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
671                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
672         } else {
673                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
674                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
675                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
676         }
677
678         rt2500usb_bbp_write(rt2x00dev, 24, r24);
679         rt2500usb_bbp_write(rt2x00dev, 25, r25);
680         rt2500usb_bbp_write(rt2x00dev, 61, r61);
681
682         /*
683          * A too low RSSI will cause too much false CCA which will
684          * then corrupt the R17 tuning. To remidy this the tuning should
685          * be stopped (While making sure the R17 value will not exceed limits)
686          */
687         if (rssi >= -40) {
688                 if (r17 != 0x60)
689                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
690                 return;
691         }
692
693         /*
694          * Special big-R17 for short distance
695          */
696         if (rssi >= -58) {
697                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
698                 if (r17 != sens)
699                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
700                 return;
701         }
702
703         /*
704          * Special mid-R17 for middle distance
705          */
706         if (rssi >= -74) {
707                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
708                 if (r17 != sens)
709                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
710                 return;
711         }
712
713         /*
714          * Leave short or middle distance condition, restore r17
715          * to the dynamic tuning range.
716          */
717         low_bound = 0x32;
718         if (rssi < -77)
719                 up_bound -= (-77 - rssi);
720
721         if (up_bound < low_bound)
722                 up_bound = low_bound;
723
724         if (r17 > up_bound) {
725                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
726                 rt2x00dev->link.vgc_level = up_bound;
727                 return;
728         }
729
730 dynamic_cca_tune:
731
732         /*
733          * R17 is inside the dynamic tuning range,
734          * start tuning the link based on the false cca counter.
735          */
736         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
737                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
738                 rt2x00dev->link.vgc_level = r17;
739         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
740                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
741                 rt2x00dev->link.vgc_level = r17;
742         }
743 }
744
745 /*
746  * Initialization functions.
747  */
748 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
749 {
750         u16 reg;
751
752         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
753                                     USB_MODE_TEST, REGISTER_TIMEOUT);
754         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
755                                     0x00f0, REGISTER_TIMEOUT);
756
757         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
758         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
759         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
760
761         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
762         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
763
764         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
765         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
766         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
767         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
768         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
769
770         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
771         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
772         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
773         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
774         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
775
776         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
777         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
778         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
779         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
780         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
781         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
782
783         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
784         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
785         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
786         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
787         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
788         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
789
790         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
791         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
792         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
793         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
794         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
795         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
796
797         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
798         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
799         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
800         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
801         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
802         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
803
804         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
805         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
806
807         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
808                 return -EBUSY;
809
810         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
811         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
812         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
813         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
814         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
815
816         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
817                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
818                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
819         } else {
820                 reg = 0;
821                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
822                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
823         }
824         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
825
826         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
827         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
828         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
829         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
830
831         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
832         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
833                            rt2x00dev->rx->data_size);
834         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
835
836         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
837         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
838         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
839         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
840
841         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
842         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
843         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
844
845         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
846         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
847         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
848
849         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
850         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
851         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
852
853         return 0;
854 }
855
856 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
857 {
858         unsigned int i;
859         u16 eeprom;
860         u8 value;
861         u8 reg_id;
862
863         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
864                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
865                 if ((value != 0xff) && (value != 0x00))
866                         goto continue_csr_init;
867                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
868                 udelay(REGISTER_BUSY_DELAY);
869         }
870
871         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
872         return -EACCES;
873
874 continue_csr_init:
875         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
876         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
877         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
878         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
879         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
880         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
881         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
882         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
883         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
884         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
885         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
886         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
887         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
888         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
889         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
890         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
891         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
892         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
893         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
894         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
895         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
896         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
897         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
898         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
899         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
900         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
901         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
902         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
903         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
904         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
905         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
906
907         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
908                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
909
910                 if (eeprom != 0xffff && eeprom != 0x0000) {
911                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
912                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
913                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
914                 }
915         }
916
917         return 0;
918 }
919
920 /*
921  * Device state switch handlers.
922  */
923 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
924                                 enum dev_state state)
925 {
926         u16 reg;
927
928         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
929         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
930                            state == STATE_RADIO_RX_OFF);
931         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
932 }
933
934 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
935 {
936         /*
937          * Initialize all registers.
