Merge branch 'writeback-for-linus' of git://github.com/fengguang/linux
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313         1000000,
314         2000000,
315         5500000,
316         11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320         { .bitrate = 10 },
321         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338                                struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340                                 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342                                  size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344                                     size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346                                      struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348                                   struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355         *val = readl((void __iomem *)(dev->base_addr + reg));
356         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361         writel(val, (void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366                                       u16 * val)
367 {
368         *val = readw((void __iomem *)(dev->base_addr + reg));
369         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374         *val = readb((void __iomem *)(dev->base_addr + reg));
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         writew(val, (void __iomem *)(dev->base_addr + reg));
381         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386         writeb(val, (void __iomem *)(dev->base_addr + reg));
387         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435                        addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444                                     const u8 * buf)
445 {
446         u32 aligned_addr;
447         u32 aligned_len;
448         u32 dif_len;
449         u32 i;
450
451         /* read first nibble byte by byte */
452         aligned_addr = addr & (~0x3);
453         dif_len = addr - aligned_addr;
454         if (dif_len) {
455                 /* Start reading at aligned_addr + dif_len */
456                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457                                aligned_addr);
458                 for (i = dif_len; i < 4; i++, buf++)
459                         write_register_byte(dev,
460                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
461                                             *buf);
462
463                 len -= dif_len;
464                 aligned_addr += 4;
465         }
466
467         /* read DWs through autoincrement registers */
468         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469         aligned_len = len & (~0x3);
470         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473         /* copy the last nibble */
474         dif_len = len - aligned_len;
475         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476         for (i = 0; i < dif_len; i++, buf++)
477                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478                                     *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482                                    u8 * buf)
483 {
484         u32 aligned_addr;
485         u32 aligned_len;
486         u32 dif_len;
487         u32 i;
488
489         /* read first nibble byte by byte */
490         aligned_addr = addr & (~0x3);
491         dif_len = addr - aligned_addr;
492         if (dif_len) {
493                 /* Start reading at aligned_addr + dif_len */
494                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495                                aligned_addr);
496                 for (i = dif_len; i < 4; i++, buf++)
497                         read_register_byte(dev,
498                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
499                                            buf);
500
501                 len -= dif_len;
502                 aligned_addr += 4;
503         }
504
505         /* read DWs through autoincrement registers */
506         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507         aligned_len = len & (~0x3);
508         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511         /* copy the last nibble */
512         dif_len = len - aligned_len;
513         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514         for (i = 0; i < dif_len; i++, buf++)
515                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520         return (dev->base_addr &&
521                 (readl
522                  ((void __iomem *)(dev->base_addr +
523                                    IPW_REG_DOA_DEBUG_AREA_START))
524                  == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528                                void *val, u32 * len)
529 {
530         struct ipw2100_ordinals *ordinals = &priv->ordinals;
531         u32 addr;
532         u32 field_info;
533         u16 field_len;
534         u16 field_count;
535         u32 total_length;
536
537         if (ordinals->table1_addr == 0) {
538                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539                        "before they have been loaded.\n");
540                 return -EINVAL;
541         }
542
543         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547                         printk(KERN_WARNING DRV_NAME
548                                ": ordinal buffer length too small, need %zd\n",
549                                IPW_ORD_TAB_1_ENTRY_SIZE);
550
551                         return -EINVAL;
552                 }
553
554                 read_nic_dword(priv->net_dev,
555                                ordinals->table1_addr + (ord << 2), &addr);
556                 read_nic_dword(priv->net_dev, addr, val);
557
558                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560                 return 0;
561         }
562
563         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565                 ord -= IPW_START_ORD_TAB_2;
566
567                 /* get the address of statistic */
568                 read_nic_dword(priv->net_dev,
569                                ordinals->table2_addr + (ord << 3), &addr);
570
571                 /* get the second DW of statistics ;
572                  * two 16-bit words - first is length, second is count */
573                 read_nic_dword(priv->net_dev,
574                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
575                                &field_info);
576
577                 /* get each entry length */
578                 field_len = *((u16 *) & field_info);
579
580                 /* get number of entries */
581                 field_count = *(((u16 *) & field_info) + 1);
582
583                 /* abort if no enough memory */
584                 total_length = field_len * field_count;
585                 if (total_length > *len) {
586                         *len = total_length;
587                         return -EINVAL;
588                 }
589
590                 *len = total_length;
591                 if (!total_length)
592                         return 0;
593
594                 /* read the ordinal data from the SRAM */
595                 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597                 return 0;
598         }
599
600         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601                "in table 2\n", ord);
602
603         return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607                                u32 * len)
608 {
609         struct ipw2100_ordinals *ordinals = &priv->ordinals;
610         u32 addr;
611
612         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615                         IPW_DEBUG_INFO("wrong size\n");
616                         return -EINVAL;
617                 }
618
619                 read_nic_dword(priv->net_dev,
620                                ordinals->table1_addr + (ord << 2), &addr);
621
622                 write_nic_dword(priv->net_dev, addr, *val);
623
624                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626                 return 0;
627         }
628
629         IPW_DEBUG_INFO("wrong table\n");
630         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631                 return -EINVAL;
632
633         return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637                           const u8 * data, u32 len, u32 ofs)
638 {
639         int out, i, j, l;
640         char c;
641
642         out = snprintf(buf, count, "%08X", ofs);
643
644         for (l = 0, i = 0; i < 2; i++) {
645                 out += snprintf(buf + out, count - out, " ");
646                 for (j = 0; j < 8 && l < len; j++, l++)
647                         out += snprintf(buf + out, count - out, "%02X ",
648                                         data[(i * 8 + j)]);
649                 for (; j < 8; j++)
650                         out += snprintf(buf + out, count - out, "   ");
651         }
652
653         out += snprintf(buf + out, count - out, " ");
654         for (l = 0, i = 0; i < 2; i++) {
655                 out += snprintf(buf + out, count - out, " ");
656                 for (j = 0; j < 8 && l < len; j++, l++) {
657                         c = data[(i * 8 + j)];
658                         if (!isascii(c) || !isprint(c))
659                                 c = '.';
660
661                         out += snprintf(buf + out, count - out, "%c", c);
662                 }
663
664                 for (; j < 8; j++)
665                         out += snprintf(buf + out, count - out, " ");
666         }
667
668         return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673         char line[81];
674         u32 ofs = 0;
675         if (!(ipw2100_debug_level & level))
676                 return;
677
678         while (len) {
679                 printk(KERN_DEBUG "%s\n",
680                        snprint_line(line, sizeof(line), &data[ofs],
681                                     min(len, 16U), ofs));
682                 ofs += 16;
683                 len -= min(len, 16U);
684         }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691         unsigned long now = get_seconds();
692
693         /* If we haven't received a reset request within the backoff period,
694          * then we can reset the backoff interval so this reset occurs
695          * immediately */
696         if (priv->reset_backoff &&
697             (now - priv->last_reset > priv->reset_backoff))
698                 priv->reset_backoff = 0;
699
700         priv->last_reset = get_seconds();
701
702         if (!(priv->status & STATUS_RESET_PENDING)) {
703                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704                                priv->net_dev->name, priv->reset_backoff);
705                 netif_carrier_off(priv->net_dev);
706                 netif_stop_queue(priv->net_dev);
707                 priv->status |= STATUS_RESET_PENDING;
708                 if (priv->reset_backoff)
709                         schedule_delayed_work(&priv->reset_work,
710                                               priv->reset_backoff * HZ);
711                 else
712                         schedule_delayed_work(&priv->reset_work, 0);
713
714                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
715                         priv->reset_backoff++;
716
717                 wake_up_interruptible(&priv->wait_command_queue);
718         } else
719                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
720                                priv->net_dev->name);
721
722 }
723
724 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
725 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
726                                    struct host_command *cmd)
727 {
728         struct list_head *element;
729         struct ipw2100_tx_packet *packet;
730         unsigned long flags;
731         int err = 0;
732
733         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
734                      command_types[cmd->host_command], cmd->host_command,
735                      cmd->host_command_length);
736         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
737                    cmd->host_command_length);
738
739         spin_lock_irqsave(&priv->low_lock, flags);
740
741         if (priv->fatal_error) {
742                 IPW_DEBUG_INFO
743                     ("Attempt to send command while hardware in fatal error condition.\n");
744                 err = -EIO;
745                 goto fail_unlock;
746         }
747
748         if (!(priv->status & STATUS_RUNNING)) {
749                 IPW_DEBUG_INFO
750                     ("Attempt to send command while hardware is not running.\n");
751                 err = -EIO;
752                 goto fail_unlock;
753         }
754
755         if (priv->status & STATUS_CMD_ACTIVE) {
756                 IPW_DEBUG_INFO
757                     ("Attempt to send command while another command is pending.\n");
758                 err = -EBUSY;
759                 goto fail_unlock;
760         }
761
762         if (list_empty(&priv->msg_free_list)) {
763                 IPW_DEBUG_INFO("no available msg buffers\n");
764                 goto fail_unlock;
765         }
766
767         priv->status |= STATUS_CMD_ACTIVE;
768         priv->messages_sent++;
769
770         element = priv->msg_free_list.next;
771
772         packet = list_entry(element, struct ipw2100_tx_packet, list);
773         packet->jiffy_start = jiffies;
774
775         /* initialize the firmware command packet */
776         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
777         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
778         packet->info.c_struct.cmd->host_command_len_reg =
779             cmd->host_command_length;
780         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
781
782         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
783                cmd->host_command_parameters,
784                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
785
786         list_del(element);
787         DEC_STAT(&priv->msg_free_stat);
788
789         list_add_tail(element, &priv->msg_pend_list);
790         INC_STAT(&priv->msg_pend_stat);
791
792         ipw2100_tx_send_commands(priv);
793         ipw2100_tx_send_data(priv);
794
795         spin_unlock_irqrestore(&priv->low_lock, flags);
796
797         /*
798          * We must wait for this command to complete before another
799          * command can be sent...  but if we wait more than 3 seconds
800          * then there is a problem.
801          */
802
803         err =
804             wait_event_interruptible_timeout(priv->wait_command_queue,
805                                              !(priv->
806                                                status & STATUS_CMD_ACTIVE),
807                                              HOST_COMPLETE_TIMEOUT);
808
809         if (err == 0) {
810                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
811                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
812                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
813                 priv->status &= ~STATUS_CMD_ACTIVE;
814                 schedule_reset(priv);
815                 return -EIO;
816         }
817
818         if (priv->fatal_error) {
819                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
820                        priv->net_dev->name);
821                 return -EIO;
822         }
823
824         /* !!!!! HACK TEST !!!!!
825          * When lots of debug trace statements are enabled, the driver
826          * doesn't seem to have as many firmware restart cycles...
827          *
828          * As a test, we're sticking in a 1/100s delay here */
829         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
830
831         return 0;
832
833       fail_unlock:
834         spin_unlock_irqrestore(&priv->low_lock, flags);
835
836         return err;
837 }
838
839 /*
840  * Verify the values and data access of the hardware
841  * No locks needed or used.  No functions called.
842  */
843 static int ipw2100_verify(struct ipw2100_priv *priv)
844 {
845         u32 data1, data2;
846         u32 address;
847
848         u32 val1 = 0x76543210;
849         u32 val2 = 0xFEDCBA98;
850
851         /* Domain 0 check - all values should be DOA_DEBUG */
852         for (address = IPW_REG_DOA_DEBUG_AREA_START;
853              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
854                 read_register(priv->net_dev, address, &data1);
855                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
856                         return -EIO;
857         }
858
859         /* Domain 1 check - use arbitrary read/write compare  */
860         for (address = 0; address < 5; address++) {
861                 /* The memory area is not used now */
862                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
863                                val1);
864                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
865                                val2);
866                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                               &data1);
868                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                               &data2);
870                 if (val1 == data1 && val2 == data2)
871                         return 0;
872         }
873
874         return -EIO;
875 }
876
877 /*
878  *
879  * Loop until the CARD_DISABLED bit is the same value as the
880  * supplied parameter
881  *
882  * TODO: See if it would be more efficient to do a wait/wake
883  *       cycle and have the completion event trigger the wakeup
884  *
885  */
886 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
887 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
888 {
889         int i;
890         u32 card_state;
891         u32 len = sizeof(card_state);
892         int err;
893
894         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
895                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
896                                           &card_state, &len);
897                 if (err) {
898                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
899                                        "failed.\n");
900                         return 0;
901                 }
902
903                 /* We'll break out if either the HW state says it is
904                  * in the state we want, or if HOST_COMPLETE command
905                  * finishes */
906                 if ((card_state == state) ||
907                     ((priv->status & STATUS_ENABLED) ?
908                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
909                         if (state == IPW_HW_STATE_ENABLED)
910                                 priv->status |= STATUS_ENABLED;
911                         else
912                                 priv->status &= ~STATUS_ENABLED;
913
914                         return 0;
915                 }
916
917                 udelay(50);
918         }
919
920         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
921                        state ? "DISABLED" : "ENABLED");
922         return -EIO;
923 }
924
925 /*********************************************************************
926     Procedure   :   sw_reset_and_clock
927     Purpose     :   Asserts s/w reset, asserts clock initialization
928                     and waits for clock stabilization
929  ********************************************************************/
930 static int sw_reset_and_clock(struct ipw2100_priv *priv)
931 {
932         int i;
933         u32 r;
934
935         // assert s/w reset
936         write_register(priv->net_dev, IPW_REG_RESET_REG,
937                        IPW_AUX_HOST_RESET_REG_SW_RESET);
938
939         // wait for clock stabilization
940         for (i = 0; i < 1000; i++) {
941                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
942
943                 // check clock ready bit
944                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
945                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
946                         break;
947         }
948
949         if (i == 1000)
950                 return -EIO;    // TODO: better error value
951
952         /* set "initialization complete" bit to move adapter to
953          * D0 state */
954         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
955                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
956
957         /* wait for clock stabilization */
958         for (i = 0; i < 10000; i++) {
959                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
960
961                 /* check clock ready bit */
962                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
963                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
964                         break;
965         }
966
967         if (i == 10000)
968                 return -EIO;    /* TODO: better error value */
969
970         /* set D0 standby bit */
971         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
972         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
973                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
974
975         return 0;
976 }
977
978 /*********************************************************************
979     Procedure   :   ipw2100_download_firmware
980     Purpose     :   Initiaze adapter after power on.
981                     The sequence is:
982                     1. assert s/w reset first!
983                     2. awake clocks & wait for clock stabilization
984                     3. hold ARC (don't ask me why...)
985                     4. load Dino ucode and reset/clock init again
986                     5. zero-out shared mem
987                     6. download f/w
988  *******************************************************************/
989 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
990 {
991         u32 address;
992         int err;
993
994 #ifndef CONFIG_PM
995         /* Fetch the firmware and microcode */
996         struct ipw2100_fw ipw2100_firmware;
997 #endif
998
999         if (priv->fatal_error) {
1000                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1001                                 "fatal error %d.  Interface must be brought down.\n",
1002                                 priv->net_dev->name, priv->fatal_error);
1003                 return -EINVAL;
1004         }
1005 #ifdef CONFIG_PM
1006         if (!ipw2100_firmware.version) {
1007                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1008                 if (err) {
1009                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1010                                         priv->net_dev->name, err);
1011                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1012                         goto fail;
1013                 }
1014         }
1015 #else
1016         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1017         if (err) {
1018                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1019                                 priv->net_dev->name, err);
1020                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1021                 goto fail;
1022         }
1023 #endif
1024         priv->firmware_version = ipw2100_firmware.version;
1025
1026         /* s/w reset and clock stabilization */
1027         err = sw_reset_and_clock(priv);
1028         if (err) {
1029                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1030                                 priv->net_dev->name, err);
1031                 goto fail;
1032         }
1033
1034         err = ipw2100_verify(priv);
1035         if (err) {
1036                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1037                                 priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* Hold ARC */
1042         write_nic_dword(priv->net_dev,
1043                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1044
1045         /* allow ARC to run */
1046         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1047
1048         /* load microcode */
1049         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1050         if (err) {
1051                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1052                        priv->net_dev->name, err);
1053                 goto fail;
1054         }
1055
1056         /* release ARC */
1057         write_nic_dword(priv->net_dev,
1058                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1059
1060         /* s/w reset and clock stabilization (again!!!) */
1061         err = sw_reset_and_clock(priv);
1062         if (err) {
1063                 printk(KERN_ERR DRV_NAME
1064                        ": %s: sw_reset_and_clock failed: %d\n",
1065                        priv->net_dev->name, err);
1066                 goto fail;
1067         }
1068
1069         /* load f/w */
1070         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1071         if (err) {
1072                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1073                                 priv->net_dev->name, err);
1074                 goto fail;
1075         }
1076 #ifndef CONFIG_PM
1077         /*
1078          * When the .resume method of the driver is called, the other
1079          * part of the system, i.e. the ide driver could still stay in
1080          * the suspend stage. This prevents us from loading the firmware
1081          * from the disk.  --YZ
1082          */
1083
1084         /* free any storage allocated for firmware image */
1085         ipw2100_release_firmware(priv, &ipw2100_firmware);
1086 #endif
1087
1088         /* zero out Domain 1 area indirectly (Si requirement) */
1089         for (address = IPW_HOST_FW_SHARED_AREA0;
1090              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1091                 write_nic_dword(priv->net_dev, address, 0);
1092         for (address = IPW_HOST_FW_SHARED_AREA1;
1093              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1094                 write_nic_dword(priv->net_dev, address, 0);
1095         for (address = IPW_HOST_FW_SHARED_AREA2;
1096              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1097                 write_nic_dword(priv->net_dev, address, 0);
1098         for (address = IPW_HOST_FW_SHARED_AREA3;
1099              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1100                 write_nic_dword(priv->net_dev, address, 0);
1101         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1102              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1103                 write_nic_dword(priv->net_dev, address, 0);
1104
1105         return 0;
1106
1107       fail:
1108         ipw2100_release_firmware(priv, &ipw2100_firmware);
1109         return err;
1110 }
1111
1112 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1113 {
1114         if (priv->status & STATUS_INT_ENABLED)
1115                 return;
1116         priv->status |= STATUS_INT_ENABLED;
1117         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1118 }
1119
1120 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1121 {
1122         if (!(priv->status & STATUS_INT_ENABLED))
1123                 return;
1124         priv->status &= ~STATUS_INT_ENABLED;
1125         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1126 }
1127
1128 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1129 {
1130         struct ipw2100_ordinals *ord = &priv->ordinals;
1131
1132         IPW_DEBUG_INFO("enter\n");
1133
1134         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1135                       &ord->table1_addr);
1136
1137         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1138                       &ord->table2_addr);
1139
1140         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1141         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1142
1143         ord->table2_size &= 0x0000FFFF;
1144
1145         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1146         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1147         IPW_DEBUG_INFO("exit\n");
1148 }
1149
1150 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1151 {
1152         u32 reg = 0;
1153         /*
1154          * Set GPIO 3 writable by FW; GPIO 1 writable
1155          * by driver and enable clock
1156          */
1157         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1158                IPW_BIT_GPIO_LED_OFF);
1159         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1160 }
1161
1162 static int rf_kill_active(struct ipw2100_priv *priv)
1163 {
1164 #define MAX_RF_KILL_CHECKS 5
1165 #define RF_KILL_CHECK_DELAY 40
1166
1167         unsigned short value = 0;
1168         u32 reg = 0;
1169         int i;
1170
1171         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1172                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1173                 priv->status &= ~STATUS_RF_KILL_HW;
1174                 return 0;
1175         }
1176
1177         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1178                 udelay(RF_KILL_CHECK_DELAY);
1179                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1180                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1181         }
1182
1183         if (value == 0) {
1184                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1185                 priv->status |= STATUS_RF_KILL_HW;
1186         } else {
1187                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1188                 priv->status &= ~STATUS_RF_KILL_HW;
1189         }
1190
1191         return (value == 0);
1192 }
1193
1194 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1195 {
1196         u32 addr, len;
1197         u32 val;
1198
1199         /*
1200          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1201          */
1202         len = sizeof(addr);
1203         if (ipw2100_get_ordinal
1204             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1205                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1206                                __LINE__);
1207                 return -EIO;
1208         }
1209
1210         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1211
1212         /*
1213          * EEPROM version is the byte at offset 0xfd in firmware
1214          * We read 4 bytes, then shift out the byte we actually want */
1215         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1216         priv->eeprom_version = (val >> 24) & 0xFF;
1217         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1218
1219         /*
1220          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1221          *
1222          *  notice that the EEPROM bit is reverse polarity, i.e.
1223          *     bit = 0  signifies HW RF kill switch is supported
1224          *     bit = 1  signifies HW RF kill switch is NOT supported
1225          */
1226         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1227         if (!((val >> 24) & 0x01))
1228                 priv->hw_features |= HW_FEATURE_RFKILL;
1229
1230         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1231                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1232
1233         return 0;
1234 }
1235
1236 /*
1237  * Start firmware execution after power on and intialization
1238  * The sequence is:
1239  *  1. Release ARC
1240  *  2. Wait for f/w initialization completes;
1241  */
1242 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1243 {
1244         int i;
1245         u32 inta, inta_mask, gpio;
1246
1247         IPW_DEBUG_INFO("enter\n");
1248
1249         if (priv->status & STATUS_RUNNING)
1250                 return 0;
1251
1252         /*
1253          * Initialize the hw - drive adapter to DO state by setting
1254          * init_done bit. Wait for clk_ready bit and Download
1255          * fw & dino ucode
1256          */
1257         if (ipw2100_download_firmware(priv)) {
1258                 printk(KERN_ERR DRV_NAME
1259                        ": %s: Failed to power on the adapter.\n",
1260                        priv->net_dev->name);
1261                 return -EIO;
1262         }
1263
1264         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1265          * in the firmware RBD and TBD ring queue */
1266         ipw2100_queues_initialize(priv);
1267
1268         ipw2100_hw_set_gpio(priv);
1269
1270         /* TODO -- Look at disabling interrupts here to make sure none
1271          * get fired during FW initialization */
1272
1273         /* Release ARC - clear reset bit */
1274         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1275
1276         /* wait for f/w intialization complete */
1277         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1278         i = 5000;
1279         do {
1280                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1281                 /* Todo... wait for sync command ... */
1282
1283                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1284
1285                 /* check "init done" bit */
1286                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1287                         /* reset "init done" bit */
1288                         write_register(priv->net_dev, IPW_REG_INTA,
1289                                        IPW2100_INTA_FW_INIT_DONE);
1290                         break;
1291                 }
1292
1293                 /* check error conditions : we check these after the firmware
1294                  * check so that if there is an error, the interrupt handler
1295                  * will see it and the adapter will be reset */
1296                 if (inta &
1297                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1298                         /* clear error conditions */
1299                         write_register(priv->net_dev, IPW_REG_INTA,
1300                                        IPW2100_INTA_FATAL_ERROR |
1301                                        IPW2100_INTA_PARITY_ERROR);
1302                 }
1303         } while (--i);
1304
1305         /* Clear out any pending INTAs since we aren't supposed to have
1306          * interrupts enabled at this point... */
1307         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1308         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1309         inta &= IPW_INTERRUPT_MASK;
1310         /* Clear out any pending interrupts */
1311         if (inta & inta_mask)
1312                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1313
1314         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1315                      i ? "SUCCESS" : "FAILED");
1316
1317         if (!i) {
1318                 printk(KERN_WARNING DRV_NAME
1319                        ": %s: Firmware did not initialize.\n",
1320                        priv->net_dev->name);
1321                 return -EIO;
1322         }
1323
1324         /* allow firmware to write to GPIO1 & GPIO3 */
1325         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1326
1327         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1328
1329         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1330
1331         /* Ready to receive commands */
1332         priv->status |= STATUS_RUNNING;
1333
1334         /* The adapter has been reset; we are not associated */
1335         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1336
1337         IPW_DEBUG_INFO("exit\n");
1338
1339         return 0;
1340 }
1341
1342 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1343 {
1344         if (!priv->fatal_error)
1345                 return;
1346
1347         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1348         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1349         priv->fatal_error = 0;
1350 }
1351
1352 /* NOTE: Our interrupt is disabled when this method is called */
1353 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1354 {
1355         u32 reg;
1356         int i;
1357
1358         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1359
1360         ipw2100_hw_set_gpio(priv);
1361
1362         /* Step 1. Stop Master Assert */
1363         write_register(priv->net_dev, IPW_REG_RESET_REG,
1364                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1365
1366         /* Step 2. Wait for stop Master Assert
1367          *         (not more than 50us, otherwise ret error */
1368         i = 5;
1369         do {
1370                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1371                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1372
1373                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1374                         break;
1375         } while (--i);
1376
1377         priv->status &= ~STATUS_RESET_PENDING;
1378
1379         if (!i) {
1380                 IPW_DEBUG_INFO
1381                     ("exit - waited too long for master assert stop\n");
1382                 return -EIO;
1383         }
1384
1385         write_register(priv->net_dev, IPW_REG_RESET_REG,
1386                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1387
1388         /* Reset any fatal_error conditions */
1389         ipw2100_reset_fatalerror(priv);
1390
1391         /* At this point, the adapter is now stopped and disabled */
1392         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1393                           STATUS_ASSOCIATED | STATUS_ENABLED);
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1400  *
1401  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1402  *
1403  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1404  * if STATUS_ASSN_LOST is sent.
1405  */
1406 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1407 {
1408
1409 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1410
1411         struct host_command cmd = {
1412                 .host_command = CARD_DISABLE_PHY_OFF,
1413                 .host_command_sequence = 0,
1414                 .host_command_length = 0,
1415         };
1416         int err, i;
1417         u32 val1, val2;
1418
1419         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1420
1421         /* Turn off the radio */
1422         err = ipw2100_hw_send_command(priv, &cmd);
1423         if (err)
1424                 return err;
1425
1426         for (i = 0; i < 2500; i++) {
1427                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1428                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1429
1430                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1431                     (val2 & IPW2100_COMMAND_PHY_OFF))
1432                         return 0;
1433
1434                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1435         }
1436
1437         return -EIO;
1438 }
1439
1440 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1441 {
1442         struct host_command cmd = {
1443                 .host_command = HOST_COMPLETE,
1444                 .host_command_sequence = 0,
1445                 .host_command_length = 0
1446         };
1447         int err = 0;
1448
1449         IPW_DEBUG_HC("HOST_COMPLETE\n");
1450
1451         if (priv->status & STATUS_ENABLED)
1452                 return 0;
1453
1454         mutex_lock(&priv->adapter_mutex);
1455
1456         if (rf_kill_active(priv)) {
1457                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1458                 goto fail_up;
1459         }
1460
1461         err = ipw2100_hw_send_command(priv, &cmd);
1462         if (err) {
1463                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1464                 goto fail_up;
1465         }
1466
1467         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1468         if (err) {
1469                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1470                                priv->net_dev->name);
1471                 goto fail_up;
1472         }
1473
1474         if (priv->stop_hang_check) {
1475                 priv->stop_hang_check = 0;
1476                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1477         }
1478
1479       fail_up:
1480         mutex_unlock(&priv->adapter_mutex);
1481         return err;
1482 }
1483
1484 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1485 {
1486 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1487
1488         struct host_command cmd = {
1489                 .host_command = HOST_PRE_POWER_DOWN,
1490                 .host_command_sequence = 0,
1491                 .host_command_length = 0,
1492         };
1493         int err, i;
1494         u32 reg;
1495
1496         if (!(priv->status & STATUS_RUNNING))
1497                 return 0;
1498
1499         priv->status |= STATUS_STOPPING;
1500
1501         /* We can only shut down the card if the firmware is operational.  So,
1502          * if we haven't reset since a fatal_error, then we can not send the
1503          * shutdown commands. */
1504         if (!priv->fatal_error) {
1505                 /* First, make sure the adapter is enabled so that the PHY_OFF
1506                  * command can shut it down */
1507                 ipw2100_enable_adapter(priv);
1508
1509                 err = ipw2100_hw_phy_off(priv);
1510                 if (err)
1511                         printk(KERN_WARNING DRV_NAME
1512                                ": Error disabling radio %d\n", err);
1513
1514                 /*
1515                  * If in D0-standby mode going directly to D3 may cause a
1516                  * PCI bus violation.  Therefore we must change out of the D0
1517                  * state.
1518                  *
1519                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1520                  * hardware from going into standby mode and will transition
1521                  * out of D0-standby if it is already in that state.
1522                  *
1523                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1524                  * driver upon completion.  Once received, the driver can
1525                  * proceed to the D3 state.
1526                  *
1527                  * Prepare for power down command to fw.  This command would
1528                  * take HW out of D0-standby and prepare it for D3 state.
1529                  *
1530                  * Currently FW does not support event notification for this
1531                  * event. Therefore, skip waiting for it.  Just wait a fixed
1532                  * 100ms
1533                  */
1534                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1535
1536                 err = ipw2100_hw_send_command(priv, &cmd);
1537                 if (err)
1538                         printk(KERN_WARNING DRV_NAME ": "
1539                                "%s: Power down command failed: Error %d\n",
1540                                priv->net_dev->name, err);
1541                 else
1542                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1543         }
1544
1545         priv->status &= ~STATUS_ENABLED;
1546
1547         /*
1548          * Set GPIO 3 writable by FW; GPIO 1 writable
1549          * by driver and enable clock
1550          */
1551         ipw2100_hw_set_gpio(priv);
1552
1553         /*
1554          * Power down adapter.  Sequence:
1555          * 1. Stop master assert (RESET_REG[9]=1)
1556          * 2. Wait for stop master (RESET_REG[8]==1)
1557          * 3. S/w reset assert (RESET_REG[7] = 1)
1558          */
1559
1560         /* Stop master assert */
1561         write_register(priv->net_dev, IPW_REG_RESET_REG,
1562                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1563
1564         /* wait stop master not more than 50 usec.
