Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2500pci.h"
39
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59                                 const unsigned int word, const u8 value)
60 {
61         u32 reg;
62
63         mutex_lock(&rt2x00dev->csr_mutex);
64
65         /*
66          * Wait until the BBP becomes available, afterwards we
67          * can safely write the new data into the register.
68          */
69         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70                 reg = 0;
71                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77         }
78
79         mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83                                const unsigned int word, u8 *value)
84 {
85         u32 reg;
86
87         mutex_lock(&rt2x00dev->csr_mutex);
88
89         /*
90          * Wait until the BBP becomes available, afterwards we
91          * can safely write the read request into the register.
92          * After the data has been written, we wait until hardware
93          * returns the correct value, if at any time the register
94          * doesn't become available in time, reg will be 0xffffffff
95          * which means we return 0xff to the caller.
96          */
97         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98                 reg = 0;
99                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105                 WAIT_FOR_BBP(rt2x00dev, &reg);
106         }
107
108         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110         mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
114                                const unsigned int word, const u32 value)
115 {
116         u32 reg;
117
118         mutex_lock(&rt2x00dev->csr_mutex);
119
120         /*
121          * Wait until the RF becomes available, afterwards we
122          * can safely write the new data into the register.
123          */
124         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125                 reg = 0;
126                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132                 rt2x00_rf_write(rt2x00dev, word, value);
133         }
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140         struct rt2x00_dev *rt2x00dev = eeprom->data;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147         eeprom->reg_data_clock =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149         eeprom->reg_chip_select =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155         struct rt2x00_dev *rt2x00dev = eeprom->data;
156         u32 reg = 0;
157
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161                            !!eeprom->reg_data_clock);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163                            !!eeprom->reg_chip_select);
164
165         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2500pci_rt2x00debug = {
170         .owner  = THIS_MODULE,
171         .csr    = {
172                 .read           = rt2x00pci_register_read,
173                 .write          = rt2x00pci_register_write,
174                 .flags          = RT2X00DEBUGFS_OFFSET,
175                 .word_base      = CSR_REG_BASE,
176                 .word_size      = sizeof(u32),
177                 .word_count     = CSR_REG_SIZE / sizeof(u32),
178         },
179         .eeprom = {
180                 .read           = rt2x00_eeprom_read,
181                 .write          = rt2x00_eeprom_write,
182                 .word_base      = EEPROM_BASE,
183                 .word_size      = sizeof(u16),
184                 .word_count     = EEPROM_SIZE / sizeof(u16),
185         },
186         .bbp    = {
187                 .read           = rt2500pci_bbp_read,
188                 .write          = rt2500pci_bbp_write,
189                 .word_base      = BBP_BASE,
190                 .word_size      = sizeof(u8),
191                 .word_count     = BBP_SIZE / sizeof(u8),
192         },
193         .rf     = {
194                 .read           = rt2x00_rf_read,
195                 .write          = rt2500pci_rf_write,
196                 .word_base      = RF_BASE,
197                 .word_size      = sizeof(u32),
198                 .word_count     = RF_SIZE / sizeof(u32),
199         },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
213                                      enum led_brightness brightness)
214 {
215         struct rt2x00_led *led =
216             container_of(led_cdev, struct rt2x00_led, led_dev);
217         unsigned int enabled = brightness != LED_OFF;
218         u32 reg;
219
220         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224         else if (led->type == LED_TYPE_ACTIVITY)
225                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
231                                unsigned long *delay_on,
232                                unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243         return 0;
244 }
245
246 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
247                                struct rt2x00_led *led,
248                                enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt2500pci_brightness_set;
253         led->led_dev.blink_set = rt2500pci_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
262                                     const unsigned int filter_flags)
263 {
264         u32 reg;
265
266         /*
267          * Start configuration steps.
268          * Note that the version error will always be dropped
269          * and broadcast frames will always be accepted since
270          * there is no filter for it at this time.
271          */
272         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
273         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
274                            !(filter_flags & FIF_FCSFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
276                            !(filter_flags & FIF_PLCPFAIL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
278                            !(filter_flags & FIF_CONTROL));
279         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
280                            !(filter_flags & FIF_PROMISC_IN_BSS));
281         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
282                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
283                            !rt2x00dev->intf_ap_count);
284         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
285         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
286                            !(filter_flags & FIF_ALLMULTI));
287         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
288         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
289 }
290
291 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
292                                   struct rt2x00_intf *intf,
293                                   struct rt2x00intf_conf *conf,
294                                   const unsigned int flags)
295 {
296         struct data_queue *queue = rt2x00dev->bcn;
297         unsigned int bcn_preload;
298         u32 reg;
299
300         if (flags & CONFIG_UPDATE_TYPE) {
301                 /*
302                  * Enable beacon config
303                  */
304                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
305                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
306                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
307                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
308                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
309
310                 /*
311                  * Enable synchronisation.