938          */
939         if (rt2500usb_init_registers(rt2x00dev) ||
940             rt2500usb_init_bbp(rt2x00dev)) {
941                 ERROR(rt2x00dev, "Register initialization failed.\n");
942                 return -EIO;
943         }
944
945         return 0;
946 }
947
948 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
949 {
950         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
951         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
952
953         /*
954          * Disable synchronisation.
955          */
956         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
957
958         rt2x00usb_disable_radio(rt2x00dev);
959 }
960
961 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
962                                enum dev_state state)
963 {
964         u16 reg;
965         u16 reg2;
966         unsigned int i;
967         char put_to_sleep;
968         char bbp_state;
969         char rf_state;
970
971         put_to_sleep = (state != STATE_AWAKE);
972
973         reg = 0;
974         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
975         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
976         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
977         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
978         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
979         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
980
981         /*
982          * Device is not guaranteed to be in the requested state yet.
983          * We must wait until the register indicates that the
984          * device has entered the correct state.
985          */
986         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
987                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
988                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
989                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
990                 if (bbp_state == state && rf_state == state)
991                         return 0;
992                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
993                 msleep(30);
994         }
995
996         NOTICE(rt2x00dev, "Device failed to enter state %d, "
997                "current device state: bbp %d and rf %d.\n",
998                state, bbp_state, rf_state);
999
1000         return -EBUSY;
1001 }
1002
1003 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1004                                       enum dev_state state)
1005 {
1006         int retval = 0;
1007
1008         switch (state) {
1009         case STATE_RADIO_ON:
1010                 retval = rt2500usb_enable_radio(rt2x00dev);
1011                 break;
1012         case STATE_RADIO_OFF:
1013                 rt2500usb_disable_radio(rt2x00dev);
1014                 break;
1015         case STATE_RADIO_RX_ON:
1016         case STATE_RADIO_RX_ON_LINK:
1017                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1018                 break;
1019         case STATE_RADIO_RX_OFF:
1020         case STATE_RADIO_RX_OFF_LINK:
1021                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1022                 break;
1023         case STATE_DEEP_SLEEP:
1024         case STATE_SLEEP:
1025         case STATE_STANDBY:
1026         case STATE_AWAKE:
1027                 retval = rt2500usb_set_state(rt2x00dev, state);
1028                 break;
1029         default:
1030                 retval = -ENOTSUPP;
1031                 break;
1032         }
1033
1034         return retval;
1035 }
1036
1037 /*
1038  * TX descriptor initialization
1039  */
1040 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1041                                     struct sk_buff *skb,
1042                                     struct txentry_desc *txdesc,
1043                                     struct ieee80211_tx_control *control)
1044 {
1045         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1046         __le32 *txd = skbdesc->desc;
1047         u32 word;
1048
1049         /*
1050          * Start writing the descriptor words.
1051          */
1052         rt2x00_desc_read(txd, 1, &word);
1053         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1054         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1055         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1056         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1057         rt2x00_desc_write(txd, 1, word);
1058
1059         rt2x00_desc_read(txd, 2, &word);
1060         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1061         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1062         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1063         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1064         rt2x00_desc_write(txd, 2, word);
1065
1066         rt2x00_desc_read(txd, 0, &word);
1067         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1068         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070         rt2x00_set_field32(&word, TXD_W0_ACK,
1071                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074         rt2x00_set_field32(&word, TXD_W0_OFDM,
1075                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1076         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077                            !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1078         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1079         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1080         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1081         rt2x00_desc_write(txd, 0, word);
1082 }
1083
1084 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1085                                      struct sk_buff *skb)
1086 {
1087         int length;
1088
1089         /*
1090          * The length _must_ be a multiple of 2,
1091          * but it must _not_ be a multiple of the USB packet size.
1092          */
1093         length = roundup(skb->len, 2);
1094         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1095
1096         return length;
1097 }
1098
1099 /*
1100  * TX data initialization
1101  */
1102 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1103                                     const unsigned int queue)
1104 {
1105         u16 reg;
1106
1107         if (queue != RT2X00_BCN_QUEUE_BEACON)
1108                 return;
1109
1110         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1111         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1112                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1113                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1114                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1115                 /*
1116                  * Beacon generation will fail initially.