1565          * Otherwise return error. */
1566         for (i = 5; i > 0; i--) {
1567                 udelay(10);
1568
1569                 /* Check master stop bit */
1570                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1571
1572                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1573                         break;
1574         }
1575
1576         if (i == 0)
1577                 printk(KERN_WARNING DRV_NAME
1578                        ": %s: Could now power down adapter.\n",
1579                        priv->net_dev->name);
1580
1581         /* assert s/w reset */
1582         write_register(priv->net_dev, IPW_REG_RESET_REG,
1583                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1584
1585         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1586
1587         return 0;
1588 }
1589
1590 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1591 {
1592         struct host_command cmd = {
1593                 .host_command = CARD_DISABLE,
1594                 .host_command_sequence = 0,
1595                 .host_command_length = 0
1596         };
1597         int err = 0;
1598
1599         IPW_DEBUG_HC("CARD_DISABLE\n");
1600
1601         if (!(priv->status & STATUS_ENABLED))
1602                 return 0;
1603
1604         /* Make sure we clear the associated state */
1605         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1606
1607         if (!priv->stop_hang_check) {
1608                 priv->stop_hang_check = 1;
1609                 cancel_delayed_work(&priv->hang_check);
1610         }
1611
1612         mutex_lock(&priv->adapter_mutex);
1613
1614         err = ipw2100_hw_send_command(priv, &cmd);
1615         if (err) {
1616                 printk(KERN_WARNING DRV_NAME
1617                        ": exit - failed to send CARD_DISABLE command\n");
1618                 goto fail_up;
1619         }
1620
1621         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1622         if (err) {
1623                 printk(KERN_WARNING DRV_NAME
1624                        ": exit - card failed to change to DISABLED\n");
1625                 goto fail_up;
1626         }
1627
1628         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1629
1630       fail_up:
1631         mutex_unlock(&priv->adapter_mutex);
1632         return err;
1633 }
1634
1635 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = SET_SCAN_OPTIONS,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 8
1641         };
1642         int err;
1643
1644         IPW_DEBUG_INFO("enter\n");
1645
1646         IPW_DEBUG_SCAN("setting scan options\n");
1647
1648         cmd.host_command_parameters[0] = 0;
1649
1650         if (!(priv->config & CFG_ASSOCIATE))
1651                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1652         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1653                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1654         if (priv->config & CFG_PASSIVE_SCAN)
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1656
1657         cmd.host_command_parameters[1] = priv->channel_mask;
1658
1659         err = ipw2100_hw_send_command(priv, &cmd);
1660
1661         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1662                      cmd.host_command_parameters[0]);
1663
1664         return err;
1665 }
1666
1667 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1668 {
1669         struct host_command cmd = {
1670                 .host_command = BROADCAST_SCAN,
1671                 .host_command_sequence = 0,
1672                 .host_command_length = 4
1673         };
1674         int err;
1675
1676         IPW_DEBUG_HC("START_SCAN\n");
1677
1678         cmd.host_command_parameters[0] = 0;
1679
1680         /* No scanning if in monitor mode */
1681         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1682                 return 1;
1683
1684         if (priv->status & STATUS_SCANNING) {
1685                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1686                 return 0;
1687         }
1688
1689         IPW_DEBUG_INFO("enter\n");
1690
1691         /* Not clearing here; doing so makes iwlist always return nothing...
1692          *
1693          * We should modify the table logic to use aging tables vs. clearing
1694          * the table on each scan start.
1695          */
1696         IPW_DEBUG_SCAN("starting scan\n");
1697
1698         priv->status |= STATUS_SCANNING;
1699         err = ipw2100_hw_send_command(priv, &cmd);
1700         if (err)
1701                 priv->status &= ~STATUS_SCANNING;
1702
1703         IPW_DEBUG_INFO("exit\n");
1704
1705         return err;
1706 }
1707
1708 static const struct libipw_geo ipw_geos[] = {
1709         {                       /* Restricted */
1710          "---",
1711          .bg_channels = 14,
1712          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1713                 {2427, 4}, {2432, 5}, {2437, 6},
1714                 {2442, 7}, {2447, 8}, {2452, 9},
1715                 {2457, 10}, {2462, 11}, {2467, 12},
1716                 {2472, 13}, {2484, 14}},
1717          },
1718 };
1719
1720 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1721 {
1722         unsigned long flags;
1723         int rc = 0;
1724         u32 lock;
1725         u32 ord_len = sizeof(lock);
1726
1727         /* Age scan list entries found before suspend */
1728         if (priv->suspend_time) {
1729                 libipw_networks_age(priv->ieee, priv->suspend_time);
1730                 priv->suspend_time = 0;
1731         }
1732
1733         /* Quiet if manually disabled. */
1734         if (priv->status & STATUS_RF_KILL_SW) {
1735                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1736                                "switch\n", priv->net_dev->name);
1737                 return 0;
1738         }
1739
1740         /* the ipw2100 hardware really doesn't want power management delays
1741          * longer than 175usec
1742          */
1743         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1744
1745         /* If the interrupt is enabled, turn it off... */
1746         spin_lock_irqsave(&priv->low_lock, flags);
1747         ipw2100_disable_interrupts(priv);
1748
1749         /* Reset any fatal_error conditions */
1750         ipw2100_reset_fatalerror(priv);
1751         spin_unlock_irqrestore(&priv->low_lock, flags);
1752
1753         if (priv->status & STATUS_POWERED ||
1754             (priv->status & STATUS_RESET_PENDING)) {
1755                 /* Power cycle the card ... */
1756                 if (ipw2100_power_cycle_adapter(priv)) {
1757                         printk(KERN_WARNING DRV_NAME
1758                                ": %s: Could not cycle adapter.\n",
1759                                priv->net_dev->name);
1760                         rc = 1;
1761                         goto exit;
1762                 }
1763         } else
1764                 priv->status |= STATUS_POWERED;
1765
1766         /* Load the firmware, start the clocks, etc. */
1767         if (ipw2100_start_adapter(priv)) {
1768                 printk(KERN_ERR DRV_NAME
1769                        ": %s: Failed to start the firmware.\n",
1770                        priv->net_dev->name);
1771                 rc = 1;
1772                 goto exit;
1773         }
1774
1775         ipw2100_initialize_ordinals(priv);
1776
1777         /* Determine capabilities of this particular HW configuration */
1778         if (ipw2100_get_hw_features(priv)) {
1779                 printk(KERN_ERR DRV_NAME
1780                        ": %s: Failed to determine HW features.\n",
1781                        priv->net_dev->name);
1782                 rc = 1;
1783                 goto exit;
1784         }
1785
1786         /* Initialize the geo */
1787         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1788                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1789                 return 0;
1790         }
1791         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1792
1793         lock = LOCK_NONE;
1794         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1795                 printk(KERN_ERR DRV_NAME
1796                        ": %s: Failed to clear ordinal lock.\n",
1797                        priv->net_dev->name);
1798                 rc = 1;
1799                 goto exit;
1800         }
1801
1802         priv->status &= ~STATUS_SCANNING;
1803
1804         if (rf_kill_active(priv)) {
1805                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1806                        priv->net_dev->name);
1807
1808                 if (priv->stop_rf_kill) {
1809                         priv->stop_rf_kill = 0;
1810                         schedule_delayed_work(&priv->rf_kill,
1811                                               round_jiffies_relative(HZ));
1812                 }
1813
1814                 deferred = 1;
1815         }
1816
1817         /* Turn on the interrupt so that commands can be processed */
1818         ipw2100_enable_interrupts(priv);
1819
1820         /* Send all of the commands that must be sent prior to
1821          * HOST_COMPLETE */
1822         if (ipw2100_adapter_setup(priv)) {
1823                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1824                        priv->net_dev->name);
1825                 rc = 1;
1826                 goto exit;
1827         }
1828
1829         if (!deferred) {
1830                 /* Enable the adapter - sends HOST_COMPLETE */
1831                 if (ipw2100_enable_adapter(priv)) {
1832                         printk(KERN_ERR DRV_NAME ": "
1833                                "%s: failed in call to enable adapter.\n",
1834                                priv->net_dev->name);
1835                         ipw2100_hw_stop_adapter(priv);
1836                         rc = 1;
1837                         goto exit;
1838                 }
1839
1840                 /* Start a scan . . . */
1841                 ipw2100_set_scan_options(priv);
1842                 ipw2100_start_scan(priv);
1843         }
1844
1845       exit:
1846         return rc;
1847 }
1848
1849 static void ipw2100_down(struct ipw2100_priv *priv)
1850 {
1851         unsigned long flags;
1852         union iwreq_data wrqu = {
1853                 .ap_addr = {
1854                             .sa_family = ARPHRD_ETHER}
1855         };
1856         int associated = priv->status & STATUS_ASSOCIATED;
1857
1858         /* Kill the RF switch timer */
1859         if (!priv->stop_rf_kill) {
1860                 priv->stop_rf_kill = 1;
1861                 cancel_delayed_work(&priv->rf_kill);
1862         }
1863
1864         /* Kill the firmware hang check timer */
1865         if (!priv->stop_hang_check) {
1866                 priv->stop_hang_check = 1;
1867                 cancel_delayed_work(&priv->hang_check);
1868         }
1869
1870         /* Kill any pending resets */
1871         if (priv->status & STATUS_RESET_PENDING)
1872                 cancel_delayed_work(&priv->reset_work);
1873
1874         /* Make sure the interrupt is on so that FW commands will be
1875          * processed correctly */
1876         spin_lock_irqsave(&priv->low_lock, flags);
1877         ipw2100_enable_interrupts(priv);
1878         spin_unlock_irqrestore(&priv->low_lock, flags);
1879
1880         if (ipw2100_hw_stop_adapter(priv))
1881                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1882                        priv->net_dev->name);
1883
1884         /* Do not disable the interrupt until _after_ we disable
1885          * the adaptor.  Otherwise the CARD_DISABLE command will never
1886          * be ack'd by the firmware */
1887         spin_lock_irqsave(&priv->low_lock, flags);
1888         ipw2100_disable_interrupts(priv);
1889         spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1892
1893         /* We have to signal any supplicant if we are disassociating */
1894         if (associated)
1895                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1896
1897         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1898         netif_carrier_off(priv->net_dev);
1899         netif_stop_queue(priv->net_dev);
1900 }
1901
1902 /* Called by register_netdev() */
1903 static int ipw2100_net_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906
1907         return ipw2100_up(priv, 1);
1908 }
1909
1910 static int ipw2100_wdev_init(struct net_device *dev)
1911 {
1912         struct ipw2100_priv *priv = libipw_priv(dev);
1913         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1914         struct wireless_dev *wdev = &priv->ieee->wdev;
1915         int i;
1916
1917         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1918
1919         /* fill-out priv->ieee->bg_band */
1920         if (geo->bg_channels) {
1921                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1922
1923                 bg_band->band = IEEE80211_BAND_2GHZ;
1924                 bg_band->n_channels = geo->bg_channels;
1925                 bg_band->channels = kcalloc(geo->bg_channels,
1926                                             sizeof(struct ieee80211_channel),
1927                                             GFP_KERNEL);
1928                 if (!bg_band->channels) {
1929                         ipw2100_down(priv);
1930                         return -ENOMEM;
1931                 }
1932                 /* translate geo->bg to bg_band.channels */
1933                 for (i = 0; i < geo->bg_channels; i++) {
1934                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1935                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1936                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1937                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1938                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1939                                 bg_band->channels[i].flags |=
1940                                         IEEE80211_CHAN_PASSIVE_SCAN;
1941                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1942                                 bg_band->channels[i].flags |=
1943                                         IEEE80211_CHAN_NO_IBSS;
1944                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1945                                 bg_band->channels[i].flags |=
1946                                         IEEE80211_CHAN_RADAR;
1947                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1948                            LIBIPW_CH_UNIFORM_SPREADING, or
1949                            LIBIPW_CH_B_ONLY... */
1950                 }
1951                 /* point at bitrate info */
1952                 bg_band->bitrates = ipw2100_bg_rates;
1953                 bg_band->n_bitrates = RATE_COUNT;
1954
1955                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1956         }
1957
1958         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1959         if (wiphy_register(wdev->wiphy)) {
1960                 ipw2100_down(priv);
1961                 return -EIO;
1962         }
1963         return 0;
1964 }
1965
1966 static void ipw2100_reset_adapter(struct work_struct *work)
1967 {
1968         struct ipw2100_priv *priv =
1969                 container_of(work, struct ipw2100_priv, reset_work.work);
1970         unsigned long flags;
1971         union iwreq_data wrqu = {
1972                 .ap_addr = {
1973                             .sa_family = ARPHRD_ETHER}
1974         };
1975         int associated = priv->status & STATUS_ASSOCIATED;
1976
1977         spin_lock_irqsave(&priv->low_lock, flags);
1978         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1979         priv->resets++;
1980         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1981         priv->status |= STATUS_SECURITY_UPDATED;
1982
1983         /* Force a power cycle even if interface hasn't been opened
1984          * yet */
1985         cancel_delayed_work(&priv->reset_work);
1986         priv->status |= STATUS_RESET_PENDING;
1987         spin_unlock_irqrestore(&priv->low_lock, flags);
1988
1989         mutex_lock(&priv->action_mutex);
1990         /* stop timed checks so that they don't interfere with reset */
1991         priv->stop_hang_check = 1;
1992         cancel_delayed_work(&priv->hang_check);
1993
1994         /* We have to signal any supplicant if we are disassociating */
1995         if (associated)
1996                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1997
1998         ipw2100_up(priv, 0);
1999         mutex_unlock(&priv->action_mutex);
2000
2001 }
2002
2003 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2004 {
2005
2006 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2007         int ret;
2008         unsigned int len, essid_len;
2009         char essid[IW_ESSID_MAX_SIZE];
2010         u32 txrate;
2011         u32 chan;
2012         char *txratename;
2013         u8 bssid[ETH_ALEN];
2014         DECLARE_SSID_BUF(ssid);
2015
2016         /*
2017          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2018          *      an actual MAC of the AP. Seems like FW sets this
2019          *      address too late. Read it later and expose through
2020          *      /proc or schedule a later task to query and update
2021          */
2022
2023         essid_len = IW_ESSID_MAX_SIZE;
2024         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2025                                   essid, &essid_len);
2026         if (ret) {
2027                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2028                                __LINE__);
2029                 return;
2030         }
2031
2032         len = sizeof(u32);
2033         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2034         if (ret) {
2035                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2036                                __LINE__);
2037                 return;
2038         }
2039
2040         len = sizeof(u32);
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2042         if (ret) {
2043                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2044                                __LINE__);
2045                 return;
2046         }
2047         len = ETH_ALEN;
2048         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2049         if (ret) {
2050                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2051                                __LINE__);
2052                 return;
2053         }
2054         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2055
2056         switch (txrate) {
2057         case TX_RATE_1_MBIT:
2058                 txratename = "1Mbps";
2059                 break;
2060         case TX_RATE_2_MBIT:
2061                 txratename = "2Mbsp";
2062                 break;
2063         case TX_RATE_5_5_MBIT:
2064                 txratename = "5.5Mbps";
2065                 break;
2066         case TX_RATE_11_MBIT:
2067                 txratename = "11Mbps";
2068                 break;
2069         default:
2070                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2071                 txratename = "unknown rate";
2072                 break;
2073         }
2074
2075         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2076                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2077                        txratename, chan, bssid);
2078
2079         /* now we copy read ssid into dev */
2080         if (!(priv->config & CFG_STATIC_ESSID)) {
2081                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2082                 memcpy(priv->essid, essid, priv->essid_len);
2083         }
2084         priv->channel = chan;
2085         memcpy(priv->bssid, bssid, ETH_ALEN);
2086
2087         priv->status |= STATUS_ASSOCIATING;
2088         priv->connect_start = get_seconds();
2089
2090         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2091 }
2092
2093 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2094                              int length, int batch_mode)
2095 {
2096         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2097         struct host_command cmd = {
2098                 .host_command = SSID,
2099                 .host_command_sequence = 0,
2100                 .host_command_length = ssid_len
2101         };
2102         int err;
2103         DECLARE_SSID_BUF(ssid);
2104
2105         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2106
2107         if (ssid_len)
2108                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2109
2110         if (!batch_mode) {
2111                 err = ipw2100_disable_adapter(priv);
2112                 if (err)
2113                         return err;
2114         }
2115
2116         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2117          * disable auto association -- so we cheat by setting a bogus SSID */
2118         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2119                 int i;
2120                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2121                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2122                         bogus[i] = 0x18 + i;
2123                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2124         }
2125
2126         /* NOTE:  We always send the SSID command even if the provided ESSID is
2127          * the same as what we currently think is set. */
2128
2129         err = ipw2100_hw_send_command(priv, &cmd);
2130         if (!err) {
2131                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2132                 memcpy(priv->essid, essid, ssid_len);
2133                 priv->essid_len = ssid_len;
2134         }
2135
2136         if (!batch_mode) {
2137                 if (ipw2100_enable_adapter(priv))
2138                         err = -EIO;
2139         }
2140
2141         return err;
2142 }
2143
2144 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2145 {
2146         DECLARE_SSID_BUF(ssid);
2147
2148         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2149                   "disassociated: '%s' %pM\n",
2150                   print_ssid(ssid, priv->essid, priv->essid_len),
2151                   priv->bssid);
2152
2153         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2154
2155         if (priv->status & STATUS_STOPPING) {
2156                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2157                 return;
2158         }
2159
2160         memset(priv->bssid, 0, ETH_ALEN);
2161         memset(priv->ieee->bssid, 0, ETH_ALEN);
2162
2163         netif_carrier_off(priv->net_dev);
2164         netif_stop_queue(priv->net_dev);
2165
2166         if (!(priv->status & STATUS_RUNNING))
2167                 return;
2168
2169         if (priv->status & STATUS_SECURITY_UPDATED)
2170                 schedule_delayed_work(&priv->security_work, 0);
2171
2172         schedule_delayed_work(&priv->wx_event_work, 0);
2173 }
2174
2175 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2176 {
2177         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2178                        priv->net_dev->name);
2179
2180         /* RF_KILL is now enabled (else we wouldn't be here) */
2181         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2182         priv->status |= STATUS_RF_KILL_HW;
2183
2184         /* Make sure the RF Kill check timer is running */
2185         priv->stop_rf_kill = 0;
2186         cancel_delayed_work(&priv->rf_kill);
2187         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2188 }
2189
2190 static void send_scan_event(void *data)
2191 {
2192         struct ipw2100_priv *priv = data;
2193         union iwreq_data wrqu;
2194
2195         wrqu.data.length = 0;
2196         wrqu.data.flags = 0;
2197         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2198 }
2199
2200 static void ipw2100_scan_event_later(struct work_struct *work)
2201 {
2202         send_scan_event(container_of(work, struct ipw2100_priv,
2203                                         scan_event_later.work));
2204 }
2205
2206 static void ipw2100_scan_event_now(struct work_struct *work)
2207 {
2208         send_scan_event(container_of(work, struct ipw2100_priv,
2209                                         scan_event_now));
2210 }
2211
2212 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2213 {
2214         IPW_DEBUG_SCAN("scan complete\n");
2215         /* Age the scan results... */
2216         priv->ieee->scans++;
2217         priv->status &= ~STATUS_SCANNING;
2218
2219         /* Only userspace-requested scan completion events go out immediately */
2220         if (!priv->user_requested_scan) {
2221                 if (!delayed_work_pending(&priv->scan_event_later))
2222                         schedule_delayed_work(&priv->scan_event_later,
2223                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2224         } else {
2225                 priv->user_requested_scan = 0;
2226                 cancel_delayed_work(&priv->scan_event_later);
2227                 schedule_work(&priv->scan_event_now);
2228         }
2229 }
2230
2231 #ifdef CONFIG_IPW2100_DEBUG
2232 #define IPW2100_HANDLER(v, f) { v, f, # v }
2233 struct ipw2100_status_indicator {
2234         int status;
2235         void (*cb) (struct ipw2100_priv * priv, u32 status);
2236         char *name;
2237 };
2238 #else
2239 #define IPW2100_HANDLER(v, f) { v, f }
2240 struct ipw2100_status_indicator {
2241         int status;
2242         void (*cb) (struct ipw2100_priv * priv, u32 status);
2243 };
2244 #endif                          /* CONFIG_IPW2100_DEBUG */
2245
2246 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2247 {
2248         IPW_DEBUG_SCAN("Scanning...\n");
2249         priv->status |= STATUS_SCANNING;
2250 }
2251
2252 static const struct ipw2100_status_indicator status_handlers[] = {
2253         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2254         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2255         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2256         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2257         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2258         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2259         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2260         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2261         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2262         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2263         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2264         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2265         IPW2100_HANDLER(-1, NULL)
2266 };
2267
2268 static void isr_status_change(struct ipw2100_priv *priv, int status)
2269 {
2270         int i;
2271
2272         if (status == IPW_STATE_SCANNING &&
2273             priv->status & STATUS_ASSOCIATED &&
2274             !(priv->status & STATUS_SCANNING)) {
2275                 IPW_DEBUG_INFO("Scan detected while associated, with "
2276                                "no scan request.  Restarting firmware.\n");
2277
2278                 /* Wake up any sleeping jobs */
2279                 schedule_reset(priv);
2280         }
2281
2282         for (i = 0; status_handlers[i].status != -1; i++) {
2283                 if (status == status_handlers[i].status) {
2284                         IPW_DEBUG_NOTIF("Status change: %s\n",
2285                                         status_handlers[i].name);
2286                         if (status_handlers[i].cb)
2287                                 status_handlers[i].cb(priv, status);
2288                         priv->wstats.status = status;
2289                         return;
2290                 }
2291         }
2292
2293         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2294 }
2295
2296 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2297                                     struct ipw2100_cmd_header *cmd)
2298 {
2299 #ifdef CONFIG_IPW2100_DEBUG
2300         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2301                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2302                              command_types[cmd->host_command_reg],
2303                              cmd->host_command_reg);
2304         }
2305 #endif
2306         if (cmd->host_command_reg == HOST_COMPLETE)
2307                 priv->status |= STATUS_ENABLED;
2308
2309         if (cmd->host_command_reg == CARD_DISABLE)
2310                 priv->status &= ~STATUS_ENABLED;
2311
2312         priv->status &= ~STATUS_CMD_ACTIVE;
2313
2314         wake_up_interruptible(&priv->wait_command_queue);
2315 }
2316
2317 #ifdef CONFIG_IPW2100_DEBUG
2318 static const char *frame_types[] = {
2319         "COMMAND_STATUS_VAL",
2320         "STATUS_CHANGE_VAL",
2321         "P80211_DATA_VAL",
2322         "P8023_DATA_VAL",
2323         "HOST_NOTIFICATION_VAL"
2324 };
2325 #endif
2326
2327 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2328                                     struct ipw2100_rx_packet *packet)
2329 {
2330         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2331         if (!packet->skb)
2332                 return -ENOMEM;
2333
2334         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2335         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2336                                           sizeof(struct ipw2100_rx),
2337                                           PCI_DMA_FROMDEVICE);
2338         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2339          *       dma_addr */
2340
2341         return 0;
2342 }
2343
2344 #define SEARCH_ERROR   0xffffffff
2345 #define SEARCH_FAIL    0xfffffffe
2346 #define SEARCH_SUCCESS 0xfffffff0
2347 #define SEARCH_DISCARD 0
2348 #define SEARCH_SNAPSHOT 1
2349
2350 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2351 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2352 {
2353         int i;
2354         if (!priv->snapshot[0])
2355                 return;
2356         for (i = 0; i < 0x30; i++)
2357                 kfree(priv->snapshot[i]);
2358         priv->snapshot[0] = NULL;
2359 }
2360
2361 #ifdef IPW2100_DEBUG_C3
2362 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2363 {
2364         int i;
2365         if (priv->snapshot[0])
2366                 return 1;
2367         for (i = 0; i < 0x30; i++) {
2368                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2369                 if (!priv->snapshot[i]) {
2370                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2371                                        "buffer %d\n", priv->net_dev->name, i);
2372                         while (i > 0)
2373                                 kfree(priv->snapshot[--i]);
2374                         priv->snapshot[0] = NULL;
2375                         return 0;
2376                 }
2377         }
2378
2379         return 1;
2380 }
2381
2382 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2383                                     size_t len, int mode)
2384 {
2385         u32 i, j;
2386         u32 tmp;
2387         u8 *s, *d;
2388         u32 ret;
2389
2390         s = in_buf;
2391         if (mode == SEARCH_SNAPSHOT) {
2392                 if (!ipw2100_snapshot_alloc(priv))
2393                         mode = SEARCH_DISCARD;
2394         }
2395
2396         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2397                 read_nic_dword(priv->net_dev, i, &tmp);
2398                 if (mode == SEARCH_SNAPSHOT)
2399                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2400                 if (ret == SEARCH_FAIL) {
2401                         d = (u8 *) & tmp;
2402                         for (j = 0; j < 4; j++) {
2403                                 if (*s != *d) {
2404                                         s = in_buf;
2405                                         continue;
2406                                 }
2407
2408                                 s++;
2409                                 d++;
2410
2411                                 if ((s - in_buf) == len)
2412                                         ret = (i + j) - len + 1;
2413                         }
2414                 } else if (mode == SEARCH_DISCARD)
2415                         return ret;
2416         }
2417
2418         return ret;
2419 }
2420 #endif
2421
2422 /*
2423  *
2424  * 0) Disconnect the SKB from the firmware (just unmap)
2425  * 1) Pack the ETH header into the SKB
2426  * 2) Pass the SKB to the network stack
2427  *
2428  * When packet is provided by the firmware, it contains the following:
2429  *
2430  * .  libipw_hdr
2431  * .  libipw_snap_hdr
2432  *
2433  * The size of the constructed ethernet
2434  *
2435  */
2436 #ifdef IPW2100_RX_DEBUG
2437 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2438 #endif
2439
2440 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2441 {
2442 #ifdef IPW2100_DEBUG_C3
2443         struct ipw2100_status *status = &priv->status_queue.drv[i];
2444         u32 match, reg;
2445         int j;
2446 #endif
2447
2448         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2449                        i * sizeof(struct ipw2100_status));
2450
2451 #ifdef IPW2100_DEBUG_C3
2452         /* Halt the firmware so we can get a good image */
2453         write_register(priv->net_dev, IPW_REG_RESET_REG,
2454                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2455         j = 5;
2456         do {
2457                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2458                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2459
2460                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2461                         break;
2462         } while (j--);
2463
2464         match = ipw2100_match_buf(priv, (u8 *) status,
2465                                   sizeof(struct ipw2100_status),
2466                                   SEARCH_SNAPSHOT);
2467         if (match < SEARCH_SUCCESS)
2468                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2469                                "offset 0x%06X, length %d:\n",
2470                                priv->net_dev->name, match,
2471                                sizeof(struct ipw2100_status));
2472         else
2473                 IPW_DEBUG_INFO("%s: No DMA status match in "
2474                                "Firmware.\n", priv->net_dev->name);
2475
2476         printk_buf((u8 *) priv->status_queue.drv,
2477                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2478 #endif
2479
2480         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2481         priv->net_dev->stats.rx_errors++;
2482         schedule_reset(priv);
2483 }
2484
2485 static void isr_rx(struct ipw2100_priv *priv, int i,
2486                           struct libipw_rx_stats *stats)
2487 {
2488         struct net_device *dev = priv->net_dev;
2489         struct ipw2100_status *status = &priv->status_queue.drv[i];
2490         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2491
2492         IPW_DEBUG_RX("Handler...\n");
2493
2494         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2495                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2496                                "  Dropping.\n",
2497                                dev->name,
2498                                status->frame_size, skb_tailroom(packet->skb));
2499                 dev->stats.rx_errors++;
2500                 return;
2501         }
2502
2503         if (unlikely(!netif_running(dev))) {
2504                 dev->stats.rx_errors++;
2505                 priv->wstats.discard.misc++;
2506                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2507                 return;
2508         }
2509
2510         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2511                      !(priv->status & STATUS_ASSOCIATED))) {
2512                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2513                 priv->wstats.discard.misc++;
2514                 return;
2515         }
2516
2517         pci_unmap_single(priv->pci_dev,
2518                          packet->dma_addr,
2519                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2520
2521         skb_put(packet->skb, status->frame_size);
2522
2523 #ifdef IPW2100_RX_DEBUG
2524         /* Make a copy of the frame so we can dump it to the logs if
2525          * libipw_rx fails */
2526         skb_copy_from_linear_data(packet->skb, packet_data,
2527                                   min_t(u32, status->frame_size,
2528                                              IPW_RX_NIC_BUFFER_LENGTH));
2529 #endif
2530
2531         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2532 #ifdef IPW2100_RX_DEBUG
2533                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2534                                dev->name);
2535                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2536 #endif
2537                 dev->stats.rx_errors++;
2538
2539                 /* libipw_rx failed, so it didn't free the SKB */
2540                 dev_kfree_skb_any(packet->skb);
2541                 packet->skb = NULL;
2542         }
2543
2544         /* We need to allocate a new SKB and attach it to the RDB. */
2545         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2546                 printk(KERN_WARNING DRV_NAME ": "
2547                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2548                        "adapter.\n", dev->name);
2549                 /* TODO: schedule adapter shutdown */
2550                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2551         }
2552
2553         /* Update the RDB entry */
2554         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2555 }
2556
2557 #ifdef CONFIG_IPW2100_MONITOR
2558
2559 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2560                    struct libipw_rx_stats *stats)
2561 {
2562         struct net_device *dev = priv->net_dev;
2563         struct ipw2100_status *status = &priv->status_queue.drv[i];
2564         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2565
2566         /* Magic struct that slots into the radiotap header -- no reason
2567          * to build this manually element by element, we can write it much
2568          * more efficiently than we can parse it. ORDER MATTERS HERE */
2569         struct ipw_rt_hdr {
2570                 struct ieee80211_radiotap_header rt_hdr;
2571                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2572         } *ipw_rt;
2573
2574         IPW_DEBUG_RX("Handler...\n");
2575
2576         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2577                                 sizeof(struct ipw_rt_hdr))) {
2578                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2579                                "  Dropping.\n",
2580                                dev->name,
2581                                status->frame_size,
2582                                skb_tailroom(packet->skb));
2583                 dev->stats.rx_errors++;
2584                 return;
2585         }
2586
2587         if (unlikely(!netif_running(dev))) {
2588                 dev->stats.rx_errors++;
2589                 priv->wstats.discard.misc++;
2590                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2591                 return;
2592         }
2593
2594         if (unlikely(priv->config & CFG_CRC_CHECK &&
2595                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2596                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2597                 dev->stats.rx_errors++;
2598                 return;
2599         }
2600
2601         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2602                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2603         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2604                 packet->skb->data, status->frame_size);
2605
2606         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2607
2608         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2609         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2610         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2611
2612         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2613
2614         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2615
2616         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2617
2618         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2619                 dev->stats.rx_errors++;
2620
2621                 /* libipw_rx failed, so it didn't free the SKB */
2622                 dev_kfree_skb_any(packet->skb);
2623                 packet->skb = NULL;
2624         }
2625
2626         /* We need to allocate a new SKB and attach it to the RDB. */
2627         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2628                 IPW_DEBUG_WARNING(
2629                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2630                         "adapter.\n", dev->name);
2631                 /* TODO: schedule adapter shutdown */
2632                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2633         }
2634
2635         /* Update the RDB entry */
2636         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2637 }
2638
2639 #endif
2640
2641 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2642 {
2643         struct ipw2100_status *status = &priv->status_queue.drv[i];
2644         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2645         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2646
2647         switch (frame_type) {
2648         case COMMAND_STATUS_VAL:
2649                 return (status->frame_size != sizeof(u->rx_data.command));
2650         case STATUS_CHANGE_VAL:
2651                 return (status->frame_size != sizeof(u->rx_data.status));
2652         case HOST_NOTIFICATION_VAL:
2653                 return (status->frame_size < sizeof(u->rx_data.notification));
2654         case P80211_DATA_VAL:
2655         case P8023_DATA_VAL:
2656 #ifdef CONFIG_IPW2100_MONITOR
2657                 return 0;
2658 #else
2659                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2660                 case IEEE80211_FTYPE_MGMT:
2661                 case IEEE80211_FTYPE_CTL:
2662                         return 0;
2663                 case IEEE80211_FTYPE_DATA:
2664                         return (status->frame_size >
2665                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2666                 }
2667 #endif
2668         }
2669
2670         return 1;
2671 }
2672
2673 /*
2674  * ipw2100 interrupts are disabled at this point, and the ISR
2675  * is the only code that calls this method.  So, we do not need
2676  * to play with any locks.