312                  */
313                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
314                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
316         }
317
318         if (flags & CONFIG_UPDATE_MAC)
319                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
320                                               conf->mac, sizeof(conf->mac));
321
322         if (flags & CONFIG_UPDATE_BSSID)
323                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
324                                               conf->bssid, sizeof(conf->bssid));
325 }
326
327 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
328                                  struct rt2x00lib_erp *erp,
329                                  u32 changed)
330 {
331         int preamble_mask;
332         u32 reg;
333
334         /*
335          * When short preamble is enabled, we should set bit 0x08
336          */
337         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
338                 preamble_mask = erp->short_preamble << 3;
339
340                 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
341                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
342                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
343                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345                 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346
347                 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
351                                    GET_DURATION(ACK_SIZE, 10));
352                 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
353
354                 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
355                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
356                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
357                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
358                                    GET_DURATION(ACK_SIZE, 20));
359                 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
360
361                 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
362                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
363                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
364                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
365                                    GET_DURATION(ACK_SIZE, 55));
366                 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
367
368                 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
369                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
370                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
371                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
372                                    GET_DURATION(ACK_SIZE, 110));
373                 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
374         }
375
376         if (changed & BSS_CHANGED_BASIC_RATES)
377                 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
378
379         if (changed & BSS_CHANGED_ERP_SLOT) {
380                 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
381                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
382                 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
383
384                 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
385                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
386                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
387                 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
388
389                 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
390                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
391                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
392                 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
393         }
394
395         if (changed & BSS_CHANGED_BEACON_INT) {
396                 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
397                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
398                                    erp->beacon_int * 16);
399                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
400                                    erp->beacon_int * 16);
401                 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
402         }
403
404 }
405
406 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
407                                  struct antenna_setup *ant)
408 {
409         u32 reg;
410         u8 r14;
411         u8 r2;
412
413         /*
414          * We should never come here because rt2x00lib is supposed
415          * to catch this and send us the correct antenna explicitely.
416          */
417         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
418                ant->tx == ANTENNA_SW_DIVERSITY);
419
420         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
421         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
422         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
423
424         /*
425          * Configure the TX antenna.
426          */
427         switch (ant->tx) {
428         case ANTENNA_A:
429                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
430                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
431                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
432                 break;
433         case ANTENNA_B:
434         default:
435                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
436                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
437                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
438                 break;
439         }
440
441         /*
442          * Configure the RX antenna.
443          */
444         switch (ant->rx) {
445         case ANTENNA_A:
446                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
447                 break;
448         case ANTENNA_B:
449         default:
450                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
451                 break;
452         }
453
454         /*
455          * RT2525E and RT5222 need to flip TX I/Q
456          */
457         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
458                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
459                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
460                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
461
462                 /*
463                  * RT2525E does not need RX I/Q Flip.
464                  */
465                 if (rt2x00_rf(rt2x00dev, RF2525E))
466                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
467         } else {
468                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
469                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
470         }
471
472         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
473         rt2500pci_bbp_write(rt2x00dev, 14, r14);
474         rt2500pci_bbp_write(rt2x00dev, 2, r2);
475 }
476
477 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
478                                      struct rf_channel *rf, const int txpower)
479 {
480         u8 r70;
481
482         /*
483          * Set TXpower.
484          */
485         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
486
487         /*
488          * Switch on tuning bits.
489          * For RT2523 devices we do not need to update the R1 register.
490          */
491         if (!rt2x00_rf(rt2x00dev, RF2523))
492                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
493         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
494
495         /*
496          * For RT2525 we should first set the channel to half band higher.
497          */
498         if (rt2x00_rf(rt2x00dev, RF2525)) {
499                 static const u32 vals[] = {
500                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
501                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
502                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
503                         0x00080d2e, 0x00080d3a
504                 };
505
506                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
507                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
508                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
509                 if (rf->rf4)
510                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
511         }
512
513         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
514         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
515         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
516         if (rf->rf4)
517                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
518
519         /*
520          * Channel 14 requires the Japan filter bit to be set.
521          */
522         r70 = 0x46;
523         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
524         rt2500pci_bbp_write(rt2x00dev, 70, r70);
525
526         msleep(1);
527
528         /*
529          * Switch off tuning bits.
530          * For RT2523 devices we do not need to update the R1 register.
531          */
532         if (!rt2x00_rf(rt2x00dev, RF2523)) {
533                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
534                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
535         }
536
537         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
538         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
539
540         /*
541          * Clear false CRC during channel switch.
542          */
543         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
544 }
545
546 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
547                                      const int txpower)
548 {
549         u32 rf3;
550
551         rt2x00_rf_read(rt2x00dev, 3, &rf3);
552         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
553         rt2500pci_rf_write(rt2x00dev, 3, rf3);
554 }
555
556 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
557                                          struct rt2x00lib_conf *libconf)
558 {
559         u32 reg;
560
561         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
562         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
563                            libconf->conf->long_frame_max_tx_count);
564         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
565                            libconf->conf->short_frame_max_tx_count);
566         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
567 }
568
569 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
570                                 struct rt2x00lib_conf *libconf)
571 {
572         enum dev_state state =
573             (libconf->conf->flags & IEEE80211_CONF_PS) ?
574                 STATE_SLEEP : STATE_AWAKE;
575         u32 reg;
576
577         if (state == STATE_SLEEP) {
578                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
579                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
580                                    (rt2x00dev->beacon_int - 20) * 16);
581                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
582                                    libconf->conf->listen_interval - 1);
583
584                 /* We must first disable autowake before it can be enabled */
585                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
586                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
587
588                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
589                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
590         } else {
591                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
592                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
593                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
594         }
595
596         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
597 }
598
599 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
600                              struct rt2x00lib_conf *libconf,
601                              const unsigned int flags)
602 {
603         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
604                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
605                                          libconf->conf->power_level);
606         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
607             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
608                 rt2500pci_config_txpower(rt2x00dev,
609                                          libconf->conf->power_level);
610         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
611                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
612         if (flags & IEEE80211_CONF_CHANGE_PS)
613                 rt2500pci_config_ps(rt2x00dev, libconf);
614 }
615
616 /*
617  * Link tuning
618  */
619 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
620                                  struct link_qual *qual)
621 {
622         u32 reg;
623
624         /*
625          * Update FCS error count from register.
626          */
627         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
628         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
629
630         /*
631          * Update False CCA count from register.
