rt2x00: Fix max TX power settings
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
39
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59                                 const unsigned int word, const u8 value)
60 {
61         u32 reg;
62
63         mutex_lock(&rt2x00dev->csr_mutex);
64
65         /*
66          * Wait until the BBP becomes available, afterwards we
67          * can safely write the new data into the register.
68          */
69         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70                 reg = 0;
71                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77         }
78
79         mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83                                const unsigned int word, u8 *value)
84 {
85         u32 reg;
86
87         mutex_lock(&rt2x00dev->csr_mutex);
88
89         /*
90          * Wait until the BBP becomes available, afterwards we
91          * can safely write the read request into the register.
92          * After the data has been written, we wait until hardware
93          * returns the correct value, if at any time the register
94          * doesn't become available in time, reg will be 0xffffffff
95          * which means we return 0xff to the caller.
96          */
97         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98                 reg = 0;
99                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105                 WAIT_FOR_BBP(rt2x00dev, &reg);
106         }
107
108         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110         mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114                                const unsigned int word, const u32 value)
115 {
116         u32 reg;
117
118         mutex_lock(&rt2x00dev->csr_mutex);
119
120         /*
121          * Wait until the RF becomes available, afterwards we
122          * can safely write the new data into the register.
123          */
124         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125                 reg = 0;
126                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132                 rt2x00_rf_write(rt2x00dev, word, value);
133         }
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140         struct rt2x00_dev *rt2x00dev = eeprom->data;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147         eeprom->reg_data_clock =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149         eeprom->reg_chip_select =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155         struct rt2x00_dev *rt2x00dev = eeprom->data;
156         u32 reg = 0;
157
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161                            !!eeprom->reg_data_clock);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163                            !!eeprom->reg_chip_select);
164
165         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170         .owner  = THIS_MODULE,
171         .csr    = {
172                 .read           = rt2x00pci_register_read,
173                 .write          = rt2x00pci_register_write,
174                 .flags          = RT2X00DEBUGFS_OFFSET,
175                 .word_base      = CSR_REG_BASE,
176                 .word_size      = sizeof(u32),
177                 .word_count     = CSR_REG_SIZE / sizeof(u32),
178         },
179         .eeprom = {
180                 .read           = rt2x00_eeprom_read,
181                 .write          = rt2x00_eeprom_write,
182                 .word_base      = EEPROM_BASE,
183                 .word_size      = sizeof(u16),
184                 .word_count     = EEPROM_SIZE / sizeof(u16),
185         },
186         .bbp    = {
187                 .read           = rt2400pci_bbp_read,
188                 .write          = rt2400pci_bbp_write,
189                 .word_base      = BBP_BASE,
190                 .word_size      = sizeof(u8),
191                 .word_count     = BBP_SIZE / sizeof(u8),
192         },
193         .rf     = {
194                 .read           = rt2x00_rf_read,
195                 .write          = rt2400pci_rf_write,
196                 .word_base      = RF_BASE,
197                 .word_size      = sizeof(u32),
198                 .word_count     = RF_SIZE / sizeof(u32),
199         },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213                                      enum led_brightness brightness)
214 {
215         struct rt2x00_led *led =
216             container_of(led_cdev, struct rt2x00_led, led_dev);
217         unsigned int enabled = brightness != LED_OFF;
218         u32 reg;
219
220         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224         else if (led->type == LED_TYPE_ACTIVITY)
225                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231                                unsigned long *delay_on,
232                                unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243         return 0;
244 }
245
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247                                struct rt2x00_led *led,
248                                enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt2400pci_brightness_set;
253         led->led_dev.blink_set = rt2400pci_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262                                     const unsigned int filter_flags)
263 {
264         u32 reg;
265
266         /*
267          * Start configuration steps.
268          * Note that the version error will always be dropped
269          * since there is no filter for it at this time.
270          */
271         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273                            !(filter_flags & FIF_FCSFAIL));
274         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275                            !(filter_flags & FIF_PLCPFAIL));
276         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277                            !(filter_flags & FIF_CONTROL));
278         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279                            !(filter_flags & FIF_PROMISC_IN_BSS));
280         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
282                            !rt2x00dev->intf_ap_count);
283         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285 }
286
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288                                   struct rt2x00_intf *intf,
289                                   struct rt2x00intf_conf *conf,
290                                   const unsigned int flags)
291 {
292         unsigned int bcn_preload;
293         u32 reg;
294
295         if (flags & CONFIG_UPDATE_TYPE) {
296                 /*
297                  * Enable beacon config
298                  */
299                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303
304                 /*
305                  * Enable synchronisation.