2677  *
2678  * RX Queue works as follows:
2679  *
2680  * Read index - firmware places packet in entry identified by the
2681  *              Read index and advances Read index.  In this manner,
2682  *              Read index will always point to the next packet to
2683  *              be filled--but not yet valid.
2684  *
2685  * Write index - driver fills this entry with an unused RBD entry.
2686  *               This entry has not filled by the firmware yet.
2687  *
2688  * In between the W and R indexes are the RBDs that have been received
2689  * but not yet processed.
2690  *
2691  * The process of handling packets will start at WRITE + 1 and advance
2692  * until it reaches the READ index.
2693  *
2694  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2695  *
2696  */
2697 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2698 {
2699         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2700         struct ipw2100_status_queue *sq = &priv->status_queue;
2701         struct ipw2100_rx_packet *packet;
2702         u16 frame_type;
2703         u32 r, w, i, s;
2704         struct ipw2100_rx *u;
2705         struct libipw_rx_stats stats = {
2706                 .mac_time = jiffies,
2707         };
2708
2709         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2710         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2711
2712         if (r >= rxq->entries) {
2713                 IPW_DEBUG_RX("exit - bad read index\n");
2714                 return;
2715         }
2716
2717         i = (rxq->next + 1) % rxq->entries;
2718         s = i;
2719         while (i != r) {
2720                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2721                    r, rxq->next, i); */
2722
2723                 packet = &priv->rx_buffers[i];
2724
2725                 /* Sync the DMA for the RX buffer so CPU is sure to get
2726                  * the correct values */
2727                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2728                                             sizeof(struct ipw2100_rx),
2729                                             PCI_DMA_FROMDEVICE);
2730
2731                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2732                         ipw2100_corruption_detected(priv, i);
2733                         goto increment;
2734                 }
2735
2736                 u = packet->rxp;
2737                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2738                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2739                 stats.len = sq->drv[i].frame_size;
2740
2741                 stats.mask = 0;
2742                 if (stats.rssi != 0)
2743                         stats.mask |= LIBIPW_STATMASK_RSSI;
2744                 stats.freq = LIBIPW_24GHZ_BAND;
2745
2746                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2747                              priv->net_dev->name, frame_types[frame_type],
2748                              stats.len);
2749
2750                 switch (frame_type) {
2751                 case COMMAND_STATUS_VAL:
2752                         /* Reset Rx watchdog */
2753                         isr_rx_complete_command(priv, &u->rx_data.command);
2754                         break;
2755
2756                 case STATUS_CHANGE_VAL:
2757                         isr_status_change(priv, u->rx_data.status);
2758                         break;
2759
2760                 case P80211_DATA_VAL:
2761                 case P8023_DATA_VAL:
2762 #ifdef CONFIG_IPW2100_MONITOR
2763                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2764                                 isr_rx_monitor(priv, i, &stats);
2765                                 break;
2766                         }
2767 #endif
2768                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2769                                 break;
2770                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2771                         case IEEE80211_FTYPE_MGMT:
2772                                 libipw_rx_mgt(priv->ieee,
2773                                                  &u->rx_data.header, &stats);
2774                                 break;
2775
2776                         case IEEE80211_FTYPE_CTL:
2777                                 break;
2778
2779                         case IEEE80211_FTYPE_DATA:
2780                                 isr_rx(priv, i, &stats);
2781                                 break;
2782
2783                         }
2784                         break;
2785                 }
2786
2787               increment:
2788                 /* clear status field associated with this RBD */
2789                 rxq->drv[i].status.info.field = 0;
2790
2791                 i = (i + 1) % rxq->entries;
2792         }
2793
2794         if (i != s) {
2795                 /* backtrack one entry, wrapping to end if at 0 */
2796                 rxq->next = (i ? i : rxq->entries) - 1;
2797
2798                 write_register(priv->net_dev,
2799                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2800         }
2801 }
2802
2803 /*
2804  * __ipw2100_tx_process
2805  *
2806  * This routine will determine whether the next packet on
2807  * the fw_pend_list has been processed by the firmware yet.
2808  *
2809  * If not, then it does nothing and returns.
2810  *
2811  * If so, then it removes the item from the fw_pend_list, frees
2812  * any associated storage, and places the item back on the
2813  * free list of its source (either msg_free_list or tx_free_list)
2814  *
2815  * TX Queue works as follows:
2816  *
2817  * Read index - points to the next TBD that the firmware will
2818  *              process.  The firmware will read the data, and once
2819  *              done processing, it will advance the Read index.
2820  *
2821  * Write index - driver fills this entry with an constructed TBD
2822  *               entry.  The Write index is not advanced until the
2823  *               packet has been configured.
2824  *
2825  * In between the W and R indexes are the TBDs that have NOT been
2826  * processed.  Lagging behind the R index are packets that have
2827  * been processed but have not been freed by the driver.
2828  *
2829  * In order to free old storage, an internal index will be maintained
2830  * that points to the next packet to be freed.  When all used
2831  * packets have been freed, the oldest index will be the same as the
2832  * firmware's read index.
2833  *
2834  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2835  *
2836  * Because the TBD structure can not contain arbitrary data, the
2837  * driver must keep an internal queue of cached allocations such that
2838  * it can put that data back into the tx_free_list and msg_free_list
2839  * for use by future command and data packets.
2840  *
2841  */
2842 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2843 {
2844         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2845         struct ipw2100_bd *tbd;
2846         struct list_head *element;
2847         struct ipw2100_tx_packet *packet;
2848         int descriptors_used;
2849         int e, i;
2850         u32 r, w, frag_num = 0;
2851
2852         if (list_empty(&priv->fw_pend_list))
2853                 return 0;
2854
2855         element = priv->fw_pend_list.next;
2856
2857         packet = list_entry(element, struct ipw2100_tx_packet, list);
2858         tbd = &txq->drv[packet->index];
2859
2860         /* Determine how many TBD entries must be finished... */
2861         switch (packet->type) {
2862         case COMMAND:
2863                 /* COMMAND uses only one slot; don't advance */
2864                 descriptors_used = 1;
2865                 e = txq->oldest;
2866                 break;
2867
2868         case DATA:
2869                 /* DATA uses two slots; advance and loop position. */
2870                 descriptors_used = tbd->num_fragments;
2871                 frag_num = tbd->num_fragments - 1;
2872                 e = txq->oldest + frag_num;
2873                 e %= txq->entries;
2874                 break;
2875
2876         default:
2877                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2878                        priv->net_dev->name);
2879                 return 0;
2880         }
2881
2882         /* if the last TBD is not done by NIC yet, then packet is
2883          * not ready to be released.
2884          *
2885          */
2886         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2887                       &r);
2888         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2889                       &w);
2890         if (w != txq->next)
2891                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2892                        priv->net_dev->name);
2893
2894         /*
2895          * txq->next is the index of the last packet written txq->oldest is
2896          * the index of the r is the index of the next packet to be read by
2897          * firmware
2898          */
2899
2900         /*
2901          * Quick graphic to help you visualize the following
2902          * if / else statement
2903          *
2904          * ===>|                     s---->|===============
2905          *                               e>|
2906          * | a | b | c | d | e | f | g | h | i | j | k | l
2907          *       r---->|
2908          *               w
2909          *
2910          * w - updated by driver
2911          * r - updated by firmware
2912          * s - start of oldest BD entry (txq->oldest)
2913          * e - end of oldest BD entry
2914          *
2915          */
2916         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2917                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2918                 return 0;
2919         }
2920
2921         list_del(element);
2922         DEC_STAT(&priv->fw_pend_stat);
2923
2924 #ifdef CONFIG_IPW2100_DEBUG
2925         {
2926                 i = txq->oldest;
2927                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2928                              &txq->drv[i],
2929                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2930                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2931
2932                 if (packet->type == DATA) {
2933                         i = (i + 1) % txq->entries;
2934
2935                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2936                                      &txq->drv[i],
2937                                      (u32) (txq->nic + i *
2938                                             sizeof(struct ipw2100_bd)),
2939                                      (u32) txq->drv[i].host_addr,
2940                                      txq->drv[i].buf_length);
2941                 }
2942         }
2943 #endif
2944
2945         switch (packet->type) {
2946         case DATA:
2947                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2948                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2949                                "Expecting DATA TBD but pulled "
2950                                "something else: ids %d=%d.\n",
2951                                priv->net_dev->name, txq->oldest, packet->index);
2952
2953                 /* DATA packet; we have to unmap and free the SKB */
2954                 for (i = 0; i < frag_num; i++) {
2955                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2956
2957                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2958                                      (packet->index + 1 + i) % txq->entries,
2959                                      tbd->host_addr, tbd->buf_length);
2960
2961                         pci_unmap_single(priv->pci_dev,
2962                                          tbd->host_addr,
2963                                          tbd->buf_length, PCI_DMA_TODEVICE);
2964                 }
2965
2966                 libipw_txb_free(packet->info.d_struct.txb);
2967                 packet->info.d_struct.txb = NULL;
2968
2969                 list_add_tail(element, &priv->tx_free_list);
2970                 INC_STAT(&priv->tx_free_stat);
2971
2972                 /* We have a free slot in the Tx queue, so wake up the
2973                  * transmit layer if it is stopped. */
2974                 if (priv->status & STATUS_ASSOCIATED)
2975                         netif_wake_queue(priv->net_dev);
2976
2977                 /* A packet was processed by the hardware, so update the
2978                  * watchdog */
2979                 priv->net_dev->trans_start = jiffies;
2980
2981                 break;
2982
2983         case COMMAND:
2984                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2985                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2986                                "Expecting COMMAND TBD but pulled "
2987                                "something else: ids %d=%d.\n",
2988                                priv->net_dev->name, txq->oldest, packet->index);
2989
2990 #ifdef CONFIG_IPW2100_DEBUG
2991                 if (packet->info.c_struct.cmd->host_command_reg <
2992                     ARRAY_SIZE(command_types))
2993                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2994                                      command_types[packet->info.c_struct.cmd->
2995                                                    host_command_reg],
2996                                      packet->info.c_struct.cmd->
2997                                      host_command_reg,
2998                                      packet->info.c_struct.cmd->cmd_status_reg);
2999 #endif
3000
3001                 list_add_tail(element, &priv->msg_free_list);
3002                 INC_STAT(&priv->msg_free_stat);
3003                 break;
3004         }
3005
3006         /* advance oldest used TBD pointer to start of next entry */
3007         txq->oldest = (e + 1) % txq->entries;
3008         /* increase available TBDs number */
3009         txq->available += descriptors_used;
3010         SET_STAT(&priv->txq_stat, txq->available);
3011
3012         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3013                      jiffies - packet->jiffy_start);
3014
3015         return (!list_empty(&priv->fw_pend_list));
3016 }
3017
3018 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3019 {
3020         int i = 0;
3021
3022         while (__ipw2100_tx_process(priv) && i < 200)
3023                 i++;
3024
3025         if (i == 200) {
3026                 printk(KERN_WARNING DRV_NAME ": "
3027                        "%s: Driver is running slow (%d iters).\n",
3028                        priv->net_dev->name, i);
3029         }
3030 }
3031
3032 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3033 {
3034         struct list_head *element;
3035         struct ipw2100_tx_packet *packet;
3036         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3037         struct ipw2100_bd *tbd;
3038         int next = txq->next;
3039
3040         while (!list_empty(&priv->msg_pend_list)) {
3041                 /* if there isn't enough space in TBD queue, then
3042                  * don't stuff a new one in.
3043                  * NOTE: 3 are needed as a command will take one,
3044                  *       and there is a minimum of 2 that must be
3045                  *       maintained between the r and w indexes
3046                  */
3047                 if (txq->available <= 3) {
3048                         IPW_DEBUG_TX("no room in tx_queue\n");
3049                         break;
3050                 }
3051
3052                 element = priv->msg_pend_list.next;
3053                 list_del(element);
3054                 DEC_STAT(&priv->msg_pend_stat);
3055
3056                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3057
3058                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3059                              &txq->drv[txq->next],
3060                              (u32) (txq->nic + txq->next *
3061                                       sizeof(struct ipw2100_bd)));
3062
3063                 packet->index = txq->next;
3064
3065                 tbd = &txq->drv[txq->next];
3066
3067                 /* initialize TBD */
3068                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3069                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3070                 /* not marking number of fragments causes problems
3071                  * with f/w debug version */
3072                 tbd->num_fragments = 1;
3073                 tbd->status.info.field =
3074                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3075                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3076
3077                 /* update TBD queue counters */
3078                 txq->next++;
3079                 txq->next %= txq->entries;
3080                 txq->available--;
3081                 DEC_STAT(&priv->txq_stat);
3082
3083                 list_add_tail(element, &priv->fw_pend_list);
3084                 INC_STAT(&priv->fw_pend_stat);
3085         }
3086
3087         if (txq->next != next) {
3088                 /* kick off the DMA by notifying firmware the
3089                  * write index has moved; make sure TBD stores are sync'd */
3090                 wmb();
3091                 write_register(priv->net_dev,
3092                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3093                                txq->next);
3094         }
3095 }
3096
3097 /*
3098  * ipw2100_tx_send_data
3099  *
3100  */
3101 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3102 {
3103         struct list_head *element;
3104         struct ipw2100_tx_packet *packet;
3105         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3106         struct ipw2100_bd *tbd;
3107         int next = txq->next;
3108         int i = 0;
3109         struct ipw2100_data_header *ipw_hdr;
3110         struct libipw_hdr_3addr *hdr;
3111
3112         while (!list_empty(&priv->tx_pend_list)) {
3113                 /* if there isn't enough space in TBD queue, then
3114                  * don't stuff a new one in.
3115                  * NOTE: 4 are needed as a data will take two,
3116                  *       and there is a minimum of 2 that must be
3117                  *       maintained between the r and w indexes
3118                  */
3119                 element = priv->tx_pend_list.next;
3120                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3121
3122                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3123                              IPW_MAX_BDS)) {
3124                         /* TODO: Support merging buffers if more than
3125                          * IPW_MAX_BDS are used */
3126                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3127                                        "Increase fragmentation level.\n",
3128                                        priv->net_dev->name);
3129                 }
3130
3131                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3132                         IPW_DEBUG_TX("no room in tx_queue\n");
3133                         break;
3134                 }
3135
3136                 list_del(element);
3137                 DEC_STAT(&priv->tx_pend_stat);
3138
3139                 tbd = &txq->drv[txq->next];
3140
3141                 packet->index = txq->next;
3142
3143                 ipw_hdr = packet->info.d_struct.data;
3144                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3145                     fragments[0]->data;
3146
3147                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3148                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3149                            Addr3 = DA */
3150                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3151                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3152                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3153                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3154                            Addr3 = BSSID */
3155                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3157                 }
3158
3159                 ipw_hdr->host_command_reg = SEND;
3160                 ipw_hdr->host_command_reg1 = 0;
3161
3162                 /* For now we only support host based encryption */
3163                 ipw_hdr->needs_encryption = 0;
3164                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3165                 if (packet->info.d_struct.txb->nr_frags > 1)
3166                         ipw_hdr->fragment_size =
3167                             packet->info.d_struct.txb->frag_size -
3168                             LIBIPW_3ADDR_LEN;
3169                 else
3170                         ipw_hdr->fragment_size = 0;
3171
3172                 tbd->host_addr = packet->info.d_struct.data_phys;
3173                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3174                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3175                 tbd->status.info.field =
3176                     IPW_BD_STATUS_TX_FRAME_802_3 |
3177                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3178                 txq->next++;
3179                 txq->next %= txq->entries;
3180
3181                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3182                              packet->index, tbd->host_addr, tbd->buf_length);
3183 #ifdef CONFIG_IPW2100_DEBUG
3184                 if (packet->info.d_struct.txb->nr_frags > 1)
3185                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3186                                        packet->info.d_struct.txb->nr_frags);
3187 #endif
3188
3189                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3190                         tbd = &txq->drv[txq->next];
3191                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3192                                 tbd->status.info.field =
3193                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3194                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3195                         else
3196                                 tbd->status.info.field =
3197                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3198                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3199
3200                         tbd->buf_length = packet->info.d_struct.txb->
3201                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3202
3203                         tbd->host_addr = pci_map_single(priv->pci_dev,
3204                                                         packet->info.d_struct.
3205                                                         txb->fragments[i]->
3206                                                         data +
3207                                                         LIBIPW_3ADDR_LEN,
3208                                                         tbd->buf_length,
3209                                                         PCI_DMA_TODEVICE);
3210
3211                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3212                                      txq->next, tbd->host_addr,
3213                                      tbd->buf_length);
3214
3215                         pci_dma_sync_single_for_device(priv->pci_dev,
3216                                                        tbd->host_addr,
3217                                                        tbd->buf_length,
3218                                                        PCI_DMA_TODEVICE);
3219
3220                         txq->next++;
3221                         txq->next %= txq->entries;
3222                 }
3223
3224                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3225                 SET_STAT(&priv->txq_stat, txq->available);
3226
3227                 list_add_tail(element, &priv->fw_pend_list);
3228                 INC_STAT(&priv->fw_pend_stat);
3229         }
3230
3231         if (txq->next != next) {
3232                 /* kick off the DMA by notifying firmware the
3233                  * write index has moved; make sure TBD stores are sync'd */
3234                 write_register(priv->net_dev,
3235                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3236                                txq->next);
3237         }
3238 }
3239
3240 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3241 {
3242         struct net_device *dev = priv->net_dev;
3243         unsigned long flags;
3244         u32 inta, tmp;
3245
3246         spin_lock_irqsave(&priv->low_lock, flags);
3247         ipw2100_disable_interrupts(priv);
3248
3249         read_register(dev, IPW_REG_INTA, &inta);
3250
3251         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3252                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3253
3254         priv->in_isr++;
3255         priv->interrupts++;
3256
3257         /* We do not loop and keep polling for more interrupts as this
3258          * is frowned upon and doesn't play nicely with other potentially
3259          * chained IRQs */
3260         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3261                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3262
3263         if (inta & IPW2100_INTA_FATAL_ERROR) {
3264                 printk(KERN_WARNING DRV_NAME
3265                        ": Fatal interrupt. Scheduling firmware restart.\n");
3266                 priv->inta_other++;
3267                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3268
3269                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3270                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3271                                priv->net_dev->name, priv->fatal_error);
3272
3273                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3274                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3275                                priv->net_dev->name, tmp);
3276
3277                 /* Wake up any sleeping jobs */
3278                 schedule_reset(priv);
3279         }
3280
3281         if (inta & IPW2100_INTA_PARITY_ERROR) {
3282                 printk(KERN_ERR DRV_NAME
3283                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3284                 priv->inta_other++;
3285                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3286         }
3287
3288         if (inta & IPW2100_INTA_RX_TRANSFER) {
3289                 IPW_DEBUG_ISR("RX interrupt\n");
3290
3291                 priv->rx_interrupts++;
3292
3293                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3294
3295                 __ipw2100_rx_process(priv);
3296                 __ipw2100_tx_complete(priv);
3297         }
3298
3299         if (inta & IPW2100_INTA_TX_TRANSFER) {
3300                 IPW_DEBUG_ISR("TX interrupt\n");
3301
3302                 priv->tx_interrupts++;
3303
3304                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3305
3306                 __ipw2100_tx_complete(priv);
3307                 ipw2100_tx_send_commands(priv);
3308                 ipw2100_tx_send_data(priv);
3309         }
3310
3311         if (inta & IPW2100_INTA_TX_COMPLETE) {
3312                 IPW_DEBUG_ISR("TX complete\n");
3313                 priv->inta_other++;
3314                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3315
3316                 __ipw2100_tx_complete(priv);
3317         }
3318
3319         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3320                 /* ipw2100_handle_event(dev); */
3321                 priv->inta_other++;
3322                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3323         }
3324
3325         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3326                 IPW_DEBUG_ISR("FW init done interrupt\n");
3327                 priv->inta_other++;
3328
3329                 read_register(dev, IPW_REG_INTA, &tmp);
3330                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3331                            IPW2100_INTA_PARITY_ERROR)) {
3332                         write_register(dev, IPW_REG_INTA,
3333                                        IPW2100_INTA_FATAL_ERROR |
3334                                        IPW2100_INTA_PARITY_ERROR);
3335                 }
3336
3337                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3338         }
3339
3340         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3341                 IPW_DEBUG_ISR("Status change interrupt\n");
3342                 priv->inta_other++;
3343                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3344         }
3345
3346         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3347                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3348                 priv->inta_other++;
3349                 write_register(dev, IPW_REG_INTA,
3350                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3351         }
3352
3353         priv->in_isr--;
3354         ipw2100_enable_interrupts(priv);
3355
3356         spin_unlock_irqrestore(&priv->low_lock, flags);
3357
3358         IPW_DEBUG_ISR("exit\n");
3359 }
3360
3361 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3362 {
3363         struct ipw2100_priv *priv = data;
3364         u32 inta, inta_mask;
3365
3366         if (!data)
3367                 return IRQ_NONE;
3368
3369         spin_lock(&priv->low_lock);
3370
3371         /* We check to see if we should be ignoring interrupts before
3372          * we touch the hardware.  During ucode load if we try and handle
3373          * an interrupt we can cause keyboard problems as well as cause
3374          * the ucode to fail to initialize */
3375         if (!(priv->status & STATUS_INT_ENABLED)) {
3376                 /* Shared IRQ */
3377                 goto none;
3378         }
3379
3380         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3381         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3382
3383         if (inta == 0xFFFFFFFF) {
3384                 /* Hardware disappeared */
3385                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3386                 goto none;
3387         }
3388
3389         inta &= IPW_INTERRUPT_MASK;
3390
3391         if (!(inta & inta_mask)) {
3392                 /* Shared interrupt */
3393                 goto none;
3394         }
3395
3396         /* We disable the hardware interrupt here just to prevent unneeded
3397          * calls to be made.  We disable this again within the actual
3398          * work tasklet, so if another part of the code re-enables the
3399          * interrupt, that is fine */
3400         ipw2100_disable_interrupts(priv);
3401
3402         tasklet_schedule(&priv->irq_tasklet);
3403         spin_unlock(&priv->low_lock);
3404
3405         return IRQ_HANDLED;
3406       none:
3407         spin_unlock(&priv->low_lock);
3408         return IRQ_NONE;
3409 }
3410
3411 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3412                               struct net_device *dev, int pri)
3413 {
3414         struct ipw2100_priv *priv = libipw_priv(dev);
3415         struct list_head *element;
3416         struct ipw2100_tx_packet *packet;
3417         unsigned long flags;
3418
3419         spin_lock_irqsave(&priv->low_lock, flags);
3420
3421         if (!(priv->status & STATUS_ASSOCIATED)) {
3422                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3423                 priv->net_dev->stats.tx_carrier_errors++;
3424                 netif_stop_queue(dev);
3425                 goto fail_unlock;
3426         }
3427
3428         if (list_empty(&priv->tx_free_list))
3429                 goto fail_unlock;
3430
3431         element = priv->tx_free_list.next;
3432         packet = list_entry(element, struct ipw2100_tx_packet, list);
3433
3434         packet->info.d_struct.txb = txb;
3435
3436         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3437         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3438
3439         packet->jiffy_start = jiffies;
3440
3441         list_del(element);
3442         DEC_STAT(&priv->tx_free_stat);
3443
3444         list_add_tail(element, &priv->tx_pend_list);
3445         INC_STAT(&priv->tx_pend_stat);
3446
3447         ipw2100_tx_send_data(priv);
3448
3449         spin_unlock_irqrestore(&priv->low_lock, flags);
3450         return NETDEV_TX_OK;
3451
3452 fail_unlock:
3453         netif_stop_queue(dev);
3454         spin_unlock_irqrestore(&priv->low_lock, flags);
3455         return NETDEV_TX_BUSY;
3456 }
3457
3458 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3459 {
3460         int i, j, err = -EINVAL;
3461         void *v;
3462         dma_addr_t p;
3463
3464         priv->msg_buffers =
3465             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3466                     GFP_KERNEL);
3467         if (!priv->msg_buffers) {
3468                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3469                        "buffers.\n", priv->net_dev->name);
3470                 return -ENOMEM;
3471         }
3472
3473         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3474                 v = pci_alloc_consistent(priv->pci_dev,
3475                                          sizeof(struct ipw2100_cmd_header), &p);
3476                 if (!v) {
3477                         printk(KERN_ERR DRV_NAME ": "
3478                                "%s: PCI alloc failed for msg "
3479                                "buffers.\n", priv->net_dev->name);
3480                         err = -ENOMEM;
3481                         break;
3482                 }
3483
3484                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3485
3486                 priv->msg_buffers[i].type = COMMAND;
3487                 priv->msg_buffers[i].info.c_struct.cmd =
3488                     (struct ipw2100_cmd_header *)v;
3489                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3490         }
3491
3492         if (i == IPW_COMMAND_POOL_SIZE)
3493                 return 0;
3494
3495         for (j = 0; j < i; j++) {
3496                 pci_free_consistent(priv->pci_dev,
3497                                     sizeof(struct ipw2100_cmd_header),
3498                                     priv->msg_buffers[j].info.c_struct.cmd,
3499                                     priv->msg_buffers[j].info.c_struct.
3500                                     cmd_phys);
3501         }
3502
3503         kfree(priv->msg_buffers);
3504         priv->msg_buffers = NULL;
3505
3506         return err;
3507 }
3508
3509 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3510 {
3511         int i;
3512
3513         INIT_LIST_HEAD(&priv->msg_free_list);
3514         INIT_LIST_HEAD(&priv->msg_pend_list);
3515
3516         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3517                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3518         SET_STAT(&priv->msg_free_stat, i);
3519
3520         return 0;
3521 }
3522
3523 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3524 {
3525         int i;
3526
3527         if (!priv->msg_buffers)
3528                 return;
3529
3530         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3531                 pci_free_consistent(priv->pci_dev,
3532                                     sizeof(struct ipw2100_cmd_header),
3533                                     priv->msg_buffers[i].info.c_struct.cmd,
3534                                     priv->msg_buffers[i].info.c_struct.