632          */
633         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
634         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
635 }
636
637 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
638                                      struct link_qual *qual, u8 vgc_level)
639 {
640         if (qual->vgc_level_reg != vgc_level) {
641                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
642                 qual->vgc_level = vgc_level;
643                 qual->vgc_level_reg = vgc_level;
644         }
645 }
646
647 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
648                                   struct link_qual *qual)
649 {
650         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
651 }
652
653 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
654                                  struct link_qual *qual, const u32 count)
655 {
656         /*
657          * To prevent collisions with MAC ASIC on chipsets
658          * up to version C the link tuning should halt after 20
659          * seconds while being associated.
660          */
661         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
662             rt2x00dev->intf_associated && count > 20)
663                 return;
664
665         /*
666          * Chipset versions C and lower should directly continue
667          * to the dynamic CCA tuning. Chipset version D and higher
668          * should go straight to dynamic CCA tuning when they
669          * are not associated.
670          */
671         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
672             !rt2x00dev->intf_associated)
673                 goto dynamic_cca_tune;
674
675         /*
676          * A too low RSSI will cause too much false CCA which will
677          * then corrupt the R17 tuning. To remidy this the tuning should
678          * be stopped (While making sure the R17 value will not exceed limits)
679          */
680         if (qual->rssi < -80 && count > 20) {
681                 if (qual->vgc_level_reg >= 0x41)
682                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
683                 return;
684         }
685
686         /*
687          * Special big-R17 for short distance
688          */
689         if (qual->rssi >= -58) {
690                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
691                 return;
692         }
693
694         /*
695          * Special mid-R17 for middle distance
696          */
697         if (qual->rssi >= -74) {
698                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
699                 return;
700         }
701
702         /*
703          * Leave short or middle distance condition, restore r17
704          * to the dynamic tuning range.
705          */
706         if (qual->vgc_level_reg >= 0x41) {
707                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
708                 return;
709         }
710
711 dynamic_cca_tune:
712
713         /*
714          * R17 is inside the dynamic tuning range,
715          * start tuning the link based on the false cca counter.
716          */
717         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
718                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
719         else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
720                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
721 }
722
723 /*
724  * Queue handlers.
725  */
726 static void rt2500pci_start_queue(struct data_queue *queue)
727 {
728         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
729         u32 reg;
730
731         switch (queue->qid) {
732         case QID_RX:
733                 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
734                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
735                 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
736                 break;
737         case QID_BEACON:
738                 /*
739                  * Allow the tbtt tasklet to be scheduled.
740                  */
741                 tasklet_enable(&rt2x00dev->tbtt_tasklet);
742
743                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
744                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
745                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
746                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
747                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
748                 break;
749         default:
750                 break;
751         }
752 }
753
754 static void rt2500pci_kick_queue(struct data_queue *queue)
755 {
756         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
757         u32 reg;
758
759         switch (queue->qid) {
760         case QID_AC_VO:
761                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
762                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
763                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
764                 break;
765         case QID_AC_VI:
766                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
767                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
768                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
769                 break;
770         case QID_ATIM:
771                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
772                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
773                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
774                 break;
775         default:
776                 break;
777         }
778 }
779
780 static void rt2500pci_stop_queue(struct data_queue *queue)
781 {
782         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
783         u32 reg;
784
785         switch (queue->qid) {
786         case QID_AC_VO:
787         case QID_AC_VI:
788         case QID_ATIM:
789                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
790                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
791                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
792                 break;
793         case QID_RX:
794                 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
795                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
796                 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
797                 break;
798         case QID_BEACON:
799                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
800                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
801                 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
802                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
803                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
804
805                 /*
806                  * Wait for possibly running tbtt tasklets.
807                  */
808                 tasklet_disable(&rt2x00dev->tbtt_tasklet);
809                 break;
810         default:
811                 break;
812         }
813 }
814
815 /*
816  * Initialization functions.
817  */
818 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
819 {
820         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
821         u32 word;
822
823         if (entry->queue->qid == QID_RX) {
824                 rt2x00_desc_read(entry_priv->desc, 0, &word);
825
826                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
827         } else {
828                 rt2x00_desc_read(entry_priv->desc, 0, &word);
829
830                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
831                         rt2x00_get_field32(word, TXD_W0_VALID));
832         }
833 }
834
835 static void rt2500pci_clear_entry(struct queue_entry *entry)
836 {
837         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
838         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
839         u32 word;
840
841         if (entry->queue->qid == QID_RX) {
842                 rt2x00_desc_read(entry_priv->desc, 1, &word);
843                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
844                 rt2x00_desc_write(entry_priv->desc, 1, word);
845
846                 rt2x00_desc_read(entry_priv->desc, 0, &word);
847                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
848                 rt2x00_desc_write(entry_priv->desc, 0, word);
849         } else {
850                 rt2x00_desc_read(entry_priv->desc, 0, &word);
851                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
852                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
853                 rt2x00_desc_write(entry_priv->desc, 0, word);
854         }
855 }
856
857 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
858 {
859         struct queue_entry_priv_pci *entry_priv;
860         u32 reg;
861
862         /*
863          * Initialize registers.
