Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES" "undefined",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313         1000000,
314         2000000,
315         5500000,
316         11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320         { .bitrate = 10 },
321         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338                                struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340                                 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342                                  size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344                                     size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346                                      struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348                                   struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355         *val = readl((void __iomem *)(dev->base_addr + reg));
356         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361         writel(val, (void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366                                       u16 * val)
367 {
368         *val = readw((void __iomem *)(dev->base_addr + reg));
369         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374         *val = readb((void __iomem *)(dev->base_addr + reg));
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         writew(val, (void __iomem *)(dev->base_addr + reg));
381         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386         writeb(val, (void __iomem *)(dev->base_addr + reg));
387         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435                        addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444                                     const u8 * buf)
445 {
446         u32 aligned_addr;
447         u32 aligned_len;
448         u32 dif_len;
449         u32 i;
450
451         /* read first nibble byte by byte */
452         aligned_addr = addr & (~0x3);
453         dif_len = addr - aligned_addr;
454         if (dif_len) {
455                 /* Start reading at aligned_addr + dif_len */
456                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457                                aligned_addr);
458                 for (i = dif_len; i < 4; i++, buf++)
459                         write_register_byte(dev,
460                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
461                                             *buf);
462
463                 len -= dif_len;
464                 aligned_addr += 4;
465         }
466
467         /* read DWs through autoincrement registers */
468         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469         aligned_len = len & (~0x3);
470         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473         /* copy the last nibble */
474         dif_len = len - aligned_len;
475         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476         for (i = 0; i < dif_len; i++, buf++)
477                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478                                     *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482                                    u8 * buf)
483 {
484         u32 aligned_addr;
485         u32 aligned_len;
486         u32 dif_len;
487         u32 i;
488
489         /* read first nibble byte by byte */
490         aligned_addr = addr & (~0x3);
491         dif_len = addr - aligned_addr;
492         if (dif_len) {
493                 /* Start reading at aligned_addr + dif_len */
494                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495                                aligned_addr);
496                 for (i = dif_len; i < 4; i++, buf++)
497                         read_register_byte(dev,
498                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
499                                            buf);
500
501                 len -= dif_len;
502                 aligned_addr += 4;
503         }
504
505         /* read DWs through autoincrement registers */
506         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507         aligned_len = len & (~0x3);
508         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511         /* copy the last nibble */
512         dif_len = len - aligned_len;
513         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514         for (i = 0; i < dif_len; i++, buf++)
515                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520         return (dev->base_addr &&
521                 (readl
522                  ((void __iomem *)(dev->base_addr +
523                                    IPW_REG_DOA_DEBUG_AREA_START))
524                  == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528                                void *val, u32 * len)
529 {
530         struct ipw2100_ordinals *ordinals = &priv->ordinals;
531         u32 addr;
532         u32 field_info;
533         u16 field_len;
534         u16 field_count;
535         u32 total_length;
536
537         if (ordinals->table1_addr == 0) {
538                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539                        "before they have been loaded.\n");
540                 return -EINVAL;
541         }
542
543         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547                         printk(KERN_WARNING DRV_NAME
548                                ": ordinal buffer length too small, need %zd\n",
549                                IPW_ORD_TAB_1_ENTRY_SIZE);
550
551                         return -EINVAL;
552                 }
553
554                 read_nic_dword(priv->net_dev,
555                                ordinals->table1_addr + (ord << 2), &addr);
556                 read_nic_dword(priv->net_dev, addr, val);
557
558                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560                 return 0;
561         }
562
563         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565                 ord -= IPW_START_ORD_TAB_2;
566
567                 /* get the address of statistic */
568                 read_nic_dword(priv->net_dev,
569                                ordinals->table2_addr + (ord << 3), &addr);
570
571                 /* get the second DW of statistics ;
572                  * two 16-bit words - first is length, second is count */
573                 read_nic_dword(priv->net_dev,
574                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
575                                &field_info);
576
577                 /* get each entry length */
578                 field_len = *((u16 *) & field_info);
579
580                 /* get number of entries */
581                 field_count = *(((u16 *) & field_info) + 1);
582
583                 /* abort if no enough memory */
584                 total_length = field_len * field_count;
585                 if (total_length > *len) {
586                         *len = total_length;
587                         return -EINVAL;
588                 }
589
590                 *len = total_length;
591                 if (!total_length)
592                         return 0;
593
594                 /* read the ordinal data from the SRAM */