3535                                     cmd_phys);
3536         }
3537
3538         kfree(priv->msg_buffers);
3539         priv->msg_buffers = NULL;
3540 }
3541
3542 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3543                         char *buf)
3544 {
3545         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3546         char *out = buf;
3547         int i, j;
3548         u32 val;
3549
3550         for (i = 0; i < 16; i++) {
3551                 out += sprintf(out, "[%08X] ", i * 16);
3552                 for (j = 0; j < 16; j += 4) {
3553                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3554                         out += sprintf(out, "%08X ", val);
3555                 }
3556                 out += sprintf(out, "\n");
3557         }
3558
3559         return out - buf;
3560 }
3561
3562 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3563
3564 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3565                         char *buf)
3566 {
3567         struct ipw2100_priv *p = dev_get_drvdata(d);
3568         return sprintf(buf, "0x%08x\n", (int)p->config);
3569 }
3570
3571 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3572
3573 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3574                            char *buf)
3575 {
3576         struct ipw2100_priv *p = dev_get_drvdata(d);
3577         return sprintf(buf, "0x%08x\n", (int)p->status);
3578 }
3579
3580 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3581
3582 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3583                                char *buf)
3584 {
3585         struct ipw2100_priv *p = dev_get_drvdata(d);
3586         return sprintf(buf, "0x%08x\n", (int)p->capability);
3587 }
3588
3589 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3590
3591 #define IPW2100_REG(x) { IPW_ ##x, #x }
3592 static const struct {
3593         u32 addr;
3594         const char *name;
3595 } hw_data[] = {
3596 IPW2100_REG(REG_GP_CNTRL),
3597             IPW2100_REG(REG_GPIO),
3598             IPW2100_REG(REG_INTA),
3599             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3600 #define IPW2100_NIC(x, s) { x, #x, s }
3601 static const struct {
3602         u32 addr;
3603         const char *name;
3604         size_t size;
3605 } nic_data[] = {
3606 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3607             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3608 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3609 static const struct {
3610         u8 index;
3611         const char *name;
3612         const char *desc;
3613 } ord_data[] = {
3614 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3615             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3616                                 "successful Host Tx's (MSDU)"),
3617             IPW2100_ORD(STAT_TX_DIR_DATA,
3618                                 "successful Directed Tx's (MSDU)"),
3619             IPW2100_ORD(STAT_TX_DIR_DATA1,
3620                                 "successful Directed Tx's (MSDU) @ 1MB"),
3621             IPW2100_ORD(STAT_TX_DIR_DATA2,
3622                                 "successful Directed Tx's (MSDU) @ 2MB"),
3623             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3624                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3625             IPW2100_ORD(STAT_TX_DIR_DATA11,
3626                                 "successful Directed Tx's (MSDU) @ 11MB"),
3627             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3628                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3629             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3630                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3631             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3632                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3633             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3634                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3635             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3636             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3637             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3638             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3639             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3640             IPW2100_ORD(STAT_TX_ASSN_RESP,
3641                                 "successful Association response Tx's"),
3642             IPW2100_ORD(STAT_TX_REASSN,
3643                                 "successful Reassociation Tx's"),
3644             IPW2100_ORD(STAT_TX_REASSN_RESP,
3645                                 "successful Reassociation response Tx's"),
3646             IPW2100_ORD(STAT_TX_PROBE,
3647                                 "probes successfully transmitted"),
3648             IPW2100_ORD(STAT_TX_PROBE_RESP,
3649                                 "probe responses successfully transmitted"),
3650             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3651             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3652             IPW2100_ORD(STAT_TX_DISASSN,
3653                                 "successful Disassociation TX"),
3654             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3655             IPW2100_ORD(STAT_TX_DEAUTH,
3656                                 "successful Deauthentication TX"),
3657             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3658                                 "Total successful Tx data bytes"),
3659             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3660             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3661             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3662             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3663             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3664             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3665             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3666                                 "times max tries in a hop failed"),
3667             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3668                                 "times disassociation failed"),
3669             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3670             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3671             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3672             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3673             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3674             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3675             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3676                                 "directed packets at 5.5MB"),
3677             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3678             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3679             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3680                                 "nondirected packets at 1MB"),
3681             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3682                                 "nondirected packets at 2MB"),
3683             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3684                                 "nondirected packets at 5.5MB"),
3685             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3686                                 "nondirected packets at 11MB"),
3687             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3688             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3689                                                                     "Rx CTS"),
3690             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3691             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3692             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3693             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3694             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3695             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3696             IPW2100_ORD(STAT_RX_REASSN_RESP,
3697                                 "Reassociation response Rx's"),
3698             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3699             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3700             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3701             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3702             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3703             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3704             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3705             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3706                                 "Total rx data bytes received"),
3707             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3708             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3709             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3710             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3711             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3712             IPW2100_ORD(STAT_RX_DUPLICATE1,
3713                                 "duplicate rx packets at 1MB"),
3714             IPW2100_ORD(STAT_RX_DUPLICATE2,
3715                                 "duplicate rx packets at 2MB"),
3716             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3717                                 "duplicate rx packets at 5.5MB"),
3718             IPW2100_ORD(STAT_RX_DUPLICATE11,
3719                                 "duplicate rx packets at 11MB"),
3720             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3721             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3722             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3723             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3724             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3725                                 "rx frames with invalid protocol"),
3726             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3727             IPW2100_ORD(STAT_RX_NO_BUFFER,
3728                                 "rx frames rejected due to no buffer"),
3729             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3730                                 "rx frames dropped due to missing fragment"),
3731             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3732                                 "rx frames dropped due to non-sequential fragment"),
3733             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3734                                 "rx frames dropped due to unmatched 1st frame"),
3735             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3736                                 "rx frames dropped due to uncompleted frame"),
3737             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3738                                 "ICV errors during decryption"),
3739             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3740             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3741             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3742                                 "poll response timeouts"),
3743             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3744                                 "timeouts waiting for last {broad,multi}cast pkt"),
3745             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3746             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3747             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3748             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3749             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3750                                 "current calculation of % missed beacons"),
3751             IPW2100_ORD(STAT_PERCENT_RETRIES,
3752                                 "current calculation of % missed tx retries"),
3753             IPW2100_ORD(ASSOCIATED_AP_PTR,
3754                                 "0 if not associated, else pointer to AP table entry"),
3755             IPW2100_ORD(AVAILABLE_AP_CNT,
3756                                 "AP's decsribed in the AP table"),
3757             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3758             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3759             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3760             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3761                                 "failures due to response fail"),
3762             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3763             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3764             IPW2100_ORD(STAT_ROAM_INHIBIT,
3765                                 "times roaming was inhibited due to activity"),
3766             IPW2100_ORD(RSSI_AT_ASSN,
3767                                 "RSSI of associated AP at time of association"),
3768             IPW2100_ORD(STAT_ASSN_CAUSE1,
3769                                 "reassociation: no probe response or TX on hop"),
3770             IPW2100_ORD(STAT_ASSN_CAUSE2,
3771                                 "reassociation: poor tx/rx quality"),
3772             IPW2100_ORD(STAT_ASSN_CAUSE3,
3773                                 "reassociation: tx/rx quality (excessive AP load"),
3774             IPW2100_ORD(STAT_ASSN_CAUSE4,
3775                                 "reassociation: AP RSSI level"),
3776             IPW2100_ORD(STAT_ASSN_CAUSE5,
3777                                 "reassociations due to load leveling"),
3778             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3779             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3780                                 "times authentication response failed"),
3781             IPW2100_ORD(STATION_TABLE_CNT,
3782                                 "entries in association table"),
3783             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3784             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3785             IPW2100_ORD(COUNTRY_CODE,
3786                                 "IEEE country code as recv'd from beacon"),
3787             IPW2100_ORD(COUNTRY_CHANNELS,
3788                                 "channels suported by country"),
3789             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3790             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3791             IPW2100_ORD(ANTENNA_DIVERSITY,
3792                                 "TRUE if antenna diversity is disabled"),
3793             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3794             IPW2100_ORD(OUR_FREQ,
3795                                 "current radio freq lower digits - channel ID"),
3796             IPW2100_ORD(RTC_TIME, "current RTC time"),
3797             IPW2100_ORD(PORT_TYPE, "operating mode"),
3798             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3799             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3800             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3801             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3802             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3803             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3804             IPW2100_ORD(CAPABILITIES,
3805                                 "Management frame capability field"),
3806             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3807             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3808             IPW2100_ORD(RTS_THRESHOLD,
3809                                 "Min packet length for RTS handshaking"),
3810             IPW2100_ORD(INT_MODE, "International mode"),
3811             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3812                                 "protocol frag threshold"),
3813             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3814                                 "EEPROM offset in SRAM"),
3815             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3816                                 "EEPROM size in SRAM"),
3817             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3818             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3819                                 "EEPROM IBSS 11b channel set"),
3820             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3821             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3822             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3823             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3824             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3825
3826 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3827                               char *buf)
3828 {
3829         int i;
3830         struct ipw2100_priv *priv = dev_get_drvdata(d);
3831         struct net_device *dev = priv->net_dev;
3832         char *out = buf;
3833         u32 val = 0;
3834
3835         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3836
3837         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3838                 read_register(dev, hw_data[i].addr, &val);
3839                 out += sprintf(out, "%30s [%08X] : %08X\n",
3840                                hw_data[i].name, hw_data[i].addr, val);
3841         }
3842
3843         return out - buf;
3844 }
3845
3846 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3847
3848 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3849                              char *buf)
3850 {
3851         struct ipw2100_priv *priv = dev_get_drvdata(d);
3852         struct net_device *dev = priv->net_dev;
3853         char *out = buf;
3854         int i;
3855
3856         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3857
3858         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3859                 u8 tmp8;
3860                 u16 tmp16;
3861                 u32 tmp32;
3862
3863                 switch (nic_data[i].size) {
3864                 case 1:
3865                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3866                         out += sprintf(out, "%30s [%08X] : %02X\n",
3867                                        nic_data[i].name, nic_data[i].addr,
3868                                        tmp8);
3869                         break;
3870                 case 2:
3871                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3872                         out += sprintf(out, "%30s [%08X] : %04X\n",
3873                                        nic_data[i].name, nic_data[i].addr,
3874                                        tmp16);
3875                         break;
3876                 case 4:
3877                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3878                         out += sprintf(out, "%30s [%08X] : %08X\n",
3879                                        nic_data[i].name, nic_data[i].addr,
3880                                        tmp32);
3881                         break;
3882                 }
3883         }
3884         return out - buf;
3885 }
3886
3887 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3888
3889 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3890                            char *buf)
3891 {
3892         struct ipw2100_priv *priv = dev_get_drvdata(d);
3893         struct net_device *dev = priv->net_dev;
3894         static unsigned long loop = 0;
3895         int len = 0;
3896         u32 buffer[4];
3897         int i;
3898         char line[81];
3899
3900         if (loop >= 0x30000)
3901                 loop = 0;
3902
3903         /* sysfs provides us PAGE_SIZE buffer */
3904         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3905
3906                 if (priv->snapshot[0])
3907                         for (i = 0; i < 4; i++)
3908                                 buffer[i] =
3909                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3910                 else
3911                         for (i = 0; i < 4; i++)
3912                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3913
3914                 if (priv->dump_raw)
3915                         len += sprintf(buf + len,
3916                                        "%c%c%c%c"
3917                                        "%c%c%c%c"
3918                                        "%c%c%c%c"
3919                                        "%c%c%c%c",
3920                                        ((u8 *) buffer)[0x0],
3921                                        ((u8 *) buffer)[0x1],
3922                                        ((u8 *) buffer)[0x2],
3923                                        ((u8 *) buffer)[0x3],
3924                                        ((u8 *) buffer)[0x4],
3925                                        ((u8 *) buffer)[0x5],
3926                                        ((u8 *) buffer)[0x6],
3927                                        ((u8 *) buffer)[0x7],
3928                                        ((u8 *) buffer)[0x8],
3929                                        ((u8 *) buffer)[0x9],
3930                                        ((u8 *) buffer)[0xa],
3931                                        ((u8 *) buffer)[0xb],
3932                                        ((u8 *) buffer)[0xc],
3933                                        ((u8 *) buffer)[0xd],
3934                                        ((u8 *) buffer)[0xe],
3935                                        ((u8 *) buffer)[0xf]);
3936                 else
3937                         len += sprintf(buf + len, "%s\n",
3938                                        snprint_line(line, sizeof(line),
3939                                                     (u8 *) buffer, 16, loop));
3940                 loop += 16;
3941         }
3942
3943         return len;
3944 }
3945
3946 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3947                             const char *buf, size_t count)
3948 {
3949         struct ipw2100_priv *priv = dev_get_drvdata(d);
3950         struct net_device *dev = priv->net_dev;
3951         const char *p = buf;
3952
3953         (void)dev;              /* kill unused-var warning for debug-only code */
3954
3955         if (count < 1)
3956                 return count;
3957
3958         if (p[0] == '1' ||
3959             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3960                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3961                                dev->name);
3962                 priv->dump_raw = 1;
3963
3964         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3965                                    tolower(p[1]) == 'f')) {
3966                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3967                                dev->name);
3968                 priv->dump_raw = 0;
3969
3970         } else if (tolower(p[0]) == 'r') {
3971                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3972                 ipw2100_snapshot_free(priv);
3973
3974         } else
3975                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3976                                "reset = clear memory snapshot\n", dev->name);
3977
3978         return count;
3979 }
3980
3981 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3982
3983 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3984                              char *buf)
3985 {
3986         struct ipw2100_priv *priv = dev_get_drvdata(d);
3987         u32 val = 0;
3988         int len = 0;
3989         u32 val_len;
3990         static int loop = 0;
3991
3992         if (priv->status & STATUS_RF_KILL_MASK)
3993                 return 0;
3994
3995         if (loop >= ARRAY_SIZE(ord_data))
3996                 loop = 0;
3997
3998         /* sysfs provides us PAGE_SIZE buffer */
3999         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4000                 val_len = sizeof(u32);
4001
4002                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4003                                         &val_len))
4004                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4005                                        ord_data[loop].index,
4006                                        ord_data[loop].desc);
4007                 else
4008                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4009                                        ord_data[loop].index, val,
4010                                        ord_data[loop].desc);
4011                 loop++;
4012         }
4013
4014         return len;
4015 }
4016
4017 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4018
4019 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4020                           char *buf)
4021 {
4022         struct ipw2100_priv *priv = dev_get_drvdata(d);
4023         char *out = buf;
4024
4025         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4026                        priv->interrupts, priv->tx_interrupts,
4027                        priv->rx_interrupts, priv->inta_other);
4028         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4029         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4030 #ifdef CONFIG_IPW2100_DEBUG
4031         out += sprintf(out, "packet mismatch image: %s\n",
4032                        priv->snapshot[0] ? "YES" : "NO");
4033 #endif
4034
4035         return out - buf;
4036 }
4037
4038 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4039
4040 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4041 {
4042         int err;
4043
4044         if (mode == priv->ieee->iw_mode)
4045                 return 0;
4046
4047         err = ipw2100_disable_adapter(priv);
4048         if (err) {
4049                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4050                        priv->net_dev->name, err);
4051                 return err;
4052         }
4053
4054         switch (mode) {
4055         case IW_MODE_INFRA:
4056                 priv->net_dev->type = ARPHRD_ETHER;
4057                 break;
4058         case IW_MODE_ADHOC:
4059                 priv->net_dev->type = ARPHRD_ETHER;
4060                 break;
4061 #ifdef CONFIG_IPW2100_MONITOR
4062         case IW_MODE_MONITOR:
4063                 priv->last_mode = priv->ieee->iw_mode;
4064                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4065                 break;
4066 #endif                          /* CONFIG_IPW2100_MONITOR */
4067         }
4068
4069         priv->ieee->iw_mode = mode;
4070
4071 #ifdef CONFIG_PM
4072         /* Indicate ipw2100_download_firmware download firmware
4073          * from disk instead of memory. */
4074         ipw2100_firmware.version = 0;
4075 #endif
4076
4077         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4078         priv->reset_backoff = 0;
4079         schedule_reset(priv);
4080
4081         return 0;
4082 }
4083
4084 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4085                               char *buf)
4086 {
4087         struct ipw2100_priv *priv = dev_get_drvdata(d);
4088         int len = 0;
4089
4090 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4091
4092         if (priv->status & STATUS_ASSOCIATED)
4093                 len += sprintf(buf + len, "connected: %lu\n",
4094                                get_seconds() - priv->connect_start);
4095         else
4096                 len += sprintf(buf + len, "not connected\n");
4097
4098         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4099         DUMP_VAR(status, "08lx");
4100         DUMP_VAR(config, "08lx");
4101         DUMP_VAR(capability, "08lx");
4102
4103         len +=
4104             sprintf(buf + len, "last_rtc: %lu\n",
4105                     (unsigned long)priv->last_rtc);
4106
4107         DUMP_VAR(fatal_error, "d");
4108         DUMP_VAR(stop_hang_check, "d");
4109         DUMP_VAR(stop_rf_kill, "d");
4110         DUMP_VAR(messages_sent, "d");
4111
4112         DUMP_VAR(tx_pend_stat.value, "d");
4113         DUMP_VAR(tx_pend_stat.hi, "d");
4114
4115         DUMP_VAR(tx_free_stat.value, "d");
4116         DUMP_VAR(tx_free_stat.lo, "d");
4117
4118         DUMP_VAR(msg_free_stat.value, "d");
4119         DUMP_VAR(msg_free_stat.lo, "d");
4120
4121         DUMP_VAR(msg_pend_stat.value, "d");
4122         DUMP_VAR(msg_pend_stat.hi, "d");
4123
4124         DUMP_VAR(fw_pend_stat.value, "d");
4125         DUMP_VAR(fw_pend_stat.hi, "d");
4126
4127         DUMP_VAR(txq_stat.value, "d");
4128         DUMP_VAR(txq_stat.lo, "d");
4129
4130         DUMP_VAR(ieee->scans, "d");
4131         DUMP_VAR(reset_backoff, "d");
4132
4133         return len;
4134 }
4135
4136 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4137
4138 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4139                             char *buf)
4140 {
4141         struct ipw2100_priv *priv = dev_get_drvdata(d);
4142         char essid[IW_ESSID_MAX_SIZE + 1];
4143         u8 bssid[ETH_ALEN];
4144         u32 chan = 0;
4145         char *out = buf;
4146         unsigned int length;
4147         int ret;
4148
4149         if (priv->status & STATUS_RF_KILL_MASK)
4150                 return 0;
4151
4152         memset(essid, 0, sizeof(essid));
4153         memset(bssid, 0, sizeof(bssid));
4154
4155         length = IW_ESSID_MAX_SIZE;
4156         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4157         if (ret)
4158                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4159                                __LINE__);
4160
4161         length = sizeof(bssid);
4162         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4163                                   bssid, &length);
4164         if (ret)
4165                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166                                __LINE__);
4167
4168         length = sizeof(u32);
4169         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4170         if (ret)
4171                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4172                                __LINE__);
4173
4174         out += sprintf(out, "ESSID: %s\n", essid);
4175         out += sprintf(out, "BSSID:   %pM\n", bssid);
4176         out += sprintf(out, "Channel: %d\n", chan);
4177
4178         return out - buf;
4179 }
4180
4181 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4182
4183 #ifdef CONFIG_IPW2100_DEBUG
4184 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4185 {
4186         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4187 }
4188
4189 static ssize_t store_debug_level(struct device_driver *d,
4190                                  const char *buf, size_t count)
4191 {
4192         char *p = (char *)buf;
4193         u32 val;
4194
4195         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4196                 p++;
4197                 if (p[0] == 'x' || p[0] == 'X')
4198                         p++;
4199                 val = simple_strtoul(p, &p, 16);
4200         } else
4201                 val = simple_strtoul(p, &p, 10);
4202         if (p == buf)
4203                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4204         else
4205                 ipw2100_debug_level = val;
4206
4207         return strnlen(buf, count);
4208 }
4209
4210 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4211                    store_debug_level);
4212 #endif                          /* CONFIG_IPW2100_DEBUG */
4213
4214 static ssize_t show_fatal_error(struct device *d,
4215                                 struct device_attribute *attr, char *buf)
4216 {
4217         struct ipw2100_priv *priv = dev_get_drvdata(d);
4218         char *out = buf;
4219         int i;
4220
4221         if (priv->fatal_error)
4222                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4223         else
4224                 out += sprintf(out, "0\n");
4225
4226         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4227                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4228                                         IPW2100_ERROR_QUEUE])
4229                         continue;
4230
4231                 out += sprintf(out, "%d. 0x%08X\n", i,
4232                                priv->fatal_errors[(priv->fatal_index - i) %
4233                                                   IPW2100_ERROR_QUEUE]);
4234         }
4235
4236         return out - buf;
4237 }
4238
4239 static ssize_t store_fatal_error(struct device *d,
4240                                  struct device_attribute *attr, const char *buf,
4241                                  size_t count)
4242 {
4243         struct ipw2100_priv *priv = dev_get_drvdata(d);
4244         schedule_reset(priv);
4245         return count;
4246 }
4247
4248 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4249                    store_fatal_error);
4250
4251 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4252                              char *buf)
4253 {
4254         struct ipw2100_priv *priv = dev_get_drvdata(d);
4255         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4256 }
4257
4258 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4259                               const char *buf, size_t count)
4260 {
4261         struct ipw2100_priv *priv = dev_get_drvdata(d);
4262         struct net_device *dev = priv->net_dev;
4263         char buffer[] = "00000000";
4264         unsigned long len =
4265             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4266         unsigned long val;
4267         char *p = buffer;
4268
4269         (void)dev;              /* kill unused-var warning for debug-only code */
4270
4271         IPW_DEBUG_INFO("enter\n");
4272
4273         strncpy(buffer, buf, len);
4274         buffer[len] = 0;
4275
4276         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4277                 p++;
4278                 if (p[0] == 'x' || p[0] == 'X')
4279                         p++;
4280                 val = simple_strtoul(p, &p, 16);
4281         } else
4282                 val = simple_strtoul(p, &p, 10);
4283         if (p == buffer) {
4284                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4285         } else {
4286                 priv->ieee->scan_age = val;
4287                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4288         }
4289
4290         IPW_DEBUG_INFO("exit\n");
4291         return len;
4292 }
4293
4294 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4295
4296 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4297                             char *buf)
4298 {
4299         /* 0 - RF kill not enabled
4300            1 - SW based RF kill active (sysfs)
4301            2 - HW based RF kill active
4302            3 - Both HW and SW baed RF kill active */
4303         struct ipw2100_priv *priv = dev_get_drvdata(d);
4304         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4305             (rf_kill_active(priv) ? 0x2 : 0x0);
4306         return sprintf(buf, "%i\n", val);
4307 }
4308
4309 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4310 {
4311         if ((disable_radio ? 1 : 0) ==
4312             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4313                 return 0;
4314
4315         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4316                           disable_radio ? "OFF" : "ON");
4317
4318         mutex_lock(&priv->action_mutex);
4319
4320         if (disable_radio) {
4321                 priv->status |= STATUS_RF_KILL_SW;
4322                 ipw2100_down(priv);
4323         } else {
4324                 priv->status &= ~STATUS_RF_KILL_SW;
4325                 if (rf_kill_active(priv)) {
4326                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4327                                           "disabled by HW switch\n");
4328                         /* Make sure the RF_KILL check timer is running */
4329                         priv->stop_rf_kill = 0;
4330                         cancel_delayed_work(&priv->rf_kill);
4331                         schedule_delayed_work(&priv->rf_kill,
4332                                               round_jiffies_relative(HZ));
4333                 } else
4334                         schedule_reset(priv);
4335         }
4336
4337         mutex_unlock(&priv->action_mutex);
4338         return 1;
4339 }
4340
4341 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4342                              const char *buf, size_t count)
4343 {
4344         struct ipw2100_priv *priv = dev_get_drvdata(d);
4345         ipw_radio_kill_sw(priv, buf[0] == '1');
4346         return count;
4347 }
4348
4349 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4350
4351 static struct attribute *ipw2100_sysfs_entries[] = {
4352         &dev_attr_hardware.attr,
4353         &dev_attr_registers.attr,
4354         &dev_attr_ordinals.attr,
4355         &dev_attr_pci.attr,
4356         &dev_attr_stats.attr,
4357         &dev_attr_internals.attr,
4358         &dev_attr_bssinfo.attr,
4359         &dev_attr_memory.attr,
4360         &dev_attr_scan_age.attr,
4361         &dev_attr_fatal_error.attr,
4362         &dev_attr_rf_kill.attr,
4363         &dev_attr_cfg.attr,
4364         &dev_attr_status.attr,
4365         &dev_attr_capability.attr,
4366         NULL,
4367 };
4368
4369 static struct attribute_group ipw2100_attribute_group = {
4370         .attrs = ipw2100_sysfs_entries,
4371 };
4372
4373 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4374 {
4375         struct ipw2100_status_queue *q = &priv->status_queue;
4376
4377         IPW_DEBUG_INFO("enter\n");
4378
4379         q->size = entries * sizeof(struct ipw2100_status);
4380         q->drv =
4381             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4382                                                           q->size, &q->nic);
4383         if (!q->drv) {
4384                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4385                 return -ENOMEM;
4386         }
4387
4388         memset(q->drv, 0, q->size);
4389
4390         IPW_DEBUG_INFO("exit\n");
4391
4392         return 0;
4393 }
4394
4395 static void status_queue_free(struct ipw2100_priv *priv)
4396 {
4397         IPW_DEBUG_INFO("enter\n");
4398
4399         if (priv->status_queue.drv) {
4400                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4401                                     priv->status_queue.drv,
4402                                     priv->status_queue.nic);
4403                 priv->status_queue.drv = NULL;
4404         }
4405
4406         IPW_DEBUG_INFO("exit\n");
4407 }
4408
4409 static int bd_queue_allocate(struct ipw2100_priv *priv,
4410                              struct ipw2100_bd_queue *q, int entries)
4411 {
4412         IPW_DEBUG_INFO("enter\n");
4413
4414         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4415
4416         q->entries = entries;
4417         q->size = entries * sizeof(struct ipw2100_bd);
4418         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4419         if (!q->drv) {
4420                 IPW_DEBUG_INFO
4421                     ("can't allocate shared memory for buffer descriptors\n");
4422                 return -ENOMEM;
4423         }
4424         memset(q->drv, 0, q->size);
4425
4426         IPW_DEBUG_INFO("exit\n");
4427
4428         return 0;
4429 }
4430
4431 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4432 {
4433         IPW_DEBUG_INFO("enter\n");
4434
4435         if (!q)
4436                 return;
4437
4438         if (q->drv) {
4439                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4440                 q->drv = NULL;
4441         }
4442
4443         IPW_DEBUG_INFO("exit\n");
4444 }
4445
4446 static void bd_queue_initialize(struct ipw2100_priv *priv,
4447                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4448                                 u32 r, u32 w)
4449 {
4450         IPW_DEBUG_INFO("enter\n");
4451
4452         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4453                        (u32) q->nic);
4454
4455         write_register(priv->net_dev, base, q->nic);
4456         write_register(priv->net_dev, size, q->entries);
4457         write_register(priv->net_dev, r, q->oldest);
4458         write_register(priv->net_dev, w, q->next);
4459
4460         IPW_DEBUG_INFO("exit\n");
4461 }
4462
4463 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4464 {
4465         priv->stop_rf_kill = 1;
4466         priv->stop_hang_check = 1;
4467         cancel_delayed_work_sync(&priv->reset_work);
4468         cancel_delayed_work_sync(&priv->security_work);
4469         cancel_delayed_work_sync(&priv->wx_event_work);
4470         cancel_delayed_work_sync(&priv->hang_check);
4471         cancel_delayed_work_sync(&priv->rf_kill);
4472         cancel_work_sync(&priv->scan_event_now);
4473         cancel_delayed_work_sync(&priv->scan_event_later);
4474 }
4475
4476 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4477 {
4478         int i, j, err = -EINVAL;
4479         void *v;
4480         dma_addr_t p;
4481
4482         IPW_DEBUG_INFO("enter\n");
4483
4484         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4485         if (err) {
4486                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4487                                 priv->net_dev->name);
4488                 return err;
4489         }
4490
4491         priv->tx_buffers =
4492             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4493                     GFP_ATOMIC);
4494         if (!priv->tx_buffers) {
4495                 printk(KERN_ERR DRV_NAME
4496                        ": %s: alloc failed form tx buffers.\n",
4497                        priv->net_dev->name);
4498                 bd_queue_free(priv, &priv->tx_queue);
4499                 return -ENOMEM;
4500         }
4501
4502         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503                 v = pci_alloc_consistent(priv->pci_dev,
4504                                          sizeof(struct ipw2100_data_header),
4505                                          &p);
4506                 if (!v) {
4507                         printk(KERN_ERR DRV_NAME
4508                                ": %s: PCI alloc failed for tx " "buffers.\n",
4509                                priv->net_dev->name);
4510                         err = -ENOMEM;
4511                         break;
4512                 }
4513
4514                 priv->tx_buffers[i].type = DATA;
4515                 priv->tx_buffers[i].info.d_struct.data =
4516                     (struct ipw2100_data_header *)v;
4517                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4518                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4519         }
4520
4521         if (i == TX_PENDED_QUEUE_LENGTH)
4522                 return 0;
4523
4524         for (j = 0; j < i; j++) {
4525                 pci_free_consistent(priv->pci_dev,
4526                                     sizeof(struct ipw2100_data_header),
4527                                     priv->tx_buffers[j].info.d_struct.data,
4528                                     priv->tx_buffers[j].info.d_struct.
4529                                     data_phys);
4530         }
4531
4532         kfree(priv->tx_buffers);
4533         priv->tx_buffers = NULL;
4534
4535         return err;
4536 }
4537
4538 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4539 {
4540         int i;
4541
4542         IPW_DEBUG_INFO("enter\n");
4543
4544         /*
4545          * reinitialize packet info lists
4546          */
4547         INIT_LIST_HEAD(&priv->fw_pend_list);
4548         INIT_STAT(&priv->fw_pend_stat);
4549
4550         /*
4551          * reinitialize lists
4552          */
4553         INIT_LIST_HEAD(&priv->tx_pend_list);
4554         INIT_LIST_HEAD(&priv->tx_free_list);
4555         INIT_STAT(&priv->tx_pend_stat);
4556         INIT_STAT(&priv->tx_free_stat);
4557
4558         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4559                 /* We simply drop any SKBs that have been queued for
4560                  * transmit */
4561                 if (priv->tx_buffers[i].info.d_struct.txb) {
4562                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4563                                            txb);
4564                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4565                 }
4566
4567                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4568         }
4569
4570         SET_STAT(&priv->tx_free_stat, i);
4571
4572         priv->tx_queue.oldest = 0;
4573         priv->tx_queue.available = priv->tx_queue.entries;
4574         priv->tx_queue.next = 0;
4575         INIT_STAT(&priv->txq_stat);
4576         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4577
4578         bd_queue_initialize(priv, &priv->tx_queue,
4579                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4580                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4581                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4582                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4583
4584         IPW_DEBUG_INFO("exit\n");
4585
4586 }
4587
4588 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4589 {
4590         int i;
4591
4592         IPW_DEBUG_INFO("enter\n");
4593
4594         bd_queue_free(priv, &priv->tx_queue);
4595
4596         if (!priv->tx_buffers)
4597                 return;
4598
4599         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4600                 if (priv->tx_buffers[i].info.d_struct.txb) {
4601                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4602                                            txb);
4603                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4604                 }
4605                 if (priv->tx_buffers[i].info.d_struct.data)
4606                         pci_free_consistent(priv->pci_dev,
4607                                             sizeof(struct ipw2100_data_header),
4608                                             priv->tx_buffers[i].info.d_struct.