306                  */
307                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
312         }
313
314         if (flags & CONFIG_UPDATE_MAC)
315                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
316                                               conf->mac, sizeof(conf->mac));
317
318         if (flags & CONFIG_UPDATE_BSSID)
319                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
320                                               conf->bssid, sizeof(conf->bssid));
321 }
322
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324                                  struct rt2x00lib_erp *erp)
325 {
326         int preamble_mask;
327         u32 reg;
328
329         /*
330          * When short preamble is enabled, we should set bit 0x08
331          */
332         preamble_mask = erp->short_preamble << 3;
333
334         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
335         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
336         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
337         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
338         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
339         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340
341         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
342         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
343         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
344         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
345         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
346
347         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
348         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
349         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
350         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
351         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
352
353         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
354         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
355         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
356         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
357         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
358
359         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
360         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
361         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
362         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
363         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364
365         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
366
367         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
368         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
369         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
370
371         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
372         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
373         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
374         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
375
376         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
377         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
378         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
379         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
380
381         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
382         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
383         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
384         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
385 }
386
387 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
388                                  struct antenna_setup *ant)
389 {
390         u8 r1;
391         u8 r4;
392
393         /*
394          * We should never come here because rt2x00lib is supposed
395          * to catch this and send us the correct antenna explicitely.
396          */
397         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
398                ant->tx == ANTENNA_SW_DIVERSITY);
399
400         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
401         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
402
403         /*
404          * Configure the TX antenna.
405          */
406         switch (ant->tx) {
407         case ANTENNA_HW_DIVERSITY:
408                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
409                 break;
410         case ANTENNA_A:
411                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
412                 break;
413         case ANTENNA_B:
414         default:
415                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
416                 break;
417         }
418
419         /*
420          * Configure the RX antenna.
421          */
422         switch (ant->rx) {
423         case ANTENNA_HW_DIVERSITY:
424                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
425                 break;
426         case ANTENNA_A:
427                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
428                 break;
429         case ANTENNA_B:
430         default:
431                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
432                 break;
433         }
434
435         rt2400pci_bbp_write(rt2x00dev, 4, r4);
436         rt2400pci_bbp_write(rt2x00dev, 1, r1);
437 }
438
439 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
440                                      struct rf_channel *rf)
441 {
442         /*
443          * Switch on tuning bits.
444          */
445         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
446         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447
448         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
449         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
450         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
451
452         /*
453          * RF2420 chipset don't need any additional actions.
454          */
455         if (rt2x00_rf(rt2x00dev, RF2420))
456                 return;
457
458         /*
459          * For the RT2421 chipsets we need to write an invalid
460          * reference clock rate to activate auto_tune.
461          * After that we set the value back to the correct channel.
462          */
463         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
464         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
465         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466
467         msleep(1);
468
469         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
470         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
471         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472
473         msleep(1);
474
475         /*
476          * Switch off tuning bits.
477          */
478         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
479         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480
481         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
482         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
483
484         /*
485          * Clear false CRC during channel switch.
486          */
487         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
488 }
489
490 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
491 {
492         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
493 }
494
495 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
496                                          struct rt2x00lib_conf *libconf)
497 {
498         u32 reg;
499
500         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
501         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
502                            libconf->conf->long_frame_max_tx_count);
503         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
504                            libconf->conf->short_frame_max_tx_count);
505         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
506 }
507
508 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
509                                 struct rt2x00lib_conf *libconf)
510 {
511         enum dev_state state =
512             (libconf->conf->flags & IEEE80211_CONF_PS) ?
513                 STATE_SLEEP : STATE_AWAKE;
514         u32 reg;
515
516         if (state == STATE_SLEEP) {
517                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
518                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
519                                    (rt2x00dev->beacon_int - 20) * 16);
520                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
521                                    libconf->conf->listen_interval - 1);
522
523                 /* We must first disable autowake before it can be enabled */
524                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
525                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
526
527                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
528                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
529         } else {
530                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
531                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
532                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
533         }
534
535         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
536 }
537
538 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
539                              struct rt2x00lib_conf *libconf,
540                              const unsigned int flags)
541 {
542         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
543                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
544         if (flags & IEEE80211_CONF_CHANGE_POWER)
545                 rt2400pci_config_txpower(rt2x00dev,
546                                          libconf->conf->power_level);
547         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
548                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
549         if (flags & IEEE80211_CONF_CHANGE_PS)
550                 rt2400pci_config_ps(rt2x00dev, libconf);
551 }
552
553 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
554                                 const int cw_min, const int cw_max)
555 {
556         u32 reg;
557
558         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
559         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
560         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
561         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
562 }
563
564 /*
565  * Link tuning
566  */
567 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
568                                  struct link_qual *qual)
569 {
570         u32 reg;
571         u8 bbp;
572
573         /*
574          * Update FCS error count from register.