595                 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597                 return 0;
598         }
599
600         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601                "in table 2\n", ord);
602
603         return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607                                u32 * len)
608 {
609         struct ipw2100_ordinals *ordinals = &priv->ordinals;
610         u32 addr;
611
612         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615                         IPW_DEBUG_INFO("wrong size\n");
616                         return -EINVAL;
617                 }
618
619                 read_nic_dword(priv->net_dev,
620                                ordinals->table1_addr + (ord << 2), &addr);
621
622                 write_nic_dword(priv->net_dev, addr, *val);
623
624                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626                 return 0;
627         }
628
629         IPW_DEBUG_INFO("wrong table\n");
630         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631                 return -EINVAL;
632
633         return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637                           const u8 * data, u32 len, u32 ofs)
638 {
639         int out, i, j, l;
640         char c;
641
642         out = snprintf(buf, count, "%08X", ofs);
643
644         for (l = 0, i = 0; i < 2; i++) {
645                 out += snprintf(buf + out, count - out, " ");
646                 for (j = 0; j < 8 && l < len; j++, l++)
647                         out += snprintf(buf + out, count - out, "%02X ",
648                                         data[(i * 8 + j)]);
649                 for (; j < 8; j++)
650                         out += snprintf(buf + out, count - out, "   ");
651         }
652
653         out += snprintf(buf + out, count - out, " ");
654         for (l = 0, i = 0; i < 2; i++) {
655                 out += snprintf(buf + out, count - out, " ");
656                 for (j = 0; j < 8 && l < len; j++, l++) {
657                         c = data[(i * 8 + j)];
658                         if (!isascii(c) || !isprint(c))
659                                 c = '.';
660
661                         out += snprintf(buf + out, count - out, "%c", c);
662                 }
663
664                 for (; j < 8; j++)
665                         out += snprintf(buf + out, count - out, " ");
666         }
667
668         return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673         char line[81];
674         u32 ofs = 0;
675         if (!(ipw2100_debug_level & level))
676                 return;
677
678         while (len) {
679                 printk(KERN_DEBUG "%s\n",
680                        snprint_line(line, sizeof(line), &data[ofs],
681                                     min(len, 16U), ofs));
682                 ofs += 16;
683                 len -= min(len, 16U);
684         }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691         unsigned long now = get_seconds();
692
693         /* If we haven't received a reset request within the backoff period,
694          * then we can reset the backoff interval so this reset occurs
695          * immediately */
696         if (priv->reset_backoff &&
697             (now - priv->last_reset > priv->reset_backoff))
698                 priv->reset_backoff = 0;
699
700         priv->last_reset = get_seconds();
701
702         if (!(priv->status & STATUS_RESET_PENDING)) {
703                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704                                priv->net_dev->name, priv->reset_backoff);
705                 netif_carrier_off(priv->net_dev);
706                 netif_stop_queue(priv->net_dev);
707                 priv->status |= STATUS_RESET_PENDING;
708                 if (priv->reset_backoff)
709                         queue_delayed_work(priv->workqueue, &priv->reset_work,
710                                            priv->reset_backoff * HZ);
711                 else
712                         queue_delayed_work(priv->workqueue, &priv->reset_work,
713                                            0);
714
715                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716                         priv->reset_backoff++;
717
718                 wake_up_interruptible(&priv->wait_command_queue);
719         } else
720                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721                                priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727                                    struct host_command *cmd)
728 {
729         struct list_head *element;
730         struct ipw2100_tx_packet *packet;
731         unsigned long flags;
732         int err = 0;
733
734         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735                      command_types[cmd->host_command], cmd->host_command,
736                      cmd->host_command_length);
737         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738                    cmd->host_command_length);
739
740         spin_lock_irqsave(&priv->low_lock, flags);
741
742         if (priv->fatal_error) {
743                 IPW_DEBUG_INFO
744                     ("Attempt to send command while hardware in fatal error condition.\n");
745                 err = -EIO;
746                 goto fail_unlock;
747         }
748
749         if (!(priv->status & STATUS_RUNNING)) {
750                 IPW_DEBUG_INFO
751                     ("Attempt to send command while hardware is not running.\n");
752                 err = -EIO;
753                 goto fail_unlock;
754         }
755
756         if (priv->status & STATUS_CMD_ACTIVE) {
757                 IPW_DEBUG_INFO
758                     ("Attempt to send command while another command is pending.\n");
759                 err = -EBUSY;
760                 goto fail_unlock;
761         }
762
763         if (list_empty(&priv->msg_free_list)) {
764                 IPW_DEBUG_INFO("no available msg buffers\n");
765                 goto fail_unlock;
766         }
767
768         priv->status |= STATUS_CMD_ACTIVE;
769         priv->messages_sent++;
770
771         element = priv->msg_free_list.next;
772
773         packet = list_entry(element, struct ipw2100_tx_packet, list);
774         packet->jiffy_start = jiffies;
775
776         /* initialize the firmware command packet */
777         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779         packet->info.c_struct.cmd->host_command_len_reg =
780             cmd->host_command_length;
781         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784                cmd->host_command_parameters,
785                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787         list_del(element);
788         DEC_STAT(&priv->msg_free_stat);
789
790         list_add_tail(element, &priv->msg_pend_list);
791         INC_STAT(&priv->msg_pend_stat);
792
793         ipw2100_tx_send_commands(priv);
794         ipw2100_tx_send_data(priv);
795
796         spin_unlock_irqrestore(&priv->low_lock, flags);
797
798         /*
799          * We must wait for this command to complete before another
800          * command can be sent...  but if we wait more than 3 seconds
801          * then there is a problem.
