Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include "ipw2200.h"
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84 MODULE_FIRMWARE("ipw2200-ibss.fw");
85 #ifdef CONFIG_IPW2200_MONITOR
86 MODULE_FIRMWARE("ipw2200-sniffer.fw");
87 #endif
88 MODULE_FIRMWARE("ipw2200-bss.fw");
89
90 static int cmdlog = 0;
91 static int debug = 0;
92 static int default_channel = 0;
93 static int network_mode = 0;
94
95 static u32 ipw_debug_level;
96 static int associate;
97 static int auto_create = 1;
98 static int led_support = 0;
99 static int disable = 0;
100 static int bt_coexist = 0;
101 static int hwcrypto = 0;
102 static int roaming = 1;
103 static const char ipw_modes[] = {
104         'a', 'b', 'g', '?'
105 };
106 static int antenna = CFG_SYS_ANTENNA_BOTH;
107
108 #ifdef CONFIG_IPW2200_PROMISCUOUS
109 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
110 #endif
111
112 static struct ieee80211_rate ipw2200_rates[] = {
113         { .bitrate = 10 },
114         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
115         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
116         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
117         { .bitrate = 60 },
118         { .bitrate = 90 },
119         { .bitrate = 120 },
120         { .bitrate = 180 },
121         { .bitrate = 240 },
122         { .bitrate = 360 },
123         { .bitrate = 480 },
124         { .bitrate = 540 }
125 };
126
127 #define ipw2200_a_rates         (ipw2200_rates + 4)
128 #define ipw2200_num_a_rates     8
129 #define ipw2200_bg_rates        (ipw2200_rates + 0)
130 #define ipw2200_num_bg_rates    12
131
132 #ifdef CONFIG_IPW2200_QOS
133 static int qos_enable = 0;
134 static int qos_burst_enable = 0;
135 static int qos_no_ack_mask = 0;
136 static int burst_duration_CCK = 0;
137 static int burst_duration_OFDM = 0;
138
139 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
140         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
141          QOS_TX3_CW_MIN_OFDM},
142         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
143          QOS_TX3_CW_MAX_OFDM},
144         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
145         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
146         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
147          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct libipw_qos_parameters def_qos_parameters_CCK = {
151         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
152          QOS_TX3_CW_MIN_CCK},
153         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
154          QOS_TX3_CW_MAX_CCK},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
158          QOS_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static struct libipw_qos_parameters def_parameters_OFDM = {
162         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
163          DEF_TX3_CW_MIN_OFDM},
164         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
165          DEF_TX3_CW_MAX_OFDM},
166         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
167         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
168         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
169          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
170 };
171
172 static struct libipw_qos_parameters def_parameters_CCK = {
173         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
174          DEF_TX3_CW_MIN_CCK},
175         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
176          DEF_TX3_CW_MAX_CCK},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
180          DEF_TX3_TXOP_LIMIT_CCK}
181 };
182
183 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
184
185 static int from_priority_to_tx_queue[] = {
186         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
187         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
188 };
189
190 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
191
192 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
193                                        *qos_param);
194 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
195                                      *qos_param);
196 #endif                          /* CONFIG_IPW2200_QOS */
197
198 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
199 static void ipw_remove_current_network(struct ipw_priv *priv);
200 static void ipw_rx(struct ipw_priv *priv);
201 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
202                                 struct clx2_tx_queue *txq, int qindex);
203 static int ipw_queue_reset(struct ipw_priv *priv);
204
205 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
206                              int len, int sync);
207
208 static void ipw_tx_queue_free(struct ipw_priv *);
209
210 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
211 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
212 static void ipw_rx_queue_replenish(void *);
213 static int ipw_up(struct ipw_priv *);
214 static void ipw_bg_up(struct work_struct *work);
215 static void ipw_down(struct ipw_priv *);
216 static void ipw_bg_down(struct work_struct *work);
217 static int ipw_config(struct ipw_priv *);
218 static int init_supported_rates(struct ipw_priv *priv,
219                                 struct ipw_supported_rates *prates);
220 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
221 static void ipw_send_wep_keys(struct ipw_priv *, int);
222
223 static int snprint_line(char *buf, size_t count,
224                         const u8 * data, u32 len, u32 ofs)
225 {
226         int out, i, j, l;
227         char c;
228
229         out = snprintf(buf, count, "%08X", ofs);
230
231         for (l = 0, i = 0; i < 2; i++) {
232                 out += snprintf(buf + out, count - out, " ");
233                 for (j = 0; j < 8 && l < len; j++, l++)
234                         out += snprintf(buf + out, count - out, "%02X ",
235                                         data[(i * 8 + j)]);
236                 for (; j < 8; j++)
237                         out += snprintf(buf + out, count - out, "   ");
238         }
239
240         out += snprintf(buf + out, count - out, " ");
241         for (l = 0, i = 0; i < 2; i++) {
242                 out += snprintf(buf + out, count - out, " ");
243                 for (j = 0; j < 8 && l < len; j++, l++) {
244                         c = data[(i * 8 + j)];
245                         if (!isascii(c) || !isprint(c))
246                                 c = '.';
247
248                         out += snprintf(buf + out, count - out, "%c", c);
249                 }
250
251                 for (; j < 8; j++)
252                         out += snprintf(buf + out, count - out, " ");
253         }
254
255         return out;
256 }
257
258 static void printk_buf(int level, const u8 * data, u32 len)
259 {
260         char line[81];
261         u32 ofs = 0;
262         if (!(ipw_debug_level & level))
263                 return;
264
265         while (len) {
266                 snprint_line(line, sizeof(line), &data[ofs],
267                              min(len, 16U), ofs);
268                 printk(KERN_DEBUG "%s\n", line);
269                 ofs += 16;
270                 len -= min(len, 16U);
271         }
272 }
273
274 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
275 {
276         size_t out = size;
277         u32 ofs = 0;
278         int total = 0;
279
280         while (size && len) {
281                 out = snprint_line(output, size, &data[ofs],
282                                    min_t(size_t, len, 16U), ofs);
283
284                 ofs += 16;
285                 output += out;
286                 size -= out;
287                 len -= min_t(size_t, len, 16U);
288                 total += out;
289         }
290         return total;
291 }
292
293 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
294 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
295 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
296
297 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
298 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
299 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
300
301 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
302 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
303 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
304 {
305         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
306                      __LINE__, (u32) (b), (u32) (c));
307         _ipw_write_reg8(a, b, c);
308 }
309
310 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
311 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
312 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
313 {
314         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
315                      __LINE__, (u32) (b), (u32) (c));
316         _ipw_write_reg16(a, b, c);
317 }
318
319 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
320 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
321 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
322 {
323         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
324                      __LINE__, (u32) (b), (u32) (c));
325         _ipw_write_reg32(a, b, c);
326 }
327
328 /* 8-bit direct write (low 4K) */
329 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
330                 u8 val)
331 {
332         writeb(val, ipw->hw_base + ofs);
333 }
334
335 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
336 #define ipw_write8(ipw, ofs, val) do { \
337         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
338                         __LINE__, (u32)(ofs), (u32)(val)); \
339         _ipw_write8(ipw, ofs, val); \
340 } while (0)
341
342 /* 16-bit direct write (low 4K) */
343 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
344                 u16 val)
345 {
346         writew(val, ipw->hw_base + ofs);
347 }
348
349 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
350 #define ipw_write16(ipw, ofs, val) do { \
351         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
352                         __LINE__, (u32)(ofs), (u32)(val)); \
353         _ipw_write16(ipw, ofs, val); \
354 } while (0)
355
356 /* 32-bit direct write (low 4K) */
357 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
358                 u32 val)
359 {
360         writel(val, ipw->hw_base + ofs);
361 }
362
363 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
364 #define ipw_write32(ipw, ofs, val) do { \
365         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
366                         __LINE__, (u32)(ofs), (u32)(val)); \
367         _ipw_write32(ipw, ofs, val); \
368 } while (0)
369
370 /* 8-bit direct read (low 4K) */
371 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
372 {
373         return readb(ipw->hw_base + ofs);
374 }
375
376 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
377 #define ipw_read8(ipw, ofs) ({ \
378         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
379                         (u32)(ofs)); \
380         _ipw_read8(ipw, ofs); \
381 })
382
383 /* 16-bit direct read (low 4K) */
384 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
385 {
386         return readw(ipw->hw_base + ofs);
387 }
388
389 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
390 #define ipw_read16(ipw, ofs) ({ \
391         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
392                         (u32)(ofs)); \
393         _ipw_read16(ipw, ofs); \
394 })
395
396 /* 32-bit direct read (low 4K) */
397 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
398 {
399         return readl(ipw->hw_base + ofs);
400 }
401
402 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
403 #define ipw_read32(ipw, ofs) ({ \
404         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
405                         (u32)(ofs)); \
406         _ipw_read32(ipw, ofs); \
407 })
408
409 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
410 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
411 #define ipw_read_indirect(a, b, c, d) ({ \
412         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
413                         __LINE__, (u32)(b), (u32)(d)); \
414         _ipw_read_indirect(a, b, c, d); \
415 })
416
417 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
418 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
419                                 int num);
420 #define ipw_write_indirect(a, b, c, d) do { \
421         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
422                         __LINE__, (u32)(b), (u32)(d)); \
423         _ipw_write_indirect(a, b, c, d); \
424 } while (0)
425
426 /* 32-bit indirect write (above 4K) */
427 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
428 {
429         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
430         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
431         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
432 }
433
434 /* 8-bit indirect write (above 4K) */
435 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
436 {
437         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
438         u32 dif_len = reg - aligned_addr;
439
440         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
442         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
443 }
444
445 /* 16-bit indirect write (above 4K) */
446 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 8-bit indirect read (above 4K) */
457 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
458 {
459         u32 word;
460         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
461         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
462         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
463         return (word >> ((reg & 0x3) * 8)) & 0xff;
464 }
465
466 /* 32-bit indirect read (above 4K) */
467 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
468 {
469         u32 value;
470
471         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
472
473         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
474         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
475         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
476         return value;
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Read the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start reading at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
499                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
500                 aligned_addr += 4;
501         }
502
503         /* Read all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
507
508         /* Read the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--)
512                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for area above 1st 4K of SRAM/reg space */
518 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
519                                 int num)
520 {
521         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
522         u32 dif_len = addr - aligned_addr;
523         u32 i;
524
525         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
526
527         if (num <= 0) {
528                 return;
529         }
530
531         /* Write the first dword (or portion) byte by byte */
532         if (unlikely(dif_len)) {
533                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
534                 /* Start writing at aligned_addr + dif_len */
535                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
536                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
537                 aligned_addr += 4;
538         }
539
540         /* Write all of the middle dwords as dwords, with auto-increment */
541         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
542         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
543                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
544
545         /* Write the last dword (or portion) byte by byte */
546         if (unlikely(num)) {
547                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
548                 for (i = 0; num > 0; i++, num--, buf++)
549                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
550         }
551 }
552
553 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
554 /*    for 1st 4K of SRAM/regs space */
555 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
556                              int num)
557 {
558         memcpy_toio((priv->hw_base + addr), buf, num);
559 }
560
561 /* Set bit(s) in low 4K of SRAM/regs */
562 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
563 {
564         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
565 }
566
567 /* Clear bit(s) in low 4K of SRAM/regs */
568 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
569 {
570         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
571 }
572
573 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
574 {
575         if (priv->status & STATUS_INT_ENABLED)
576                 return;
577         priv->status |= STATUS_INT_ENABLED;
578         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
579 }
580
581 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
582 {
583         if (!(priv->status & STATUS_INT_ENABLED))
584                 return;
585         priv->status &= ~STATUS_INT_ENABLED;
586         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
587 }
588
589 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
590 {
591         unsigned long flags;
592
593         spin_lock_irqsave(&priv->irq_lock, flags);
594         __ipw_enable_interrupts(priv);
595         spin_unlock_irqrestore(&priv->irq_lock, flags);
596 }
597
598 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
599 {
600         unsigned long flags;
601
602         spin_lock_irqsave(&priv->irq_lock, flags);
603         __ipw_disable_interrupts(priv);
604         spin_unlock_irqrestore(&priv->irq_lock, flags);
605 }
606
607 static char *ipw_error_desc(u32 val)
608 {
609         switch (val) {
610         case IPW_FW_ERROR_OK:
611                 return "ERROR_OK";
612         case IPW_FW_ERROR_FAIL:
613                 return "ERROR_FAIL";
614         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
615                 return "MEMORY_UNDERFLOW";
616         case IPW_FW_ERROR_MEMORY_OVERFLOW:
617                 return "MEMORY_OVERFLOW";
618         case IPW_FW_ERROR_BAD_PARAM:
619                 return "BAD_PARAM";
620         case IPW_FW_ERROR_BAD_CHECKSUM:
621                 return "BAD_CHECKSUM";
622         case IPW_FW_ERROR_NMI_INTERRUPT:
623                 return "NMI_INTERRUPT";
624         case IPW_FW_ERROR_BAD_DATABASE:
625                 return "BAD_DATABASE";
626         case IPW_FW_ERROR_ALLOC_FAIL:
627                 return "ALLOC_FAIL";
628         case IPW_FW_ERROR_DMA_UNDERRUN:
629                 return "DMA_UNDERRUN";
630         case IPW_FW_ERROR_DMA_STATUS:
631                 return "DMA_STATUS";
632         case IPW_FW_ERROR_DINO_ERROR:
633                 return "DINO_ERROR";
634         case IPW_FW_ERROR_EEPROM_ERROR:
635                 return "EEPROM_ERROR";
636         case IPW_FW_ERROR_SYSASSERT:
637                 return "SYSASSERT";
638         case IPW_FW_ERROR_FATAL_ERROR:
639                 return "FATAL_ERROR";
640         default:
641                 return "UNKNOWN_ERROR";
642         }
643 }
644
645 static void ipw_dump_error_log(struct ipw_priv *priv,
646                                struct ipw_fw_error *error)
647 {
648         u32 i;
649
650         if (!error) {
651                 IPW_ERROR("Error allocating and capturing error log.  "
652                           "Nothing to dump.\n");
653                 return;
654         }
655
656         IPW_ERROR("Start IPW Error Log Dump:\n");
657         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
658                   error->status, error->config);
659
660         for (i = 0; i < error->elem_len; i++)
661                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
662                           ipw_error_desc(error->elem[i].desc),
663                           error->elem[i].time,
664                           error->elem[i].blink1,
665                           error->elem[i].blink2,
666                           error->elem[i].link1,
667                           error->elem[i].link2, error->elem[i].data);
668         for (i = 0; i < error->log_len; i++)
669                 IPW_ERROR("%i\t0x%08x\t%i\n",
670                           error->log[i].time,
671                           error->log[i].data, error->log[i].event);
672 }
673
674 static inline int ipw_is_init(struct ipw_priv *priv)
675 {
676         return (priv->status & STATUS_INIT) ? 1 : 0;
677 }
678
679 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
680 {
681         u32 addr, field_info, field_len, field_count, total_len;
682
683         IPW_DEBUG_ORD("ordinal = %i\n", ord);
684
685         if (!priv || !val || !len) {
686                 IPW_DEBUG_ORD("Invalid argument\n");
687                 return -EINVAL;
688         }
689
690         /* verify device ordinal tables have been initialized */
691         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
692                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
693                 return -EINVAL;
694         }
695
696         switch (IPW_ORD_TABLE_ID_MASK & ord) {
697         case IPW_ORD_TABLE_0_MASK:
698                 /*
699                  * TABLE 0: Direct access to a table of 32 bit values
700                  *
701                  * This is a very simple table with the data directly
702                  * read from the table
703                  */
704
705                 /* remove the table id from the ordinal */
706                 ord &= IPW_ORD_TABLE_VALUE_MASK;
707
708                 /* boundary check */
709                 if (ord > priv->table0_len) {
710                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
711                                       "max (%i)\n", ord, priv->table0_len);
712                         return -EINVAL;
713                 }
714
715                 /* verify we have enough room to store the value */
716                 if (*len < sizeof(u32)) {
717                         IPW_DEBUG_ORD("ordinal buffer length too small, "
718                                       "need %zd\n", sizeof(u32));
719                         return -EINVAL;
720                 }
721
722                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
723                               ord, priv->table0_addr + (ord << 2));
724
725                 *len = sizeof(u32);
726                 ord <<= 2;
727                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
728                 break;
729
730         case IPW_ORD_TABLE_1_MASK:
731                 /*
732                  * TABLE 1: Indirect access to a table of 32 bit values
733                  *
734                  * This is a fairly large table of u32 values each
735                  * representing starting addr for the data (which is
736                  * also a u32)
737                  */
738
739                 /* remove the table id from the ordinal */
740                 ord &= IPW_ORD_TABLE_VALUE_MASK;
741
742                 /* boundary check */
743                 if (ord > priv->table1_len) {
744                         IPW_DEBUG_ORD("ordinal value too long\n");
745                         return -EINVAL;
746                 }
747
748                 /* verify we have enough room to store the value */
749                 if (*len < sizeof(u32)) {
750                         IPW_DEBUG_ORD("ordinal buffer length too small, "
751                                       "need %zd\n", sizeof(u32));
752                         return -EINVAL;
753                 }
754
755                 *((u32 *) val) =
756                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
757                 *len = sizeof(u32);
758                 break;
759
760         case IPW_ORD_TABLE_2_MASK:
761                 /*
762                  * TABLE 2: Indirect access to a table of variable sized values
763                  *
764                  * This table consist of six values, each containing
765                  *     - dword containing the starting offset of the data
766                  *     - dword containing the lengh in the first 16bits
767                  *       and the count in the second 16bits
768                  */
769
770                 /* remove the table id from the ordinal */
771                 ord &= IPW_ORD_TABLE_VALUE_MASK;
772
773                 /* boundary check */
774                 if (ord > priv->table2_len) {
775                         IPW_DEBUG_ORD("ordinal value too long\n");
776                         return -EINVAL;
777                 }
778
779                 /* get the address of statistic */
780                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
781
782                 /* get the second DW of statistics ;
783                  * two 16-bit words - first is length, second is count */
784                 field_info =
785                     ipw_read_reg32(priv,
786                                    priv->table2_addr + (ord << 3) +
787                                    sizeof(u32));
788
789                 /* get each entry length */
790                 field_len = *((u16 *) & field_info);
791
792                 /* get number of entries */
793                 field_count = *(((u16 *) & field_info) + 1);
794
795                 /* abort if not enough memory */
796                 total_len = field_len * field_count;
797                 if (total_len > *len) {
798                         *len = total_len;
799                         return -EINVAL;
800                 }
801
802                 *len = total_len;
803                 if (!total_len)
804                         return 0;
805
806                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
807                               "field_info = 0x%08x\n",
808                               addr, total_len, field_info);
809                 ipw_read_indirect(priv, addr, val, total_len);
810                 break;
811
812         default:
813                 IPW_DEBUG_ORD("Invalid ordinal!\n");
814                 return -EINVAL;
815
816         }
817
818         return 0;
819 }
820
821 static void ipw_init_ordinals(struct ipw_priv *priv)
822 {
823         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
824         priv->table0_len = ipw_read32(priv, priv->table0_addr);
825
826         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
827                       priv->table0_addr, priv->table0_len);
828
829         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
830         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
831
832         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
833                       priv->table1_addr, priv->table1_len);
834
835         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
836         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
837         priv->table2_len &= 0x0000ffff; /* use first two bytes */
838
839         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
840                       priv->table2_addr, priv->table2_len);
841
842 }
843
844 static u32 ipw_register_toggle(u32 reg)
845 {
846         reg &= ~IPW_START_STANDBY;
847         if (reg & IPW_GATE_ODMA)
848                 reg &= ~IPW_GATE_ODMA;
849         if (reg & IPW_GATE_IDMA)
850                 reg &= ~IPW_GATE_IDMA;
851         if (reg & IPW_GATE_ADMA)
852                 reg &= ~IPW_GATE_ADMA;
853         return reg;
854 }
855
856 /*
857  * LED behavior:
858  * - On radio ON, turn on any LEDs that require to be on during start
859  * - On initialization, start unassociated blink
860  * - On association, disable unassociated blink
861  * - On disassociation, start unassociated blink
862  * - On radio OFF, turn off any LEDs started during radio on
863  *
864  */
865 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
866 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
867 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
868
869 static void ipw_led_link_on(struct ipw_priv *priv)
870 {
871         unsigned long flags;
872         u32 led;
873
874         /* If configured to not use LEDs, or nic_type is 1,
875          * then we don't toggle a LINK led */
876         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
877                 return;
878
879         spin_lock_irqsave(&priv->lock, flags);
880
881         if (!(priv->status & STATUS_RF_KILL_MASK) &&
882             !(priv->status & STATUS_LED_LINK_ON)) {
883                 IPW_DEBUG_LED("Link LED On\n");
884                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
885                 led |= priv->led_association_on;
886
887                 led = ipw_register_toggle(led);
888
889                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
890                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
891
892                 priv->status |= STATUS_LED_LINK_ON;
893
894                 /* If we aren't associated, schedule turning the LED off */
895                 if (!(priv->status & STATUS_ASSOCIATED))
896                         queue_delayed_work(priv->workqueue,
897                                            &priv->led_link_off,
898                                            LD_TIME_LINK_ON);
899         }
900
901         spin_unlock_irqrestore(&priv->lock, flags);
902 }
903
904 static void ipw_bg_led_link_on(struct work_struct *work)
905 {
906         struct ipw_priv *priv =
907                 container_of(work, struct ipw_priv, led_link_on.work);
908         mutex_lock(&priv->mutex);
909         ipw_led_link_on(priv);
910         mutex_unlock(&priv->mutex);
911 }
912
913 static void ipw_led_link_off(struct ipw_priv *priv)
914 {
915         unsigned long flags;
916         u32 led;
917
918         /* If configured not to use LEDs, or nic type is 1,
919          * then we don't goggle the LINK led. */
920         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
921                 return;
922
923         spin_lock_irqsave(&priv->lock, flags);
924
925         if (priv->status & STATUS_LED_LINK_ON) {
926                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
927                 led &= priv->led_association_off;
928                 led = ipw_register_toggle(led);
929
930                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
931                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
932
933                 IPW_DEBUG_LED("Link LED Off\n");
934
935                 priv->status &= ~STATUS_LED_LINK_ON;
936
937                 /* If we aren't associated and the radio is on, schedule
938                  * turning the LED on (blink while unassociated) */
939                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
940                     !(priv->status & STATUS_ASSOCIATED))
941                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
942                                            LD_TIME_LINK_OFF);
943
944         }
945
946         spin_unlock_irqrestore(&priv->lock, flags);
947 }
948
949 static void ipw_bg_led_link_off(struct work_struct *work)
950 {
951         struct ipw_priv *priv =
952                 container_of(work, struct ipw_priv, led_link_off.work);
953         mutex_lock(&priv->mutex);
954         ipw_led_link_off(priv);
955         mutex_unlock(&priv->mutex);
956 }
957
958 static void __ipw_led_activity_on(struct ipw_priv *priv)
959 {
960         u32 led;
961
962         if (priv->config & CFG_NO_LED)
963                 return;
964
965         if (priv->status & STATUS_RF_KILL_MASK)
966                 return;
967
968         if (!(priv->status & STATUS_LED_ACT_ON)) {
969                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
970                 led |= priv->led_activity_on;
971
972                 led = ipw_register_toggle(led);
973
974                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
975                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
976
977                 IPW_DEBUG_LED("Activity LED On\n");
978
979                 priv->status |= STATUS_LED_ACT_ON;
980
981                 cancel_delayed_work(&priv->led_act_off);
982                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
983                                    LD_TIME_ACT_ON);
984         } else {
985                 /* Reschedule LED off for full time period */
986                 cancel_delayed_work(&priv->led_act_off);
987                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
988                                    LD_TIME_ACT_ON);
989         }
990 }
991
992 #if 0
993 void ipw_led_activity_on(struct ipw_priv *priv)
994 {
995         unsigned long flags;
996         spin_lock_irqsave(&priv->lock, flags);
997         __ipw_led_activity_on(priv);
998         spin_unlock_irqrestore(&priv->lock, flags);
999 }
1000 #endif  /*  0  */
1001
1002 static void ipw_led_activity_off(struct ipw_priv *priv)
1003 {
1004         unsigned long flags;
1005         u32 led;
1006
1007         if (priv->config & CFG_NO_LED)
1008                 return;
1009
1010         spin_lock_irqsave(&priv->lock, flags);
1011
1012         if (priv->status & STATUS_LED_ACT_ON) {
1013                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1014                 led &= priv->led_activity_off;
1015
1016                 led = ipw_register_toggle(led);
1017
1018                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1019                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1020
1021                 IPW_DEBUG_LED("Activity LED Off\n");
1022
1023                 priv->status &= ~STATUS_LED_ACT_ON;
1024         }
1025
1026         spin_unlock_irqrestore(&priv->lock, flags);
1027 }
1028
1029 static void ipw_bg_led_activity_off(struct work_struct *work)
1030 {
1031         struct ipw_priv *priv =
1032                 container_of(work, struct ipw_priv, led_act_off.work);
1033         mutex_lock(&priv->mutex);
1034         ipw_led_activity_off(priv);
1035         mutex_unlock(&priv->mutex);
1036 }
1037
1038 static void ipw_led_band_on(struct ipw_priv *priv)
1039 {
1040         unsigned long flags;
1041         u32 led;
1042
1043         /* Only nic type 1 supports mode LEDs */
1044         if (priv->config & CFG_NO_LED ||
1045             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1046                 return;
1047
1048         spin_lock_irqsave(&priv->lock, flags);
1049
1050         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1051         if (priv->assoc_network->mode == IEEE_A) {
1052                 led |= priv->led_ofdm_on;
1053                 led &= priv->led_association_off;
1054                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1055         } else if (priv->assoc_network->mode == IEEE_G) {
1056                 led |= priv->led_ofdm_on;
1057                 led |= priv->led_association_on;
1058                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1059         } else {
1060                 led &= priv->led_ofdm_off;
1061                 led |= priv->led_association_on;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1063         }
1064
1065         led = ipw_register_toggle(led);
1066
1067         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1068         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1069
1070         spin_unlock_irqrestore(&priv->lock, flags);
1071 }
1072
1073 static void ipw_led_band_off(struct ipw_priv *priv)
1074 {
1075         unsigned long flags;
1076         u32 led;
1077
1078         /* Only nic type 1 supports mode LEDs */
1079         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1080                 return;
1081
1082         spin_lock_irqsave(&priv->lock, flags);
1083
1084         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1085         led &= priv->led_ofdm_off;
1086         led &= priv->led_association_off;
1087
1088         led = ipw_register_toggle(led);
1089
1090         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1091         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1092
1093         spin_unlock_irqrestore(&priv->lock, flags);
1094 }
1095
1096 static void ipw_led_radio_on(struct ipw_priv *priv)
1097 {
1098         ipw_led_link_on(priv);
1099 }
1100
1101 static void ipw_led_radio_off(struct ipw_priv *priv)
1102 {
1103         ipw_led_activity_off(priv);
1104         ipw_led_link_off(priv);
1105 }
1106
1107 static void ipw_led_link_up(struct ipw_priv *priv)
1108 {
1109         /* Set the Link Led on for all nic types */
1110         ipw_led_link_on(priv);
1111 }
1112
1113 static void ipw_led_link_down(struct ipw_priv *priv)
1114 {
1115         ipw_led_activity_off(priv);
1116         ipw_led_link_off(priv);
1117
1118         if (priv->status & STATUS_RF_KILL_MASK)
1119                 ipw_led_radio_off(priv);
1120 }
1121
1122 static void ipw_led_init(struct ipw_priv *priv)
1123 {
1124         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1125
1126         /* Set the default PINs for the link and activity leds */
1127         priv->led_activity_on = IPW_ACTIVITY_LED;
1128         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1129
1130         priv->led_association_on = IPW_ASSOCIATED_LED;
1131         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1132
1133         /* Set the default PINs for the OFDM leds */
1134         priv->led_ofdm_on = IPW_OFDM_LED;
1135         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1136
1137         switch (priv->nic_type) {
1138         case EEPROM_NIC_TYPE_1:
1139                 /* In this NIC type, the LEDs are reversed.... */
1140                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1141                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1142                 priv->led_association_on = IPW_ACTIVITY_LED;
1143                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1144
1145                 if (!(priv->config & CFG_NO_LED))
1146                         ipw_led_band_on(priv);
1147
1148                 /* And we don't blink link LEDs for this nic, so
1149                  * just return here */
1150                 return;
1151
1152         case EEPROM_NIC_TYPE_3:
1153         case EEPROM_NIC_TYPE_2:
1154         case EEPROM_NIC_TYPE_4:
1155         case EEPROM_NIC_TYPE_0:
1156                 break;
1157
1158         default:
1159                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1160                                priv->nic_type);
1161                 priv->nic_type = EEPROM_NIC_TYPE_0;
1162                 break;
1163         }
1164
1165         if (!(priv->config & CFG_NO_LED)) {
1166                 if (priv->status & STATUS_ASSOCIATED)
1167                         ipw_led_link_on(priv);
1168                 else
1169                         ipw_led_link_off(priv);
1170         }
1171 }
1172
1173 static void ipw_led_shutdown(struct ipw_priv *priv)
1174 {
1175         ipw_led_activity_off(priv);
1176         ipw_led_link_off(priv);
1177         ipw_led_band_off(priv);
1178         cancel_delayed_work(&priv->led_link_on);
1179         cancel_delayed_work(&priv->led_link_off);
1180         cancel_delayed_work(&priv->led_act_off);
1181 }
1182
1183 /*
1184  * The following adds a new attribute to the sysfs representation
1185  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1186  * used for controling the debug level.
1187  *
1188  * See the level definitions in ipw for details.
1189  */
1190 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1191 {
1192         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1193 }
1194
1195 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1196                                  size_t count)
1197 {
1198         char *p = (char *)buf;
1199         u32 val;
1200
1201         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1202                 p++;
1203                 if (p[0] == 'x' || p[0] == 'X')
1204                         p++;
1205                 val = simple_strtoul(p, &p, 16);
1206         } else
1207                 val = simple_strtoul(p, &p, 10);
1208         if (p == buf)
1209                 printk(KERN_INFO DRV_NAME
1210                        ": %s is not in hex or decimal form.\n", buf);
1211         else
1212                 ipw_debug_level = val;
1213
1214         return strnlen(buf, count);
1215 }
1216
1217 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1218                    show_debug_level, store_debug_level);
1219
1220 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1221 {
1222         /* length = 1st dword in log */
1223         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1224 }
1225
1226 static void ipw_capture_event_log(struct ipw_priv *priv,
1227                                   u32 log_len, struct ipw_event *log)
1228 {
1229         u32 base;
1230
1231         if (log_len) {
1232                 base = ipw_read32(priv, IPW_EVENT_LOG);
1233                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1234                                   (u8 *) log, sizeof(*log) * log_len);
1235         }
1236 }
1237
1238 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1239 {
1240         struct ipw_fw_error *error;
1241         u32 log_len = ipw_get_event_log_len(priv);
1242         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1243         u32 elem_len = ipw_read_reg32(priv, base);
1244
1245         error = kmalloc(sizeof(*error) +
1246                         sizeof(*error->elem) * elem_len +
1247                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1248         if (!error) {
1249                 IPW_ERROR("Memory allocation for firmware error log "
1250                           "failed.\n");
1251                 return NULL;
1252         }
1253         error->jiffies = jiffies;
1254         error->status = priv->status;
1255         error->config = priv->config;
1256         error->elem_len = elem_len;
1257         error->log_len = log_len;
1258         error->elem = (struct ipw_error_elem *)error->payload;
1259         error->log = (struct ipw_event *)(error->elem + elem_len);
1260
1261         ipw_capture_event_log(priv, log_len, error->log);
1262
1263         if (elem_len)
1264                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1265                                   sizeof(*error->elem) * elem_len);
1266
1267         return error;
1268 }
1269
1270 static ssize_t show_event_log(struct device *d,
1271                               struct device_attribute *attr, char *buf)
1272 {
1273         struct ipw_priv *priv = dev_get_drvdata(d);
1274         u32 log_len = ipw_get_event_log_len(priv);
1275         u32 log_size;
1276         struct ipw_event *log;
1277         u32 len = 0, i;
1278
1279         /* not using min() because of its strict type checking */
1280         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1281                         sizeof(*log) * log_len : PAGE_SIZE;
1282         log = kzalloc(log_size, GFP_KERNEL);
1283         if (!log) {
1284                 IPW_ERROR("Unable to allocate memory for log\n");
1285                 return 0;
1286         }
1287         log_len = log_size / sizeof(*log);
1288         ipw_capture_event_log(priv, log_len, log);
1289
1290         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1291         for (i = 0; i < log_len; i++)
1292                 len += snprintf(buf + len, PAGE_SIZE - len,
1293                                 "\n%08X%08X%08X",
1294                                 log[i].time, log[i].event, log[i].data);
1295         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1296         kfree(log);
1297         return len;
1298 }
1299
1300 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1301
1302 static ssize_t show_error(struct device *d,
1303                           struct device_attribute *attr, char *buf)
1304 {
1305         struct ipw_priv *priv = dev_get_drvdata(d);
1306         u32 len = 0, i;
1307         if (!priv->error)
1308                 return 0;
1309         len += snprintf(buf + len, PAGE_SIZE - len,
1310                         "%08lX%08X%08X%08X",
1311                         priv->error->jiffies,
1312                         priv->error->status,
1313                         priv->error->config, priv->error->elem_len);
1314         for (i = 0; i < priv->error->elem_len; i++)
1315                 len += snprintf(buf + len, PAGE_SIZE - len,
1316                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1317                                 priv->error->elem[i].time,
1318                                 priv->error->elem[i].desc,
1319                                 priv->error->elem[i].blink1,
1320                                 priv->error->elem[i].blink2,
1321                                 priv->error->elem[i].link1,
1322                                 priv->error->elem[i].link2,
1323                                 priv->error->elem[i].data);
1324
1325         len += snprintf(buf + len, PAGE_SIZE - len,
1326                         "\n%08X", priv->error->log_len);
1327         for (i = 0; i < priv->error->log_len; i++)
1328                 len += snprintf(buf + len, PAGE_SIZE - len,
1329                                 "\n%08X%08X%08X",
1330                                 priv->error->log[i].time,
1331                                 priv->error->log[i].event,
1332                                 priv->error->log[i].data);
1333         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1334         return len;
1335 }
1336
1337 static ssize_t clear_error(struct device *d,
1338                            struct device_attribute *attr,
1339                            const char *buf, size_t count)
1340 {
1341         struct ipw_priv *priv = dev_get_drvdata(d);
1342
1343         kfree(priv->error);
1344         priv->error = NULL;
1345         return count;
1346 }
1347
1348 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1349
1350 static ssize_t show_cmd_log(struct device *d,
1351                             struct device_attribute *attr, char *buf)
1352 {
1353         struct ipw_priv *priv = dev_get_drvdata(d);
1354         u32 len = 0, i;
1355         if (!priv->cmdlog)
1356                 return 0;
1357         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1358              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1359              i = (i + 1) % priv->cmdlog_len) {
1360                 len +=
1361                     snprintf(buf + len, PAGE_SIZE - len,
1362                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1363                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1364                              priv->cmdlog[i].cmd.len);
1365                 len +=
1366                     snprintk_buf(buf + len, PAGE_SIZE - len,
1367                                  (u8 *) priv->cmdlog[i].cmd.param,
1368                                  priv->cmdlog[i].cmd.len);
1369                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1370         }
1371         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1372         return len;
1373 }
1374
1375 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1376
1377 #ifdef CONFIG_IPW2200_PROMISCUOUS
1378 static void ipw_prom_free(struct ipw_priv *priv);
1379 static int ipw_prom_alloc(struct ipw_priv *priv);
1380 static ssize_t store_rtap_iface(struct device *d,
1381                          struct device_attribute *attr,
1382                          const char *buf, size_t count)
1383 {
1384         struct ipw_priv *priv = dev_get_drvdata(d);
1385         int rc = 0;
1386
1387         if (count < 1)
1388                 return -EINVAL;
1389
1390         switch (buf[0]) {
1391         case '0':
1392                 if (!rtap_iface)
1393                         return count;
1394
1395                 if (netif_running(priv->prom_net_dev)) {
1396                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1397                         return count;
1398                 }
1399
1400                 ipw_prom_free(priv);
1401                 rtap_iface = 0;
1402                 break;
1403
1404         case '1':
1405                 if (rtap_iface)
1406                         return count;
1407
1408                 rc = ipw_prom_alloc(priv);
1409                 if (!rc)
1410                         rtap_iface = 1;
1411                 break;
1412
1413         default:
1414                 return -EINVAL;
1415         }
1416
1417         if (rc) {
1418                 IPW_ERROR("Failed to register promiscuous network "
1419                           "device (error %d).\n", rc);
1420         }
1421
1422         return count;
1423 }
1424
1425 static ssize_t show_rtap_iface(struct device *d,
1426                         struct device_attribute *attr,
1427                         char *buf)
1428 {
1429         struct ipw_priv *priv = dev_get_drvdata(d);
1430         if (rtap_iface)
1431                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1432         else {
1433                 buf[0] = '-';
1434                 buf[1] = '1';
1435                 buf[2] = '\0';
1436                 return 3;
1437         }
1438 }
1439
1440 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1441                    store_rtap_iface);
1442
1443 static ssize_t store_rtap_filter(struct device *d,
1444                          struct device_attribute *attr,
1445                          const char *buf, size_t count)
1446 {
1447         struct ipw_priv *priv = dev_get_drvdata(d);
1448
1449         if (!priv->prom_priv) {
1450                 IPW_ERROR("Attempting to set filter without "
1451                           "rtap_iface enabled.\n");
1452                 return -EPERM;
1453         }
1454
1455         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1456
1457         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1458                        BIT_ARG16(priv->prom_priv->filter));
1459
1460         return count;
1461 }
1462
1463 static ssize_t show_rtap_filter(struct device *d,
1464                         struct device_attribute *attr,
1465                         char *buf)
1466 {
1467         struct ipw_priv *priv = dev_get_drvdata(d);
1468         return sprintf(buf, "0x%04X",
1469                        priv->prom_priv ? priv->prom_priv->filter : 0);
1470 }
1471
1472 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1473                    store_rtap_filter);
1474 #endif
1475
1476 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1477                              char *buf)
1478 {
1479         struct ipw_priv *priv = dev_get_drvdata(d);
1480         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1481 }
1482
1483 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1484                               const char *buf, size_t count)
1485 {
1486         struct ipw_priv *priv = dev_get_drvdata(d);
1487         struct net_device *dev = priv->net_dev;
1488         char buffer[] = "00000000";
1489         unsigned long len =
1490             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1491         unsigned long val;
1492         char *p = buffer;
1493
1494         IPW_DEBUG_INFO("enter\n");
1495
1496         strncpy(buffer, buf, len);
1497         buffer[len] = 0;
1498
1499         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1500                 p++;
1501                 if (p[0] == 'x' || p[0] == 'X')
1502                         p++;
1503                 val = simple_strtoul(p, &p, 16);
1504         } else
1505                 val = simple_strtoul(p, &p, 10);
1506         if (p == buffer) {
1507                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1508         } else {
1509                 priv->ieee->scan_age = val;
1510                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1511         }
1512
1513         IPW_DEBUG_INFO("exit\n");
1514         return len;
1515 }
1516
1517 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1518
1519 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1520                         char *buf)
1521 {
1522         struct ipw_priv *priv = dev_get_drvdata(d);
1523         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1524 }
1525
1526 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1527                          const char *buf, size_t count)
1528 {
1529         struct ipw_priv *priv = dev_get_drvdata(d);
1530
1531         IPW_DEBUG_INFO("enter\n");
1532
1533         if (count == 0)
1534                 return 0;
1535
1536         if (*buf == 0) {
1537                 IPW_DEBUG_LED("Disabling LED control.\n");
1538                 priv->config |= CFG_NO_LED;
1539                 ipw_led_shutdown(priv);
1540         } else {
1541                 IPW_DEBUG_LED("Enabling LED control.\n");
1542                 priv->config &= ~CFG_NO_LED;
1543                 ipw_led_init(priv);
1544         }
1545
1546         IPW_DEBUG_INFO("exit\n");
1547         return count;
1548 }
1549
1550 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1551
1552 static ssize_t show_status(struct device *d,
1553                            struct device_attribute *attr, char *buf)
1554 {
1555         struct ipw_priv *p = dev_get_drvdata(d);
1556         return sprintf(buf, "0x%08x\n", (int)p->status);
1557 }
1558
1559 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1560
1561 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1562                         char *buf)
1563 {
1564         struct ipw_priv *p = dev_get_drvdata(d);
1565         return sprintf(buf, "0x%08x\n", (int)p->config);
1566 }
1567
1568 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1569
1570 static ssize_t show_nic_type(struct device *d,
1571                              struct device_attribute *attr, char *buf)
1572 {
1573         struct ipw_priv *priv = dev_get_drvdata(d);
1574         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1575 }
1576
1577 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1578
1579 static ssize_t show_ucode_version(struct device *d,
1580                                   struct device_attribute *attr, char *buf)
1581 {
1582         u32 len = sizeof(u32), tmp = 0;
1583         struct ipw_priv *p = dev_get_drvdata(d);
1584
1585         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1586                 return 0;
1587
1588         return sprintf(buf, "0x%08x\n", tmp);
1589 }
1590
1591 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1592
1593 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1594                         char *buf)
1595 {
1596         u32 len = sizeof(u32), tmp = 0;
1597         struct ipw_priv *p = dev_get_drvdata(d);
1598
1599         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1600                 return 0;
1601
1602         return sprintf(buf, "0x%08x\n", tmp);
1603 }
1604
1605 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1606
1607 /*
1608  * Add a device attribute to view/control the delay between eeprom
1609  * operations.