1117                  * To prevent this we need to register the TXRX_CSR19
1118                  * register several times.
1119                  */
1120                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1121                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1122                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1123                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1124                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1125         }
1126 }
1127
1128 /*
1129  * RX control handlers
1130  */
1131 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1132                                   struct rxdone_entry_desc *rxdesc)
1133 {
1134         struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1135         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1136         __le32 *rxd =
1137             (__le32 *)(entry->skb->data +
1138                        (priv_rx->urb->actual_length - entry->queue->desc_size));
1139         unsigned int offset = entry->queue->desc_size + 2;
1140         u32 word0;
1141         u32 word1;
1142
1143         /*
1144          * Copy descriptor to the available headroom inside the skbuffer.
1145          */
1146         skb_push(entry->skb, offset);
1147         memcpy(entry->skb->data, rxd, entry->queue->desc_size);
1148         rxd = (__le32 *)entry->skb->data;
1149
1150         /*
1151          * The descriptor is now aligned to 4 bytes and thus it is
1152          * now safe to read it on all architectures.
1153          */
1154         rt2x00_desc_read(rxd, 0, &word0);
1155         rt2x00_desc_read(rxd, 1, &word1);
1156
1157         rxdesc->flags = 0;
1158         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1159                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1160         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1161                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1162
1163         /*
1164          * Obtain the status about this packet.
1165          * When frame was received with an OFDM bitrate,
1166          * the signal is the PLCP value. If it was received with
1167          * a CCK bitrate the signal is the rate in 100kbit/s.
1168          */
1169         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1170         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1171             entry->queue->rt2x00dev->rssi_offset;
1172         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1173
1174         rxdesc->dev_flags = 0;
1175         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1176                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1177         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1178                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1179
1180         /*
1181          * Adjust the skb memory window to the frame boundaries.
1182          */
1183         skb_pull(entry->skb, offset);
1184         skb_trim(entry->skb, rxdesc->size);
1185
1186         /*
1187          * Set descriptor and data pointer.
1188          */
1189         skbdesc->data = entry->skb->data;
1190         skbdesc->data_len = rxdesc->size;
1191         skbdesc->desc = rxd;
1192         skbdesc->desc_len = entry->queue->desc_size;
1193 }
1194
1195 /*
1196  * Interrupt functions.
1197  */
1198 static void rt2500usb_beacondone(struct urb *urb)
1199 {
1200         struct queue_entry *entry = (struct queue_entry *)urb->context;
1201         struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1202
1203         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1204                 return;
1205
1206         /*
1207          * Check if this was the guardian beacon,
1208          * if that was the case we need to send the real beacon now.
1209          * Otherwise we should free the sk_buffer, the device
1210          * should be doing the rest of the work now.
1211          */
1212         if (priv_bcn->guardian_urb == urb) {
1213                 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1214         } else if (priv_bcn->urb == urb) {
1215                 dev_kfree_skb(entry->skb);
1216                 entry->skb = NULL;
1217         }
1218 }
1219
1220 /*
1221  * Device probe functions.
1222  */
1223 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1224 {
1225         u16 word;
1226         u8 *mac;
1227         u8 bbp;
1228
1229         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1230
1231         /*
1232          * Start validation of the data that has been read.
1233          */
1234         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1235         if (!is_valid_ether_addr(mac)) {
1236                 DECLARE_MAC_BUF(macbuf);
1237
1238                 random_ether_addr(mac);
1239                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1240         }
1241
1242         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1243         if (word == 0xffff) {
1244                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1245                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1246                                    ANTENNA_SW_DIVERSITY);
1247                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1248                                    ANTENNA_SW_DIVERSITY);
1249                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1250                                    LED_MODE_DEFAULT);
1251                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1252                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1253                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1254                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1255                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1256         }
1257
1258         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1259         if (word == 0xffff) {
1260                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1261                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1262                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1263                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1264                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1265         }
1266
1267         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1268         if (word == 0xffff) {
1269                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1270                                    DEFAULT_RSSI_OFFSET);
1271                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1272                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1273         }
1274
1275         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1276         if (word == 0xffff) {
1277                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1278                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1279                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1280         }
1281
1282         /*
1283          * Switch lower vgc bound to current BBP R17 value,
1284          * lower the value a bit for better quality.