4609                                             data,
4610                                             priv->tx_buffers[i].info.d_struct.
4611                                             data_phys);
4612         }
4613
4614         kfree(priv->tx_buffers);
4615         priv->tx_buffers = NULL;
4616
4617         IPW_DEBUG_INFO("exit\n");
4618 }
4619
4620 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4621 {
4622         int i, j, err = -EINVAL;
4623
4624         IPW_DEBUG_INFO("enter\n");
4625
4626         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4627         if (err) {
4628                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4629                 return err;
4630         }
4631
4632         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4633         if (err) {
4634                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4635                 bd_queue_free(priv, &priv->rx_queue);
4636                 return err;
4637         }
4638
4639         /*
4640          * allocate packets
4641          */
4642         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4643                                    sizeof(struct ipw2100_rx_packet),
4644                                    GFP_KERNEL);
4645         if (!priv->rx_buffers) {
4646                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4647
4648                 bd_queue_free(priv, &priv->rx_queue);
4649
4650                 status_queue_free(priv);
4651
4652                 return -ENOMEM;
4653         }
4654
4655         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4656                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4657
4658                 err = ipw2100_alloc_skb(priv, packet);
4659                 if (unlikely(err)) {
4660                         err = -ENOMEM;
4661                         break;
4662                 }
4663
4664                 /* The BD holds the cache aligned address */
4665                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4666                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4667                 priv->status_queue.drv[i].status_fields = 0;
4668         }
4669
4670         if (i == RX_QUEUE_LENGTH)
4671                 return 0;
4672
4673         for (j = 0; j < i; j++) {
4674                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4675                                  sizeof(struct ipw2100_rx_packet),
4676                                  PCI_DMA_FROMDEVICE);
4677                 dev_kfree_skb(priv->rx_buffers[j].skb);
4678         }
4679
4680         kfree(priv->rx_buffers);
4681         priv->rx_buffers = NULL;
4682
4683         bd_queue_free(priv, &priv->rx_queue);
4684
4685         status_queue_free(priv);
4686
4687         return err;
4688 }
4689
4690 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4691 {
4692         IPW_DEBUG_INFO("enter\n");
4693
4694         priv->rx_queue.oldest = 0;
4695         priv->rx_queue.available = priv->rx_queue.entries - 1;
4696         priv->rx_queue.next = priv->rx_queue.entries - 1;
4697
4698         INIT_STAT(&priv->rxq_stat);
4699         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4700
4701         bd_queue_initialize(priv, &priv->rx_queue,
4702                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4703                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4704                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4705                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4706
4707         /* set up the status queue */
4708         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4709                        priv->status_queue.nic);
4710
4711         IPW_DEBUG_INFO("exit\n");
4712 }
4713
4714 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4715 {
4716         int i;
4717
4718         IPW_DEBUG_INFO("enter\n");
4719
4720         bd_queue_free(priv, &priv->rx_queue);
4721         status_queue_free(priv);
4722
4723         if (!priv->rx_buffers)
4724                 return;
4725
4726         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4727                 if (priv->rx_buffers[i].rxp) {
4728                         pci_unmap_single(priv->pci_dev,
4729                                          priv->rx_buffers[i].dma_addr,
4730                                          sizeof(struct ipw2100_rx),
4731                                          PCI_DMA_FROMDEVICE);
4732                         dev_kfree_skb(priv->rx_buffers[i].skb);
4733                 }
4734         }
4735
4736         kfree(priv->rx_buffers);
4737         priv->rx_buffers = NULL;
4738
4739         IPW_DEBUG_INFO("exit\n");
4740 }
4741
4742 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4743 {
4744         u32 length = ETH_ALEN;
4745         u8 addr[ETH_ALEN];
4746
4747         int err;
4748
4749         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4750         if (err) {
4751                 IPW_DEBUG_INFO("MAC address read failed\n");
4752                 return -EIO;
4753         }
4754
4755         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4756         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4757
4758         return 0;
4759 }
4760
4761 /********************************************************************
4762  *
4763  * Firmware Commands
4764  *
4765  ********************************************************************/
4766
4767 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4768 {
4769         struct host_command cmd = {
4770                 .host_command = ADAPTER_ADDRESS,
4771                 .host_command_sequence = 0,
4772                 .host_command_length = ETH_ALEN
4773         };
4774         int err;
4775
4776         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4777
4778         IPW_DEBUG_INFO("enter\n");
4779
4780         if (priv->config & CFG_CUSTOM_MAC) {
4781                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4782                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4783         } else
4784                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4785                        ETH_ALEN);
4786
4787         err = ipw2100_hw_send_command(priv, &cmd);
4788
4789         IPW_DEBUG_INFO("exit\n");
4790         return err;
4791 }
4792
4793 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4794                                  int batch_mode)
4795 {
4796         struct host_command cmd = {
4797                 .host_command = PORT_TYPE,
4798                 .host_command_sequence = 0,
4799                 .host_command_length = sizeof(u32)
4800         };
4801         int err;
4802
4803         switch (port_type) {
4804         case IW_MODE_INFRA:
4805                 cmd.host_command_parameters[0] = IPW_BSS;
4806                 break;
4807         case IW_MODE_ADHOC:
4808                 cmd.host_command_parameters[0] = IPW_IBSS;
4809                 break;
4810         }
4811
4812         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4813                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4814
4815         if (!batch_mode) {
4816                 err = ipw2100_disable_adapter(priv);
4817                 if (err) {
4818                         printk(KERN_ERR DRV_NAME
4819                                ": %s: Could not disable adapter %d\n",
4820                                priv->net_dev->name, err);
4821                         return err;
4822                 }
4823         }
4824
4825         /* send cmd to firmware */
4826         err = ipw2100_hw_send_command(priv, &cmd);
4827
4828         if (!batch_mode)
4829                 ipw2100_enable_adapter(priv);
4830
4831         return err;
4832 }
4833
4834 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4835                                int batch_mode)
4836 {
4837         struct host_command cmd = {
4838                 .host_command = CHANNEL,
4839                 .host_command_sequence = 0,
4840                 .host_command_length = sizeof(u32)
4841         };
4842         int err;
4843
4844         cmd.host_command_parameters[0] = channel;
4845
4846         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4847
4848         /* If BSS then we don't support channel selection */
4849         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4850                 return 0;
4851
4852         if ((channel != 0) &&
4853             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4854                 return -EINVAL;
4855
4856         if (!batch_mode) {
4857                 err = ipw2100_disable_adapter(priv);
4858                 if (err)
4859                         return err;
4860         }
4861
4862         err = ipw2100_hw_send_command(priv, &cmd);
4863         if (err) {
4864                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4865                 return err;
4866         }
4867
4868         if (channel)
4869                 priv->config |= CFG_STATIC_CHANNEL;
4870         else
4871                 priv->config &= ~CFG_STATIC_CHANNEL;
4872
4873         priv->channel = channel;
4874
4875         if (!batch_mode) {
4876                 err = ipw2100_enable_adapter(priv);
4877                 if (err)
4878                         return err;
4879         }
4880
4881         return 0;
4882 }
4883
4884 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4885 {
4886         struct host_command cmd = {
4887                 .host_command = SYSTEM_CONFIG,
4888                 .host_command_sequence = 0,
4889                 .host_command_length = 12,
4890         };
4891         u32 ibss_mask, len = sizeof(u32);
4892         int err;
4893
4894         /* Set system configuration */
4895
4896         if (!batch_mode) {
4897                 err = ipw2100_disable_adapter(priv);
4898                 if (err)
4899                         return err;
4900         }
4901
4902         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4903                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4904
4905         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4906             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4907
4908         if (!(priv->config & CFG_LONG_PREAMBLE))
4909                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4910
4911         err = ipw2100_get_ordinal(priv,
4912                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4913                                   &ibss_mask, &len);
4914         if (err)
4915                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4916
4917         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4918         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4919
4920         /* 11b only */
4921         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4922
4923         err = ipw2100_hw_send_command(priv, &cmd);
4924         if (err)
4925                 return err;
4926
4927 /* If IPv6 is configured in the kernel then we don't want to filter out all
4928  * of the multicast packets as IPv6 needs some. */
4929 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4930         cmd.host_command = ADD_MULTICAST;
4931         cmd.host_command_sequence = 0;
4932         cmd.host_command_length = 0;
4933
4934         ipw2100_hw_send_command(priv, &cmd);
4935 #endif
4936         if (!batch_mode) {
4937                 err = ipw2100_enable_adapter(priv);
4938                 if (err)
4939                         return err;
4940         }
4941
4942         return 0;
4943 }
4944
4945 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4946                                 int batch_mode)
4947 {
4948         struct host_command cmd = {
4949                 .host_command = BASIC_TX_RATES,
4950                 .host_command_sequence = 0,
4951                 .host_command_length = 4
4952         };
4953         int err;
4954
4955         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4956
4957         if (!batch_mode) {
4958                 err = ipw2100_disable_adapter(priv);
4959                 if (err)
4960                         return err;
4961         }
4962
4963         /* Set BASIC TX Rate first */
4964         ipw2100_hw_send_command(priv, &cmd);
4965
4966         /* Set TX Rate */
4967         cmd.host_command = TX_RATES;
4968         ipw2100_hw_send_command(priv, &cmd);
4969
4970         /* Set MSDU TX Rate */
4971         cmd.host_command = MSDU_TX_RATES;
4972         ipw2100_hw_send_command(priv, &cmd);
4973
4974         if (!batch_mode) {
4975                 err = ipw2100_enable_adapter(priv);
4976                 if (err)
4977                         return err;
4978         }
4979
4980         priv->tx_rates = rate;
4981
4982         return 0;
4983 }
4984
4985 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4986 {
4987         struct host_command cmd = {
4988                 .host_command = POWER_MODE,
4989                 .host_command_sequence = 0,
4990                 .host_command_length = 4
4991         };
4992         int err;
4993
4994         cmd.host_command_parameters[0] = power_level;
4995
4996         err = ipw2100_hw_send_command(priv, &cmd);
4997         if (err)
4998                 return err;
4999
5000         if (power_level == IPW_POWER_MODE_CAM)
5001                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5002         else
5003                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5004
5005 #ifdef IPW2100_TX_POWER
5006         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5007                 /* Set beacon interval */
5008                 cmd.host_command = TX_POWER_INDEX;
5009                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5010
5011                 err = ipw2100_hw_send_command(priv, &cmd);
5012                 if (err)
5013                         return err;
5014         }
5015 #endif
5016
5017         return 0;
5018 }
5019
5020 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5021 {
5022         struct host_command cmd = {
5023                 .host_command = RTS_THRESHOLD,
5024                 .host_command_sequence = 0,
5025                 .host_command_length = 4
5026         };
5027         int err;
5028
5029         if (threshold & RTS_DISABLED)
5030                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5031         else
5032                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5033
5034         err = ipw2100_hw_send_command(priv, &cmd);
5035         if (err)
5036                 return err;
5037
5038         priv->rts_threshold = threshold;
5039
5040         return 0;
5041 }
5042
5043 #if 0
5044 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5045                                         u32 threshold, int batch_mode)
5046 {
5047         struct host_command cmd = {
5048                 .host_command = FRAG_THRESHOLD,
5049                 .host_command_sequence = 0,
5050                 .host_command_length = 4,
5051                 .host_command_parameters[0] = 0,
5052         };
5053         int err;
5054
5055         if (!batch_mode) {
5056                 err = ipw2100_disable_adapter(priv);
5057                 if (err)
5058                         return err;
5059         }
5060
5061         if (threshold == 0)
5062                 threshold = DEFAULT_FRAG_THRESHOLD;
5063         else {
5064                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5065                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5066         }
5067
5068         cmd.host_command_parameters[0] = threshold;
5069
5070         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5071
5072         err = ipw2100_hw_send_command(priv, &cmd);
5073
5074         if (!batch_mode)
5075                 ipw2100_enable_adapter(priv);
5076
5077         if (!err)
5078                 priv->frag_threshold = threshold;
5079
5080         return err;
5081 }
5082 #endif
5083
5084 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5085 {
5086         struct host_command cmd = {
5087                 .host_command = SHORT_RETRY_LIMIT,
5088                 .host_command_sequence = 0,
5089                 .host_command_length = 4
5090         };
5091         int err;
5092
5093         cmd.host_command_parameters[0] = retry;
5094
5095         err = ipw2100_hw_send_command(priv, &cmd);
5096         if (err)
5097                 return err;
5098
5099         priv->short_retry_limit = retry;
5100
5101         return 0;
5102 }
5103
5104 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5105 {
5106         struct host_command cmd = {
5107                 .host_command = LONG_RETRY_LIMIT,
5108                 .host_command_sequence = 0,
5109                 .host_command_length = 4
5110         };
5111         int err;
5112
5113         cmd.host_command_parameters[0] = retry;
5114
5115         err = ipw2100_hw_send_command(priv, &cmd);
5116         if (err)
5117                 return err;
5118
5119         priv->long_retry_limit = retry;
5120
5121         return 0;
5122 }
5123
5124 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5125                                        int batch_mode)
5126 {
5127         struct host_command cmd = {
5128                 .host_command = MANDATORY_BSSID,
5129                 .host_command_sequence = 0,
5130                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5131         };
5132         int err;
5133
5134 #ifdef CONFIG_IPW2100_DEBUG
5135         if (bssid != NULL)
5136                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5137         else
5138                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5139 #endif
5140         /* if BSSID is empty then we disable mandatory bssid mode */
5141         if (bssid != NULL)
5142                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5143
5144         if (!batch_mode) {
5145                 err = ipw2100_disable_adapter(priv);
5146                 if (err)
5147                         return err;
5148         }
5149
5150         err = ipw2100_hw_send_command(priv, &cmd);
5151
5152         if (!batch_mode)
5153                 ipw2100_enable_adapter(priv);
5154
5155         return err;
5156 }
5157
5158 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5159 {
5160         struct host_command cmd = {
5161                 .host_command = DISASSOCIATION_BSSID,
5162                 .host_command_sequence = 0,
5163                 .host_command_length = ETH_ALEN
5164         };
5165         int err;
5166         int len;
5167
5168         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5169
5170         len = ETH_ALEN;
5171         /* The Firmware currently ignores the BSSID and just disassociates from
5172          * the currently associated AP -- but in the off chance that a future
5173          * firmware does use the BSSID provided here, we go ahead and try and
5174          * set it to the currently associated AP's BSSID */
5175         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5176
5177         err = ipw2100_hw_send_command(priv, &cmd);
5178
5179         return err;
5180 }
5181
5182 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5183                               struct ipw2100_wpa_assoc_frame *, int)
5184     __attribute__ ((unused));
5185
5186 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5187                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5188                               int batch_mode)
5189 {
5190         struct host_command cmd = {
5191                 .host_command = SET_WPA_IE,
5192                 .host_command_sequence = 0,
5193                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5194         };
5195         int err;
5196
5197         IPW_DEBUG_HC("SET_WPA_IE\n");
5198
5199         if (!batch_mode) {
5200                 err = ipw2100_disable_adapter(priv);
5201                 if (err)
5202                         return err;
5203         }
5204
5205         memcpy(cmd.host_command_parameters, wpa_frame,
5206                sizeof(struct ipw2100_wpa_assoc_frame));
5207
5208         err = ipw2100_hw_send_command(priv, &cmd);
5209
5210         if (!batch_mode) {
5211                 if (ipw2100_enable_adapter(priv))
5212                         err = -EIO;
5213         }
5214
5215         return err;
5216 }
5217
5218 struct security_info_params {
5219         u32 allowed_ciphers;
5220         u16 version;
5221         u8 auth_mode;
5222         u8 replay_counters_number;
5223         u8 unicast_using_group;
5224 } __packed;
5225
5226 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5227                                             int auth_mode,
5228                                             int security_level,
5229                                             int unicast_using_group,
5230                                             int batch_mode)
5231 {
5232         struct host_command cmd = {
5233                 .host_command = SET_SECURITY_INFORMATION,
5234                 .host_command_sequence = 0,
5235                 .host_command_length = sizeof(struct security_info_params)
5236         };
5237         struct security_info_params *security =
5238             (struct security_info_params *)&cmd.host_command_parameters;
5239         int err;
5240         memset(security, 0, sizeof(*security));
5241
5242         /* If shared key AP authentication is turned on, then we need to
5243          * configure the firmware to try and use it.
5244          *
5245          * Actual data encryption/decryption is handled by the host. */
5246         security->auth_mode = auth_mode;
5247         security->unicast_using_group = unicast_using_group;
5248
5249         switch (security_level) {
5250         default:
5251         case SEC_LEVEL_0:
5252                 security->allowed_ciphers = IPW_NONE_CIPHER;
5253                 break;
5254         case SEC_LEVEL_1:
5255                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5256                     IPW_WEP104_CIPHER;
5257                 break;
5258         case SEC_LEVEL_2:
5259                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5260                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5261                 break;
5262         case SEC_LEVEL_2_CKIP:
5263                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5265                 break;
5266         case SEC_LEVEL_3:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5269                 break;
5270         }
5271
5272         IPW_DEBUG_HC
5273             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5274              security->auth_mode, security->allowed_ciphers, security_level);
5275
5276         security->replay_counters_number = 0;
5277
5278         if (!batch_mode) {
5279                 err = ipw2100_disable_adapter(priv);
5280                 if (err)
5281                         return err;
5282         }
5283
5284         err = ipw2100_hw_send_command(priv, &cmd);
5285
5286         if (!batch_mode)
5287                 ipw2100_enable_adapter(priv);
5288
5289         return err;
5290 }
5291
5292 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5293 {
5294         struct host_command cmd = {
5295                 .host_command = TX_POWER_INDEX,
5296                 .host_command_sequence = 0,
5297                 .host_command_length = 4
5298         };
5299         int err = 0;
5300         u32 tmp = tx_power;
5301
5302         if (tx_power != IPW_TX_POWER_DEFAULT)
5303                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5304                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5305
5306         cmd.host_command_parameters[0] = tmp;
5307
5308         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5309                 err = ipw2100_hw_send_command(priv, &cmd);
5310         if (!err)
5311                 priv->tx_power = tx_power;
5312
5313         return 0;
5314 }
5315
5316 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5317                                             u32 interval, int batch_mode)
5318 {
5319         struct host_command cmd = {
5320                 .host_command = BEACON_INTERVAL,
5321                 .host_command_sequence = 0,
5322                 .host_command_length = 4
5323         };
5324         int err;
5325
5326         cmd.host_command_parameters[0] = interval;
5327
5328         IPW_DEBUG_INFO("enter\n");
5329
5330         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5331                 if (!batch_mode) {
5332                         err = ipw2100_disable_adapter(priv);
5333                         if (err)
5334                                 return err;
5335                 }
5336
5337                 ipw2100_hw_send_command(priv, &cmd);
5338
5339                 if (!batch_mode) {
5340                         err = ipw2100_enable_adapter(priv);
5341                         if (err)
5342                                 return err;
5343                 }
5344         }
5345
5346         IPW_DEBUG_INFO("exit\n");
5347
5348         return 0;
5349 }
5350
5351 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5352 {
5353         ipw2100_tx_initialize(priv);
5354         ipw2100_rx_initialize(priv);
5355         ipw2100_msg_initialize(priv);
5356 }
5357
5358 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5359 {
5360         ipw2100_tx_free(priv);
5361         ipw2100_rx_free(priv);
5362         ipw2100_msg_free(priv);
5363 }
5364
5365 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5366 {
5367         if (ipw2100_tx_allocate(priv) ||
5368             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5369                 goto fail;
5370
5371         return 0;
5372
5373       fail:
5374         ipw2100_tx_free(priv);
5375         ipw2100_rx_free(priv);
5376         ipw2100_msg_free(priv);
5377         return -ENOMEM;
5378 }
5379
5380 #define IPW_PRIVACY_CAPABLE 0x0008
5381
5382 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5383                                  int batch_mode)
5384 {
5385         struct host_command cmd = {
5386                 .host_command = WEP_FLAGS,
5387                 .host_command_sequence = 0,
5388                 .host_command_length = 4
5389         };
5390         int err;
5391
5392         cmd.host_command_parameters[0] = flags;
5393
5394         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5395
5396         if (!batch_mode) {
5397                 err = ipw2100_disable_adapter(priv);
5398                 if (err) {
5399                         printk(KERN_ERR DRV_NAME
5400                                ": %s: Could not disable adapter %d\n",
5401                                priv->net_dev->name, err);
5402                         return err;
5403                 }
5404         }
5405
5406         /* send cmd to firmware */
5407         err = ipw2100_hw_send_command(priv, &cmd);
5408
5409         if (!batch_mode)
5410                 ipw2100_enable_adapter(priv);
5411
5412         return err;
5413 }
5414
5415 struct ipw2100_wep_key {
5416         u8 idx;
5417         u8 len;
5418         u8 key[13];
5419 };
5420
5421 /* Macros to ease up priting WEP keys */
5422 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5423 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5424 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5425 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5426
5427 /**
5428  * Set a the wep key
5429  *
5430  * @priv: struct to work on
5431  * @idx: index of the key we want to set
5432  * @key: ptr to the key data to set
5433  * @len: length of the buffer at @key
5434  * @batch_mode: FIXME perform the operation in batch mode, not
5435  *              disabling the device.
5436  *
5437  * @returns 0 if OK, < 0 errno code on error.
5438  *
5439  * Fill out a command structure with the new wep key, length an
5440  * index and send it down the wire.
5441  */
5442 static int ipw2100_set_key(struct ipw2100_priv *priv,
5443                            int idx, char *key, int len, int batch_mode)
5444 {
5445         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5446         struct host_command cmd = {
5447                 .host_command = WEP_KEY_INFO,
5448                 .host_command_sequence = 0,
5449                 .host_command_length = sizeof(struct ipw2100_wep_key),
5450         };
5451         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5452         int err;
5453
5454         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5455                      idx, keylen, len);
5456
5457         /* NOTE: We don't check cached values in case the firmware was reset
5458          * or some other problem is occurring.  If the user is setting the key,
5459          * then we push the change */
5460
5461         wep_key->idx = idx;
5462         wep_key->len = keylen;
5463
5464         if (keylen) {
5465                 memcpy(wep_key->key, key, len);
5466                 memset(wep_key->key + len, 0, keylen - len);
5467         }
5468
5469         /* Will be optimized out on debug not being configured in */
5470         if (keylen == 0)
5471                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5472                               priv->net_dev->name, wep_key->idx);
5473         else if (keylen == 5)
5474                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5475                               priv->net_dev->name, wep_key->idx, wep_key->len,
5476                               WEP_STR_64(wep_key->key));
5477         else
5478                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5479                               "\n",
5480                               priv->net_dev->name, wep_key->idx, wep_key->len,
5481                               WEP_STR_128(wep_key->key));
5482
5483         if (!batch_mode) {
5484                 err = ipw2100_disable_adapter(priv);
5485                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5486                 if (err) {
5487                         printk(KERN_ERR DRV_NAME
5488                                ": %s: Could not disable adapter %d\n",
5489                                priv->net_dev->name, err);
5490                         return err;
5491                 }
5492         }
5493
5494         /* send cmd to firmware */
5495         err = ipw2100_hw_send_command(priv, &cmd);
5496
5497         if (!batch_mode) {
5498                 int err2 = ipw2100_enable_adapter(priv);
5499                 if (err == 0)
5500                         err = err2;
5501         }
5502         return err;
5503 }
5504
5505 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5506                                  int idx, int batch_mode)
5507 {
5508         struct host_command cmd = {
5509                 .host_command = WEP_KEY_INDEX,
5510                 .host_command_sequence = 0,
5511                 .host_command_length = 4,
5512                 .host_command_parameters = {idx},
5513         };
5514         int err;
5515
5516         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5517
5518         if (idx < 0 || idx > 3)
5519                 return -EINVAL;
5520
5521         if (!batch_mode) {
5522                 err = ipw2100_disable_adapter(priv);
5523                 if (err) {
5524                         printk(KERN_ERR DRV_NAME
5525                                ": %s: Could not disable adapter %d\n",
5526                                priv->net_dev->name, err);
5527                         return err;
5528                 }
5529         }
5530
5531         /* send cmd to firmware */
5532         err = ipw2100_hw_send_command(priv, &cmd);
5533
5534         if (!batch_mode)
5535                 ipw2100_enable_adapter(priv);
5536
5537         return err;
5538 }
5539
5540 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5541 {
5542         int i, err, auth_mode, sec_level, use_group;
5543
5544         if (!(priv->status & STATUS_RUNNING))
5545                 return 0;
5546
5547         if (!batch_mode) {
5548                 err = ipw2100_disable_adapter(priv);
5549                 if (err)
5550                         return err;
5551         }
5552
5553         if (!priv->ieee->sec.enabled) {
5554                 err =
5555                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5556                                                      SEC_LEVEL_0, 0, 1);
5557         } else {
5558                 auth_mode = IPW_AUTH_OPEN;
5559                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5560                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5561                                 auth_mode = IPW_AUTH_SHARED;
5562                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5563                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5564                 }
5565
5566                 sec_level = SEC_LEVEL_0;
5567                 if (priv->ieee->sec.flags & SEC_LEVEL)
5568                         sec_level = priv->ieee->sec.level;
5569
5570                 use_group = 0;
5571                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5572                         use_group = priv->ieee->sec.unicast_uses_group;
5573
5574                 err =
5575                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5576                                                      use_group, 1);
5577         }
5578
5579         if (err)
5580                 goto exit;
5581
5582         if (priv->ieee->sec.enabled) {
5583                 for (i = 0; i < 4; i++) {
5584                         if (!(priv->ieee->sec.flags & (1 << i))) {
5585                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5586                                 priv->ieee->sec.key_sizes[i] = 0;
5587                         } else {
5588                                 err = ipw2100_set_key(priv, i,
5589                                                       priv->ieee->sec.keys[i],
5590                                                       priv->ieee->sec.
5591                                                       key_sizes[i], 1);
5592                                 if (err)
5593                                         goto exit;
5594                         }
5595                 }
5596
5597                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5598         }
5599
5600         /* Always enable privacy so the Host can filter WEP packets if
5601          * encrypted data is sent up */
5602         err =
5603             ipw2100_set_wep_flags(priv,
5604                                   priv->ieee->sec.
5605                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5606         if (err)
5607                 goto exit;
5608
5609         priv->status &= ~STATUS_SECURITY_UPDATED;
5610
5611       exit:
5612         if (!batch_mode)
5613                 ipw2100_enable_adapter(priv);
5614
5615         return err;
5616 }
5617
5618 static void ipw2100_security_work(struct work_struct *work)
5619 {
5620         struct ipw2100_priv *priv =
5621                 container_of(work, struct ipw2100_priv, security_work.work);
5622
5623         /* If we happen to have reconnected before we get a chance to
5624          * process this, then update the security settings--which causes
5625          * a disassociation to occur */
5626         if (!(priv->status & STATUS_ASSOCIATED) &&
5627             priv->status & STATUS_SECURITY_UPDATED)
5628                 ipw2100_configure_security(priv, 0);
5629 }
5630
5631 static void shim__set_security(struct net_device *dev,
5632                                struct libipw_security *sec)
5633 {
5634         struct ipw2100_priv *priv = libipw_priv(dev);
5635         int i, force_update = 0;
5636
5637         mutex_lock(&priv->action_mutex);
5638         if (!(priv->status & STATUS_INITIALIZED))
5639                 goto done;
5640
5641         for (i = 0; i < 4; i++) {
5642                 if (sec->flags & (1 << i)) {
5643                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5644                         if (sec->key_sizes[i] == 0)
5645                                 priv->ieee->sec.flags &= ~(1 << i);
5646                         else
5647                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5648                                        sec->key_sizes[i]);
5649                         if (sec->level == SEC_LEVEL_1) {
5650                                 priv->ieee->sec.flags |= (1 << i);
5651                                 priv->status |= STATUS_SECURITY_UPDATED;
5652                         } else
5653                                 priv->ieee->sec.flags &= ~(1 << i);
5654                 }
5655         }
5656
5657         if ((sec->flags & SEC_ACTIVE_KEY) &&
5658             priv->ieee->sec.active_key != sec->active_key) {
5659                 if (sec->active_key <= 3) {
5660                         priv->ieee->sec.active_key = sec->active_key;
5661                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5662                 } else
5663                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5664
5665                 priv->status |= STATUS_SECURITY_UPDATED;
5666         }
5667
5668         if ((sec->flags & SEC_AUTH_MODE) &&
5669             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5670                 priv->ieee->sec.auth_mode = sec->auth_mode;
5671                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5672                 priv->status |= STATUS_SECURITY_UPDATED;
5673         }
5674
5675         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5676                 priv->ieee->sec.flags |= SEC_ENABLED;
5677                 priv->ieee->sec.enabled = sec->enabled;
5678                 priv->status |= STATUS_SECURITY_UPDATED;
5679                 force_update = 1;
5680         }
5681
5682         if (sec->flags & SEC_ENCRYPT)
5683                 priv->ieee->sec.encrypt = sec->encrypt;
5684
5685         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5686                 priv->ieee->sec.level = sec->level;
5687                 priv->ieee->sec.flags |= SEC_LEVEL;
5688                 priv->status |= STATUS_SECURITY_UPDATED;
5689         }
5690
5691         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5692                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5694                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5695                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5696                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5697                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5698                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5699                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5700                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5701
5702 /* As a temporary work around to enable WPA until we figure out why
5703  * wpa_supplicant toggles the security capability of the driver, which
5704  * forces a disassocation with force_update...