1610  */
1611 static ssize_t show_eeprom_delay(struct device *d,
1612                                  struct device_attribute *attr, char *buf)
1613 {
1614         struct ipw_priv *p = dev_get_drvdata(d);
1615         int n = p->eeprom_delay;
1616         return sprintf(buf, "%i\n", n);
1617 }
1618 static ssize_t store_eeprom_delay(struct device *d,
1619                                   struct device_attribute *attr,
1620                                   const char *buf, size_t count)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         sscanf(buf, "%i", &p->eeprom_delay);
1624         return strnlen(buf, count);
1625 }
1626
1627 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1628                    show_eeprom_delay, store_eeprom_delay);
1629
1630 static ssize_t show_command_event_reg(struct device *d,
1631                                       struct device_attribute *attr, char *buf)
1632 {
1633         u32 reg = 0;
1634         struct ipw_priv *p = dev_get_drvdata(d);
1635
1636         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1637         return sprintf(buf, "0x%08x\n", reg);
1638 }
1639 static ssize_t store_command_event_reg(struct device *d,
1640                                        struct device_attribute *attr,
1641                                        const char *buf, size_t count)
1642 {
1643         u32 reg;
1644         struct ipw_priv *p = dev_get_drvdata(d);
1645
1646         sscanf(buf, "%x", &reg);
1647         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1648         return strnlen(buf, count);
1649 }
1650
1651 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1652                    show_command_event_reg, store_command_event_reg);
1653
1654 static ssize_t show_mem_gpio_reg(struct device *d,
1655                                  struct device_attribute *attr, char *buf)
1656 {
1657         u32 reg = 0;
1658         struct ipw_priv *p = dev_get_drvdata(d);
1659
1660         reg = ipw_read_reg32(p, 0x301100);
1661         return sprintf(buf, "0x%08x\n", reg);
1662 }
1663 static ssize_t store_mem_gpio_reg(struct device *d,
1664                                   struct device_attribute *attr,
1665                                   const char *buf, size_t count)
1666 {
1667         u32 reg;
1668         struct ipw_priv *p = dev_get_drvdata(d);
1669
1670         sscanf(buf, "%x", &reg);
1671         ipw_write_reg32(p, 0x301100, reg);
1672         return strnlen(buf, count);
1673 }
1674
1675 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1676                    show_mem_gpio_reg, store_mem_gpio_reg);
1677
1678 static ssize_t show_indirect_dword(struct device *d,
1679                                    struct device_attribute *attr, char *buf)
1680 {
1681         u32 reg = 0;
1682         struct ipw_priv *priv = dev_get_drvdata(d);
1683
1684         if (priv->status & STATUS_INDIRECT_DWORD)
1685                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1686         else
1687                 reg = 0;
1688
1689         return sprintf(buf, "0x%08x\n", reg);
1690 }
1691 static ssize_t store_indirect_dword(struct device *d,
1692                                     struct device_attribute *attr,
1693                                     const char *buf, size_t count)
1694 {
1695         struct ipw_priv *priv = dev_get_drvdata(d);
1696
1697         sscanf(buf, "%x", &priv->indirect_dword);
1698         priv->status |= STATUS_INDIRECT_DWORD;
1699         return strnlen(buf, count);
1700 }
1701
1702 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1703                    show_indirect_dword, store_indirect_dword);
1704
1705 static ssize_t show_indirect_byte(struct device *d,
1706                                   struct device_attribute *attr, char *buf)
1707 {
1708         u8 reg = 0;
1709         struct ipw_priv *priv = dev_get_drvdata(d);
1710
1711         if (priv->status & STATUS_INDIRECT_BYTE)
1712                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1713         else
1714                 reg = 0;
1715
1716         return sprintf(buf, "0x%02x\n", reg);
1717 }
1718 static ssize_t store_indirect_byte(struct device *d,
1719                                    struct device_attribute *attr,
1720                                    const char *buf, size_t count)
1721 {
1722         struct ipw_priv *priv = dev_get_drvdata(d);
1723
1724         sscanf(buf, "%x", &priv->indirect_byte);
1725         priv->status |= STATUS_INDIRECT_BYTE;
1726         return strnlen(buf, count);
1727 }
1728
1729 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1730                    show_indirect_byte, store_indirect_byte);
1731
1732 static ssize_t show_direct_dword(struct device *d,
1733                                  struct device_attribute *attr, char *buf)
1734 {
1735         u32 reg = 0;
1736         struct ipw_priv *priv = dev_get_drvdata(d);
1737
1738         if (priv->status & STATUS_DIRECT_DWORD)
1739                 reg = ipw_read32(priv, priv->direct_dword);
1740         else
1741                 reg = 0;
1742
1743         return sprintf(buf, "0x%08x\n", reg);
1744 }
1745 static ssize_t store_direct_dword(struct device *d,
1746                                   struct device_attribute *attr,
1747                                   const char *buf, size_t count)
1748 {
1749         struct ipw_priv *priv = dev_get_drvdata(d);
1750
1751         sscanf(buf, "%x", &priv->direct_dword);
1752         priv->status |= STATUS_DIRECT_DWORD;
1753         return strnlen(buf, count);
1754 }
1755
1756 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1757                    show_direct_dword, store_direct_dword);
1758
1759 static int rf_kill_active(struct ipw_priv *priv)
1760 {
1761         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1762                 priv->status |= STATUS_RF_KILL_HW;
1763                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1764         } else {
1765                 priv->status &= ~STATUS_RF_KILL_HW;
1766                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1767         }
1768
1769         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1770 }
1771
1772 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1773                             char *buf)
1774 {
1775         /* 0 - RF kill not enabled
1776            1 - SW based RF kill active (sysfs)
1777            2 - HW based RF kill active
1778            3 - Both HW and SW baed RF kill active */
1779         struct ipw_priv *priv = dev_get_drvdata(d);
1780         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1781             (rf_kill_active(priv) ? 0x2 : 0x0);
1782         return sprintf(buf, "%i\n", val);
1783 }
1784
1785 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1786 {
1787         if ((disable_radio ? 1 : 0) ==
1788             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1789                 return 0;
1790
1791         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1792                           disable_radio ? "OFF" : "ON");
1793
1794         if (disable_radio) {
1795                 priv->status |= STATUS_RF_KILL_SW;
1796
1797                 if (priv->workqueue) {
1798                         cancel_delayed_work(&priv->request_scan);
1799                         cancel_delayed_work(&priv->request_direct_scan);
1800                         cancel_delayed_work(&priv->request_passive_scan);
1801                         cancel_delayed_work(&priv->scan_event);
1802                 }
1803                 queue_work(priv->workqueue, &priv->down);
1804         } else {
1805                 priv->status &= ~STATUS_RF_KILL_SW;
1806                 if (rf_kill_active(priv)) {
1807                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1808                                           "disabled by HW switch\n");
1809                         /* Make sure the RF_KILL check timer is running */
1810                         cancel_delayed_work(&priv->rf_kill);
1811                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812                                            round_jiffies_relative(2 * HZ));
1813                 } else
1814                         queue_work(priv->workqueue, &priv->up);
1815         }
1816
1817         return 1;
1818 }
1819
1820 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1821                              const char *buf, size_t count)
1822 {
1823         struct ipw_priv *priv = dev_get_drvdata(d);
1824
1825         ipw_radio_kill_sw(priv, buf[0] == '1');
1826
1827         return count;
1828 }
1829
1830 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1831
1832 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1833                                char *buf)
1834 {
1835         struct ipw_priv *priv = dev_get_drvdata(d);
1836         int pos = 0, len = 0;
1837         if (priv->config & CFG_SPEED_SCAN) {
1838                 while (priv->speed_scan[pos] != 0)
1839                         len += sprintf(&buf[len], "%d ",
1840                                        priv->speed_scan[pos++]);
1841                 return len + sprintf(&buf[len], "\n");
1842         }
1843
1844         return sprintf(buf, "0\n");
1845 }
1846
1847 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1848                                 const char *buf, size_t count)
1849 {
1850         struct ipw_priv *priv = dev_get_drvdata(d);
1851         int channel, pos = 0;
1852         const char *p = buf;
1853
1854         /* list of space separated channels to scan, optionally ending with 0 */
1855         while ((channel = simple_strtol(p, NULL, 0))) {
1856                 if (pos == MAX_SPEED_SCAN - 1) {
1857                         priv->speed_scan[pos] = 0;
1858                         break;
1859                 }
1860
1861                 if (libipw_is_valid_channel(priv->ieee, channel))
1862                         priv->speed_scan[pos++] = channel;
1863                 else
1864                         IPW_WARNING("Skipping invalid channel request: %d\n",
1865                                     channel);
1866                 p = strchr(p, ' ');
1867                 if (!p)
1868                         break;
1869                 while (*p == ' ' || *p == '\t')
1870                         p++;
1871         }
1872
1873         if (pos == 0)
1874                 priv->config &= ~CFG_SPEED_SCAN;
1875         else {
1876                 priv->speed_scan_pos = 0;
1877                 priv->config |= CFG_SPEED_SCAN;
1878         }
1879
1880         return count;
1881 }
1882
1883 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1884                    store_speed_scan);
1885
1886 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1887                               char *buf)
1888 {
1889         struct ipw_priv *priv = dev_get_drvdata(d);
1890         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1891 }
1892
1893 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1894                                const char *buf, size_t count)
1895 {
1896         struct ipw_priv *priv = dev_get_drvdata(d);
1897         if (buf[0] == '1')
1898                 priv->config |= CFG_NET_STATS;
1899         else
1900                 priv->config &= ~CFG_NET_STATS;
1901
1902         return count;
1903 }
1904
1905 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1906                    show_net_stats, store_net_stats);
1907
1908 static ssize_t show_channels(struct device *d,
1909                              struct device_attribute *attr,
1910                              char *buf)
1911 {
1912         struct ipw_priv *priv = dev_get_drvdata(d);
1913         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1914         int len = 0, i;
1915
1916         len = sprintf(&buf[len],
1917                       "Displaying %d channels in 2.4Ghz band "
1918                       "(802.11bg):\n", geo->bg_channels);
1919
1920         for (i = 0; i < geo->bg_channels; i++) {
1921                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1922                                geo->bg[i].channel,
1923                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924                                " (radar spectrum)" : "",
1925                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1926                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1927                                ? "" : ", IBSS",
1928                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929                                "passive only" : "active/passive",
1930                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1931                                "B" : "B/G");
1932         }
1933
1934         len += sprintf(&buf[len],
1935                        "Displaying %d channels in 5.2Ghz band "
1936                        "(802.11a):\n", geo->a_channels);
1937         for (i = 0; i < geo->a_channels; i++) {
1938                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1939                                geo->a[i].channel,
1940                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1941                                " (radar spectrum)" : "",
1942                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1943                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1944                                ? "" : ", IBSS",
1945                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1946                                "passive only" : "active/passive");
1947         }
1948
1949         return len;
1950 }
1951
1952 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1953
1954 static void notify_wx_assoc_event(struct ipw_priv *priv)
1955 {
1956         union iwreq_data wrqu;
1957         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1958         if (priv->status & STATUS_ASSOCIATED)
1959                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1960         else
1961                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1962         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1963 }
1964
1965 static void ipw_irq_tasklet(struct ipw_priv *priv)
1966 {
1967         u32 inta, inta_mask, handled = 0;
1968         unsigned long flags;
1969         int rc = 0;
1970
1971         spin_lock_irqsave(&priv->irq_lock, flags);
1972
1973         inta = ipw_read32(priv, IPW_INTA_RW);
1974         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1975         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1976
1977         /* Add any cached INTA values that need to be handled */
1978         inta |= priv->isr_inta;
1979
1980         spin_unlock_irqrestore(&priv->irq_lock, flags);
1981
1982         spin_lock_irqsave(&priv->lock, flags);
1983
1984         /* handle all the justifications for the interrupt */
1985         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1986                 ipw_rx(priv);
1987                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1988         }
1989
1990         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1991                 IPW_DEBUG_HC("Command completed.\n");
1992                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1993                 priv->status &= ~STATUS_HCMD_ACTIVE;
1994                 wake_up_interruptible(&priv->wait_command_queue);
1995                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1996         }
1997
1998         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1999                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2000                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2001                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2002         }
2003
2004         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2005                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2006                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2007                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2008         }
2009
2010         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2011                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2012                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2013                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2014         }
2015
2016         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2017                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2018                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2019                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2020         }
2021
2022         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2023                 IPW_WARNING("STATUS_CHANGE\n");
2024                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2025         }
2026
2027         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2028                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2029                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2030         }
2031
2032         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2033                 IPW_WARNING("HOST_CMD_DONE\n");
2034                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2035         }
2036
2037         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2038                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2039                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2040         }
2041
2042         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2043                 IPW_WARNING("PHY_OFF_DONE\n");
2044                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2045         }
2046
2047         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2048                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2049                 priv->status |= STATUS_RF_KILL_HW;
2050                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2051                 wake_up_interruptible(&priv->wait_command_queue);
2052                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2053                 cancel_delayed_work(&priv->request_scan);
2054                 cancel_delayed_work(&priv->request_direct_scan);
2055                 cancel_delayed_work(&priv->request_passive_scan);
2056                 cancel_delayed_work(&priv->scan_event);
2057                 schedule_work(&priv->link_down);
2058                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2059                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2060         }
2061
2062         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2063                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2064                 if (priv->error) {
2065                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2066                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2067                                 struct ipw_fw_error *error =
2068                                     ipw_alloc_error_log(priv);
2069                                 ipw_dump_error_log(priv, error);
2070                                 kfree(error);
2071                         }
2072                 } else {
2073                         priv->error = ipw_alloc_error_log(priv);
2074                         if (priv->error)
2075                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2076                         else
2077                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2078                                              "log.\n");
2079                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2080                                 ipw_dump_error_log(priv, priv->error);
2081                 }
2082
2083                 /* XXX: If hardware encryption is for WPA/WPA2,
2084                  * we have to notify the supplicant. */
2085                 if (priv->ieee->sec.encrypt) {
2086                         priv->status &= ~STATUS_ASSOCIATED;
2087                         notify_wx_assoc_event(priv);
2088                 }
2089
2090                 /* Keep the restart process from trying to send host
2091                  * commands by clearing the INIT status bit */
2092                 priv->status &= ~STATUS_INIT;
2093
2094                 /* Cancel currently queued command. */
2095                 priv->status &= ~STATUS_HCMD_ACTIVE;
2096                 wake_up_interruptible(&priv->wait_command_queue);
2097
2098                 queue_work(priv->workqueue, &priv->adapter_restart);
2099                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2100         }
2101
2102         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2103                 IPW_ERROR("Parity error\n");
2104                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2105         }
2106
2107         if (handled != inta) {
2108                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2109         }
2110
2111         spin_unlock_irqrestore(&priv->lock, flags);
2112
2113         /* enable all interrupts */
2114         ipw_enable_interrupts(priv);
2115 }
2116
2117 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2118 static char *get_cmd_string(u8 cmd)
2119 {
2120         switch (cmd) {
2121                 IPW_CMD(HOST_COMPLETE);
2122                 IPW_CMD(POWER_DOWN);
2123                 IPW_CMD(SYSTEM_CONFIG);
2124                 IPW_CMD(MULTICAST_ADDRESS);
2125                 IPW_CMD(SSID);
2126                 IPW_CMD(ADAPTER_ADDRESS);
2127                 IPW_CMD(PORT_TYPE);
2128                 IPW_CMD(RTS_THRESHOLD);
2129                 IPW_CMD(FRAG_THRESHOLD);
2130                 IPW_CMD(POWER_MODE);
2131                 IPW_CMD(WEP_KEY);
2132                 IPW_CMD(TGI_TX_KEY);
2133                 IPW_CMD(SCAN_REQUEST);
2134                 IPW_CMD(SCAN_REQUEST_EXT);
2135                 IPW_CMD(ASSOCIATE);
2136                 IPW_CMD(SUPPORTED_RATES);
2137                 IPW_CMD(SCAN_ABORT);
2138                 IPW_CMD(TX_FLUSH);
2139                 IPW_CMD(QOS_PARAMETERS);
2140                 IPW_CMD(DINO_CONFIG);
2141                 IPW_CMD(RSN_CAPABILITIES);
2142                 IPW_CMD(RX_KEY);
2143                 IPW_CMD(CARD_DISABLE);
2144                 IPW_CMD(SEED_NUMBER);
2145                 IPW_CMD(TX_POWER);
2146                 IPW_CMD(COUNTRY_INFO);
2147                 IPW_CMD(AIRONET_INFO);
2148                 IPW_CMD(AP_TX_POWER);
2149                 IPW_CMD(CCKM_INFO);
2150                 IPW_CMD(CCX_VER_INFO);
2151                 IPW_CMD(SET_CALIBRATION);
2152                 IPW_CMD(SENSITIVITY_CALIB);
2153                 IPW_CMD(RETRY_LIMIT);
2154                 IPW_CMD(IPW_PRE_POWER_DOWN);
2155                 IPW_CMD(VAP_BEACON_TEMPLATE);
2156                 IPW_CMD(VAP_DTIM_PERIOD);
2157                 IPW_CMD(EXT_SUPPORTED_RATES);
2158                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2159                 IPW_CMD(VAP_QUIET_INTERVALS);
2160                 IPW_CMD(VAP_CHANNEL_SWITCH);
2161                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2162                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2163                 IPW_CMD(VAP_CF_PARAM_SET);
2164                 IPW_CMD(VAP_SET_BEACONING_STATE);
2165                 IPW_CMD(MEASUREMENT);
2166                 IPW_CMD(POWER_CAPABILITY);
2167                 IPW_CMD(SUPPORTED_CHANNELS);
2168                 IPW_CMD(TPC_REPORT);
2169                 IPW_CMD(WME_INFO);
2170                 IPW_CMD(PRODUCTION_COMMAND);
2171         default:
2172                 return "UNKNOWN";
2173         }
2174 }
2175
2176 #define HOST_COMPLETE_TIMEOUT HZ
2177
2178 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2179 {
2180         int rc = 0;
2181         unsigned long flags;
2182
2183         spin_lock_irqsave(&priv->lock, flags);
2184         if (priv->status & STATUS_HCMD_ACTIVE) {
2185                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2186                           get_cmd_string(cmd->cmd));
2187                 spin_unlock_irqrestore(&priv->lock, flags);
2188                 return -EAGAIN;
2189         }
2190
2191         priv->status |= STATUS_HCMD_ACTIVE;
2192
2193         if (priv->cmdlog) {
2194                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2195                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2196                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2197                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2198                        cmd->len);
2199                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2200         }
2201
2202         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2203                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2204                      priv->status);
2205
2206 #ifndef DEBUG_CMD_WEP_KEY
2207         if (cmd->cmd == IPW_CMD_WEP_KEY)
2208                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2209         else
2210 #endif
2211                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2212
2213         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2214         if (rc) {
2215                 priv->status &= ~STATUS_HCMD_ACTIVE;
2216                 IPW_ERROR("Failed to send %s: Reason %d\n",
2217                           get_cmd_string(cmd->cmd), rc);
2218                 spin_unlock_irqrestore(&priv->lock, flags);
2219                 goto exit;
2220         }
2221         spin_unlock_irqrestore(&priv->lock, flags);
2222
2223         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2224                                               !(priv->
2225                                                 status & STATUS_HCMD_ACTIVE),
2226                                               HOST_COMPLETE_TIMEOUT);
2227         if (rc == 0) {
2228                 spin_lock_irqsave(&priv->lock, flags);
2229                 if (priv->status & STATUS_HCMD_ACTIVE) {
2230                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2231                                   get_cmd_string(cmd->cmd));
2232                         priv->status &= ~STATUS_HCMD_ACTIVE;
2233                         spin_unlock_irqrestore(&priv->lock, flags);
2234                         rc = -EIO;
2235                         goto exit;
2236                 }
2237                 spin_unlock_irqrestore(&priv->lock, flags);
2238         } else
2239                 rc = 0;
2240
2241         if (priv->status & STATUS_RF_KILL_HW) {
2242                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2243                           get_cmd_string(cmd->cmd));
2244                 rc = -EIO;
2245                 goto exit;
2246         }
2247
2248       exit:
2249         if (priv->cmdlog) {
2250                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2251                 priv->cmdlog_pos %= priv->cmdlog_len;
2252         }
2253         return rc;
2254 }
2255
2256 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2257 {
2258         struct host_cmd cmd = {
2259                 .cmd = command,
2260         };
2261
2262         return __ipw_send_cmd(priv, &cmd);
2263 }
2264
2265 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2266                             void *data)
2267 {
2268         struct host_cmd cmd = {
2269                 .cmd = command,
2270                 .len = len,
2271                 .param = data,
2272         };
2273
2274         return __ipw_send_cmd(priv, &cmd);
2275 }
2276
2277 static int ipw_send_host_complete(struct ipw_priv *priv)
2278 {
2279         if (!priv) {
2280                 IPW_ERROR("Invalid args\n");
2281                 return -1;
2282         }
2283
2284         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2285 }
2286
2287 static int ipw_send_system_config(struct ipw_priv *priv)
2288 {
2289         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2290                                 sizeof(priv->sys_config),
2291                                 &priv->sys_config);
2292 }
2293
2294 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2295 {
2296         if (!priv || !ssid) {
2297                 IPW_ERROR("Invalid args\n");
2298                 return -1;
2299         }
2300
2301         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2302                                 ssid);
2303 }
2304
2305 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2306 {
2307         if (!priv || !mac) {
2308                 IPW_ERROR("Invalid args\n");
2309                 return -1;
2310         }
2311
2312         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2313                        priv->net_dev->name, mac);
2314
2315         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2316 }
2317
2318 /*
2319  * NOTE: This must be executed from our workqueue as it results in udelay
2320  * being called which may corrupt the keyboard if executed on default
2321  * workqueue
2322  */
2323 static void ipw_adapter_restart(void *adapter)
2324 {
2325         struct ipw_priv *priv = adapter;
2326
2327         if (priv->status & STATUS_RF_KILL_MASK)
2328                 return;
2329
2330         ipw_down(priv);
2331
2332         if (priv->assoc_network &&
2333             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2334                 ipw_remove_current_network(priv);
2335
2336         if (ipw_up(priv)) {
2337                 IPW_ERROR("Failed to up device\n");
2338                 return;
2339         }
2340 }
2341
2342 static void ipw_bg_adapter_restart(struct work_struct *work)
2343 {
2344         struct ipw_priv *priv =
2345                 container_of(work, struct ipw_priv, adapter_restart);
2346         mutex_lock(&priv->mutex);
2347         ipw_adapter_restart(priv);
2348         mutex_unlock(&priv->mutex);
2349 }
2350
2351 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2352
2353 static void ipw_scan_check(void *data)
2354 {
2355         struct ipw_priv *priv = data;
2356         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2357                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2358                                "adapter after (%dms).\n",
2359                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2360                 queue_work(priv->workqueue, &priv->adapter_restart);
2361         }
2362 }
2363
2364 static void ipw_bg_scan_check(struct work_struct *work)
2365 {
2366         struct ipw_priv *priv =
2367                 container_of(work, struct ipw_priv, scan_check.work);
2368         mutex_lock(&priv->mutex);
2369         ipw_scan_check(priv);
2370         mutex_unlock(&priv->mutex);
2371 }
2372
2373 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2374                                      struct ipw_scan_request_ext *request)
2375 {
2376         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2377                                 sizeof(*request), request);
2378 }
2379
2380 static int ipw_send_scan_abort(struct ipw_priv *priv)
2381 {
2382         if (!priv) {
2383                 IPW_ERROR("Invalid args\n");
2384                 return -1;
2385         }
2386
2387         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2388 }
2389
2390 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2391 {
2392         struct ipw_sensitivity_calib calib = {
2393                 .beacon_rssi_raw = cpu_to_le16(sens),
2394         };
2395
2396         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2397                                 &calib);
2398 }
2399
2400 static int ipw_send_associate(struct ipw_priv *priv,
2401                               struct ipw_associate *associate)
2402 {
2403         if (!priv || !associate) {
2404                 IPW_ERROR("Invalid args\n");
2405                 return -1;
2406         }
2407
2408         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2409                                 associate);
2410 }
2411
2412 static int ipw_send_supported_rates(struct ipw_priv *priv,
2413                                     struct ipw_supported_rates *rates)
2414 {
2415         if (!priv || !rates) {
2416                 IPW_ERROR("Invalid args\n");
2417                 return -1;
2418         }
2419
2420         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2421                                 rates);
2422 }
2423
2424 static int ipw_set_random_seed(struct ipw_priv *priv)
2425 {
2426         u32 val;
2427
2428         if (!priv) {
2429                 IPW_ERROR("Invalid args\n");
2430                 return -1;
2431         }
2432
2433         get_random_bytes(&val, sizeof(val));
2434
2435         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2436 }
2437
2438 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2439 {
2440         __le32 v = cpu_to_le32(phy_off);
2441         if (!priv) {
2442                 IPW_ERROR("Invalid args\n");
2443                 return -1;
2444         }
2445
2446         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2447 }
2448
2449 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2450 {
2451         if (!priv || !power) {
2452                 IPW_ERROR("Invalid args\n");
2453                 return -1;
2454         }
2455
2456         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2457 }
2458
2459 static int ipw_set_tx_power(struct ipw_priv *priv)
2460 {
2461         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2462         struct ipw_tx_power tx_power;
2463         s8 max_power;
2464         int i;
2465
2466         memset(&tx_power, 0, sizeof(tx_power));
2467
2468         /* configure device for 'G' band */
2469         tx_power.ieee_mode = IPW_G_MODE;
2470         tx_power.num_channels = geo->bg_channels;
2471         for (i = 0; i < geo->bg_channels; i++) {
2472                 max_power = geo->bg[i].max_power;
2473                 tx_power.channels_tx_power[i].channel_number =
2474                     geo->bg[i].channel;
2475                 tx_power.channels_tx_power[i].tx_power = max_power ?
2476                     min(max_power, priv->tx_power) : priv->tx_power;
2477         }
2478         if (ipw_send_tx_power(priv, &tx_power))
2479                 return -EIO;
2480
2481         /* configure device to also handle 'B' band */
2482         tx_power.ieee_mode = IPW_B_MODE;
2483         if (ipw_send_tx_power(priv, &tx_power))
2484                 return -EIO;
2485
2486         /* configure device to also handle 'A' band */
2487         if (priv->ieee->abg_true) {
2488                 tx_power.ieee_mode = IPW_A_MODE;
2489                 tx_power.num_channels = geo->a_channels;
2490                 for (i = 0; i < tx_power.num_channels; i++) {
2491                         max_power = geo->a[i].max_power;
2492                         tx_power.channels_tx_power[i].channel_number =
2493                             geo->a[i].channel;
2494                         tx_power.channels_tx_power[i].tx_power = max_power ?
2495                             min(max_power, priv->tx_power) : priv->tx_power;
2496                 }
2497                 if (ipw_send_tx_power(priv, &tx_power))
2498                         return -EIO;
2499         }
2500         return 0;
2501 }
2502
2503 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2504 {
2505         struct ipw_rts_threshold rts_threshold = {
2506                 .rts_threshold = cpu_to_le16(rts),
2507         };
2508
2509         if (!priv) {
2510                 IPW_ERROR("Invalid args\n");
2511                 return -1;
2512         }
2513
2514         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2515                                 sizeof(rts_threshold), &rts_threshold);
2516 }
2517
2518 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2519 {
2520         struct ipw_frag_threshold frag_threshold = {
2521                 .frag_threshold = cpu_to_le16(frag),
2522         };
2523
2524         if (!priv) {
2525                 IPW_ERROR("Invalid args\n");
2526                 return -1;
2527         }
2528
2529         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2530                                 sizeof(frag_threshold), &frag_threshold);
2531 }
2532
2533 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2534 {
2535         __le32 param;
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         /* If on battery, set to 3, if AC set to CAM, else user
2543          * level */
2544         switch (mode) {
2545         case IPW_POWER_BATTERY:
2546                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2547                 break;
2548         case IPW_POWER_AC:
2549                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2550                 break;
2551         default:
2552                 param = cpu_to_le32(mode);
2553                 break;
2554         }
2555
2556         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2557                                 &param);
2558 }
2559
2560 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2561 {
2562         struct ipw_retry_limit retry_limit = {
2563                 .short_retry_limit = slimit,
2564                 .long_retry_limit = llimit
2565         };
2566
2567         if (!priv) {
2568                 IPW_ERROR("Invalid args\n");
2569                 return -1;
2570         }
2571
2572         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2573                                 &retry_limit);
2574 }
2575
2576 /*
2577  * The IPW device contains a Microwire compatible EEPROM that stores
2578  * various data like the MAC address.  Usually the firmware has exclusive
2579  * access to the eeprom, but during device initialization (before the
2580  * device driver has sent the HostComplete command to the firmware) the
2581  * device driver has read access to the EEPROM by way of indirect addressing
2582  * through a couple of memory mapped registers.
2583  *
2584  * The following is a simplified implementation for pulling data out of the
2585  * the eeprom, along with some helper functions to find information in
2586  * the per device private data's copy of the eeprom.
2587  *
2588  * NOTE: To better understand how these functions work (i.e what is a chip
2589  *       select and why do have to keep driving the eeprom clock?), read
2590  *       just about any data sheet for a Microwire compatible EEPROM.
2591  */
2592
2593 /* write a 32 bit value into the indirect accessor register */
2594 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2595 {
2596         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2597
2598         /* the eeprom requires some time to complete the operation */
2599         udelay(p->eeprom_delay);
2600
2601         return;
2602 }
2603
2604 /* perform a chip select operation */
2605 static void eeprom_cs(struct ipw_priv *priv)
2606 {
2607         eeprom_write_reg(priv, 0);
2608         eeprom_write_reg(priv, EEPROM_BIT_CS);
2609         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2610         eeprom_write_reg(priv, EEPROM_BIT_CS);
2611 }
2612
2613 /* perform a chip select operation */
2614 static void eeprom_disable_cs(struct ipw_priv *priv)
2615 {
2616         eeprom_write_reg(priv, EEPROM_BIT_CS);
2617         eeprom_write_reg(priv, 0);
2618         eeprom_write_reg(priv, EEPROM_BIT_SK);
2619 }
2620
2621 /* push a single bit down to the eeprom */
2622 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2623 {
2624         int d = (bit ? EEPROM_BIT_DI : 0);
2625         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2626         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2627 }
2628
2629 /* push an opcode followed by an address down to the eeprom */
2630 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2631 {
2632         int i;
2633
2634         eeprom_cs(priv);
2635         eeprom_write_bit(priv, 1);
2636         eeprom_write_bit(priv, op & 2);
2637         eeprom_write_bit(priv, op & 1);
2638         for (i = 7; i >= 0; i--) {
2639                 eeprom_write_bit(priv, addr & (1 << i));
2640         }
2641 }
2642
2643 /* pull 16 bits off the eeprom, one bit at a time */
2644 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2645 {
2646         int i;
2647         u16 r = 0;
2648
2649         /* Send READ Opcode */
2650         eeprom_op(priv, EEPROM_CMD_READ, addr);
2651
2652         /* Send dummy bit */
2653         eeprom_write_reg(priv, EEPROM_BIT_CS);
2654
2655         /* Read the byte off the eeprom one bit at a time */
2656         for (i = 0; i < 16; i++) {
2657                 u32 data = 0;
2658                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2659                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2660                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2661                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2662         }
2663
2664         /* Send another dummy bit */
2665         eeprom_write_reg(priv, 0);
2666         eeprom_disable_cs(priv);
2667
2668         return r;
2669 }
2670
2671 /* helper function for pulling the mac address out of the private */
2672 /* data's copy of the eeprom data                                 */
2673 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2674 {
2675         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2676 }
2677
2678 /*
2679  * Either the device driver (i.e. the host) or the firmware can
2680  * load eeprom data into the designated region in SRAM.  If neither
2681  * happens then the FW will shutdown with a fatal error.
2682  *
2683  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2684  * bit needs region of shared SRAM needs to be non-zero.
2685  */
2686 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2687 {
2688         int i;
2689         __le16 *eeprom = (__le16 *) priv->eeprom;
2690
2691         IPW_DEBUG_TRACE(">>\n");
2692
2693         /* read entire contents of eeprom into private buffer */
2694         for (i = 0; i < 128; i++)
2695                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2696
2697         /*
2698            If the data looks correct, then copy it to our private
2699            copy.  Otherwise let the firmware know to perform the operation
2700            on its own.
2701          */
2702         if (priv->eeprom[EEPROM_VERSION] != 0) {
2703                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2704
2705                 /* write the eeprom data to sram */
2706                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2707                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2708
2709                 /* Do not load eeprom data on fatal error or suspend */
2710                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2711         } else {
2712                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2713
2714                 /* Load eeprom data on fatal error or suspend */
2715                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2716         }
2717
2718         IPW_DEBUG_TRACE("<<\n");
2719 }
2720
2721 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2722 {
2723         count >>= 2;
2724         if (!count)
2725                 return;
2726         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2727         while (count--)
2728                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2729 }
2730
2731 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2732 {
2733         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2734                         CB_NUMBER_OF_ELEMENTS_SMALL *
2735                         sizeof(struct command_block));
2736 }
2737
2738 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2739 {                               /* start dma engine but no transfers yet */
2740
2741         IPW_DEBUG_FW(">> : \n");
2742
2743         /* Start the dma */
2744         ipw_fw_dma_reset_command_blocks(priv);
2745
2746         /* Write CB base address */
2747         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2748
2749         IPW_DEBUG_FW("<< : \n");
2750         return 0;
2751 }
2752
2753 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2754 {
2755         u32 control = 0;
2756
2757         IPW_DEBUG_FW(">> :\n");
2758
2759         /* set the Stop and Abort bit */
2760         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2761         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2762         priv->sram_desc.last_cb_index = 0;
2763
2764         IPW_DEBUG_FW("<< \n");
2765 }
2766
2767 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2768                                           struct command_block *cb)
2769 {
2770         u32 address =
2771             IPW_SHARED_SRAM_DMA_CONTROL +
2772             (sizeof(struct command_block) * index);
2773         IPW_DEBUG_FW(">> :\n");
2774
2775         ipw_write_indirect(priv, address, (u8 *) cb,
2776                            (int)sizeof(struct command_block));
2777
2778         IPW_DEBUG_FW("<< :\n");
2779         return 0;
2780
2781 }
2782
2783 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2784 {
2785         u32 control = 0;
2786         u32 index = 0;
2787
2788         IPW_DEBUG_FW(">> :\n");
2789
2790         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2791                 ipw_fw_dma_write_command_block(priv, index,
2792                                                &priv->sram_desc.cb_list[index]);
2793
2794         /* Enable the DMA in the CSR register */
2795         ipw_clear_bit(priv, IPW_RESET_REG,
2796                       IPW_RESET_REG_MASTER_DISABLED |
2797                       IPW_RESET_REG_STOP_MASTER);
2798
2799         /* Set the Start bit. */
2800         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2801         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2802
2803         IPW_DEBUG_FW("<< :\n");
2804         return 0;
2805 }
2806
2807 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2808 {
2809         u32 address;
2810         u32 register_value = 0;
2811         u32 cb_fields_address = 0;
2812
2813         IPW_DEBUG_FW(">> :\n");
2814         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2815         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2816
2817         /* Read the DMA Controlor register */
2818         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2819         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2820
2821         /* Print the CB values */
2822         cb_fields_address = address;
2823         register_value = ipw_read_reg32(priv, cb_fields_address);
2824         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2825
2826         cb_fields_address += sizeof(u32);
2827         register_value = ipw_read_reg32(priv, cb_fields_address);
2828         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2829
2830         cb_fields_address += sizeof(u32);
2831         register_value = ipw_read_reg32(priv, cb_fields_address);
2832         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2833                           register_value);
2834
2835         cb_fields_address += sizeof(u32);
2836         register_value = ipw_read_reg32(priv, cb_fields_address);
2837         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2838
2839         IPW_DEBUG_FW(">> :\n");
2840 }
2841
2842 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2843 {
2844         u32 current_cb_address = 0;
2845         u32 current_cb_index = 0;
2846
2847         IPW_DEBUG_FW("<< :\n");
2848         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2849
2850         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2851             sizeof(struct command_block);
2852
2853         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2854                           current_cb_index, current_cb_address);
2855
2856         IPW_DEBUG_FW(">> :\n");
2857         return current_cb_index;
2858
2859 }
2860
2861 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2862                                         u32 src_address,
2863                                         u32 dest_address,
2864                                         u32 length,
2865                                         int interrupt_enabled, int is_last)
2866 {
2867
2868         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2869             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2870             CB_DEST_SIZE_LONG;
2871         struct command_block *cb;
2872         u32 last_cb_element = 0;
2873
2874         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2875                           src_address, dest_address, length);
2876
2877         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2878                 return -1;
2879
2880         last_cb_element = priv->sram_desc.last_cb_index;
2881         cb = &priv->sram_desc.cb_list[last_cb_element];
2882         priv->sram_desc.last_cb_index++;
2883
2884         /* Calculate the new CB control word */
2885         if (interrupt_enabled)
2886                 control |= CB_INT_ENABLED;
2887
2888         if (is_last)
2889                 control |= CB_LAST_VALID;
2890
2891         control |= length;
2892
2893         /* Calculate the CB Element's checksum value */
2894         cb->status = control ^ src_address ^ dest_address;
2895
2896         /* Copy the Source and Destination addresses */
2897         cb->dest_addr = dest_address;
2898         cb->source_addr = src_address;
2899
2900         /* Copy the Control Word last */
2901         cb->control = control;
2902
2903         return 0;
2904 }
2905
2906 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2907                                  int nr, u32 dest_address, u32 len)
2908 {
2909         int ret, i;
2910         u32 size;
2911
2912         IPW_DEBUG_FW(">> \n");
2913         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2914                           nr, dest_address, len);
2915
2916         for (i = 0; i < nr; i++) {
2917                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2918                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2919                                                    dest_address +
2920                                                    i * CB_MAX_LENGTH, size,
2921                                                    0, 0);
2922                 if (ret) {
2923                         IPW_DEBUG_FW_INFO(": Failed\n");
2924                         return -1;
2925                 } else
2926                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2927         }
2928
2929         IPW_DEBUG_FW("<< \n");
2930         return 0;
2931 }
2932
2933 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2934 {
2935         u32 current_index = 0, previous_index;
2936         u32 watchdog = 0;
2937
2938         IPW_DEBUG_FW(">> : \n");
2939
2940         current_index = ipw_fw_dma_command_block_index(priv);
2941         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2942                           (int)priv->sram_desc.last_cb_index);
2943
2944         while (current_index < priv->sram_desc.last_cb_index) {
2945                 udelay(50);
2946                 previous_index = current_index;
2947                 current_index = ipw_fw_dma_command_block_index(priv);
2948
2949                 if (previous_index < current_index) {
2950                         watchdog = 0;
2951                         continue;
2952                 }
2953                 if (++watchdog > 400) {
2954                         IPW_DEBUG_FW_INFO("Timeout\n");
2955                         ipw_fw_dma_dump_command_block(priv);
2956                         ipw_fw_dma_abort(priv);
2957                         return -1;
2958                 }
2959         }
2960
2961         ipw_fw_dma_abort(priv);
2962
2963         /*Disable the DMA in the CSR register */
2964         ipw_set_bit(priv, IPW_RESET_REG,
2965                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2966
2967         IPW_DEBUG_FW("<< dmaWaitSync \n");
2968         return 0;
2969 }
2970
2971 static void ipw_remove_current_network(struct ipw_priv *priv)
2972 {
2973         struct list_head *element, *safe;
2974         struct libipw_network *network = NULL;
2975         unsigned long flags;
2976
2977         spin_lock_irqsave(&priv->ieee->lock, flags);
2978         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2979                 network = list_entry(element, struct libipw_network, list);
2980                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2981                         list_del(element);
2982                         list_add_tail(&network->list,
2983                                       &priv->ieee->network_free_list);
2984                 }
2985         }
2986         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2987 }
2988
2989 /**
2990  * Check that card is still alive.
2991  * Reads debug register from domain0.
2992  * If card is present, pre-defined value should
2993  * be found there.
2994  *
2995  * @param priv
2996  * @return 1 if card is present, 0 otherwise
2997  */
2998 static inline int ipw_alive(struct ipw_priv *priv)
2999 {
3000         return ipw_read32(priv, 0x90) == 0xd55555d5;
3001 }
3002
3003 /* timeout in msec, attempted in 10-msec quanta */
3004 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3005                                int timeout)
3006 {
3007         int i = 0;
3008
3009         do {
3010                 if ((ipw_read32(priv, addr) & mask) == mask)
3011                         return i;
3012                 mdelay(10);
3013                 i += 10;
3014         } while (i < timeout);
3015
3016         return -ETIME;
3017 }
3018
3019 /* These functions load the firmware and micro code for the operation of
3020  * the ipw hardware.  It assumes the buffer has all the bits for the
3021  * image and the caller is handling the memory allocation and clean up.
3022  */
3023
3024 static int ipw_stop_master(struct ipw_priv *priv)
3025 {
3026         int rc;
3027
3028         IPW_DEBUG_TRACE(">> \n");
3029         /* stop master. typical delay - 0 */
3030         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3031
3032         /* timeout is in msec, polled in 10-msec quanta */
3033         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3034                           IPW_RESET_REG_MASTER_DISABLED, 100);
3035         if (rc < 0) {
3036                 IPW_ERROR("wait for stop master failed after 100ms\n");
3037                 return -1;
3038         }
3039
3040         IPW_DEBUG_INFO("stop master %dms\n", rc);
3041
3042         return rc;
3043 }
3044
3045 static void ipw_arc_release(struct ipw_priv *priv)
3046 {
3047         IPW_DEBUG_TRACE(">> \n");
3048         mdelay(5);
3049
3050         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3051
3052         /* no one knows timing, for safety add some delay */
3053         mdelay(5);
3054 }
3055
3056 struct fw_chunk {
3057         __le32 address;
3058         __le32 length;
3059 };
3060
3061 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3062 {
3063         int rc = 0, i, addr;
3064         u8 cr = 0;
3065         __le16 *image;
3066
3067         image = (__le16 *) data;
3068
3069         IPW_DEBUG_TRACE(">> \n");
3070
3071         rc = ipw_stop_master(priv);
3072
3073         if (rc < 0)
3074                 return rc;
3075
3076         for (addr = IPW_SHARED_LOWER_BOUND;
3077              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3078                 ipw_write32(priv, addr, 0);
3079         }
3080
3081         /* no ucode (yet) */
3082         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3083         /* destroy DMA queues */
3084         /* reset sequence */
3085
3086         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3087         ipw_arc_release(priv);
3088         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3089         mdelay(1);
3090
3091         /* reset PHY */
3092         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3093         mdelay(1);
3094
3095         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3096         mdelay(1);
3097
3098         /* enable ucode store */
3099         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3100         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3101         mdelay(1);
3102
3103         /* write ucode */
3104         /**
3105          * @bug
3106          * Do NOT set indirect address register once and then
3107          * store data to indirect data register in the loop.
3108          * It seems very reasonable, but in this case DINO do not
3109          * accept ucode. It is essential to set address each time.
3110          */
3111         /* load new ipw uCode */
3112         for (i = 0; i < len / 2; i++)
3113                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3114                                 le16_to_cpu(image[i]));
3115
3116         /* enable DINO */
3117         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3118         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3119
3120         /* this is where the igx / win driver deveates from the VAP driver. */
3121
3122         /* wait for alive response */
3123         for (i = 0; i < 100; i++) {
3124                 /* poll for incoming data */
3125                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3126                 if (cr & DINO_RXFIFO_DATA)
3127                         break;
3128                 mdelay(1);
3129         }
3130
3131         if (cr & DINO_RXFIFO_DATA) {
3132                 /* alive_command_responce size is NOT multiple of 4 */
3133                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3134
3135                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3136                         response_buffer[i] =
3137                             cpu_to_le32(ipw_read_reg32(priv,
3138                                                        IPW_BASEBAND_RX_FIFO_READ));
3139                 memcpy(&priv->dino_alive, response_buffer,
3140                        sizeof(priv->dino_alive));
3141                 if (priv->dino_alive.alive_command == 1
3142                     && priv->dino_alive.ucode_valid == 1) {
3143                         rc = 0;
3144                         IPW_DEBUG_INFO
3145                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3146                              "of %02d/%02d/%02d %02d:%02d\n",
3147                              priv->dino_alive.software_revision,
3148                              priv->dino_alive.software_revision,
3149                              priv->dino_alive.device_identifier,
3150                              priv->dino_alive.device_identifier,
3151                              priv->dino_alive.time_stamp[0],
3152                              priv->dino_alive.time_stamp[1],
3153                              priv->dino_alive.time_stamp[2],
3154                              priv->dino_alive.time_stamp[3],
3155                              priv->dino_alive.time_stamp[4]);
3156                 } else {
3157                         IPW_DEBUG_INFO("Microcode is not alive\n");
3158                         rc = -EINVAL;
3159                 }
3160         } else {
3161                 IPW_DEBUG_INFO("No alive response from DINO\n");
3162                 rc = -ETIME;
3163         }
3164
3165         /* disable DINO, otherwise for some reason
3166            firmware have problem getting alive resp. */
3167         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3168
3169         return rc;
3170 }
3171
3172 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3173 {
3174         int ret = -1;
3175         int offset = 0;
3176         struct fw_chunk *chunk;
3177         int total_nr = 0;
3178         int i;
3179         struct pci_pool *pool;
3180         void **virts;
3181         dma_addr_t *phys;
3182
3183         IPW_DEBUG_TRACE("<< : \n");
3184
3185         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3186                         GFP_KERNEL);
3187         if (!virts)
3188                 return -ENOMEM;
3189
3190         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3191                         GFP_KERNEL);
3192         if (!phys) {
3193                 kfree(virts);
3194                 return -ENOMEM;
3195         }
3196         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3197         if (!pool) {
3198                 IPW_ERROR("pci_pool_create failed\n");
3199                 kfree(phys);
3200                 kfree(virts);
3201                 return -ENOMEM;
3202         }
3203
3204         /* Start the Dma */
3205         ret = ipw_fw_dma_enable(priv);
3206
3207         /* the DMA is already ready this would be a bug. */
3208         BUG_ON(priv->sram_desc.last_cb_index > 0);
3209
3210         do {
3211                 u32 chunk_len;
3212                 u8 *start;
3213                 int size;
3214                 int nr = 0;
3215
3216                 chunk = (struct fw_chunk *)(data + offset);
3217                 offset += sizeof(struct fw_chunk);
3218                 chunk_len = le32_to_cpu(chunk->length);
3219                 start = data + offset;
3220
3221                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3222                 for (i = 0; i < nr; i++) {
3223                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3224                                                          &phys[total_nr]);
3225                         if (!virts[total_nr]) {
3226                                 ret = -ENOMEM;
3227                                 goto out;
3228                         }
3229                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3230                                      CB_MAX_LENGTH);
3231                         memcpy(virts[total_nr], start, size);
3232                         start += size;
3233                         total_nr++;
3234                         /* We don't support fw chunk larger than 64*8K */
3235                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3236                 }
3237
3238                 /* build DMA packet and queue up for sending */
3239                 /* dma to chunk->address, the chunk->length bytes from data +
3240                  * offeset*/
3241                 /* Dma loading */
3242                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3243                                             nr, le32_to_cpu(chunk->address),
3244                                             chunk_len);
3245                 if (ret) {
3246                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3247                         goto out;
3248                 }
3249
3250                 offset += chunk_len;
3251         } while (offset < len);
3252
3253         /* Run the DMA and wait for the answer */
3254         ret = ipw_fw_dma_kick(priv);
3255         if (ret) {
3256                 IPW_ERROR("dmaKick Failed\n");
3257                 goto out;
3258         }
3259
3260         ret = ipw_fw_dma_wait(priv);
3261         if (ret) {
3262                 IPW_ERROR("dmaWaitSync Failed\n");
3263                 goto out;
3264         }
3265  out:
3266         for (i = 0; i < total_nr; i++)
3267                 pci_pool_free(pool, virts[i], phys[i]);
3268
3269         pci_pool_destroy(pool);
3270         kfree(phys);
3271         kfree(virts);
3272
3273         return ret;
3274 }
3275
3276 /* stop nic */
3277 static int ipw_stop_nic(struct ipw_priv *priv)
3278 {
3279         int rc = 0;
3280
3281         /* stop */
3282         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3283
3284         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3285                           IPW_RESET_REG_MASTER_DISABLED, 500);
3286         if (rc < 0) {
3287                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3288                 return rc;
3289         }
3290
3291         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3292
3293         return rc;
3294 }
3295
3296 static void ipw_start_nic(struct ipw_priv *priv)
3297 {
3298         IPW_DEBUG_TRACE(">>\n");
3299
3300         /* prvHwStartNic  release ARC */
3301         ipw_clear_bit(priv, IPW_RESET_REG,
3302                       IPW_RESET_REG_MASTER_DISABLED |
3303                       IPW_RESET_REG_STOP_MASTER |
3304                       CBD_RESET_REG_PRINCETON_RESET);
3305
3306         /* enable power management */
3307         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3308                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3309
3310         IPW_DEBUG_TRACE("<<\n");
3311 }
3312
3313 static int ipw_init_nic(struct ipw_priv *priv)
3314 {
3315         int rc;
3316
3317         IPW_DEBUG_TRACE(">>\n");
3318         /* reset */
3319         /*prvHwInitNic */
3320         /* set "initialization complete" bit to move adapter to D0 state */
3321         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3322
3323         /* low-level PLL activation */
3324         ipw_write32(priv, IPW_READ_INT_REGISTER,
3325                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3326
3327         /* wait for clock stabilization */
3328         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3329                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3330         if (rc < 0)
3331                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3332
3333         /* assert SW reset */
3334         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3335
3336         udelay(10);
3337
3338         /* set "initialization complete" bit to move adapter to D0 state */
3339         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3340
3341         IPW_DEBUG_TRACE(">>\n");
3342         return 0;
3343 }
3344
3345 /* Call this function from process context, it will sleep in request_firmware.
