Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
39
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59                                 const unsigned int word, const u8 value)
60 {
61         u32 reg;
62
63         mutex_lock(&rt2x00dev->csr_mutex);
64
65         /*
66          * Wait until the BBP becomes available, afterwards we
67          * can safely write the new data into the register.
68          */
69         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70                 reg = 0;
71                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77         }
78
79         mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83                                const unsigned int word, u8 *value)
84 {
85         u32 reg;
86
87         mutex_lock(&rt2x00dev->csr_mutex);
88
89         /*
90          * Wait until the BBP becomes available, afterwards we
91          * can safely write the read request into the register.
92          * After the data has been written, we wait until hardware
93          * returns the correct value, if at any time the register
94          * doesn't become available in time, reg will be 0xffffffff
95          * which means we return 0xff to the caller.
96          */
97         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98                 reg = 0;
99                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105                 WAIT_FOR_BBP(rt2x00dev, &reg);
106         }
107
108         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110         mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114                                const unsigned int word, const u32 value)
115 {
116         u32 reg;
117
118         mutex_lock(&rt2x00dev->csr_mutex);
119
120         /*
121          * Wait until the RF becomes available, afterwards we
122          * can safely write the new data into the register.
123          */
124         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125                 reg = 0;
126                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132                 rt2x00_rf_write(rt2x00dev, word, value);
133         }
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140         struct rt2x00_dev *rt2x00dev = eeprom->data;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147         eeprom->reg_data_clock =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149         eeprom->reg_chip_select =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155         struct rt2x00_dev *rt2x00dev = eeprom->data;
156         u32 reg = 0;
157
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161                            !!eeprom->reg_data_clock);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163                            !!eeprom->reg_chip_select);
164
165         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170         .owner  = THIS_MODULE,
171         .csr    = {
172                 .read           = rt2x00pci_register_read,
173                 .write          = rt2x00pci_register_write,
174                 .flags          = RT2X00DEBUGFS_OFFSET,
175                 .word_base      = CSR_REG_BASE,
176                 .word_size      = sizeof(u32),
177                 .word_count     = CSR_REG_SIZE / sizeof(u32),
178         },
179         .eeprom = {
180                 .read           = rt2x00_eeprom_read,
181                 .write          = rt2x00_eeprom_write,
182                 .word_base      = EEPROM_BASE,
183                 .word_size      = sizeof(u16),
184                 .word_count     = EEPROM_SIZE / sizeof(u16),
185         },
186         .bbp    = {
187                 .read           = rt2500pci_bbp_read,
188                 .write          = rt2500pci_bbp_write,
189                 .word_base      = BBP_BASE,
190                 .word_size      = sizeof(u8),
191                 .word_count     = BBP_SIZE / sizeof(u8),
192         },
193         .rf     = {
194                 .read           = rt2x00_rf_read,
195                 .write          = rt2500pci_rf_write,
196                 .word_base      = RF_BASE,
197                 .word_size      = sizeof(u32),
198                 .word_count     = RF_SIZE / sizeof(u32),
199         },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213                                      enum led_brightness brightness)
214 {
215         struct rt2x00_led *led =
216             container_of(led_cdev, struct rt2x00_led, led_dev);
217         unsigned int enabled = brightness != LED_OFF;
218         u32 reg;
219
220         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224         else if (led->type == LED_TYPE_ACTIVITY)
225                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231                                unsigned long *delay_on,
232                                unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243         return 0;
244 }
245
246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247                                struct rt2x00_led *led,
248                                enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt2500pci_brightness_set;
253         led->led_dev.blink_set = rt2500pci_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262                                     const unsigned int filter_flags)
263 {
264         u32 reg;
265
266         /*
267          * Start configuration steps.
268          * Note that the version error will always be dropped
269          * and broadcast frames will always be accepted since
270          * there is no filter for it at this time.
271          */
272         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274                            !(filter_flags & FIF_FCSFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276                            !(filter_flags & FIF_PLCPFAIL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278                            !(filter_flags & FIF_CONTROL));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280                            !(filter_flags & FIF_PROMISC_IN_BSS));
281         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
283                            !rt2x00dev->intf_ap_count);
284         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286                            !(filter_flags & FIF_ALLMULTI));
287         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289 }
290
291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292                                   struct rt2x00_intf *intf,
293                                   struct rt2x00intf_conf *conf,
294                                   const unsigned int flags)
295 {
296         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
297         unsigned int bcn_preload;
298         u32 reg;
299
300         if (flags & CONFIG_UPDATE_TYPE) {
301                 /*
302                  * Enable beacon config
303                  */
304                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309
310                 /*
311                  * Enable synchronisation.