575          */
576         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
577         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
578
579         /*
580          * Update False CCA count from register.
581          */
582         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
583         qual->false_cca = bbp;
584 }
585
586 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
587                                      struct link_qual *qual, u8 vgc_level)
588 {
589         if (qual->vgc_level_reg != vgc_level) {
590                 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
591                 qual->vgc_level = vgc_level;
592                 qual->vgc_level_reg = vgc_level;
593         }
594 }
595
596 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
597                                   struct link_qual *qual)
598 {
599         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
600 }
601
602 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
603                                  struct link_qual *qual, const u32 count)
604 {
605         /*
606          * The link tuner should not run longer then 60 seconds,
607          * and should run once every 2 seconds.
608          */
609         if (count > 60 || !(count & 1))
610                 return;
611
612         /*
613          * Base r13 link tuning on the false cca count.
614          */
615         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
616                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
617         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
618                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
619 }
620
621 /*
622  * Initialization functions.
623  */
624 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
625 {
626         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
627         u32 word;
628
629         if (entry->queue->qid == QID_RX) {
630                 rt2x00_desc_read(entry_priv->desc, 0, &word);
631
632                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
633         } else {
634                 rt2x00_desc_read(entry_priv->desc, 0, &word);
635
636                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
637                         rt2x00_get_field32(word, TXD_W0_VALID));
638         }
639 }
640
641 static void rt2400pci_clear_entry(struct queue_entry *entry)
642 {
643         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
644         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
645         u32 word;
646
647         if (entry->queue->qid == QID_RX) {
648                 rt2x00_desc_read(entry_priv->desc, 2, &word);
649                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
650                 rt2x00_desc_write(entry_priv->desc, 2, word);
651
652                 rt2x00_desc_read(entry_priv->desc, 1, &word);
653                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
654                 rt2x00_desc_write(entry_priv->desc, 1, word);
655
656                 rt2x00_desc_read(entry_priv->desc, 0, &word);
657                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
658                 rt2x00_desc_write(entry_priv->desc, 0, word);
659         } else {
660                 rt2x00_desc_read(entry_priv->desc, 0, &word);
661                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
662                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
663                 rt2x00_desc_write(entry_priv->desc, 0, word);
664         }
665 }
666
667 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
668 {
669         struct queue_entry_priv_pci *entry_priv;
670         u32 reg;
671
672         /*
673          * Initialize registers.
674          */
675         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
676         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
677         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
678         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
679         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
680         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
681
682         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
683         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
684         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
685                            entry_priv->desc_dma);
686         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
687
688         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
689         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
690         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
691                            entry_priv->desc_dma);
692         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
693
694         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
695         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
696         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
697                            entry_priv->desc_dma);
698         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
699
700         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
701         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
702         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
703                            entry_priv->desc_dma);
704         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
705
706         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
707         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
708         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
709         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
710
711         entry_priv = rt2x00dev->rx->entries[0].priv_data;
712         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
713         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
714                            entry_priv->desc_dma);
715         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
716
717         return 0;
718 }
719
720 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
721 {
722         u32 reg;
723
724         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
725         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
726         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
727         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
728
729         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
730         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
731         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
732         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
733         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
734
735         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
736         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
737                            (rt2x00dev->rx->data_size / 128));
738         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
739
740         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
741         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
742         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
743         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
744         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
745         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
746         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
747         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
748         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
749         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
750
751         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
752
753         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
754         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
755         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
756         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
757         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
758         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
759
760         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
761         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
762         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
763         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
764         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
765         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
766         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
767         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
768
769         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
770
771         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
772                 return -EBUSY;
773
774         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
775         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
776
777         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
778         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
779         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
780
781         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
782         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
783         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
784         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
785         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
786         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
787
788         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
789         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
790         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
791         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
792         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
793
794         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
795         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
796         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
797         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
798
799         /*
800          * We must clear the FCS and FIFO error count.
801          * These registers are cleared on read,
802          * so we may pass a useless variable to store the value.
803          */
804         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
805         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
806
807         return 0;
808 }
809
810 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
811 {
812         unsigned int i;
813         u8 value;
814
815         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
816                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
817                 if ((value != 0xff) && (value != 0x00))
818                         return 0;
819                 udelay(REGISTER_BUSY_DELAY);
820         }
821
822         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
823         return -EACCES;
824 }
825
826 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
827 {
828         unsigned int i;
829         u16 eeprom;
830         u8 reg_id;
831         u8 value;
832
833         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
834                 return -EACCES;
835
836         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
837         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
838         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
839         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
840         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
841         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
842         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
843         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
844         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
845         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
846         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
847         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
848         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
849         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
850
851         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
852                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
853
854                 if (eeprom != 0xffff && eeprom != 0x0000) {
855                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
856                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
857                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
858                 }
859         }
860
861         return 0;
862 }
863
864 /*
865  * Device state switch handlers.