3346  * Probe is an ok place to call this from.
3347  */
3348 static int ipw_reset_nic(struct ipw_priv *priv)
3349 {
3350         int rc = 0;
3351         unsigned long flags;
3352
3353         IPW_DEBUG_TRACE(">>\n");
3354
3355         rc = ipw_init_nic(priv);
3356
3357         spin_lock_irqsave(&priv->lock, flags);
3358         /* Clear the 'host command active' bit... */
3359         priv->status &= ~STATUS_HCMD_ACTIVE;
3360         wake_up_interruptible(&priv->wait_command_queue);
3361         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3362         wake_up_interruptible(&priv->wait_state);
3363         spin_unlock_irqrestore(&priv->lock, flags);
3364
3365         IPW_DEBUG_TRACE("<<\n");
3366         return rc;
3367 }
3368
3369
3370 struct ipw_fw {
3371         __le32 ver;
3372         __le32 boot_size;
3373         __le32 ucode_size;
3374         __le32 fw_size;
3375         u8 data[0];
3376 };
3377
3378 static int ipw_get_fw(struct ipw_priv *priv,
3379                       const struct firmware **raw, const char *name)
3380 {
3381         struct ipw_fw *fw;
3382         int rc;
3383
3384         /* ask firmware_class module to get the boot firmware off disk */
3385         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3386         if (rc < 0) {
3387                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3388                 return rc;
3389         }
3390
3391         if ((*raw)->size < sizeof(*fw)) {
3392                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3393                 return -EINVAL;
3394         }
3395
3396         fw = (void *)(*raw)->data;
3397
3398         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3399             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3400                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3401                           name, (*raw)->size);
3402                 return -EINVAL;
3403         }
3404
3405         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3406                        name,
3407                        le32_to_cpu(fw->ver) >> 16,
3408                        le32_to_cpu(fw->ver) & 0xff,
3409                        (*raw)->size - sizeof(*fw));
3410         return 0;
3411 }
3412
3413 #define IPW_RX_BUF_SIZE (3000)
3414
3415 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3416                                       struct ipw_rx_queue *rxq)
3417 {
3418         unsigned long flags;
3419         int i;
3420
3421         spin_lock_irqsave(&rxq->lock, flags);
3422
3423         INIT_LIST_HEAD(&rxq->rx_free);
3424         INIT_LIST_HEAD(&rxq->rx_used);
3425
3426         /* Fill the rx_used queue with _all_ of the Rx buffers */
3427         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3428                 /* In the reset function, these buffers may have been allocated
3429                  * to an SKB, so we need to unmap and free potential storage */
3430                 if (rxq->pool[i].skb != NULL) {
3431                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3432                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3433                         dev_kfree_skb(rxq->pool[i].skb);
3434                         rxq->pool[i].skb = NULL;
3435                 }
3436                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3437         }
3438
3439         /* Set us so that we have processed and used all buffers, but have
3440          * not restocked the Rx queue with fresh buffers */
3441         rxq->read = rxq->write = 0;
3442         rxq->free_count = 0;
3443         spin_unlock_irqrestore(&rxq->lock, flags);
3444 }
3445
3446 #ifdef CONFIG_PM
3447 static int fw_loaded = 0;
3448 static const struct firmware *raw = NULL;
3449
3450 static void free_firmware(void)
3451 {
3452         if (fw_loaded) {
3453                 release_firmware(raw);
3454                 raw = NULL;
3455                 fw_loaded = 0;
3456         }
3457 }
3458 #else
3459 #define free_firmware() do {} while (0)
3460 #endif
3461
3462 static int ipw_load(struct ipw_priv *priv)
3463 {
3464 #ifndef CONFIG_PM
3465         const struct firmware *raw = NULL;
3466 #endif
3467         struct ipw_fw *fw;
3468         u8 *boot_img, *ucode_img, *fw_img;
3469         u8 *name = NULL;
3470         int rc = 0, retries = 3;
3471
3472         switch (priv->ieee->iw_mode) {
3473         case IW_MODE_ADHOC:
3474                 name = "ipw2200-ibss.fw";
3475                 break;
3476 #ifdef CONFIG_IPW2200_MONITOR
3477         case IW_MODE_MONITOR:
3478                 name = "ipw2200-sniffer.fw";
3479                 break;
3480 #endif
3481         case IW_MODE_INFRA:
3482                 name = "ipw2200-bss.fw";
3483                 break;
3484         }
3485
3486         if (!name) {
3487                 rc = -EINVAL;
3488                 goto error;
3489         }
3490
3491 #ifdef CONFIG_PM
3492         if (!fw_loaded) {
3493 #endif
3494                 rc = ipw_get_fw(priv, &raw, name);
3495                 if (rc < 0)
3496                         goto error;
3497 #ifdef CONFIG_PM
3498         }
3499 #endif
3500
3501         fw = (void *)raw->data;
3502         boot_img = &fw->data[0];
3503         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3504         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3505                            le32_to_cpu(fw->ucode_size)];
3506
3507         if (rc < 0)
3508                 goto error;
3509
3510         if (!priv->rxq)
3511                 priv->rxq = ipw_rx_queue_alloc(priv);
3512         else
3513                 ipw_rx_queue_reset(priv, priv->rxq);
3514         if (!priv->rxq) {
3515                 IPW_ERROR("Unable to initialize Rx queue\n");
3516                 goto error;
3517         }
3518
3519       retry:
3520         /* Ensure interrupts are disabled */
3521         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3522         priv->status &= ~STATUS_INT_ENABLED;
3523
3524         /* ack pending interrupts */
3525         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3526
3527         ipw_stop_nic(priv);
3528
3529         rc = ipw_reset_nic(priv);
3530         if (rc < 0) {
3531                 IPW_ERROR("Unable to reset NIC\n");
3532                 goto error;
3533         }
3534
3535         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3536                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3537
3538         /* DMA the initial boot firmware into the device */
3539         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3540         if (rc < 0) {
3541                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3542                 goto error;
3543         }
3544
3545         /* kick start the device */
3546         ipw_start_nic(priv);
3547
3548         /* wait for the device to finish its initial startup sequence */
3549         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3550                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3551         if (rc < 0) {
3552                 IPW_ERROR("device failed to boot initial fw image\n");
3553                 goto error;
3554         }
3555         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3556
3557         /* ack fw init done interrupt */
3558         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3559
3560         /* DMA the ucode into the device */
3561         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3562         if (rc < 0) {
3563                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3564                 goto error;
3565         }
3566
3567         /* stop nic */
3568         ipw_stop_nic(priv);
3569
3570         /* DMA bss firmware into the device */
3571         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3572         if (rc < 0) {
3573                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3574                 goto error;
3575         }
3576 #ifdef CONFIG_PM
3577         fw_loaded = 1;
3578 #endif
3579
3580         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3581
3582         rc = ipw_queue_reset(priv);
3583         if (rc < 0) {
3584                 IPW_ERROR("Unable to initialize queues\n");
3585                 goto error;
3586         }
3587
3588         /* Ensure interrupts are disabled */
3589         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3590         /* ack pending interrupts */
3591         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3592
3593         /* kick start the device */
3594         ipw_start_nic(priv);
3595
3596         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3597                 if (retries > 0) {
3598                         IPW_WARNING("Parity error.  Retrying init.\n");
3599                         retries--;
3600                         goto retry;
3601                 }
3602
3603                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3604                 rc = -EIO;
3605                 goto error;
3606         }
3607
3608         /* wait for the device */
3609         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3610                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3611         if (rc < 0) {
3612                 IPW_ERROR("device failed to start within 500ms\n");
3613                 goto error;
3614         }
3615         IPW_DEBUG_INFO("device response after %dms\n", rc);
3616
3617         /* ack fw init done interrupt */
3618         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3619
3620         /* read eeprom data and initialize the eeprom region of sram */
3621         priv->eeprom_delay = 1;
3622         ipw_eeprom_init_sram(priv);
3623
3624         /* enable interrupts */
3625         ipw_enable_interrupts(priv);
3626
3627         /* Ensure our queue has valid packets */
3628         ipw_rx_queue_replenish(priv);
3629
3630         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3631
3632         /* ack pending interrupts */
3633         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3634
3635 #ifndef CONFIG_PM
3636         release_firmware(raw);
3637 #endif
3638         return 0;
3639
3640       error:
3641         if (priv->rxq) {
3642                 ipw_rx_queue_free(priv, priv->rxq);
3643                 priv->rxq = NULL;
3644         }
3645         ipw_tx_queue_free(priv);
3646         if (raw)
3647                 release_firmware(raw);
3648 #ifdef CONFIG_PM
3649         fw_loaded = 0;
3650         raw = NULL;
3651 #endif
3652
3653         return rc;
3654 }
3655
3656 /**
3657  * DMA services
3658  *
3659  * Theory of operation
3660  *
3661  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3662  * 2 empty entries always kept in the buffer to protect from overflow.
3663  *
3664  * For Tx queue, there are low mark and high mark limits. If, after queuing
3665  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3666  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3667  * Tx queue resumed.
3668  *
3669  * The IPW operates with six queues, one receive queue in the device's
3670  * sram, one transmit queue for sending commands to the device firmware,
3671  * and four transmit queues for data.
3672  *
3673  * The four transmit queues allow for performing quality of service (qos)
3674  * transmissions as per the 802.11 protocol.  Currently Linux does not
3675  * provide a mechanism to the user for utilizing prioritized queues, so
3676  * we only utilize the first data transmit queue (queue1).
3677  */
3678
3679 /**
3680  * Driver allocates buffers of this size for Rx
3681  */
3682
3683 /**
3684  * ipw_rx_queue_space - Return number of free slots available in queue.
3685  */
3686 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3687 {
3688         int s = q->read - q->write;
3689         if (s <= 0)
3690                 s += RX_QUEUE_SIZE;
3691         /* keep some buffer to not confuse full and empty queue */
3692         s -= 2;
3693         if (s < 0)
3694                 s = 0;
3695         return s;
3696 }
3697
3698 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3699 {
3700         int s = q->last_used - q->first_empty;
3701         if (s <= 0)
3702                 s += q->n_bd;
3703         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3704         if (s < 0)
3705                 s = 0;
3706         return s;
3707 }
3708
3709 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3710 {
3711         return (++index == n_bd) ? 0 : index;
3712 }
3713
3714 /**
3715  * Initialize common DMA queue structure
3716  *
3717  * @param q                queue to init
3718  * @param count            Number of BD's to allocate. Should be power of 2
3719  * @param read_register    Address for 'read' register
3720  *                         (not offset within BAR, full address)
3721  * @param write_register   Address for 'write' register
3722  *                         (not offset within BAR, full address)
3723  * @param base_register    Address for 'base' register
3724  *                         (not offset within BAR, full address)
3725  * @param size             Address for 'size' register
3726  *                         (not offset within BAR, full address)
3727  */
3728 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3729                            int count, u32 read, u32 write, u32 base, u32 size)
3730 {
3731         q->n_bd = count;
3732
3733         q->low_mark = q->n_bd / 4;
3734         if (q->low_mark < 4)
3735                 q->low_mark = 4;
3736
3737         q->high_mark = q->n_bd / 8;
3738         if (q->high_mark < 2)
3739                 q->high_mark = 2;
3740
3741         q->first_empty = q->last_used = 0;
3742         q->reg_r = read;
3743         q->reg_w = write;
3744
3745         ipw_write32(priv, base, q->dma_addr);
3746         ipw_write32(priv, size, count);
3747         ipw_write32(priv, read, 0);
3748         ipw_write32(priv, write, 0);
3749
3750         _ipw_read32(priv, 0x90);
3751 }
3752
3753 static int ipw_queue_tx_init(struct ipw_priv *priv,
3754                              struct clx2_tx_queue *q,
3755                              int count, u32 read, u32 write, u32 base, u32 size)
3756 {
3757         struct pci_dev *dev = priv->pci_dev;
3758
3759         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3760         if (!q->txb) {
3761                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3762                 return -ENOMEM;
3763         }
3764
3765         q->bd =
3766             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3767         if (!q->bd) {
3768                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3769                           sizeof(q->bd[0]) * count);
3770                 kfree(q->txb);
3771                 q->txb = NULL;
3772                 return -ENOMEM;
3773         }
3774
3775         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3776         return 0;
3777 }
3778
3779 /**
3780  * Free one TFD, those at index [txq->q.last_used].
3781  * Do NOT advance any indexes
3782  *
3783  * @param dev
3784  * @param txq
3785  */
3786 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3787                                   struct clx2_tx_queue *txq)
3788 {
3789         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3790         struct pci_dev *dev = priv->pci_dev;
3791         int i;
3792
3793         /* classify bd */
3794         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3795                 /* nothing to cleanup after for host commands */
3796                 return;
3797
3798         /* sanity check */
3799         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3800                 IPW_ERROR("Too many chunks: %i\n",
3801                           le32_to_cpu(bd->u.data.num_chunks));
3802                 /** @todo issue fatal error, it is quite serious situation */
3803                 return;
3804         }
3805
3806         /* unmap chunks if any */
3807         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3808                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3809                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3810                                  PCI_DMA_TODEVICE);
3811                 if (txq->txb[txq->q.last_used]) {
3812                         libipw_txb_free(txq->txb[txq->q.last_used]);
3813                         txq->txb[txq->q.last_used] = NULL;
3814                 }
3815         }
3816 }
3817
3818 /**
3819  * Deallocate DMA queue.
3820  *
3821  * Empty queue by removing and destroying all BD's.
3822  * Free all buffers.
3823  *
3824  * @param dev
3825  * @param q
3826  */
3827 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3828 {
3829         struct clx2_queue *q = &txq->q;
3830         struct pci_dev *dev = priv->pci_dev;
3831
3832         if (q->n_bd == 0)
3833                 return;
3834
3835         /* first, empty all BD's */
3836         for (; q->first_empty != q->last_used;
3837              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3838                 ipw_queue_tx_free_tfd(priv, txq);
3839         }
3840
3841         /* free buffers belonging to queue itself */
3842         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3843                             q->dma_addr);
3844         kfree(txq->txb);
3845
3846         /* 0 fill whole structure */
3847         memset(txq, 0, sizeof(*txq));
3848 }
3849
3850 /**
3851  * Destroy all DMA queues and structures
3852  *
3853  * @param priv
3854  */
3855 static void ipw_tx_queue_free(struct ipw_priv *priv)
3856 {
3857         /* Tx CMD queue */
3858         ipw_queue_tx_free(priv, &priv->txq_cmd);
3859
3860         /* Tx queues */
3861         ipw_queue_tx_free(priv, &priv->txq[0]);
3862         ipw_queue_tx_free(priv, &priv->txq[1]);
3863         ipw_queue_tx_free(priv, &priv->txq[2]);
3864         ipw_queue_tx_free(priv, &priv->txq[3]);
3865 }
3866
3867 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3868 {
3869         /* First 3 bytes are manufacturer */
3870         bssid[0] = priv->mac_addr[0];
3871         bssid[1] = priv->mac_addr[1];
3872         bssid[2] = priv->mac_addr[2];
3873
3874         /* Last bytes are random */
3875         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3876
3877         bssid[0] &= 0xfe;       /* clear multicast bit */
3878         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3879 }
3880
3881 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3882 {
3883         struct ipw_station_entry entry;
3884         int i;
3885
3886         for (i = 0; i < priv->num_stations; i++) {
3887                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3888                         /* Another node is active in network */
3889                         priv->missed_adhoc_beacons = 0;
3890                         if (!(priv->config & CFG_STATIC_CHANNEL))
3891                                 /* when other nodes drop out, we drop out */
3892                                 priv->config &= ~CFG_ADHOC_PERSIST;
3893
3894                         return i;
3895                 }
3896         }
3897
3898         if (i == MAX_STATIONS)
3899                 return IPW_INVALID_STATION;
3900
3901         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3902
3903         entry.reserved = 0;
3904         entry.support_mode = 0;
3905         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3906         memcpy(priv->stations[i], bssid, ETH_ALEN);
3907         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3908                          &entry, sizeof(entry));
3909         priv->num_stations++;
3910
3911         return i;
3912 }
3913
3914 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3915 {
3916         int i;
3917
3918         for (i = 0; i < priv->num_stations; i++)
3919                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3920                         return i;
3921
3922         return IPW_INVALID_STATION;
3923 }
3924
3925 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3926 {
3927         int err;
3928
3929         if (priv->status & STATUS_ASSOCIATING) {
3930                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3931                 queue_work(priv->workqueue, &priv->disassociate);
3932                 return;
3933         }
3934
3935         if (!(priv->status & STATUS_ASSOCIATED)) {
3936                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3937                 return;
3938         }
3939
3940         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3941                         "on channel %d.\n",
3942                         priv->assoc_request.bssid,
3943                         priv->assoc_request.channel);
3944
3945         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3946         priv->status |= STATUS_DISASSOCIATING;
3947
3948         if (quiet)
3949                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3950         else
3951                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3952
3953         err = ipw_send_associate(priv, &priv->assoc_request);
3954         if (err) {
3955                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3956                              "failed.\n");
3957                 return;
3958         }
3959
3960 }
3961
3962 static int ipw_disassociate(void *data)
3963 {
3964         struct ipw_priv *priv = data;
3965         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3966                 return 0;
3967         ipw_send_disassociate(data, 0);
3968         netif_carrier_off(priv->net_dev);
3969         return 1;
3970 }
3971
3972 static void ipw_bg_disassociate(struct work_struct *work)
3973 {
3974         struct ipw_priv *priv =
3975                 container_of(work, struct ipw_priv, disassociate);
3976         mutex_lock(&priv->mutex);
3977         ipw_disassociate(priv);
3978         mutex_unlock(&priv->mutex);
3979 }
3980
3981 static void ipw_system_config(struct work_struct *work)
3982 {
3983         struct ipw_priv *priv =
3984                 container_of(work, struct ipw_priv, system_config);
3985
3986 #ifdef CONFIG_IPW2200_PROMISCUOUS
3987         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3988                 priv->sys_config.accept_all_data_frames = 1;
3989                 priv->sys_config.accept_non_directed_frames = 1;
3990                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3991                 priv->sys_config.accept_all_mgmt_frames = 1;
3992         }
3993 #endif
3994
3995         ipw_send_system_config(priv);
3996 }
3997
3998 struct ipw_status_code {
3999         u16 status;
4000         const char *reason;
4001 };
4002
4003 static const struct ipw_status_code ipw_status_codes[] = {
4004         {0x00, "Successful"},
4005         {0x01, "Unspecified failure"},
4006         {0x0A, "Cannot support all requested capabilities in the "
4007          "Capability information field"},
4008         {0x0B, "Reassociation denied due to inability to confirm that "
4009          "association exists"},
4010         {0x0C, "Association denied due to reason outside the scope of this "
4011          "standard"},
4012         {0x0D,
4013          "Responding station does not support the specified authentication "
4014          "algorithm"},
4015         {0x0E,
4016          "Received an Authentication frame with authentication sequence "
4017          "transaction sequence number out of expected sequence"},
4018         {0x0F, "Authentication rejected because of challenge failure"},
4019         {0x10, "Authentication rejected due to timeout waiting for next "
4020          "frame in sequence"},
4021         {0x11, "Association denied because AP is unable to handle additional "
4022          "associated stations"},
4023         {0x12,
4024          "Association denied due to requesting station not supporting all "
4025          "of the datarates in the BSSBasicServiceSet Parameter"},
4026         {0x13,
4027          "Association denied due to requesting station not supporting "
4028          "short preamble operation"},
4029         {0x14,
4030          "Association denied due to requesting station not supporting "
4031          "PBCC encoding"},
4032         {0x15,
4033          "Association denied due to requesting station not supporting "
4034          "channel agility"},
4035         {0x19,
4036          "Association denied due to requesting station not supporting "
4037          "short slot operation"},
4038         {0x1A,
4039          "Association denied due to requesting station not supporting "
4040          "DSSS-OFDM operation"},
4041         {0x28, "Invalid Information Element"},
4042         {0x29, "Group Cipher is not valid"},
4043         {0x2A, "Pairwise Cipher is not valid"},
4044         {0x2B, "AKMP is not valid"},
4045         {0x2C, "Unsupported RSN IE version"},
4046         {0x2D, "Invalid RSN IE Capabilities"},
4047         {0x2E, "Cipher suite is rejected per security policy"},
4048 };
4049
4050 static const char *ipw_get_status_code(u16 status)
4051 {
4052         int i;
4053         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4054                 if (ipw_status_codes[i].status == (status & 0xff))
4055                         return ipw_status_codes[i].reason;
4056         return "Unknown status value.";
4057 }
4058
4059 static void inline average_init(struct average *avg)
4060 {
4061         memset(avg, 0, sizeof(*avg));
4062 }
4063
4064 #define DEPTH_RSSI 8
4065 #define DEPTH_NOISE 16
4066 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4067 {
4068         return ((depth-1)*prev_avg +  val)/depth;
4069 }
4070
4071 static void average_add(struct average *avg, s16 val)
4072 {
4073         avg->sum -= avg->entries[avg->pos];
4074         avg->sum += val;
4075         avg->entries[avg->pos++] = val;
4076         if (unlikely(avg->pos == AVG_ENTRIES)) {
4077                 avg->init = 1;
4078                 avg->pos = 0;
4079         }
4080 }
4081
4082 static s16 average_value(struct average *avg)
4083 {
4084         if (!unlikely(avg->init)) {
4085                 if (avg->pos)
4086                         return avg->sum / avg->pos;
4087                 return 0;
4088         }
4089
4090         return avg->sum / AVG_ENTRIES;
4091 }
4092
4093 static void ipw_reset_stats(struct ipw_priv *priv)
4094 {
4095         u32 len = sizeof(u32);
4096
4097         priv->quality = 0;
4098
4099         average_init(&priv->average_missed_beacons);
4100         priv->exp_avg_rssi = -60;
4101         priv->exp_avg_noise = -85 + 0x100;
4102
4103         priv->last_rate = 0;
4104         priv->last_missed_beacons = 0;
4105         priv->last_rx_packets = 0;
4106         priv->last_tx_packets = 0;
4107         priv->last_tx_failures = 0;
4108
4109         /* Firmware managed, reset only when NIC is restarted, so we have to
4110          * normalize on the current value */
4111         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4112                         &priv->last_rx_err, &len);
4113         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4114                         &priv->last_tx_failures, &len);
4115
4116         /* Driver managed, reset with each association */
4117         priv->missed_adhoc_beacons = 0;
4118         priv->missed_beacons = 0;
4119         priv->tx_packets = 0;
4120         priv->rx_packets = 0;
4121
4122 }
4123
4124 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4125 {
4126         u32 i = 0x80000000;
4127         u32 mask = priv->rates_mask;
4128         /* If currently associated in B mode, restrict the maximum
4129          * rate match to B rates */
4130         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4131                 mask &= LIBIPW_CCK_RATES_MASK;
4132
4133         /* TODO: Verify that the rate is supported by the current rates
4134          * list. */
4135
4136         while (i && !(mask & i))
4137                 i >>= 1;
4138         switch (i) {
4139         case LIBIPW_CCK_RATE_1MB_MASK:
4140                 return 1000000;
4141         case LIBIPW_CCK_RATE_2MB_MASK:
4142                 return 2000000;
4143         case LIBIPW_CCK_RATE_5MB_MASK:
4144                 return 5500000;
4145         case LIBIPW_OFDM_RATE_6MB_MASK:
4146                 return 6000000;
4147         case LIBIPW_OFDM_RATE_9MB_MASK:
4148                 return 9000000;
4149         case LIBIPW_CCK_RATE_11MB_MASK:
4150                 return 11000000;
4151         case LIBIPW_OFDM_RATE_12MB_MASK:
4152                 return 12000000;
4153         case LIBIPW_OFDM_RATE_18MB_MASK:
4154                 return 18000000;
4155         case LIBIPW_OFDM_RATE_24MB_MASK:
4156                 return 24000000;
4157         case LIBIPW_OFDM_RATE_36MB_MASK:
4158                 return 36000000;
4159         case LIBIPW_OFDM_RATE_48MB_MASK:
4160                 return 48000000;
4161         case LIBIPW_OFDM_RATE_54MB_MASK:
4162                 return 54000000;
4163         }
4164
4165         if (priv->ieee->mode == IEEE_B)
4166                 return 11000000;
4167         else
4168                 return 54000000;
4169 }
4170
4171 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4172 {
4173         u32 rate, len = sizeof(rate);
4174         int err;
4175
4176         if (!(priv->status & STATUS_ASSOCIATED))
4177                 return 0;
4178
4179         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4180                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4181                                       &len);
4182                 if (err) {
4183                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4184                         return 0;
4185                 }
4186         } else
4187                 return ipw_get_max_rate(priv);
4188
4189         switch (rate) {
4190         case IPW_TX_RATE_1MB:
4191                 return 1000000;
4192         case IPW_TX_RATE_2MB:
4193                 return 2000000;
4194         case IPW_TX_RATE_5MB:
4195                 return 5500000;
4196         case IPW_TX_RATE_6MB:
4197                 return 6000000;
4198         case IPW_TX_RATE_9MB:
4199                 return 9000000;
4200         case IPW_TX_RATE_11MB:
4201                 return 11000000;
4202         case IPW_TX_RATE_12MB:
4203                 return 12000000;
4204         case IPW_TX_RATE_18MB:
4205                 return 18000000;
4206         case IPW_TX_RATE_24MB:
4207                 return 24000000;
4208         case IPW_TX_RATE_36MB:
4209                 return 36000000;
4210         case IPW_TX_RATE_48MB:
4211                 return 48000000;
4212         case IPW_TX_RATE_54MB:
4213                 return 54000000;
4214         }
4215
4216         return 0;
4217 }
4218
4219 #define IPW_STATS_INTERVAL (2 * HZ)
4220 static void ipw_gather_stats(struct ipw_priv *priv)
4221 {
4222         u32 rx_err, rx_err_delta, rx_packets_delta;
4223         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4224         u32 missed_beacons_percent, missed_beacons_delta;
4225         u32 quality = 0;
4226         u32 len = sizeof(u32);
4227         s16 rssi;
4228         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4229             rate_quality;
4230         u32 max_rate;
4231
4232         if (!(priv->status & STATUS_ASSOCIATED)) {
4233                 priv->quality = 0;
4234                 return;
4235         }
4236
4237         /* Update the statistics */
4238         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4239                         &priv->missed_beacons, &len);
4240         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4241         priv->last_missed_beacons = priv->missed_beacons;
4242         if (priv->assoc_request.beacon_interval) {
4243                 missed_beacons_percent = missed_beacons_delta *
4244                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4245                     (IPW_STATS_INTERVAL * 10);
4246         } else {
4247                 missed_beacons_percent = 0;
4248         }
4249         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4250
4251         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4252         rx_err_delta = rx_err - priv->last_rx_err;
4253         priv->last_rx_err = rx_err;
4254
4255         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4256         tx_failures_delta = tx_failures - priv->last_tx_failures;
4257         priv->last_tx_failures = tx_failures;
4258
4259         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4260         priv->last_rx_packets = priv->rx_packets;
4261
4262         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4263         priv->last_tx_packets = priv->tx_packets;
4264
4265         /* Calculate quality based on the following:
4266          *
4267          * Missed beacon: 100% = 0, 0% = 70% missed
4268          * Rate: 60% = 1Mbs, 100% = Max
4269          * Rx and Tx errors represent a straight % of total Rx/Tx
4270          * RSSI: 100% = > -50,  0% = < -80
4271          * Rx errors: 100% = 0, 0% = 50% missed
4272          *
4273          * The lowest computed quality is used.
4274          *
4275          */
4276 #define BEACON_THRESHOLD 5
4277         beacon_quality = 100 - missed_beacons_percent;
4278         if (beacon_quality < BEACON_THRESHOLD)
4279                 beacon_quality = 0;
4280         else
4281                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4282                     (100 - BEACON_THRESHOLD);
4283         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4284                         beacon_quality, missed_beacons_percent);
4285
4286         priv->last_rate = ipw_get_current_rate(priv);
4287         max_rate = ipw_get_max_rate(priv);
4288         rate_quality = priv->last_rate * 40 / max_rate + 60;
4289         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4290                         rate_quality, priv->last_rate / 1000000);
4291
4292         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4293                 rx_quality = 100 - (rx_err_delta * 100) /
4294                     (rx_packets_delta + rx_err_delta);
4295         else
4296                 rx_quality = 100;
4297         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4298                         rx_quality, rx_err_delta, rx_packets_delta);
4299
4300         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4301                 tx_quality = 100 - (tx_failures_delta * 100) /
4302                     (tx_packets_delta + tx_failures_delta);
4303         else
4304                 tx_quality = 100;
4305         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4306                         tx_quality, tx_failures_delta, tx_packets_delta);
4307
4308         rssi = priv->exp_avg_rssi;
4309         signal_quality =
4310             (100 *
4311              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4312              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4313              (priv->ieee->perfect_rssi - rssi) *
4314              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4315               62 * (priv->ieee->perfect_rssi - rssi))) /
4316             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4317              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4318         if (signal_quality > 100)
4319                 signal_quality = 100;
4320         else if (signal_quality < 1)
4321                 signal_quality = 0;
4322
4323         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4324                         signal_quality, rssi);
4325
4326         quality = min(rx_quality, signal_quality);
4327         quality = min(tx_quality, quality);
4328         quality = min(rate_quality, quality);
4329         quality = min(beacon_quality, quality);
4330         if (quality == beacon_quality)
4331                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4332                                 quality);
4333         if (quality == rate_quality)
4334                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4335                                 quality);
4336         if (quality == tx_quality)
4337                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4338                                 quality);
4339         if (quality == rx_quality)
4340                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4341                                 quality);
4342         if (quality == signal_quality)
4343                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4344                                 quality);
4345
4346         priv->quality = quality;
4347
4348         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4349                            IPW_STATS_INTERVAL);
4350 }
4351
4352 static void ipw_bg_gather_stats(struct work_struct *work)
4353 {
4354         struct ipw_priv *priv =
4355                 container_of(work, struct ipw_priv, gather_stats.work);
4356         mutex_lock(&priv->mutex);
4357         ipw_gather_stats(priv);
4358         mutex_unlock(&priv->mutex);
4359 }
4360
4361 /* Missed beacon behavior:
4362  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4363  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4364  * Above disassociate threshold, give up and stop scanning.
4365  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4366 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4367                                             int missed_count)
4368 {
4369         priv->notif_missed_beacons = missed_count;
4370
4371         if (missed_count > priv->disassociate_threshold &&
4372             priv->status & STATUS_ASSOCIATED) {
4373                 /* If associated and we've hit the missed
4374                  * beacon threshold, disassociate, turn
4375                  * off roaming, and abort any active scans */
4376                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4377                           IPW_DL_STATE | IPW_DL_ASSOC,
4378                           "Missed beacon: %d - disassociate\n", missed_count);
4379                 priv->status &= ~STATUS_ROAMING;
4380                 if (priv->status & STATUS_SCANNING) {
4381                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4382                                   IPW_DL_STATE,
4383                                   "Aborting scan with missed beacon.\n");
4384                         queue_work(priv->workqueue, &priv->abort_scan);
4385                 }
4386
4387                 queue_work(priv->workqueue, &priv->disassociate);
4388                 return;
4389         }
4390
4391         if (priv->status & STATUS_ROAMING) {
4392                 /* If we are currently roaming, then just
4393                  * print a debug statement... */
4394                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4395                           "Missed beacon: %d - roam in progress\n",
4396                           missed_count);
4397                 return;
4398         }
4399
4400         if (roaming &&
4401             (missed_count > priv->roaming_threshold &&
4402              missed_count <= priv->disassociate_threshold)) {
4403                 /* If we are not already roaming, set the ROAM
4404                  * bit in the status and kick off a scan.
4405                  * This can happen several times before we reach
4406                  * disassociate_threshold. */
4407                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4408                           "Missed beacon: %d - initiate "
4409                           "roaming\n", missed_count);
4410                 if (!(priv->status & STATUS_ROAMING)) {
4411                         priv->status |= STATUS_ROAMING;
4412                         if (!(priv->status & STATUS_SCANNING))
4413                                 queue_delayed_work(priv->workqueue,
4414                                                    &priv->request_scan, 0);
4415                 }
4416                 return;
4417         }
4418
4419         if (priv->status & STATUS_SCANNING &&
4420             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4421                 /* Stop scan to keep fw from getting
4422                  * stuck (only if we aren't roaming --
4423                  * otherwise we'll never scan more than 2 or 3
4424                  * channels..) */
4425                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4426                           "Aborting scan with missed beacon.\n");
4427                 queue_work(priv->workqueue, &priv->abort_scan);
4428         }
4429
4430         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4431 }
4432
4433 static void ipw_scan_event(struct work_struct *work)
4434 {
4435         union iwreq_data wrqu;
4436
4437         struct ipw_priv *priv =
4438                 container_of(work, struct ipw_priv, scan_event.work);
4439
4440         wrqu.data.length = 0;
4441         wrqu.data.flags = 0;
4442         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4443 }
4444
4445 static void handle_scan_event(struct ipw_priv *priv)
4446 {
4447         /* Only userspace-requested scan completion events go out immediately */
4448         if (!priv->user_requested_scan) {
4449                 if (!delayed_work_pending(&priv->scan_event))
4450                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4451                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4452         } else {
4453                 union iwreq_data wrqu;
4454
4455                 priv->user_requested_scan = 0;
4456                 cancel_delayed_work(&priv->scan_event);
4457
4458                 wrqu.data.length = 0;
4459                 wrqu.data.flags = 0;
4460                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4461         }
4462 }
4463
4464 /**
4465  * Handle host notification packet.
4466  * Called from interrupt routine
4467  */
4468 static void ipw_rx_notification(struct ipw_priv *priv,
4469                                        struct ipw_rx_notification *notif)
4470 {
4471         DECLARE_SSID_BUF(ssid);
4472         u16 size = le16_to_cpu(notif->size);
4473
4474         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4475
4476         switch (notif->subtype) {
4477         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4478                         struct notif_association *assoc = &notif->u.assoc;
4479
4480                         switch (assoc->state) {
4481                         case CMAS_ASSOCIATED:{
4482                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4483                                                   IPW_DL_ASSOC,
4484                                                   "associated: '%s' %pM \n",
4485                                                   print_ssid(ssid, priv->essid,
4486                                                              priv->essid_len),
4487                                                   priv->bssid);
4488
4489                                         switch (priv->ieee->iw_mode) {
4490                                         case IW_MODE_INFRA:
4491                                                 memcpy(priv->ieee->bssid,
4492                                                        priv->bssid, ETH_ALEN);
4493                                                 break;
4494
4495                                         case IW_MODE_ADHOC:
4496                                                 memcpy(priv->ieee->bssid,
4497                                                        priv->bssid, ETH_ALEN);
4498
4499                                                 /* clear out the station table */
4500                                                 priv->num_stations = 0;
4501
4502                                                 IPW_DEBUG_ASSOC
4503                                                     ("queueing adhoc check\n");
4504                                                 queue_delayed_work(priv->
4505                                                                    workqueue,
4506                                                                    &priv->
4507                                                                    adhoc_check,
4508                                                                    le16_to_cpu(priv->
4509                                                                    assoc_request.
4510                                                                    beacon_interval));
4511                                                 break;
4512                                         }
4513
4514                                         priv->status &= ~STATUS_ASSOCIATING;
4515                                         priv->status |= STATUS_ASSOCIATED;
4516                                         queue_work(priv->workqueue,
4517                                                    &priv->system_config);
4518
4519 #ifdef CONFIG_IPW2200_QOS
4520 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4521                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4522                                         if ((priv->status & STATUS_AUTH) &&
4523                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4524                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4525                                                 if ((sizeof
4526                                                      (struct
4527                                                       libipw_assoc_response)
4528                                                      <= size)
4529                                                     && (size <= 2314)) {
4530                                                         struct
4531                                                         libipw_rx_stats
4532                                                             stats = {
4533                                                                 .len = size - 1,
4534                                                         };
4535
4536                                                         IPW_DEBUG_QOS
4537                                                             ("QoS Associate "
4538                                                              "size %d\n", size);
4539                                                         libipw_rx_mgt(priv->
4540                                                                          ieee,
4541                                                                          (struct
4542                                                                           libipw_hdr_4addr
4543                                                                           *)
4544                                                                          &notif->u.raw, &stats);
4545                                                 }
4546                                         }
4547 #endif
4548
4549                                         schedule_work(&priv->link_up);
4550
4551                                         break;
4552                                 }
4553
4554                         case CMAS_AUTHENTICATED:{
4555                                         if (priv->
4556                                             status & (STATUS_ASSOCIATED |
4557                                                       STATUS_AUTH)) {
4558                                                 struct notif_authenticate *auth
4559                                                     = &notif->u.auth;
4560                                                 IPW_DEBUG(IPW_DL_NOTIF |
4561                                                           IPW_DL_STATE |
4562                                                           IPW_DL_ASSOC,
4563                                                           "deauthenticated: '%s' "
4564                                                           "%pM"
4565                                                           ": (0x%04X) - %s \n",
4566                                                           print_ssid(ssid,
4567                                                                      priv->
4568                                                                      essid,
4569                                                                      priv->
4570                                                                      essid_len),
4571                                                           priv->bssid,
4572                                                           le16_to_cpu(auth->status),
4573                                                           ipw_get_status_code
4574                                                           (le16_to_cpu
4575                                                            (auth->status)));
4576
4577                                                 priv->status &=
4578                                                     ~(STATUS_ASSOCIATING |
4579                                                       STATUS_AUTH |
4580                                                       STATUS_ASSOCIATED);
4581
4582                                                 schedule_work(&priv->link_down);
4583                                                 break;
4584                                         }
4585
4586                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4587                                                   IPW_DL_ASSOC,
4588                                                   "authenticated: '%s' %pM\n",
4589                                                   print_ssid(ssid, priv->essid,
4590                                                              priv->essid_len),
4591                                                   priv->bssid);
4592                                         break;
4593                                 }
4594
4595                         case CMAS_INIT:{
4596                                         if (priv->status & STATUS_AUTH) {
4597                                                 struct
4598                                                     libipw_assoc_response
4599                                                 *resp;
4600                                                 resp =
4601                                                     (struct
4602                                                      libipw_assoc_response
4603                                                      *)&notif->u.raw;
4604                                                 IPW_DEBUG(IPW_DL_NOTIF |
4605                                                           IPW_DL_STATE |
4606                                                           IPW_DL_ASSOC,
4607                                                           "association failed (0x%04X): %s\n",
4608                                                           le16_to_cpu(resp->status),
4609                                                           ipw_get_status_code
4610                                                           (le16_to_cpu
4611                                                            (resp->status)));
4612                                         }
4613
4614                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4615                                                   IPW_DL_ASSOC,
4616                                                   "disassociated: '%s' %pM \n",
4617                                                   print_ssid(ssid, priv->essid,
4618                                                              priv->essid_len),
4619                                                   priv->bssid);
4620
4621                                         priv->status &=
4622                                             ~(STATUS_DISASSOCIATING |
4623                                               STATUS_ASSOCIATING |
4624                                               STATUS_ASSOCIATED | STATUS_AUTH);
4625                                         if (priv->assoc_network
4626                                             && (priv->assoc_network->
4627                                                 capability &
4628                                                 WLAN_CAPABILITY_IBSS))
4629                                                 ipw_remove_current_network
4630                                                     (priv);
4631
4632                                         schedule_work(&priv->link_down);
4633
4634                                         break;
4635                                 }
4636
4637                         case CMAS_RX_ASSOC_RESP:
4638                                 break;
4639
4640                         default:
4641                                 IPW_ERROR("assoc: unknown (%d)\n",
4642                                           assoc->state);
4643                                 break;
4644                         }
4645
4646                         break;
4647                 }
4648
4649         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4650                         struct notif_authenticate *auth = &notif->u.auth;
4651                         switch (auth->state) {
4652                         case CMAS_AUTHENTICATED:
4653                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4654                                           "authenticated: '%s' %pM \n",
4655                                           print_ssid(ssid, priv->essid,
4656                                                      priv->essid_len),
4657                                           priv->bssid);
4658                                 priv->status |= STATUS_AUTH;
4659                                 break;
4660
4661                         case CMAS_INIT:
4662                                 if (priv->status & STATUS_AUTH) {
4663                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4664                                                   IPW_DL_ASSOC,
4665                                                   "authentication failed (0x%04X): %s\n",
4666                                                   le16_to_cpu(auth->status),
4667                                                   ipw_get_status_code(le16_to_cpu
4668                                                                       (auth->
4669                                                                        status)));
4670                                 }
4671                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672                                           IPW_DL_ASSOC,
4673                                           "deauthenticated: '%s' %pM\n",
4674                                           print_ssid(ssid, priv->essid,
4675                                                      priv->essid_len),
4676                                           priv->bssid);
4677
4678                                 priv->status &= ~(STATUS_ASSOCIATING |
4679                                                   STATUS_AUTH |
4680                                                   STATUS_ASSOCIATED);
4681
4682                                 schedule_work(&priv->link_down);
4683                                 break;
4684
4685                         case CMAS_TX_AUTH_SEQ_1:
4686                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4687                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4688                                 break;
4689                         case CMAS_RX_AUTH_SEQ_2:
4690                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4691                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4692                                 break;
4693                         case CMAS_AUTH_SEQ_1_PASS:
4694                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4695                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4696                                 break;
4697                         case CMAS_AUTH_SEQ_1_FAIL:
4698                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4699                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4700                                 break;
4701                         case CMAS_TX_AUTH_SEQ_3:
4702                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4703                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4704                                 break;
4705                         case CMAS_RX_AUTH_SEQ_4:
4706                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4707                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4708                                 break;
4709                         case CMAS_AUTH_SEQ_2_PASS:
4710                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4712                                 break;
4713                         case CMAS_AUTH_SEQ_2_FAIL:
4714                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4716                                 break;
4717                         case CMAS_TX_ASSOC:
4718                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4720                                 break;
4721                         case CMAS_RX_ASSOC_RESP:
4722                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4724
4725                                 break;
4726                         case CMAS_ASSOCIATED:
4727                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4728                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4729                                 break;
4730                         default:
4731                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4732                                                 auth->state);
4733                                 break;
4734                         }
4735                         break;
4736                 }
4737
4738         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4739                         struct notif_channel_result *x =
4740                             &notif->u.channel_result;
4741
4742                         if (size == sizeof(*x)) {
4743                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4744                                                x->channel_num);
4745                         } else {
4746                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4747                                                "(should be %zd)\n",
4748                                                size, sizeof(*x));
4749                         }
4750                         break;
4751                 }
4752
4753         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4754                         struct notif_scan_complete *x = &notif->u.scan_complete;
4755                         if (size == sizeof(*x)) {
4756                                 IPW_DEBUG_SCAN
4757                                     ("Scan completed: type %d, %d channels, "
4758                                      "%d status\n", x->scan_type,
4759                                      x->num_channels, x->status);
4760                         } else {
4761                                 IPW_ERROR("Scan completed of wrong size %d "
4762                                           "(should be %zd)\n",
4763                                           size, sizeof(*x));
4764                         }
4765
4766                         priv->status &=
4767                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4768
4769                         wake_up_interruptible(&priv->wait_state);
4770                         cancel_delayed_work(&priv->scan_check);
4771
4772                         if (priv->status & STATUS_EXIT_PENDING)
4773                                 break;
4774
4775                         priv->ieee->scans++;
4776
4777 #ifdef CONFIG_IPW2200_MONITOR
4778                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4779                                 priv->status |= STATUS_SCAN_FORCED;
4780                                 queue_delayed_work(priv->workqueue,
4781                                                    &priv->request_scan, 0);
4782                                 break;
4783                         }
4784                         priv->status &= ~STATUS_SCAN_FORCED;
4785 #endif                          /* CONFIG_IPW2200_MONITOR */
4786
4787                         /* Do queued direct scans first */
4788                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4789                                 queue_delayed_work(priv->workqueue,
4790                                                    &priv->request_direct_scan, 0);
4791                         }
4792
4793                         if (!(priv->status & (STATUS_ASSOCIATED |
4794                                               STATUS_ASSOCIATING |
4795                                               STATUS_ROAMING |
4796                                               STATUS_DISASSOCIATING)))
4797                                 queue_work(priv->workqueue, &priv->associate);
4798                         else if (priv->status & STATUS_ROAMING) {
4799                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4800                                         /* If a scan completed and we are in roam mode, then
4801                                          * the scan that completed was the one requested as a
4802                                          * result of entering roam... so, schedule the
4803                                          * roam work */
4804                                         queue_work(priv->workqueue,
4805                                                    &priv->roam);
4806                                 else
4807                                         /* Don't schedule if we aborted the scan */
4808                                         priv->status &= ~STATUS_ROAMING;
4809                         } else if (priv->status & STATUS_SCAN_PENDING)
4810                                 queue_delayed_work(priv->workqueue,
4811                                                    &priv->request_scan, 0);
4812                         else if (priv->config & CFG_BACKGROUND_SCAN
4813                                  && priv->status & STATUS_ASSOCIATED)
4814                                 queue_delayed_work(priv->workqueue,
4815                                                    &priv->request_scan,
4816                                                    round_jiffies_relative(HZ));
4817
4818                         /* Send an empty event to user space.