5705  *
5706  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5707         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5708                 ipw2100_configure_security(priv, 0);
5709       done:
5710         mutex_unlock(&priv->action_mutex);
5711 }
5712
5713 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5714 {
5715         int err;
5716         int batch_mode = 1;
5717         u8 *bssid;
5718
5719         IPW_DEBUG_INFO("enter\n");
5720
5721         err = ipw2100_disable_adapter(priv);
5722         if (err)
5723                 return err;
5724 #ifdef CONFIG_IPW2100_MONITOR
5725         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5726                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5727                 if (err)
5728                         return err;
5729
5730                 IPW_DEBUG_INFO("exit\n");
5731
5732                 return 0;
5733         }
5734 #endif                          /* CONFIG_IPW2100_MONITOR */
5735
5736         err = ipw2100_read_mac_address(priv);
5737         if (err)
5738                 return -EIO;
5739
5740         err = ipw2100_set_mac_address(priv, batch_mode);
5741         if (err)
5742                 return err;
5743
5744         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5745         if (err)
5746                 return err;
5747
5748         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5749                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5750                 if (err)
5751                         return err;
5752         }
5753
5754         err = ipw2100_system_config(priv, batch_mode);
5755         if (err)
5756                 return err;
5757
5758         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5759         if (err)
5760                 return err;
5761
5762         /* Default to power mode OFF */
5763         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5764         if (err)
5765                 return err;
5766
5767         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5768         if (err)
5769                 return err;
5770
5771         if (priv->config & CFG_STATIC_BSSID)
5772                 bssid = priv->bssid;
5773         else
5774                 bssid = NULL;
5775         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5776         if (err)
5777                 return err;
5778
5779         if (priv->config & CFG_STATIC_ESSID)
5780                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5781                                         batch_mode);
5782         else
5783                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5784         if (err)
5785                 return err;
5786
5787         err = ipw2100_configure_security(priv, batch_mode);
5788         if (err)
5789                 return err;
5790
5791         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5792                 err =
5793                     ipw2100_set_ibss_beacon_interval(priv,
5794                                                      priv->beacon_interval,
5795                                                      batch_mode);
5796                 if (err)
5797                         return err;
5798
5799                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5800                 if (err)
5801                         return err;
5802         }
5803
5804         /*
5805            err = ipw2100_set_fragmentation_threshold(
5806            priv, priv->frag_threshold, batch_mode);
5807            if (err)
5808            return err;
5809          */
5810
5811         IPW_DEBUG_INFO("exit\n");
5812
5813         return 0;
5814 }
5815
5816 /*************************************************************************
5817  *
5818  * EXTERNALLY CALLED METHODS
5819  *
5820  *************************************************************************/
5821
5822 /* This method is called by the network layer -- not to be confused with
5823  * ipw2100_set_mac_address() declared above called by this driver (and this
5824  * method as well) to talk to the firmware */
5825 static int ipw2100_set_address(struct net_device *dev, void *p)
5826 {
5827         struct ipw2100_priv *priv = libipw_priv(dev);
5828         struct sockaddr *addr = p;
5829         int err = 0;
5830
5831         if (!is_valid_ether_addr(addr->sa_data))
5832                 return -EADDRNOTAVAIL;
5833
5834         mutex_lock(&priv->action_mutex);
5835
5836         priv->config |= CFG_CUSTOM_MAC;
5837         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5838
5839         err = ipw2100_set_mac_address(priv, 0);
5840         if (err)
5841                 goto done;
5842
5843         priv->reset_backoff = 0;
5844         mutex_unlock(&priv->action_mutex);
5845         ipw2100_reset_adapter(&priv->reset_work.work);
5846         return 0;
5847
5848       done:
5849         mutex_unlock(&priv->action_mutex);
5850         return err;
5851 }
5852
5853 static int ipw2100_open(struct net_device *dev)
5854 {
5855         struct ipw2100_priv *priv = libipw_priv(dev);
5856         unsigned long flags;
5857         IPW_DEBUG_INFO("dev->open\n");
5858
5859         spin_lock_irqsave(&priv->low_lock, flags);
5860         if (priv->status & STATUS_ASSOCIATED) {
5861                 netif_carrier_on(dev);
5862                 netif_start_queue(dev);
5863         }
5864         spin_unlock_irqrestore(&priv->low_lock, flags);
5865
5866         return 0;
5867 }
5868
5869 static int ipw2100_close(struct net_device *dev)
5870 {
5871         struct ipw2100_priv *priv = libipw_priv(dev);
5872         unsigned long flags;
5873         struct list_head *element;
5874         struct ipw2100_tx_packet *packet;
5875
5876         IPW_DEBUG_INFO("enter\n");
5877
5878         spin_lock_irqsave(&priv->low_lock, flags);
5879
5880         if (priv->status & STATUS_ASSOCIATED)
5881                 netif_carrier_off(dev);
5882         netif_stop_queue(dev);
5883
5884         /* Flush the TX queue ... */
5885         while (!list_empty(&priv->tx_pend_list)) {
5886                 element = priv->tx_pend_list.next;
5887                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5888
5889                 list_del(element);
5890                 DEC_STAT(&priv->tx_pend_stat);
5891
5892                 libipw_txb_free(packet->info.d_struct.txb);
5893                 packet->info.d_struct.txb = NULL;
5894
5895                 list_add_tail(element, &priv->tx_free_list);
5896                 INC_STAT(&priv->tx_free_stat);
5897         }
5898         spin_unlock_irqrestore(&priv->low_lock, flags);
5899
5900         IPW_DEBUG_INFO("exit\n");
5901
5902         return 0;
5903 }
5904
5905 /*
5906  * TODO:  Fix this function... its just wrong
5907  */
5908 static void ipw2100_tx_timeout(struct net_device *dev)
5909 {
5910         struct ipw2100_priv *priv = libipw_priv(dev);
5911
5912         dev->stats.tx_errors++;
5913
5914 #ifdef CONFIG_IPW2100_MONITOR
5915         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5916                 return;
5917 #endif
5918
5919         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5920                        dev->name);
5921         schedule_reset(priv);
5922 }
5923
5924 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5925 {
5926         /* This is called when wpa_supplicant loads and closes the driver
5927          * interface. */
5928         priv->ieee->wpa_enabled = value;
5929         return 0;
5930 }
5931
5932 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5933 {
5934
5935         struct libipw_device *ieee = priv->ieee;
5936         struct libipw_security sec = {
5937                 .flags = SEC_AUTH_MODE,
5938         };
5939         int ret = 0;
5940
5941         if (value & IW_AUTH_ALG_SHARED_KEY) {
5942                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5943                 ieee->open_wep = 0;
5944         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5945                 sec.auth_mode = WLAN_AUTH_OPEN;
5946                 ieee->open_wep = 1;
5947         } else if (value & IW_AUTH_ALG_LEAP) {
5948                 sec.auth_mode = WLAN_AUTH_LEAP;
5949                 ieee->open_wep = 1;
5950         } else
5951                 return -EINVAL;
5952
5953         if (ieee->set_security)
5954                 ieee->set_security(ieee->dev, &sec);
5955         else
5956                 ret = -EOPNOTSUPP;
5957
5958         return ret;
5959 }
5960
5961 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5962                                     char *wpa_ie, int wpa_ie_len)
5963 {
5964
5965         struct ipw2100_wpa_assoc_frame frame;
5966
5967         frame.fixed_ie_mask = 0;
5968
5969         /* copy WPA IE */
5970         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5971         frame.var_ie_len = wpa_ie_len;
5972
5973         /* make sure WPA is enabled */
5974         ipw2100_wpa_enable(priv, 1);
5975         ipw2100_set_wpa_ie(priv, &frame, 0);
5976 }
5977
5978 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5979                                     struct ethtool_drvinfo *info)
5980 {
5981         struct ipw2100_priv *priv = libipw_priv(dev);
5982         char fw_ver[64], ucode_ver[64];
5983
5984         strcpy(info->driver, DRV_NAME);
5985         strcpy(info->version, DRV_VERSION);
5986
5987         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5988         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5989
5990         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5991                  fw_ver, priv->eeprom_version, ucode_ver);
5992
5993         strcpy(info->bus_info, pci_name(priv->pci_dev));
5994 }
5995
5996 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5997 {
5998         struct ipw2100_priv *priv = libipw_priv(dev);
5999         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6000 }
6001
6002 static const struct ethtool_ops ipw2100_ethtool_ops = {
6003         .get_link = ipw2100_ethtool_get_link,
6004         .get_drvinfo = ipw_ethtool_get_drvinfo,
6005 };
6006
6007 static void ipw2100_hang_check(struct work_struct *work)
6008 {
6009         struct ipw2100_priv *priv =
6010                 container_of(work, struct ipw2100_priv, hang_check.work);
6011         unsigned long flags;
6012         u32 rtc = 0xa5a5a5a5;
6013         u32 len = sizeof(rtc);
6014         int restart = 0;
6015
6016         spin_lock_irqsave(&priv->low_lock, flags);
6017
6018         if (priv->fatal_error != 0) {
6019                 /* If fatal_error is set then we need to restart */
6020                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6021                                priv->net_dev->name);
6022
6023                 restart = 1;
6024         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6025                    (rtc == priv->last_rtc)) {
6026                 /* Check if firmware is hung */
6027                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6028                                priv->net_dev->name);
6029
6030                 restart = 1;
6031         }
6032
6033         if (restart) {
6034                 /* Kill timer */
6035                 priv->stop_hang_check = 1;
6036                 priv->hangs++;
6037
6038                 /* Restart the NIC */
6039                 schedule_reset(priv);
6040         }
6041
6042         priv->last_rtc = rtc;
6043
6044         if (!priv->stop_hang_check)
6045                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6046
6047         spin_unlock_irqrestore(&priv->low_lock, flags);
6048 }
6049
6050 static void ipw2100_rf_kill(struct work_struct *work)
6051 {
6052         struct ipw2100_priv *priv =
6053                 container_of(work, struct ipw2100_priv, rf_kill.work);
6054         unsigned long flags;
6055
6056         spin_lock_irqsave(&priv->low_lock, flags);
6057
6058         if (rf_kill_active(priv)) {
6059                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6060                 if (!priv->stop_rf_kill)
6061                         schedule_delayed_work(&priv->rf_kill,
6062                                               round_jiffies_relative(HZ));
6063                 goto exit_unlock;
6064         }
6065
6066         /* RF Kill is now disabled, so bring the device back up */
6067
6068         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6069                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6070                                   "device\n");
6071                 schedule_reset(priv);
6072         } else
6073                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6074                                   "enabled\n");
6075
6076       exit_unlock:
6077         spin_unlock_irqrestore(&priv->low_lock, flags);
6078 }
6079
6080 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6081
6082 static const struct net_device_ops ipw2100_netdev_ops = {
6083         .ndo_open               = ipw2100_open,
6084         .ndo_stop               = ipw2100_close,
6085         .ndo_start_xmit         = libipw_xmit,
6086         .ndo_change_mtu         = libipw_change_mtu,
6087         .ndo_init               = ipw2100_net_init,
6088         .ndo_tx_timeout         = ipw2100_tx_timeout,
6089         .ndo_set_mac_address    = ipw2100_set_address,
6090         .ndo_validate_addr      = eth_validate_addr,
6091 };
6092
6093 /* Look into using netdev destructor to shutdown libipw? */
6094
6095 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6096                                                void __iomem * base_addr,
6097                                                unsigned long mem_start,
6098                                                unsigned long mem_len)
6099 {
6100         struct ipw2100_priv *priv;
6101         struct net_device *dev;
6102
6103         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6104         if (!dev)
6105                 return NULL;
6106         priv = libipw_priv(dev);
6107         priv->ieee = netdev_priv(dev);
6108         priv->pci_dev = pci_dev;
6109         priv->net_dev = dev;
6110
6111         priv->ieee->hard_start_xmit = ipw2100_tx;
6112         priv->ieee->set_security = shim__set_security;
6113
6114         priv->ieee->perfect_rssi = -20;
6115         priv->ieee->worst_rssi = -85;
6116
6117         dev->netdev_ops = &ipw2100_netdev_ops;
6118         dev->ethtool_ops = &ipw2100_ethtool_ops;
6119         dev->wireless_handlers = &ipw2100_wx_handler_def;
6120         priv->wireless_data.libipw = priv->ieee;
6121         dev->wireless_data = &priv->wireless_data;
6122         dev->watchdog_timeo = 3 * HZ;
6123         dev->irq = 0;
6124
6125         dev->base_addr = (unsigned long)base_addr;
6126         dev->mem_start = mem_start;
6127         dev->mem_end = dev->mem_start + mem_len - 1;
6128
6129         /* NOTE: We don't use the wireless_handlers hook
6130          * in dev as the system will start throwing WX requests
6131          * to us before we're actually initialized and it just
6132          * ends up causing problems.  So, we just handle
6133          * the WX extensions through the ipw2100_ioctl interface */
6134
6135         /* memset() puts everything to 0, so we only have explicitly set
6136          * those values that need to be something else */
6137
6138         /* If power management is turned on, default to AUTO mode */
6139         priv->power_mode = IPW_POWER_AUTO;
6140
6141 #ifdef CONFIG_IPW2100_MONITOR
6142         priv->config |= CFG_CRC_CHECK;
6143 #endif
6144         priv->ieee->wpa_enabled = 0;
6145         priv->ieee->drop_unencrypted = 0;
6146         priv->ieee->privacy_invoked = 0;
6147         priv->ieee->ieee802_1x = 1;
6148
6149         /* Set module parameters */
6150         switch (network_mode) {
6151         case 1:
6152                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6153                 break;
6154 #ifdef CONFIG_IPW2100_MONITOR
6155         case 2:
6156                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6157                 break;
6158 #endif
6159         default:
6160         case 0:
6161                 priv->ieee->iw_mode = IW_MODE_INFRA;
6162                 break;
6163         }
6164
6165         if (disable == 1)
6166                 priv->status |= STATUS_RF_KILL_SW;
6167
6168         if (channel != 0 &&
6169             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6170                 priv->config |= CFG_STATIC_CHANNEL;
6171                 priv->channel = channel;
6172         }
6173
6174         if (associate)
6175                 priv->config |= CFG_ASSOCIATE;
6176
6177         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6178         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6179         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6180         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6181         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6182         priv->tx_power = IPW_TX_POWER_DEFAULT;
6183         priv->tx_rates = DEFAULT_TX_RATES;
6184
6185         strcpy(priv->nick, "ipw2100");
6186
6187         spin_lock_init(&priv->low_lock);
6188         mutex_init(&priv->action_mutex);
6189         mutex_init(&priv->adapter_mutex);
6190
6191         init_waitqueue_head(&priv->wait_command_queue);
6192
6193         netif_carrier_off(dev);
6194
6195         INIT_LIST_HEAD(&priv->msg_free_list);
6196         INIT_LIST_HEAD(&priv->msg_pend_list);
6197         INIT_STAT(&priv->msg_free_stat);
6198         INIT_STAT(&priv->msg_pend_stat);
6199
6200         INIT_LIST_HEAD(&priv->tx_free_list);
6201         INIT_LIST_HEAD(&priv->tx_pend_list);
6202         INIT_STAT(&priv->tx_free_stat);
6203         INIT_STAT(&priv->tx_pend_stat);
6204
6205         INIT_LIST_HEAD(&priv->fw_pend_list);
6206         INIT_STAT(&priv->fw_pend_stat);
6207
6208         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6209         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6210         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6211         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6212         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6213         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6214         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6215
6216         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6217                      ipw2100_irq_tasklet, (unsigned long)priv);
6218
6219         /* NOTE:  We do not start the deferred work for status checks yet */
6220         priv->stop_rf_kill = 1;
6221         priv->stop_hang_check = 1;
6222
6223         return dev;
6224 }
6225
6226 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6227                                 const struct pci_device_id *ent)
6228 {
6229         unsigned long mem_start, mem_len, mem_flags;
6230         void __iomem *base_addr = NULL;
6231         struct net_device *dev = NULL;
6232         struct ipw2100_priv *priv = NULL;
6233         int err = 0;
6234         int registered = 0;
6235         u32 val;
6236
6237         IPW_DEBUG_INFO("enter\n");
6238
6239         mem_start = pci_resource_start(pci_dev, 0);
6240         mem_len = pci_resource_len(pci_dev, 0);
6241         mem_flags = pci_resource_flags(pci_dev, 0);
6242
6243         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6244                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6245                 err = -ENODEV;
6246                 goto fail;
6247         }
6248
6249         base_addr = ioremap_nocache(mem_start, mem_len);
6250         if (!base_addr) {
6251                 printk(KERN_WARNING DRV_NAME
6252                        "Error calling ioremap_nocache.\n");
6253                 err = -EIO;
6254                 goto fail;
6255         }
6256
6257         /* allocate and initialize our net_device */
6258         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6259         if (!dev) {
6260                 printk(KERN_WARNING DRV_NAME
6261                        "Error calling ipw2100_alloc_device.\n");
6262                 err = -ENOMEM;
6263                 goto fail;
6264         }
6265
6266         /* set up PCI mappings for device */
6267         err = pci_enable_device(pci_dev);
6268         if (err) {
6269                 printk(KERN_WARNING DRV_NAME
6270                        "Error calling pci_enable_device.\n");
6271                 return err;
6272         }
6273
6274         priv = libipw_priv(dev);
6275
6276         pci_set_master(pci_dev);
6277         pci_set_drvdata(pci_dev, priv);
6278
6279         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6280         if (err) {
6281                 printk(KERN_WARNING DRV_NAME
6282                        "Error calling pci_set_dma_mask.\n");
6283                 pci_disable_device(pci_dev);
6284                 return err;
6285         }
6286
6287         err = pci_request_regions(pci_dev, DRV_NAME);
6288         if (err) {
6289                 printk(KERN_WARNING DRV_NAME
6290                        "Error calling pci_request_regions.\n");
6291                 pci_disable_device(pci_dev);
6292                 return err;
6293         }
6294
6295         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6296          * PCI Tx retries from interfering with C3 CPU state */
6297         pci_read_config_dword(pci_dev, 0x40, &val);
6298         if ((val & 0x0000ff00) != 0)
6299                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6300
6301         pci_set_power_state(pci_dev, PCI_D0);
6302
6303         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6304                 printk(KERN_WARNING DRV_NAME
6305                        "Device not found via register read.\n");
6306                 err = -ENODEV;
6307                 goto fail;
6308         }
6309
6310         SET_NETDEV_DEV(dev, &pci_dev->dev);
6311
6312         /* Force interrupts to be shut off on the device */
6313         priv->status |= STATUS_INT_ENABLED;
6314         ipw2100_disable_interrupts(priv);
6315
6316         /* Allocate and initialize the Tx/Rx queues and lists */
6317         if (ipw2100_queues_allocate(priv)) {
6318                 printk(KERN_WARNING DRV_NAME
6319                        "Error calling ipw2100_queues_allocate.\n");
6320                 err = -ENOMEM;
6321                 goto fail;
6322         }
6323         ipw2100_queues_initialize(priv);
6324
6325         err = request_irq(pci_dev->irq,
6326                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6327         if (err) {
6328                 printk(KERN_WARNING DRV_NAME
6329                        "Error calling request_irq: %d.\n", pci_dev->irq);
6330                 goto fail;
6331         }
6332         dev->irq = pci_dev->irq;
6333
6334         IPW_DEBUG_INFO("Attempting to register device...\n");
6335
6336         printk(KERN_INFO DRV_NAME
6337                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6338
6339         /* Bring up the interface.  Pre 0.46, after we registered the
6340          * network device we would call ipw2100_up.  This introduced a race
6341          * condition with newer hotplug configurations (network was coming
6342          * up and making calls before the device was initialized).
6343          *
6344          * If we called ipw2100_up before we registered the device, then the
6345          * device name wasn't registered.  So, we instead use the net_dev->init
6346          * member to call a function that then just turns and calls ipw2100_up.
6347          * net_dev->init is called after name allocation but before the
6348          * notifier chain is called */
6349         err = register_netdev(dev);
6350         if (err) {
6351                 printk(KERN_WARNING DRV_NAME
6352                        "Error calling register_netdev.\n");
6353                 goto fail;
6354         }
6355         registered = 1;
6356
6357         err = ipw2100_wdev_init(dev);
6358         if (err)
6359                 goto fail;
6360
6361         mutex_lock(&priv->action_mutex);
6362
6363         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6364
6365         /* perform this after register_netdev so that dev->name is set */
6366         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6367         if (err)
6368                 goto fail_unlock;
6369
6370         /* If the RF Kill switch is disabled, go ahead and complete the
6371          * startup sequence */
6372         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6373                 /* Enable the adapter - sends HOST_COMPLETE */
6374                 if (ipw2100_enable_adapter(priv)) {
6375                         printk(KERN_WARNING DRV_NAME
6376                                ": %s: failed in call to enable adapter.\n",
6377                                priv->net_dev->name);
6378                         ipw2100_hw_stop_adapter(priv);
6379                         err = -EIO;
6380                         goto fail_unlock;
6381                 }
6382
6383                 /* Start a scan . . . */
6384                 ipw2100_set_scan_options(priv);
6385                 ipw2100_start_scan(priv);
6386         }
6387
6388         IPW_DEBUG_INFO("exit\n");
6389
6390         priv->status |= STATUS_INITIALIZED;
6391
6392         mutex_unlock(&priv->action_mutex);
6393
6394         return 0;
6395
6396       fail_unlock:
6397         mutex_unlock(&priv->action_mutex);
6398         wiphy_unregister(priv->ieee->wdev.wiphy);
6399         kfree(priv->ieee->bg_band.channels);
6400       fail:
6401         if (dev) {
6402                 if (registered)
6403                         unregister_netdev(dev);
6404
6405                 ipw2100_hw_stop_adapter(priv);
6406
6407                 ipw2100_disable_interrupts(priv);
6408
6409                 if (dev->irq)
6410                         free_irq(dev->irq, priv);
6411
6412                 ipw2100_kill_works(priv);
6413
6414                 /* These are safe to call even if they weren't allocated */
6415                 ipw2100_queues_free(priv);
6416                 sysfs_remove_group(&pci_dev->dev.kobj,
6417                                    &ipw2100_attribute_group);
6418
6419                 free_libipw(dev, 0);
6420                 pci_set_drvdata(pci_dev, NULL);
6421         }
6422
6423         if (base_addr)
6424                 iounmap(base_addr);
6425
6426         pci_release_regions(pci_dev);
6427         pci_disable_device(pci_dev);
6428
6429         return err;
6430 }
6431
6432 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6433 {
6434         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6435         struct net_device *dev;
6436
6437         if (priv) {
6438                 mutex_lock(&priv->action_mutex);
6439
6440                 priv->status &= ~STATUS_INITIALIZED;
6441
6442                 dev = priv->net_dev;
6443                 sysfs_remove_group(&pci_dev->dev.kobj,
6444                                    &ipw2100_attribute_group);
6445
6446 #ifdef CONFIG_PM
6447                 if (ipw2100_firmware.version)
6448                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6449 #endif
6450                 /* Take down the hardware */
6451                 ipw2100_down(priv);
6452
6453                 /* Release the mutex so that the network subsystem can
6454                  * complete any needed calls into the driver... */
6455                 mutex_unlock(&priv->action_mutex);
6456
6457                 /* Unregister the device first - this results in close()
6458                  * being called if the device is open.  If we free storage
6459                  * first, then close() will crash. */
6460                 unregister_netdev(dev);
6461
6462                 ipw2100_kill_works(priv);
6463
6464                 ipw2100_queues_free(priv);
6465
6466                 /* Free potential debugging firmware snapshot */
6467                 ipw2100_snapshot_free(priv);
6468
6469                 if (dev->irq)
6470                         free_irq(dev->irq, priv);
6471
6472                 if (dev->base_addr)
6473                         iounmap((void __iomem *)dev->base_addr);
6474
6475                 /* wiphy_unregister needs to be here, before free_libipw */
6476                 wiphy_unregister(priv->ieee->wdev.wiphy);
6477                 kfree(priv->ieee->bg_band.channels);
6478                 free_libipw(dev, 0);
6479         }
6480
6481         pci_release_regions(pci_dev);
6482         pci_disable_device(pci_dev);
6483
6484         IPW_DEBUG_INFO("exit\n");
6485 }
6486
6487 #ifdef CONFIG_PM
6488 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6489 {
6490         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6491         struct net_device *dev = priv->net_dev;
6492
6493         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6494
6495         mutex_lock(&priv->action_mutex);
6496         if (priv->status & STATUS_INITIALIZED) {
6497                 /* Take down the device; powers it off, etc. */
6498                 ipw2100_down(priv);
6499         }
6500
6501         /* Remove the PRESENT state of the device */
6502         netif_device_detach(dev);
6503
6504         pci_save_state(pci_dev);
6505         pci_disable_device(pci_dev);
6506         pci_set_power_state(pci_dev, PCI_D3hot);
6507
6508         priv->suspend_at = get_seconds();
6509
6510         mutex_unlock(&priv->action_mutex);
6511
6512         return 0;
6513 }
6514
6515 static int ipw2100_resume(struct pci_dev *pci_dev)
6516 {
6517         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6518         struct net_device *dev = priv->net_dev;
6519         int err;
6520         u32 val;
6521
6522         if (IPW2100_PM_DISABLED)
6523                 return 0;
6524
6525         mutex_lock(&priv->action_mutex);
6526
6527         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6528
6529         pci_set_power_state(pci_dev, PCI_D0);
6530         err = pci_enable_device(pci_dev);
6531         if (err) {
6532                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6533                        dev->name);
6534                 mutex_unlock(&priv->action_mutex);
6535                 return err;
6536         }
6537         pci_restore_state(pci_dev);
6538
6539         /*
6540          * Suspend/Resume resets the PCI configuration space, so we have to
6541          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6542          * from interfering with C3 CPU state. pci_restore_state won't help
6543          * here since it only restores the first 64 bytes pci config header.
6544          */
6545         pci_read_config_dword(pci_dev, 0x40, &val);
6546         if ((val & 0x0000ff00) != 0)
6547                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6548
6549         /* Set the device back into the PRESENT state; this will also wake
6550          * the queue of needed */
6551         netif_device_attach(dev);
6552
6553         priv->suspend_time = get_seconds() - priv->suspend_at;
6554
6555         /* Bring the device back up */
6556         if (!(priv->status & STATUS_RF_KILL_SW))
6557                 ipw2100_up(priv, 0);
6558
6559         mutex_unlock(&priv->action_mutex);
6560
6561         return 0;
6562 }
6563 #endif
6564
6565 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6566 {
6567         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6568
6569         /* Take down the device; powers it off, etc. */
6570         ipw2100_down(priv);
6571
6572         pci_disable_device(pci_dev);
6573 }
6574
6575 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6576
6577 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6578         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6579         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6580         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6581         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6582         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6583         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6584         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6585         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6586         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6587         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6588         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6589         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6590         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6591
6592         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6593         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6594         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6595         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6596         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6597
6598         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6599         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6600         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6601         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6602         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6603         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6604         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6605
6606         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6607
6608         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6609         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6610         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6611         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6612         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6613         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6614         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6615
6616         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6617         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6618         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6619         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6620         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6621         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6622
6623         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6624         {0,},
6625 };
6626
6627 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6628
6629 static struct pci_driver ipw2100_pci_driver = {
6630         .name = DRV_NAME,
6631         .id_table = ipw2100_pci_id_table,
6632         .probe = ipw2100_pci_init_one,
6633         .remove = __devexit_p(ipw2100_pci_remove_one),
6634 #ifdef CONFIG_PM
6635         .suspend = ipw2100_suspend,
6636         .resume = ipw2100_resume,
6637 #endif
6638         .shutdown = ipw2100_shutdown,
6639 };
6640
6641 /**
6642  * Initialize the ipw2100 driver/module
6643  *
6644  * @returns 0 if ok, < 0 errno node con error.
6645  *
6646  * Note: we cannot init the /proc stuff until the PCI driver is there,
6647  * or we risk an unlikely race condition on someone accessing
6648  * uninitialized data in the PCI dev struct through /proc.