866  */
867 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
868                                 enum dev_state state)
869 {
870         u32 reg;
871
872         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
873         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
874                            (state == STATE_RADIO_RX_OFF) ||
875                            (state == STATE_RADIO_RX_OFF_LINK));
876         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
877 }
878
879 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
880                                  enum dev_state state)
881 {
882         int mask = (state == STATE_RADIO_IRQ_OFF) ||
883                    (state == STATE_RADIO_IRQ_OFF_ISR);
884         u32 reg;
885
886         /*
887          * When interrupts are being enabled, the interrupt registers
888          * should clear the register to assure a clean state.
889          */
890         if (state == STATE_RADIO_IRQ_ON) {
891                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
892                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
893         }
894
895         /*
896          * Only toggle the interrupts bits we are going to use.
897          * Non-checked interrupt bits are disabled by default.
898          */
899         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
900         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
901         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
902         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
903         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
904         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
905         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
906 }
907
908 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
909 {
910         /*
911          * Initialize all registers.
912          */
913         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
914                      rt2400pci_init_registers(rt2x00dev) ||
915                      rt2400pci_init_bbp(rt2x00dev)))
916                 return -EIO;
917
918         return 0;
919 }
920
921 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
922 {
923         /*
924          * Disable power
925          */
926         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
927 }
928
929 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
930                                enum dev_state state)
931 {
932         u32 reg, reg2;
933         unsigned int i;
934         char put_to_sleep;
935         char bbp_state;
936         char rf_state;
937
938         put_to_sleep = (state != STATE_AWAKE);
939
940         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
941         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
942         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
943         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
944         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
945         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
946
947         /*
948          * Device is not guaranteed to be in the requested state yet.
949          * We must wait until the register indicates that the
950          * device has entered the correct state.
951          */
952         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
953                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
954                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
955                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
956                 if (bbp_state == state && rf_state == state)
957                         return 0;
958                 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
959                 msleep(10);
960         }
961
962         return -EBUSY;
963 }
964
965 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
966                                       enum dev_state state)
967 {
968         int retval = 0;
969
970         switch (state) {
971         case STATE_RADIO_ON:
972                 retval = rt2400pci_enable_radio(rt2x00dev);
973                 break;
974         case STATE_RADIO_OFF:
975                 rt2400pci_disable_radio(rt2x00dev);
976                 break;
977         case STATE_RADIO_RX_ON:
978         case STATE_RADIO_RX_ON_LINK:
979         case STATE_RADIO_RX_OFF:
980         case STATE_RADIO_RX_OFF_LINK:
981                 rt2400pci_toggle_rx(rt2x00dev, state);
982                 break;
983         case STATE_RADIO_IRQ_ON:
984         case STATE_RADIO_IRQ_ON_ISR:
985         case STATE_RADIO_IRQ_OFF:
986         case STATE_RADIO_IRQ_OFF_ISR:
987                 rt2400pci_toggle_irq(rt2x00dev, state);
988                 break;
989         case STATE_DEEP_SLEEP:
990         case STATE_SLEEP:
991         case STATE_STANDBY:
992         case STATE_AWAKE:
993                 retval = rt2400pci_set_state(rt2x00dev, state);
994                 break;
995         default:
996                 retval = -ENOTSUPP;
997                 break;
998         }
999
1000         if (unlikely(retval))
1001                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1002                       state, retval);
1003
1004         return retval;
1005 }
1006
1007 /*
1008  * TX descriptor initialization
1009  */
1010 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1011                                     struct txentry_desc *txdesc)
1012 {
1013         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1014         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1015         __le32 *txd = entry_priv->desc;
1016         u32 word;
1017
1018         /*
1019          * Start writing the descriptor words.
1020          */
1021         rt2x00_desc_read(txd, 1, &word);
1022         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1023         rt2x00_desc_write(txd, 1, word);
1024
1025         rt2x00_desc_read(txd, 2, &word);
1026         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1027         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1028         rt2x00_desc_write(txd, 2, word);
1029
1030         rt2x00_desc_read(txd, 3, &word);
1031         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1032         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1033         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1034         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1035         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1036         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1037         rt2x00_desc_write(txd, 3, word);
1038
1039         rt2x00_desc_read(txd, 4, &word);
1040         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1041         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1042         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1043         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1044         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1045         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1046         rt2x00_desc_write(txd, 4, word);
1047
1048         /*
1049          * Writing TXD word 0 must the last to prevent a race condition with
1050          * the device, whereby the device may take hold of the TXD before we
1051          * finished updating it.