1285          */
1286         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1287         bbp -= 6;
1288
1289         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1290         if (word == 0xffff) {
1291                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1292                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1293                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1294                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1295         }
1296
1297         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1298         if (word == 0xffff) {
1299                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1300                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1301                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1302                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1303         } else {
1304                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1305                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1306         }
1307
1308         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1309         if (word == 0xffff) {
1310                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1311                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1312                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1313                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1314         }
1315
1316         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1317         if (word == 0xffff) {
1318                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1319                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1320                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1321                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1322         }
1323
1324         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1325         if (word == 0xffff) {
1326                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1327                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1328                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1329                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1330         }
1331
1332         return 0;
1333 }
1334
1335 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1336 {
1337         u16 reg;
1338         u16 value;
1339         u16 eeprom;
1340
1341         /*
1342          * Read EEPROM word for configuration.
1343          */
1344         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1345
1346         /*
1347          * Identify RF chipset.
1348          */
1349         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1350         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1351         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1352
1353         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1354                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1355                 return -ENODEV;
1356         }
1357
1358         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1359             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1360             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1361             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1362             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1363             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1364                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1365                 return -ENODEV;
1366         }
1367
1368         /*
1369          * Identify default antenna configuration.
1370          */
1371         rt2x00dev->default_ant.tx =
1372             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1373         rt2x00dev->default_ant.rx =
1374             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1375
1376         /*
1377          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1378          * I am not 100% sure about this, but the legacy drivers do not
1379          * indicate antenna swapping in software is required when
1380          * diversity is enabled.
1381          */
1382         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1383                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1384         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1385                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1386
1387         /*
1388          * Store led mode, for correct led behaviour.
1389          */
1390 #ifdef CONFIG_RT2500USB_LEDS
1391         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1392
1393         rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
1394         rt2x00dev->led_radio.type = LED_TYPE_RADIO;
1395         rt2x00dev->led_radio.led_dev.brightness_set =
1396             rt2500usb_brightness_set;
1397         rt2x00dev->led_radio.led_dev.blink_set =
1398             rt2500usb_blink_set;
1399         rt2x00dev->led_radio.flags = LED_INITIALIZED;
1400
1401         if (value == LED_MODE_TXRX_ACTIVITY) {
1402                 rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
1403                 rt2x00dev->led_qual.type = LED_TYPE_ACTIVITY;
1404                 rt2x00dev->led_qual.led_dev.brightness_set =
1405                     rt2500usb_brightness_set;
1406                 rt2x00dev->led_qual.led_dev.blink_set =
1407                     rt2500usb_blink_set;
1408                 rt2x00dev->led_qual.flags = LED_INITIALIZED;
1409         }
1410 #endif /* CONFIG_RT2500USB_LEDS */
1411
1412         /*
1413          * Check if the BBP tuning should be disabled.
1414          */
1415         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1416         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1417                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1418
1419         /*
1420          * Read the RSSI <-> dBm offset information.