312                  */
313                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
315                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
316                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
317                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
318         }
319
320         if (flags & CONFIG_UPDATE_MAC)
321                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
322                                               conf->mac, sizeof(conf->mac));
323
324         if (flags & CONFIG_UPDATE_BSSID)
325                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
326                                               conf->bssid, sizeof(conf->bssid));
327 }
328
329 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
330                                  struct rt2x00lib_erp *erp,
331                                  u32 changed)
332 {
333         int preamble_mask;
334         u32 reg;
335
336         /*
337          * When short preamble is enabled, we should set bit 0x08
338          */
339         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
340                 preamble_mask = erp->short_preamble << 3;
341
342                 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
343                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
344                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
345                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
346                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
347                 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
348
349                 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
350                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
351                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
352                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
353                                    GET_DURATION(ACK_SIZE, 10));
354                 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
355
356                 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
357                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
358                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
359                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
360                                    GET_DURATION(ACK_SIZE, 20));
361                 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
362
363                 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
364                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
365                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
366                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
367                                    GET_DURATION(ACK_SIZE, 55));
368                 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
369
370                 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
371                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
372                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
373                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
374                                    GET_DURATION(ACK_SIZE, 110));
375                 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
376         }
377
378         if (changed & BSS_CHANGED_BASIC_RATES)
379                 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
380
381         if (changed & BSS_CHANGED_ERP_SLOT) {
382                 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
383                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
384                 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
385
386                 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
387                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
388                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
389                 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
390
391                 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
392                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
393                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
394                 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
395         }
396
397         if (changed & BSS_CHANGED_BEACON_INT) {
398                 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
399                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
400                                    erp->beacon_int * 16);
401                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
402                                    erp->beacon_int * 16);
403                 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
404         }
405
406 }
407
408 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
409                                  struct antenna_setup *ant)
410 {
411         u32 reg;
412         u8 r14;
413         u8 r2;
414
415         /*
416          * We should never come here because rt2x00lib is supposed
417          * to catch this and send us the correct antenna explicitely.
418          */
419         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
420                ant->tx == ANTENNA_SW_DIVERSITY);
421
422         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
423         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
424         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
425
426         /*
427          * Configure the TX antenna.
428          */
429         switch (ant->tx) {
430         case ANTENNA_A:
431                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
432                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
433                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
434                 break;
435         case ANTENNA_B:
436         default:
437                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
438                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
439                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
440                 break;
441         }
442
443         /*
444          * Configure the RX antenna.
445          */
446         switch (ant->rx) {
447         case ANTENNA_A:
448                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
449                 break;
450         case ANTENNA_B:
451         default:
452                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
453                 break;
454         }
455
456         /*
457          * RT2525E and RT5222 need to flip TX I/Q
458          */
459         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
460                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
461                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
462                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
463
464                 /*
465                  * RT2525E does not need RX I/Q Flip.
466                  */
467                 if (rt2x00_rf(rt2x00dev, RF2525E))
468                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
469         } else {
470                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
471                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
472         }
473
474         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
475         rt2500pci_bbp_write(rt2x00dev, 14, r14);
476         rt2500pci_bbp_write(rt2x00dev, 2, r2);
477 }
478
479 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
480                                      struct rf_channel *rf, const int txpower)
481 {
482         u8 r70;
483
484         /*
485          * Set TXpower.
486          */
487         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
488
489         /*
490          * Switch on tuning bits.
491          * For RT2523 devices we do not need to update the R1 register.
492          */
493         if (!rt2x00_rf(rt2x00dev, RF2523))
494                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
495         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
496
497         /*
498          * For RT2525 we should first set the channel to half band higher.
499          */
500         if (rt2x00_rf(rt2x00dev, RF2525)) {
501                 static const u32 vals[] = {
502                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
503                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
504                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
505                         0x00080d2e, 0x00080d3a
506                 };
507
508                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
509                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
510                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
511                 if (rf->rf4)
512                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
513         }
514
515         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
516         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
517         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
518         if (rf->rf4)
519                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
520
521         /*
522          * Channel 14 requires the Japan filter bit to be set.
523          */
524         r70 = 0x46;
525         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
526         rt2500pci_bbp_write(rt2x00dev, 70, r70);
527
528         msleep(1);
529
530         /*
531          * Switch off tuning bits.
532          * For RT2523 devices we do not need to update the R1 register.
533          */
534         if (!rt2x00_rf(rt2x00dev, RF2523)) {
535                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
536                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
537         }
538
539         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
540         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
541
542         /*
543          * Clear false CRC during channel switch.
544          */
545         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
546 }
547
548 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
549                                      const int txpower)
550 {
551         u32 rf3;
552
553         rt2x00_rf_read(rt2x00dev, 3, &rf3);
554         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
555         rt2500pci_rf_write(rt2x00dev, 3, rf3);
556 }
557
558 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
559                                          struct rt2x00lib_conf *libconf)
560 {
561         u32 reg;
562
563         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
564         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
565                            libconf->conf->long_frame_max_tx_count);
566         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
567                            libconf->conf->short_frame_max_tx_count);
568         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
569 }
570
571 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
572                                 struct rt2x00lib_conf *libconf)
573 {
574         enum dev_state state =
575             (libconf->conf->flags & IEEE80211_CONF_PS) ?
576                 STATE_SLEEP : STATE_AWAKE;
577         u32 reg;
578
579         if (state == STATE_SLEEP) {
580                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
581                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
582                                    (rt2x00dev->beacon_int - 20) * 16);
583                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
584                                    libconf->conf->listen_interval - 1);
585
586                 /* We must first disable autowake before it can be enabled */
587                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
588                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
589
590                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
591                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
592         } else {
593                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
594                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
595                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
596         }
597
598         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
599 }
600
601 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
602                              struct rt2x00lib_conf *libconf,
603                              const unsigned int flags)
604 {
605         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
606                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
607                                          libconf->conf->power_level);
608         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
609             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
610                 rt2500pci_config_txpower(rt2x00dev,
611                                          libconf->conf->power_level);
612         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
613                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
614         if (flags & IEEE80211_CONF_CHANGE_PS)
615                 rt2500pci_config_ps(rt2x00dev, libconf);
616 }
617
618 /*
619  * Link tuning
620  */
621 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
622                                  struct link_qual *qual)
623 {
624         u32 reg;
625
626         /*
627          * Update FCS error count from register.