6649  */
6650 static int __init ipw2100_init(void)
6651 {
6652         int ret;
6653
6654         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6655         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6656
6657         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6658                            PM_QOS_DEFAULT_VALUE);
6659
6660         ret = pci_register_driver(&ipw2100_pci_driver);
6661         if (ret)
6662                 goto out;
6663
6664 #ifdef CONFIG_IPW2100_DEBUG
6665         ipw2100_debug_level = debug;
6666         ret = driver_create_file(&ipw2100_pci_driver.driver,
6667                                  &driver_attr_debug_level);
6668 #endif
6669
6670 out:
6671         return ret;
6672 }
6673
6674 /**
6675  * Cleanup ipw2100 driver registration
6676  */
6677 static void __exit ipw2100_exit(void)
6678 {
6679         /* FIXME: IPG: check that we have no instances of the devices open */
6680 #ifdef CONFIG_IPW2100_DEBUG
6681         driver_remove_file(&ipw2100_pci_driver.driver,
6682                            &driver_attr_debug_level);
6683 #endif
6684         pci_unregister_driver(&ipw2100_pci_driver);
6685         pm_qos_remove_request(&ipw2100_pm_qos_req);
6686 }
6687
6688 module_init(ipw2100_init);
6689 module_exit(ipw2100_exit);
6690
6691 static int ipw2100_wx_get_name(struct net_device *dev,
6692                                struct iw_request_info *info,
6693                                union iwreq_data *wrqu, char *extra)
6694 {
6695         /*
6696          * This can be called at any time.  No action lock required
6697          */
6698
6699         struct ipw2100_priv *priv = libipw_priv(dev);
6700         if (!(priv->status & STATUS_ASSOCIATED))
6701                 strcpy(wrqu->name, "unassociated");
6702         else
6703                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6704
6705         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6706         return 0;
6707 }
6708
6709 static int ipw2100_wx_set_freq(struct net_device *dev,
6710                                struct iw_request_info *info,
6711                                union iwreq_data *wrqu, char *extra)
6712 {
6713         struct ipw2100_priv *priv = libipw_priv(dev);
6714         struct iw_freq *fwrq = &wrqu->freq;
6715         int err = 0;
6716
6717         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6718                 return -EOPNOTSUPP;
6719
6720         mutex_lock(&priv->action_mutex);
6721         if (!(priv->status & STATUS_INITIALIZED)) {
6722                 err = -EIO;
6723                 goto done;
6724         }
6725
6726         /* if setting by freq convert to channel */
6727         if (fwrq->e == 1) {
6728                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6729                         int f = fwrq->m / 100000;
6730                         int c = 0;
6731
6732                         while ((c < REG_MAX_CHANNEL) &&
6733                                (f != ipw2100_frequencies[c]))
6734                                 c++;
6735
6736                         /* hack to fall through */
6737                         fwrq->e = 0;
6738                         fwrq->m = c + 1;
6739                 }
6740         }
6741
6742         if (fwrq->e > 0 || fwrq->m > 1000) {
6743                 err = -EOPNOTSUPP;
6744                 goto done;
6745         } else {                /* Set the channel */
6746                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6747                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6748         }
6749
6750       done:
6751         mutex_unlock(&priv->action_mutex);
6752         return err;
6753 }
6754
6755 static int ipw2100_wx_get_freq(struct net_device *dev,
6756                                struct iw_request_info *info,
6757                                union iwreq_data *wrqu, char *extra)
6758 {
6759         /*
6760          * This can be called at any time.  No action lock required
6761          */
6762
6763         struct ipw2100_priv *priv = libipw_priv(dev);
6764
6765         wrqu->freq.e = 0;
6766
6767         /* If we are associated, trying to associate, or have a statically
6768          * configured CHANNEL then return that; otherwise return ANY */
6769         if (priv->config & CFG_STATIC_CHANNEL ||
6770             priv->status & STATUS_ASSOCIATED)
6771                 wrqu->freq.m = priv->channel;
6772         else
6773                 wrqu->freq.m = 0;
6774
6775         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6776         return 0;
6777
6778 }
6779
6780 static int ipw2100_wx_set_mode(struct net_device *dev,
6781                                struct iw_request_info *info,
6782                                union iwreq_data *wrqu, char *extra)
6783 {
6784         struct ipw2100_priv *priv = libipw_priv(dev);
6785         int err = 0;
6786
6787         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6788
6789         if (wrqu->mode == priv->ieee->iw_mode)
6790                 return 0;
6791
6792         mutex_lock(&priv->action_mutex);
6793         if (!(priv->status & STATUS_INITIALIZED)) {
6794                 err = -EIO;
6795                 goto done;
6796         }
6797
6798         switch (wrqu->mode) {
6799 #ifdef CONFIG_IPW2100_MONITOR
6800         case IW_MODE_MONITOR:
6801                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6802                 break;
6803 #endif                          /* CONFIG_IPW2100_MONITOR */
6804         case IW_MODE_ADHOC:
6805                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6806                 break;
6807         case IW_MODE_INFRA:
6808         case IW_MODE_AUTO:
6809         default:
6810                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6811                 break;
6812         }
6813
6814       done:
6815         mutex_unlock(&priv->action_mutex);
6816         return err;
6817 }
6818
6819 static int ipw2100_wx_get_mode(struct net_device *dev,
6820                                struct iw_request_info *info,
6821                                union iwreq_data *wrqu, char *extra)
6822 {
6823         /*
6824          * This can be called at any time.  No action lock required
6825          */
6826
6827         struct ipw2100_priv *priv = libipw_priv(dev);
6828
6829         wrqu->mode = priv->ieee->iw_mode;
6830         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6831
6832         return 0;
6833 }
6834
6835 #define POWER_MODES 5
6836
6837 /* Values are in microsecond */
6838 static const s32 timeout_duration[POWER_MODES] = {
6839         350000,
6840         250000,
6841         75000,
6842         37000,
6843         25000,
6844 };
6845
6846 static const s32 period_duration[POWER_MODES] = {
6847         400000,
6848         700000,
6849         1000000,
6850         1000000,
6851         1000000
6852 };
6853
6854 static int ipw2100_wx_get_range(struct net_device *dev,
6855                                 struct iw_request_info *info,
6856                                 union iwreq_data *wrqu, char *extra)
6857 {
6858         /*
6859          * This can be called at any time.  No action lock required
6860          */
6861
6862         struct ipw2100_priv *priv = libipw_priv(dev);
6863         struct iw_range *range = (struct iw_range *)extra;
6864         u16 val;
6865         int i, level;
6866
6867         wrqu->data.length = sizeof(*range);
6868         memset(range, 0, sizeof(*range));
6869
6870         /* Let's try to keep this struct in the same order as in
6871          * linux/include/wireless.h
6872          */
6873
6874         /* TODO: See what values we can set, and remove the ones we can't
6875          * set, or fill them with some default data.
6876          */
6877
6878         /* ~5 Mb/s real (802.11b) */
6879         range->throughput = 5 * 1000 * 1000;
6880
6881 //      range->sensitivity;     /* signal level threshold range */
6882
6883         range->max_qual.qual = 100;
6884         /* TODO: Find real max RSSI and stick here */
6885         range->max_qual.level = 0;
6886         range->max_qual.noise = 0;
6887         range->max_qual.updated = 7;    /* Updated all three */
6888
6889         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6890         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6891         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6892         range->avg_qual.noise = 0;
6893         range->avg_qual.updated = 7;    /* Updated all three */
6894
6895         range->num_bitrates = RATE_COUNT;
6896
6897         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6898                 range->bitrate[i] = ipw2100_rates_11b[i];
6899         }
6900
6901         range->min_rts = MIN_RTS_THRESHOLD;
6902         range->max_rts = MAX_RTS_THRESHOLD;
6903         range->min_frag = MIN_FRAG_THRESHOLD;
6904         range->max_frag = MAX_FRAG_THRESHOLD;
6905
6906         range->min_pmp = period_duration[0];    /* Minimal PM period */
6907         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6908         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6909         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6910
6911         /* How to decode max/min PM period */
6912         range->pmp_flags = IW_POWER_PERIOD;
6913         /* How to decode max/min PM period */
6914         range->pmt_flags = IW_POWER_TIMEOUT;
6915         /* What PM options are supported */
6916         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6917
6918         range->encoding_size[0] = 5;
6919         range->encoding_size[1] = 13;   /* Different token sizes */
6920         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6921         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6922 //      range->encoding_login_index;            /* token index for login token */
6923
6924         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6925                 range->txpower_capa = IW_TXPOW_DBM;
6926                 range->num_txpower = IW_MAX_TXPOWER;
6927                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6928                      i < IW_MAX_TXPOWER;
6929                      i++, level -=
6930                      ((IPW_TX_POWER_MAX_DBM -
6931                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6932                         range->txpower[i] = level / 16;
6933         } else {
6934                 range->txpower_capa = 0;
6935                 range->num_txpower = 0;
6936         }
6937
6938         /* Set the Wireless Extension versions */
6939         range->we_version_compiled = WIRELESS_EXT;
6940         range->we_version_source = 18;
6941
6942 //      range->retry_capa;      /* What retry options are supported */
6943 //      range->retry_flags;     /* How to decode max/min retry limit */
6944 //      range->r_time_flags;    /* How to decode max/min retry life */
6945 //      range->min_retry;       /* Minimal number of retries */
6946 //      range->max_retry;       /* Maximal number of retries */
6947 //      range->min_r_time;      /* Minimal retry lifetime */
6948 //      range->max_r_time;      /* Maximal retry lifetime */
6949
6950         range->num_channels = FREQ_COUNT;
6951
6952         val = 0;
6953         for (i = 0; i < FREQ_COUNT; i++) {
6954                 // TODO: Include only legal frequencies for some countries
6955 //              if (local->channel_mask & (1 << i)) {
6956                 range->freq[val].i = i + 1;
6957                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6958                 range->freq[val].e = 1;
6959                 val++;
6960 //              }
6961                 if (val == IW_MAX_FREQUENCIES)
6962                         break;
6963         }
6964         range->num_frequency = val;
6965
6966         /* Event capability (kernel + driver) */
6967         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6968                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6969         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6970
6971         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6972                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6973
6974         IPW_DEBUG_WX("GET Range\n");
6975
6976         return 0;
6977 }
6978
6979 static int ipw2100_wx_set_wap(struct net_device *dev,
6980                               struct iw_request_info *info,
6981                               union iwreq_data *wrqu, char *extra)
6982 {
6983         struct ipw2100_priv *priv = libipw_priv(dev);
6984         int err = 0;
6985
6986         static const unsigned char any[] = {
6987                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6988         };
6989         static const unsigned char off[] = {
6990                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6991         };
6992
6993         // sanity checks
6994         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6995                 return -EINVAL;
6996
6997         mutex_lock(&priv->action_mutex);
6998         if (!(priv->status & STATUS_INITIALIZED)) {
6999                 err = -EIO;
7000                 goto done;
7001         }
7002
7003         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7004             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7005                 /* we disable mandatory BSSID association */
7006                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7007                 priv->config &= ~CFG_STATIC_BSSID;
7008                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7009                 goto done;
7010         }
7011
7012         priv->config |= CFG_STATIC_BSSID;
7013         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7014
7015         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7016
7017         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7018
7019       done:
7020         mutex_unlock(&priv->action_mutex);
7021         return err;
7022 }
7023
7024 static int ipw2100_wx_get_wap(struct net_device *dev,
7025                               struct iw_request_info *info,
7026                               union iwreq_data *wrqu, char *extra)
7027 {
7028         /*
7029          * This can be called at any time.  No action lock required
7030          */
7031
7032         struct ipw2100_priv *priv = libipw_priv(dev);
7033
7034         /* If we are associated, trying to associate, or have a statically
7035          * configured BSSID then return that; otherwise return ANY */
7036         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7037                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7038                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7039         } else
7040                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7041
7042         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7043         return 0;
7044 }
7045
7046 static int ipw2100_wx_set_essid(struct net_device *dev,
7047                                 struct iw_request_info *info,
7048                                 union iwreq_data *wrqu, char *extra)
7049 {
7050         struct ipw2100_priv *priv = libipw_priv(dev);
7051         char *essid = "";       /* ANY */
7052         int length = 0;
7053         int err = 0;
7054         DECLARE_SSID_BUF(ssid);
7055
7056         mutex_lock(&priv->action_mutex);
7057         if (!(priv->status & STATUS_INITIALIZED)) {
7058                 err = -EIO;
7059                 goto done;
7060         }
7061
7062         if (wrqu->essid.flags && wrqu->essid.length) {
7063                 length = wrqu->essid.length;
7064                 essid = extra;
7065         }
7066
7067         if (length == 0) {
7068                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7069                 priv->config &= ~CFG_STATIC_ESSID;
7070                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7071                 goto done;
7072         }
7073
7074         length = min(length, IW_ESSID_MAX_SIZE);
7075
7076         priv->config |= CFG_STATIC_ESSID;
7077
7078         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7079                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7080                 err = 0;
7081                 goto done;
7082         }
7083
7084         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7085                      print_ssid(ssid, essid, length), length);
7086
7087         priv->essid_len = length;
7088         memcpy(priv->essid, essid, priv->essid_len);
7089
7090         err = ipw2100_set_essid(priv, essid, length, 0);
7091
7092       done:
7093         mutex_unlock(&priv->action_mutex);
7094         return err;
7095 }
7096
7097 static int ipw2100_wx_get_essid(struct net_device *dev,
7098                                 struct iw_request_info *info,
7099                                 union iwreq_data *wrqu, char *extra)
7100 {
7101         /*
7102          * This can be called at any time.  No action lock required
7103          */
7104
7105         struct ipw2100_priv *priv = libipw_priv(dev);
7106         DECLARE_SSID_BUF(ssid);
7107
7108         /* If we are associated, trying to associate, or have a statically
7109          * configured ESSID then return that; otherwise return ANY */
7110         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7111                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7112                              print_ssid(ssid, priv->essid, priv->essid_len));
7113                 memcpy(extra, priv->essid, priv->essid_len);
7114                 wrqu->essid.length = priv->essid_len;
7115                 wrqu->essid.flags = 1;  /* active */
7116         } else {
7117                 IPW_DEBUG_WX("Getting essid: ANY\n");
7118                 wrqu->essid.length = 0;
7119                 wrqu->essid.flags = 0;  /* active */
7120         }
7121
7122         return 0;
7123 }
7124
7125 static int ipw2100_wx_set_nick(struct net_device *dev,
7126                                struct iw_request_info *info,
7127                                union iwreq_data *wrqu, char *extra)
7128 {
7129         /*
7130          * This can be called at any time.  No action lock required
7131          */
7132
7133         struct ipw2100_priv *priv = libipw_priv(dev);
7134
7135         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7136                 return -E2BIG;
7137
7138         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7139         memset(priv->nick, 0, sizeof(priv->nick));
7140         memcpy(priv->nick, extra, wrqu->data.length);
7141
7142         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7143
7144         return 0;
7145 }
7146
7147 static int ipw2100_wx_get_nick(struct net_device *dev,
7148                                struct iw_request_info *info,
7149                                union iwreq_data *wrqu, char *extra)
7150 {
7151         /*
7152          * This can be called at any time.  No action lock required
7153          */
7154
7155         struct ipw2100_priv *priv = libipw_priv(dev);
7156
7157         wrqu->data.length = strlen(priv->nick);
7158         memcpy(extra, priv->nick, wrqu->data.length);
7159         wrqu->data.flags = 1;   /* active */
7160
7161         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7162
7163         return 0;
7164 }
7165
7166 static int ipw2100_wx_set_rate(struct net_device *dev,
7167                                struct iw_request_info *info,
7168                                union iwreq_data *wrqu, char *extra)
7169 {
7170         struct ipw2100_priv *priv = libipw_priv(dev);
7171         u32 target_rate = wrqu->bitrate.value;
7172         u32 rate;
7173         int err = 0;
7174
7175         mutex_lock(&priv->action_mutex);
7176         if (!(priv->status & STATUS_INITIALIZED)) {
7177                 err = -EIO;
7178                 goto done;
7179         }
7180
7181         rate = 0;
7182
7183         if (target_rate == 1000000 ||
7184             (!wrqu->bitrate.fixed && target_rate > 1000000))
7185                 rate |= TX_RATE_1_MBIT;
7186         if (target_rate == 2000000 ||
7187             (!wrqu->bitrate.fixed && target_rate > 2000000))
7188                 rate |= TX_RATE_2_MBIT;
7189         if (target_rate == 5500000 ||
7190             (!wrqu->bitrate.fixed && target_rate > 5500000))
7191                 rate |= TX_RATE_5_5_MBIT;
7192         if (target_rate == 11000000 ||
7193             (!wrqu->bitrate.fixed && target_rate > 11000000))
7194                 rate |= TX_RATE_11_MBIT;
7195         if (rate == 0)
7196                 rate = DEFAULT_TX_RATES;
7197
7198         err = ipw2100_set_tx_rates(priv, rate, 0);
7199
7200         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7201       done:
7202         mutex_unlock(&priv->action_mutex);
7203         return err;
7204 }
7205
7206 static int ipw2100_wx_get_rate(struct net_device *dev,
7207                                struct iw_request_info *info,
7208                                union iwreq_data *wrqu, char *extra)
7209 {
7210         struct ipw2100_priv *priv = libipw_priv(dev);
7211         int val;
7212         unsigned int len = sizeof(val);
7213         int err = 0;
7214
7215         if (!(priv->status & STATUS_ENABLED) ||
7216             priv->status & STATUS_RF_KILL_MASK ||
7217             !(priv->status & STATUS_ASSOCIATED)) {
7218                 wrqu->bitrate.value = 0;
7219                 return 0;
7220         }
7221
7222         mutex_lock(&priv->action_mutex);
7223         if (!(priv->status & STATUS_INITIALIZED)) {
7224                 err = -EIO;
7225                 goto done;
7226         }
7227
7228         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7229         if (err) {
7230                 IPW_DEBUG_WX("failed querying ordinals.\n");
7231                 goto done;
7232         }
7233
7234         switch (val & TX_RATE_MASK) {
7235         case TX_RATE_1_MBIT:
7236                 wrqu->bitrate.value = 1000000;
7237                 break;
7238         case TX_RATE_2_MBIT:
7239                 wrqu->bitrate.value = 2000000;
7240                 break;
7241         case TX_RATE_5_5_MBIT:
7242                 wrqu->bitrate.value = 5500000;
7243                 break;
7244         case TX_RATE_11_MBIT:
7245                 wrqu->bitrate.value = 11000000;
7246                 break;
7247         default:
7248                 wrqu->bitrate.value = 0;
7249         }
7250
7251         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7252
7253       done:
7254         mutex_unlock(&priv->action_mutex);
7255         return err;
7256 }
7257
7258 static int ipw2100_wx_set_rts(struct net_device *dev,
7259                               struct iw_request_info *info,
7260                               union iwreq_data *wrqu, char *extra)
7261 {
7262         struct ipw2100_priv *priv = libipw_priv(dev);
7263         int value, err;
7264
7265         /* Auto RTS not yet supported */
7266         if (wrqu->rts.fixed == 0)
7267                 return -EINVAL;
7268
7269         mutex_lock(&priv->action_mutex);
7270         if (!(priv->status & STATUS_INITIALIZED)) {
7271                 err = -EIO;
7272                 goto done;
7273         }
7274
7275         if (wrqu->rts.disabled)
7276                 value = priv->rts_threshold | RTS_DISABLED;
7277         else {
7278                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7279                         err = -EINVAL;
7280                         goto done;
7281                 }
7282                 value = wrqu->rts.value;
7283         }
7284
7285         err = ipw2100_set_rts_threshold(priv, value);
7286
7287         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7288       done:
7289         mutex_unlock(&priv->action_mutex);
7290         return err;
7291 }
7292
7293 static int ipw2100_wx_get_rts(struct net_device *dev,
7294                               struct iw_request_info *info,
7295                               union iwreq_data *wrqu, char *extra)
7296 {
7297         /*
7298          * This can be called at any time.  No action lock required
7299          */
7300
7301         struct ipw2100_priv *priv = libipw_priv(dev);
7302
7303         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7304         wrqu->rts.fixed = 1;    /* no auto select */
7305
7306         /* If RTS is set to the default value, then it is disabled */
7307         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7308
7309         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7310
7311         return 0;
7312 }
7313
7314 static int ipw2100_wx_set_txpow(struct net_device *dev,
7315                                 struct iw_request_info *info,
7316                                 union iwreq_data *wrqu, char *extra)
7317 {
7318         struct ipw2100_priv *priv = libipw_priv(dev);
7319         int err = 0, value;
7320         
7321         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7322                 return -EINPROGRESS;
7323
7324         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7325                 return 0;
7326
7327         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7328                 return -EINVAL;
7329
7330         if (wrqu->txpower.fixed == 0)
7331                 value = IPW_TX_POWER_DEFAULT;
7332         else {
7333                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7334                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7335                         return -EINVAL;
7336
7337                 value = wrqu->txpower.value;
7338         }
7339
7340         mutex_lock(&priv->action_mutex);
7341         if (!(priv->status & STATUS_INITIALIZED)) {
7342                 err = -EIO;
7343                 goto done;
7344         }
7345
7346         err = ipw2100_set_tx_power(priv, value);
7347
7348         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7349
7350       done:
7351         mutex_unlock(&priv->action_mutex);
7352         return err;
7353 }
7354
7355 static int ipw2100_wx_get_txpow(struct net_device *dev,
7356                                 struct iw_request_info *info,
7357                                 union iwreq_data *wrqu, char *extra)
7358 {
7359         /*
7360          * This can be called at any time.  No action lock required
7361          */
7362
7363         struct ipw2100_priv *priv = libipw_priv(dev);
7364
7365         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7366
7367         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7368                 wrqu->txpower.fixed = 0;
7369                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7370         } else {
7371                 wrqu->txpower.fixed = 1;
7372                 wrqu->txpower.value = priv->tx_power;
7373         }
7374
7375         wrqu->txpower.flags = IW_TXPOW_DBM;
7376
7377         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7378
7379         return 0;
7380 }
7381
7382 static int ipw2100_wx_set_frag(struct net_device *dev,
7383                                struct iw_request_info *info,
7384                                union iwreq_data *wrqu, char *extra)
7385 {
7386         /*
7387          * This can be called at any time.  No action lock required
7388          */
7389
7390         struct ipw2100_priv *priv = libipw_priv(dev);
7391
7392         if (!wrqu->frag.fixed)
7393                 return -EINVAL;
7394
7395         if (wrqu->frag.disabled) {
7396                 priv->frag_threshold |= FRAG_DISABLED;
7397                 priv->ieee->fts = DEFAULT_FTS;
7398         } else {
7399                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7400                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7401                         return -EINVAL;
7402
7403                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7404                 priv->frag_threshold = priv->ieee->fts;
7405         }
7406
7407         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7408
7409         return 0;
7410 }
7411
7412 static int ipw2100_wx_get_frag(struct net_device *dev,
7413                                struct iw_request_info *info,
7414                                union iwreq_data *wrqu, char *extra)
7415 {
7416         /*
7417          * This can be called at any time.  No action lock required
7418          */
7419
7420         struct ipw2100_priv *priv = libipw_priv(dev);
7421         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7422         wrqu->frag.fixed = 0;   /* no auto select */
7423         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7424
7425         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7426
7427         return 0;
7428 }
7429
7430 static int ipw2100_wx_set_retry(struct net_device *dev,
7431                                 struct iw_request_info *info,
7432                                 union iwreq_data *wrqu, char *extra)
7433 {
7434         struct ipw2100_priv *priv = libipw_priv(dev);
7435         int err = 0;
7436
7437         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7438                 return -EINVAL;
7439
7440         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7441                 return 0;
7442
7443         mutex_lock(&priv->action_mutex);
7444         if (!(priv->status & STATUS_INITIALIZED)) {
7445                 err = -EIO;
7446                 goto done;
7447         }
7448
7449         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7450                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7451                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7452                              wrqu->retry.value);
7453                 goto done;
7454         }
7455
7456         if (wrqu->retry.flags & IW_RETRY_LONG) {
7457                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7458                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7459                              wrqu->retry.value);
7460                 goto done;
7461         }
7462
7463         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7464         if (!err)
7465                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7466
7467         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7468
7469       done:
7470         mutex_unlock(&priv->action_mutex);
7471         return err;
7472 }
7473
7474 static int ipw2100_wx_get_retry(struct net_device *dev,
7475                                 struct iw_request_info *info,
7476                                 union iwreq_data *wrqu, char *extra)
7477 {
7478         /*
7479          * This can be called at any time.  No action lock required
7480          */
7481
7482         struct ipw2100_priv *priv = libipw_priv(dev);
7483
7484         wrqu->retry.disabled = 0;       /* can't be disabled */
7485
7486         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7487                 return -EINVAL;
7488
7489         if (wrqu->retry.flags & IW_RETRY_LONG) {
7490                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7491                 wrqu->retry.value = priv->long_retry_limit;
7492         } else {
7493                 wrqu->retry.flags =
7494                     (priv->short_retry_limit !=
7495                      priv->long_retry_limit) ?
7496                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7497
7498                 wrqu->retry.value = priv->short_retry_limit;
7499         }
7500
7501         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7502
7503         return 0;
7504 }
7505
7506 static int ipw2100_wx_set_scan(struct net_device *dev,
7507                                struct iw_request_info *info,
7508                                union iwreq_data *wrqu, char *extra)
7509 {
7510         struct ipw2100_priv *priv = libipw_priv(dev);
7511         int err = 0;
7512
7513         mutex_lock(&priv->action_mutex);
7514         if (!(priv->status & STATUS_INITIALIZED)) {
7515                 err = -EIO;
7516                 goto done;
7517         }
7518
7519         IPW_DEBUG_WX("Initiating scan...\n");
7520
7521         priv->user_requested_scan = 1;
7522         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7523                 IPW_DEBUG_WX("Start scan failed.\n");
7524
7525                 /* TODO: Mark a scan as pending so when hardware initialized
7526                  *       a scan starts */
7527         }
7528
7529       done:
7530         mutex_unlock(&priv->action_mutex);
7531         return err;
7532 }
7533
7534 static int ipw2100_wx_get_scan(struct net_device *dev,
7535                                struct iw_request_info *info,
7536                                union iwreq_data *wrqu, char *extra)
7537 {
7538         /*
7539          * This can be called at any time.  No action lock required
7540          */
7541
7542         struct ipw2100_priv *priv = libipw_priv(dev);
7543         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7544 }
7545
7546 /*
7547  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7548  */
7549 static int ipw2100_wx_set_encode(struct net_device *dev,
7550                                  struct iw_request_info *info,
7551                                  union iwreq_data *wrqu, char *key)
7552 {
7553         /*
7554          * No check of STATUS_INITIALIZED required
7555          */
7556
7557         struct ipw2100_priv *priv = libipw_priv(dev);
7558         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7559 }
7560
7561 static int ipw2100_wx_get_encode(struct net_device *dev,
7562                                  struct iw_request_info *info,
7563                                  union iwreq_data *wrqu, char *key)
7564 {
7565         /*
7566          * This can be called at any time.  No action lock required
7567          */
7568
7569         struct ipw2100_priv *priv = libipw_priv(dev);
7570         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7571 }
7572
7573 static int ipw2100_wx_set_power(struct net_device *dev,
7574                                 struct iw_request_info *info,
7575                                 union iwreq_data *wrqu, char *extra)
7576 {
7577         struct ipw2100_priv *priv = libipw_priv(dev);
7578         int err = 0;
7579
7580         mutex_lock(&priv->action_mutex);
7581         if (!(priv->status & STATUS_INITIALIZED)) {
7582                 err = -EIO;
7583                 goto done;
7584         }
7585
7586         if (wrqu->power.disabled) {
7587                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7588                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7589                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7590                 goto done;
7591         }
7592
7593         switch (wrqu->power.flags & IW_POWER_MODE) {
7594         case IW_POWER_ON:       /* If not specified */
7595         case IW_POWER_MODE:     /* If set all mask */
7596         case IW_POWER_ALL_R:    /* If explicitly state all */
7597                 break;
7598         default:                /* Otherwise we don't support it */
7599                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7600                              wrqu->power.flags);
7601                 err = -EOPNOTSUPP;
7602                 goto done;
7603         }
7604
7605         /* If the user hasn't specified a power management mode yet, default
7606          * to BATTERY */
7607         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7608         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7609
7610         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7611
7612       done:
7613         mutex_unlock(&priv->action_mutex);
7614         return err;
7615
7616 }
7617
7618 static int ipw2100_wx_get_power(struct net_device *dev,
7619                                 struct iw_request_info *info,
7620                                 union iwreq_data *wrqu, char *extra)
7621 {
7622         /*
7623          * This can be called at any time.  No action lock required
7624          */
7625
7626         struct ipw2100_priv *priv = libipw_priv(dev);
7627
7628         if (!(priv->power_mode & IPW_POWER_ENABLED))
7629                 wrqu->power.disabled = 1;
7630         else {
7631                 wrqu->power.disabled = 0;
7632                 wrqu->power.flags = 0;
7633         }
7634
7635         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7636
7637         return 0;
7638 }
7639
7640 /*
7641  * WE-18 WPA support
7642  */
7643
7644 /* SIOCSIWGENIE */
7645 static int ipw2100_wx_set_genie(struct net_device *dev,
7646                                 struct iw_request_info *info,
7647                                 union iwreq_data *wrqu, char *extra)
7648 {
7649
7650         struct ipw2100_priv *priv = libipw_priv(dev);
7651         struct libipw_device *ieee = priv->ieee;
7652         u8 *buf;
7653
7654         if (!ieee->wpa_enabled)
7655                 return -EOPNOTSUPP;
7656
7657         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7658             (wrqu->data.length && extra == NULL))
7659                 return -EINVAL;
7660
7661         if (wrqu->data.length) {
7662                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7663                 if (buf == NULL)
7664                         return -ENOMEM;
7665
7666                 kfree(ieee->wpa_ie);
7667                 ieee->wpa_ie = buf;
7668                 ieee->wpa_ie_len = wrqu->data.length;
7669         } else {
7670                 kfree(ieee->wpa_ie);
7671                 ieee->wpa_ie = NULL;
7672                 ieee->wpa_ie_len = 0;
7673         }
7674
7675         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7676
7677         return 0;
7678 }
7679
7680 /* SIOCGIWGENIE */
7681 static int ipw2100_wx_get_genie(struct net_device *dev,
7682                                 struct iw_request_info *info,
7683                                 union iwreq_data *wrqu, char *extra)
7684 {
7685         struct ipw2100_priv *priv = libipw_priv(dev);
7686         struct libipw_device *ieee = priv->ieee;
7687
7688         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7689                 wrqu->data.length = 0;
7690                 return 0;
7691         }
7692
7693         if (wrqu->data.length < ieee->wpa_ie_len)
7694                 return -E2BIG;
7695
7696         wrqu->data.length = ieee->wpa_ie_len;
7697         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7698
7699         return 0;
7700 }
7701
7702 /* SIOCSIWAUTH */
7703 static int ipw2100_wx_set_auth(struct net_device *dev,
7704                                struct iw_request_info *info,
7705                                union iwreq_data *wrqu, char *extra)
7706 {
7707         struct ipw2100_priv *priv = libipw_priv(dev);
7708         struct libipw_device *ieee = priv->ieee;
7709         struct iw_param *param = &wrqu->param;
7710         struct lib80211_crypt_data *crypt;
7711         unsigned long flags;
7712         int ret = 0;
7713
7714         switch (param->flags & IW_AUTH_INDEX) {
7715         case IW_AUTH_WPA_VERSION:
7716         case IW_AUTH_CIPHER_PAIRWISE:
7717         case IW_AUTH_CIPHER_GROUP:
7718         case IW_AUTH_KEY_MGMT:
7719                 /*
7720                  * ipw2200 does not use these parameters
7721                  */
7722                 break;
7723
7724         case IW_AUTH_TKIP_COUNTERMEASURES:
7725                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7726                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7727                         break;
7728
7729                 flags = crypt->ops->get_flags(crypt->priv);
7730
7731                 if (param->value)
7732                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7733                 else
7734                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7735
7736                 crypt->ops->set_flags(flags, crypt->priv);
7737
7738                 break;
7739
7740         case IW_AUTH_DROP_UNENCRYPTED:{
7741                         /* HACK:
7742                          *
7743                          * wpa_supplicant calls set_wpa_enabled when the driver
7744                          * is loaded and unloaded, regardless of if WPA is being
7745                          * used.  No other calls are made which can be used to
7746                          * determine if encryption will be used or not prior to
7747                          * association being expected.  If encryption is not being
7748                          * used, drop_unencrypted is set to false, else true -- we
7749                          * can use this to determine if the CAP_PRIVACY_ON bit should
7750                          * be set.