1052          */
1053         rt2x00_desc_read(txd, 0, &word);
1054         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1055         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1056         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1057                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1058         rt2x00_set_field32(&word, TXD_W0_ACK,
1059                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1060         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1061                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1062         rt2x00_set_field32(&word, TXD_W0_RTS,
1063                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1064         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1065         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1066                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1067         rt2x00_desc_write(txd, 0, word);
1068
1069         /*
1070          * Register descriptor details in skb frame descriptor.
1071          */
1072         skbdesc->desc = txd;
1073         skbdesc->desc_len = TXD_DESC_SIZE;
1074 }
1075
1076 /*
1077  * TX data initialization
1078  */
1079 static void rt2400pci_write_beacon(struct queue_entry *entry,
1080                                    struct txentry_desc *txdesc)
1081 {
1082         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1083         u32 reg;
1084
1085         /*
1086          * Disable beaconing while we are reloading the beacon data,
1087          * otherwise we might be sending out invalid data.
1088          */
1089         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1090         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1091         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1092
1093         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1094
1095         /*
1096          * Write the TX descriptor for the beacon.
1097          */
1098         rt2400pci_write_tx_desc(entry, txdesc);
1099
1100         /*
1101          * Dump beacon to userspace through debugfs.
1102          */
1103         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1104
1105         /*
1106          * Enable beaconing again.
1107          */
1108         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1109         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1110         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1111         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1112 }
1113
1114 static void rt2400pci_kick_tx_queue(struct data_queue *queue)
1115 {
1116         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1117         u32 reg;
1118
1119         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1120         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
1121         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
1122         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1123         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1124 }
1125
1126 static void rt2400pci_kill_tx_queue(struct data_queue *queue)
1127 {
1128         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1129         u32 reg;
1130
1131         if (queue->qid == QID_BEACON) {
1132                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1133         } else {
1134                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1135                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1136                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1137         }
1138 }
1139
1140 /*
1141  * RX control handlers
1142  */
1143 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1144                                   struct rxdone_entry_desc *rxdesc)
1145 {
1146         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1147         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1148         u32 word0;
1149         u32 word2;
1150         u32 word3;
1151         u32 word4;
1152         u64 tsf;
1153         u32 rx_low;
1154         u32 rx_high;
1155
1156         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1157         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1158         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1159         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1160
1161         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1162                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1163         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1164                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1165
1166         /*
1167          * We only get the lower 32bits from the timestamp,
1168          * to get the full 64bits we must complement it with
1169          * the timestamp from get_tsf().
1170          * Note that when a wraparound of the lower 32bits
1171          * has occurred between the frame arrival and the get_tsf()
1172          * call, we must decrease the higher 32bits with 1 to get
1173          * to correct value.
1174          */
1175         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1176         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1177         rx_high = upper_32_bits(tsf);
1178
1179         if ((u32)tsf <= rx_low)
1180                 rx_high--;
1181
1182         /*
1183          * Obtain the status about this packet.
1184          * The signal is the PLCP value, and needs to be stripped
1185          * of the preamble bit (0x08).
1186          */
1187         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1188         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1189         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1190             entry->queue->rt2x00dev->rssi_offset;
1191         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1192
1193         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1194         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1195                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1196 }
1197
1198 /*
1199  * Interrupt functions.
1200  */
1201 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1202                              const enum data_queue_qid queue_idx)
1203 {
1204         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1205         struct queue_entry_priv_pci *entry_priv;
1206         struct queue_entry *entry;
1207         struct txdone_entry_desc txdesc;
1208         u32 word;
1209
1210         while (!rt2x00queue_empty(queue)) {
1211                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1212                 entry_priv = entry->priv_data;
1213                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1214
1215                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1216                     !rt2x00_get_field32(word, TXD_W0_VALID))
1217                         break;
1218
1219                 /*
1220                  * Obtain the status about this packet.
1221                  */
1222                 txdesc.flags = 0;
1223                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1224                 case 0: /* Success */
1225                 case 1: /* Success with retry */
1226                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1227                         break;
1228                 case 2: /* Failure, excessive retries */
1229                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1230                         /* Don't break, this is a failed frame! */
1231                 default: /* Failure */
1232                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1233                 }
1234                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1235
1236                 rt2x00lib_txdone(entry, &txdesc);
1237         }
1238 }
1239
1240 static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1241 {
1242         struct rt2x00_dev *rt2x00dev = dev_instance;
1243         u32 reg = rt2x00dev->irqvalue[0];
1244
1245         /*
1246          * Handle interrupts, walk through all bits
1247          * and run the tasks, the bits are checked in order of
1248          * priority.