1421          */
1422         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1423         rt2x00dev->rssi_offset =
1424             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1425
1426         return 0;
1427 }
1428
1429 /*
1430  * RF value list for RF2522
1431  * Supports: 2.4 GHz
1432  */
1433 static const struct rf_channel rf_vals_bg_2522[] = {
1434         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1435         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1436         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1437         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1438         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1439         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1440         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1441         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1442         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1443         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1444         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1445         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1446         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1447         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1448 };
1449
1450 /*
1451  * RF value list for RF2523
1452  * Supports: 2.4 GHz
1453  */
1454 static const struct rf_channel rf_vals_bg_2523[] = {
1455         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1456         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1457         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1458         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1459         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1460         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1461         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1462         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1463         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1464         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1465         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1466         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1467         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1468         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1469 };
1470
1471 /*
1472  * RF value list for RF2524
1473  * Supports: 2.4 GHz
1474  */
1475 static const struct rf_channel rf_vals_bg_2524[] = {
1476         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1477         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1478         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1479         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1480         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1481         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1482         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1483         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1484         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1485         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1486         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1487         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1488         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1489         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1490 };
1491
1492 /*
1493  * RF value list for RF2525
1494  * Supports: 2.4 GHz
1495  */
1496 static const struct rf_channel rf_vals_bg_2525[] = {
1497         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1498         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1499         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1500         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1501         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1502         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1503         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1504         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1505         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1506         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1507         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1508         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1509         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1510         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1511 };
1512
1513 /*
1514  * RF value list for RF2525e
1515  * Supports: 2.4 GHz
1516  */
1517 static const struct rf_channel rf_vals_bg_2525e[] = {
1518         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1519         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1520         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1521         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1522         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1523         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1524         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1525         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1526         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1527         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1528         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1529         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1530         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1531         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1532 };
1533
1534 /*
1535  * RF value list for RF5222
1536  * Supports: 2.4 GHz & 5.2 GHz
1537  */
1538 static const struct rf_channel rf_vals_5222[] = {
1539         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1540         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1541         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1542         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1543         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1544         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1545         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1546         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1547         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1548         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1549         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1550         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1551         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1552         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1553
1554         /* 802.11 UNI / HyperLan 2 */
1555         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1556         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1557         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1558         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1559         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1560         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1561         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1562         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1563
1564         /* 802.11 HyperLan 2 */
1565         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1566         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1567         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1568         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1569         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1570         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1571         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1572         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1573         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1574         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1575
1576         /* 802.11 UNII */
1577         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1578         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1579         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1580         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1581         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1582 };
1583
1584 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1585 {
1586         struct hw_mode_spec *spec = &rt2x00dev->spec;
1587         u8 *txpower;
1588         unsigned int i;
1589
1590         /*
1591          * Initialize all hw fields.
1592          */
1593         rt2x00dev->hw->flags =
1594             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1595             IEEE80211_HW_RX_INCLUDES_FCS |
1596             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1597         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1598         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1599         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1600         rt2x00dev->hw->queues = 2;
1601
1602         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1603         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1604                                 rt2x00_eeprom_addr(rt2x00dev,
1605                                                    EEPROM_MAC_ADDR_0));
1606
1607         /*
1608          * Convert tx_power array in eeprom.
1609          */
1610         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1611         for (i = 0; i < 14; i++)
1612                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1613
1614         /*
1615          * Initialize hw_mode information.
1616          */
1617         spec->supported_bands = SUPPORT_BAND_2GHZ;
1618         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1619         spec->tx_power_a = NULL;
1620         spec->tx_power_bg = txpower;
1621         spec->tx_power_default = DEFAULT_TXPOWER;
1622
1623         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1624                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1625                 spec->channels = rf_vals_bg_2522;
1626         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1627                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1628                 spec->channels = rf_vals_bg_2523;
1629         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1630                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1631                 spec->channels = rf_vals_bg_2524;
1632         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1633                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1634                 spec->channels = rf_vals_bg_2525;
1635         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1636                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1637                 spec->channels = rf_vals_bg_2525e;
1638         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1639                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1640                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1641                 spec->channels = rf_vals_5222;
1642         }
1643 }
1644
1645 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1646 {
1647         int retval;
1648
1649         /*
1650          * Allocate eeprom data.
1651          */
1652         retval = rt2500usb_validate_eeprom(rt2x00dev);
1653         if (retval)
1654                 return retval;
1655
1656         retval = rt2500usb_init_eeprom(rt2x00dev);
1657         if (retval)
1658                 return retval;
1659
1660         /*
1661          * Initialize hw specifications.
1662          */
1663         rt2500usb_probe_hw_mode(rt2x00dev);
1664
1665         /*
1666          * This device requires the atim queue
1667          */
1668         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1669         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1670         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1671
1672         /*
1673          * Set the rssi offset.
1674          */
1675         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1676
1677         return 0;
1678 }
1679
1680 /*
1681  * IEEE80211 stack callback functions.