628          */
629         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
630         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
631
632         /*
633          * Update False CCA count from register.
634          */
635         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
636         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
637 }
638
639 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
640                                      struct link_qual *qual, u8 vgc_level)
641 {
642         if (qual->vgc_level_reg != vgc_level) {
643                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
644                 qual->vgc_level = vgc_level;
645                 qual->vgc_level_reg = vgc_level;
646         }
647 }
648
649 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
650                                   struct link_qual *qual)
651 {
652         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
653 }
654
655 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
656                                  struct link_qual *qual, const u32 count)
657 {
658         /*
659          * To prevent collisions with MAC ASIC on chipsets
660          * up to version C the link tuning should halt after 20
661          * seconds while being associated.
662          */
663         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
664             rt2x00dev->intf_associated && count > 20)
665                 return;
666
667         /*
668          * Chipset versions C and lower should directly continue
669          * to the dynamic CCA tuning. Chipset version D and higher
670          * should go straight to dynamic CCA tuning when they
671          * are not associated.
672          */
673         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
674             !rt2x00dev->intf_associated)
675                 goto dynamic_cca_tune;
676
677         /*
678          * A too low RSSI will cause too much false CCA which will
679          * then corrupt the R17 tuning. To remidy this the tuning should
680          * be stopped (While making sure the R17 value will not exceed limits)
681          */
682         if (qual->rssi < -80 && count > 20) {
683                 if (qual->vgc_level_reg >= 0x41)
684                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
685                 return;
686         }
687
688         /*
689          * Special big-R17 for short distance
690          */
691         if (qual->rssi >= -58) {
692                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
693                 return;
694         }
695
696         /*
697          * Special mid-R17 for middle distance
698          */
699         if (qual->rssi >= -74) {
700                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
701                 return;
702         }
703
704         /*
705          * Leave short or middle distance condition, restore r17
706          * to the dynamic tuning range.
707          */
708         if (qual->vgc_level_reg >= 0x41) {
709                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
710                 return;
711         }
712
713 dynamic_cca_tune:
714
715         /*
716          * R17 is inside the dynamic tuning range,
717          * start tuning the link based on the false cca counter.
718          */
719         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
720                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
721         else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
722                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
723 }
724
725 /*
726  * Initialization functions.
727  */
728 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
729 {
730         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
731         u32 word;
732
733         if (entry->queue->qid == QID_RX) {
734                 rt2x00_desc_read(entry_priv->desc, 0, &word);
735
736                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
737         } else {
738                 rt2x00_desc_read(entry_priv->desc, 0, &word);
739
740                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
741                         rt2x00_get_field32(word, TXD_W0_VALID));
742         }
743 }
744
745 static void rt2500pci_clear_entry(struct queue_entry *entry)
746 {
747         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
748         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
749         u32 word;
750
751         if (entry->queue->qid == QID_RX) {
752                 rt2x00_desc_read(entry_priv->desc, 1, &word);
753                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
754                 rt2x00_desc_write(entry_priv->desc, 1, word);
755
756                 rt2x00_desc_read(entry_priv->desc, 0, &word);
757                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
758                 rt2x00_desc_write(entry_priv->desc, 0, word);
759         } else {
760                 rt2x00_desc_read(entry_priv->desc, 0, &word);
761                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
762                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
763                 rt2x00_desc_write(entry_priv->desc, 0, word);
764         }
765 }
766
767 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
768 {
769         struct queue_entry_priv_pci *entry_priv;
770         u32 reg;
771
772         /*
773          * Initialize registers.
774          */
775         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
776         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
777         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
778         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
779         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
780         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
781
782         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
783         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
784         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
785                            entry_priv->desc_dma);
786         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
787
788         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
789         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
790         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
791                            entry_priv->desc_dma);
792         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
793
794         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
795         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
796         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
797                            entry_priv->desc_dma);
798         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
799
800         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
801         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
802         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
803                            entry_priv->desc_dma);
804         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
805
806         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
807         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
808         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
809         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
810
811         entry_priv = rt2x00dev->rx->entries[0].priv_data;
812         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
813         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
814                            entry_priv->desc_dma);
815         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
816
817         return 0;
818 }
819
820 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
821 {
822         u32 reg;
823
824         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
825         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
826         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
827         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
828
829         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
830         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
831         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
832         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
833         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
834
835         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
836         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
837                            rt2x00dev->rx->data_size / 128);
838         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
839
840         /*
841          * Always use CWmin and CWmax set in descriptor.
842          */
843         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
844         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
845         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
846
847         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
848         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
849         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
850         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
851         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
852         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
853         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
854         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
855         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
856         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
857
858         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
859
860         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
861         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
862         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
863         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
864         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
865         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
866         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
867         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
868         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
869         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
870
871         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
872         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
873         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
874         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
875         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
876         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
877
878         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
879         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
880         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
881         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
882         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
883         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
884
885         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
886         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
887         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
888         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
889         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
890         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
891
892         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
893         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
894         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
895         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
896         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
897         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
898         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
899         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
900         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
901         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
902
903         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
904         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
905         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
906         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
907         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
908         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
909         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
910         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
911         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
912
913         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
914
915         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
916         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
917
918         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
919                 return -EBUSY;
920
921         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
922         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
923
924         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
925         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
926         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
927
928         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
929         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
930         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
931         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
932         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
933         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
934         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
935         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
936
937         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
938
939         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
940
941         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
942         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
943         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
944         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
945         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
946
947         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
948         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
949         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
950         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
951
952         /*
953          * We must clear the FCS and FIFO error count.