4819                          * We don't send the received data on the event because
4820                          * it would require us to do complex transcoding, and
4821                          * we want to minimise the work done in the irq handler
4822                          * Use a request to extract the data.
4823                          * Also, we generate this even for any scan, regardless
4824                          * on how the scan was initiated. User space can just
4825                          * sync on periodic scan to get fresh data...
4826                          * Jean II */
4827                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4828                                 handle_scan_event(priv);
4829                         break;
4830                 }
4831
4832         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4833                         struct notif_frag_length *x = &notif->u.frag_len;
4834
4835                         if (size == sizeof(*x))
4836                                 IPW_ERROR("Frag length: %d\n",
4837                                           le16_to_cpu(x->frag_length));
4838                         else
4839                                 IPW_ERROR("Frag length of wrong size %d "
4840                                           "(should be %zd)\n",
4841                                           size, sizeof(*x));
4842                         break;
4843                 }
4844
4845         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4846                         struct notif_link_deterioration *x =
4847                             &notif->u.link_deterioration;
4848
4849                         if (size == sizeof(*x)) {
4850                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4851                                         "link deterioration: type %d, cnt %d\n",
4852                                         x->silence_notification_type,
4853                                         x->silence_count);
4854                                 memcpy(&priv->last_link_deterioration, x,
4855                                        sizeof(*x));
4856                         } else {
4857                                 IPW_ERROR("Link Deterioration of wrong size %d "
4858                                           "(should be %zd)\n",
4859                                           size, sizeof(*x));
4860                         }
4861                         break;
4862                 }
4863
4864         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4865                         IPW_ERROR("Dino config\n");
4866                         if (priv->hcmd
4867                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4868                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4869
4870                         break;
4871                 }
4872
4873         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4874                         struct notif_beacon_state *x = &notif->u.beacon_state;
4875                         if (size != sizeof(*x)) {
4876                                 IPW_ERROR
4877                                     ("Beacon state of wrong size %d (should "
4878                                      "be %zd)\n", size, sizeof(*x));
4879                                 break;
4880                         }
4881
4882                         if (le32_to_cpu(x->state) ==
4883                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4884                                 ipw_handle_missed_beacon(priv,
4885                                                          le32_to_cpu(x->
4886                                                                      number));
4887
4888                         break;
4889                 }
4890
4891         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4892                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4893                         if (size == sizeof(*x)) {
4894                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4895                                           "0x%02x station %d\n",
4896                                           x->key_state, x->security_type,
4897                                           x->station_index);
4898                                 break;
4899                         }
4900
4901                         IPW_ERROR
4902                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4903                              size, sizeof(*x));
4904                         break;
4905                 }
4906
4907         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4908                         struct notif_calibration *x = &notif->u.calibration;
4909
4910                         if (size == sizeof(*x)) {
4911                                 memcpy(&priv->calib, x, sizeof(*x));
4912                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4913                                 break;
4914                         }
4915
4916                         IPW_ERROR
4917                             ("Calibration of wrong size %d (should be %zd)\n",
4918                              size, sizeof(*x));
4919                         break;
4920                 }
4921
4922         case HOST_NOTIFICATION_NOISE_STATS:{
4923                         if (size == sizeof(u32)) {
4924                                 priv->exp_avg_noise =
4925                                     exponential_average(priv->exp_avg_noise,
4926                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4927                                     DEPTH_NOISE);
4928                                 break;
4929                         }
4930
4931                         IPW_ERROR
4932                             ("Noise stat is wrong size %d (should be %zd)\n",
4933                              size, sizeof(u32));
4934                         break;
4935                 }
4936
4937         default:
4938                 IPW_DEBUG_NOTIF("Unknown notification: "
4939                                 "subtype=%d,flags=0x%2x,size=%d\n",
4940                                 notif->subtype, notif->flags, size);
4941         }
4942 }
4943
4944 /**
4945  * Destroys all DMA structures and initialise them again
4946  *
4947  * @param priv
4948  * @return error code
4949  */
4950 static int ipw_queue_reset(struct ipw_priv *priv)
4951 {
4952         int rc = 0;
4953         /** @todo customize queue sizes */
4954         int nTx = 64, nTxCmd = 8;
4955         ipw_tx_queue_free(priv);
4956         /* Tx CMD queue */
4957         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4958                                IPW_TX_CMD_QUEUE_READ_INDEX,
4959                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4960                                IPW_TX_CMD_QUEUE_BD_BASE,
4961                                IPW_TX_CMD_QUEUE_BD_SIZE);
4962         if (rc) {
4963                 IPW_ERROR("Tx Cmd queue init failed\n");
4964                 goto error;
4965         }
4966         /* Tx queue(s) */
4967         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4968                                IPW_TX_QUEUE_0_READ_INDEX,
4969                                IPW_TX_QUEUE_0_WRITE_INDEX,
4970                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4971         if (rc) {
4972                 IPW_ERROR("Tx 0 queue init failed\n");
4973                 goto error;
4974         }
4975         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4976                                IPW_TX_QUEUE_1_READ_INDEX,
4977                                IPW_TX_QUEUE_1_WRITE_INDEX,
4978                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4979         if (rc) {
4980                 IPW_ERROR("Tx 1 queue init failed\n");
4981                 goto error;
4982         }
4983         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4984                                IPW_TX_QUEUE_2_READ_INDEX,
4985                                IPW_TX_QUEUE_2_WRITE_INDEX,
4986                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4987         if (rc) {
4988                 IPW_ERROR("Tx 2 queue init failed\n");
4989                 goto error;
4990         }
4991         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4992                                IPW_TX_QUEUE_3_READ_INDEX,
4993                                IPW_TX_QUEUE_3_WRITE_INDEX,
4994                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4995         if (rc) {
4996                 IPW_ERROR("Tx 3 queue init failed\n");
4997                 goto error;
4998         }
4999         /* statistics */
5000         priv->rx_bufs_min = 0;
5001         priv->rx_pend_max = 0;
5002         return rc;
5003
5004       error:
5005         ipw_tx_queue_free(priv);
5006         return rc;
5007 }
5008
5009 /**
5010  * Reclaim Tx queue entries no more used by NIC.
5011  *
5012  * When FW advances 'R' index, all entries between old and
5013  * new 'R' index need to be reclaimed. As result, some free space
5014  * forms. If there is enough free space (> low mark), wake Tx queue.
5015  *
5016  * @note Need to protect against garbage in 'R' index
5017  * @param priv
5018  * @param txq
5019  * @param qindex
5020  * @return Number of used entries remains in the queue
5021  */
5022 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5023                                 struct clx2_tx_queue *txq, int qindex)
5024 {
5025         u32 hw_tail;
5026         int used;
5027         struct clx2_queue *q = &txq->q;
5028
5029         hw_tail = ipw_read32(priv, q->reg_r);
5030         if (hw_tail >= q->n_bd) {
5031                 IPW_ERROR
5032                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5033                      hw_tail, q->n_bd);
5034                 goto done;
5035         }
5036         for (; q->last_used != hw_tail;
5037              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5038                 ipw_queue_tx_free_tfd(priv, txq);
5039                 priv->tx_packets++;
5040         }
5041       done:
5042         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5043             (qindex >= 0))
5044                 netif_wake_queue(priv->net_dev);
5045         used = q->first_empty - q->last_used;
5046         if (used < 0)
5047                 used += q->n_bd;
5048
5049         return used;
5050 }
5051
5052 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5053                              int len, int sync)
5054 {
5055         struct clx2_tx_queue *txq = &priv->txq_cmd;
5056         struct clx2_queue *q = &txq->q;
5057         struct tfd_frame *tfd;
5058
5059         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5060                 IPW_ERROR("No space for Tx\n");
5061                 return -EBUSY;
5062         }
5063
5064         tfd = &txq->bd[q->first_empty];
5065         txq->txb[q->first_empty] = NULL;
5066
5067         memset(tfd, 0, sizeof(*tfd));
5068         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5069         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5070         priv->hcmd_seq++;
5071         tfd->u.cmd.index = hcmd;
5072         tfd->u.cmd.length = len;
5073         memcpy(tfd->u.cmd.payload, buf, len);
5074         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5075         ipw_write32(priv, q->reg_w, q->first_empty);
5076         _ipw_read32(priv, 0x90);
5077
5078         return 0;
5079 }
5080
5081 /*
5082  * Rx theory of operation
5083  *
5084  * The host allocates 32 DMA target addresses and passes the host address
5085  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5086  * 0 to 31
5087  *
5088  * Rx Queue Indexes
5089  * The host/firmware share two index registers for managing the Rx buffers.
5090  *
5091  * The READ index maps to the first position that the firmware may be writing
5092  * to -- the driver can read up to (but not including) this position and get
5093  * good data.
5094  * The READ index is managed by the firmware once the card is enabled.
5095  *
5096  * The WRITE index maps to the last position the driver has read from -- the
5097  * position preceding WRITE is the last slot the firmware can place a packet.
5098  *
5099  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5100  * WRITE = READ.
5101  *
5102  * During initialization the host sets up the READ queue position to the first
5103  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5104  *
5105  * When the firmware places a packet in a buffer it will advance the READ index
5106  * and fire the RX interrupt.  The driver can then query the READ index and
5107  * process as many packets as possible, moving the WRITE index forward as it
5108  * resets the Rx queue buffers with new memory.
5109  *
5110  * The management in the driver is as follows:
5111  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5112  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5113  *   to replensish the ipw->rxq->rx_free.
5114  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5115  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5116  *   'processed' and 'read' driver indexes as well)
5117  * + A received packet is processed and handed to the kernel network stack,
5118  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5119  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5120  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5121  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5122  *   were enough free buffers and RX_STALLED is set it is cleared.
5123  *
5124  *
5125  * Driver sequence:
5126  *
5127  * ipw_rx_queue_alloc()       Allocates rx_free
5128  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5129  *                            ipw_rx_queue_restock
5130  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5131  *                            queue, updates firmware pointers, and updates
5132  *                            the WRITE index.  If insufficient rx_free buffers
5133  *                            are available, schedules ipw_rx_queue_replenish
5134  *
5135  * -- enable interrupts --
5136  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5137  *                            READ INDEX, detaching the SKB from the pool.
5138  *                            Moves the packet buffer from queue to rx_used.
5139  *                            Calls ipw_rx_queue_restock to refill any empty
5140  *                            slots.
5141  * ...
5142  *
5143  */
5144
5145 /*
5146  * If there are slots in the RX queue that  need to be restocked,
5147  * and we have free pre-allocated buffers, fill the ranks as much
5148  * as we can pulling from rx_free.
5149  *
5150  * This moves the 'write' index forward to catch up with 'processed', and
5151  * also updates the memory address in the firmware to reference the new
5152  * target buffer.
5153  */
5154 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5155 {
5156         struct ipw_rx_queue *rxq = priv->rxq;
5157         struct list_head *element;
5158         struct ipw_rx_mem_buffer *rxb;
5159         unsigned long flags;
5160         int write;
5161
5162         spin_lock_irqsave(&rxq->lock, flags);
5163         write = rxq->write;
5164         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5165                 element = rxq->rx_free.next;
5166                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5167                 list_del(element);
5168
5169                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5170                             rxb->dma_addr);
5171                 rxq->queue[rxq->write] = rxb;
5172                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5173                 rxq->free_count--;
5174         }
5175         spin_unlock_irqrestore(&rxq->lock, flags);
5176
5177         /* If the pre-allocated buffer pool is dropping low, schedule to
5178          * refill it */
5179         if (rxq->free_count <= RX_LOW_WATERMARK)
5180                 queue_work(priv->workqueue, &priv->rx_replenish);
5181
5182         /* If we've added more space for the firmware to place data, tell it */
5183         if (write != rxq->write)
5184                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5185 }
5186
5187 /*
5188  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5189  * Also restock the Rx queue via ipw_rx_queue_restock.
5190  *
5191  * This is called as a scheduled work item (except for during intialization)
5192  */
5193 static void ipw_rx_queue_replenish(void *data)
5194 {
5195         struct ipw_priv *priv = data;
5196         struct ipw_rx_queue *rxq = priv->rxq;
5197         struct list_head *element;
5198         struct ipw_rx_mem_buffer *rxb;
5199         unsigned long flags;
5200
5201         spin_lock_irqsave(&rxq->lock, flags);
5202         while (!list_empty(&rxq->rx_used)) {
5203                 element = rxq->rx_used.next;
5204                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5205                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5206                 if (!rxb->skb) {
5207                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5208                                priv->net_dev->name);
5209                         /* We don't reschedule replenish work here -- we will
5210                          * call the restock method and if it still needs
5211                          * more buffers it will schedule replenish */
5212                         break;
5213                 }
5214                 list_del(element);
5215
5216                 rxb->dma_addr =
5217                     pci_map_single(priv->pci_dev, rxb->skb->data,
5218                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5219
5220                 list_add_tail(&rxb->list, &rxq->rx_free);
5221                 rxq->free_count++;
5222         }
5223         spin_unlock_irqrestore(&rxq->lock, flags);
5224
5225         ipw_rx_queue_restock(priv);
5226 }
5227
5228 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5229 {
5230         struct ipw_priv *priv =
5231                 container_of(work, struct ipw_priv, rx_replenish);
5232         mutex_lock(&priv->mutex);
5233         ipw_rx_queue_replenish(priv);
5234         mutex_unlock(&priv->mutex);
5235 }
5236
5237 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5238  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5239  * This free routine walks the list of POOL entries and if SKB is set to
5240  * non NULL it is unmapped and freed
5241  */
5242 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5243 {
5244         int i;
5245
5246         if (!rxq)
5247                 return;
5248
5249         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5250                 if (rxq->pool[i].skb != NULL) {
5251                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5252                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5253                         dev_kfree_skb(rxq->pool[i].skb);
5254                 }
5255         }
5256
5257         kfree(rxq);
5258 }
5259
5260 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5261 {
5262         struct ipw_rx_queue *rxq;
5263         int i;
5264
5265         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5266         if (unlikely(!rxq)) {
5267                 IPW_ERROR("memory allocation failed\n");
5268                 return NULL;
5269         }
5270         spin_lock_init(&rxq->lock);
5271         INIT_LIST_HEAD(&rxq->rx_free);
5272         INIT_LIST_HEAD(&rxq->rx_used);
5273
5274         /* Fill the rx_used queue with _all_ of the Rx buffers */
5275         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5276                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5277
5278         /* Set us so that we have processed and used all buffers, but have
5279          * not restocked the Rx queue with fresh buffers */
5280         rxq->read = rxq->write = 0;
5281         rxq->free_count = 0;
5282
5283         return rxq;
5284 }
5285
5286 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5287 {
5288         rate &= ~LIBIPW_BASIC_RATE_MASK;
5289         if (ieee_mode == IEEE_A) {
5290                 switch (rate) {
5291                 case LIBIPW_OFDM_RATE_6MB:
5292                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5293                             1 : 0;
5294                 case LIBIPW_OFDM_RATE_9MB:
5295                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5296                             1 : 0;
5297                 case LIBIPW_OFDM_RATE_12MB:
5298                         return priv->
5299                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5300                 case LIBIPW_OFDM_RATE_18MB:
5301                         return priv->
5302                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5303                 case LIBIPW_OFDM_RATE_24MB:
5304                         return priv->
5305                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5306                 case LIBIPW_OFDM_RATE_36MB:
5307                         return priv->
5308                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5309                 case LIBIPW_OFDM_RATE_48MB:
5310                         return priv->
5311                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5312                 case LIBIPW_OFDM_RATE_54MB:
5313                         return priv->
5314                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5315                 default:
5316                         return 0;
5317                 }
5318         }
5319
5320         /* B and G mixed */
5321         switch (rate) {
5322         case LIBIPW_CCK_RATE_1MB:
5323                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5324         case LIBIPW_CCK_RATE_2MB:
5325                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5326         case LIBIPW_CCK_RATE_5MB:
5327                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5328         case LIBIPW_CCK_RATE_11MB:
5329                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5330         }
5331
5332         /* If we are limited to B modulations, bail at this point */
5333         if (ieee_mode == IEEE_B)
5334                 return 0;
5335
5336         /* G */
5337         switch (rate) {
5338         case LIBIPW_OFDM_RATE_6MB:
5339                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5340         case LIBIPW_OFDM_RATE_9MB:
5341                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5342         case LIBIPW_OFDM_RATE_12MB:
5343                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5344         case LIBIPW_OFDM_RATE_18MB:
5345                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5346         case LIBIPW_OFDM_RATE_24MB:
5347                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5348         case LIBIPW_OFDM_RATE_36MB:
5349                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5350         case LIBIPW_OFDM_RATE_48MB:
5351                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5352         case LIBIPW_OFDM_RATE_54MB:
5353                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5354         }
5355
5356         return 0;
5357 }
5358
5359 static int ipw_compatible_rates(struct ipw_priv *priv,
5360                                 const struct libipw_network *network,
5361                                 struct ipw_supported_rates *rates)
5362 {
5363         int num_rates, i;
5364
5365         memset(rates, 0, sizeof(*rates));
5366         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5367         rates->num_rates = 0;
5368         for (i = 0; i < num_rates; i++) {
5369                 if (!ipw_is_rate_in_mask(priv, network->mode,
5370                                          network->rates[i])) {
5371
5372                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5373                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5374                                                "rate %02X\n",
5375                                                network->rates[i]);
5376                                 rates->supported_rates[rates->num_rates++] =
5377                                     network->rates[i];
5378                                 continue;
5379                         }
5380
5381                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5382                                        network->rates[i], priv->rates_mask);
5383                         continue;
5384                 }
5385
5386                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5387         }
5388
5389         num_rates = min(network->rates_ex_len,
5390                         (u8) (IPW_MAX_RATES - num_rates));
5391         for (i = 0; i < num_rates; i++) {
5392                 if (!ipw_is_rate_in_mask(priv, network->mode,
5393                                          network->rates_ex[i])) {
5394                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5395                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5396                                                "rate %02X\n",
5397                                                network->rates_ex[i]);
5398                                 rates->supported_rates[rates->num_rates++] =
5399                                     network->rates[i];
5400                                 continue;
5401                         }
5402
5403                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5404                                        network->rates_ex[i], priv->rates_mask);
5405                         continue;
5406                 }
5407
5408                 rates->supported_rates[rates->num_rates++] =
5409                     network->rates_ex[i];
5410         }
5411
5412         return 1;
5413 }
5414
5415 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5416                                   const struct ipw_supported_rates *src)
5417 {
5418         u8 i;
5419         for (i = 0; i < src->num_rates; i++)
5420                 dest->supported_rates[i] = src->supported_rates[i];
5421         dest->num_rates = src->num_rates;
5422 }
5423
5424 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5425  * mask should ever be used -- right now all callers to add the scan rates are
5426  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5427 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5428                                    u8 modulation, u32 rate_mask)
5429 {
5430         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5431             LIBIPW_BASIC_RATE_MASK : 0;
5432
5433         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5434                 rates->supported_rates[rates->num_rates++] =
5435                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5436
5437         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5438                 rates->supported_rates[rates->num_rates++] =
5439                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5440
5441         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5442                 rates->supported_rates[rates->num_rates++] = basic_mask |
5443                     LIBIPW_CCK_RATE_5MB;
5444
5445         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5446                 rates->supported_rates[rates->num_rates++] = basic_mask |
5447                     LIBIPW_CCK_RATE_11MB;
5448 }
5449
5450 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5451                                     u8 modulation, u32 rate_mask)
5452 {
5453         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5454             LIBIPW_BASIC_RATE_MASK : 0;
5455
5456         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5457                 rates->supported_rates[rates->num_rates++] = basic_mask |
5458                     LIBIPW_OFDM_RATE_6MB;
5459
5460         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5461                 rates->supported_rates[rates->num_rates++] =
5462                     LIBIPW_OFDM_RATE_9MB;
5463
5464         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5465                 rates->supported_rates[rates->num_rates++] = basic_mask |
5466                     LIBIPW_OFDM_RATE_12MB;
5467
5468         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5469                 rates->supported_rates[rates->num_rates++] =
5470                     LIBIPW_OFDM_RATE_18MB;
5471
5472         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5473                 rates->supported_rates[rates->num_rates++] = basic_mask |
5474                     LIBIPW_OFDM_RATE_24MB;
5475
5476         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5477                 rates->supported_rates[rates->num_rates++] =
5478                     LIBIPW_OFDM_RATE_36MB;
5479
5480         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5481                 rates->supported_rates[rates->num_rates++] =
5482                     LIBIPW_OFDM_RATE_48MB;
5483
5484         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5485                 rates->supported_rates[rates->num_rates++] =
5486                     LIBIPW_OFDM_RATE_54MB;
5487 }
5488
5489 struct ipw_network_match {
5490         struct libipw_network *network;
5491         struct ipw_supported_rates rates;
5492 };
5493
5494 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5495                                   struct ipw_network_match *match,
5496                                   struct libipw_network *network,
5497                                   int roaming)
5498 {
5499         struct ipw_supported_rates rates;
5500         DECLARE_SSID_BUF(ssid);
5501
5502         /* Verify that this network's capability is compatible with the
5503          * current mode (AdHoc or Infrastructure) */
5504         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5505              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5506                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5507                                 "capability mismatch.\n",
5508                                 print_ssid(ssid, network->ssid,
5509                                            network->ssid_len),
5510                                 network->bssid);
5511                 return 0;
5512         }
5513
5514         if (unlikely(roaming)) {
5515                 /* If we are roaming, then ensure check if this is a valid
5516                  * network to try and roam to */
5517                 if ((network->ssid_len != match->network->ssid_len) ||
5518                     memcmp(network->ssid, match->network->ssid,
5519                            network->ssid_len)) {
5520                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5521                                         "because of non-network ESSID.\n",
5522                                         print_ssid(ssid, network->ssid,
5523                                                    network->ssid_len),
5524                                         network->bssid);
5525                         return 0;
5526                 }
5527         } else {
5528                 /* If an ESSID has been configured then compare the broadcast
5529                  * ESSID to ours */
5530                 if ((priv->config & CFG_STATIC_ESSID) &&
5531                     ((network->ssid_len != priv->essid_len) ||
5532                      memcmp(network->ssid, priv->essid,
5533                             min(network->ssid_len, priv->essid_len)))) {
5534                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5535
5536                         strncpy(escaped,
5537                                 print_ssid(ssid, network->ssid,
5538                                            network->ssid_len),
5539                                 sizeof(escaped));
5540                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5541                                         "because of ESSID mismatch: '%s'.\n",
5542                                         escaped, network->bssid,
5543                                         print_ssid(ssid, priv->essid,
5544                                                    priv->essid_len));
5545                         return 0;
5546                 }
5547         }
5548
5549         /* If the old network rate is better than this one, don't bother
5550          * testing everything else. */
5551
5552         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5553                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5554                                 "current network.\n",
5555                                 print_ssid(ssid, match->network->ssid,
5556                                            match->network->ssid_len));
5557                 return 0;
5558         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5559                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5560                                 "current network.\n",
5561                                 print_ssid(ssid, match->network->ssid,
5562                                            match->network->ssid_len));
5563                 return 0;
5564         }
5565
5566         /* Now go through and see if the requested network is valid... */
5567         if (priv->ieee->scan_age != 0 &&
5568             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5569                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5570                                 "because of age: %ums.\n",
5571                                 print_ssid(ssid, network->ssid,
5572                                            network->ssid_len),
5573                                 network->bssid,
5574                                 jiffies_to_msecs(jiffies -
5575                                                  network->last_scanned));
5576                 return 0;
5577         }
5578
5579         if ((priv->config & CFG_STATIC_CHANNEL) &&
5580             (network->channel != priv->channel)) {
5581                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5582                                 "because of channel mismatch: %d != %d.\n",
5583                                 print_ssid(ssid, network->ssid,
5584                                            network->ssid_len),
5585                                 network->bssid,
5586                                 network->channel, priv->channel);
5587                 return 0;
5588         }
5589
5590         /* Verify privacy compatability */
5591         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5592             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5593                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5594                                 "because of privacy mismatch: %s != %s.\n",
5595                                 print_ssid(ssid, network->ssid,
5596                                            network->ssid_len),
5597                                 network->bssid,
5598                                 priv->
5599                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5600                                 network->
5601                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5602                                 "off");
5603                 return 0;
5604         }
5605
5606         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5607                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5608                                 "because of the same BSSID match: %pM"
5609                                 ".\n", print_ssid(ssid, network->ssid,
5610                                                   network->ssid_len),
5611                                 network->bssid,
5612                                 priv->bssid);
5613                 return 0;
5614         }
5615
5616         /* Filter out any incompatible freq / mode combinations */
5617         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5618                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5619                                 "because of invalid frequency/mode "
5620                                 "combination.\n",
5621                                 print_ssid(ssid, network->ssid,
5622                                            network->ssid_len),
5623                                 network->bssid);
5624                 return 0;
5625         }
5626
5627         /* Ensure that the rates supported by the driver are compatible with
5628          * this AP, including verification of basic rates (mandatory) */
5629         if (!ipw_compatible_rates(priv, network, &rates)) {
5630                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5631                                 "because configured rate mask excludes "
5632                                 "AP mandatory rate.\n",
5633                                 print_ssid(ssid, network->ssid,
5634                                            network->ssid_len),
5635                                 network->bssid);
5636                 return 0;
5637         }
5638
5639         if (rates.num_rates == 0) {
5640                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5641                                 "because of no compatible rates.\n",
5642                                 print_ssid(ssid, network->ssid,
5643                                            network->ssid_len),
5644                                 network->bssid);
5645                 return 0;
5646         }
5647
5648         /* TODO: Perform any further minimal comparititive tests.  We do not
5649          * want to put too much policy logic here; intelligent scan selection
5650          * should occur within a generic IEEE 802.11 user space tool.  */
5651
5652         /* Set up 'new' AP to this network */
5653         ipw_copy_rates(&match->rates, &rates);
5654         match->network = network;
5655         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5656                         print_ssid(ssid, network->ssid, network->ssid_len),
5657                         network->bssid);
5658
5659         return 1;
5660 }
5661
5662 static void ipw_merge_adhoc_network(struct work_struct *work)
5663 {
5664         DECLARE_SSID_BUF(ssid);
5665         struct ipw_priv *priv =
5666                 container_of(work, struct ipw_priv, merge_networks);
5667         struct libipw_network *network = NULL;
5668         struct ipw_network_match match = {
5669                 .network = priv->assoc_network
5670         };
5671
5672         if ((priv->status & STATUS_ASSOCIATED) &&
5673             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5674                 /* First pass through ROAM process -- look for a better
5675                  * network */
5676                 unsigned long flags;
5677
5678                 spin_lock_irqsave(&priv->ieee->lock, flags);
5679                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5680                         if (network != priv->assoc_network)
5681                                 ipw_find_adhoc_network(priv, &match, network,
5682                                                        1);
5683                 }
5684                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5685
5686                 if (match.network == priv->assoc_network) {
5687                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5688                                         "merge to.\n");
5689                         return;
5690                 }
5691
5692                 mutex_lock(&priv->mutex);
5693                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5694                         IPW_DEBUG_MERGE("remove network %s\n",
5695                                         print_ssid(ssid, priv->essid,
5696                                                    priv->essid_len));
5697                         ipw_remove_current_network(priv);
5698                 }
5699
5700                 ipw_disassociate(priv);
5701                 priv->assoc_network = match.network;
5702                 mutex_unlock(&priv->mutex);
5703                 return;
5704         }
5705 }
5706
5707 static int ipw_best_network(struct ipw_priv *priv,
5708                             struct ipw_network_match *match,
5709                             struct libipw_network *network, int roaming)
5710 {
5711         struct ipw_supported_rates rates;
5712         DECLARE_SSID_BUF(ssid);
5713
5714         /* Verify that this network's capability is compatible with the
5715          * current mode (AdHoc or Infrastructure) */
5716         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5717              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5718             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5719              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5720                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5721                                 "capability mismatch.\n",
5722                                 print_ssid(ssid, network->ssid,
5723                                            network->ssid_len),
5724                                 network->bssid);
5725                 return 0;
5726         }
5727
5728         if (unlikely(roaming)) {
5729                 /* If we are roaming, then ensure check if this is a valid
5730                  * network to try and roam to */
5731                 if ((network->ssid_len != match->network->ssid_len) ||
5732                     memcmp(network->ssid, match->network->ssid,
5733                            network->ssid_len)) {
5734                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5735                                         "because of non-network ESSID.\n",
5736                                         print_ssid(ssid, network->ssid,
5737                                                    network->ssid_len),
5738                                         network->bssid);
5739                         return 0;
5740                 }
5741         } else {
5742                 /* If an ESSID has been configured then compare the broadcast
5743                  * ESSID to ours */
5744                 if ((priv->config & CFG_STATIC_ESSID) &&
5745                     ((network->ssid_len != priv->essid_len) ||
5746                      memcmp(network->ssid, priv->essid,
5747                             min(network->ssid_len, priv->essid_len)))) {
5748                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5749                         strncpy(escaped,
5750                                 print_ssid(ssid, network->ssid,
5751                                            network->ssid_len),
5752                                 sizeof(escaped));
5753                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5754                                         "because of ESSID mismatch: '%s'.\n",
5755                                         escaped, network->bssid,
5756                                         print_ssid(ssid, priv->essid,
5757                                                    priv->essid_len));
5758                         return 0;
5759                 }
5760         }
5761
5762         /* If the old network rate is better than this one, don't bother
5763          * testing everything else. */
5764         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5765                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5766                 strncpy(escaped,
5767                         print_ssid(ssid, network->ssid, network->ssid_len),
5768                         sizeof(escaped));
5769                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5770                                 "'%s (%pM)' has a stronger signal.\n",
5771                                 escaped, network->bssid,
5772                                 print_ssid(ssid, match->network->ssid,
5773                                            match->network->ssid_len),
5774                                 match->network->bssid);
5775                 return 0;
5776         }
5777
5778         /* If this network has already had an association attempt within the
5779          * last 3 seconds, do not try and associate again... */
5780         if (network->last_associate &&
5781             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5782                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5783                                 "because of storming (%ums since last "
5784                                 "assoc attempt).\n",
5785                                 print_ssid(ssid, network->ssid,
5786                                            network->ssid_len),
5787                                 network->bssid,
5788                                 jiffies_to_msecs(jiffies -
5789                                                  network->last_associate));
5790                 return 0;
5791         }
5792
5793         /* Now go through and see if the requested network is valid... */
5794         if (priv->ieee->scan_age != 0 &&
5795             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5796                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797                                 "because of age: %ums.\n",
5798                                 print_ssid(ssid, network->ssid,
5799                                            network->ssid_len),
5800                                 network->bssid,
5801                                 jiffies_to_msecs(jiffies -
5802                                                  network->last_scanned));
5803                 return 0;
5804         }
5805
5806         if ((priv->config & CFG_STATIC_CHANNEL) &&
5807             (network->channel != priv->channel)) {
5808                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5809                                 "because of channel mismatch: %d != %d.\n",
5810                                 print_ssid(ssid, network->ssid,
5811                                            network->ssid_len),
5812                                 network->bssid,
5813                                 network->channel, priv->channel);
5814                 return 0;
5815         }
5816
5817         /* Verify privacy compatability */
5818         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5819             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5820                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5821                                 "because of privacy mismatch: %s != %s.\n",
5822                                 print_ssid(ssid, network->ssid,
5823                                            network->ssid_len),
5824                                 network->bssid,
5825                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5826                                 "off",
5827                                 network->capability &
5828                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5829                 return 0;
5830         }
5831
5832         if ((priv->config & CFG_STATIC_BSSID) &&
5833             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5834                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5835                                 "because of BSSID mismatch: %pM.\n",
5836                                 print_ssid(ssid, network->ssid,
5837                                            network->ssid_len),
5838                                 network->bssid, priv->bssid);
5839                 return 0;
5840         }
5841
5842         /* Filter out any incompatible freq / mode combinations */
5843         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5844                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5845                                 "because of invalid frequency/mode "
5846                                 "combination.\n",
5847                                 print_ssid(ssid, network->ssid,
5848                                            network->ssid_len),
5849                                 network->bssid);
5850                 return 0;
5851         }
5852
5853         /* Filter out invalid channel in current GEO */
5854         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5855                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5856                                 "because of invalid channel in current GEO\n",
5857                                 print_ssid(ssid, network->ssid,
5858                                            network->ssid_len),
5859                                 network->bssid);
5860                 return 0;
5861         }
5862
5863         /* Ensure that the rates supported by the driver are compatible with
5864          * this AP, including verification of basic rates (mandatory) */
5865         if (!ipw_compatible_rates(priv, network, &rates)) {
5866                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5867                                 "because configured rate mask excludes "
5868                                 "AP mandatory rate.\n",
5869                                 print_ssid(ssid, network->ssid,
5870                                            network->ssid_len),
5871                                 network->bssid);
5872                 return 0;
5873         }
5874
5875         if (rates.num_rates == 0) {
5876                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5877                                 "because of no compatible rates.\n",
5878                                 print_ssid(ssid, network->ssid,
5879                                            network->ssid_len),
5880                                 network->bssid);
5881                 return 0;
5882         }
5883
5884         /* TODO: Perform any further minimal comparititive tests.  We do not
5885          * want to put too much policy logic here; intelligent scan selection
5886          * should occur within a generic IEEE 802.11 user space tool.  */
5887
5888         /* Set up 'new' AP to this network */
5889         ipw_copy_rates(&match->rates, &rates);
5890         match->network = network;
5891
5892         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5893                         print_ssid(ssid, network->ssid, network->ssid_len),
5894                         network->bssid);
5895
5896         return 1;
5897 }
5898
5899 static void ipw_adhoc_create(struct ipw_priv *priv,
5900                              struct libipw_network *network)
5901 {
5902         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5903         int i;
5904
5905         /*
5906          * For the purposes of scanning, we can set our wireless mode
5907          * to trigger scans across combinations of bands, but when it
5908          * comes to creating a new ad-hoc network, we have tell the FW
5909          * exactly which band to use.
5910          *
5911          * We also have the possibility of an invalid channel for the
5912          * chossen band.  Attempting to create a new ad-hoc network
5913          * with an invalid channel for wireless mode will trigger a
5914          * FW fatal error.
5915          *
5916          */
5917         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5918         case LIBIPW_52GHZ_BAND:
5919                 network->mode = IEEE_A;
5920                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5921                 BUG_ON(i == -1);
5922                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5923                         IPW_WARNING("Overriding invalid channel\n");
5924                         priv->channel = geo->a[0].channel;
5925                 }
5926                 break;
5927
5928         case LIBIPW_24GHZ_BAND:
5929                 if (priv->ieee->mode & IEEE_G)
5930                         network->mode = IEEE_G;
5931                 else
5932                         network->mode = IEEE_B;
5933                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5934                 BUG_ON(i == -1);
5935                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5936                         IPW_WARNING("Overriding invalid channel\n");
5937                         priv->channel = geo->bg[0].channel;
5938                 }
5939                 break;
5940
5941         default:
5942                 IPW_WARNING("Overriding invalid channel\n");
5943                 if (priv->ieee->mode & IEEE_A) {
5944                         network->mode = IEEE_A;
5945                         priv->channel = geo->a[0].channel;
5946                 } else if (priv->ieee->mode & IEEE_G) {
5947                         network->mode = IEEE_G;
5948                         priv->channel = geo->bg[0].channel;
5949                 } else {
5950                         network->mode = IEEE_B;
5951                         priv->channel = geo->bg[0].channel;
5952                 }
5953                 break;
5954         }
5955
5956         network->channel = priv->channel;
5957         priv->config |= CFG_ADHOC_PERSIST;
5958         ipw_create_bssid(priv, network->bssid);
5959         network->ssid_len = priv->essid_len;
5960         memcpy(network->ssid, priv->essid, priv->essid_len);
5961         memset(&network->stats, 0, sizeof(network->stats));
5962         network->capability = WLAN_CAPABILITY_IBSS;
5963         if (!(priv->config & CFG_PREAMBLE_LONG))
5964                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5965         if (priv->capability & CAP_PRIVACY_ON)
5966                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5967         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5968         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5969         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5970         memcpy(network->rates_ex,
5971                &priv->rates.supported_rates[network->rates_len],
5972                network->rates_ex_len);
5973         network->last_scanned = 0;
5974         network->flags = 0;
5975         network->last_associate = 0;
5976         network->time_stamp[0] = 0;
5977         network->time_stamp[1] = 0;
5978         network->beacon_interval = 100; /* Default */
5979         network->listen_interval = 10;  /* Default */
5980         network->atim_window = 0;       /* Default */
5981         network->wpa_ie_len = 0;
5982         network->rsn_ie_len = 0;
5983 }
5984
5985 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5986 {
5987         struct ipw_tgi_tx_key key;
5988
5989         if (!(priv->ieee->sec.flags & (1 << index)))
5990                 return;
5991
5992         key.key_id = index;
5993         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5994         key.security_type = type;
5995         key.station_index = 0;  /* always 0 for BSS */
5996         key.flags = 0;
5997         /* 0 for new key; previous value of counter (after fatal error) */
5998         key.tx_counter[0] = cpu_to_le32(0);
5999         key.tx_counter[1] = cpu_to_le32(0);
6000
6001         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6002 }
6003
6004 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6005 {
6006         struct ipw_wep_key key;
6007         int i;
6008
6009         key.cmd_id = DINO_CMD_WEP_KEY;
6010         key.seq_num = 0;
6011
6012         /* Note: AES keys cannot be set for multiple times.
6013          * Only set it at the first time. */
6014         for (i = 0; i < 4; i++) {
6015                 key.key_index = i | type;
6016                 if (!(priv->ieee->sec.flags & (1 << i))) {
6017                         key.key_size = 0;
6018                         continue;
6019                 }
6020
6021                 key.key_size = priv->ieee->sec.key_sizes[i];
6022                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6023
6024                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6025         }
6026 }
6027
6028 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6029 {
6030         if (priv->ieee->host_encrypt)
6031                 return;
6032
6033         switch (level) {
6034         case SEC_LEVEL_3:
6035                 priv->sys_config.disable_unicast_decryption = 0;
6036                 priv->ieee->host_decrypt = 0;
6037                 break;
6038         case SEC_LEVEL_2:
6039                 priv->sys_config.disable_unicast_decryption = 1;
6040                 priv->ieee->host_decrypt = 1;
6041                 break;
6042         case SEC_LEVEL_1:
6043                 priv->sys_config.disable_unicast_decryption = 0;
6044                 priv->ieee->host_decrypt = 0;
6045                 break;
6046         case SEC_LEVEL_0:
6047                 priv->sys_config.disable_unicast_decryption = 1;
6048                 break;
6049         default:
6050                 break;
6051         }
6052 }
6053
6054 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6055 {
6056         if (priv->ieee->host_encrypt)
6057                 return;
6058
6059         switch (level) {
6060         case SEC_LEVEL_3:
6061                 priv->sys_config.disable_multicast_decryption = 0;
6062                 break;
6063         case SEC_LEVEL_2:
6064                 priv->sys_config.disable_multicast_decryption = 1;
6065                 break;
6066         case SEC_LEVEL_1:
6067                 priv->sys_config.disable_multicast_decryption = 0;
6068                 break;
6069         case SEC_LEVEL_0:
6070                 priv->sys_config.disable_multicast_decryption = 1;
6071                 break;
6072         default:
6073                 break;
6074         }
6075 }
6076
6077 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6078 {
6079         switch (priv->ieee->sec.level) {
6080         case SEC_LEVEL_3:
6081                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6082                         ipw_send_tgi_tx_key(priv,
6083                                             DCT_FLAG_EXT_SECURITY_CCM,
6084                                             priv->ieee->sec.active_key);
6085
6086                 if (!priv->ieee->host_mc_decrypt)
6087                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6088                 break;
6089         case SEC_LEVEL_2:
6090                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6091                         ipw_send_tgi_tx_key(priv,
6092                                             DCT_FLAG_EXT_SECURITY_TKIP,
6093                                             priv->ieee->sec.active_key);
6094                 break;
6095         case SEC_LEVEL_1:
6096                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6097                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6098                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6099                 break;
6100         case SEC_LEVEL_0:
6101         default:
6102                 break;
6103         }
6104 }
6105
6106 static void ipw_adhoc_check(void *data)
6107 {
6108         struct ipw_priv *priv = data;
6109
6110         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6111             !(priv->config & CFG_ADHOC_PERSIST)) {
6112                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6113                           IPW_DL_STATE | IPW_DL_ASSOC,
6114                           "Missed beacon: %d - disassociate\n",
6115                           priv->missed_adhoc_beacons);
6116                 ipw_remove_current_network(priv);
6117                 ipw_disassociate(priv);
6118                 return;
6119         }
6120
6121         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6122                            le16_to_cpu(priv->assoc_request.beacon_interval));
6123 }
6124
6125 static void ipw_bg_adhoc_check(struct work_struct *work)
6126 {
6127         struct ipw_priv *priv =
6128                 container_of(work, struct ipw_priv, adhoc_check.work);
6129         mutex_lock(&priv->mutex);
6130         ipw_adhoc_check(priv);
6131         mutex_unlock(&priv->mutex);
6132 }
6133
6134 static void ipw_debug_config(struct ipw_priv *priv)
6135 {
6136         DECLARE_SSID_BUF(ssid);
6137         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6138                        "[CFG 0x%08X]\n", priv->config);
6139         if (priv->config & CFG_STATIC_CHANNEL)
6140                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6141         else
6142                 IPW_DEBUG_INFO("Channel unlocked.\n");
6143         if (priv->config & CFG_STATIC_ESSID)
6144                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6145                                print_ssid(ssid, priv->essid, priv->essid_len));
6146         else
6147                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6148         if (priv->config & CFG_STATIC_BSSID)
6149                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6150         else
6151                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6152         if (priv->capability & CAP_PRIVACY_ON)
6153                 IPW_DEBUG_INFO("PRIVACY on\n");
6154         else
6155                 IPW_DEBUG_INFO("PRIVACY off\n");
6156         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6157 }
6158
6159 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6160 {
6161         /* TODO: Verify that this works... */
6162         struct ipw_fixed_rate fr;
6163         u32 reg;
6164         u16 mask = 0;
6165         u16 new_tx_rates = priv->rates_mask;
6166
6167         /* Identify 'current FW band' and match it with the fixed
6168          * Tx rates */
6169
6170         switch (priv->ieee->freq_band) {
6171         case LIBIPW_52GHZ_BAND: /* A only */
6172                 /* IEEE_A */
6173                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6174                         /* Invalid fixed rate mask */
6175                         IPW_DEBUG_WX
6176                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6177                         new_tx_rates = 0;
6178                         break;
6179                 }
6180
6181                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6182                 break;
6183
6184         default:                /* 2.4Ghz or Mixed */
6185                 /* IEEE_B */
6186                 if (mode == IEEE_B) {
6187                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6188                                 /* Invalid fixed rate mask */
6189                                 IPW_DEBUG_WX
6190                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6191                                 new_tx_rates = 0;
6192                         }
6193                         break;
6194                 }
6195
6196                 /* IEEE_G */
6197                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6198                                     LIBIPW_OFDM_RATES_MASK)) {
6199                         /* Invalid fixed rate mask */
6200                         IPW_DEBUG_WX
6201                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6202                         new_tx_rates = 0;
6203                         break;
6204                 }
6205
6206                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6207                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6208                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6209                 }
6210
6211                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6212                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6213                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6214                 }
6215
6216                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6217                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6218                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6219                 }
6220
6221                 new_tx_rates |= mask;
6222                 break;
6223         }
6224
6225         fr.tx_rates = cpu_to_le16(new_tx_rates);
6226
6227         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6228         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6229 }
6230
6231 static void ipw_abort_scan(struct ipw_priv *priv)
6232 {
6233         int err;
6234
6235         if (priv->status & STATUS_SCAN_ABORTING) {
6236                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6237                 return;
6238         }
6239         priv->status |= STATUS_SCAN_ABORTING;
6240
6241         err = ipw_send_scan_abort(priv);
6242         if (err)
6243                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6244 }
6245
6246 static void ipw_add_scan_channels(struct ipw_priv *priv,
6247                                   struct ipw_scan_request_ext *scan,
6248                                   int scan_type)
6249 {
6250         int channel_index = 0;
6251         const struct libipw_geo *geo;
6252         int i;
6253
6254         geo = libipw_get_geo(priv->ieee);
6255
6256         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6257                 int start = channel_index;
6258                 for (i = 0; i < geo->a_channels; i++) {
6259                         if ((priv->status & STATUS_ASSOCIATED) &&
6260                             geo->a[i].channel == priv->channel)
6261                                 continue;
6262                         channel_index++;
6263                         scan->channels_list[channel_index] = geo->a[i].channel;
6264                         ipw_set_scan_type(scan, channel_index,
6265                                           geo->a[i].