1682  */
1683 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1684                                    struct sk_buff *skb,
1685                                    struct ieee80211_tx_control *control)
1686 {
1687         struct rt2x00_dev *rt2x00dev = hw->priv;
1688         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1689         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1690         struct queue_entry_priv_usb_bcn *priv_bcn;
1691         struct skb_frame_desc *skbdesc;
1692         int pipe = usb_sndbulkpipe(usb_dev, 1);
1693         int length;
1694         u16 reg;
1695
1696         if (unlikely(!intf->beacon))
1697                 return -ENOBUFS;
1698
1699         priv_bcn = intf->beacon->priv_data;
1700
1701         /*
1702          * Add the descriptor in front of the skb.
1703          */
1704         skb_push(skb, intf->beacon->queue->desc_size);
1705         memset(skb->data, 0, intf->beacon->queue->desc_size);
1706
1707         /*
1708          * Fill in skb descriptor
1709          */
1710         skbdesc = get_skb_frame_desc(skb);
1711         memset(skbdesc, 0, sizeof(*skbdesc));
1712         skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1713         skbdesc->data = skb->data + intf->beacon->queue->desc_size;
1714         skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
1715         skbdesc->desc = skb->data;
1716         skbdesc->desc_len = intf->beacon->queue->desc_size;
1717         skbdesc->entry = intf->beacon;
1718
1719         /*
1720          * Disable beaconing while we are reloading the beacon data,
1721          * otherwise we might be sending out invalid data.
1722          */
1723         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1724         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1725         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1726         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1727         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1728
1729         /*
1730          * mac80211 doesn't provide the control->queue variable
1731          * for beacons. Set our own queue identification so
1732          * it can be used during descriptor initialization.
1733          */
1734         control->queue = RT2X00_BCN_QUEUE_BEACON;
1735         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1736
1737         /*
1738          * USB devices cannot blindly pass the skb->len as the
1739          * length of the data to usb_fill_bulk_urb. Pass the skb
1740          * to the driver to determine what the length should be.
1741          */
1742         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1743
1744         usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1745                           skb->data, length, rt2500usb_beacondone,
1746                           intf->beacon);
1747
1748         /*
1749          * Second we need to create the guardian byte.
1750          * We only need a single byte, so lets recycle
1751          * the 'flags' field we are not using for beacons.
1752          */
1753         priv_bcn->guardian_data = 0;
1754         usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1755                           &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1756                           intf->beacon);
1757
1758         /*
1759          * Send out the guardian byte.
1760          */
1761         usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1762
1763         /*
1764          * Enable beacon generation.
1765          */
1766         rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
1767
1768         return 0;
1769 }
1770
1771 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1772         .tx                     = rt2x00mac_tx,
1773         .start                  = rt2x00mac_start,
1774         .stop                   = rt2x00mac_stop,
1775         .add_interface          = rt2x00mac_add_interface,
1776         .remove_interface       = rt2x00mac_remove_interface,
1777         .config                 = rt2x00mac_config,
1778         .config_interface       = rt2x00mac_config_interface,
1779         .configure_filter       = rt2x00mac_configure_filter,
1780         .get_stats              = rt2x00mac_get_stats,
1781         .bss_info_changed       = rt2x00mac_bss_info_changed,
1782         .conf_tx                = rt2x00mac_conf_tx,
1783         .get_tx_stats           = rt2x00mac_get_tx_stats,
1784         .beacon_update          = rt2500usb_beacon_update,
1785 };
1786
1787 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1788         .probe_hw               = rt2500usb_probe_hw,
1789         .initialize             = rt2x00usb_initialize,
1790         .uninitialize           = rt2x00usb_uninitialize,
1791         .init_rxentry           = rt2x00usb_init_rxentry,
1792         .init_txentry           = rt2x00usb_init_txentry,
1793         .set_device_state       = rt2500usb_set_device_state,
1794         .link_stats             = rt2500usb_link_stats,
1795         .reset_tuner            = rt2500usb_reset_tuner,
1796         .link_tuner             = rt2500usb_link_tuner,
1797         .write_tx_desc          = rt2500usb_write_tx_desc,
1798         .write_tx_data          = rt2x00usb_write_tx_data,