954          * These registers are cleared on read,
955          * so we may pass a useless variable to store the value.
956          */
957         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
958         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
959
960         return 0;
961 }
962
963 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
964 {
965         unsigned int i;
966         u8 value;
967
968         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
969                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
970                 if ((value != 0xff) && (value != 0x00))
971                         return 0;
972                 udelay(REGISTER_BUSY_DELAY);
973         }
974
975         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
976         return -EACCES;
977 }
978
979 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
980 {
981         unsigned int i;
982         u16 eeprom;
983         u8 reg_id;
984         u8 value;
985
986         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
987                 return -EACCES;
988
989         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
990         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
991         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
992         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
993         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
994         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
995         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
996         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
997         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
998         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
999         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1000         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1001         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1002         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1003         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1004         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1005         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1006         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1007         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1008         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1009         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1010         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1011         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1012         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1013         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1014         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1015         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1016         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1017         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1018         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1019
1020         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1021                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1022
1023                 if (eeprom != 0xffff && eeprom != 0x0000) {
1024                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1025                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1026                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1027                 }
1028         }
1029
1030         return 0;
1031 }
1032
1033 /*
1034  * Device state switch handlers.
1035  */
1036 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1037                                 enum dev_state state)
1038 {
1039         u32 reg;
1040
1041         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1042         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1043                            (state == STATE_RADIO_RX_OFF) ||
1044                            (state == STATE_RADIO_RX_OFF_LINK));
1045         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1046 }
1047
1048 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1049                                  enum dev_state state)
1050 {
1051         int mask = (state == STATE_RADIO_IRQ_OFF) ||
1052                    (state == STATE_RADIO_IRQ_OFF_ISR);
1053         u32 reg;
1054
1055         /*
1056          * When interrupts are being enabled, the interrupt registers
1057          * should clear the register to assure a clean state.
1058          */
1059         if (state == STATE_RADIO_IRQ_ON) {
1060                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1061                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1062         }
1063
1064         /*
1065          * Only toggle the interrupts bits we are going to use.
1066          * Non-checked interrupt bits are disabled by default.
1067          */
1068         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1069         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1070         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1071         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1072         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1073         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1074         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1075 }
1076
1077 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1078 {
1079         /*
1080          * Initialize all registers.
1081          */
1082         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1083                      rt2500pci_init_registers(rt2x00dev) ||
1084                      rt2500pci_init_bbp(rt2x00dev)))
1085                 return -EIO;
1086
1087         return 0;
1088 }
1089
1090 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1091 {
1092         /*
1093          * Disable power
1094          */
1095         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1096 }
1097
1098 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1099                                enum dev_state state)
1100 {
1101         u32 reg, reg2;
1102         unsigned int i;
1103         char put_to_sleep;
1104         char bbp_state;
1105         char rf_state;
1106
1107         put_to_sleep = (state != STATE_AWAKE);
1108
1109         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1110         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1111         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1112         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1113         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1114         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1115
1116         /*
1117          * Device is not guaranteed to be in the requested state yet.
1118          * We must wait until the register indicates that the
1119          * device has entered the correct state.
1120          */
1121         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1122                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1123                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1124                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1125                 if (bbp_state == state && rf_state == state)
1126                         return 0;
1127                 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1128                 msleep(10);
1129         }
1130
1131         return -EBUSY;
1132 }
1133
1134 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1135                                       enum dev_state state)
1136 {
1137         int retval = 0;
1138
1139         switch (state) {
1140         case STATE_RADIO_ON:
1141                 retval = rt2500pci_enable_radio(rt2x00dev);
1142                 break;
1143         case STATE_RADIO_OFF:
1144                 rt2500pci_disable_radio(rt2x00dev);
1145                 break;
1146         case STATE_RADIO_RX_ON:
1147         case STATE_RADIO_RX_ON_LINK:
1148         case STATE_RADIO_RX_OFF:
1149         case STATE_RADIO_RX_OFF_LINK:
1150                 rt2500pci_toggle_rx(rt2x00dev, state);
1151                 break;
1152         case STATE_RADIO_IRQ_ON:
1153         case STATE_RADIO_IRQ_ON_ISR:
1154         case STATE_RADIO_IRQ_OFF:
1155         case STATE_RADIO_IRQ_OFF_ISR:
1156                 rt2500pci_toggle_irq(rt2x00dev, state);
1157                 break;
1158         case STATE_DEEP_SLEEP:
1159         case STATE_SLEEP:
1160         case STATE_STANDBY:
1161         case STATE_AWAKE:
1162                 retval = rt2500pci_set_state(rt2x00dev, state);
1163                 break;
1164         default:
1165                 retval = -ENOTSUPP;
1166                 break;
1167         }
1168
1169         if (unlikely(retval))
1170                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1171                       state, retval);
1172
1173         return retval;
1174 }
1175
1176 /*
1177  * TX descriptor initialization
1178  */
1179 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1180                                     struct txentry_desc *txdesc)
1181 {
1182         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1183         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1184         __le32 *txd = entry_priv->desc;
1185         u32 word;
1186
1187         /*
1188          * Start writing the descriptor words.