1249          */
1250
1251         /*
1252          * 1 - Beacon timer expired interrupt.
1253          */
1254         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1255                 rt2x00lib_beacondone(rt2x00dev);
1256
1257         /*
1258          * 2 - Rx ring done interrupt.
1259          */
1260         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1261                 rt2x00pci_rxdone(rt2x00dev);
1262
1263         /*
1264          * 3 - Atim ring transmit done interrupt.
1265          */
1266         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1267                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1268
1269         /*
1270          * 4 - Priority ring transmit done interrupt.
1271          */
1272         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1273                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1274
1275         /*
1276          * 5 - Tx ring transmit done interrupt.
1277          */
1278         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1279                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1280
1281         /* Enable interrupts again. */
1282         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1283                                               STATE_RADIO_IRQ_ON_ISR);
1284         return IRQ_HANDLED;
1285 }
1286
1287 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1288 {
1289         struct rt2x00_dev *rt2x00dev = dev_instance;
1290         u32 reg;
1291
1292         /*
1293          * Get the interrupt sources & saved to local variable.
1294          * Write register value back to clear pending interrupts.
1295          */
1296         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1297         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1298
1299         if (!reg)
1300                 return IRQ_NONE;
1301
1302         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1303                 return IRQ_HANDLED;
1304
1305         /* Store irqvalues for use in the interrupt thread. */
1306         rt2x00dev->irqvalue[0] = reg;
1307
1308         /* Disable interrupts, will be enabled again in the interrupt thread. */
1309         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1310                                               STATE_RADIO_IRQ_OFF_ISR);
1311
1312         return IRQ_WAKE_THREAD;
1313 }
1314
1315 /*
1316  * Device probe functions.
1317  */
1318 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1319 {
1320         struct eeprom_93cx6 eeprom;
1321         u32 reg;
1322         u16 word;
1323         u8 *mac;
1324
1325         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1326
1327         eeprom.data = rt2x00dev;
1328         eeprom.register_read = rt2400pci_eepromregister_read;
1329         eeprom.register_write = rt2400pci_eepromregister_write;
1330         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1331             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1332         eeprom.reg_data_in = 0;
1333         eeprom.reg_data_out = 0;
1334         eeprom.reg_data_clock = 0;
1335         eeprom.reg_chip_select = 0;
1336
1337         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1338                                EEPROM_SIZE / sizeof(u16));
1339
1340         /*
1341          * Start validation of the data that has been read.
1342          */
1343         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1344         if (!is_valid_ether_addr(mac)) {
1345                 random_ether_addr(mac);
1346                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1347         }
1348
1349         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1350         if (word == 0xffff) {
1351                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1352                 return -EINVAL;
1353         }
1354
1355         return 0;
1356 }
1357
1358 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1359 {
1360         u32 reg;
1361         u16 value;
1362         u16 eeprom;
1363
1364         /*
1365          * Read EEPROM word for configuration.
1366          */
1367         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1368
1369         /*
1370          * Identify RF chipset.
1371          */
1372         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1373         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1374         rt2x00_set_chip(rt2x00dev, RT2460, value,
1375                         rt2x00_get_field32(reg, CSR0_REVISION));
1376
1377         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1378                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1379                 return -ENODEV;
1380         }
1381
1382         /*
1383          * Identify default antenna configuration.
1384          */
1385         rt2x00dev->default_ant.tx =
1386             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1387         rt2x00dev->default_ant.rx =
1388             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1389
1390         /*
1391          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1392          * I am not 100% sure about this, but the legacy drivers do not
1393          * indicate antenna swapping in software is required when
1394          * diversity is enabled.
1395          */
1396         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1397                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1398         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1399                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1400
1401         /*
1402          * Store led mode, for correct led behaviour.
1403          */
1404 #ifdef CONFIG_RT2X00_LIB_LEDS
1405         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1406
1407         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1408         if (value == LED_MODE_TXRX_ACTIVITY ||
1409             value == LED_MODE_DEFAULT ||
1410             value == LED_MODE_ASUS)
1411                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1412                                    LED_TYPE_ACTIVITY);
1413 #endif /* CONFIG_RT2X00_LIB_LEDS */
1414
1415         /*
1416          * Detect if this device has an hardware controlled radio.
1417          */
1418         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1419                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1420
1421         /*
1422          * Check if the BBP tuning should be enabled.