1799         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1800         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1801         .fill_rxdone            = rt2500usb_fill_rxdone,
1802         .config_filter          = rt2500usb_config_filter,
1803         .config_intf            = rt2500usb_config_intf,
1804         .config_erp             = rt2500usb_config_erp,
1805         .config                 = rt2500usb_config,
1806 };
1807
1808 static const struct data_queue_desc rt2500usb_queue_rx = {
1809         .entry_num              = RX_ENTRIES,
1810         .data_size              = DATA_FRAME_SIZE,
1811         .desc_size              = RXD_DESC_SIZE,
1812         .priv_size              = sizeof(struct queue_entry_priv_usb_rx),
1813 };
1814
1815 static const struct data_queue_desc rt2500usb_queue_tx = {
1816         .entry_num              = TX_ENTRIES,
1817         .data_size              = DATA_FRAME_SIZE,
1818         .desc_size              = TXD_DESC_SIZE,
1819         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1820 };
1821
1822 static const struct data_queue_desc rt2500usb_queue_bcn = {
1823         .entry_num              = BEACON_ENTRIES,
1824         .data_size              = MGMT_FRAME_SIZE,
1825         .desc_size              = TXD_DESC_SIZE,
1826         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1827 };
1828
1829 static const struct data_queue_desc rt2500usb_queue_atim = {
1830         .entry_num              = ATIM_ENTRIES,
1831         .data_size              = DATA_FRAME_SIZE,
1832         .desc_size              = TXD_DESC_SIZE,
1833         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1834 };
1835
1836 static const struct rt2x00_ops rt2500usb_ops = {
1837         .name           = KBUILD_MODNAME,
1838         .max_sta_intf   = 1,
1839         .max_ap_intf    = 1,
1840         .eeprom_size    = EEPROM_SIZE,
1841         .rf_size        = RF_SIZE,
1842         .rx             = &rt2500usb_queue_rx,
1843         .tx             = &rt2500usb_queue_tx,
1844         .bcn            = &rt2500usb_queue_bcn,
1845         .atim           = &rt2500usb_queue_atim,
1846         .lib            = &rt2500usb_rt2x00_ops,
1847         .hw             = &rt2500usb_mac80211_ops,
1848 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1849         .debugfs        = &rt2500usb_rt2x00debug,
1850 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1851 };
1852
1853 /*
1854  * rt2500usb module information.
1855  */
1856 static struct usb_device_id rt2500usb_device_table[] = {
1857         /* ASUS */
1858         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1859         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1860         /* Belkin */
1861         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1862         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1864         /* Cisco Systems */
1865         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1866         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         /* Conceptronic */
1869         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1870         /* D-LINK */
1871         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         /* Gigabyte */
1873         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1874         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1875         /* Hercules */
1876         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         /* Melco */
1878         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1879         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1881         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1883         /* MSI */
1884         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1886         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         /* Ralink */
1888         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1892         /* Siemens */
1893         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1894         /* SMC */
1895         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1896         /* Spairon */
1897         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1898         /* Trust */
1899         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1900         /* Zinwell */
1901         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1902         { 0, }
1903 };
1904
1905 MODULE_AUTHOR(DRV_PROJECT);
1906 MODULE_VERSION(DRV_VERSION);
1907 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1908 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1909 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1910 MODULE_LICENSE("GPL");
1911
1912 static struct usb_driver rt2500usb_driver = {
1913         .name           = KBUILD_MODNAME,
1914         .id_table       = rt2500usb_device_table,
1915         .probe          = rt2x00usb_probe,
1916         .disconnect     = rt2x00usb_disconnect,
1917         .suspend        = rt2x00usb_suspend,
1918         .resume         = rt2x00usb_resume,
1919 };
1920
1921 static int __init rt2500usb_init(void)
1922 {
1923         return usb_register(&rt2500usb_driver);
1924 }
1925
1926 static void __exit rt2500usb_exit(void)
1927 {
1928         usb_deregister(&rt2500usb_driver);
1929 }
1930
1931 module_init(rt2500usb_init);
1932 module_exit(rt2500usb_exit);