1189          */
1190         rt2x00_desc_read(txd, 1, &word);
1191         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1192         rt2x00_desc_write(txd, 1, word);
1193
1194         rt2x00_desc_read(txd, 2, &word);
1195         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1196         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1197         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1198         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1199         rt2x00_desc_write(txd, 2, word);
1200
1201         rt2x00_desc_read(txd, 3, &word);
1202         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1203         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1204         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1205         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1206         rt2x00_desc_write(txd, 3, word);
1207
1208         rt2x00_desc_read(txd, 10, &word);
1209         rt2x00_set_field32(&word, TXD_W10_RTS,
1210                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1211         rt2x00_desc_write(txd, 10, word);
1212
1213         /*
1214          * Writing TXD word 0 must the last to prevent a race condition with
1215          * the device, whereby the device may take hold of the TXD before we
1216          * finished updating it.
1217          */
1218         rt2x00_desc_read(txd, 0, &word);
1219         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1220         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1221         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1222                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1223         rt2x00_set_field32(&word, TXD_W0_ACK,
1224                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1225         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1226                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1227         rt2x00_set_field32(&word, TXD_W0_OFDM,
1228                            (txdesc->rate_mode == RATE_MODE_OFDM));
1229         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1230         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1231         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1232                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1233         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1234         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1235         rt2x00_desc_write(txd, 0, word);
1236
1237         /*
1238          * Register descriptor details in skb frame descriptor.
1239          */
1240         skbdesc->desc = txd;
1241         skbdesc->desc_len = TXD_DESC_SIZE;
1242 }
1243
1244 /*
1245  * TX data initialization
1246  */
1247 static void rt2500pci_write_beacon(struct queue_entry *entry,
1248                                    struct txentry_desc *txdesc)
1249 {
1250         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1251         u32 reg;
1252
1253         /*
1254          * Disable beaconing while we are reloading the beacon data,
1255          * otherwise we might be sending out invalid data.
1256          */
1257         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1258         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1259         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1260
1261         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1262
1263         /*
1264          * Write the TX descriptor for the beacon.
1265          */
1266         rt2500pci_write_tx_desc(entry, txdesc);
1267
1268         /*
1269          * Dump beacon to userspace through debugfs.
1270          */
1271         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1272
1273         /*
1274          * Enable beaconing again.
1275          */
1276         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1277         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1278         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1279         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1280 }
1281
1282 static void rt2500pci_kick_tx_queue(struct data_queue *queue)
1283 {
1284         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1285         u32 reg;
1286
1287         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1288         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
1289         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
1290         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1291         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1292 }
1293
1294 static void rt2500pci_kill_tx_queue(struct data_queue *queue)
1295 {
1296         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1297         u32 reg;
1298
1299         if (queue->qid == QID_BEACON) {
1300                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1301         } else {
1302                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1303                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1304                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1305         }
1306 }
1307
1308 /*
1309  * RX control handlers
1310  */
1311 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1312                                   struct rxdone_entry_desc *rxdesc)
1313 {
1314         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1315         u32 word0;
1316         u32 word2;
1317
1318         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1319         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1320
1321         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1322                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1323         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1324                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1325
1326         /*
1327          * Obtain the status about this packet.
1328          * When frame was received with an OFDM bitrate,
1329          * the signal is the PLCP value. If it was received with
1330          * a CCK bitrate the signal is the rate in 100kbit/s.
1331          */
1332         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1333         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1334             entry->queue->rt2x00dev->rssi_offset;
1335         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1336
1337         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1338                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1339         else
1340                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1341         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1342                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1343 }
1344
1345 /*
1346  * Interrupt functions.
1347  */
1348 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1349                              const enum data_queue_qid queue_idx)
1350 {
1351         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1352         struct queue_entry_priv_pci *entry_priv;
1353         struct queue_entry *entry;
1354         struct txdone_entry_desc txdesc;
1355         u32 word;
1356
1357         while (!rt2x00queue_empty(queue)) {
1358                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1359                 entry_priv = entry->priv_data;
1360                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1361
1362                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1363                     !rt2x00_get_field32(word, TXD_W0_VALID))
1364                         break;
1365
1366                 /*
1367                  * Obtain the status about this packet.
1368                  */
1369                 txdesc.flags = 0;
1370                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1371                 case 0: /* Success */
1372                 case 1: /* Success with retry */
1373                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1374                         break;
1375                 case 2: /* Failure, excessive retries */
1376                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1377                         /* Don't break, this is a failed frame! */
1378                 default: /* Failure */
1379                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1380                 }
1381                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1382
1383                 rt2x00lib_txdone(entry, &txdesc);
1384         }
1385 }
1386
1387 static irqreturn_t rt2500pci_interrupt_thread(int irq, void *dev_instance)
1388 {
1389         struct rt2x00_dev *rt2x00dev = dev_instance;
1390         u32 reg = rt2x00dev->irqvalue[0];
1391
1392         /*
1393          * Handle interrupts, walk through all bits
1394          * and run the tasks, the bits are checked in order of
1395          * priority.
1396          */
1397
1398         /*
1399          * 1 - Beacon timer expired interrupt.
1400          */
1401         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402                 rt2x00lib_beacondone(rt2x00dev);
1403
1404         /*
1405          * 2 - Rx ring done interrupt.