6266                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6267                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6268                                           scan_type);
6269                 }
6270
6271                 if (start != channel_index) {
6272                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6273                             (channel_index - start);
6274                         channel_index++;
6275                 }
6276         }
6277
6278         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6279                 int start = channel_index;
6280                 if (priv->config & CFG_SPEED_SCAN) {
6281                         int index;
6282                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6283                                 /* nop out the list */
6284                                 [0] = 0
6285                         };
6286
6287                         u8 channel;
6288                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6289                                 channel =
6290                                     priv->speed_scan[priv->speed_scan_pos];
6291                                 if (channel == 0) {
6292                                         priv->speed_scan_pos = 0;
6293                                         channel = priv->speed_scan[0];
6294                                 }
6295                                 if ((priv->status & STATUS_ASSOCIATED) &&
6296                                     channel == priv->channel) {
6297                                         priv->speed_scan_pos++;
6298                                         continue;
6299                                 }
6300
6301                                 /* If this channel has already been
6302                                  * added in scan, break from loop
6303                                  * and this will be the first channel
6304                                  * in the next scan.
6305                                  */
6306                                 if (channels[channel - 1] != 0)
6307                                         break;
6308
6309                                 channels[channel - 1] = 1;
6310                                 priv->speed_scan_pos++;
6311                                 channel_index++;
6312                                 scan->channels_list[channel_index] = channel;
6313                                 index =
6314                                     libipw_channel_to_index(priv->ieee, channel);
6315                                 ipw_set_scan_type(scan, channel_index,
6316                                                   geo->bg[index].
6317                                                   flags &
6318                                                   LIBIPW_CH_PASSIVE_ONLY ?
6319                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6320                                                   : scan_type);
6321                         }
6322                 } else {
6323                         for (i = 0; i < geo->bg_channels; i++) {
6324                                 if ((priv->status & STATUS_ASSOCIATED) &&
6325                                     geo->bg[i].channel == priv->channel)
6326                                         continue;
6327                                 channel_index++;
6328                                 scan->channels_list[channel_index] =
6329                                     geo->bg[i].channel;
6330                                 ipw_set_scan_type(scan, channel_index,
6331                                                   geo->bg[i].
6332                                                   flags &
6333                                                   LIBIPW_CH_PASSIVE_ONLY ?
6334                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6335                                                   : scan_type);
6336                         }
6337                 }
6338
6339                 if (start != channel_index) {
6340                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6341                             (channel_index - start);
6342                 }
6343         }
6344 }
6345
6346 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6347 {
6348         /* staying on passive channels longer than the DTIM interval during a
6349          * scan, while associated, causes the firmware to cancel the scan
6350          * without notification. Hence, don't stay on passive channels longer
6351          * than the beacon interval.
6352          */
6353         if (priv->status & STATUS_ASSOCIATED
6354             && priv->assoc_network->beacon_interval > 10)
6355                 return priv->assoc_network->beacon_interval - 10;
6356         else
6357                 return 120;
6358 }
6359
6360 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6361 {
6362         struct ipw_scan_request_ext scan;
6363         int err = 0, scan_type;
6364
6365         if (!(priv->status & STATUS_INIT) ||
6366             (priv->status & STATUS_EXIT_PENDING))
6367                 return 0;
6368
6369         mutex_lock(&priv->mutex);
6370
6371         if (direct && (priv->direct_scan_ssid_len == 0)) {
6372                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6373                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6374                 goto done;
6375         }
6376
6377         if (priv->status & STATUS_SCANNING) {
6378                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6379                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6380                                         STATUS_SCAN_PENDING;
6381                 goto done;
6382         }
6383
6384         if (!(priv->status & STATUS_SCAN_FORCED) &&
6385             priv->status & STATUS_SCAN_ABORTING) {
6386                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6387                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6388                                         STATUS_SCAN_PENDING;
6389                 goto done;
6390         }
6391
6392         if (priv->status & STATUS_RF_KILL_MASK) {
6393                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6394                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6395                                         STATUS_SCAN_PENDING;
6396                 goto done;
6397         }
6398
6399         memset(&scan, 0, sizeof(scan));
6400         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6401
6402         if (type == IW_SCAN_TYPE_PASSIVE) {
6403                 IPW_DEBUG_WX("use passive scanning\n");
6404                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6405                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6406                         cpu_to_le16(ipw_passive_dwell_time(priv));
6407                 ipw_add_scan_channels(priv, &scan, scan_type);
6408                 goto send_request;
6409         }
6410
6411         /* Use active scan by default. */
6412         if (priv->config & CFG_SPEED_SCAN)
6413                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6414                         cpu_to_le16(30);
6415         else
6416                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6417                         cpu_to_le16(20);
6418
6419         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6420                 cpu_to_le16(20);
6421
6422         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6423                 cpu_to_le16(ipw_passive_dwell_time(priv));
6424         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6425
6426 #ifdef CONFIG_IPW2200_MONITOR
6427         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6428                 u8 channel;
6429                 u8 band = 0;
6430
6431                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6432                 case LIBIPW_52GHZ_BAND:
6433                         band = (u8) (IPW_A_MODE << 6) | 1;
6434                         channel = priv->channel;
6435                         break;
6436
6437                 case LIBIPW_24GHZ_BAND:
6438                         band = (u8) (IPW_B_MODE << 6) | 1;
6439                         channel = priv->channel;
6440                         break;
6441
6442                 default:
6443                         band = (u8) (IPW_B_MODE << 6) | 1;
6444                         channel = 9;
6445                         break;
6446                 }
6447
6448                 scan.channels_list[0] = band;
6449                 scan.channels_list[1] = channel;
6450                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6451
6452                 /* NOTE:  The card will sit on this channel for this time
6453                  * period.  Scan aborts are timing sensitive and frequently
6454                  * result in firmware restarts.  As such, it is best to
6455                  * set a small dwell_time here and just keep re-issuing
6456                  * scans.  Otherwise fast channel hopping will not actually
6457                  * hop channels.
6458                  *
6459                  * TODO: Move SPEED SCAN support to all modes and bands */
6460                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6461                         cpu_to_le16(2000);
6462         } else {
6463 #endif                          /* CONFIG_IPW2200_MONITOR */
6464                 /* Honor direct scans first, otherwise if we are roaming make
6465                  * this a direct scan for the current network.  Finally,
6466                  * ensure that every other scan is a fast channel hop scan */
6467                 if (direct) {
6468                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6469                                             priv->direct_scan_ssid_len);
6470                         if (err) {
6471                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6472                                              "failed\n");
6473                                 goto done;
6474                         }
6475
6476                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6477                 } else if ((priv->status & STATUS_ROAMING)
6478                            || (!(priv->status & STATUS_ASSOCIATED)
6479                                && (priv->config & CFG_STATIC_ESSID)
6480                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6481                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6482                         if (err) {
6483                                 IPW_DEBUG_HC("Attempt to send SSID command "
6484                                              "failed.\n");
6485                                 goto done;
6486                         }
6487
6488                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6489                 } else
6490                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6491
6492                 ipw_add_scan_channels(priv, &scan, scan_type);
6493 #ifdef CONFIG_IPW2200_MONITOR
6494         }
6495 #endif
6496
6497 send_request:
6498         err = ipw_send_scan_request_ext(priv, &scan);
6499         if (err) {
6500                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6501                 goto done;
6502         }
6503
6504         priv->status |= STATUS_SCANNING;
6505         if (direct) {
6506                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6507                 priv->direct_scan_ssid_len = 0;
6508         } else
6509                 priv->status &= ~STATUS_SCAN_PENDING;
6510
6511         queue_delayed_work(priv->workqueue, &priv->scan_check,
6512                            IPW_SCAN_CHECK_WATCHDOG);
6513 done:
6514         mutex_unlock(&priv->mutex);
6515         return err;
6516 }
6517
6518 static void ipw_request_passive_scan(struct work_struct *work)
6519 {
6520         struct ipw_priv *priv =
6521                 container_of(work, struct ipw_priv, request_passive_scan.work);
6522         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6523 }
6524
6525 static void ipw_request_scan(struct work_struct *work)
6526 {
6527         struct ipw_priv *priv =
6528                 container_of(work, struct ipw_priv, request_scan.work);
6529         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6530 }
6531
6532 static void ipw_request_direct_scan(struct work_struct *work)
6533 {
6534         struct ipw_priv *priv =
6535                 container_of(work, struct ipw_priv, request_direct_scan.work);
6536         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6537 }
6538
6539 static void ipw_bg_abort_scan(struct work_struct *work)
6540 {
6541         struct ipw_priv *priv =
6542                 container_of(work, struct ipw_priv, abort_scan);
6543         mutex_lock(&priv->mutex);
6544         ipw_abort_scan(priv);
6545         mutex_unlock(&priv->mutex);
6546 }
6547
6548 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6549 {
6550         /* This is called when wpa_supplicant loads and closes the driver
6551          * interface. */
6552         priv->ieee->wpa_enabled = value;
6553         return 0;
6554 }
6555
6556 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6557 {
6558         struct libipw_device *ieee = priv->ieee;
6559         struct libipw_security sec = {
6560                 .flags = SEC_AUTH_MODE,
6561         };
6562         int ret = 0;
6563
6564         if (value & IW_AUTH_ALG_SHARED_KEY) {
6565                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6566                 ieee->open_wep = 0;
6567         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6568                 sec.auth_mode = WLAN_AUTH_OPEN;
6569                 ieee->open_wep = 1;
6570         } else if (value & IW_AUTH_ALG_LEAP) {
6571                 sec.auth_mode = WLAN_AUTH_LEAP;
6572                 ieee->open_wep = 1;
6573         } else
6574                 return -EINVAL;
6575
6576         if (ieee->set_security)
6577                 ieee->set_security(ieee->dev, &sec);
6578         else
6579                 ret = -EOPNOTSUPP;
6580
6581         return ret;
6582 }
6583
6584 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6585                                 int wpa_ie_len)
6586 {
6587         /* make sure WPA is enabled */
6588         ipw_wpa_enable(priv, 1);
6589 }
6590
6591 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6592                             char *capabilities, int length)
6593 {
6594         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6595
6596         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6597                                 capabilities);
6598 }
6599
6600 /*
6601  * WE-18 support
6602  */
6603
6604 /* SIOCSIWGENIE */
6605 static int ipw_wx_set_genie(struct net_device *dev,
6606                             struct iw_request_info *info,
6607                             union iwreq_data *wrqu, char *extra)
6608 {
6609         struct ipw_priv *priv = libipw_priv(dev);
6610         struct libipw_device *ieee = priv->ieee;
6611         u8 *buf;
6612         int err = 0;
6613
6614         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6615             (wrqu->data.length && extra == NULL))
6616                 return -EINVAL;
6617
6618         if (wrqu->data.length) {
6619                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6620                 if (buf == NULL) {
6621                         err = -ENOMEM;
6622                         goto out;
6623                 }
6624
6625                 memcpy(buf, extra, wrqu->data.length);
6626                 kfree(ieee->wpa_ie);
6627                 ieee->wpa_ie = buf;
6628                 ieee->wpa_ie_len = wrqu->data.length;
6629         } else {
6630                 kfree(ieee->wpa_ie);
6631                 ieee->wpa_ie = NULL;
6632                 ieee->wpa_ie_len = 0;
6633         }
6634
6635         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6636       out:
6637         return err;
6638 }
6639
6640 /* SIOCGIWGENIE */
6641 static int ipw_wx_get_genie(struct net_device *dev,
6642                             struct iw_request_info *info,
6643                             union iwreq_data *wrqu, char *extra)
6644 {
6645         struct ipw_priv *priv = libipw_priv(dev);
6646         struct libipw_device *ieee = priv->ieee;
6647         int err = 0;
6648
6649         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6650                 wrqu->data.length = 0;
6651                 goto out;
6652         }
6653
6654         if (wrqu->data.length < ieee->wpa_ie_len) {
6655                 err = -E2BIG;
6656                 goto out;
6657         }
6658
6659         wrqu->data.length = ieee->wpa_ie_len;
6660         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6661
6662       out:
6663         return err;
6664 }
6665
6666 static int wext_cipher2level(int cipher)
6667 {
6668         switch (cipher) {
6669         case IW_AUTH_CIPHER_NONE:
6670                 return SEC_LEVEL_0;
6671         case IW_AUTH_CIPHER_WEP40:
6672         case IW_AUTH_CIPHER_WEP104:
6673                 return SEC_LEVEL_1;
6674         case IW_AUTH_CIPHER_TKIP:
6675                 return SEC_LEVEL_2;
6676         case IW_AUTH_CIPHER_CCMP:
6677                 return SEC_LEVEL_3;
6678         default:
6679                 return -1;
6680         }
6681 }
6682
6683 /* SIOCSIWAUTH */
6684 static int ipw_wx_set_auth(struct net_device *dev,
6685                            struct iw_request_info *info,
6686                            union iwreq_data *wrqu, char *extra)
6687 {
6688         struct ipw_priv *priv = libipw_priv(dev);
6689         struct libipw_device *ieee = priv->ieee;
6690         struct iw_param *param = &wrqu->param;
6691         struct lib80211_crypt_data *crypt;
6692         unsigned long flags;
6693         int ret = 0;
6694
6695         switch (param->flags & IW_AUTH_INDEX) {
6696         case IW_AUTH_WPA_VERSION:
6697                 break;
6698         case IW_AUTH_CIPHER_PAIRWISE:
6699                 ipw_set_hw_decrypt_unicast(priv,
6700                                            wext_cipher2level(param->value));
6701                 break;
6702         case IW_AUTH_CIPHER_GROUP:
6703                 ipw_set_hw_decrypt_multicast(priv,
6704                                              wext_cipher2level(param->value));
6705                 break;
6706         case IW_AUTH_KEY_MGMT:
6707                 /*
6708                  * ipw2200 does not use these parameters
6709                  */
6710                 break;
6711
6712         case IW_AUTH_TKIP_COUNTERMEASURES:
6713                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6714                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6715                         break;
6716
6717                 flags = crypt->ops->get_flags(crypt->priv);
6718
6719                 if (param->value)
6720                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6721                 else
6722                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6723
6724                 crypt->ops->set_flags(flags, crypt->priv);
6725
6726                 break;
6727
6728         case IW_AUTH_DROP_UNENCRYPTED:{
6729                         /* HACK:
6730                          *
6731                          * wpa_supplicant calls set_wpa_enabled when the driver
6732                          * is loaded and unloaded, regardless of if WPA is being
6733                          * used.  No other calls are made which can be used to
6734                          * determine if encryption will be used or not prior to
6735                          * association being expected.  If encryption is not being
6736                          * used, drop_unencrypted is set to false, else true -- we
6737                          * can use this to determine if the CAP_PRIVACY_ON bit should
6738                          * be set.
6739                          */
6740                         struct libipw_security sec = {
6741                                 .flags = SEC_ENABLED,
6742                                 .enabled = param->value,
6743                         };
6744                         priv->ieee->drop_unencrypted = param->value;
6745                         /* We only change SEC_LEVEL for open mode. Others
6746                          * are set by ipw_wpa_set_encryption.
6747                          */
6748                         if (!param->value) {
6749                                 sec.flags |= SEC_LEVEL;
6750                                 sec.level = SEC_LEVEL_0;
6751                         } else {
6752                                 sec.flags |= SEC_LEVEL;
6753                                 sec.level = SEC_LEVEL_1;
6754                         }
6755                         if (priv->ieee->set_security)
6756                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6757                         break;
6758                 }
6759
6760         case IW_AUTH_80211_AUTH_ALG:
6761                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6762                 break;
6763
6764         case IW_AUTH_WPA_ENABLED:
6765                 ret = ipw_wpa_enable(priv, param->value);
6766                 ipw_disassociate(priv);
6767                 break;
6768
6769         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6770                 ieee->ieee802_1x = param->value;
6771                 break;
6772
6773         case IW_AUTH_PRIVACY_INVOKED:
6774                 ieee->privacy_invoked = param->value;
6775                 break;
6776
6777         default:
6778                 return -EOPNOTSUPP;
6779         }
6780         return ret;
6781 }
6782
6783 /* SIOCGIWAUTH */
6784 static int ipw_wx_get_auth(struct net_device *dev,
6785                            struct iw_request_info *info,
6786                            union iwreq_data *wrqu, char *extra)
6787 {
6788         struct ipw_priv *priv = libipw_priv(dev);
6789         struct libipw_device *ieee = priv->ieee;
6790         struct lib80211_crypt_data *crypt;
6791         struct iw_param *param = &wrqu->param;
6792         int ret = 0;
6793
6794         switch (param->flags & IW_AUTH_INDEX) {
6795         case IW_AUTH_WPA_VERSION:
6796         case IW_AUTH_CIPHER_PAIRWISE:
6797         case IW_AUTH_CIPHER_GROUP:
6798         case IW_AUTH_KEY_MGMT:
6799                 /*
6800                  * wpa_supplicant will control these internally
6801                  */
6802                 ret = -EOPNOTSUPP;
6803                 break;
6804
6805         case IW_AUTH_TKIP_COUNTERMEASURES:
6806                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6807                 if (!crypt || !crypt->ops->get_flags)
6808                         break;
6809
6810                 param->value = (crypt->ops->get_flags(crypt->priv) &
6811                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6812
6813                 break;
6814
6815         case IW_AUTH_DROP_UNENCRYPTED:
6816                 param->value = ieee->drop_unencrypted;
6817                 break;
6818
6819         case IW_AUTH_80211_AUTH_ALG:
6820                 param->value = ieee->sec.auth_mode;
6821                 break;
6822
6823         case IW_AUTH_WPA_ENABLED:
6824                 param->value = ieee->wpa_enabled;
6825                 break;
6826
6827         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6828                 param->value = ieee->ieee802_1x;
6829                 break;
6830
6831         case IW_AUTH_ROAMING_CONTROL:
6832         case IW_AUTH_PRIVACY_INVOKED:
6833                 param->value = ieee->privacy_invoked;
6834                 break;
6835
6836         default:
6837                 return -EOPNOTSUPP;
6838         }
6839         return 0;
6840 }
6841
6842 /* SIOCSIWENCODEEXT */
6843 static int ipw_wx_set_encodeext(struct net_device *dev,
6844                                 struct iw_request_info *info,
6845                                 union iwreq_data *wrqu, char *extra)
6846 {
6847         struct ipw_priv *priv = libipw_priv(dev);
6848         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6849
6850         if (hwcrypto) {
6851                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6852                         /* IPW HW can't build TKIP MIC,
6853                            host decryption still needed */
6854                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6855                                 priv->ieee->host_mc_decrypt = 1;
6856                         else {
6857                                 priv->ieee->host_encrypt = 0;
6858                                 priv->ieee->host_encrypt_msdu = 1;
6859                                 priv->ieee->host_decrypt = 1;
6860                         }
6861                 } else {
6862                         priv->ieee->host_encrypt = 0;
6863                         priv->ieee->host_encrypt_msdu = 0;
6864                         priv->ieee->host_decrypt = 0;
6865                         priv->ieee->host_mc_decrypt = 0;
6866                 }
6867         }
6868
6869         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6870 }
6871
6872 /* SIOCGIWENCODEEXT */
6873 static int ipw_wx_get_encodeext(struct net_device *dev,
6874                                 struct iw_request_info *info,
6875                                 union iwreq_data *wrqu, char *extra)
6876 {
6877         struct ipw_priv *priv = libipw_priv(dev);
6878         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6879 }
6880
6881 /* SIOCSIWMLME */
6882 static int ipw_wx_set_mlme(struct net_device *dev,
6883                            struct iw_request_info *info,
6884                            union iwreq_data *wrqu, char *extra)
6885 {
6886         struct ipw_priv *priv = libipw_priv(dev);
6887         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6888         __le16 reason;
6889
6890         reason = cpu_to_le16(mlme->reason_code);
6891
6892         switch (mlme->cmd) {
6893         case IW_MLME_DEAUTH:
6894                 /* silently ignore */
6895                 break;
6896
6897         case IW_MLME_DISASSOC:
6898                 ipw_disassociate(priv);
6899                 break;
6900
6901         default:
6902                 return -EOPNOTSUPP;
6903         }
6904         return 0;
6905 }
6906
6907 #ifdef CONFIG_IPW2200_QOS
6908
6909 /* QoS */
6910 /*
6911 * get the modulation type of the current network or
6912 * the card current mode
6913 */
6914 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6915 {
6916         u8 mode = 0;
6917
6918         if (priv->status & STATUS_ASSOCIATED) {
6919                 unsigned long flags;
6920
6921                 spin_lock_irqsave(&priv->ieee->lock, flags);
6922                 mode = priv->assoc_network->mode;
6923                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6924         } else {
6925                 mode = priv->ieee->mode;
6926         }
6927         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6928         return mode;
6929 }
6930
6931 /*
6932 * Handle management frame beacon and probe response
6933 */
6934 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6935                                          int active_network,
6936                                          struct libipw_network *network)
6937 {
6938         u32 size = sizeof(struct libipw_qos_parameters);
6939
6940         if (network->capability & WLAN_CAPABILITY_IBSS)
6941                 network->qos_data.active = network->qos_data.supported;
6942
6943         if (network->flags & NETWORK_HAS_QOS_MASK) {
6944                 if (active_network &&
6945                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6946                         network->qos_data.active = network->qos_data.supported;
6947
6948                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6949                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6950                     (network->qos_data.old_param_count !=
6951                      network->qos_data.param_count)) {
6952                         network->qos_data.old_param_count =
6953                             network->qos_data.param_count;
6954                         schedule_work(&priv->qos_activate);
6955                         IPW_DEBUG_QOS("QoS parameters change call "
6956                                       "qos_activate\n");
6957                 }
6958         } else {
6959                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6960                         memcpy(&network->qos_data.parameters,
6961                                &def_parameters_CCK, size);
6962                 else
6963                         memcpy(&network->qos_data.parameters,
6964                                &def_parameters_OFDM, size);
6965
6966                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6967                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6968                         schedule_work(&priv->qos_activate);
6969                 }
6970
6971                 network->qos_data.active = 0;
6972                 network->qos_data.supported = 0;
6973         }
6974         if ((priv->status & STATUS_ASSOCIATED) &&
6975             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6976                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6977                         if (network->capability & WLAN_CAPABILITY_IBSS)
6978                                 if ((network->ssid_len ==
6979                                      priv->assoc_network->ssid_len) &&
6980                                     !memcmp(network->ssid,
6981                                             priv->assoc_network->ssid,
6982                                             network->ssid_len)) {
6983                                         queue_work(priv->workqueue,
6984                                                    &priv->merge_networks);
6985                                 }
6986         }
6987
6988         return 0;
6989 }
6990
6991 /*
6992 * This function set up the firmware to support QoS. It sends
6993 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6994 */
6995 static int ipw_qos_activate(struct ipw_priv *priv,
6996                             struct libipw_qos_data *qos_network_data)
6997 {
6998         int err;
6999         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7000         struct libipw_qos_parameters *active_one = NULL;
7001         u32 size = sizeof(struct libipw_qos_parameters);
7002         u32 burst_duration;
7003         int i;
7004         u8 type;
7005
7006         type = ipw_qos_current_mode(priv);
7007
7008         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7009         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7010         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7011         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7012
7013         if (qos_network_data == NULL) {
7014                 if (type == IEEE_B) {
7015                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7016                         active_one = &def_parameters_CCK;
7017                 } else
7018                         active_one = &def_parameters_OFDM;
7019
7020                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7021                 burst_duration = ipw_qos_get_burst_duration(priv);
7022                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7023                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7024                             cpu_to_le16(burst_duration);
7025         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7026                 if (type == IEEE_B) {
7027                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7028                                       type);
7029                         if (priv->qos_data.qos_enable == 0)
7030                                 active_one = &def_parameters_CCK;
7031                         else
7032                                 active_one = priv->qos_data.def_qos_parm_CCK;
7033                 } else {
7034                         if (priv->qos_data.qos_enable == 0)
7035                                 active_one = &def_parameters_OFDM;
7036                         else
7037                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7038                 }
7039                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7040         } else {
7041                 unsigned long flags;
7042                 int active;
7043
7044                 spin_lock_irqsave(&priv->ieee->lock, flags);
7045                 active_one = &(qos_network_data->parameters);
7046                 qos_network_data->old_param_count =
7047                     qos_network_data->param_count;
7048                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7049                 active = qos_network_data->supported;
7050                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7051
7052                 if (active == 0) {
7053                         burst_duration = ipw_qos_get_burst_duration(priv);
7054                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7055                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7056                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7057                 }
7058         }
7059
7060         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7061         err = ipw_send_qos_params_command(priv,
7062                                           (struct libipw_qos_parameters *)
7063                                           &(qos_parameters[0]));
7064         if (err)
7065                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7066
7067         return err;
7068 }
7069
7070 /*
7071 * send IPW_CMD_WME_INFO to the firmware
7072 */
7073 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7074 {
7075         int ret = 0;
7076         struct libipw_qos_information_element qos_info;
7077
7078         if (priv == NULL)
7079                 return -1;
7080
7081         qos_info.elementID = QOS_ELEMENT_ID;
7082         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7083
7084         qos_info.version = QOS_VERSION_1;
7085         qos_info.ac_info = 0;
7086
7087         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7088         qos_info.qui_type = QOS_OUI_TYPE;
7089         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7090
7091         ret = ipw_send_qos_info_command(priv, &qos_info);
7092         if (ret != 0) {
7093                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7094         }
7095         return ret;
7096 }
7097
7098 /*
7099 * Set the QoS parameter with the association request structure
7100 */
7101 static int ipw_qos_association(struct ipw_priv *priv,
7102                                struct libipw_network *network)
7103 {
7104         int err = 0;
7105         struct libipw_qos_data *qos_data = NULL;
7106         struct libipw_qos_data ibss_data = {
7107                 .supported = 1,
7108                 .active = 1,
7109         };
7110
7111         switch (priv->ieee->iw_mode) {
7112         case IW_MODE_ADHOC:
7113                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7114
7115                 qos_data = &ibss_data;
7116                 break;
7117
7118         case IW_MODE_INFRA:
7119                 qos_data = &network->qos_data;
7120                 break;
7121
7122         default:
7123                 BUG();
7124                 break;
7125         }
7126
7127         err = ipw_qos_activate(priv, qos_data);
7128         if (err) {
7129                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7130                 return err;
7131         }
7132
7133         if (priv->qos_data.qos_enable && qos_data->supported) {
7134                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7135                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7136                 return ipw_qos_set_info_element(priv);
7137         }
7138
7139         return 0;
7140 }
7141
7142 /*
7143 * handling the beaconing responses. if we get different QoS setting
7144 * off the network from the associated setting, adjust the QoS
7145 * setting
7146 */
7147 static int ipw_qos_association_resp(struct ipw_priv *priv,
7148                                     struct libipw_network *network)
7149 {
7150         int ret = 0;
7151         unsigned long flags;
7152         u32 size = sizeof(struct libipw_qos_parameters);
7153         int set_qos_param = 0;
7154
7155         if ((priv == NULL) || (network == NULL) ||
7156             (priv->assoc_network == NULL))
7157                 return ret;
7158
7159         if (!(priv->status & STATUS_ASSOCIATED))
7160                 return ret;
7161
7162         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7163                 return ret;
7164
7165         spin_lock_irqsave(&priv->ieee->lock, flags);
7166         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7167                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7168                        sizeof(struct libipw_qos_data));
7169                 priv->assoc_network->qos_data.active = 1;
7170                 if ((network->qos_data.old_param_count !=
7171                      network->qos_data.param_count)) {
7172                         set_qos_param = 1;
7173                         network->qos_data.old_param_count =
7174                             network->qos_data.param_count;
7175                 }
7176
7177         } else {
7178                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7179                         memcpy(&priv->assoc_network->qos_data.parameters,
7180                                &def_parameters_CCK, size);
7181                 else
7182                         memcpy(&priv->assoc_network->qos_data.parameters,
7183                                &def_parameters_OFDM, size);
7184                 priv->assoc_network->qos_data.active = 0;
7185                 priv->assoc_network->qos_data.supported = 0;
7186                 set_qos_param = 1;
7187         }
7188
7189         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7190
7191         if (set_qos_param == 1)
7192                 schedule_work(&priv->qos_activate);
7193
7194         return ret;
7195 }
7196
7197 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7198 {
7199         u32 ret = 0;
7200
7201         if ((priv == NULL))
7202                 return 0;
7203
7204         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7205                 ret = priv->qos_data.burst_duration_CCK;
7206         else
7207                 ret = priv->qos_data.burst_duration_OFDM;
7208
7209         return ret;
7210 }
7211
7212 /*
7213 * Initialize the setting of QoS global
7214 */
7215 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7216                          int burst_enable, u32 burst_duration_CCK,
7217                          u32 burst_duration_OFDM)
7218 {
7219         priv->qos_data.qos_enable = enable;
7220
7221         if (priv->qos_data.qos_enable) {
7222                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7223                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7224                 IPW_DEBUG_QOS("QoS is enabled\n");
7225         } else {
7226                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7227                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7228                 IPW_DEBUG_QOS("QoS is not enabled\n");
7229         }
7230
7231         priv->qos_data.burst_enable = burst_enable;
7232
7233         if (burst_enable) {
7234                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7235                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7236         } else {
7237                 priv->qos_data.burst_duration_CCK = 0;
7238                 priv->qos_data.burst_duration_OFDM = 0;
7239         }
7240 }
7241
7242 /*
7243 * map the packet priority to the right TX Queue
7244 */
7245 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7246 {
7247         if (priority > 7 || !priv->qos_data.qos_enable)
7248                 priority = 0;
7249
7250         return from_priority_to_tx_queue[priority] - 1;
7251 }
7252
7253 static int ipw_is_qos_active(struct net_device *dev,
7254                              struct sk_buff *skb)
7255 {
7256         struct ipw_priv *priv = libipw_priv(dev);
7257         struct libipw_qos_data *qos_data = NULL;
7258         int active, supported;
7259         u8 *daddr = skb->data + ETH_ALEN;
7260         int unicast = !is_multicast_ether_addr(daddr);
7261
7262         if (!(priv->status & STATUS_ASSOCIATED))
7263                 return 0;
7264
7265         qos_data = &priv->assoc_network->qos_data;
7266
7267         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7268                 if (unicast == 0)
7269                         qos_data->active = 0;
7270                 else
7271                         qos_data->active = qos_data->supported;
7272         }
7273         active = qos_data->active;
7274         supported = qos_data->supported;
7275         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7276                       "unicast %d\n",
7277                       priv->qos_data.qos_enable, active, supported, unicast);
7278         if (active && priv->qos_data.qos_enable)
7279                 return 1;
7280
7281         return 0;
7282
7283 }
7284 /*
7285 * add QoS parameter to the TX command
7286 */
7287 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7288                                         u16 priority,
7289                                         struct tfd_data *tfd)
7290 {
7291         int tx_queue_id = 0;
7292
7293
7294         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7295         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7296
7297         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7298                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7299                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7300         }
7301         return 0;
7302 }
7303
7304 /*
7305 * background support to run QoS activate functionality
7306 */
7307 static void ipw_bg_qos_activate(struct work_struct *work)
7308 {
7309         struct ipw_priv *priv =
7310                 container_of(work, struct ipw_priv, qos_activate);
7311
7312         mutex_lock(&priv->mutex);
7313
7314         if (priv->status & STATUS_ASSOCIATED)
7315                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7316
7317         mutex_unlock(&priv->mutex);
7318 }
7319
7320 static int ipw_handle_probe_response(struct net_device *dev,
7321                                      struct libipw_probe_response *resp,
7322                                      struct libipw_network *network)
7323 {
7324         struct ipw_priv *priv = libipw_priv(dev);
7325         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7326                               (network == priv->assoc_network));
7327
7328         ipw_qos_handle_probe_response(priv, active_network, network);
7329
7330         return 0;
7331 }
7332
7333 static int ipw_handle_beacon(struct net_device *dev,
7334                              struct libipw_beacon *resp,
7335                              struct libipw_network *network)
7336 {
7337         struct ipw_priv *priv = libipw_priv(dev);
7338         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7339                               (network == priv->assoc_network));
7340
7341         ipw_qos_handle_probe_response(priv, active_network, network);
7342
7343         return 0;
7344 }
7345
7346 static int ipw_handle_assoc_response(struct net_device *dev,
7347                                      struct libipw_assoc_response *resp,
7348                                      struct libipw_network *network)
7349 {
7350         struct ipw_priv *priv = libipw_priv(dev);
7351         ipw_qos_association_resp(priv, network);
7352         return 0;
7353 }
7354
7355 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7356                                        *qos_param)
7357 {
7358         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7359                                 sizeof(*qos_param) * 3, qos_param);
7360 }
7361
7362 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7363                                      *qos_param)
7364 {
7365         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7366                                 qos_param);
7367 }
7368
7369 #endif                          /* CONFIG_IPW2200_QOS */
7370
7371 static int ipw_associate_network(struct ipw_priv *priv,
7372                                  struct libipw_network *network,
7373                                  struct ipw_supported_rates *rates, int roaming)
7374 {
7375         int err;
7376         DECLARE_SSID_BUF(ssid);
7377
7378         if (priv->config & CFG_FIXED_RATE)
7379                 ipw_set_fixed_rate(priv, network->mode);
7380
7381         if (!(priv->config & CFG_STATIC_ESSID)) {
7382                 priv->essid_len = min(network->ssid_len,
7383                                       (u8) IW_ESSID_MAX_SIZE);
7384                 memcpy(priv->essid, network->ssid, priv->essid_len);
7385         }
7386
7387         network->last_associate = jiffies;
7388
7389         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7390         priv->assoc_request.channel = network->channel;
7391         priv->assoc_request.auth_key = 0;
7392
7393         if ((priv->capability & CAP_PRIVACY_ON) &&
7394             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7395                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7396                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7397
7398                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7399                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7400
7401         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7402                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7403                 priv->assoc_request.auth_type = AUTH_LEAP;
7404         else
7405                 priv->assoc_request.auth_type = AUTH_OPEN;
7406
7407         if (priv->ieee->wpa_ie_len) {
7408                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7409                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7410                                  priv->ieee->wpa_ie_len);
7411         }
7412
7413         /*
7414          * It is valid for our ieee device to support multiple modes, but
7415          * when it comes to associating to a given network we have to choose
7416          * just one mode.
7417          */
7418         if (network->mode & priv->ieee->mode & IEEE_A)
7419                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7420         else if (network->mode & priv->ieee->mode & IEEE_G)
7421                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7422         else if (network->mode & priv->ieee->mode & IEEE_B)
7423                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7424
7425         priv->assoc_request.capability = cpu_to_le16(network->capability);
7426         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7427             && !(priv->config & CFG_PREAMBLE_LONG)) {
7428                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7429         } else {
7430                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7431
7432                 /* Clear the short preamble if we won't be supporting it */
7433                 priv->assoc_request.capability &=
7434                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7435         }
7436
7437         /* Clear capability bits that aren't used in Ad Hoc */
7438         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7439                 priv->assoc_request.capability &=
7440                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7441
7442         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7443                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7444                         roaming ? "Rea" : "A",
7445                         print_ssid(ssid, priv->essid, priv->essid_len),
7446                         network->channel,
7447                         ipw_modes[priv->assoc_request.ieee_mode],
7448                         rates->num_rates,
7449                         (priv->assoc_request.preamble_length ==
7450                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7451                         network->capability &
7452                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7453                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7454                         priv->capability & CAP_PRIVACY_ON ?
7455                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7456                          "(open)") : "",
7457                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7458                         priv->capability & CAP_PRIVACY_ON ?
7459                         '1' + priv->ieee->sec.active_key : '.',
7460                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7461
7462         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7463         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7464             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7465                 priv->assoc_request.assoc_type = HC_IBSS_START;
7466                 priv->assoc_request.assoc_tsf_msw = 0;
7467                 priv->assoc_request.assoc_tsf_lsw = 0;
7468         } else {
7469                 if (unlikely(roaming))
7470                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7471                 else
7472                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7473                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7474                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7475         }
7476
7477         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7478
7479         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7480                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7481                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7482         } else {
7483                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7484                 priv->assoc_request.atim_window = 0;
7485         }
7486
7487         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7488
7489         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7490         if (err) {
7491                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7492                 return err;
7493         }
7494
7495         rates->ieee_mode = priv->assoc_request.ieee_mode;
7496         rates->purpose = IPW_RATE_CONNECT;
7497         ipw_send_supported_rates(priv, rates);
7498
7499         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7500                 priv->sys_config.dot11g_auto_detection = 1;
7501         else
7502                 priv->sys_config.dot11g_auto_detection = 0;
7503
7504         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7505                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7506         else
7507                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7508
7509         err = ipw_send_system_config(priv);
7510         if (err) {
7511                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7512                 return err;
7513         }
7514
7515         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7516         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7517         if (err) {
7518                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7519                 return err;
7520         }
7521
7522         /*
7523          * If preemption is enabled, it is possible for the association
7524          * to complete before we return from ipw_send_associate.  Therefore
7525          * we have to be sure and update our priviate data first.
7526          */
7527         priv->channel = network->channel;
7528         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7529         priv->status |= STATUS_ASSOCIATING;
7530         priv->status &= ~STATUS_SECURITY_UPDATED;
7531
7532         priv->assoc_network = network;
7533
7534 #ifdef CONFIG_IPW2200_QOS
7535         ipw_qos_association(priv, network);
7536 #endif
7537
7538         err = ipw_send_associate(priv, &priv->assoc_request);
7539         if (err) {
7540                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7541                 return err;
7542         }
7543
7544         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7545                   print_ssid(ssid, priv->essid, priv->essid_len),
7546                   priv->bssid);
7547
7548         return 0;
7549 }
7550
7551 static void ipw_roam(void *data)
7552 {
7553         struct ipw_priv *priv = data;
7554         struct libipw_network *network = NULL;
7555         struct ipw_network_match match = {
7556                 .network = priv->assoc_network
7557         };
7558
7559         /* The roaming process is as follows:
7560          *
7561          * 1.  Missed beacon threshold triggers the roaming process by
7562          *     setting the status ROAM bit and requesting a scan.
7563          * 2.  When the scan completes, it schedules the ROAM work
7564          * 3.  The ROAM work looks at all of the known networks for one that
7565          *     is a better network than the currently associated.  If none
7566          *     found, the ROAM process is over (ROAM bit cleared)
7567          * 4.  If a better network is found, a disassociation request is
7568          *     sent.
7569          * 5.  When the disassociation completes, the roam work is again
7570          *     scheduled.  The second time through, the driver is no longer
7571          *     associated, and the newly selected network is sent an
7572          *     association request.
7573          * 6.  At this point ,the roaming process is complete and the ROAM
7574          *     status bit is cleared.
7575          */
7576
7577         /* If we are no longer associated, and the roaming bit is no longer
7578          * set, then we are not actively roaming, so just return */
7579         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7580                 return;
7581
7582         if (priv->status & STATUS_ASSOCIATED) {
7583                 /* First pass through ROAM process -- look for a better
7584                  * network */
7585                 unsigned long flags;
7586                 u8 rssi = priv->assoc_network->stats.rssi;
7587                 priv->assoc_network->stats.rssi = -128;
7588                 spin_lock_irqsave(&priv->ieee->lock, flags);
7589                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7590                         if (network != priv->assoc_network)
7591                                 ipw_best_network(priv, &match, network, 1);
7592                 }
7593                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7594                 priv->assoc_network->stats.rssi = rssi;
7595
7596                 if (match.network == priv->assoc_network) {
7597                         IPW_DEBUG_ASSOC("No better APs in this network to "
7598                                         "roam to.\n");
7599                         priv->status &= ~STATUS_ROAMING;
7600                         ipw_debug_config(priv);
7601                         return;
7602                 }
7603
7604                 ipw_send_disassociate(priv, 1);
7605                 priv->assoc_network = match.network;
7606
7607                 return;
7608         }
7609
7610         /* Second pass through ROAM process -- request association */
7611         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7612         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7613         priv->status &= ~STATUS_ROAMING;
7614 }
7615
7616 static void ipw_bg_roam(struct work_struct *work)
7617 {
7618         struct ipw_priv *priv =
7619                 container_of(work, struct ipw_priv, roam);
7620         mutex_lock(&priv->mutex);
7621         ipw_roam(priv);
7622         mutex_unlock(&priv->mutex);
7623 }
7624
7625 static int ipw_associate(void *data)
7626 {
7627         struct ipw_priv *priv = data;
7628
7629         struct libipw_network *network = NULL;
7630         struct ipw_network_match match = {
7631                 .network = NULL
7632         };
7633         struct ipw_supported_rates *rates;
7634         struct list_head *element;
7635         unsigned long flags;
7636         DECLARE_SSID_BUF(ssid);
7637
7638         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7639                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7640                 return 0;
7641         }
7642
7643         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7644                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7645                                 "progress)\n");
7646                 return 0;
7647         }
7648
7649         if (priv->status & STATUS_DISASSOCIATING) {
7650                 IPW_DEBUG_ASSOC("Not attempting association (in "
7651                                 "disassociating)\n ");
7652                 queue_work(priv->workqueue, &priv->associate);
7653                 return 0;
7654         }
7655
7656         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7657                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7658                                 "initialized)\n");
7659                 return 0;
7660         }
7661
7662         if (!(priv->config & CFG_ASSOCIATE) &&
7663             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7664                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7665                 return 0;
7666         }
7667
7668         /* Protect our use of the network_list */
7669         spin_lock_irqsave(&priv->ieee->lock, flags);
7670         list_for_each_entry(network, &priv->ieee->network_list, list)
7671             ipw_best_network(priv, &match, network, 0);
7672
7673         network = match.network;
7674         rates = &match.rates;
7675
7676         if (network == NULL &&
7677             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7678             priv->config & CFG_ADHOC_CREATE &&
7679             priv->config & CFG_STATIC_ESSID &&
7680             priv->config & CFG_STATIC_CHANNEL) {
7681                 /* Use oldest network if the free list is empty */
7682                 if (list_empty(&priv->ieee->network_free_list)) {
7683                         struct libipw_network *oldest = NULL;
7684                         struct libipw_network *target;
7685
7686                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7687                                 if ((oldest == NULL) ||
7688                                     (target->last_scanned < oldest->last_scanned))
7689                                         oldest = target;
7690                         }
7691
7692                         /* If there are no more slots, expire the oldest */
7693                         list_del(&oldest->list);
7694                         target = oldest;
7695                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7696                                         "network list.\n",
7697                                         print_ssid(ssid, target->ssid,
7698                                                    target->ssid_len),
7699                                         target->bssid);
7700                         list_add_tail(&target->list,
7701                                       &priv->ieee->network_free_list);
7702                 }
7703
7704                 element = priv->ieee->network_free_list.next;
7705                 network = list_entry(element, struct libipw_network, list);
7706                 ipw_adhoc_create(priv, network);
7707                 rates = &priv->rates;
7708                 list_del(element);
7709                 list_add_tail(&network->list, &priv->ieee->network_list);
7710         }
7711         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7712
7713         /* If we reached the end of the list, then we don't have any valid
7714          * matching APs */
7715         if (!network) {
7716                 ipw_debug_config(priv);
7717
7718                 if (!(priv->status & STATUS_SCANNING)) {
7719                         if (!(priv->config & CFG_SPEED_SCAN))
7720                                 queue_delayed_work(priv->workqueue,
7721                                                    &priv->request_scan,
7722                                                    SCAN_INTERVAL);
7723                         else
7724                                 queue_delayed_work(priv->workqueue,
7725                                                    &priv->request_scan, 0);
7726                 }
7727
7728                 return 0;
7729         }
7730
7731         ipw_associate_network(priv, network, rates, 0);
7732
7733         return 1;
7734 }
7735
7736 static void ipw_bg_associate(struct work_struct *work)
7737 {
7738         struct ipw_priv *priv =
7739                 container_of(work, struct ipw_priv, associate);
7740         mutex_lock(&priv->mutex);
7741         ipw_associate(priv);
7742         mutex_unlock(&priv->mutex);
7743 }
7744
7745 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7746                                       struct sk_buff *skb)
7747 {
7748         struct ieee80211_hdr *hdr;
7749         u16 fc;
7750
7751         hdr = (struct ieee80211_hdr *)skb->data;
7752         fc = le16_to_cpu(hdr->frame_control);
7753         if (!(fc & IEEE80211_FCTL_PROTECTED))
7754                 return;
7755
7756         fc &= ~IEEE80211_FCTL_PROTECTED;
7757         hdr->frame_control = cpu_to_le16(fc);
7758         switch (priv->ieee->sec.level) {
7759         case SEC_LEVEL_3:
7760                 /* Remove CCMP HDR */
7761                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7762                         skb->data + LIBIPW_3ADDR_LEN + 8,
7763                         skb->len - LIBIPW_3ADDR_LEN - 8);
7764                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7765                 break;
7766         case SEC_LEVEL_2:
7767                 break;
7768         case SEC_LEVEL_1:
7769                 /* Remove IV */
7770                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7771                         skb->data + LIBIPW_3ADDR_LEN + 4,
7772                         skb->len - LIBIPW_3ADDR_LEN - 4);
7773                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7774                 break;
7775         case SEC_LEVEL_0:
7776                 break;
7777         default:
7778                 printk(KERN_ERR "Unknown security level %d\n",
7779                        priv->ieee->sec.level);
7780                 break;
7781         }
7782 }
7783
7784 static void ipw_handle_data_packet(struct ipw_priv *priv,
7785                                    struct ipw_rx_mem_buffer *rxb,
7786                                    struct libipw_rx_stats *stats)
7787 {
7788         struct net_device *dev = priv->net_dev;
7789         struct libipw_hdr_4addr *hdr;
7790         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7791
7792         /* We received data from the HW, so stop the watchdog */
7793         dev->trans_start = jiffies;
7794
7795         /* We only process data packets if the
7796          * interface is open */
7797         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7798                      skb_tailroom(rxb->skb))) {
7799                 dev->stats.rx_errors++;
7800                 priv->wstats.discard.misc++;
7801                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7802                 return;
7803         } else if (unlikely(!netif_running(priv->net_dev))) {
7804                 dev->stats.rx_dropped++;
7805                 priv->wstats.discard.misc++;
7806                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7807                 return;
7808         }
7809
7810         /* Advance skb->data to the start of the actual payload */
7811         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7812
7813         /* Set the size of the skb to the size of the frame */
7814         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7815
7816         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7817
7818         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7819         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7820         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7821             (is_multicast_ether_addr(hdr->addr1) ?