7751                          */
7752                         struct libipw_security sec = {
7753                                 .flags = SEC_ENABLED,
7754                                 .enabled = param->value,
7755                         };
7756                         priv->ieee->drop_unencrypted = param->value;
7757                         /* We only change SEC_LEVEL for open mode. Others
7758                          * are set by ipw_wpa_set_encryption.
7759                          */
7760                         if (!param->value) {
7761                                 sec.flags |= SEC_LEVEL;
7762                                 sec.level = SEC_LEVEL_0;
7763                         } else {
7764                                 sec.flags |= SEC_LEVEL;
7765                                 sec.level = SEC_LEVEL_1;
7766                         }
7767                         if (priv->ieee->set_security)
7768                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7769                         break;
7770                 }
7771
7772         case IW_AUTH_80211_AUTH_ALG:
7773                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7774                 break;
7775
7776         case IW_AUTH_WPA_ENABLED:
7777                 ret = ipw2100_wpa_enable(priv, param->value);
7778                 break;
7779
7780         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7781                 ieee->ieee802_1x = param->value;
7782                 break;
7783
7784                 //case IW_AUTH_ROAMING_CONTROL:
7785         case IW_AUTH_PRIVACY_INVOKED:
7786                 ieee->privacy_invoked = param->value;
7787                 break;
7788
7789         default:
7790                 return -EOPNOTSUPP;
7791         }
7792         return ret;
7793 }
7794
7795 /* SIOCGIWAUTH */
7796 static int ipw2100_wx_get_auth(struct net_device *dev,
7797                                struct iw_request_info *info,
7798                                union iwreq_data *wrqu, char *extra)
7799 {
7800         struct ipw2100_priv *priv = libipw_priv(dev);
7801         struct libipw_device *ieee = priv->ieee;
7802         struct lib80211_crypt_data *crypt;
7803         struct iw_param *param = &wrqu->param;
7804         int ret = 0;
7805
7806         switch (param->flags & IW_AUTH_INDEX) {
7807         case IW_AUTH_WPA_VERSION:
7808         case IW_AUTH_CIPHER_PAIRWISE:
7809         case IW_AUTH_CIPHER_GROUP:
7810         case IW_AUTH_KEY_MGMT:
7811                 /*
7812                  * wpa_supplicant will control these internally
7813                  */
7814                 ret = -EOPNOTSUPP;
7815                 break;
7816
7817         case IW_AUTH_TKIP_COUNTERMEASURES:
7818                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7819                 if (!crypt || !crypt->ops->get_flags) {
7820                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7821                                           "crypt not set!\n");
7822                         break;
7823                 }
7824
7825                 param->value = (crypt->ops->get_flags(crypt->priv) &
7826                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7827
7828                 break;
7829
7830         case IW_AUTH_DROP_UNENCRYPTED:
7831                 param->value = ieee->drop_unencrypted;
7832                 break;
7833
7834         case IW_AUTH_80211_AUTH_ALG:
7835                 param->value = priv->ieee->sec.auth_mode;
7836                 break;
7837
7838         case IW_AUTH_WPA_ENABLED:
7839                 param->value = ieee->wpa_enabled;
7840                 break;
7841
7842         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7843                 param->value = ieee->ieee802_1x;
7844                 break;
7845
7846         case IW_AUTH_ROAMING_CONTROL:
7847         case IW_AUTH_PRIVACY_INVOKED:
7848                 param->value = ieee->privacy_invoked;
7849                 break;
7850
7851         default:
7852                 return -EOPNOTSUPP;
7853         }
7854         return 0;
7855 }
7856
7857 /* SIOCSIWENCODEEXT */
7858 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7859                                     struct iw_request_info *info,
7860                                     union iwreq_data *wrqu, char *extra)
7861 {
7862         struct ipw2100_priv *priv = libipw_priv(dev);
7863         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7864 }
7865
7866 /* SIOCGIWENCODEEXT */
7867 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7868                                     struct iw_request_info *info,
7869                                     union iwreq_data *wrqu, char *extra)
7870 {
7871         struct ipw2100_priv *priv = libipw_priv(dev);
7872         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7873 }
7874
7875 /* SIOCSIWMLME */
7876 static int ipw2100_wx_set_mlme(struct net_device *dev,
7877                                struct iw_request_info *info,
7878                                union iwreq_data *wrqu, char *extra)
7879 {
7880         struct ipw2100_priv *priv = libipw_priv(dev);
7881         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7882         __le16 reason;
7883
7884         reason = cpu_to_le16(mlme->reason_code);
7885
7886         switch (mlme->cmd) {
7887         case IW_MLME_DEAUTH:
7888                 // silently ignore
7889                 break;
7890
7891         case IW_MLME_DISASSOC:
7892                 ipw2100_disassociate_bssid(priv);
7893                 break;
7894
7895         default:
7896                 return -EOPNOTSUPP;
7897         }
7898         return 0;
7899 }
7900
7901 /*
7902  *
7903  * IWPRIV handlers
7904  *
7905  */
7906 #ifdef CONFIG_IPW2100_MONITOR
7907 static int ipw2100_wx_set_promisc(struct net_device *dev,
7908                                   struct iw_request_info *info,
7909                                   union iwreq_data *wrqu, char *extra)
7910 {
7911         struct ipw2100_priv *priv = libipw_priv(dev);
7912         int *parms = (int *)extra;
7913         int enable = (parms[0] > 0);
7914         int err = 0;
7915
7916         mutex_lock(&priv->action_mutex);
7917         if (!(priv->status & STATUS_INITIALIZED)) {
7918                 err = -EIO;
7919                 goto done;
7920         }
7921
7922         if (enable) {
7923                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7924                         err = ipw2100_set_channel(priv, parms[1], 0);
7925                         goto done;
7926                 }
7927                 priv->channel = parms[1];
7928                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7929         } else {
7930                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7931                         err = ipw2100_switch_mode(priv, priv->last_mode);
7932         }
7933       done:
7934         mutex_unlock(&priv->action_mutex);
7935         return err;
7936 }
7937
7938 static int ipw2100_wx_reset(struct net_device *dev,
7939                             struct iw_request_info *info,
7940                             union iwreq_data *wrqu, char *extra)
7941 {
7942         struct ipw2100_priv *priv = libipw_priv(dev);
7943         if (priv->status & STATUS_INITIALIZED)
7944                 schedule_reset(priv);
7945         return 0;
7946 }
7947
7948 #endif
7949
7950 static int ipw2100_wx_set_powermode(struct net_device *dev,
7951                                     struct iw_request_info *info,
7952                                     union iwreq_data *wrqu, char *extra)
7953 {
7954         struct ipw2100_priv *priv = libipw_priv(dev);
7955         int err = 0, mode = *(int *)extra;
7956
7957         mutex_lock(&priv->action_mutex);
7958         if (!(priv->status & STATUS_INITIALIZED)) {
7959                 err = -EIO;
7960                 goto done;
7961         }
7962
7963         if ((mode < 0) || (mode > POWER_MODES))
7964                 mode = IPW_POWER_AUTO;
7965
7966         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7967                 err = ipw2100_set_power_mode(priv, mode);
7968       done:
7969         mutex_unlock(&priv->action_mutex);
7970         return err;
7971 }
7972
7973 #define MAX_POWER_STRING 80
7974 static int ipw2100_wx_get_powermode(struct net_device *dev,
7975                                     struct iw_request_info *info,
7976                                     union iwreq_data *wrqu, char *extra)
7977 {
7978         /*
7979          * This can be called at any time.  No action lock required
7980          */
7981
7982         struct ipw2100_priv *priv = libipw_priv(dev);
7983         int level = IPW_POWER_LEVEL(priv->power_mode);
7984         s32 timeout, period;
7985
7986         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7987                 snprintf(extra, MAX_POWER_STRING,
7988                          "Power save level: %d (Off)", level);
7989         } else {
7990                 switch (level) {
7991                 case IPW_POWER_MODE_CAM:
7992                         snprintf(extra, MAX_POWER_STRING,
7993                                  "Power save level: %d (None)", level);
7994                         break;
7995                 case IPW_POWER_AUTO:
7996                         snprintf(extra, MAX_POWER_STRING,
7997                                  "Power save level: %d (Auto)", level);
7998                         break;
7999                 default:
8000                         timeout = timeout_duration[level - 1] / 1000;
8001                         period = period_duration[level - 1] / 1000;
8002                         snprintf(extra, MAX_POWER_STRING,
8003                                  "Power save level: %d "
8004                                  "(Timeout %dms, Period %dms)",
8005                                  level, timeout, period);
8006                 }
8007         }
8008
8009         wrqu->data.length = strlen(extra) + 1;
8010
8011         return 0;
8012 }
8013
8014 static int ipw2100_wx_set_preamble(struct net_device *dev,
8015                                    struct iw_request_info *info,
8016                                    union iwreq_data *wrqu, char *extra)
8017 {
8018         struct ipw2100_priv *priv = libipw_priv(dev);
8019         int err, mode = *(int *)extra;
8020
8021         mutex_lock(&priv->action_mutex);
8022         if (!(priv->status & STATUS_INITIALIZED)) {
8023                 err = -EIO;
8024                 goto done;
8025         }
8026
8027         if (mode == 1)
8028                 priv->config |= CFG_LONG_PREAMBLE;
8029         else if (mode == 0)
8030                 priv->config &= ~CFG_LONG_PREAMBLE;
8031         else {
8032                 err = -EINVAL;
8033                 goto done;
8034         }
8035
8036         err = ipw2100_system_config(priv, 0);
8037
8038       done:
8039         mutex_unlock(&priv->action_mutex);
8040         return err;
8041 }
8042
8043 static int ipw2100_wx_get_preamble(struct net_device *dev,
8044                                    struct iw_request_info *info,
8045                                    union iwreq_data *wrqu, char *extra)
8046 {
8047         /*
8048          * This can be called at any time.  No action lock required
8049          */
8050
8051         struct ipw2100_priv *priv = libipw_priv(dev);
8052
8053         if (priv->config & CFG_LONG_PREAMBLE)
8054                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8055         else
8056                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8057
8058         return 0;
8059 }
8060
8061 #ifdef CONFIG_IPW2100_MONITOR
8062 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8063                                     struct iw_request_info *info,
8064                                     union iwreq_data *wrqu, char *extra)
8065 {
8066         struct ipw2100_priv *priv = libipw_priv(dev);
8067         int err, mode = *(int *)extra;
8068
8069         mutex_lock(&priv->action_mutex);
8070         if (!(priv->status & STATUS_INITIALIZED)) {
8071                 err = -EIO;
8072                 goto done;
8073         }
8074
8075         if (mode == 1)
8076                 priv->config |= CFG_CRC_CHECK;
8077         else if (mode == 0)
8078                 priv->config &= ~CFG_CRC_CHECK;
8079         else {
8080                 err = -EINVAL;
8081                 goto done;
8082         }
8083         err = 0;
8084
8085       done:
8086         mutex_unlock(&priv->action_mutex);
8087         return err;
8088 }
8089
8090 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8091                                     struct iw_request_info *info,
8092                                     union iwreq_data *wrqu, char *extra)
8093 {
8094         /*
8095          * This can be called at any time.  No action lock required
8096          */
8097
8098         struct ipw2100_priv *priv = libipw_priv(dev);
8099
8100         if (priv->config & CFG_CRC_CHECK)
8101                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8102         else
8103                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8104
8105         return 0;
8106 }
8107 #endif                          /* CONFIG_IPW2100_MONITOR */
8108
8109 static iw_handler ipw2100_wx_handlers[] = {
8110         NULL,                   /* SIOCSIWCOMMIT */
8111         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8112         NULL,                   /* SIOCSIWNWID */
8113         NULL,                   /* SIOCGIWNWID */
8114         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8115         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8116         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8117         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8118         NULL,                   /* SIOCSIWSENS */
8119         NULL,                   /* SIOCGIWSENS */
8120         NULL,                   /* SIOCSIWRANGE */
8121         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8122         NULL,                   /* SIOCSIWPRIV */
8123         NULL,                   /* SIOCGIWPRIV */
8124         NULL,                   /* SIOCSIWSTATS */
8125         NULL,                   /* SIOCGIWSTATS */
8126         NULL,                   /* SIOCSIWSPY */
8127         NULL,                   /* SIOCGIWSPY */
8128         NULL,                   /* SIOCGIWTHRSPY */
8129         NULL,                   /* SIOCWIWTHRSPY */
8130         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8131         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8132         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8133         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8134         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8135         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8136         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8137         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8138         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8139         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8140         NULL,                   /* -- hole -- */
8141         NULL,                   /* -- hole -- */
8142         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8143         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8144         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8145         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8146         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8147         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8148         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8149         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8150         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8151         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8152         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8153         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8154         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8155         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8156         NULL,                   /* -- hole -- */
8157         NULL,                   /* -- hole -- */
8158         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8159         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8160         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8161         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8162         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8163         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8164         NULL,                   /* SIOCSIWPMKSA */
8165 };
8166
8167 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8168 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8169 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8170 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8171 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8172 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8173 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8174 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8175
8176 static const struct iw_priv_args ipw2100_private_args[] = {
8177
8178 #ifdef CONFIG_IPW2100_MONITOR
8179         {
8180          IPW2100_PRIV_SET_MONITOR,
8181          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8182         {
8183          IPW2100_PRIV_RESET,
8184          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8185 #endif                          /* CONFIG_IPW2100_MONITOR */
8186
8187         {
8188          IPW2100_PRIV_SET_POWER,
8189          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8190         {
8191          IPW2100_PRIV_GET_POWER,
8192          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8193          "get_power"},
8194         {
8195          IPW2100_PRIV_SET_LONGPREAMBLE,
8196          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8197         {
8198          IPW2100_PRIV_GET_LONGPREAMBLE,
8199          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8200 #ifdef CONFIG_IPW2100_MONITOR
8201         {
8202          IPW2100_PRIV_SET_CRC_CHECK,
8203          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8204         {
8205          IPW2100_PRIV_GET_CRC_CHECK,
8206          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8207 #endif                          /* CONFIG_IPW2100_MONITOR */
8208 };
8209
8210 static iw_handler ipw2100_private_handler[] = {
8211 #ifdef CONFIG_IPW2100_MONITOR
8212         ipw2100_wx_set_promisc,
8213         ipw2100_wx_reset,
8214 #else                           /* CONFIG_IPW2100_MONITOR */
8215         NULL,
8216         NULL,
8217 #endif                          /* CONFIG_IPW2100_MONITOR */
8218         ipw2100_wx_set_powermode,
8219         ipw2100_wx_get_powermode,
8220         ipw2100_wx_set_preamble,
8221         ipw2100_wx_get_preamble,
8222 #ifdef CONFIG_IPW2100_MONITOR
8223         ipw2100_wx_set_crc_check,
8224         ipw2100_wx_get_crc_check,
8225 #else                           /* CONFIG_IPW2100_MONITOR */
8226         NULL,
8227         NULL,
8228 #endif                          /* CONFIG_IPW2100_MONITOR */
8229 };
8230
8231 /*
8232  * Get wireless statistics.
8233  * Called by /proc/net/wireless
8234  * Also called by SIOCGIWSTATS
8235  */
8236 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8237 {
8238         enum {
8239                 POOR = 30,
8240                 FAIR = 60,
8241                 GOOD = 80,
8242                 VERY_GOOD = 90,
8243                 EXCELLENT = 95,
8244                 PERFECT = 100
8245         };
8246         int rssi_qual;
8247         int tx_qual;
8248         int beacon_qual;
8249         int quality;
8250
8251         struct ipw2100_priv *priv = libipw_priv(dev);
8252         struct iw_statistics *wstats;
8253         u32 rssi, tx_retries, missed_beacons, tx_failures;
8254         u32 ord_len = sizeof(u32);
8255
8256         if (!priv)
8257                 return (struct iw_statistics *)NULL;
8258
8259         wstats = &priv->wstats;
8260
8261         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8262          * ipw2100_wx_wireless_stats seems to be called before fw is
8263          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8264          * and associated; if not associcated, the values are all meaningless
8265          * anyway, so set them all to NULL and INVALID */
8266         if (!(priv->status & STATUS_ASSOCIATED)) {
8267                 wstats->miss.beacon = 0;
8268                 wstats->discard.retries = 0;
8269                 wstats->qual.qual = 0;
8270                 wstats->qual.level = 0;
8271                 wstats->qual.noise = 0;
8272                 wstats->qual.updated = 7;
8273                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8274                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8275                 return wstats;
8276         }
8277
8278         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8279                                 &missed_beacons, &ord_len))
8280                 goto fail_get_ordinal;
8281
8282         /* If we don't have a connection the quality and level is 0 */
8283         if (!(priv->status & STATUS_ASSOCIATED)) {
8284                 wstats->qual.qual = 0;
8285                 wstats->qual.level = 0;
8286         } else {
8287                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8288                                         &rssi, &ord_len))
8289                         goto fail_get_ordinal;
8290                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8291                 if (rssi < 10)
8292                         rssi_qual = rssi * POOR / 10;
8293                 else if (rssi < 15)
8294                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8295                 else if (rssi < 20)
8296                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8297                 else if (rssi < 30)
8298                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8299                             10 + GOOD;
8300                 else
8301                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8302                             10 + VERY_GOOD;
8303
8304                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8305                                         &tx_retries, &ord_len))
8306                         goto fail_get_ordinal;
8307
8308                 if (tx_retries > 75)
8309                         tx_qual = (90 - tx_retries) * POOR / 15;
8310                 else if (tx_retries > 70)
8311                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8312                 else if (tx_retries > 65)
8313                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8314                 else if (tx_retries > 50)
8315                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8316                             15 + GOOD;
8317                 else
8318                         tx_qual = (50 - tx_retries) *
8319                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8320
8321                 if (missed_beacons > 50)
8322                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8323                 else if (missed_beacons > 40)
8324                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8325                             10 + POOR;
8326                 else if (missed_beacons > 32)
8327                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8328                             18 + FAIR;
8329                 else if (missed_beacons > 20)
8330                         beacon_qual = (32 - missed_beacons) *
8331                             (VERY_GOOD - GOOD) / 20 + GOOD;
8332                 else
8333                         beacon_qual = (20 - missed_beacons) *
8334                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8335
8336                 quality = min(tx_qual, rssi_qual);
8337                 quality = min(beacon_qual, quality);
8338
8339 #ifdef CONFIG_IPW2100_DEBUG
8340                 if (beacon_qual == quality)
8341                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8342                 else if (tx_qual == quality)
8343                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8344                 else if (quality != 100)
8345                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8346                 else
8347                         IPW_DEBUG_WX("Quality not clamped.\n");
8348 #endif
8349
8350                 wstats->qual.qual = quality;
8351                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8352         }
8353
8354         wstats->qual.noise = 0;
8355         wstats->qual.updated = 7;
8356         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8357
8358         /* FIXME: this is percent and not a # */
8359         wstats->miss.beacon = missed_beacons;
8360
8361         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8362                                 &tx_failures, &ord_len))
8363                 goto fail_get_ordinal;
8364         wstats->discard.retries = tx_failures;
8365
8366         return wstats;
8367
8368       fail_get_ordinal:
8369         IPW_DEBUG_WX("failed querying ordinals.\n");
8370
8371         return (struct iw_statistics *)NULL;
8372 }
8373
8374 static struct iw_handler_def ipw2100_wx_handler_def = {
8375         .standard = ipw2100_wx_handlers,
8376         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8377         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8378         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8379         .private = (iw_handler *) ipw2100_private_handler,
8380         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8381         .get_wireless_stats = ipw2100_wx_wireless_stats,
8382 };
8383
8384 static void ipw2100_wx_event_work(struct work_struct *work)
8385 {
8386         struct ipw2100_priv *priv =
8387                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8388         union iwreq_data wrqu;
8389         unsigned int len = ETH_ALEN;
8390
8391         if (priv->status & STATUS_STOPPING)
8392                 return;
8393
8394         mutex_lock(&priv->action_mutex);
8395
8396         IPW_DEBUG_WX("enter\n");
8397
8398         mutex_unlock(&priv->action_mutex);
8399
8400         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8401
8402         /* Fetch BSSID from the hardware */
8403         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8404             priv->status & STATUS_RF_KILL_MASK ||
8405             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8406                                 &priv->bssid, &len)) {
8407                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8408         } else {
8409                 /* We now have the BSSID, so can finish setting to the full
8410                  * associated state */
8411                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8412                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8413                 priv->status &= ~STATUS_ASSOCIATING;
8414                 priv->status |= STATUS_ASSOCIATED;
8415                 netif_carrier_on(priv->net_dev);
8416                 netif_wake_queue(priv->net_dev);
8417         }
8418
8419         if (!(priv->status & STATUS_ASSOCIATED)) {
8420                 IPW_DEBUG_WX("Configuring ESSID\n");
8421                 mutex_lock(&priv->action_mutex);
8422                 /* This is a disassociation event, so kick the firmware to
8423                  * look for another AP */
8424                 if (priv->config & CFG_STATIC_ESSID)
8425                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8426                                           0);
8427                 else
8428                         ipw2100_set_essid(priv, NULL, 0, 0);
8429                 mutex_unlock(&priv->action_mutex);
8430         }
8431
8432         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8433 }
8434
8435 #define IPW2100_FW_MAJOR_VERSION 1
8436 #define IPW2100_FW_MINOR_VERSION 3
8437
8438 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8439 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8440
8441 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8442                              IPW2100_FW_MAJOR_VERSION)
8443
8444 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8445 "." __stringify(IPW2100_FW_MINOR_VERSION)
8446
8447 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8448
8449 /*
8450
8451 BINARY FIRMWARE HEADER FORMAT
8452
8453 offset      length   desc
8454 0           2        version
8455 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8456 4           4        fw_len
8457 8           4        uc_len
8458 C           fw_len   firmware data
8459 12 + fw_len uc_len   microcode data
8460
8461 */
8462
8463 struct ipw2100_fw_header {
8464         short version;
8465         short mode;
8466         unsigned int fw_size;
8467         unsigned int uc_size;
8468 } __packed;
8469
8470 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8471 {
8472         struct ipw2100_fw_header *h =
8473             (struct ipw2100_fw_header *)fw->fw_entry->data;
8474
8475         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8476                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8477                        "(detected version id of %u). "
8478                        "See Documentation/networking/README.ipw2100\n",
8479                        h->version);
8480                 return 1;
8481         }
8482
8483         fw->version = h->version;
8484         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8485         fw->fw.size = h->fw_size;
8486         fw->uc.data = fw->fw.data + h->fw_size;
8487         fw->uc.size = h->uc_size;
8488
8489         return 0;
8490 }
8491
8492 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8493                                 struct ipw2100_fw *fw)
8494 {
8495         char *fw_name;
8496         int rc;
8497
8498         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8499                        priv->net_dev->name);
8500
8501         switch (priv->ieee->iw_mode) {
8502         case IW_MODE_ADHOC:
8503                 fw_name = IPW2100_FW_NAME("-i");
8504                 break;
8505 #ifdef CONFIG_IPW2100_MONITOR
8506         case IW_MODE_MONITOR:
8507                 fw_name = IPW2100_FW_NAME("-p");
8508                 break;
8509 #endif
8510         case IW_MODE_INFRA:
8511         default:
8512                 fw_name = IPW2100_FW_NAME("");
8513                 break;
8514         }
8515
8516         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8517
8518         if (rc < 0) {
8519                 printk(KERN_ERR DRV_NAME ": "
8520                        "%s: Firmware '%s' not available or load failed.\n",
8521                        priv->net_dev->name, fw_name);
8522                 return rc;
8523         }
8524         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8525                        fw->fw_entry->size);
8526
8527         ipw2100_mod_firmware_load(fw);
8528
8529         return 0;
8530 }
8531
8532 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8533 #ifdef CONFIG_IPW2100_MONITOR
8534 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8535 #endif
8536 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8537
8538 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8539                                      struct ipw2100_fw *fw)
8540 {
8541         fw->version = 0;
8542         if (fw->fw_entry)
8543                 release_firmware(fw->fw_entry);
8544         fw->fw_entry = NULL;
8545 }
8546
8547 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8548                                  size_t max)
8549 {
8550         char ver[MAX_FW_VERSION_LEN];
8551         u32 len = MAX_FW_VERSION_LEN;
8552         u32 tmp;
8553         int i;
8554         /* firmware version is an ascii string (max len of 14) */
8555         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8556                 return -EIO;
8557         tmp = max;
8558         if (len >= max)
8559                 len = max - 1;
8560         for (i = 0; i < len; i++)
8561                 buf[i] = ver[i];
8562         buf[i] = '\0';
8563         return tmp;
8564 }
8565
8566 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8567                                     size_t max)
8568 {
8569         u32 ver;
8570         u32 len = sizeof(ver);
8571         /* microcode version is a 32 bit integer */
8572         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8573                 return -EIO;
8574         return snprintf(buf, max, "%08X", ver);
8575 }
8576
8577 /*
8578  * On exit, the firmware will have been freed from the fw list
8579  */
8580 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8581 {
8582         /* firmware is constructed of N contiguous entries, each entry is
8583          * structured as:
8584          *
8585          * offset    sie         desc
8586          * 0         4           address to write to
8587          * 4         2           length of data run
8588          * 6         length      data
8589          */
8590         unsigned int addr;
8591         unsigned short len;
8592
8593         const unsigned char *firmware_data = fw->fw.data;
8594         unsigned int firmware_data_left = fw->fw.size;
8595
8596         while (firmware_data_left > 0) {
8597                 addr = *(u32 *) (firmware_data);
8598                 firmware_data += 4;
8599                 firmware_data_left -= 4;
8600
8601                 len = *(u16 *) (firmware_data);
8602                 firmware_data += 2;
8603                 firmware_data_left -= 2;
8604
8605                 if (len > 32) {
8606                         printk(KERN_ERR DRV_NAME ": "
8607                                "Invalid firmware run-length of %d bytes\n",
8608                                len);
8609                         return -EINVAL;
8610                 }
8611
8612                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8613                 firmware_data += len;
8614                 firmware_data_left -= len;
8615         }
8616
8617         return 0;
8618 }
8619
8620 struct symbol_alive_response {
8621         u8 cmd_id;
8622         u8 seq_num;
8623         u8 ucode_rev;
8624         u8 eeprom_valid;
8625         u16 valid_flags;
8626         u8 IEEE_addr[6];
8627         u16 flags;
8628         u16 pcb_rev;
8629         u16 clock_settle_time;  // 1us LSB
8630         u16 powerup_settle_time;        // 1us LSB
8631         u16 hop_settle_time;    // 1us LSB
8632         u8 date[3];             // month, day, year
8633         u8 time[2];             // hours, minutes
8634         u8 ucode_valid;
8635 };
8636
8637 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8638                                   struct ipw2100_fw *fw)
8639 {
8640         struct net_device *dev = priv->net_dev;
8641         const unsigned char *microcode_data = fw->uc.data;
8642         unsigned int microcode_data_left = fw->uc.size;
8643         void __iomem *reg = (void __iomem *)dev->base_addr;
8644
8645         struct symbol_alive_response response;
8646         int i, j;
8647         u8 data;
8648
8649         /* Symbol control */
8650         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8651         readl(reg);
8652         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8653         readl(reg);
8654
8655         /* HW config */
8656         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8657         readl(reg);
8658         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8659         readl(reg);
8660
8661         /* EN_CS_ACCESS bit to reset control store pointer */
8662         write_nic_byte(dev, 0x210000, 0x40);
8663         readl(reg);
8664         write_nic_byte(dev, 0x210000, 0x0);
8665         readl(reg);
8666         write_nic_byte(dev, 0x210000, 0x40);
8667         readl(reg);
8668
8669         /* copy microcode from buffer into Symbol */
8670
8671         while (microcode_data_left > 0) {
8672                 write_nic_byte(dev, 0x210010, *microcode_data++);
8673                 write_nic_byte(dev, 0x210010, *microcode_data++);
8674                 microcode_data_left -= 2;
8675         }
8676
8677         /* EN_CS_ACCESS bit to reset the control store pointer */
8678         write_nic_byte(dev, 0x210000, 0x0);
8679         readl(reg);
8680
8681         /* Enable System (Reg 0)
8682          * first enable causes garbage in RX FIFO */
8683         write_nic_byte(dev, 0x210000, 0x0);
8684         readl(reg);
8685         write_nic_byte(dev, 0x210000, 0x80);
8686         readl(reg);
8687
8688         /* Reset External Baseband Reg */
8689         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8690         readl(reg);
8691         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8692         readl(reg);
8693
8694         /* HW Config (Reg 5) */
8695         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8696         readl(reg);
8697         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8698         readl(reg);
8699
8700         /* Enable System (Reg 0)
8701          * second enable should be OK */
8702         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8703         readl(reg);
8704         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8705
8706         /* check Symbol is enabled - upped this from 5 as it wasn't always
8707          * catching the update */
8708         for (i = 0; i < 10; i++) {
8709                 udelay(10);
8710
8711                 /* check Dino is enabled bit */
8712                 read_nic_byte(dev, 0x210000, &data);
8713                 if (data & 0x1)
8714                         break;
8715         }
8716
8717         if (i == 10) {
8718                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8719                        dev->name);
8720                 return -EIO;
8721         }
8722
8723         /* Get Symbol alive response */
8724         for (i = 0; i < 30; i++) {
8725                 /* Read alive response structure */
8726                 for (j = 0;
8727                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8728                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8729
8730                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8731                         break;
8732                 udelay(10);
8733         }
8734
8735         if (i == 30) {
8736                 printk(KERN_ERR DRV_NAME
8737                        ": %s: No response from Symbol - hw not alive\n",
8738                        dev->name);
8739                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8740                 return -EIO;
8741         }
8742
8743         return 0;
8744 }