1406          */
1407         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1408                 rt2x00pci_rxdone(rt2x00dev);
1409
1410         /*
1411          * 3 - Atim ring transmit done interrupt.
1412          */
1413         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1414                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1415
1416         /*
1417          * 4 - Priority ring transmit done interrupt.
1418          */
1419         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1420                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1421
1422         /*
1423          * 5 - Tx ring transmit done interrupt.
1424          */
1425         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1426                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1427
1428         /* Enable interrupts again. */
1429         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1430                                               STATE_RADIO_IRQ_ON_ISR);
1431
1432         return IRQ_HANDLED;
1433 }
1434
1435 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1436 {
1437         struct rt2x00_dev *rt2x00dev = dev_instance;
1438         u32 reg;
1439
1440         /*
1441          * Get the interrupt sources & saved to local variable.
1442          * Write register value back to clear pending interrupts.
1443          */
1444         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1445         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1446
1447         if (!reg)
1448                 return IRQ_NONE;
1449
1450         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1451                 return IRQ_HANDLED;
1452
1453         /* Store irqvalues for use in the interrupt thread. */
1454         rt2x00dev->irqvalue[0] = reg;
1455
1456         /* Disable interrupts, will be enabled again in the interrupt thread. */
1457         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1458                                               STATE_RADIO_IRQ_OFF_ISR);
1459
1460         return IRQ_WAKE_THREAD;
1461 }
1462
1463 /*
1464  * Device probe functions.
1465  */
1466 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1467 {
1468         struct eeprom_93cx6 eeprom;
1469         u32 reg;
1470         u16 word;
1471         u8 *mac;
1472
1473         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1474
1475         eeprom.data = rt2x00dev;
1476         eeprom.register_read = rt2500pci_eepromregister_read;
1477         eeprom.register_write = rt2500pci_eepromregister_write;
1478         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1479             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1480         eeprom.reg_data_in = 0;
1481         eeprom.reg_data_out = 0;
1482         eeprom.reg_data_clock = 0;
1483         eeprom.reg_chip_select = 0;
1484
1485         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1486                                EEPROM_SIZE / sizeof(u16));
1487
1488         /*
1489          * Start validation of the data that has been read.
1490          */
1491         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1492         if (!is_valid_ether_addr(mac)) {
1493                 random_ether_addr(mac);
1494                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1495         }
1496
1497         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1498         if (word == 0xffff) {
1499                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1500                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1501                                    ANTENNA_SW_DIVERSITY);
1502                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1503                                    ANTENNA_SW_DIVERSITY);
1504                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1505                                    LED_MODE_DEFAULT);
1506                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1507                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1508                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1509                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1510                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1511         }
1512
1513         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1514         if (word == 0xffff) {
1515                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1516                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1517                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1518                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1519                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1520         }
1521
1522         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1523         if (word == 0xffff) {
1524                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1525                                    DEFAULT_RSSI_OFFSET);
1526                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1527                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1528         }
1529
1530         return 0;
1531 }
1532
1533 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1534 {
1535         u32 reg;
1536         u16 value;
1537         u16 eeprom;
1538
1539         /*
1540          * Read EEPROM word for configuration.
1541          */
1542         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1543
1544         /*
1545          * Identify RF chipset.
1546          */
1547         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1548         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1549         rt2x00_set_chip(rt2x00dev, RT2560, value,
1550                         rt2x00_get_field32(reg, CSR0_REVISION));
1551
1552         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1553             !rt2x00_rf(rt2x00dev, RF2523) &&
1554             !rt2x00_rf(rt2x00dev, RF2524) &&
1555             !rt2x00_rf(rt2x00dev, RF2525) &&
1556             !rt2x00_rf(rt2x00dev, RF2525E) &&
1557             !rt2x00_rf(rt2x00dev, RF5222)) {
1558                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1559                 return -ENODEV;
1560         }
1561
1562         /*
1563          * Identify default antenna configuration.
1564          */
1565         rt2x00dev->default_ant.tx =
1566             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1567         rt2x00dev->default_ant.rx =
1568             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1569
1570         /*
1571          * Store led mode, for correct led behaviour.
1572          */
1573 #ifdef CONFIG_RT2X00_LIB_LEDS
1574         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1575
1576         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1577         if (value == LED_MODE_TXRX_ACTIVITY ||
1578             value == LED_MODE_DEFAULT ||
1579             value == LED_MODE_ASUS)
1580                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1581                                    LED_TYPE_ACTIVITY);
1582 #endif /* CONFIG_RT2X00_LIB_LEDS */
1583
1584         /*
1585          * Detect if this device has an hardware controlled radio.
1586          */
1587         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1588                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1589
1590         /*
1591          * Check if the BBP tuning should be enabled.
1592          */
1593         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1594         if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1595                 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1596
1597         /*
1598          * Read the RSSI <-> dBm offset information.