864          */
865         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
866         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
867         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
868         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
869         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
870         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
871
872         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
873         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
874         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
875                            entry_priv->desc_dma);
876         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
877
878         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
879         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
880         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
881                            entry_priv->desc_dma);
882         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
883
884         entry_priv = rt2x00dev->atim->entries[0].priv_data;
885         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
886         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
887                            entry_priv->desc_dma);
888         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
889
890         entry_priv = rt2x00dev->bcn->entries[0].priv_data;
891         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
892         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
893                            entry_priv->desc_dma);
894         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
895
896         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
897         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
898         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
899         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
900
901         entry_priv = rt2x00dev->rx->entries[0].priv_data;
902         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
903         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
904                            entry_priv->desc_dma);
905         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
906
907         return 0;
908 }
909
910 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
911 {
912         u32 reg;
913
914         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
915         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
916         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
917         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
918
919         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
920         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
921         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
922         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
923         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
924
925         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
926         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
927                            rt2x00dev->rx->data_size / 128);
928         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
929
930         /*
931          * Always use CWmin and CWmax set in descriptor.
932          */
933         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
934         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
935         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
936
937         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
938         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
939         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
940         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
941         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
942         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
943         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
944         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
945         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
946         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
947
948         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
949
950         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
951         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
952         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
953         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
954         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
955         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
956         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
957         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
958         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
959         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
960
961         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
962         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
963         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
964         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
965         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
966         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
967
968         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
969         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
970         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
971         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
972         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
973         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
974
975         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
976         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
977         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
978         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
979         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
980         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
981
982         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
983         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
984         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
985         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
986         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
987         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
988         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
989         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
990         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
991         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
992
993         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
994         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
995         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
996         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
997         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
998         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
999         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
1000         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
1001         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
1002
1003         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
1004
1005         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1006         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1007
1008         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1009                 return -EBUSY;
1010
1011         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1012         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1013
1014         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1015         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1016         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1017
1018         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1019         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1020         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1021         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1022         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1023         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1024         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1025         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1026
1027         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1028
1029         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1030
1031         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1032         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1033         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1034         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1035         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1036
1037         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1038         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1039         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1040         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1041
1042         /*
1043          * We must clear the FCS and FIFO error count.
1044          * These registers are cleared on read,
1045          * so we may pass a useless variable to store the value.
1046          */
1047         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1048         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1049
1050         return 0;
1051 }
1052
1053 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1054 {
1055         unsigned int i;
1056         u8 value;
1057
1058         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1059                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
1060                 if ((value != 0xff) && (value != 0x00))
1061                         return 0;
1062                 udelay(REGISTER_BUSY_DELAY);
1063         }
1064
1065         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1066         return -EACCES;
1067 }
1068
1069 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1070 {
1071         unsigned int i;
1072         u16 eeprom;
1073         u8 reg_id;
1074         u8 value;
1075
1076         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1077                 return -EACCES;
1078
1079         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1080         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1081         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1082         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1083         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1084         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1085         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1086         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1087         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1088         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1089         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1090         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1091         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1092         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1093         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1094         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1095         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1096         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1097         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1098         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1099         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1100         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1101         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1102         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1103         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1104         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1105         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1106         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1107         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1108         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1109
1110         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1111                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1112
1113                 if (eeprom != 0xffff && eeprom != 0x0000) {
1114                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1115                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1116                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1117                 }
1118         }
1119
1120         return 0;
1121 }
1122
1123 /*
1124  * Device state switch handlers.
1125  */
1126 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1127                                  enum dev_state state)
1128 {
1129         int mask = (state == STATE_RADIO_IRQ_OFF);
1130         u32 reg;
1131         unsigned long flags;
1132
1133         /*
1134          * When interrupts are being enabled, the interrupt registers
1135          * should clear the register to assure a clean state.
1136          */
1137         if (state == STATE_RADIO_IRQ_ON) {
1138                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1139                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1140
1141                 /*
1142                  * Enable tasklets.
1143                  */
1144                 tasklet_enable(&rt2x00dev->txstatus_tasklet);
1145                 tasklet_enable(&rt2x00dev->rxdone_tasklet);
1146         }
1147
1148         /*
1149          * Only toggle the interrupts bits we are going to use.
1150          * Non-checked interrupt bits are disabled by default.
1151          */
1152         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1153
1154         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1155         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1156         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1157         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1158         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1159         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1160         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1161
1162         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1163
1164         if (state == STATE_RADIO_IRQ_OFF) {
1165                 /*
1166                  * Ensure that all tasklets are finished.
1167                  */
1168                 tasklet_disable(&rt2x00dev->txstatus_tasklet);
1169                 tasklet_disable(&rt2x00dev->rxdone_tasklet);
1170         }
1171 }
1172
1173 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1174 {
1175         /*
1176          * Initialize all registers.
1177          */
1178         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1179                      rt2500pci_init_registers(rt2x00dev) ||
1180                      rt2500pci_init_bbp(rt2x00dev)))
1181                 return -EIO;
1182
1183         return 0;
1184 }
1185
1186 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1187 {
1188         /*
1189          * Disable power
1190          */
1191         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1192 }
1193
1194 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1195                                enum dev_state state)
1196 {
1197         u32 reg, reg2;
1198         unsigned int i;
1199         char put_to_sleep;
1200         char bbp_state;
1201         char rf_state;
1202
1203         put_to_sleep = (state != STATE_AWAKE);
1204
1205         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1206         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1207         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1208         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1209         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1210         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1211
1212         /*
1213          * Device is not guaranteed to be in the requested state yet.
1214          * We must wait until the register indicates that the
1215          * device has entered the correct state.