1423          */
1424         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1425                 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1426
1427         return 0;
1428 }
1429
1430 /*
1431  * RF value list for RF2420 & RF2421
1432  * Supports: 2.4 GHz
1433  */
1434 static const struct rf_channel rf_vals_b[] = {
1435         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1436         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1437         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1438         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1439         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1440         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1441         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1442         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1443         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1444         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1445         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1446         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1447         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1448         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1449 };
1450
1451 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1452 {
1453         struct hw_mode_spec *spec = &rt2x00dev->spec;
1454         struct channel_info *info;
1455         char *tx_power;
1456         unsigned int i;
1457
1458         /*
1459          * Initialize all hw fields.
1460          */
1461         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1462                                IEEE80211_HW_SIGNAL_DBM |
1463                                IEEE80211_HW_SUPPORTS_PS |
1464                                IEEE80211_HW_PS_NULLFUNC_STACK;
1465
1466         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1467         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1468                                 rt2x00_eeprom_addr(rt2x00dev,
1469                                                    EEPROM_MAC_ADDR_0));
1470
1471         /*
1472          * Initialize hw_mode information.
1473          */
1474         spec->supported_bands = SUPPORT_BAND_2GHZ;
1475         spec->supported_rates = SUPPORT_RATE_CCK;
1476
1477         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1478         spec->channels = rf_vals_b;
1479
1480         /*
1481          * Create channel information array
1482          */
1483         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1484         if (!info)
1485                 return -ENOMEM;
1486
1487         spec->channels_info = info;
1488
1489         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1490         for (i = 0; i < 14; i++) {
1491                 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1492                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1493         }
1494
1495         return 0;
1496 }
1497
1498 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1499 {
1500         int retval;
1501
1502         /*
1503          * Allocate eeprom data.
1504          */
1505         retval = rt2400pci_validate_eeprom(rt2x00dev);
1506         if (retval)
1507                 return retval;
1508
1509         retval = rt2400pci_init_eeprom(rt2x00dev);
1510         if (retval)
1511                 return retval;
1512
1513         /*
1514          * Initialize hw specifications.
1515          */
1516         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1517         if (retval)
1518                 return retval;
1519
1520         /*
1521          * This device requires the atim queue and DMA-mapped skbs.
1522          */
1523         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1524         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1525
1526         /*
1527          * Set the rssi offset.
1528          */
1529         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1530
1531         return 0;
1532 }
1533
1534 /*
1535  * IEEE80211 stack callback functions.
1536  */
1537 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1538                              const struct ieee80211_tx_queue_params *params)
1539 {
1540         struct rt2x00_dev *rt2x00dev = hw->priv;
1541
1542         /*
1543          * We don't support variating cw_min and cw_max variables
1544          * per queue. So by default we only configure the TX queue,
1545          * and ignore all other configurations.
1546          */
1547         if (queue != 0)
1548                 return -EINVAL;
1549
1550         if (rt2x00mac_conf_tx(hw, queue, params))
1551                 return -EINVAL;
1552
1553         /*
1554          * Write configuration to register.
1555          */
1556         rt2400pci_config_cw(rt2x00dev,
1557                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1558
1559         return 0;
1560 }
1561
1562 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1563 {
1564         struct rt2x00_dev *rt2x00dev = hw->priv;
1565         u64 tsf;
1566         u32 reg;
1567
1568         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1569         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1570         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1571         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1572
1573         return tsf;
1574 }
1575
1576 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1577 {
1578         struct rt2x00_dev *rt2x00dev = hw->priv;
1579         u32 reg;
1580
1581         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1582         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1583 }
1584
1585 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1586         .tx                     = rt2x00mac_tx,