1599          */
1600         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1601         rt2x00dev->rssi_offset =
1602             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1603
1604         return 0;
1605 }
1606
1607 /*
1608  * RF value list for RF2522
1609  * Supports: 2.4 GHz
1610  */
1611 static const struct rf_channel rf_vals_bg_2522[] = {
1612         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1613         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1614         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1615         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1616         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1617         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1618         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1619         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1620         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1621         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1622         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1623         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1624         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1625         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1626 };
1627
1628 /*
1629  * RF value list for RF2523
1630  * Supports: 2.4 GHz
1631  */
1632 static const struct rf_channel rf_vals_bg_2523[] = {
1633         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1634         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1635         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1636         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1637         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1638         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1639         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1640         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1641         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1642         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1643         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1644         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1645         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1646         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1647 };
1648
1649 /*
1650  * RF value list for RF2524
1651  * Supports: 2.4 GHz
1652  */
1653 static const struct rf_channel rf_vals_bg_2524[] = {
1654         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1655         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1656         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1657         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1658         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1659         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1660         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1661         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1662         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1663         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1664         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1665         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1666         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1667         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1668 };
1669
1670 /*
1671  * RF value list for RF2525
1672  * Supports: 2.4 GHz
1673  */
1674 static const struct rf_channel rf_vals_bg_2525[] = {
1675         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1676         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1677         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1678         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1679         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1680         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1681         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1682         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1683         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1684         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1685         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1686         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1687         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1688         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1689 };
1690
1691 /*
1692  * RF value list for RF2525e
1693  * Supports: 2.4 GHz
1694  */
1695 static const struct rf_channel rf_vals_bg_2525e[] = {
1696         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1697         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1698         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1699         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1700         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1701         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1702         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1703         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1704         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1705         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1706         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1707         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1708         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1709         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1710 };
1711
1712 /*
1713  * RF value list for RF5222
1714  * Supports: 2.4 GHz & 5.2 GHz
1715  */
1716 static const struct rf_channel rf_vals_5222[] = {
1717         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1718         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1719         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1720         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1721         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1722         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1723         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1724         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1725         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1726         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1727         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1728         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1729         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1730         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1731
1732         /* 802.11 UNI / HyperLan 2 */
1733         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1734         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1735         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1736         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1737         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1738         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1739         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1740         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1741
1742         /* 802.11 HyperLan 2 */
1743         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1744         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1745         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1746         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1747         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1748         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1749         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1750         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1751         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1752         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1753
1754         /* 802.11 UNII */
1755         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1756         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1757         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1758         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1759         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1760 };
1761
1762 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1763 {
1764         struct hw_mode_spec *spec = &rt2x00dev->spec;
1765         struct channel_info *info;
1766         char *tx_power;
1767         unsigned int i;
1768
1769         /*
1770          * Initialize all hw fields.
1771          */
1772         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1773                                IEEE80211_HW_SIGNAL_DBM |
1774                                IEEE80211_HW_SUPPORTS_PS |
1775                                IEEE80211_HW_PS_NULLFUNC_STACK;
1776
1777         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1778         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1779                                 rt2x00_eeprom_addr(rt2x00dev,
1780                                                    EEPROM_MAC_ADDR_0));
1781
1782         /*
1783          * Initialize hw_mode information.
1784          */
1785         spec->supported_bands = SUPPORT_BAND_2GHZ;
1786         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1787
1788         if (rt2x00_rf(rt2x00dev, RF2522)) {
1789                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1790                 spec->channels = rf_vals_bg_2522;
1791         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1792                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1793                 spec->channels = rf_vals_bg_2523;
1794         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1795                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1796                 spec->channels = rf_vals_bg_2524;
1797         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1798                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1799                 spec->channels = rf_vals_bg_2525;
1800         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1801                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1802                 spec->channels = rf_vals_bg_2525e;
1803         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1804                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1805                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1806                 spec->channels = rf_vals_5222;
1807         }
1808
1809         /*
1810          * Create channel information array
1811          */
1812         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1813         if (!info)
1814                 return -ENOMEM;
1815
1816         spec->channels_info = info;
1817
1818         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1819         for (i = 0; i < 14; i++) {
1820                 info[i].max_power = MAX_TXPOWER;
1821                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1822         }
1823
1824         if (spec->num_channels > 14) {
1825                 for (i = 14; i < spec->num_channels; i++) {
1826                         info[i].max_power = MAX_TXPOWER;
1827                         info[i].default_power1 = DEFAULT_TXPOWER;
1828                 }
1829         }
1830
1831         return 0;
1832 }
1833
1834 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1835 {
1836         int retval;
1837
1838         /*
1839          * Allocate eeprom data.
1840          */
1841         retval = rt2500pci_validate_eeprom(rt2x00dev);
1842         if (retval)
1843                 return retval;
1844
1845         retval = rt2500pci_init_eeprom(rt2x00dev);
1846         if (retval)
1847                 return retval;
1848
1849         /*
1850          * Initialize hw specifications.
1851          */
1852         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1853         if (retval)
1854                 return retval;
1855
1856         /*
1857          * This device requires the atim queue and DMA-mapped skbs.
1858          */
1859         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1860         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1861
1862         /*
1863          * Set the rssi offset.
1864          */
1865         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1866
1867         return 0;
1868 }
1869
1870 /*
1871  * IEEE80211 stack callback functions.