1216          */
1217         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1218                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1219                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1220                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1221                 if (bbp_state == state && rf_state == state)
1222                         return 0;
1223                 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1224                 msleep(10);
1225         }
1226
1227         return -EBUSY;
1228 }
1229
1230 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1231                                       enum dev_state state)
1232 {
1233         int retval = 0;
1234
1235         switch (state) {
1236         case STATE_RADIO_ON:
1237                 retval = rt2500pci_enable_radio(rt2x00dev);
1238                 break;
1239         case STATE_RADIO_OFF:
1240                 rt2500pci_disable_radio(rt2x00dev);
1241                 break;
1242         case STATE_RADIO_IRQ_ON:
1243         case STATE_RADIO_IRQ_OFF:
1244                 rt2500pci_toggle_irq(rt2x00dev, state);
1245                 break;
1246         case STATE_DEEP_SLEEP:
1247         case STATE_SLEEP:
1248         case STATE_STANDBY:
1249         case STATE_AWAKE:
1250                 retval = rt2500pci_set_state(rt2x00dev, state);
1251                 break;
1252         default:
1253                 retval = -ENOTSUPP;
1254                 break;
1255         }
1256
1257         if (unlikely(retval))
1258                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1259                       state, retval);
1260
1261         return retval;
1262 }
1263
1264 /*
1265  * TX descriptor initialization
1266  */
1267 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1268                                     struct txentry_desc *txdesc)
1269 {
1270         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1271         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1272         __le32 *txd = entry_priv->desc;
1273         u32 word;
1274
1275         /*
1276          * Start writing the descriptor words.
1277          */
1278         rt2x00_desc_read(txd, 1, &word);
1279         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1280         rt2x00_desc_write(txd, 1, word);
1281
1282         rt2x00_desc_read(txd, 2, &word);
1283         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1284         rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1285         rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1286         rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1287         rt2x00_desc_write(txd, 2, word);
1288
1289         rt2x00_desc_read(txd, 3, &word);
1290         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1291         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1292         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1293                            txdesc->u.plcp.length_low);
1294         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1295                            txdesc->u.plcp.length_high);
1296         rt2x00_desc_write(txd, 3, word);
1297
1298         rt2x00_desc_read(txd, 10, &word);
1299         rt2x00_set_field32(&word, TXD_W10_RTS,
1300                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1301         rt2x00_desc_write(txd, 10, word);
1302
1303         /*
1304          * Writing TXD word 0 must the last to prevent a race condition with
1305          * the device, whereby the device may take hold of the TXD before we
1306          * finished updating it.
1307          */
1308         rt2x00_desc_read(txd, 0, &word);
1309         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1310         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1311         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1312                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1313         rt2x00_set_field32(&word, TXD_W0_ACK,
1314                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1315         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1316                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1317         rt2x00_set_field32(&word, TXD_W0_OFDM,
1318                            (txdesc->rate_mode == RATE_MODE_OFDM));
1319         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1320         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1321         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1322                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1323         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1324         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1325         rt2x00_desc_write(txd, 0, word);
1326
1327         /*
1328          * Register descriptor details in skb frame descriptor.
1329          */
1330         skbdesc->desc = txd;
1331         skbdesc->desc_len = TXD_DESC_SIZE;
1332 }
1333
1334 /*
1335  * TX data initialization
1336  */
1337 static void rt2500pci_write_beacon(struct queue_entry *entry,
1338                                    struct txentry_desc *txdesc)
1339 {
1340         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1341         u32 reg;
1342
1343         /*
1344          * Disable beaconing while we are reloading the beacon data,
1345          * otherwise we might be sending out invalid data.
1346          */
1347         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1348         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1349         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1350
1351         rt2x00queue_map_txskb(entry);
1352
1353         /*
1354          * Write the TX descriptor for the beacon.
1355          */
1356         rt2500pci_write_tx_desc(entry, txdesc);
1357
1358         /*
1359          * Dump beacon to userspace through debugfs.
1360          */
1361         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1362
1363         /*
1364          * Enable beaconing again.
1365          */
1366         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1367         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1368 }
1369
1370 /*
1371  * RX control handlers
1372  */
1373 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1374                                   struct rxdone_entry_desc *rxdesc)
1375 {
1376         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1377         u32 word0;
1378         u32 word2;
1379
1380         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1381         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1382
1383         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1384                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1385         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1386                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1387
1388         /*
1389          * Obtain the status about this packet.
1390          * When frame was received with an OFDM bitrate,
1391          * the signal is the PLCP value. If it was received with
1392          * a CCK bitrate the signal is the rate in 100kbit/s.
1393          */
1394         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1395         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1396             entry->queue->rt2x00dev->rssi_offset;
1397         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1398
1399         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1400                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1401         else
1402                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1403         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1404                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1405 }
1406
1407 /*
1408  * Interrupt functions.
1409  */
1410 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1411                              const enum data_queue_qid queue_idx)
1412 {
1413         struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1414         struct queue_entry_priv_pci *entry_priv;
1415         struct queue_entry *entry;
1416         struct txdone_entry_desc txdesc;
1417         u32 word;
1418
1419         while (!rt2x00queue_empty(queue)) {
1420                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1421                 entry_priv = entry->priv_data;
1422                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1423
1424                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1425                     !rt2x00_get_field32(word, TXD_W0_VALID))
1426                         break;
1427
1428                 /*
1429                  * Obtain the status about this packet.
1430                  */
1431                 txdesc.flags = 0;
1432                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1433                 case 0: /* Success */
1434                 case 1: /* Success with retry */
1435                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1436                         break;
1437                 case 2: /* Failure, excessive retries */
1438                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1439                         /* Don't break, this is a failed frame! */
1440                 default: /* Failure */
1441                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1442                 }
1443                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1444
1445                 rt2x00lib_txdone(entry, &txdesc);
1446         }
1447 }
1448
1449 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1450                                               struct rt2x00_field32 irq_field)
1451 {
1452         u32 reg;
1453
1454         /*
1455          * Enable a single interrupt. The interrupt mask register
1456          * access needs locking.