7822              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7823                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7824
7825         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7826                 dev->stats.rx_errors++;
7827         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7828                 rxb->skb = NULL;
7829                 __ipw_led_activity_on(priv);
7830         }
7831 }
7832
7833 #ifdef CONFIG_IPW2200_RADIOTAP
7834 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7835                                            struct ipw_rx_mem_buffer *rxb,
7836                                            struct libipw_rx_stats *stats)
7837 {
7838         struct net_device *dev = priv->net_dev;
7839         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7840         struct ipw_rx_frame *frame = &pkt->u.frame;
7841
7842         /* initial pull of some data */
7843         u16 received_channel = frame->received_channel;
7844         u8 antennaAndPhy = frame->antennaAndPhy;
7845         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7846         u16 pktrate = frame->rate;
7847
7848         /* Magic struct that slots into the radiotap header -- no reason
7849          * to build this manually element by element, we can write it much
7850          * more efficiently than we can parse it. ORDER MATTERS HERE */
7851         struct ipw_rt_hdr *ipw_rt;
7852
7853         short len = le16_to_cpu(pkt->u.frame.length);
7854
7855         /* We received data from the HW, so stop the watchdog */
7856         dev->trans_start = jiffies;
7857
7858         /* We only process data packets if the
7859          * interface is open */
7860         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7861                      skb_tailroom(rxb->skb))) {
7862                 dev->stats.rx_errors++;
7863                 priv->wstats.discard.misc++;
7864                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7865                 return;
7866         } else if (unlikely(!netif_running(priv->net_dev))) {
7867                 dev->stats.rx_dropped++;
7868                 priv->wstats.discard.misc++;
7869                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7870                 return;
7871         }
7872
7873         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7874          * that now */
7875         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7876                 /* FIXME: Should alloc bigger skb instead */
7877                 dev->stats.rx_dropped++;
7878                 priv->wstats.discard.misc++;
7879                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7880                 return;
7881         }
7882
7883         /* copy the frame itself */
7884         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7885                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7886
7887         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7888
7889         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7890         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7891         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7892
7893         /* Big bitfield of all the fields we provide in radiotap */
7894         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7895              (1 << IEEE80211_RADIOTAP_TSFT) |
7896              (1 << IEEE80211_RADIOTAP_FLAGS) |
7897              (1 << IEEE80211_RADIOTAP_RATE) |
7898              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7899              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7900              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7901              (1 << IEEE80211_RADIOTAP_ANTENNA));
7902
7903         /* Zero the flags, we'll add to them as we go */
7904         ipw_rt->rt_flags = 0;
7905         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7906                                frame->parent_tsf[2] << 16 |
7907                                frame->parent_tsf[1] << 8  |
7908                                frame->parent_tsf[0]);
7909
7910         /* Convert signal to DBM */
7911         ipw_rt->rt_dbmsignal = antsignal;
7912         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7913
7914         /* Convert the channel data and set the flags */
7915         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7916         if (received_channel > 14) {    /* 802.11a */
7917                 ipw_rt->rt_chbitmask =
7918                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7919         } else if (antennaAndPhy & 32) {        /* 802.11b */
7920                 ipw_rt->rt_chbitmask =
7921                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7922         } else {                /* 802.11g */
7923                 ipw_rt->rt_chbitmask =
7924                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7925         }
7926
7927         /* set the rate in multiples of 500k/s */
7928         switch (pktrate) {
7929         case IPW_TX_RATE_1MB:
7930                 ipw_rt->rt_rate = 2;
7931                 break;
7932         case IPW_TX_RATE_2MB:
7933                 ipw_rt->rt_rate = 4;
7934                 break;
7935         case IPW_TX_RATE_5MB:
7936                 ipw_rt->rt_rate = 10;
7937                 break;
7938         case IPW_TX_RATE_6MB:
7939                 ipw_rt->rt_rate = 12;
7940                 break;
7941         case IPW_TX_RATE_9MB:
7942                 ipw_rt->rt_rate = 18;
7943                 break;
7944         case IPW_TX_RATE_11MB:
7945                 ipw_rt->rt_rate = 22;
7946                 break;
7947         case IPW_TX_RATE_12MB:
7948                 ipw_rt->rt_rate = 24;
7949                 break;
7950         case IPW_TX_RATE_18MB:
7951                 ipw_rt->rt_rate = 36;
7952                 break;
7953         case IPW_TX_RATE_24MB:
7954                 ipw_rt->rt_rate = 48;
7955                 break;
7956         case IPW_TX_RATE_36MB:
7957                 ipw_rt->rt_rate = 72;
7958                 break;
7959         case IPW_TX_RATE_48MB:
7960                 ipw_rt->rt_rate = 96;
7961                 break;
7962         case IPW_TX_RATE_54MB:
7963                 ipw_rt->rt_rate = 108;
7964                 break;
7965         default:
7966                 ipw_rt->rt_rate = 0;
7967                 break;
7968         }
7969
7970         /* antenna number */
7971         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7972
7973         /* set the preamble flag if we have it */
7974         if ((antennaAndPhy & 64))
7975                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7976
7977         /* Set the size of the skb to the size of the frame */
7978         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7979
7980         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7981
7982         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7983                 dev->stats.rx_errors++;
7984         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7985                 rxb->skb = NULL;
7986                 /* no LED during capture */
7987         }
7988 }
7989 #endif
7990
7991 #ifdef CONFIG_IPW2200_PROMISCUOUS
7992 #define libipw_is_probe_response(fc) \
7993    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7994     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7995
7996 #define libipw_is_management(fc) \
7997    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7998
7999 #define libipw_is_control(fc) \
8000    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8001
8002 #define libipw_is_data(fc) \
8003    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8004
8005 #define libipw_is_assoc_request(fc) \
8006    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8007
8008 #define libipw_is_reassoc_request(fc) \
8009    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8010
8011 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8012                                       struct ipw_rx_mem_buffer *rxb,
8013                                       struct libipw_rx_stats *stats)
8014 {
8015         struct net_device *dev = priv->prom_net_dev;
8016         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8017         struct ipw_rx_frame *frame = &pkt->u.frame;
8018         struct ipw_rt_hdr *ipw_rt;
8019
8020         /* First cache any information we need before we overwrite
8021          * the information provided in the skb from the hardware */
8022         struct ieee80211_hdr *hdr;
8023         u16 channel = frame->received_channel;
8024         u8 phy_flags = frame->antennaAndPhy;
8025         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8026         s8 noise = (s8) le16_to_cpu(frame->noise);
8027         u8 rate = frame->rate;
8028         short len = le16_to_cpu(pkt->u.frame.length);
8029         struct sk_buff *skb;
8030         int hdr_only = 0;
8031         u16 filter = priv->prom_priv->filter;
8032
8033         /* If the filter is set to not include Rx frames then return */
8034         if (filter & IPW_PROM_NO_RX)
8035                 return;
8036
8037         /* We received data from the HW, so stop the watchdog */
8038         dev->trans_start = jiffies;
8039
8040         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8041                 dev->stats.rx_errors++;
8042                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8043                 return;
8044         }
8045
8046         /* We only process data packets if the interface is open */
8047         if (unlikely(!netif_running(dev))) {
8048                 dev->stats.rx_dropped++;
8049                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8050                 return;
8051         }
8052
8053         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8054          * that now */
8055         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8056                 /* FIXME: Should alloc bigger skb instead */
8057                 dev->stats.rx_dropped++;
8058                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8059                 return;
8060         }
8061
8062         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8063         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8064                 if (filter & IPW_PROM_NO_MGMT)
8065                         return;
8066                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8067                         hdr_only = 1;
8068         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8069                 if (filter & IPW_PROM_NO_CTL)
8070                         return;
8071                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8072                         hdr_only = 1;
8073         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8074                 if (filter & IPW_PROM_NO_DATA)
8075                         return;
8076                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8077                         hdr_only = 1;
8078         }
8079
8080         /* Copy the SKB since this is for the promiscuous side */
8081         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8082         if (skb == NULL) {
8083                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8084                 return;
8085         }
8086
8087         /* copy the frame data to write after where the radiotap header goes */
8088         ipw_rt = (void *)skb->data;
8089
8090         if (hdr_only)
8091                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8092
8093         memcpy(ipw_rt->payload, hdr, len);
8094
8095         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8096         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8097         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8098
8099         /* Set the size of the skb to the size of the frame */
8100         skb_put(skb, sizeof(*ipw_rt) + len);
8101
8102         /* Big bitfield of all the fields we provide in radiotap */
8103         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8104              (1 << IEEE80211_RADIOTAP_TSFT) |
8105              (1 << IEEE80211_RADIOTAP_FLAGS) |
8106              (1 << IEEE80211_RADIOTAP_RATE) |
8107              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8108              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8109              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8110              (1 << IEEE80211_RADIOTAP_ANTENNA));
8111
8112         /* Zero the flags, we'll add to them as we go */
8113         ipw_rt->rt_flags = 0;
8114         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8115                                frame->parent_tsf[2] << 16 |
8116                                frame->parent_tsf[1] << 8  |
8117                                frame->parent_tsf[0]);
8118
8119         /* Convert to DBM */
8120         ipw_rt->rt_dbmsignal = signal;
8121         ipw_rt->rt_dbmnoise = noise;
8122
8123         /* Convert the channel data and set the flags */
8124         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8125         if (channel > 14) {     /* 802.11a */
8126                 ipw_rt->rt_chbitmask =
8127                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8128         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8129                 ipw_rt->rt_chbitmask =
8130                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8131         } else {                /* 802.11g */
8132                 ipw_rt->rt_chbitmask =
8133                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8134         }
8135
8136         /* set the rate in multiples of 500k/s */
8137         switch (rate) {
8138         case IPW_TX_RATE_1MB:
8139                 ipw_rt->rt_rate = 2;
8140                 break;
8141         case IPW_TX_RATE_2MB:
8142                 ipw_rt->rt_rate = 4;
8143                 break;
8144         case IPW_TX_RATE_5MB:
8145                 ipw_rt->rt_rate = 10;
8146                 break;
8147         case IPW_TX_RATE_6MB:
8148                 ipw_rt->rt_rate = 12;
8149                 break;
8150         case IPW_TX_RATE_9MB:
8151                 ipw_rt->rt_rate = 18;
8152                 break;
8153         case IPW_TX_RATE_11MB:
8154                 ipw_rt->rt_rate = 22;
8155                 break;
8156         case IPW_TX_RATE_12MB:
8157                 ipw_rt->rt_rate = 24;
8158                 break;
8159         case IPW_TX_RATE_18MB:
8160                 ipw_rt->rt_rate = 36;
8161                 break;
8162         case IPW_TX_RATE_24MB:
8163                 ipw_rt->rt_rate = 48;
8164                 break;
8165         case IPW_TX_RATE_36MB:
8166                 ipw_rt->rt_rate = 72;
8167                 break;
8168         case IPW_TX_RATE_48MB:
8169                 ipw_rt->rt_rate = 96;
8170                 break;
8171         case IPW_TX_RATE_54MB:
8172                 ipw_rt->rt_rate = 108;
8173                 break;
8174         default:
8175                 ipw_rt->rt_rate = 0;
8176                 break;
8177         }
8178
8179         /* antenna number */
8180         ipw_rt->rt_antenna = (phy_flags & 3);
8181
8182         /* set the preamble flag if we have it */
8183         if (phy_flags & (1 << 6))
8184                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8185
8186         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8187
8188         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8189                 dev->stats.rx_errors++;
8190                 dev_kfree_skb_any(skb);
8191         }
8192 }
8193 #endif
8194
8195 static int is_network_packet(struct ipw_priv *priv,
8196                                     struct libipw_hdr_4addr *header)
8197 {
8198         /* Filter incoming packets to determine if they are targetted toward
8199          * this network, discarding packets coming from ourselves */
8200         switch (priv->ieee->iw_mode) {
8201         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8202                 /* packets from our adapter are dropped (echo) */
8203                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8204                         return 0;
8205
8206                 /* {broad,multi}cast packets to our BSSID go through */
8207                 if (is_multicast_ether_addr(header->addr1))
8208                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8209
8210                 /* packets to our adapter go through */
8211                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8212                                ETH_ALEN);
8213
8214         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8215                 /* packets from our adapter are dropped (echo) */
8216                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8217                         return 0;
8218
8219                 /* {broad,multi}cast packets to our BSS go through */
8220                 if (is_multicast_ether_addr(header->addr1))
8221                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8222
8223                 /* packets to our adapter go through */
8224                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8225                                ETH_ALEN);
8226         }
8227
8228         return 1;
8229 }
8230
8231 #define IPW_PACKET_RETRY_TIME HZ
8232
8233 static  int is_duplicate_packet(struct ipw_priv *priv,
8234                                       struct libipw_hdr_4addr *header)
8235 {
8236         u16 sc = le16_to_cpu(header->seq_ctl);
8237         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8238         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8239         u16 *last_seq, *last_frag;
8240         unsigned long *last_time;
8241
8242         switch (priv->ieee->iw_mode) {
8243         case IW_MODE_ADHOC:
8244                 {
8245                         struct list_head *p;
8246                         struct ipw_ibss_seq *entry = NULL;
8247                         u8 *mac = header->addr2;
8248                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8249
8250                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8251                                 entry =
8252                                     list_entry(p, struct ipw_ibss_seq, list);
8253                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8254                                         break;
8255                         }
8256                         if (p == &priv->ibss_mac_hash[index]) {
8257                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8258                                 if (!entry) {
8259                                         IPW_ERROR
8260                                             ("Cannot malloc new mac entry\n");
8261                                         return 0;
8262                                 }
8263                                 memcpy(entry->mac, mac, ETH_ALEN);
8264                                 entry->seq_num = seq;
8265                                 entry->frag_num = frag;
8266                                 entry->packet_time = jiffies;
8267                                 list_add(&entry->list,
8268                                          &priv->ibss_mac_hash[index]);
8269                                 return 0;
8270                         }
8271                         last_seq = &entry->seq_num;
8272                         last_frag = &entry->frag_num;
8273                         last_time = &entry->packet_time;
8274                         break;
8275                 }
8276         case IW_MODE_INFRA:
8277                 last_seq = &priv->last_seq_num;
8278                 last_frag = &priv->last_frag_num;
8279                 last_time = &priv->last_packet_time;
8280                 break;
8281         default:
8282                 return 0;
8283         }
8284         if ((*last_seq == seq) &&
8285             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8286                 if (*last_frag == frag)
8287                         goto drop;
8288                 if (*last_frag + 1 != frag)
8289                         /* out-of-order fragment */
8290                         goto drop;
8291         } else
8292                 *last_seq = seq;
8293
8294         *last_frag = frag;
8295         *last_time = jiffies;
8296         return 0;
8297
8298       drop:
8299         /* Comment this line now since we observed the card receives
8300          * duplicate packets but the FCTL_RETRY bit is not set in the
8301          * IBSS mode with fragmentation enabled.
8302          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8303         return 1;
8304 }
8305
8306 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8307                                    struct ipw_rx_mem_buffer *rxb,
8308                                    struct libipw_rx_stats *stats)
8309 {
8310         struct sk_buff *skb = rxb->skb;
8311         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8312         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8313             (skb->data + IPW_RX_FRAME_SIZE);
8314
8315         libipw_rx_mgt(priv->ieee, header, stats);
8316
8317         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8318             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8319               IEEE80211_STYPE_PROBE_RESP) ||
8320              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8321               IEEE80211_STYPE_BEACON))) {
8322                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8323                         ipw_add_station(priv, header->addr2);
8324         }
8325
8326         if (priv->config & CFG_NET_STATS) {
8327                 IPW_DEBUG_HC("sending stat packet\n");
8328
8329                 /* Set the size of the skb to the size of the full
8330                  * ipw header and 802.11 frame */
8331                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8332                         IPW_RX_FRAME_SIZE);
8333
8334                 /* Advance past the ipw packet header to the 802.11 frame */
8335                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8336
8337                 /* Push the libipw_rx_stats before the 802.11 frame */
8338                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8339
8340                 skb->dev = priv->ieee->dev;
8341
8342                 /* Point raw at the libipw_stats */
8343                 skb_reset_mac_header(skb);
8344
8345                 skb->pkt_type = PACKET_OTHERHOST;
8346                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8347                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8348                 netif_rx(skb);
8349                 rxb->skb = NULL;
8350         }
8351 }
8352
8353 /*
8354  * Main entry function for recieving a packet with 80211 headers.  This
8355  * should be called when ever the FW has notified us that there is a new
8356  * skb in the recieve queue.
8357  */
8358 static void ipw_rx(struct ipw_priv *priv)
8359 {
8360         struct ipw_rx_mem_buffer *rxb;
8361         struct ipw_rx_packet *pkt;
8362         struct libipw_hdr_4addr *header;
8363         u32 r, w, i;
8364         u8 network_packet;
8365         u8 fill_rx = 0;
8366
8367         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8368         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8369         i = priv->rxq->read;
8370
8371         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8372                 fill_rx = 1;
8373
8374         while (i != r) {
8375                 rxb = priv->rxq->queue[i];
8376                 if (unlikely(rxb == NULL)) {
8377                         printk(KERN_CRIT "Queue not allocated!\n");
8378                         break;
8379                 }
8380                 priv->rxq->queue[i] = NULL;
8381
8382                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8383                                             IPW_RX_BUF_SIZE,
8384                                             PCI_DMA_FROMDEVICE);
8385
8386                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8387                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8388                              pkt->header.message_type,
8389                              pkt->header.rx_seq_num, pkt->header.control_bits);
8390
8391                 switch (pkt->header.message_type) {
8392                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8393                                 struct libipw_rx_stats stats = {
8394                                         .rssi = pkt->u.frame.rssi_dbm -
8395                                             IPW_RSSI_TO_DBM,
8396                                         .signal =
8397                                             pkt->u.frame.rssi_dbm -
8398                                             IPW_RSSI_TO_DBM + 0x100,
8399                                         .noise =
8400                                             le16_to_cpu(pkt->u.frame.noise),
8401                                         .rate = pkt->u.frame.rate,
8402                                         .mac_time = jiffies,
8403                                         .received_channel =
8404                                             pkt->u.frame.received_channel,
8405                                         .freq =
8406                                             (pkt->u.frame.
8407                                              control & (1 << 0)) ?
8408                                             LIBIPW_24GHZ_BAND :
8409                                             LIBIPW_52GHZ_BAND,
8410                                         .len = le16_to_cpu(pkt->u.frame.length),
8411                                 };
8412
8413                                 if (stats.rssi != 0)
8414                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8415                                 if (stats.signal != 0)
8416                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8417                                 if (stats.noise != 0)
8418                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8419                                 if (stats.rate != 0)
8420                                         stats.mask |= LIBIPW_STATMASK_RATE;
8421
8422                                 priv->rx_packets++;
8423
8424 #ifdef CONFIG_IPW2200_PROMISCUOUS
8425         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8426                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8427 #endif
8428
8429 #ifdef CONFIG_IPW2200_MONITOR
8430                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8431 #ifdef CONFIG_IPW2200_RADIOTAP
8432
8433                 ipw_handle_data_packet_monitor(priv,
8434                                                rxb,
8435                                                &stats);
8436 #else
8437                 ipw_handle_data_packet(priv, rxb,
8438                                        &stats);
8439 #endif
8440                                         break;
8441                                 }
8442 #endif
8443
8444                                 header =
8445                                     (struct libipw_hdr_4addr *)(rxb->skb->
8446                                                                    data +
8447                                                                    IPW_RX_FRAME_SIZE);
8448                                 /* TODO: Check Ad-Hoc dest/source and make sure
8449                                  * that we are actually parsing these packets
8450                                  * correctly -- we should probably use the
8451                                  * frame control of the packet and disregard
8452                                  * the current iw_mode */
8453
8454                                 network_packet =
8455                                     is_network_packet(priv, header);
8456                                 if (network_packet && priv->assoc_network) {
8457                                         priv->assoc_network->stats.rssi =
8458                                             stats.rssi;
8459                                         priv->exp_avg_rssi =
8460                                             exponential_average(priv->exp_avg_rssi,
8461                                             stats.rssi, DEPTH_RSSI);
8462                                 }
8463
8464                                 IPW_DEBUG_RX("Frame: len=%u\n",
8465                                              le16_to_cpu(pkt->u.frame.length));
8466
8467                                 if (le16_to_cpu(pkt->u.frame.length) <
8468                                     libipw_get_hdrlen(le16_to_cpu(
8469                                                     header->frame_ctl))) {
8470                                         IPW_DEBUG_DROP
8471                                             ("Received packet is too small. "
8472                                              "Dropping.\n");
8473                                         priv->net_dev->stats.rx_errors++;
8474                                         priv->wstats.discard.misc++;
8475                                         break;
8476                                 }
8477
8478                                 switch (WLAN_FC_GET_TYPE
8479                                         (le16_to_cpu(header->frame_ctl))) {
8480
8481                                 case IEEE80211_FTYPE_MGMT:
8482                                         ipw_handle_mgmt_packet(priv, rxb,
8483                                                                &stats);
8484                                         break;
8485
8486                                 case IEEE80211_FTYPE_CTL:
8487                                         break;
8488
8489                                 case IEEE80211_FTYPE_DATA:
8490                                         if (unlikely(!network_packet ||
8491                                                      is_duplicate_packet(priv,
8492                                                                          header)))
8493                                         {
8494                                                 IPW_DEBUG_DROP("Dropping: "
8495                                                                "%pM, "
8496                                                                "%pM, "
8497                                                                "%pM\n",
8498                                                                header->addr1,
8499                                                                header->addr2,
8500                                                                header->addr3);
8501                                                 break;
8502                                         }
8503
8504                                         ipw_handle_data_packet(priv, rxb,
8505                                                                &stats);
8506
8507                                         break;
8508                                 }
8509                                 break;
8510                         }
8511
8512                 case RX_HOST_NOTIFICATION_TYPE:{
8513                                 IPW_DEBUG_RX
8514                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8515                                      pkt->u.notification.subtype,
8516                                      pkt->u.notification.flags,
8517                                      le16_to_cpu(pkt->u.notification.size));
8518                                 ipw_rx_notification(priv, &pkt->u.notification);
8519                                 break;
8520                         }
8521
8522                 default:
8523                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8524                                      pkt->header.message_type);
8525                         break;
8526                 }
8527
8528                 /* For now we just don't re-use anything.  We can tweak this
8529                  * later to try and re-use notification packets and SKBs that
8530                  * fail to Rx correctly */
8531                 if (rxb->skb != NULL) {
8532                         dev_kfree_skb_any(rxb->skb);
8533                         rxb->skb = NULL;
8534                 }
8535
8536                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8537                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8538                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8539
8540                 i = (i + 1) % RX_QUEUE_SIZE;
8541
8542                 /* If there are a lot of unsued frames, restock the Rx queue
8543                  * so the ucode won't assert */
8544                 if (fill_rx) {
8545                         priv->rxq->read = i;
8546                         ipw_rx_queue_replenish(priv);
8547                 }
8548         }
8549
8550         /* Backtrack one entry */
8551         priv->rxq->read = i;
8552         ipw_rx_queue_restock(priv);
8553 }
8554
8555 #define DEFAULT_RTS_THRESHOLD     2304U
8556 #define MIN_RTS_THRESHOLD         1U
8557 #define MAX_RTS_THRESHOLD         2304U
8558 #define DEFAULT_BEACON_INTERVAL   100U
8559 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8560 #define DEFAULT_LONG_RETRY_LIMIT  4U
8561
8562 /**
8563  * ipw_sw_reset
8564  * @option: options to control different reset behaviour
8565  *          0 = reset everything except the 'disable' module_param
8566  *          1 = reset everything and print out driver info (for probe only)
8567  *          2 = reset everything
8568  */
8569 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8570 {
8571         int band, modulation;
8572         int old_mode = priv->ieee->iw_mode;
8573
8574         /* Initialize module parameter values here */
8575         priv->config = 0;
8576
8577         /* We default to disabling the LED code as right now it causes
8578          * too many systems to lock up... */
8579         if (!led_support)
8580                 priv->config |= CFG_NO_LED;
8581
8582         if (associate)
8583                 priv->config |= CFG_ASSOCIATE;
8584         else
8585                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8586
8587         if (auto_create)
8588                 priv->config |= CFG_ADHOC_CREATE;
8589         else
8590                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8591
8592         priv->config &= ~CFG_STATIC_ESSID;
8593         priv->essid_len = 0;
8594         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8595
8596         if (disable && option) {
8597                 priv->status |= STATUS_RF_KILL_SW;
8598                 IPW_DEBUG_INFO("Radio disabled.\n");
8599         }
8600
8601         if (default_channel != 0) {
8602                 priv->config |= CFG_STATIC_CHANNEL;
8603                 priv->channel = default_channel;
8604                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8605                 /* TODO: Validate that provided channel is in range */
8606         }
8607 #ifdef CONFIG_IPW2200_QOS
8608         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8609                      burst_duration_CCK, burst_duration_OFDM);
8610 #endif                          /* CONFIG_IPW2200_QOS */
8611
8612         switch (network_mode) {
8613         case 1:
8614                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8615                 priv->net_dev->type = ARPHRD_ETHER;
8616
8617                 break;
8618 #ifdef CONFIG_IPW2200_MONITOR
8619         case 2:
8620                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8621 #ifdef CONFIG_IPW2200_RADIOTAP
8622                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8623 #else
8624                 priv->net_dev->type = ARPHRD_IEEE80211;
8625 #endif
8626                 break;
8627 #endif
8628         default:
8629         case 0:
8630                 priv->net_dev->type = ARPHRD_ETHER;
8631                 priv->ieee->iw_mode = IW_MODE_INFRA;
8632                 break;
8633         }
8634
8635         if (hwcrypto) {
8636                 priv->ieee->host_encrypt = 0;
8637                 priv->ieee->host_encrypt_msdu = 0;
8638                 priv->ieee->host_decrypt = 0;
8639                 priv->ieee->host_mc_decrypt = 0;
8640         }
8641         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8642
8643         /* IPW2200/2915 is abled to do hardware fragmentation. */
8644         priv->ieee->host_open_frag = 0;
8645
8646         if ((priv->pci_dev->device == 0x4223) ||
8647             (priv->pci_dev->device == 0x4224)) {
8648                 if (option == 1)
8649                         printk(KERN_INFO DRV_NAME
8650                                ": Detected Intel PRO/Wireless 2915ABG Network "
8651                                "Connection\n");
8652                 priv->ieee->abg_true = 1;
8653                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8654                 modulation = LIBIPW_OFDM_MODULATION |
8655                     LIBIPW_CCK_MODULATION;
8656                 priv->adapter = IPW_2915ABG;
8657                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8658         } else {
8659                 if (option == 1)
8660                         printk(KERN_INFO DRV_NAME
8661                                ": Detected Intel PRO/Wireless 2200BG Network "
8662                                "Connection\n");
8663
8664                 priv->ieee->abg_true = 0;
8665                 band = LIBIPW_24GHZ_BAND;
8666                 modulation = LIBIPW_OFDM_MODULATION |
8667                     LIBIPW_CCK_MODULATION;
8668                 priv->adapter = IPW_2200BG;
8669                 priv->ieee->mode = IEEE_G | IEEE_B;
8670         }
8671
8672         priv->ieee->freq_band = band;
8673         priv->ieee->modulation = modulation;
8674
8675         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8676
8677         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8678         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8679
8680         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8681         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8682         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8683
8684         /* If power management is turned on, default to AC mode */
8685         priv->power_mode = IPW_POWER_AC;
8686         priv->tx_power = IPW_TX_POWER_DEFAULT;
8687
8688         return old_mode == priv->ieee->iw_mode;
8689 }
8690
8691 /*
8692  * This file defines the Wireless Extension handlers.  It does not
8693  * define any methods of hardware manipulation and relies on the
8694  * functions defined in ipw_main to provide the HW interaction.
8695  *
8696  * The exception to this is the use of the ipw_get_ordinal()
8697  * function used to poll the hardware vs. making unecessary calls.
8698  *
8699  */
8700
8701 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8702 {
8703         if (channel == 0) {
8704                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8705                 priv->config &= ~CFG_STATIC_CHANNEL;
8706                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8707                                 "parameters.\n");
8708                 ipw_associate(priv);
8709                 return 0;
8710         }
8711
8712         priv->config |= CFG_STATIC_CHANNEL;
8713
8714         if (priv->channel == channel) {
8715                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8716                                channel);
8717                 return 0;
8718         }
8719
8720         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8721         priv->channel = channel;
8722
8723 #ifdef CONFIG_IPW2200_MONITOR
8724         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8725                 int i;
8726                 if (priv->status & STATUS_SCANNING) {
8727                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8728                                        "channel change.\n");
8729                         ipw_abort_scan(priv);
8730                 }
8731
8732                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8733                         udelay(10);
8734
8735                 if (priv->status & STATUS_SCANNING)
8736                         IPW_DEBUG_SCAN("Still scanning...\n");
8737                 else
8738                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8739                                        1000 - i);
8740
8741                 return 0;
8742         }
8743 #endif                          /* CONFIG_IPW2200_MONITOR */
8744
8745         /* Network configuration changed -- force [re]association */
8746         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8747         if (!ipw_disassociate(priv))
8748                 ipw_associate(priv);
8749
8750         return 0;
8751 }
8752
8753 static int ipw_wx_set_freq(struct net_device *dev,
8754                            struct iw_request_info *info,
8755                            union iwreq_data *wrqu, char *extra)
8756 {
8757         struct ipw_priv *priv = libipw_priv(dev);
8758         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8759         struct iw_freq *fwrq = &wrqu->freq;
8760         int ret = 0, i;
8761         u8 channel, flags;
8762         int band;
8763
8764         if (fwrq->m == 0) {
8765                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8766                 mutex_lock(&priv->mutex);
8767                 ret = ipw_set_channel(priv, 0);
8768                 mutex_unlock(&priv->mutex);
8769                 return ret;
8770         }
8771         /* if setting by freq convert to channel */
8772         if (fwrq->e == 1) {
8773                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8774                 if (channel == 0)
8775                         return -EINVAL;
8776         } else
8777                 channel = fwrq->m;
8778
8779         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8780                 return -EINVAL;
8781
8782         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8783                 i = libipw_channel_to_index(priv->ieee, channel);
8784                 if (i == -1)
8785                         return -EINVAL;
8786
8787                 flags = (band == LIBIPW_24GHZ_BAND) ?