1872  */
1873 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1874 {
1875         struct rt2x00_dev *rt2x00dev = hw->priv;
1876         u64 tsf;
1877         u32 reg;
1878
1879         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1880         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1881         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1882         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1883
1884         return tsf;
1885 }
1886
1887 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1888 {
1889         struct rt2x00_dev *rt2x00dev = hw->priv;
1890         u32 reg;
1891
1892         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1893         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1894 }
1895
1896 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1897         .tx                     = rt2x00mac_tx,
1898         .start                  = rt2x00mac_start,
1899         .stop                   = rt2x00mac_stop,
1900         .add_interface          = rt2x00mac_add_interface,
1901         .remove_interface       = rt2x00mac_remove_interface,
1902         .config                 = rt2x00mac_config,
1903         .configure_filter       = rt2x00mac_configure_filter,
1904         .sw_scan_start          = rt2x00mac_sw_scan_start,
1905         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1906         .get_stats              = rt2x00mac_get_stats,
1907         .bss_info_changed       = rt2x00mac_bss_info_changed,
1908         .conf_tx                = rt2x00mac_conf_tx,
1909         .get_tsf                = rt2500pci_get_tsf,
1910         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1911         .rfkill_poll            = rt2x00mac_rfkill_poll,
1912 };
1913
1914 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1915         .irq_handler            = rt2500pci_interrupt,
1916         .irq_handler_thread     = rt2500pci_interrupt_thread,
1917         .probe_hw               = rt2500pci_probe_hw,
1918         .initialize             = rt2x00pci_initialize,
1919         .uninitialize           = rt2x00pci_uninitialize,
1920         .get_entry_state        = rt2500pci_get_entry_state,
1921         .clear_entry            = rt2500pci_clear_entry,
1922         .set_device_state       = rt2500pci_set_device_state,
1923         .rfkill_poll            = rt2500pci_rfkill_poll,
1924         .link_stats             = rt2500pci_link_stats,
1925         .reset_tuner            = rt2500pci_reset_tuner,
1926         .link_tuner             = rt2500pci_link_tuner,
1927         .write_tx_desc          = rt2500pci_write_tx_desc,
1928         .write_beacon           = rt2500pci_write_beacon,
1929         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1930         .kill_tx_queue          = rt2500pci_kill_tx_queue,
1931         .fill_rxdone            = rt2500pci_fill_rxdone,
1932         .config_filter          = rt2500pci_config_filter,
1933         .config_intf            = rt2500pci_config_intf,
1934         .config_erp             = rt2500pci_config_erp,
1935         .config_ant             = rt2500pci_config_ant,
1936         .config                 = rt2500pci_config,
1937 };
1938
1939 static const struct data_queue_desc rt2500pci_queue_rx = {
1940         .entry_num              = RX_ENTRIES,
1941         .data_size              = DATA_FRAME_SIZE,
1942         .desc_size              = RXD_DESC_SIZE,
1943         .priv_size              = sizeof(struct queue_entry_priv_pci),
1944 };
1945
1946 static const struct data_queue_desc rt2500pci_queue_tx = {
1947         .entry_num              = TX_ENTRIES,
1948         .data_size              = DATA_FRAME_SIZE,
1949         .desc_size              = TXD_DESC_SIZE,
1950         .priv_size              = sizeof(struct queue_entry_priv_pci),
1951 };
1952
1953 static const struct data_queue_desc rt2500pci_queue_bcn = {
1954         .entry_num              = BEACON_ENTRIES,
1955         .data_size              = MGMT_FRAME_SIZE,
1956         .desc_size              = TXD_DESC_SIZE,
1957         .priv_size              = sizeof(struct queue_entry_priv_pci),
1958 };
1959
1960 static const struct data_queue_desc rt2500pci_queue_atim = {
1961         .entry_num              = ATIM_ENTRIES,
1962         .data_size              = DATA_FRAME_SIZE,
1963         .desc_size              = TXD_DESC_SIZE,
1964         .priv_size              = sizeof(struct queue_entry_priv_pci),
1965 };
1966
1967 static const struct rt2x00_ops rt2500pci_ops = {
1968         .name                   = KBUILD_MODNAME,
1969         .max_sta_intf           = 1,
1970         .max_ap_intf            = 1,
1971         .eeprom_size            = EEPROM_SIZE,
1972         .rf_size                = RF_SIZE,
1973         .tx_queues              = NUM_TX_QUEUES,
1974         .extra_tx_headroom      = 0,
1975         .rx                     = &rt2500pci_queue_rx,
1976         .tx                     = &rt2500pci_queue_tx,
1977         .bcn                    = &rt2500pci_queue_bcn,
1978         .atim                   = &rt2500pci_queue_atim,
1979         .lib                    = &rt2500pci_rt2x00_ops,
1980         .hw                     = &rt2500pci_mac80211_ops,
1981 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1982         .debugfs                = &rt2500pci_rt2x00debug,
1983 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1984 };
1985
1986 /*
1987  * RT2500pci module information.
1988  */
1989 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
1990         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1991         { 0, }
1992 };
1993
1994 MODULE_AUTHOR(DRV_PROJECT);
1995 MODULE_VERSION(DRV_VERSION);
1996 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1997 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1998 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1999 MODULE_LICENSE("GPL");
2000
2001 static struct pci_driver rt2500pci_driver = {
2002         .name           = KBUILD_MODNAME,
2003         .id_table       = rt2500pci_device_table,
2004         .probe          = rt2x00pci_probe,
2005         .remove         = __devexit_p(rt2x00pci_remove),
2006         .suspend        = rt2x00pci_suspend,
2007         .resume         = rt2x00pci_resume,
2008 };
2009
2010 static int __init rt2500pci_init(void)
2011 {
2012         return pci_register_driver(&rt2500pci_driver);
2013 }
2014
2015 static void __exit rt2500pci_exit(void)
2016 {
2017         pci_unregister_driver(&rt2500pci_driver);
2018 }
2019
2020 module_init(rt2500pci_init);
2021 module_exit(rt2500pci_exit);