1457          */
1458         spin_lock_irq(&rt2x00dev->irqmask_lock);
1459
1460         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1461         rt2x00_set_field32(&reg, irq_field, 0);
1462         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1463
1464         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1465 }
1466
1467 static void rt2500pci_txstatus_tasklet(unsigned long data)
1468 {
1469         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1470         u32 reg;
1471
1472         /*
1473          * Handle all tx queues.
1474          */
1475         rt2500pci_txdone(rt2x00dev, QID_ATIM);
1476         rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1477         rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1478
1479         /*
1480          * Enable all TXDONE interrupts again.
1481          */
1482         spin_lock_irq(&rt2x00dev->irqmask_lock);
1483
1484         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1485         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1486         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1487         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1488         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1489
1490         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1491 }
1492
1493 static void rt2500pci_tbtt_tasklet(unsigned long data)
1494 {
1495         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1496         rt2x00lib_beacondone(rt2x00dev);
1497         rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1498 }
1499
1500 static void rt2500pci_rxdone_tasklet(unsigned long data)
1501 {
1502         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1503         if (rt2x00pci_rxdone(rt2x00dev))
1504                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1505         else
1506                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1507 }
1508
1509 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1510 {
1511         struct rt2x00_dev *rt2x00dev = dev_instance;
1512         u32 reg, mask;
1513
1514         /*
1515          * Get the interrupt sources & saved to local variable.
1516          * Write register value back to clear pending interrupts.
1517          */
1518         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1519         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1520
1521         if (!reg)
1522                 return IRQ_NONE;
1523
1524         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1525                 return IRQ_HANDLED;
1526
1527         mask = reg;
1528
1529         /*
1530          * Schedule tasklets for interrupt handling.
1531          */
1532         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1533                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1534
1535         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1536                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1537
1538         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1539             rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1540             rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1541                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1542                 /*
1543                  * Mask out all txdone interrupts.
1544                  */
1545                 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1546                 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1547                 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1548         }
1549
1550         /*
1551          * Disable all interrupts for which a tasklet was scheduled right now,
1552          * the tasklet will reenable the appropriate interrupts.
1553          */
1554         spin_lock(&rt2x00dev->irqmask_lock);
1555
1556         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1557         reg |= mask;
1558         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1559
1560         spin_unlock(&rt2x00dev->irqmask_lock);
1561
1562         return IRQ_HANDLED;
1563 }
1564
1565 /*
1566  * Device probe functions.
1567  */
1568 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1569 {
1570         struct eeprom_93cx6 eeprom;
1571         u32 reg;
1572         u16 word;
1573         u8 *mac;
1574
1575         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1576
1577         eeprom.data = rt2x00dev;
1578         eeprom.register_read = rt2500pci_eepromregister_read;
1579         eeprom.register_write = rt2500pci_eepromregister_write;
1580         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1581             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1582         eeprom.reg_data_in = 0;
1583         eeprom.reg_data_out = 0;
1584         eeprom.reg_data_clock = 0;
1585         eeprom.reg_chip_select = 0;
1586
1587         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1588                                EEPROM_SIZE / sizeof(u16));
1589
1590         /*
1591          * Start validation of the data that has been read.
1592          */
1593         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1594         if (!is_valid_ether_addr(mac)) {
1595                 random_ether_addr(mac);
1596                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1597         }
1598
1599         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1600         if (word == 0xffff) {
1601                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1602                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1603                                    ANTENNA_SW_DIVERSITY);
1604                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1605                                    ANTENNA_SW_DIVERSITY);
1606                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1607                                    LED_MODE_DEFAULT);
1608                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1609                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1610                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1611                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1612                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1613         }
1614
1615         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1616         if (word == 0xffff) {
1617                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1618                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1619                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1620                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1621                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1622         }
1623
1624         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1625         if (word == 0xffff) {
1626                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1627                                    DEFAULT_RSSI_OFFSET);
1628                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1629                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1630         }
1631
1632         return 0;
1633 }
1634
1635 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1636 {
1637         u32 reg;
1638         u16 value;
1639         u16 eeprom;
1640
1641         /*
1642          * Read EEPROM word for configuration.
1643          */
1644         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1645
1646         /*
1647          * Identify RF chipset.
1648          */
1649         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1650         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1651         rt2x00_set_chip(rt2x00dev, RT2560, value,
1652                         rt2x00_get_field32(reg, CSR0_REVISION));
1653
1654         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1655             !rt2x00_rf(rt2x00dev, RF2523) &&
1656             !rt2x00_rf(rt2x00dev, RF2524) &&
1657             !rt2x00_rf(rt2x00dev, RF2525) &&
1658             !rt2x00_rf(rt2x00dev, RF2525E) &&
1659             !rt2x00_rf(rt2x00dev, RF5222)) {
1660                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1661                 return -ENODEV;
1662         }
1663
1664         /*
1665          * Identify default antenna configuration.
1666          */
1667         rt2x00dev->default_ant.tx =
1668             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1669         rt2x00dev->default_ant.rx =
1670             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1671
1672         /*
1673          * Store led mode, for correct led behaviour.
1674          */
1675 #ifdef CONFIG_RT2X00_LIB_LEDS
1676         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1677
1678         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1679         if (value == LED_MODE_TXRX_ACTIVITY ||
1680             value == LED_MODE_DEFAULT ||
1681             value == LED_MODE_ASUS)
1682                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1683                                    LED_TYPE_ACTIVITY);
1684 #endif /* CONFIG_RT2X00_LIB_LEDS */
1685
1686         /*
1687          * Detect if this device has an hardware controlled radio.
1688          */
1689         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1690                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1691
1692         /*
1693          * Check if the BBP tuning should be enabled.