8788                     geo->bg[i].flags : geo->a[i].flags;
8789                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8790                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8791                         return -EINVAL;
8792                 }
8793         }
8794
8795         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8796         mutex_lock(&priv->mutex);
8797         ret = ipw_set_channel(priv, channel);
8798         mutex_unlock(&priv->mutex);
8799         return ret;
8800 }
8801
8802 static int ipw_wx_get_freq(struct net_device *dev,
8803                            struct iw_request_info *info,
8804                            union iwreq_data *wrqu, char *extra)
8805 {
8806         struct ipw_priv *priv = libipw_priv(dev);
8807
8808         wrqu->freq.e = 0;
8809
8810         /* If we are associated, trying to associate, or have a statically
8811          * configured CHANNEL then return that; otherwise return ANY */
8812         mutex_lock(&priv->mutex);
8813         if (priv->config & CFG_STATIC_CHANNEL ||
8814             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8815                 int i;
8816
8817                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8818                 BUG_ON(i == -1);
8819                 wrqu->freq.e = 1;
8820
8821                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8822                 case LIBIPW_52GHZ_BAND:
8823                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8824                         break;
8825
8826                 case LIBIPW_24GHZ_BAND:
8827                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8828                         break;
8829
8830                 default:
8831                         BUG();
8832                 }
8833         } else
8834                 wrqu->freq.m = 0;
8835
8836         mutex_unlock(&priv->mutex);
8837         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8838         return 0;
8839 }
8840
8841 static int ipw_wx_set_mode(struct net_device *dev,
8842                            struct iw_request_info *info,
8843                            union iwreq_data *wrqu, char *extra)
8844 {
8845         struct ipw_priv *priv = libipw_priv(dev);
8846         int err = 0;
8847
8848         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8849
8850         switch (wrqu->mode) {
8851 #ifdef CONFIG_IPW2200_MONITOR
8852         case IW_MODE_MONITOR:
8853 #endif
8854         case IW_MODE_ADHOC:
8855         case IW_MODE_INFRA:
8856                 break;
8857         case IW_MODE_AUTO:
8858                 wrqu->mode = IW_MODE_INFRA;
8859                 break;
8860         default:
8861                 return -EINVAL;
8862         }
8863         if (wrqu->mode == priv->ieee->iw_mode)
8864                 return 0;
8865
8866         mutex_lock(&priv->mutex);
8867
8868         ipw_sw_reset(priv, 0);
8869
8870 #ifdef CONFIG_IPW2200_MONITOR
8871         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8872                 priv->net_dev->type = ARPHRD_ETHER;
8873
8874         if (wrqu->mode == IW_MODE_MONITOR)
8875 #ifdef CONFIG_IPW2200_RADIOTAP
8876                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8877 #else
8878                 priv->net_dev->type = ARPHRD_IEEE80211;
8879 #endif
8880 #endif                          /* CONFIG_IPW2200_MONITOR */
8881
8882         /* Free the existing firmware and reset the fw_loaded
8883          * flag so ipw_load() will bring in the new firmware */
8884         free_firmware();
8885
8886         priv->ieee->iw_mode = wrqu->mode;
8887
8888         queue_work(priv->workqueue, &priv->adapter_restart);
8889         mutex_unlock(&priv->mutex);
8890         return err;
8891 }
8892
8893 static int ipw_wx_get_mode(struct net_device *dev,
8894                            struct iw_request_info *info,
8895                            union iwreq_data *wrqu, char *extra)
8896 {
8897         struct ipw_priv *priv = libipw_priv(dev);
8898         mutex_lock(&priv->mutex);
8899         wrqu->mode = priv->ieee->iw_mode;
8900         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8901         mutex_unlock(&priv->mutex);
8902         return 0;
8903 }
8904
8905 /* Values are in microsecond */
8906 static const s32 timeout_duration[] = {
8907         350000,
8908         250000,
8909         75000,
8910         37000,
8911         25000,
8912 };
8913
8914 static const s32 period_duration[] = {
8915         400000,
8916         700000,
8917         1000000,
8918         1000000,
8919         1000000
8920 };
8921
8922 static int ipw_wx_get_range(struct net_device *dev,
8923                             struct iw_request_info *info,
8924                             union iwreq_data *wrqu, char *extra)
8925 {
8926         struct ipw_priv *priv = libipw_priv(dev);
8927         struct iw_range *range = (struct iw_range *)extra;
8928         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8929         int i = 0, j;
8930
8931         wrqu->data.length = sizeof(*range);
8932         memset(range, 0, sizeof(*range));
8933
8934         /* 54Mbs == ~27 Mb/s real (802.11g) */
8935         range->throughput = 27 * 1000 * 1000;
8936
8937         range->max_qual.qual = 100;
8938         /* TODO: Find real max RSSI and stick here */
8939         range->max_qual.level = 0;
8940         range->max_qual.noise = 0;
8941         range->max_qual.updated = 7;    /* Updated all three */
8942
8943         range->avg_qual.qual = 70;
8944         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8945         range->avg_qual.level = 0;      /* FIXME to real average level */
8946         range->avg_qual.noise = 0;
8947         range->avg_qual.updated = 7;    /* Updated all three */
8948         mutex_lock(&priv->mutex);
8949         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8950
8951         for (i = 0; i < range->num_bitrates; i++)
8952                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8953                     500000;
8954
8955         range->max_rts = DEFAULT_RTS_THRESHOLD;
8956         range->min_frag = MIN_FRAG_THRESHOLD;
8957         range->max_frag = MAX_FRAG_THRESHOLD;
8958
8959         range->encoding_size[0] = 5;
8960         range->encoding_size[1] = 13;
8961         range->num_encoding_sizes = 2;
8962         range->max_encoding_tokens = WEP_KEYS;
8963
8964         /* Set the Wireless Extension versions */
8965         range->we_version_compiled = WIRELESS_EXT;
8966         range->we_version_source = 18;
8967
8968         i = 0;
8969         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8970                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8971                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8972                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8973                                 continue;
8974
8975                         range->freq[i].i = geo->bg[j].channel;
8976                         range->freq[i].m = geo->bg[j].freq * 100000;
8977                         range->freq[i].e = 1;
8978                         i++;
8979                 }
8980         }
8981
8982         if (priv->ieee->mode & IEEE_A) {
8983                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8984                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8985                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8986                                 continue;
8987
8988                         range->freq[i].i = geo->a[j].channel;
8989                         range->freq[i].m = geo->a[j].freq * 100000;
8990                         range->freq[i].e = 1;
8991                         i++;
8992                 }
8993         }
8994
8995         range->num_channels = i;
8996         range->num_frequency = i;
8997
8998         mutex_unlock(&priv->mutex);
8999
9000         /* Event capability (kernel + driver) */
9001         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9002                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9003                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9004                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9005         range->event_capa[1] = IW_EVENT_CAPA_K_1;
9006
9007         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9008                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9009
9010         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9011
9012         IPW_DEBUG_WX("GET Range\n");
9013         return 0;
9014 }
9015
9016 static int ipw_wx_set_wap(struct net_device *dev,
9017                           struct iw_request_info *info,
9018                           union iwreq_data *wrqu, char *extra)
9019 {
9020         struct ipw_priv *priv = libipw_priv(dev);
9021
9022         static const unsigned char any[] = {
9023                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9024         };
9025         static const unsigned char off[] = {
9026                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9027         };
9028
9029         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9030                 return -EINVAL;
9031         mutex_lock(&priv->mutex);
9032         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9033             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9034                 /* we disable mandatory BSSID association */
9035                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9036                 priv->config &= ~CFG_STATIC_BSSID;
9037                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9038                                 "parameters.\n");
9039                 ipw_associate(priv);
9040                 mutex_unlock(&priv->mutex);
9041                 return 0;
9042         }
9043
9044         priv->config |= CFG_STATIC_BSSID;
9045         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9046                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9047                 mutex_unlock(&priv->mutex);
9048                 return 0;
9049         }
9050
9051         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9052                      wrqu->ap_addr.sa_data);
9053
9054         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9055
9056         /* Network configuration changed -- force [re]association */
9057         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9058         if (!ipw_disassociate(priv))
9059                 ipw_associate(priv);
9060
9061         mutex_unlock(&priv->mutex);
9062         return 0;
9063 }
9064
9065 static int ipw_wx_get_wap(struct net_device *dev,
9066                           struct iw_request_info *info,
9067                           union iwreq_data *wrqu, char *extra)
9068 {
9069         struct ipw_priv *priv = libipw_priv(dev);
9070
9071         /* If we are associated, trying to associate, or have a statically
9072          * configured BSSID then return that; otherwise return ANY */
9073         mutex_lock(&priv->mutex);
9074         if (priv->config & CFG_STATIC_BSSID ||
9075             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9076                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9077                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9078         } else
9079                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9080
9081         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9082                      wrqu->ap_addr.sa_data);
9083         mutex_unlock(&priv->mutex);
9084         return 0;
9085 }
9086
9087 static int ipw_wx_set_essid(struct net_device *dev,
9088                             struct iw_request_info *info,
9089                             union iwreq_data *wrqu, char *extra)
9090 {
9091         struct ipw_priv *priv = libipw_priv(dev);
9092         int length;
9093         DECLARE_SSID_BUF(ssid);
9094
9095         mutex_lock(&priv->mutex);
9096
9097         if (!wrqu->essid.flags)
9098         {
9099                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9100                 ipw_disassociate(priv);
9101                 priv->config &= ~CFG_STATIC_ESSID;
9102                 ipw_associate(priv);
9103                 mutex_unlock(&priv->mutex);
9104                 return 0;
9105         }
9106
9107         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9108
9109         priv->config |= CFG_STATIC_ESSID;
9110
9111         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9112             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9113                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9114                 mutex_unlock(&priv->mutex);
9115                 return 0;
9116         }
9117
9118         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9119                      print_ssid(ssid, extra, length), length);
9120
9121         priv->essid_len = length;
9122         memcpy(priv->essid, extra, priv->essid_len);
9123
9124         /* Network configuration changed -- force [re]association */
9125         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9126         if (!ipw_disassociate(priv))
9127                 ipw_associate(priv);
9128
9129         mutex_unlock(&priv->mutex);
9130         return 0;
9131 }
9132
9133 static int ipw_wx_get_essid(struct net_device *dev,
9134                             struct iw_request_info *info,
9135                             union iwreq_data *wrqu, char *extra)
9136 {
9137         struct ipw_priv *priv = libipw_priv(dev);
9138         DECLARE_SSID_BUF(ssid);
9139
9140         /* If we are associated, trying to associate, or have a statically
9141          * configured ESSID then return that; otherwise return ANY */
9142         mutex_lock(&priv->mutex);
9143         if (priv->config & CFG_STATIC_ESSID ||
9144             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9145                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9146                              print_ssid(ssid, priv->essid, priv->essid_len));
9147                 memcpy(extra, priv->essid, priv->essid_len);
9148                 wrqu->essid.length = priv->essid_len;
9149                 wrqu->essid.flags = 1;  /* active */
9150         } else {
9151                 IPW_DEBUG_WX("Getting essid: ANY\n");
9152                 wrqu->essid.length = 0;
9153                 wrqu->essid.flags = 0;  /* active */
9154         }
9155         mutex_unlock(&priv->mutex);
9156         return 0;
9157 }
9158
9159 static int ipw_wx_set_nick(struct net_device *dev,
9160                            struct iw_request_info *info,
9161                            union iwreq_data *wrqu, char *extra)
9162 {
9163         struct ipw_priv *priv = libipw_priv(dev);
9164
9165         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9166         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9167                 return -E2BIG;
9168         mutex_lock(&priv->mutex);
9169         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9170         memset(priv->nick, 0, sizeof(priv->nick));
9171         memcpy(priv->nick, extra, wrqu->data.length);
9172         IPW_DEBUG_TRACE("<<\n");
9173         mutex_unlock(&priv->mutex);
9174         return 0;
9175
9176 }
9177
9178 static int ipw_wx_get_nick(struct net_device *dev,
9179                            struct iw_request_info *info,
9180                            union iwreq_data *wrqu, char *extra)
9181 {
9182         struct ipw_priv *priv = libipw_priv(dev);
9183         IPW_DEBUG_WX("Getting nick\n");
9184         mutex_lock(&priv->mutex);
9185         wrqu->data.length = strlen(priv->nick);
9186         memcpy(extra, priv->nick, wrqu->data.length);
9187         wrqu->data.flags = 1;   /* active */
9188         mutex_unlock(&priv->mutex);
9189         return 0;
9190 }
9191
9192 static int ipw_wx_set_sens(struct net_device *dev,
9193                             struct iw_request_info *info,
9194                             union iwreq_data *wrqu, char *extra)
9195 {
9196         struct ipw_priv *priv = libipw_priv(dev);
9197         int err = 0;
9198
9199         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9200         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9201         mutex_lock(&priv->mutex);
9202
9203         if (wrqu->sens.fixed == 0)
9204         {
9205                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9206                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9207                 goto out;
9208         }
9209         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9210             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9211                 err = -EINVAL;
9212                 goto out;
9213         }
9214
9215         priv->roaming_threshold = wrqu->sens.value;
9216         priv->disassociate_threshold = 3*wrqu->sens.value;
9217       out:
9218         mutex_unlock(&priv->mutex);
9219         return err;
9220 }
9221
9222 static int ipw_wx_get_sens(struct net_device *dev,
9223                             struct iw_request_info *info,
9224                             union iwreq_data *wrqu, char *extra)
9225 {
9226         struct ipw_priv *priv = libipw_priv(dev);
9227         mutex_lock(&priv->mutex);
9228         wrqu->sens.fixed = 1;
9229         wrqu->sens.value = priv->roaming_threshold;
9230         mutex_unlock(&priv->mutex);
9231
9232         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9233                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9234
9235         return 0;
9236 }
9237
9238 static int ipw_wx_set_rate(struct net_device *dev,
9239                            struct iw_request_info *info,
9240                            union iwreq_data *wrqu, char *extra)
9241 {
9242         /* TODO: We should use semaphores or locks for access to priv */
9243         struct ipw_priv *priv = libipw_priv(dev);
9244         u32 target_rate = wrqu->bitrate.value;
9245         u32 fixed, mask;
9246
9247         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9248         /* value = X, fixed = 1 means only rate X */
9249         /* value = X, fixed = 0 means all rates lower equal X */
9250
9251         if (target_rate == -1) {
9252                 fixed = 0;
9253                 mask = LIBIPW_DEFAULT_RATES_MASK;
9254                 /* Now we should reassociate */
9255                 goto apply;
9256         }
9257
9258         mask = 0;
9259         fixed = wrqu->bitrate.fixed;
9260
9261         if (target_rate == 1000000 || !fixed)
9262                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9263         if (target_rate == 1000000)
9264                 goto apply;
9265
9266         if (target_rate == 2000000 || !fixed)
9267                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9268         if (target_rate == 2000000)
9269                 goto apply;
9270
9271         if (target_rate == 5500000 || !fixed)
9272                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9273         if (target_rate == 5500000)
9274                 goto apply;
9275
9276         if (target_rate == 6000000 || !fixed)
9277                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9278         if (target_rate == 6000000)
9279                 goto apply;
9280
9281         if (target_rate == 9000000 || !fixed)
9282                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9283         if (target_rate == 9000000)
9284                 goto apply;
9285
9286         if (target_rate == 11000000 || !fixed)
9287                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9288         if (target_rate == 11000000)
9289                 goto apply;
9290
9291         if (target_rate == 12000000 || !fixed)
9292                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9293         if (target_rate == 12000000)
9294                 goto apply;
9295
9296         if (target_rate == 18000000 || !fixed)
9297                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9298         if (target_rate == 18000000)
9299                 goto apply;
9300
9301         if (target_rate == 24000000 || !fixed)
9302                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9303         if (target_rate == 24000000)
9304                 goto apply;
9305
9306         if (target_rate == 36000000 || !fixed)
9307                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9308         if (target_rate == 36000000)
9309                 goto apply;
9310
9311         if (target_rate == 48000000 || !fixed)
9312                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9313         if (target_rate == 48000000)
9314                 goto apply;
9315
9316         if (target_rate == 54000000 || !fixed)
9317                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9318         if (target_rate == 54000000)
9319                 goto apply;
9320
9321         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9322         return -EINVAL;
9323
9324       apply:
9325         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9326                      mask, fixed ? "fixed" : "sub-rates");
9327         mutex_lock(&priv->mutex);
9328         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9329                 priv->config &= ~CFG_FIXED_RATE;
9330                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9331         } else
9332                 priv->config |= CFG_FIXED_RATE;
9333
9334         if (priv->rates_mask == mask) {
9335                 IPW_DEBUG_WX("Mask set to current mask.\n");
9336                 mutex_unlock(&priv->mutex);
9337                 return 0;
9338         }
9339
9340         priv->rates_mask = mask;
9341
9342         /* Network configuration changed -- force [re]association */
9343         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9344         if (!ipw_disassociate(priv))
9345                 ipw_associate(priv);
9346
9347         mutex_unlock(&priv->mutex);
9348         return 0;
9349 }
9350
9351 static int ipw_wx_get_rate(struct net_device *dev,
9352                            struct iw_request_info *info,
9353                            union iwreq_data *wrqu, char *extra)
9354 {
9355         struct ipw_priv *priv = libipw_priv(dev);
9356         mutex_lock(&priv->mutex);
9357         wrqu->bitrate.value = priv->last_rate;
9358         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9359         mutex_unlock(&priv->mutex);
9360         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9361         return 0;
9362 }
9363
9364 static int ipw_wx_set_rts(struct net_device *dev,
9365                           struct iw_request_info *info,
9366                           union iwreq_data *wrqu, char *extra)
9367 {
9368         struct ipw_priv *priv = libipw_priv(dev);
9369         mutex_lock(&priv->mutex);
9370         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9371                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9372         else {
9373                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9374                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9375                         mutex_unlock(&priv->mutex);
9376                         return -EINVAL;
9377                 }
9378                 priv->rts_threshold = wrqu->rts.value;
9379         }
9380
9381         ipw_send_rts_threshold(priv, priv->rts_threshold);
9382         mutex_unlock(&priv->mutex);
9383         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9384         return 0;
9385 }
9386
9387 static int ipw_wx_get_rts(struct net_device *dev,
9388                           struct iw_request_info *info,
9389                           union iwreq_data *wrqu, char *extra)
9390 {
9391         struct ipw_priv *priv = libipw_priv(dev);
9392         mutex_lock(&priv->mutex);
9393         wrqu->rts.value = priv->rts_threshold;
9394         wrqu->rts.fixed = 0;    /* no auto select */
9395         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9396         mutex_unlock(&priv->mutex);
9397         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9398         return 0;
9399 }
9400
9401 static int ipw_wx_set_txpow(struct net_device *dev,
9402                             struct iw_request_info *info,
9403                             union iwreq_data *wrqu, char *extra)
9404 {
9405         struct ipw_priv *priv = libipw_priv(dev);
9406         int err = 0;
9407
9408         mutex_lock(&priv->mutex);
9409         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9410                 err = -EINPROGRESS;
9411                 goto out;
9412         }
9413
9414         if (!wrqu->power.fixed)
9415                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9416
9417         if (wrqu->power.flags != IW_TXPOW_DBM) {
9418                 err = -EINVAL;
9419                 goto out;
9420         }
9421
9422         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9423             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9424                 err = -EINVAL;
9425                 goto out;
9426         }
9427
9428         priv->tx_power = wrqu->power.value;
9429         err = ipw_set_tx_power(priv);
9430       out:
9431         mutex_unlock(&priv->mutex);
9432         return err;
9433 }
9434
9435 static int ipw_wx_get_txpow(struct net_device *dev,
9436                             struct iw_request_info *info,
9437                             union iwreq_data *wrqu, char *extra)
9438 {
9439         struct ipw_priv *priv = libipw_priv(dev);
9440         mutex_lock(&priv->mutex);
9441         wrqu->power.value = priv->tx_power;
9442         wrqu->power.fixed = 1;
9443         wrqu->power.flags = IW_TXPOW_DBM;
9444         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9445         mutex_unlock(&priv->mutex);
9446
9447         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9448                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9449
9450         return 0;
9451 }
9452
9453 static int ipw_wx_set_frag(struct net_device *dev,
9454                            struct iw_request_info *info,
9455                            union iwreq_data *wrqu, char *extra)
9456 {
9457         struct ipw_priv *priv = libipw_priv(dev);
9458         mutex_lock(&priv->mutex);
9459         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9460                 priv->ieee->fts = DEFAULT_FTS;
9461         else {
9462                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9463                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9464                         mutex_unlock(&priv->mutex);
9465                         return -EINVAL;
9466                 }
9467
9468                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9469         }
9470
9471         ipw_send_frag_threshold(priv, wrqu->frag.value);
9472         mutex_unlock(&priv->mutex);
9473         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9474         return 0;
9475 }
9476
9477 static int ipw_wx_get_frag(struct net_device *dev,
9478                            struct iw_request_info *info,
9479                            union iwreq_data *wrqu, char *extra)
9480 {
9481         struct ipw_priv *priv = libipw_priv(dev);
9482         mutex_lock(&priv->mutex);
9483         wrqu->frag.value = priv->ieee->fts;
9484         wrqu->frag.fixed = 0;   /* no auto select */
9485         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9486         mutex_unlock(&priv->mutex);
9487         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9488
9489         return 0;
9490 }
9491
9492 static int ipw_wx_set_retry(struct net_device *dev,
9493                             struct iw_request_info *info,
9494                             union iwreq_data *wrqu, char *extra)
9495 {
9496         struct ipw_priv *priv = libipw_priv(dev);
9497
9498         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9499                 return -EINVAL;
9500
9501         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9502                 return 0;
9503
9504         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9505                 return -EINVAL;
9506
9507         mutex_lock(&priv->mutex);
9508         if (wrqu->retry.flags & IW_RETRY_SHORT)
9509                 priv->short_retry_limit = (u8) wrqu->retry.value;
9510         else if (wrqu->retry.flags & IW_RETRY_LONG)
9511                 priv->long_retry_limit = (u8) wrqu->retry.value;
9512         else {
9513                 priv->short_retry_limit = (u8) wrqu->retry.value;
9514                 priv->long_retry_limit = (u8) wrqu->retry.value;
9515         }
9516
9517         ipw_send_retry_limit(priv, priv->short_retry_limit,
9518                              priv->long_retry_limit);
9519         mutex_unlock(&priv->mutex);
9520         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9521                      priv->short_retry_limit, priv->long_retry_limit);
9522         return 0;
9523 }
9524
9525 static int ipw_wx_get_retry(struct net_device *dev,
9526                             struct iw_request_info *info,
9527                             union iwreq_data *wrqu, char *extra)
9528 {
9529         struct ipw_priv *priv = libipw_priv(dev);
9530
9531         mutex_lock(&priv->mutex);
9532         wrqu->retry.disabled = 0;
9533
9534         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9535                 mutex_unlock(&priv->mutex);
9536                 return -EINVAL;
9537         }
9538
9539         if (wrqu->retry.flags & IW_RETRY_LONG) {
9540                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9541                 wrqu->retry.value = priv->long_retry_limit;
9542         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9543                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9544                 wrqu->retry.value = priv->short_retry_limit;
9545         } else {
9546                 wrqu->retry.flags = IW_RETRY_LIMIT;
9547                 wrqu->retry.value = priv->short_retry_limit;
9548         }
9549         mutex_unlock(&priv->mutex);
9550
9551         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9552
9553         return 0;
9554 }
9555
9556 static int ipw_wx_set_scan(struct net_device *dev,
9557                            struct iw_request_info *info,
9558                            union iwreq_data *wrqu, char *extra)
9559 {
9560         struct ipw_priv *priv = libipw_priv(dev);
9561         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9562         struct delayed_work *work = NULL;
9563
9564         mutex_lock(&priv->mutex);
9565
9566         priv->user_requested_scan = 1;
9567
9568         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9569                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9570                         int len = min((int)req->essid_len,
9571                                       (int)sizeof(priv->direct_scan_ssid));
9572                         memcpy(priv->direct_scan_ssid, req->essid, len);
9573                         priv->direct_scan_ssid_len = len;
9574                         work = &priv->request_direct_scan;
9575                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9576                         work = &priv->request_passive_scan;
9577                 }
9578         } else {
9579                 /* Normal active broadcast scan */
9580                 work = &priv->request_scan;
9581         }
9582
9583         mutex_unlock(&priv->mutex);
9584
9585         IPW_DEBUG_WX("Start scan\n");
9586
9587         queue_delayed_work(priv->workqueue, work, 0);
9588
9589         return 0;
9590 }
9591
9592 static int ipw_wx_get_scan(struct net_device *dev,
9593                            struct iw_request_info *info,
9594                            union iwreq_data *wrqu, char *extra)
9595 {
9596         struct ipw_priv *priv = libipw_priv(dev);
9597         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9598 }
9599
9600 static int ipw_wx_set_encode(struct net_device *dev,
9601                              struct iw_request_info *info,
9602                              union iwreq_data *wrqu, char *key)
9603 {
9604         struct ipw_priv *priv = libipw_priv(dev);
9605         int ret;
9606         u32 cap = priv->capability;
9607
9608         mutex_lock(&priv->mutex);
9609         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9610
9611         /* In IBSS mode, we need to notify the firmware to update
9612          * the beacon info after we changed the capability. */
9613         if (cap != priv->capability &&
9614             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9615             priv->status & STATUS_ASSOCIATED)
9616                 ipw_disassociate(priv);
9617
9618         mutex_unlock(&priv->mutex);
9619         return ret;
9620 }
9621
9622 static int ipw_wx_get_encode(struct net_device *dev,
9623                              struct iw_request_info *info,
9624                              union iwreq_data *wrqu, char *key)
9625 {
9626         struct ipw_priv *priv = libipw_priv(dev);
9627         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9628 }
9629
9630 static int ipw_wx_set_power(struct net_device *dev,
9631                             struct iw_request_info *info,
9632                             union iwreq_data *wrqu, char *extra)
9633 {
9634         struct ipw_priv *priv = libipw_priv(dev);
9635         int err;
9636         mutex_lock(&priv->mutex);
9637         if (wrqu->power.disabled) {
9638                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9639                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9640                 if (err) {
9641                         IPW_DEBUG_WX("failed setting power mode.\n");
9642                         mutex_unlock(&priv->mutex);
9643                         return err;
9644                 }
9645                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9646                 mutex_unlock(&priv->mutex);
9647                 return 0;
9648         }
9649
9650         switch (wrqu->power.flags & IW_POWER_MODE) {
9651         case IW_POWER_ON:       /* If not specified */
9652         case IW_POWER_MODE:     /* If set all mask */
9653         case IW_POWER_ALL_R:    /* If explicitly state all */
9654                 break;
9655         default:                /* Otherwise we don't support it */
9656                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9657                              wrqu->power.flags);
9658                 mutex_unlock(&priv->mutex);
9659                 return -EOPNOTSUPP;
9660         }
9661
9662         /* If the user hasn't specified a power management mode yet, default
9663          * to BATTERY */
9664         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9665                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9666         else
9667                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9668
9669         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9670         if (err) {
9671                 IPW_DEBUG_WX("failed setting power mode.\n");
9672                 mutex_unlock(&priv->mutex);
9673                 return err;
9674         }
9675
9676         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9677         mutex_unlock(&priv->mutex);
9678         return 0;
9679 }
9680
9681 static int ipw_wx_get_power(struct net_device *dev,
9682                             struct iw_request_info *info,
9683                             union iwreq_data *wrqu, char *extra)
9684 {
9685         struct ipw_priv *priv = libipw_priv(dev);
9686         mutex_lock(&priv->mutex);
9687         if (!(priv->power_mode & IPW_POWER_ENABLED))
9688                 wrqu->power.disabled = 1;
9689         else
9690                 wrqu->power.disabled = 0;
9691
9692         mutex_unlock(&priv->mutex);
9693         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9694
9695         return 0;
9696 }
9697
9698 static int ipw_wx_set_powermode(struct net_device *dev,
9699                                 struct iw_request_info *info,
9700                                 union iwreq_data *wrqu, char *extra)
9701 {
9702         struct ipw_priv *priv = libipw_priv(dev);
9703         int mode = *(int *)extra;
9704         int err;
9705
9706         mutex_lock(&priv->mutex);
9707         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9708                 mode = IPW_POWER_AC;
9709
9710         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9711                 err = ipw_send_power_mode(priv, mode);
9712                 if (err) {
9713                         IPW_DEBUG_WX("failed setting power mode.\n");
9714                         mutex_unlock(&priv->mutex);
9715                         return err;
9716                 }
9717                 priv->power_mode = IPW_POWER_ENABLED | mode;
9718         }
9719         mutex_unlock(&priv->mutex);
9720         return 0;
9721 }
9722
9723 #define MAX_WX_STRING 80
9724 static int ipw_wx_get_powermode(struct net_device *dev,
9725                                 struct iw_request_info *info,
9726                                 union iwreq_data *wrqu, char *extra)
9727 {
9728         struct ipw_priv *priv = libipw_priv(dev);
9729         int level = IPW_POWER_LEVEL(priv->power_mode);
9730         char *p = extra;
9731
9732         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9733
9734         switch (level) {
9735         case IPW_POWER_AC:
9736                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9737                 break;
9738         case IPW_POWER_BATTERY:
9739                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9740                 break;
9741         default:
9742                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9743                               "(Timeout %dms, Period %dms)",
9744                               timeout_duration[level - 1] / 1000,
9745                               period_duration[level - 1] / 1000);
9746         }
9747
9748         if (!(priv->power_mode & IPW_POWER_ENABLED))
9749                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9750
9751         wrqu->data.length = p - extra + 1;
9752
9753         return 0;
9754 }
9755
9756 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9757                                     struct iw_request_info *info,
9758                                     union iwreq_data *wrqu, char *extra)
9759 {
9760         struct ipw_priv *priv = libipw_priv(dev);
9761         int mode = *(int *)extra;
9762         u8 band = 0, modulation = 0;
9763
9764         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9765                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9766                 return -EINVAL;
9767         }
9768         mutex_lock(&priv->mutex);
9769         if (priv->adapter == IPW_2915ABG) {
9770                 priv->ieee->abg_true = 1;
9771                 if (mode & IEEE_A) {
9772                         band |= LIBIPW_52GHZ_BAND;
9773                         modulation |= LIBIPW_OFDM_MODULATION;
9774                 } else
9775                         priv->ieee->abg_true = 0;
9776         } else {
9777                 if (mode & IEEE_A) {
9778                         IPW_WARNING("Attempt to set 2200BG into "
9779                                     "802.11a mode\n");
9780                         mutex_unlock(&priv->mutex);
9781                         return -EINVAL;
9782                 }
9783
9784                 priv->ieee->abg_true = 0;
9785         }
9786
9787         if (mode & IEEE_B) {
9788                 band |= LIBIPW_24GHZ_BAND;
9789                 modulation |= LIBIPW_CCK_MODULATION;
9790         } else
9791                 priv->ieee->abg_true = 0;
9792
9793         if (mode & IEEE_G) {
9794                 band |= LIBIPW_24GHZ_BAND;
9795                 modulation |= LIBIPW_OFDM_MODULATION;
9796         } else
9797                 priv->ieee->abg_true = 0;
9798
9799         priv->ieee->mode = mode;
9800         priv->ieee->freq_band = band;
9801         priv->ieee->modulation = modulation;
9802         init_supported_rates(priv, &priv->rates);
9803
9804         /* Network configuration changed -- force [re]association */
9805         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9806         if (!ipw_disassociate(priv)) {
9807                 ipw_send_supported_rates(priv, &priv->rates);
9808                 ipw_associate(priv);
9809         }
9810
9811         /* Update the band LEDs */
9812         ipw_led_band_on(priv);
9813
9814         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9815                      mode & IEEE_A ? 'a' : '.',
9816                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9817         mutex_unlock(&priv->mutex);
9818         return 0;
9819 }
9820
9821 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9822                                     struct iw_request_info *info,
9823                                     union iwreq_data *wrqu, char *extra)
9824 {
9825         struct ipw_priv *priv = libipw_priv(dev);
9826         mutex_lock(&priv->mutex);
9827         switch (priv->ieee->mode) {
9828         case IEEE_A:
9829                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9830                 break;
9831         case IEEE_B:
9832                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9833                 break;
9834         case IEEE_A | IEEE_B:
9835                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9836                 break;
9837         case IEEE_G:
9838                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9839                 break;
9840         case IEEE_A | IEEE_G:
9841                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9842                 break;
9843         case IEEE_B | IEEE_G:
9844                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9845                 break;
9846         case IEEE_A | IEEE_B | IEEE_G:
9847                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9848                 break;
9849         default:
9850                 strncpy(extra, "unknown", MAX_WX_STRING);
9851                 break;
9852         }
9853
9854         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9855
9856         wrqu->data.length = strlen(extra) + 1;
9857         mutex_unlock(&priv->mutex);
9858
9859         return 0;
9860 }
9861
9862 static int ipw_wx_set_preamble(struct net_device *dev,
9863                                struct iw_request_info *info,
9864                                union iwreq_data *wrqu, char *extra)
9865 {
9866         struct ipw_priv *priv = libipw_priv(dev);
9867         int mode = *(int *)extra;
9868         mutex_lock(&priv->mutex);
9869         /* Switching from SHORT -> LONG requires a disassociation */
9870         if (mode == 1) {
9871                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9872                         priv->config |= CFG_PREAMBLE_LONG;
9873
9874                         /* Network configuration changed -- force [re]association */
9875                         IPW_DEBUG_ASSOC
9876                             ("[re]association triggered due to preamble change.\n");
9877                         if (!ipw_disassociate(priv))
9878                                 ipw_associate(priv);
9879                 }
9880                 goto done;
9881         }
9882
9883         if (mode == 0) {
9884                 priv->config &= ~CFG_PREAMBLE_LONG;
9885                 goto done;
9886         }
9887         mutex_unlock(&priv->mutex);
9888         return -EINVAL;
9889
9890       done:
9891         mutex_unlock(&priv->mutex);
9892         return 0;
9893 }
9894
9895 static int ipw_wx_get_preamble(struct net_device *dev,
9896                                struct iw_request_info *info,
9897                                union iwreq_data *wrqu, char *extra)
9898 {
9899         struct ipw_priv *priv = libipw_priv(dev);
9900         mutex_lock(&priv->mutex);
9901         if (priv->config & CFG_PREAMBLE_LONG)
9902                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9903         else
9904                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9905         mutex_unlock(&priv->mutex);
9906         return 0;
9907 }
9908
9909 #ifdef CONFIG_IPW2200_MONITOR
9910 static int ipw_wx_set_monitor(struct net_device *dev,
9911                               struct iw_request_info *info,
9912                               union iwreq_data *wrqu, char *extra)
9913 {
9914         struct ipw_priv *priv = libipw_priv(dev);
9915         int *parms = (int *)extra;
9916         int enable = (parms[0] > 0);
9917         mutex_lock(&priv->mutex);
9918         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9919         if (enable) {
9920                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9921 #ifdef CONFIG_IPW2200_RADIOTAP
9922                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9923 #else
9924                         priv->net_dev->type = ARPHRD_IEEE80211;
9925 #endif
9926                         queue_work(priv->workqueue, &priv->adapter_restart);
9927                 }
9928
9929                 ipw_set_channel(priv, parms[1]);
9930         } else {
9931                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9932                         mutex_unlock(&priv->mutex);
9933                         return 0;
9934                 }
9935                 priv->net_dev->type = ARPHRD_ETHER;
9936                 queue_work(priv->workqueue, &priv->adapter_restart);
9937         }
9938         mutex_unlock(&priv->mutex);
9939         return 0;
9940 }
9941
9942 #endif                          /* CONFIG_IPW2200_MONITOR */
9943
9944 static int ipw_wx_reset(struct net_device *dev,
9945                         struct iw_request_info *info,
9946                         union iwreq_data *wrqu, char *extra)
9947 {
9948         struct ipw_priv *priv = libipw_priv(dev);
9949         IPW_DEBUG_WX("RESET\n");
9950         queue_work(priv->workqueue, &priv->adapter_restart);
9951         return 0;
9952 }
9953
9954 static int ipw_wx_sw_reset(struct net_device *dev,
9955                            struct iw_request_info *info,
9956                            union iwreq_data *wrqu, char *extra)
9957 {
9958         struct ipw_priv *priv = libipw_priv(dev);
9959         union iwreq_data wrqu_sec = {
9960                 .encoding = {
9961                              .flags = IW_ENCODE_DISABLED,
9962                              },
9963         };
9964         int ret;
9965
9966         IPW_DEBUG_WX("SW_RESET\n");
9967
9968         mutex_lock(&priv->mutex);
9969
9970         ret = ipw_sw_reset(priv, 2);
9971         if (!ret) {
9972                 free_firmware();
9973                 ipw_adapter_restart(priv);
9974         }
9975
9976         /* The SW reset bit might have been toggled on by the 'disable'
9977          * module parameter, so take appropriate action */
9978         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9979
9980         mutex_unlock(&priv->mutex);
9981         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9982         mutex_lock(&priv->mutex);
9983
9984         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9985                 /* Configuration likely changed -- force [re]association */
9986                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9987                                 "reset.\n");
9988                 if (!ipw_disassociate(priv))
9989                         ipw_associate(priv);
9990         }
9991
9992         mutex_unlock(&priv->mutex);
9993
9994         return 0;
9995 }
9996
9997 /* Rebase the WE IOCTLs to zero for the handler array */
9998 static iw_handler ipw_wx_handlers[] = {
9999         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10000         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10001         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10002         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10003         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10004         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10005         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10006         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10007         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10008         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10009         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10010         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10011         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10012         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10013         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10014         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10015         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10016         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10017         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10018         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10019         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10020         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10021         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10022         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10023         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10024         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10025         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10026         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10027         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10028         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10029         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10030         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10031         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10032         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10033         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10034         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10035         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10036         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10037         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10038         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10039         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10040 };
10041
10042 enum {
10043         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10044         IPW_PRIV_GET_POWER,
10045         IPW_PRIV_SET_MODE,
10046         IPW_PRIV_GET_MODE,
10047         IPW_PRIV_SET_PREAMBLE,
10048         IPW_PRIV_GET_PREAMBLE,
10049         IPW_PRIV_RESET,
10050         IPW_PRIV_SW_RESET,
10051 #ifdef CONFIG_IPW2200_MONITOR
10052         IPW_PRIV_SET_MONITOR,
10053 #endif
10054 };
10055
10056 static struct iw_priv_args ipw_priv_args[] = {
10057         {
10058          .cmd = IPW_PRIV_SET_POWER,
10059          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10060          .name = "set_power"},
10061         {
10062          .cmd = IPW_PRIV_GET_POWER,
10063          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10064          .name = "get_power"},
10065         {
10066          .cmd = IPW_PRIV_SET_MODE,
10067          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10068          .name = "set_mode"},
10069         {
10070          .cmd = IPW_PRIV_GET_MODE,
10071          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10072          .name = "get_mode"},
10073         {
10074          .cmd = IPW_PRIV_SET_PREAMBLE,
10075          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10076          .name = "set_preamble"},
10077         {
10078          .cmd = IPW_PRIV_GET_PREAMBLE,
10079          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10080          .name = "get_preamble"},
10081         {
10082          IPW_PRIV_RESET,
10083          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10084         {
10085          IPW_PRIV_SW_RESET,
10086          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10087 #ifdef CONFIG_IPW2200_MONITOR
10088         {
10089          IPW_PRIV_SET_MONITOR,
10090          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10091 #endif                          /* CONFIG_IPW2200_MONITOR */
10092 };
10093
10094 static iw_handler ipw_priv_handler[] = {
10095         ipw_wx_set_powermode,
10096         ipw_wx_get_powermode,
10097         ipw_wx_set_wireless_mode,
10098         ipw_wx_get_wireless_mode,
10099         ipw_wx_set_preamble,
10100         ipw_wx_get_preamble,
10101         ipw_wx_reset,
10102         ipw_wx_sw_reset,
10103 #ifdef CONFIG_IPW2200_MONITOR
10104         ipw_wx_set_monitor,
10105 #endif
10106 };
10107
10108 static struct iw_handler_def ipw_wx_handler_def = {
10109         .standard = ipw_wx_handlers,
10110         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10111         .num_private = ARRAY_SIZE(ipw_priv_handler),
10112         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10113         .private = ipw_priv_handler,
10114         .private_args = ipw_priv_args,
10115         .get_wireless_stats = ipw_get_wireless_stats,
10116 };
10117
10118 /*
10119  * Get wireless statistics.
10120  * Called by /proc/net/wireless
10121  * Also called by SIOCGIWSTATS
10122  */
10123 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10124 {
10125         struct ipw_priv *priv = libipw_priv(dev);
10126         struct iw_statistics *wstats;
10127
10128         wstats = &priv->wstats;
10129
10130         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10131          * netdev->get_wireless_stats seems to be called before fw is
10132          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10133          * and associated; if not associcated, the values are all meaningless
10134          * anyway, so set them all to NULL and INVALID */
10135         if (!(priv->status & STATUS_ASSOCIATED)) {
10136                 wstats->miss.beacon = 0;
10137                 wstats->discard.retries = 0;
10138                 wstats->qual.qual = 0;
10139                 wstats->qual.level = 0;
10140                 wstats->qual.noise = 0;
10141                 wstats->qual.updated = 7;
10142                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10143                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10144                 return wstats;
10145         }
10146
10147         wstats->qual.qual = priv->quality;
10148         wstats->qual.level = priv->exp_avg_rssi;
10149         wstats->qual.noise = priv->exp_avg_noise;
10150         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10151             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10152
10153         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10154         wstats->discard.retries = priv->last_tx_failures;
10155         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10156
10157 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10158         goto fail_get_ordinal;
10159         wstats->discard.retries += tx_retry; */
10160
10161         return wstats;
10162 }
10163
10164 /* net device stuff */
10165
10166 static  void init_sys_config(struct ipw_sys_config *sys_config)
10167 {
10168         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10169         sys_config->bt_coexistence = 0;
10170         sys_config->answer_broadcast_ssid_probe = 0;
10171         sys_config->accept_all_data_frames = 0;
10172         sys_config->accept_non_directed_frames = 1;
10173         sys_config->exclude_unicast_unencrypted = 0;
10174         sys_config->disable_unicast_decryption = 1;
10175         sys_config->exclude_multicast_unencrypted = 0;
10176         sys_config->disable_multicast_decryption = 1;
10177         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10178                 antenna = CFG_SYS_ANTENNA_BOTH;
10179         sys_config->antenna_diversity = antenna;
10180         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10181         sys_config->dot11g_auto_detection = 0;
10182         sys_config->enable_cts_to_self = 0;
10183         sys_config->bt_coexist_collision_thr = 0;
10184         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10185         sys_config->silence_threshold = 0x1e;
10186 }
10187
10188 static int ipw_net_open(struct net_device *dev)
10189 {
10190         IPW_DEBUG_INFO("dev->open\n");
10191         netif_start_queue(dev);
10192         return 0;
10193 }
10194
10195 static int ipw_net_stop(struct net_device *dev)
10196 {
10197         IPW_DEBUG_INFO("dev->close\n");
10198         netif_stop_queue(dev);
10199         return 0;
10200 }
10201
10202 /*
10203 todo:
10204
10205 modify to send one tfd per fragment instead of using chunking.  otherwise
10206 we need to heavily modify the libipw_skb_to_txb.
10207 */
10208
10209 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10210                              int pri)
10211 {
10212         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10213             txb->fragments[0]->data;
10214         int i = 0;
10215         struct tfd_frame *tfd;
10216 #ifdef CONFIG_IPW2200_QOS
10217         int tx_id = ipw_get_tx_queue_number(priv, pri);
10218         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10219 #else
10220         struct clx2_tx_queue *txq = &priv->txq[0];
10221 #endif
10222         struct clx2_queue *q = &txq->q;
10223         u8 id, hdr_len, unicast;
10224         int fc;
10225
10226         if (!(priv->status & STATUS_ASSOCIATED))
10227                 goto drop;
10228
10229         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10230         switch (priv->ieee->iw_mode) {
10231         case IW_MODE_ADHOC:
10232                 unicast = !is_multicast_ether_addr(hdr->addr1);
10233                 id = ipw_find_station(priv, hdr->addr1);
10234                 if (id == IPW_INVALID_STATION) {
10235                         id = ipw_add_station(priv, hdr->addr1);
10236                         if (id == IPW_INVALID_STATION) {
10237                                 IPW_WARNING("Attempt to send data to "
10238                                             "invalid cell: %pM\n",
10239                                             hdr->addr1);
10240                                 goto drop;
10241                         }
10242                 }
10243                 break;
10244
10245         case IW_MODE_INFRA:
10246         default:
10247                 unicast = !is_multicast_ether_addr(hdr->addr3);
10248                 id = 0;
10249                 break;
10250         }
10251
10252         tfd = &txq->bd[q->first_empty];
10253         txq->txb[q->first_empty] = txb;
10254         memset(tfd, 0, sizeof(*tfd));
10255         tfd->u.data.station_number = id;
10256
10257         tfd->control_flags.message_type = TX_FRAME_TYPE;
10258         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10259
10260         tfd->u.data.cmd_id = DINO_CMD_TX;
10261         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10262
10263         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10264                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10265         else
10266                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10267
10268         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10269                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10270
10271         fc = le16_to_cpu(hdr->frame_ctl);
10272         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10273
10274         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10275
10276         if (likely(unicast))
10277                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10278
10279         if (txb->encrypted && !priv->ieee->host_encrypt) {
10280                 switch (priv->ieee->sec.level) {
10281                 case SEC_LEVEL_3:
10282                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10283                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10284                         /* XXX: ACK flag must be set for CCMP even if it
10285                          * is a multicast/broadcast packet, because CCMP
10286                          * group communication encrypted by GTK is
10287                          * actually done by the AP. */
10288                         if (!unicast)
10289                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10290
10291                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10292                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10293                         tfd->u.data.key_index = 0;
10294                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10295                         break;
10296                 case SEC_LEVEL_2:
10297                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10298                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10299                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10300                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10301                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10302                         break;
10303                 case SEC_LEVEL_1:
10304                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10305                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10306                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10307                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10308                             40)
10309                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10310                         else
10311                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10312                         break;
10313                 case SEC_LEVEL_0:
10314                         break;
10315                 default:
10316                         printk(KERN_ERR "Unknown security level %d\n",
10317                                priv->ieee->sec.level);
10318                         break;
10319                 }
10320         } else
10321                 /* No hardware encryption */
10322                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10323
10324 #ifdef CONFIG_IPW2200_QOS
10325         if (fc & IEEE80211_STYPE_QOS_DATA)
10326                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10327 #endif                          /* CONFIG_IPW2200_QOS */
10328
10329         /* payload */
10330         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10331                                                  txb->nr_frags));
10332         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10333                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10334         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10335                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10336                                i, le32_to_cpu(tfd->u.data.num_chunks),
10337                                txb->fragments[i]->len - hdr_len);
10338                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10339                              i, tfd->u.data.num_chunks,
10340                              txb->fragments[i]->len - hdr_len);
10341                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10342                            txb->fragments[i]->len - hdr_len);
10343
10344                 tfd->u.data.chunk_ptr[i] =
10345                     cpu_to_le32(pci_map_single
10346                                 (priv->pci_dev,
10347                                  txb->fragments[i]->data + hdr_len,
10348                                  txb->fragments[i]->len - hdr_len,
10349                                  PCI_DMA_TODEVICE));
10350                 tfd->u.data.chunk_len[i] =
10351                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10352         }
10353
10354         if (i != txb->nr_frags) {
10355                 struct sk_buff *skb;
10356                 u16 remaining_bytes = 0;
10357                 int j;
10358
10359                 for (j = i; j < txb->nr_frags; j++)
10360                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10361
10362                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10363                        remaining_bytes);
10364                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10365                 if (skb != NULL) {
10366                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10367                         for (j = i; j < txb->nr_frags; j++) {
10368                                 int size = txb->fragments[j]->len - hdr_len;
10369
10370                                 printk(KERN_INFO "Adding frag %d %d...\n",
10371                                        j, size);
10372                                 memcpy(skb_put(skb, size),
10373                                        txb->fragments[j]->data + hdr_len, size);
10374                         }
10375                         dev_kfree_skb_any(txb->fragments[i]);
10376                         txb->fragments[i] = skb;
10377                         tfd->u.data.chunk_ptr[i] =
10378                             cpu_to_le32(pci_map_single
10379                                         (priv->pci_dev, skb->data,
10380                                          remaining_bytes,
10381                                          PCI_DMA_TODEVICE));
10382
10383                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10384                 }
10385         }
10386
10387         /* kick DMA */
10388         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10389         ipw_write32(priv, q->reg_w, q->first_empty);
10390
10391         if (ipw_tx_queue_space(q) < q->high_mark)
10392                 netif_stop_queue(priv->net_dev);
10393
10394         return NETDEV_TX_OK;
10395
10396       drop:
10397         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10398         libipw_txb_free(txb);
10399         return NETDEV_TX_OK;
10400 }
10401
10402 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10403 {
10404         struct ipw_priv *priv = libipw_priv(dev);
10405 #ifdef CONFIG_IPW2200_QOS
10406         int tx_id = ipw_get_tx_queue_number(priv, pri);
10407         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10408 #else
10409         struct clx2_tx_queue *txq = &priv->txq[0];
10410 #endif                          /* CONFIG_IPW2200_QOS */
10411
10412         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10413                 return 1;
10414
10415         return 0;
10416 }
10417
10418 #ifdef CONFIG_IPW2200_PROMISCUOUS
10419 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10420                                       struct libipw_txb *txb)
10421 {
10422         struct libipw_rx_stats dummystats;
10423         struct ieee80211_hdr *hdr;
10424         u8 n;
10425         u16 filter = priv->prom_priv->filter;
10426         int hdr_only = 0;
10427
10428         if (filter & IPW_PROM_NO_TX)
10429                 return;
10430
10431         memset(&dummystats, 0, sizeof(dummystats));
10432
10433         /* Filtering of fragment chains is done agains the first fragment */
10434         hdr = (void *)txb->fragments[0]->data;
10435         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10436                 if (filter & IPW_PROM_NO_MGMT)
10437                         return;
10438                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10439                         hdr_only = 1;
10440         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10441                 if (filter & IPW_PROM_NO_CTL)
10442                         return;
10443                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10444                         hdr_only = 1;
10445         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10446                 if (filter & IPW_PROM_NO_DATA)
10447                         return;
10448                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10449                         hdr_only = 1;
10450         }
10451
10452         for(n=0; n<txb->nr_frags; ++n) {
10453                 struct sk_buff *src = txb->fragments[n];
10454                 struct sk_buff *dst;
10455                 struct ieee80211_radiotap_header *rt_hdr;
10456                 int len;
10457
10458                 if (hdr_only) {
10459                         hdr = (void *)src->data;
10460                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10461                 } else
10462                         len = src->len;
10463
10464                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10465                 if (!dst)
10466                         continue;
10467
10468                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10469
10470                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10471                 rt_hdr->it_pad = 0;
10472                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10473                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10474
10475                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10476                         ieee80211chan2mhz(priv->channel));
10477                 if (priv->channel > 14)         /* 802.11a */
10478                         *(__le16*)skb_put(dst, sizeof(u16)) =
10479                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10480                                              IEEE80211_CHAN_5GHZ);
10481                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10482                         *(__le16*)skb_put(dst, sizeof(u16)) =
10483                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10484                                              IEEE80211_CHAN_2GHZ);
10485                 else            /* 802.11g */
10486                         *(__le16*)skb_put(dst, sizeof(u16)) =
10487                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10488                                  IEEE80211_CHAN_2GHZ);
10489
10490                 rt_hdr->it_len = cpu_to_le16(dst->len);
10491
10492                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10493
10494                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10495                         dev_kfree_skb_any(dst);
10496         }
10497 }
10498 #endif
10499
10500 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10501                                            struct net_device *dev, int pri)
10502 {
10503         struct ipw_priv *priv = libipw_priv(dev);
10504         unsigned long flags;
10505         netdev_tx_t ret;
10506
10507         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10508         spin_lock_irqsave(&priv->lock, flags);
10509
10510 #ifdef CONFIG_IPW2200_PROMISCUOUS
10511         if (rtap_iface && netif_running(priv->prom_net_dev))
10512                 ipw_handle_promiscuous_tx(priv, txb);
10513 #endif
10514
10515         ret = ipw_tx_skb(priv, txb, pri);
10516         if (ret == NETDEV_TX_OK)
10517                 __ipw_led_activity_on(priv);
10518         spin_unlock_irqrestore(&priv->lock, flags);
10519
10520         return ret;
10521 }
10522
10523 static void ipw_net_set_multicast_list(struct net_device *dev)
10524 {
10525
10526 }
10527
10528 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10529 {
10530         struct ipw_priv *priv = libipw_priv(dev);
10531         struct sockaddr *addr = p;
10532
10533         if (!is_valid_ether_addr(addr->sa_data))
10534                 return -EADDRNOTAVAIL;
10535         mutex_lock(&priv->mutex);
10536         priv->config |= CFG_CUSTOM_MAC;
10537         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10538         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10539                priv->net_dev->name, priv->mac_addr);
10540         queue_work(priv->workqueue, &priv->adapter_restart);
10541         mutex_unlock(&priv->mutex);
10542         return 0;
10543 }
10544
10545 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10546                                     struct ethtool_drvinfo *info)
10547 {
10548         struct ipw_priv *p = libipw_priv(dev);
10549         char vers[64];
10550         char date[32];
10551         u32 len;
10552
10553         strcpy(info->driver, DRV_NAME);
10554         strcpy(info->version, DRV_VERSION);
10555
10556         len = sizeof(vers);
10557         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10558         len = sizeof(date);
10559         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10560
10561         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10562                  vers, date);
10563         strcpy(info->bus_info, pci_name(p->pci_dev));
10564         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10565 }
10566
10567 static u32 ipw_ethtool_get_link(struct net_device *dev)
10568 {
10569         struct ipw_priv *priv = libipw_priv(dev);
10570         return (priv->status & STATUS_ASSOCIATED) != 0;
10571 }
10572
10573 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10574 {
10575         return IPW_EEPROM_IMAGE_SIZE;
10576 }
10577
10578 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10579                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10580 {
10581         struct ipw_priv *p = libipw_priv(dev);
10582
10583         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10584                 return -EINVAL;
10585         mutex_lock(&p->mutex);
10586         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10587         mutex_unlock(&p->mutex);
10588         return 0;
10589 }
10590
10591 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10592                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10593 {
10594         struct ipw_priv *p = libipw_priv(dev);
10595         int i;
10596
10597         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10598                 return -EINVAL;
10599         mutex_lock(&p->mutex);
10600         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10601         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10602                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10603         mutex_unlock(&p->mutex);
10604         return 0;
10605 }
10606
10607 static const struct ethtool_ops ipw_ethtool_ops = {
10608         .get_link = ipw_ethtool_get_link,
10609         .get_drvinfo = ipw_ethtool_get_drvinfo,
10610         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10611         .get_eeprom = ipw_ethtool_get_eeprom,
10612         .set_eeprom = ipw_ethtool_set_eeprom,
10613 };
10614
10615 static irqreturn_t ipw_isr(int irq, void *data)
10616 {
10617         struct ipw_priv *priv = data;
10618         u32 inta, inta_mask;
10619
10620         if (!priv)
10621                 return IRQ_NONE;
10622
10623         spin_lock(&priv->irq_lock);
10624
10625         if (!(priv->status & STATUS_INT_ENABLED)) {
10626                 /* IRQ is disabled */
10627                 goto none;
10628         }
10629
10630         inta = ipw_read32(priv, IPW_INTA_RW);
10631         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10632
10633         if (inta == 0xFFFFFFFF) {
10634                 /* Hardware disappeared */
10635                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10636                 goto none;
10637         }
10638
10639         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10640                 /* Shared interrupt */
10641                 goto none;
10642         }
10643
10644         /* tell the device to stop sending interrupts */
10645         __ipw_disable_interrupts(priv);
10646
10647         /* ack current interrupts */
10648         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10649         ipw_write32(priv, IPW_INTA_RW, inta);
10650
10651         /* Cache INTA value for our tasklet */
10652         priv->isr_inta = inta;
10653
10654         tasklet_schedule(&priv->irq_tasklet);
10655
10656         spin_unlock(&priv->irq_lock);
10657
10658         return IRQ_HANDLED;
10659       none:
10660         spin_unlock(&priv->irq_lock);
10661         return IRQ_NONE;
10662 }
10663
10664 static void ipw_rf_kill(void *adapter)
10665 {
10666         struct ipw_priv *priv = adapter;
10667         unsigned long flags;
10668
10669         spin_lock_irqsave(&priv->lock, flags);
10670
10671         if (rf_kill_active(priv)) {
10672                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10673                 if (priv->workqueue)
10674                         queue_delayed_work(priv->workqueue,
10675                                            &priv->rf_kill, 2 * HZ);
10676                 goto exit_unlock;
10677         }
10678
10679         /* RF Kill is now disabled, so bring the device back up */
10680
10681         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10682                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10683                                   "device\n");
10684
10685                 /* we can not do an adapter restart while inside an irq lock */
10686                 queue_work(priv->workqueue, &priv->adapter_restart);
10687         } else
10688                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10689                                   "enabled\n");
10690
10691       exit_unlock:
10692         spin_unlock_irqrestore(&priv->lock, flags);
10693 }
10694
10695 static void ipw_bg_rf_kill(struct work_struct *work)
10696 {
10697         struct ipw_priv *priv =
10698                 container_of(work, struct ipw_priv, rf_kill.work);
10699         mutex_lock(&priv->mutex);
10700         ipw_rf_kill(priv);
10701         mutex_unlock(&priv->mutex);
10702 }
10703
10704 static void ipw_link_up(struct ipw_priv *priv)
10705 {
10706         priv->last_seq_num = -1;
10707         priv->last_frag_num = -1;
10708         priv->last_packet_time = 0;
10709
10710         netif_carrier_on(priv->net_dev);
10711
10712         cancel_delayed_work(&priv->request_scan);
10713         cancel_delayed_work(&priv->request_direct_scan);
10714         cancel_delayed_work(&priv->request_passive_scan);
10715         cancel_delayed_work(&priv->scan_event);
10716         ipw_reset_stats(priv);
10717         /* Ensure the rate is updated immediately */
10718         priv->last_rate = ipw_get_current_rate(priv);
10719         ipw_gather_stats(priv);
10720         ipw_led_link_up(priv);
10721         notify_wx_assoc_event(priv);
10722
10723         if (priv->config & CFG_BACKGROUND_SCAN)
10724                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10725 }
10726
10727 static void ipw_bg_link_up(struct work_struct *work)
10728 {
10729         struct ipw_priv *priv =
10730                 container_of(work, struct ipw_priv, link_up);
10731         mutex_lock(&priv->mutex);
10732         ipw_link_up(priv);
10733         mutex_unlock(&priv->mutex);
10734 }
10735
10736 static void ipw_link_down(struct ipw_priv *priv)
10737 {
10738         ipw_led_link_down(priv);
10739         netif_carrier_off(priv->net_dev);
10740         notify_wx_assoc_event(priv);
10741
10742         /* Cancel any queued work ... */
10743         cancel_delayed_work(&priv->request_scan);
10744         cancel_delayed_work(&priv->request_direct_scan);
10745         cancel_delayed_work(&priv->request_passive_scan);
10746         cancel_delayed_work(&priv->adhoc_check);
10747         cancel_delayed_work(&priv->gather_stats);
10748
10749         ipw_reset_stats(priv);
10750
10751         if (!(priv->status & STATUS_EXIT_PENDING)) {
10752                 /* Queue up another scan... */
10753                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10754         } else
10755                 cancel_delayed_work(&priv->scan_event);
10756 }
10757
10758 static void ipw_bg_link_down(struct work_struct *work)
10759 {
10760         struct ipw_priv *priv =
10761                 container_of(work, struct ipw_priv, link_down);
10762         mutex_lock(&priv->mutex);
10763         ipw_link_down(priv);
10764         mutex_unlock(&priv->mutex);
10765 }
10766
10767 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10768 {
10769         int ret = 0;
10770
10771         priv->workqueue = create_workqueue(DRV_NAME);
10772         init_waitqueue_head(&priv->wait_command_queue);
10773         init_waitqueue_head(&priv->wait_state);
10774
10775         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10776         INIT_WORK(&priv->associate, ipw_bg_associate);
10777         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10778         INIT_WORK(&priv->system_config, ipw_system_config);
10779         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10780         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10781         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10782         INIT_WORK(&priv->up, ipw_bg_up);
10783         INIT_WORK(&priv->down, ipw_bg_down);
10784         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10785         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10786         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10787         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10788         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10789         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10790         INIT_WORK(&priv->roam, ipw_bg_roam);
10791         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10792         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10793         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10794         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10795         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10796         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10797         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10798
10799 #ifdef CONFIG_IPW2200_QOS
10800         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10801 #endif                          /* CONFIG_IPW2200_QOS */
10802
10803         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10804                      ipw_irq_tasklet, (unsigned long)priv);
10805
10806         return ret;
10807 }
10808
10809 static void shim__set_security(struct net_device *dev,
10810                                struct libipw_security *sec)
10811 {
10812         struct ipw_priv *priv = libipw_priv(dev);
10813         int i;
10814         for (i = 0; i < 4; i++) {
10815                 if (sec->flags & (1 << i)) {
10816                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10817                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10818                         if (sec->key_sizes[i] == 0)
10819                                 priv->ieee->sec.flags &= ~(1 << i);
10820                         else {
10821                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10822                                        sec->key_sizes[i]);
10823                                 priv->ieee->sec.flags |= (1 << i);
10824                         }
10825                         priv->status |= STATUS_SECURITY_UPDATED;
10826                 } else if (sec->level != SEC_LEVEL_1)
10827                         priv->ieee->sec.flags &= ~(1 << i);
10828         }
10829
10830         if (sec->flags & SEC_ACTIVE_KEY) {
10831                 if (sec->active_key <= 3) {
10832                         priv->ieee->sec.active_key = sec->active_key;
10833                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10834                 } else
10835                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10836                 priv->status |= STATUS_SECURITY_UPDATED;
10837         } else
10838                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10839
10840         if ((sec->flags & SEC_AUTH_MODE) &&
10841             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10842                 priv->ieee->sec.auth_mode = sec->auth_mode;
10843                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10844                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10845                         priv->capability |= CAP_SHARED_KEY;
10846                 else
10847                         priv->capability &= ~CAP_SHARED_KEY;
10848                 priv->status |= STATUS_SECURITY_UPDATED;
10849         }
10850
10851         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10852                 priv->ieee->sec.flags |= SEC_ENABLED;
10853                 priv->ieee->sec.enabled = sec->enabled;
10854                 priv->status |= STATUS_SECURITY_UPDATED;
10855                 if (sec->enabled)
10856                         priv->capability |= CAP_PRIVACY_ON;
10857                 else
10858                         priv->capability &= ~CAP_PRIVACY_ON;
10859         }
10860
10861         if (sec->flags & SEC_ENCRYPT)
10862                 priv->ieee->sec.encrypt = sec->encrypt;
10863
10864         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10865                 priv->ieee->sec.level = sec->level;
10866                 priv->ieee->sec.flags |= SEC_LEVEL;
10867                 priv->status |= STATUS_SECURITY_UPDATED;
10868         }
10869
10870         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10871                 ipw_set_hwcrypto_keys(priv);
10872
10873         /* To match current functionality of ipw2100 (which works well w/
10874          * various supplicants, we don't force a disassociate if the
10875          * privacy capability changes ... */
10876 #if 0
10877         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10878             (((priv->assoc_request.capability &
10879                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10880              (!(priv->assoc_request.capability &
10881                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10882                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10883                                 "change.\n");
10884                 ipw_disassociate(priv);
10885         }
10886 #endif
10887 }
10888
10889 static int init_supported_rates(struct ipw_priv *priv,
10890                                 struct ipw_supported_rates *rates)
10891 {
10892         /* TODO: Mask out rates based on priv->rates_mask */
10893
10894         memset(rates, 0, sizeof(*rates));
10895         /* configure supported rates */
10896         switch (priv->ieee->freq_band) {
10897         case LIBIPW_52GHZ_BAND:
10898                 rates->ieee_mode = IPW_A_MODE;
10899                 rates->purpose = IPW_RATE_CAPABILITIES;
10900                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10901                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10902                 break;
10903
10904         default:                /* Mixed or 2.4Ghz */
10905                 rates->ieee_mode = IPW_G_MODE;
10906                 rates->purpose = IPW_RATE_CAPABILITIES;
10907                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10908                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10909                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10910                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10911                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10912                 }
10913                 break;
10914         }
10915
10916         return 0;
10917 }
10918
10919 static int ipw_config(struct ipw_priv *priv)
10920 {
10921         /* This is only called from ipw_up, which resets/reloads the firmware
10922            so, we don't need to first disable the card before we configure
10923            it */
10924         if (ipw_set_tx_power(priv))
10925                 goto error;
10926
10927         /* initialize adapter address */
10928         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10929                 goto error;
10930
10931         /* set basic system config settings */
10932         init_sys_config(&priv->sys_config);
10933
10934         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10935          * Does not support BT priority yet (don't abort or defer our Tx) */
10936         if (bt_coexist) {
10937                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10938
10939                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10940                         priv->sys_config.bt_coexistence
10941                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10942                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10943                         priv->sys_config.bt_coexistence
10944                             |= CFG_BT_COEXISTENCE_OOB;
10945         }
10946
10947 #ifdef CONFIG_IPW2200_PROMISCUOUS
10948         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10949                 priv->sys_config.accept_all_data_frames = 1;
10950                 priv->sys_config.accept_non_directed_frames = 1;
10951                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10952                 priv->sys_config.accept_all_mgmt_frames = 1;
10953         }
10954 #endif
10955
10956         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10957                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10958         else
10959                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10960
10961         if (ipw_send_system_config(priv))
10962                 goto error;
10963
10964         init_supported_rates(priv, &priv->rates);
10965         if (ipw_send_supported_rates(priv, &priv->rates))
10966                 goto error;
10967
10968         /* Set request-to-send threshold */
10969         if (priv->rts_threshold) {
10970                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10971                         goto error;
10972         }
10973 #ifdef CONFIG_IPW2200_QOS
10974         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10975         ipw_qos_activate(priv, NULL);
10976 #endif                          /* CONFIG_IPW2200_QOS */
10977
10978         if (ipw_set_random_seed(priv))
10979                 goto error;
10980
10981         /* final state transition to the RUN state */
10982         if (ipw_send_host_complete(priv))
10983                 goto error;
10984
10985         priv->status |= STATUS_INIT;
10986
10987         ipw_led_init(priv);
10988         ipw_led_radio_on(priv);
10989         priv->notif_missed_beacons = 0;
10990
10991         /* Set hardware WEP key if it is configured. */
10992         if ((priv->capability & CAP_PRIVACY_ON) &&
10993             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10994             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10995                 ipw_set_hwcrypto_keys(priv);
10996
10997         return 0;
10998
10999       error:
11000         return -EIO;
11001 }
11002
11003 /*
11004  * NOTE:
11005  *
11006  * These tables have been tested in conjunction with the
11007  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11008  *
11009  * Altering this values, using it on other hardware, or in geographies
11010  * not intended for resale of the above mentioned Intel adapters has
11011  * not been tested.