802          */
803
804         err =
805             wait_event_interruptible_timeout(priv->wait_command_queue,
806                                              !(priv->
807                                                status & STATUS_CMD_ACTIVE),
808                                              HOST_COMPLETE_TIMEOUT);
809
810         if (err == 0) {
811                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814                 priv->status &= ~STATUS_CMD_ACTIVE;
815                 schedule_reset(priv);
816                 return -EIO;
817         }
818
819         if (priv->fatal_error) {
820                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821                        priv->net_dev->name);
822                 return -EIO;
823         }
824
825         /* !!!!! HACK TEST !!!!!
826          * When lots of debug trace statements are enabled, the driver
827          * doesn't seem to have as many firmware restart cycles...
828          *
829          * As a test, we're sticking in a 1/100s delay here */
830         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832         return 0;
833
834       fail_unlock:
835         spin_unlock_irqrestore(&priv->low_lock, flags);
836
837         return err;
838 }
839
840 /*
841  * Verify the values and data access of the hardware
842  * No locks needed or used.  No functions called.
843  */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846         u32 data1, data2;
847         u32 address;
848
849         u32 val1 = 0x76543210;
850         u32 val2 = 0xFEDCBA98;
851
852         /* Domain 0 check - all values should be DOA_DEBUG */
853         for (address = IPW_REG_DOA_DEBUG_AREA_START;
854              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855                 read_register(priv->net_dev, address, &data1);
856                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857                         return -EIO;
858         }
859
860         /* Domain 1 check - use arbitrary read/write compare  */
861         for (address = 0; address < 5; address++) {
862                 /* The memory area is not used now */
863                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864                                val1);
865                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866                                val2);
867                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868                               &data1);
869                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870                               &data2);
871                 if (val1 == data1 && val2 == data2)
872                         return 0;
873         }
874
875         return -EIO;
876 }
877
878 /*
879  *
880  * Loop until the CARD_DISABLED bit is the same value as the
881  * supplied parameter
882  *
883  * TODO: See if it would be more efficient to do a wait/wake
884  *       cycle and have the completion event trigger the wakeup
885  *
886  */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890         int i;
891         u32 card_state;
892         u32 len = sizeof(card_state);
893         int err;
894
895         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897                                           &card_state, &len);
898                 if (err) {
899                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900                                        "failed.\n");
901                         return 0;
902                 }
903
904                 /* We'll break out if either the HW state says it is
905                  * in the state we want, or if HOST_COMPLETE command
906                  * finishes */
907                 if ((card_state == state) ||
908                     ((priv->status & STATUS_ENABLED) ?
909                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910                         if (state == IPW_HW_STATE_ENABLED)
911                                 priv->status |= STATUS_ENABLED;
912                         else
913                                 priv->status &= ~STATUS_ENABLED;
914
915                         return 0;
916                 }
917
918                 udelay(50);
919         }
920
921         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922                        state ? "DISABLED" : "ENABLED");
923         return -EIO;
924 }
925
926 /*********************************************************************
927     Procedure   :   sw_reset_and_clock
928     Purpose     :   Asserts s/w reset, asserts clock initialization
929                     and waits for clock stabilization
930  ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933         int i;
934         u32 r;
935
936         // assert s/w reset
937         write_register(priv->net_dev, IPW_REG_RESET_REG,
938                        IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940         // wait for clock stabilization
941         for (i = 0; i < 1000; i++) {
942                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944                 // check clock ready bit
945                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947                         break;
948         }
949
950         if (i == 1000)
951                 return -EIO;    // TODO: better error value
952
953         /* set "initialization complete" bit to move adapter to
954          * D0 state */
955         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958         /* wait for clock stabilization */
959         for (i = 0; i < 10000; i++) {
960                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962                 /* check clock ready bit */
963                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965                         break;
966         }
967
968         if (i == 10000)
969                 return -EIO;    /* TODO: better error value */
970
971         /* set D0 standby bit */
972         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976         return 0;
977 }
978
979 /*********************************************************************
980     Procedure   :   ipw2100_download_firmware
981     Purpose     :   Initiaze adapter after power on.
982                     The sequence is:
983                     1. assert s/w reset first!