1694          */
1695         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1696         if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1697                 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1698
1699         /*
1700          * Read the RSSI <-> dBm offset information.
1701          */
1702         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1703         rt2x00dev->rssi_offset =
1704             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1705
1706         return 0;
1707 }
1708
1709 /*
1710  * RF value list for RF2522
1711  * Supports: 2.4 GHz
1712  */
1713 static const struct rf_channel rf_vals_bg_2522[] = {
1714         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1715         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1716         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1717         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1718         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1719         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1720         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1721         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1722         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1723         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1728 };
1729
1730 /*
1731  * RF value list for RF2523
1732  * Supports: 2.4 GHz
1733  */
1734 static const struct rf_channel rf_vals_bg_2523[] = {
1735         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1749 };
1750
1751 /*
1752  * RF value list for RF2524
1753  * Supports: 2.4 GHz
1754  */
1755 static const struct rf_channel rf_vals_bg_2524[] = {
1756         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1770 };
1771
1772 /*
1773  * RF value list for RF2525
1774  * Supports: 2.4 GHz
1775  */
1776 static const struct rf_channel rf_vals_bg_2525[] = {
1777         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1791 };
1792
1793 /*
1794  * RF value list for RF2525e
1795  * Supports: 2.4 GHz
1796  */
1797 static const struct rf_channel rf_vals_bg_2525e[] = {
1798         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1812 };
1813
1814 /*
1815  * RF value list for RF5222
1816  * Supports: 2.4 GHz & 5.2 GHz
1817  */
1818 static const struct rf_channel rf_vals_5222[] = {
1819         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1833
1834         /* 802.11 UNI / HyperLan 2 */
1835         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1843
1844         /* 802.11 HyperLan 2 */
1845         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855
1856         /* 802.11 UNII */
1857         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862 };
1863
1864 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1865 {
1866         struct hw_mode_spec *spec = &rt2x00dev->spec;
1867         struct channel_info *info;
1868         char *tx_power;
1869         unsigned int i;
1870
1871         /*
1872          * Initialize all hw fields.
1873          */
1874         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1875                                IEEE80211_HW_SIGNAL_DBM |
1876                                IEEE80211_HW_SUPPORTS_PS |
1877                                IEEE80211_HW_PS_NULLFUNC_STACK;
1878
1879         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1880         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1881                                 rt2x00_eeprom_addr(rt2x00dev,
1882                                                    EEPROM_MAC_ADDR_0));
1883
1884         /*
1885          * Initialize hw_mode information.
1886          */
1887         spec->supported_bands = SUPPORT_BAND_2GHZ;
1888         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1889
1890         if (rt2x00_rf(rt2x00dev, RF2522)) {
1891                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1892                 spec->channels = rf_vals_bg_2522;
1893         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1894                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1895                 spec->channels = rf_vals_bg_2523;
1896         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1897                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1898                 spec->channels = rf_vals_bg_2524;
1899         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1900                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1901                 spec->channels = rf_vals_bg_2525;
1902         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1903                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1904                 spec->channels = rf_vals_bg_2525e;
1905         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1906                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1907                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1908                 spec->channels = rf_vals_5222;
1909         }
1910
1911         /*
1912          * Create channel information array
1913          */
1914         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1915         if (!info)
1916                 return -ENOMEM;
1917
1918         spec->channels_info = info;
1919
1920         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1921         for (i = 0; i < 14; i++) {
1922                 info[i].max_power = MAX_TXPOWER;
1923                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1924         }
1925
1926         if (spec->num_channels > 14) {
1927                 for (i = 14; i < spec->num_channels; i++) {
1928                         info[i].max_power = MAX_TXPOWER;
1929                         info[i].default_power1 = DEFAULT_TXPOWER;
1930                 }
1931         }
1932
1933         return 0;
1934 }
1935
1936 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1937 {
1938         int retval;
1939
1940         /*
1941          * Allocate eeprom data.
1942          */
1943         retval = rt2500pci_validate_eeprom(rt2x00dev);
1944         if (retval)
1945                 return retval;
1946
1947         retval = rt2500pci_init_eeprom(rt2x00dev);
1948         if (retval)
1949                 return retval;
1950
1951         /*
1952          * Initialize hw specifications.
1953          */
1954         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1955         if (retval)
1956                 return retval;
1957
1958         /*
1959          * This device requires the atim queue and DMA-mapped skbs.
1960          */
1961         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1962         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1963         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1964
1965         /*
1966          * Set the rssi offset.
1967          */
1968         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1969
1970         return 0;
1971 }
1972
1973 /*
1974  * IEEE80211 stack callback functions.