11012  *
11013  * Remember to update the table in README.ipw2200 when changing this
11014  * table.
11015  *
11016  */
11017 static const struct libipw_geo ipw_geos[] = {
11018         {                       /* Restricted */
11019          "---",
11020          .bg_channels = 11,
11021          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022                 {2427, 4}, {2432, 5}, {2437, 6},
11023                 {2442, 7}, {2447, 8}, {2452, 9},
11024                 {2457, 10}, {2462, 11}},
11025          },
11026
11027         {                       /* Custom US/Canada */
11028          "ZZF",
11029          .bg_channels = 11,
11030          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031                 {2427, 4}, {2432, 5}, {2437, 6},
11032                 {2442, 7}, {2447, 8}, {2452, 9},
11033                 {2457, 10}, {2462, 11}},
11034          .a_channels = 8,
11035          .a = {{5180, 36},
11036                {5200, 40},
11037                {5220, 44},
11038                {5240, 48},
11039                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11040                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11041                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11042                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11043          },
11044
11045         {                       /* Rest of World */
11046          "ZZD",
11047          .bg_channels = 13,
11048          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049                 {2427, 4}, {2432, 5}, {2437, 6},
11050                 {2442, 7}, {2447, 8}, {2452, 9},
11051                 {2457, 10}, {2462, 11}, {2467, 12},
11052                 {2472, 13}},
11053          },
11054
11055         {                       /* Custom USA & Europe & High */
11056          "ZZA",
11057          .bg_channels = 11,
11058          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059                 {2427, 4}, {2432, 5}, {2437, 6},
11060                 {2442, 7}, {2447, 8}, {2452, 9},
11061                 {2457, 10}, {2462, 11}},
11062          .a_channels = 13,
11063          .a = {{5180, 36},
11064                {5200, 40},
11065                {5220, 44},
11066                {5240, 48},
11067                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11068                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11069                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11070                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11071                {5745, 149},
11072                {5765, 153},
11073                {5785, 157},
11074                {5805, 161},
11075                {5825, 165}},
11076          },
11077
11078         {                       /* Custom NA & Europe */
11079          "ZZB",
11080          .bg_channels = 11,
11081          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082                 {2427, 4}, {2432, 5}, {2437, 6},
11083                 {2442, 7}, {2447, 8}, {2452, 9},
11084                 {2457, 10}, {2462, 11}},
11085          .a_channels = 13,
11086          .a = {{5180, 36},
11087                {5200, 40},
11088                {5220, 44},
11089                {5240, 48},
11090                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11091                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11092                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11093                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11094                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11095                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11096                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11097                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11098                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11099          },
11100
11101         {                       /* Custom Japan */
11102          "ZZC",
11103          .bg_channels = 11,
11104          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11105                 {2427, 4}, {2432, 5}, {2437, 6},
11106                 {2442, 7}, {2447, 8}, {2452, 9},
11107                 {2457, 10}, {2462, 11}},
11108          .a_channels = 4,
11109          .a = {{5170, 34}, {5190, 38},
11110                {5210, 42}, {5230, 46}},
11111          },
11112
11113         {                       /* Custom */
11114          "ZZM",
11115          .bg_channels = 11,
11116          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11117                 {2427, 4}, {2432, 5}, {2437, 6},
11118                 {2442, 7}, {2447, 8}, {2452, 9},
11119                 {2457, 10}, {2462, 11}},
11120          },
11121
11122         {                       /* Europe */
11123          "ZZE",
11124          .bg_channels = 13,
11125          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11126                 {2427, 4}, {2432, 5}, {2437, 6},
11127                 {2442, 7}, {2447, 8}, {2452, 9},
11128                 {2457, 10}, {2462, 11}, {2467, 12},
11129                 {2472, 13}},
11130          .a_channels = 19,
11131          .a = {{5180, 36},
11132                {5200, 40},
11133                {5220, 44},
11134                {5240, 48},
11135                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11136                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11137                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11138                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11139                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11140                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11141                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11142                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11143                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11144                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11145                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11146                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11147                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11148                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11149                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11150          },
11151
11152         {                       /* Custom Japan */
11153          "ZZJ",
11154          .bg_channels = 14,
11155          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11156                 {2427, 4}, {2432, 5}, {2437, 6},
11157                 {2442, 7}, {2447, 8}, {2452, 9},
11158                 {2457, 10}, {2462, 11}, {2467, 12},
11159                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11160          .a_channels = 4,
11161          .a = {{5170, 34}, {5190, 38},
11162                {5210, 42}, {5230, 46}},
11163          },
11164
11165         {                       /* Rest of World */
11166          "ZZR",
11167          .bg_channels = 14,
11168          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11169                 {2427, 4}, {2432, 5}, {2437, 6},
11170                 {2442, 7}, {2447, 8}, {2452, 9},
11171                 {2457, 10}, {2462, 11}, {2467, 12},
11172                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11173                              LIBIPW_CH_PASSIVE_ONLY}},
11174          },
11175
11176         {                       /* High Band */
11177          "ZZH",
11178          .bg_channels = 13,
11179          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11180                 {2427, 4}, {2432, 5}, {2437, 6},
11181                 {2442, 7}, {2447, 8}, {2452, 9},
11182                 {2457, 10}, {2462, 11},
11183                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11184                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11185          .a_channels = 4,
11186          .a = {{5745, 149}, {5765, 153},
11187                {5785, 157}, {5805, 161}},
11188          },
11189
11190         {                       /* Custom Europe */
11191          "ZZG",
11192          .bg_channels = 13,
11193          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11194                 {2427, 4}, {2432, 5}, {2437, 6},
11195                 {2442, 7}, {2447, 8}, {2452, 9},
11196                 {2457, 10}, {2462, 11},
11197                 {2467, 12}, {2472, 13}},
11198          .a_channels = 4,
11199          .a = {{5180, 36}, {5200, 40},
11200                {5220, 44}, {5240, 48}},
11201          },
11202
11203         {                       /* Europe */
11204          "ZZK",
11205          .bg_channels = 13,
11206          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11207                 {2427, 4}, {2432, 5}, {2437, 6},
11208                 {2442, 7}, {2447, 8}, {2452, 9},
11209                 {2457, 10}, {2462, 11},
11210                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11211                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11212          .a_channels = 24,
11213          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11214                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11215                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11216                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11217                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11218                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11219                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11220                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11221                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11222                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11223                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11224                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11225                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11226                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11227                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11228                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11229                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11230                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11231                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11232                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11233                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11234                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11235                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11236                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11237          },
11238
11239         {                       /* Europe */
11240          "ZZL",
11241          .bg_channels = 11,
11242          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11243                 {2427, 4}, {2432, 5}, {2437, 6},
11244                 {2442, 7}, {2447, 8}, {2452, 9},
11245                 {2457, 10}, {2462, 11}},
11246          .a_channels = 13,
11247          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11248                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11249                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11250                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11251                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11252                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11253                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11254                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11255                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11256                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11257                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11258                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11259                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11260          }
11261 };
11262
11263 #define MAX_HW_RESTARTS 5
11264 static int ipw_up(struct ipw_priv *priv)
11265 {
11266         int rc, i, j;
11267
11268         /* Age scan list entries found before suspend */
11269         if (priv->suspend_time) {
11270                 libipw_networks_age(priv->ieee, priv->suspend_time);
11271                 priv->suspend_time = 0;
11272         }
11273
11274         if (priv->status & STATUS_EXIT_PENDING)
11275                 return -EIO;
11276
11277         if (cmdlog && !priv->cmdlog) {
11278                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11279                                        GFP_KERNEL);
11280                 if (priv->cmdlog == NULL) {
11281                         IPW_ERROR("Error allocating %d command log entries.\n",
11282                                   cmdlog);
11283                         return -ENOMEM;
11284                 } else {
11285                         priv->cmdlog_len = cmdlog;
11286                 }
11287         }
11288
11289         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11290                 /* Load the microcode, firmware, and eeprom.
11291                  * Also start the clocks. */
11292                 rc = ipw_load(priv);
11293                 if (rc) {
11294                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11295                         return rc;
11296                 }
11297
11298                 ipw_init_ordinals(priv);
11299                 if (!(priv->config & CFG_CUSTOM_MAC))
11300                         eeprom_parse_mac(priv, priv->mac_addr);
11301                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11302                 memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11303
11304                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11305                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11306                                     ipw_geos[j].name, 3))
11307                                 break;
11308                 }
11309                 if (j == ARRAY_SIZE(ipw_geos)) {
11310                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11311                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11312                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11313                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11314                         j = 0;
11315                 }
11316                 if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11317                         IPW_WARNING("Could not set geography.");
11318                         return 0;
11319                 }
11320
11321                 if (priv->status & STATUS_RF_KILL_SW) {
11322                         IPW_WARNING("Radio disabled by module parameter.\n");
11323                         return 0;
11324                 } else if (rf_kill_active(priv)) {
11325                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11326                                     "Kill switch must be turned off for "
11327                                     "wireless networking to work.\n");
11328                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11329                                            2 * HZ);
11330                         return 0;
11331                 }
11332
11333                 rc = ipw_config(priv);
11334                 if (!rc) {
11335                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11336
11337                         /* If configure to try and auto-associate, kick
11338                          * off a scan. */
11339                         queue_delayed_work(priv->workqueue,
11340                                            &priv->request_scan, 0);
11341
11342                         return 0;
11343                 }
11344
11345                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11346                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11347                                i, MAX_HW_RESTARTS);
11348
11349                 /* We had an error bringing up the hardware, so take it
11350                  * all the way back down so we can try again */
11351                 ipw_down(priv);
11352         }
11353
11354         /* tried to restart and config the device for as long as our
11355          * patience could withstand */
11356         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11357
11358         return -EIO;
11359 }
11360
11361 static void ipw_bg_up(struct work_struct *work)
11362 {
11363         struct ipw_priv *priv =
11364                 container_of(work, struct ipw_priv, up);
11365         mutex_lock(&priv->mutex);
11366         ipw_up(priv);
11367         mutex_unlock(&priv->mutex);
11368 }
11369
11370 static void ipw_deinit(struct ipw_priv *priv)
11371 {
11372         int i;
11373
11374         if (priv->status & STATUS_SCANNING) {
11375                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11376                 ipw_abort_scan(priv);
11377         }
11378
11379         if (priv->status & STATUS_ASSOCIATED) {
11380                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11381                 ipw_disassociate(priv);
11382         }
11383
11384         ipw_led_shutdown(priv);
11385
11386         /* Wait up to 1s for status to change to not scanning and not
11387          * associated (disassociation can take a while for a ful 802.11
11388          * exchange */
11389         for (i = 1000; i && (priv->status &
11390                              (STATUS_DISASSOCIATING |
11391                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11392                 udelay(10);
11393
11394         if (priv->status & (STATUS_DISASSOCIATING |
11395                             STATUS_ASSOCIATED | STATUS_SCANNING))
11396                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11397         else
11398                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11399
11400         /* Attempt to disable the card */
11401         ipw_send_card_disable(priv, 0);
11402
11403         priv->status &= ~STATUS_INIT;
11404 }
11405
11406 static void ipw_down(struct ipw_priv *priv)
11407 {
11408         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11409
11410         priv->status |= STATUS_EXIT_PENDING;
11411
11412         if (ipw_is_init(priv))
11413                 ipw_deinit(priv);
11414
11415         /* Wipe out the EXIT_PENDING status bit if we are not actually
11416          * exiting the module */
11417         if (!exit_pending)
11418                 priv->status &= ~STATUS_EXIT_PENDING;
11419
11420         /* tell the device to stop sending interrupts */
11421         ipw_disable_interrupts(priv);
11422
11423         /* Clear all bits but the RF Kill */
11424         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11425         netif_carrier_off(priv->net_dev);
11426
11427         ipw_stop_nic(priv);
11428
11429         ipw_led_radio_off(priv);
11430 }
11431
11432 static void ipw_bg_down(struct work_struct *work)
11433 {
11434         struct ipw_priv *priv =
11435                 container_of(work, struct ipw_priv, down);
11436         mutex_lock(&priv->mutex);
11437         ipw_down(priv);
11438         mutex_unlock(&priv->mutex);
11439 }
11440
11441 /* Called by register_netdev() */
11442 static int ipw_net_init(struct net_device *dev)
11443 {
11444         int i, rc = 0;
11445         struct ipw_priv *priv = libipw_priv(dev);
11446         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11447         struct wireless_dev *wdev = &priv->ieee->wdev;
11448         mutex_lock(&priv->mutex);
11449
11450         if (ipw_up(priv)) {
11451                 rc = -EIO;
11452                 goto out;
11453         }
11454
11455         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11456
11457         /* fill-out priv->ieee->bg_band */
11458         if (geo->bg_channels) {
11459                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11460
11461                 bg_band->band = IEEE80211_BAND_2GHZ;
11462                 bg_band->n_channels = geo->bg_channels;
11463                 bg_band->channels =
11464                         kzalloc(geo->bg_channels *
11465                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
11466                 /* translate geo->bg to bg_band.channels */
11467                 for (i = 0; i < geo->bg_channels; i++) {
11468                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11469                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11470                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11471                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11472                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11473                                 bg_band->channels[i].flags |=
11474                                         IEEE80211_CHAN_PASSIVE_SCAN;
11475                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11476                                 bg_band->channels[i].flags |=
11477                                         IEEE80211_CHAN_NO_IBSS;
11478                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11479                                 bg_band->channels[i].flags |=
11480                                         IEEE80211_CHAN_RADAR;
11481                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11482                            LIBIPW_CH_UNIFORM_SPREADING, or
11483                            LIBIPW_CH_B_ONLY... */
11484                 }
11485                 /* point at bitrate info */
11486                 bg_band->bitrates = ipw2200_bg_rates;
11487                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11488
11489                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11490         }
11491
11492         /* fill-out priv->ieee->a_band */
11493         if (geo->a_channels) {
11494                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11495
11496                 a_band->band = IEEE80211_BAND_5GHZ;
11497                 a_band->n_channels = geo->a_channels;
11498                 a_band->channels =
11499                         kzalloc(geo->a_channels *
11500                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
11501                 /* translate geo->bg to a_band.channels */
11502                 for (i = 0; i < geo->a_channels; i++) {
11503                         a_band->channels[i].band = IEEE80211_BAND_2GHZ;
11504                         a_band->channels[i].center_freq = geo->a[i].freq;
11505                         a_band->channels[i].hw_value = geo->a[i].channel;
11506                         a_band->channels[i].max_power = geo->a[i].max_power;
11507                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11508                                 a_band->channels[i].flags |=
11509                                         IEEE80211_CHAN_PASSIVE_SCAN;
11510                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11511                                 a_band->channels[i].flags |=
11512                                         IEEE80211_CHAN_NO_IBSS;
11513                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11514                                 a_band->channels[i].flags |=
11515                                         IEEE80211_CHAN_RADAR;
11516                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11517                            LIBIPW_CH_UNIFORM_SPREADING, or
11518                            LIBIPW_CH_B_ONLY... */
11519                 }
11520                 /* point at bitrate info */
11521                 a_band->bitrates = ipw2200_a_rates;
11522                 a_band->n_bitrates = ipw2200_num_a_rates;
11523
11524                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11525         }
11526
11527         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11528
11529         /* With that information in place, we can now register the wiphy... */
11530         if (wiphy_register(wdev->wiphy)) {
11531                 rc = -EIO;
11532                 goto out;
11533         }
11534
11535 out:
11536         mutex_unlock(&priv->mutex);
11537         return rc;
11538 }
11539
11540 /* PCI driver stuff */
11541 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11542         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11543         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11544         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11545         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11546         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11547         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11548         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11549         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11550         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11551         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11552         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11553         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11554         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11555         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11556         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11557         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11558         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11559         {PCI_VDEVICE(INTEL, 0x104f), 0},
11560         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11561         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11562         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11563         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11564
11565         /* required last entry */
11566         {0,}
11567 };
11568
11569 MODULE_DEVICE_TABLE(pci, card_ids);
11570
11571 static struct attribute *ipw_sysfs_entries[] = {
11572         &dev_attr_rf_kill.attr,
11573         &dev_attr_direct_dword.attr,
11574         &dev_attr_indirect_byte.attr,
11575         &dev_attr_indirect_dword.attr,
11576         &dev_attr_mem_gpio_reg.attr,
11577         &dev_attr_command_event_reg.attr,
11578         &dev_attr_nic_type.attr,
11579         &dev_attr_status.attr,
11580         &dev_attr_cfg.attr,
11581         &dev_attr_error.attr,
11582         &dev_attr_event_log.attr,
11583         &dev_attr_cmd_log.attr,
11584         &dev_attr_eeprom_delay.attr,
11585         &dev_attr_ucode_version.attr,
11586         &dev_attr_rtc.attr,
11587         &dev_attr_scan_age.attr,
11588         &dev_attr_led.attr,
11589         &dev_attr_speed_scan.attr,
11590         &dev_attr_net_stats.attr,
11591         &dev_attr_channels.attr,
11592 #ifdef CONFIG_IPW2200_PROMISCUOUS
11593         &dev_attr_rtap_iface.attr,
11594         &dev_attr_rtap_filter.attr,
11595 #endif
11596         NULL
11597 };
11598
11599 static struct attribute_group ipw_attribute_group = {
11600         .name = NULL,           /* put in device directory */
11601         .attrs = ipw_sysfs_entries,
11602 };
11603
11604 #ifdef CONFIG_IPW2200_PROMISCUOUS
11605 static int ipw_prom_open(struct net_device *dev)
11606 {
11607         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11608         struct ipw_priv *priv = prom_priv->priv;
11609
11610         IPW_DEBUG_INFO("prom dev->open\n");
11611         netif_carrier_off(dev);
11612
11613         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11614                 priv->sys_config.accept_all_data_frames = 1;
11615                 priv->sys_config.accept_non_directed_frames = 1;
11616                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11617                 priv->sys_config.accept_all_mgmt_frames = 1;
11618
11619                 ipw_send_system_config(priv);
11620         }
11621
11622         return 0;
11623 }
11624
11625 static int ipw_prom_stop(struct net_device *dev)
11626 {
11627         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11628         struct ipw_priv *priv = prom_priv->priv;
11629
11630         IPW_DEBUG_INFO("prom dev->stop\n");
11631
11632         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11633                 priv->sys_config.accept_all_data_frames = 0;
11634                 priv->sys_config.accept_non_directed_frames = 0;
11635                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11636                 priv->sys_config.accept_all_mgmt_frames = 0;
11637
11638                 ipw_send_system_config(priv);
11639         }
11640
11641         return 0;
11642 }
11643
11644 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11645                                             struct net_device *dev)
11646 {
11647         IPW_DEBUG_INFO("prom dev->xmit\n");
11648         dev_kfree_skb(skb);
11649         return NETDEV_TX_OK;
11650 }
11651
11652 static const struct net_device_ops ipw_prom_netdev_ops = {
11653         .ndo_open               = ipw_prom_open,
11654         .ndo_stop               = ipw_prom_stop,
11655         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11656         .ndo_change_mtu         = libipw_change_mtu,
11657         .ndo_set_mac_address    = eth_mac_addr,
11658         .ndo_validate_addr      = eth_validate_addr,
11659 };
11660
11661 static int ipw_prom_alloc(struct ipw_priv *priv)
11662 {
11663         int rc = 0;
11664
11665         if (priv->prom_net_dev)
11666                 return -EPERM;
11667
11668         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11669         if (priv->prom_net_dev == NULL)
11670                 return -ENOMEM;
11671
11672         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11673         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11674         priv->prom_priv->priv = priv;
11675
11676         strcpy(priv->prom_net_dev->name, "rtap%d");
11677         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11678
11679         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11680         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11681
11682         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11683         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11684
11685         rc = register_netdev(priv->prom_net_dev);
11686         if (rc) {
11687                 free_libipw(priv->prom_net_dev, 1);
11688                 priv->prom_net_dev = NULL;
11689                 return rc;
11690         }
11691
11692         return 0;
11693 }
11694
11695 static void ipw_prom_free(struct ipw_priv *priv)
11696 {
11697         if (!priv->prom_net_dev)
11698                 return;
11699
11700         unregister_netdev(priv->prom_net_dev);
11701         free_libipw(priv->prom_net_dev, 1);
11702
11703         priv->prom_net_dev = NULL;
11704 }
11705
11706 #endif
11707
11708 static const struct net_device_ops ipw_netdev_ops = {
11709         .ndo_init               = ipw_net_init,
11710         .ndo_open               = ipw_net_open,
11711         .ndo_stop               = ipw_net_stop,
11712         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11713         .ndo_set_mac_address    = ipw_net_set_mac_address,
11714         .ndo_start_xmit         = libipw_xmit,
11715         .ndo_change_mtu         = libipw_change_mtu,
11716         .ndo_validate_addr      = eth_validate_addr,
11717 };
11718
11719 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11720                                    const struct pci_device_id *ent)
11721 {
11722         int err = 0;
11723         struct net_device *net_dev;
11724         void __iomem *base;
11725         u32 length, val;
11726         struct ipw_priv *priv;
11727         int i;
11728
11729         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11730         if (net_dev == NULL) {
11731                 err = -ENOMEM;
11732                 goto out;
11733         }
11734
11735         priv = libipw_priv(net_dev);
11736         priv->ieee = netdev_priv(net_dev);
11737
11738         priv->net_dev = net_dev;
11739         priv->pci_dev = pdev;
11740         ipw_debug_level = debug;
11741         spin_lock_init(&priv->irq_lock);
11742         spin_lock_init(&priv->lock);
11743         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11744                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11745
11746         mutex_init(&priv->mutex);
11747         if (pci_enable_device(pdev)) {
11748                 err = -ENODEV;
11749                 goto out_free_libipw;
11750         }
11751
11752         pci_set_master(pdev);
11753
11754         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11755         if (!err)
11756                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11757         if (err) {
11758                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11759                 goto out_pci_disable_device;
11760         }
11761
11762         pci_set_drvdata(pdev, priv);
11763
11764         err = pci_request_regions(pdev, DRV_NAME);
11765         if (err)
11766                 goto out_pci_disable_device;
11767
11768         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11769          * PCI Tx retries from interfering with C3 CPU state */
11770         pci_read_config_dword(pdev, 0x40, &val);
11771         if ((val & 0x0000ff00) != 0)
11772                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11773
11774         length = pci_resource_len(pdev, 0);
11775         priv->hw_len = length;
11776
11777         base = pci_ioremap_bar(pdev, 0);
11778         if (!base) {
11779                 err = -ENODEV;
11780                 goto out_pci_release_regions;
11781         }
11782
11783         priv->hw_base = base;
11784         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11785         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11786
11787         err = ipw_setup_deferred_work(priv);
11788         if (err) {
11789                 IPW_ERROR("Unable to setup deferred work\n");
11790                 goto out_iounmap;
11791         }
11792
11793         ipw_sw_reset(priv, 1);
11794
11795         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11796         if (err) {
11797                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11798                 goto out_destroy_workqueue;
11799         }
11800
11801         SET_NETDEV_DEV(net_dev, &pdev->dev);
11802
11803         mutex_lock(&priv->mutex);
11804
11805         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11806         priv->ieee->set_security = shim__set_security;
11807         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11808
11809 #ifdef CONFIG_IPW2200_QOS
11810         priv->ieee->is_qos_active = ipw_is_qos_active;
11811         priv->ieee->handle_probe_response = ipw_handle_beacon;
11812         priv->ieee->handle_beacon = ipw_handle_probe_response;
11813         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11814 #endif                          /* CONFIG_IPW2200_QOS */
11815
11816         priv->ieee->perfect_rssi = -20;
11817         priv->ieee->worst_rssi = -85;
11818
11819         net_dev->netdev_ops = &ipw_netdev_ops;
11820         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11821         net_dev->wireless_data = &priv->wireless_data;
11822         net_dev->wireless_handlers = &ipw_wx_handler_def;
11823         net_dev->ethtool_ops = &ipw_ethtool_ops;
11824         net_dev->irq = pdev->irq;
11825         net_dev->base_addr = (unsigned long)priv->hw_base;
11826         net_dev->mem_start = pci_resource_start(pdev, 0);
11827         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11828
11829         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11830         if (err) {
11831                 IPW_ERROR("failed to create sysfs device attributes\n");
11832                 mutex_unlock(&priv->mutex);
11833                 goto out_release_irq;
11834         }
11835
11836         mutex_unlock(&priv->mutex);
11837         err = register_netdev(net_dev);
11838         if (err) {
11839                 IPW_ERROR("failed to register network device\n");
11840                 goto out_remove_sysfs;
11841         }
11842
11843 #ifdef CONFIG_IPW2200_PROMISCUOUS
11844         if (rtap_iface) {
11845                 err = ipw_prom_alloc(priv);
11846                 if (err) {
11847                         IPW_ERROR("Failed to register promiscuous network "
11848                                   "device (error %d).\n", err);
11849                         unregister_netdev(priv->net_dev);
11850                         goto out_remove_sysfs;
11851                 }
11852         }
11853 #endif
11854
11855         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11856                "channels, %d 802.11a channels)\n",
11857                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11858                priv->ieee->geo.a_channels);
11859
11860         return 0;
11861
11862       out_remove_sysfs:
11863         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11864       out_release_irq:
11865         free_irq(pdev->irq, priv);
11866       out_destroy_workqueue:
11867         destroy_workqueue(priv->workqueue);
11868         priv->workqueue = NULL;
11869       out_iounmap:
11870         iounmap(priv->hw_base);
11871       out_pci_release_regions:
11872         pci_release_regions(pdev);
11873       out_pci_disable_device:
11874         pci_disable_device(pdev);
11875         pci_set_drvdata(pdev, NULL);
11876       out_free_libipw:
11877         free_libipw(priv->net_dev, 0);
11878       out:
11879         return err;
11880 }
11881
11882 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11883 {
11884         struct ipw_priv *priv = pci_get_drvdata(pdev);
11885         struct list_head *p, *q;
11886         int i;
11887
11888         if (!priv)
11889                 return;
11890
11891         mutex_lock(&priv->mutex);
11892
11893         priv->status |= STATUS_EXIT_PENDING;
11894         ipw_down(priv);
11895         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11896
11897         mutex_unlock(&priv->mutex);
11898
11899         unregister_netdev(priv->net_dev);
11900
11901         if (priv->rxq) {
11902                 ipw_rx_queue_free(priv, priv->rxq);
11903                 priv->rxq = NULL;
11904         }
11905         ipw_tx_queue_free(priv);
11906
11907         if (priv->cmdlog) {
11908                 kfree(priv->cmdlog);
11909                 priv->cmdlog = NULL;
11910         }
11911         /* ipw_down will ensure that there is no more pending work
11912          * in the workqueue's, so we can safely remove them now. */
11913         cancel_delayed_work(&priv->adhoc_check);
11914         cancel_delayed_work(&priv->gather_stats);
11915         cancel_delayed_work(&priv->request_scan);
11916         cancel_delayed_work(&priv->request_direct_scan);
11917         cancel_delayed_work(&priv->request_passive_scan);
11918         cancel_delayed_work(&priv->scan_event);
11919         cancel_delayed_work(&priv->rf_kill);
11920         cancel_delayed_work(&priv->scan_check);
11921         destroy_workqueue(priv->workqueue);
11922         priv->workqueue = NULL;
11923
11924         /* Free MAC hash list for ADHOC */
11925         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11926                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11927                         list_del(p);
11928                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11929                 }
11930         }
11931
11932         kfree(priv->error);
11933         priv->error = NULL;
11934
11935 #ifdef CONFIG_IPW2200_PROMISCUOUS
11936         ipw_prom_free(priv);
11937 #endif
11938
11939         free_irq(pdev->irq, priv);
11940         iounmap(priv->hw_base);
11941         pci_release_regions(pdev);
11942         pci_disable_device(pdev);
11943         pci_set_drvdata(pdev, NULL);
11944         /* wiphy_unregister needs to be here, before free_libipw */
11945         wiphy_unregister(priv->ieee->wdev.wiphy);
11946         kfree(priv->ieee->a_band.channels);
11947         kfree(priv->ieee->bg_band.channels);
11948         free_libipw(priv->net_dev, 0);
11949         free_firmware();
11950 }
11951
11952 #ifdef CONFIG_PM
11953 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11954 {
11955         struct ipw_priv *priv = pci_get_drvdata(pdev);
11956         struct net_device *dev = priv->net_dev;
11957
11958         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11959
11960         /* Take down the device; powers it off, etc. */
11961         ipw_down(priv);
11962
11963         /* Remove the PRESENT state of the device */
11964         netif_device_detach(dev);
11965
11966         pci_save_state(pdev);
11967         pci_disable_device(pdev);
11968         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11969
11970         priv->suspend_at = get_seconds();
11971
11972         return 0;
11973 }
11974
11975 static int ipw_pci_resume(struct pci_dev *pdev)
11976 {
11977         struct ipw_priv *priv = pci_get_drvdata(pdev);
11978         struct net_device *dev = priv->net_dev;
11979         int err;
11980         u32 val;
11981
11982         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11983
11984         pci_set_power_state(pdev, PCI_D0);
11985         err = pci_enable_device(pdev);
11986         if (err) {
11987                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11988                        dev->name);
11989                 return err;
11990         }
11991         pci_restore_state(pdev);
11992
11993         /*
11994          * Suspend/Resume resets the PCI configuration space, so we have to
11995          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11996          * from interfering with C3 CPU state. pci_restore_state won't help
11997          * here since it only restores the first 64 bytes pci config header.
11998          */
11999         pci_read_config_dword(pdev, 0x40, &val);
12000         if ((val & 0x0000ff00) != 0)
12001                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12002
12003         /* Set the device back into the PRESENT state; this will also wake
12004          * the queue of needed */
12005         netif_device_attach(dev);
12006
12007         priv->suspend_time = get_seconds() - priv->suspend_at;
12008
12009         /* Bring the device back up */
12010         queue_work(priv->workqueue, &priv->up);
12011
12012         return 0;
12013 }
12014 #endif
12015
12016 static void ipw_pci_shutdown(struct pci_dev *pdev)
12017 {
12018         struct ipw_priv *priv = pci_get_drvdata(pdev);
12019
12020         /* Take down the device; powers it off, etc. */
12021         ipw_down(priv);
12022
12023         pci_disable_device(pdev);
12024 }
12025
12026 /* driver initialization stuff */
12027 static struct pci_driver ipw_driver = {
12028         .name = DRV_NAME,
12029         .id_table = card_ids,
12030         .probe = ipw_pci_probe,
12031         .remove = __devexit_p(ipw_pci_remove),
12032 #ifdef CONFIG_PM
12033         .suspend = ipw_pci_suspend,
12034         .resume = ipw_pci_resume,
12035 #endif
12036         .shutdown = ipw_pci_shutdown,
12037 };
12038
12039 static int __init ipw_init(void)
12040 {
12041         int ret;
12042
12043         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12044         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12045
12046         ret = pci_register_driver(&ipw_driver);
12047         if (ret) {
12048                 IPW_ERROR("Unable to initialize PCI module\n");
12049                 return ret;
12050         }
12051
12052         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12053         if (ret) {
12054                 IPW_ERROR("Unable to create driver sysfs file\n");
12055                 pci_unregister_driver(&ipw_driver);
12056                 return ret;
12057         }
12058
12059         return ret;
12060 }
12061
12062 static void __exit ipw_exit(void)
12063 {
12064         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12065         pci_unregister_driver(&ipw_driver);
12066 }
12067
12068 module_param(disable, int, 0444);
12069 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12070
12071 module_param(associate, int, 0444);
12072 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12073
12074 module_param(auto_create, int, 0444);
12075 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12076
12077 module_param_named(led, led_support, int, 0444);
12078 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
12079
12080 module_param(debug, int, 0444);
12081 MODULE_PARM_DESC(debug, "debug output mask");
12082
12083 module_param_named(channel, default_channel, int, 0444);
12084 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12085
12086 #ifdef CONFIG_IPW2200_PROMISCUOUS
12087 module_param(rtap_iface, int, 0444);
12088 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12089 #endif
12090
12091 #ifdef CONFIG_IPW2200_QOS
12092 module_param(qos_enable, int, 0444);
12093 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12094
12095 module_param(qos_burst_enable, int, 0444);
12096 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12097
12098 module_param(qos_no_ack_mask, int, 0444);
12099 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12100
12101 module_param(burst_duration_CCK, int, 0444);
12102 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12103
12104 module_param(burst_duration_OFDM, int, 0444);
12105 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12106 #endif                          /* CONFIG_IPW2200_QOS */
12107
12108 #ifdef CONFIG_IPW2200_MONITOR
12109 module_param_named(mode, network_mode, int, 0444);
12110 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12111 #else
12112 module_param_named(mode, network_mode, int, 0444);
12113 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12114 #endif
12115
12116 module_param(bt_coexist, int, 0444);
12117 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12118
12119 module_param(hwcrypto, int, 0444);
12120 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12121
12122 module_param(cmdlog, int, 0444);
12123 MODULE_PARM_DESC(cmdlog,
12124                  "allocate a ring buffer for logging firmware commands");
12125
12126 module_param(roaming, int, 0444);
12127 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12128
12129 module_param(antenna, int, 0444);
12130 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12131
12132 module_exit(ipw_exit);
12133 module_init(ipw_init);