1587         .start                  = rt2x00mac_start,
1588         .stop                   = rt2x00mac_stop,
1589         .add_interface          = rt2x00mac_add_interface,
1590         .remove_interface       = rt2x00mac_remove_interface,
1591         .config                 = rt2x00mac_config,
1592         .configure_filter       = rt2x00mac_configure_filter,
1593         .sw_scan_start          = rt2x00mac_sw_scan_start,
1594         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1595         .get_stats              = rt2x00mac_get_stats,
1596         .bss_info_changed       = rt2x00mac_bss_info_changed,
1597         .conf_tx                = rt2400pci_conf_tx,
1598         .get_tsf                = rt2400pci_get_tsf,
1599         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1600         .rfkill_poll            = rt2x00mac_rfkill_poll,
1601 };
1602
1603 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1604         .irq_handler            = rt2400pci_interrupt,
1605         .irq_handler_thread     = rt2400pci_interrupt_thread,
1606         .probe_hw               = rt2400pci_probe_hw,
1607         .initialize             = rt2x00pci_initialize,
1608         .uninitialize           = rt2x00pci_uninitialize,
1609         .get_entry_state        = rt2400pci_get_entry_state,
1610         .clear_entry            = rt2400pci_clear_entry,
1611         .set_device_state       = rt2400pci_set_device_state,
1612         .rfkill_poll            = rt2400pci_rfkill_poll,
1613         .link_stats             = rt2400pci_link_stats,
1614         .reset_tuner            = rt2400pci_reset_tuner,
1615         .link_tuner             = rt2400pci_link_tuner,
1616         .write_tx_desc          = rt2400pci_write_tx_desc,
1617         .write_beacon           = rt2400pci_write_beacon,
1618         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1619         .kill_tx_queue          = rt2400pci_kill_tx_queue,
1620         .fill_rxdone            = rt2400pci_fill_rxdone,
1621         .config_filter          = rt2400pci_config_filter,
1622         .config_intf            = rt2400pci_config_intf,
1623         .config_erp             = rt2400pci_config_erp,
1624         .config_ant             = rt2400pci_config_ant,
1625         .config                 = rt2400pci_config,
1626 };
1627
1628 static const struct data_queue_desc rt2400pci_queue_rx = {
1629         .entry_num              = RX_ENTRIES,
1630         .data_size              = DATA_FRAME_SIZE,
1631         .desc_size              = RXD_DESC_SIZE,
1632         .priv_size              = sizeof(struct queue_entry_priv_pci),
1633 };
1634
1635 static const struct data_queue_desc rt2400pci_queue_tx = {
1636         .entry_num              = TX_ENTRIES,
1637         .data_size              = DATA_FRAME_SIZE,
1638         .desc_size              = TXD_DESC_SIZE,
1639         .priv_size              = sizeof(struct queue_entry_priv_pci),
1640 };
1641
1642 static const struct data_queue_desc rt2400pci_queue_bcn = {
1643         .entry_num              = BEACON_ENTRIES,
1644         .data_size              = MGMT_FRAME_SIZE,
1645         .desc_size              = TXD_DESC_SIZE,
1646         .priv_size              = sizeof(struct queue_entry_priv_pci),
1647 };
1648
1649 static const struct data_queue_desc rt2400pci_queue_atim = {
1650         .entry_num              = ATIM_ENTRIES,
1651         .data_size              = DATA_FRAME_SIZE,
1652         .desc_size              = TXD_DESC_SIZE,
1653         .priv_size              = sizeof(struct queue_entry_priv_pci),
1654 };
1655
1656 static const struct rt2x00_ops rt2400pci_ops = {
1657         .name                   = KBUILD_MODNAME,
1658         .max_sta_intf           = 1,
1659         .max_ap_intf            = 1,
1660         .eeprom_size            = EEPROM_SIZE,
1661         .rf_size                = RF_SIZE,
1662         .tx_queues              = NUM_TX_QUEUES,
1663         .extra_tx_headroom      = 0,
1664         .rx                     = &rt2400pci_queue_rx,
1665         .tx                     = &rt2400pci_queue_tx,
1666         .bcn                    = &rt2400pci_queue_bcn,
1667         .atim                   = &rt2400pci_queue_atim,
1668         .lib                    = &rt2400pci_rt2x00_ops,
1669         .hw                     = &rt2400pci_mac80211_ops,
1670 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1671         .debugfs                = &rt2400pci_rt2x00debug,
1672 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1673 };
1674
1675 /*
1676  * RT2400pci module information.
1677  */
1678 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1679         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1680         { 0, }
1681 };
1682
1683 MODULE_AUTHOR(DRV_PROJECT);
1684 MODULE_VERSION(DRV_VERSION);
1685 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1686 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1687 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1688 MODULE_LICENSE("GPL");
1689
1690 static struct pci_driver rt2400pci_driver = {
1691         .name           = KBUILD_MODNAME,
1692         .id_table       = rt2400pci_device_table,
1693         .probe          = rt2x00pci_probe,
1694         .remove         = __devexit_p(rt2x00pci_remove),
1695         .suspend        = rt2x00pci_suspend,
1696         .resume         = rt2x00pci_resume,
1697 };
1698
1699 static int __init rt2400pci_init(void)
1700 {
1701         return pci_register_driver(&rt2400pci_driver);
1702 }
1703
1704 static void __exit rt2400pci_exit(void)
1705 {
1706         pci_unregister_driver(&rt2400pci_driver);
1707 }
1708
1709 module_init(rt2400pci_init);
1710 module_exit(rt2400pci_exit);