1975  */
1976 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1977 {
1978         struct rt2x00_dev *rt2x00dev = hw->priv;
1979         u64 tsf;
1980         u32 reg;
1981
1982         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1983         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1984         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1985         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1986
1987         return tsf;
1988 }
1989
1990 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1991 {
1992         struct rt2x00_dev *rt2x00dev = hw->priv;
1993         u32 reg;
1994
1995         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1996         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1997 }
1998
1999 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2000         .tx                     = rt2x00mac_tx,
2001         .start                  = rt2x00mac_start,
2002         .stop                   = rt2x00mac_stop,
2003         .add_interface          = rt2x00mac_add_interface,
2004         .remove_interface       = rt2x00mac_remove_interface,
2005         .config                 = rt2x00mac_config,
2006         .configure_filter       = rt2x00mac_configure_filter,
2007         .sw_scan_start          = rt2x00mac_sw_scan_start,
2008         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2009         .get_stats              = rt2x00mac_get_stats,
2010         .bss_info_changed       = rt2x00mac_bss_info_changed,
2011         .conf_tx                = rt2x00mac_conf_tx,
2012         .get_tsf                = rt2500pci_get_tsf,
2013         .tx_last_beacon         = rt2500pci_tx_last_beacon,
2014         .rfkill_poll            = rt2x00mac_rfkill_poll,
2015         .flush                  = rt2x00mac_flush,
2016         .set_antenna            = rt2x00mac_set_antenna,
2017         .get_antenna            = rt2x00mac_get_antenna,
2018         .get_ringparam          = rt2x00mac_get_ringparam,
2019         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2020 };
2021
2022 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2023         .irq_handler            = rt2500pci_interrupt,
2024         .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2025         .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2026         .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2027         .probe_hw               = rt2500pci_probe_hw,
2028         .initialize             = rt2x00pci_initialize,
2029         .uninitialize           = rt2x00pci_uninitialize,
2030         .get_entry_state        = rt2500pci_get_entry_state,
2031         .clear_entry            = rt2500pci_clear_entry,
2032         .set_device_state       = rt2500pci_set_device_state,
2033         .rfkill_poll            = rt2500pci_rfkill_poll,
2034         .link_stats             = rt2500pci_link_stats,
2035         .reset_tuner            = rt2500pci_reset_tuner,
2036         .link_tuner             = rt2500pci_link_tuner,
2037         .start_queue            = rt2500pci_start_queue,
2038         .kick_queue             = rt2500pci_kick_queue,
2039         .stop_queue             = rt2500pci_stop_queue,
2040         .flush_queue            = rt2x00pci_flush_queue,
2041         .write_tx_desc          = rt2500pci_write_tx_desc,
2042         .write_beacon           = rt2500pci_write_beacon,
2043         .fill_rxdone            = rt2500pci_fill_rxdone,
2044         .config_filter          = rt2500pci_config_filter,
2045         .config_intf            = rt2500pci_config_intf,
2046         .config_erp             = rt2500pci_config_erp,
2047         .config_ant             = rt2500pci_config_ant,
2048         .config                 = rt2500pci_config,
2049 };
2050
2051 static const struct data_queue_desc rt2500pci_queue_rx = {
2052         .entry_num              = 32,
2053         .data_size              = DATA_FRAME_SIZE,
2054         .desc_size              = RXD_DESC_SIZE,
2055         .priv_size              = sizeof(struct queue_entry_priv_pci),
2056 };
2057
2058 static const struct data_queue_desc rt2500pci_queue_tx = {
2059         .entry_num              = 32,
2060         .data_size              = DATA_FRAME_SIZE,
2061         .desc_size              = TXD_DESC_SIZE,
2062         .priv_size              = sizeof(struct queue_entry_priv_pci),
2063 };
2064
2065 static const struct data_queue_desc rt2500pci_queue_bcn = {
2066         .entry_num              = 1,
2067         .data_size              = MGMT_FRAME_SIZE,
2068         .desc_size              = TXD_DESC_SIZE,
2069         .priv_size              = sizeof(struct queue_entry_priv_pci),
2070 };
2071
2072 static const struct data_queue_desc rt2500pci_queue_atim = {
2073         .entry_num              = 8,
2074         .data_size              = DATA_FRAME_SIZE,
2075         .desc_size              = TXD_DESC_SIZE,
2076         .priv_size              = sizeof(struct queue_entry_priv_pci),
2077 };
2078
2079 static const struct rt2x00_ops rt2500pci_ops = {
2080         .name                   = KBUILD_MODNAME,
2081         .max_sta_intf           = 1,
2082         .max_ap_intf            = 1,
2083         .eeprom_size            = EEPROM_SIZE,
2084         .rf_size                = RF_SIZE,
2085         .tx_queues              = NUM_TX_QUEUES,
2086         .extra_tx_headroom      = 0,
2087         .rx                     = &rt2500pci_queue_rx,
2088         .tx                     = &rt2500pci_queue_tx,
2089         .bcn                    = &rt2500pci_queue_bcn,
2090         .atim                   = &rt2500pci_queue_atim,
2091         .lib                    = &rt2500pci_rt2x00_ops,
2092         .hw                     = &rt2500pci_mac80211_ops,
2093 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2094         .debugfs                = &rt2500pci_rt2x00debug,
2095 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2096 };
2097
2098 /*
2099  * RT2500pci module information.
2100  */
2101 static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2102         { PCI_DEVICE(0x1814, 0x0201) },
2103         { 0, }
2104 };
2105
2106 MODULE_AUTHOR(DRV_PROJECT);
2107 MODULE_VERSION(DRV_VERSION);
2108 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2109 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2110 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2111 MODULE_LICENSE("GPL");
2112
2113 static int rt2500pci_probe(struct pci_dev *pci_dev,
2114                            const struct pci_device_id *id)
2115 {
2116         return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2117 }
2118
2119 static struct pci_driver rt2500pci_driver = {
2120         .name           = KBUILD_MODNAME,
2121         .id_table       = rt2500pci_device_table,
2122         .probe          = rt2500pci_probe,
2123         .remove         = __devexit_p(rt2x00pci_remove),
2124         .suspend        = rt2x00pci_suspend,
2125         .resume         = rt2x00pci_resume,
2126 };
2127
2128 static int __init rt2500pci_init(void)
2129 {
2130         return pci_register_driver(&rt2500pci_driver);
2131 }
2132
2133 static void __exit rt2500pci_exit(void)
2134 {
2135         pci_unregister_driver(&rt2500pci_driver);
2136 }
2137
2138 module_init(rt2500pci_init);
2139 module_exit(rt2500pci_exit);