984                     2. awake clocks & wait for clock stabilization
985                     3. hold ARC (don't ask me why...)
986                     4. load Dino ucode and reset/clock init again
987                     5. zero-out shared mem
988                     6. download f/w
989  *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992         u32 address;
993         int err;
994
995 #ifndef CONFIG_PM
996         /* Fetch the firmware and microcode */
997         struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000         if (priv->fatal_error) {
1001                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002                                 "fatal error %d.  Interface must be brought down.\n",
1003                                 priv->net_dev->name, priv->fatal_error);
1004                 return -EINVAL;
1005         }
1006 #ifdef CONFIG_PM
1007         if (!ipw2100_firmware.version) {
1008                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009                 if (err) {
1010                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011                                         priv->net_dev->name, err);
1012                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013                         goto fail;
1014                 }
1015         }
1016 #else
1017         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018         if (err) {
1019                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020                                 priv->net_dev->name, err);
1021                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022                 goto fail;
1023         }
1024 #endif
1025         priv->firmware_version = ipw2100_firmware.version;
1026
1027         /* s/w reset and clock stabilization */
1028         err = sw_reset_and_clock(priv);
1029         if (err) {
1030                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031                                 priv->net_dev->name, err);
1032                 goto fail;
1033         }
1034
1035         err = ipw2100_verify(priv);
1036         if (err) {
1037                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038                                 priv->net_dev->name, err);
1039                 goto fail;
1040         }
1041
1042         /* Hold ARC */
1043         write_nic_dword(priv->net_dev,
1044                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046         /* allow ARC to run */
1047         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049         /* load microcode */
1050         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051         if (err) {
1052                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053                        priv->net_dev->name, err);
1054                 goto fail;
1055         }
1056
1057         /* release ARC */
1058         write_nic_dword(priv->net_dev,
1059                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061         /* s/w reset and clock stabilization (again!!!) */
1062         err = sw_reset_and_clock(priv);
1063         if (err) {
1064                 printk(KERN_ERR DRV_NAME
1065                        ": %s: sw_reset_and_clock failed: %d\n",
1066                        priv->net_dev->name, err);
1067                 goto fail;
1068         }
1069
1070         /* load f/w */
1071         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072         if (err) {
1073                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074                                 priv->net_dev->name, err);
1075                 goto fail;
1076         }
1077 #ifndef CONFIG_PM
1078         /*
1079          * When the .resume method of the driver is called, the other
1080          * part of the system, i.e. the ide driver could still stay in
1081          * the suspend stage. This prevents us from loading the firmware
1082          * from the disk.  --YZ
1083          */
1084
1085         /* free any storage allocated for firmware image */
1086         ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089         /* zero out Domain 1 area indirectly (Si requirement) */
1090         for (address = IPW_HOST_FW_SHARED_AREA0;
1091              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092                 write_nic_dword(priv->net_dev, address, 0);
1093         for (address = IPW_HOST_FW_SHARED_AREA1;
1094              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA2;
1097              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA3;
1100              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105
1106         return 0;
1107
1108       fail:
1109         ipw2100_release_firmware(priv, &ipw2100_firmware);
1110         return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115         if (priv->status & STATUS_INT_ENABLED)
1116                 return;
1117         priv->status |= STATUS_INT_ENABLED;
1118         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123         if (!(priv->status & STATUS_INT_ENABLED))
1124                 return;
1125         priv->status &= ~STATUS_INT_ENABLED;
1126         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131         struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133         IPW_DEBUG_INFO("enter\n");
1134
1135         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136                       &ord->table1_addr);
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139                       &ord->table2_addr);
1140
1141         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144         ord->table2_size &= 0x0000FFFF;
1145
1146         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148         IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153         u32 reg = 0;
1154         /*
1155          * Set GPIO 3 writable by FW; GPIO 1 writable
1156          * by driver and enable clock
1157          */
1158         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159                IPW_BIT_GPIO_LED_OFF);
1160         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168         unsigned short value = 0;
1169         u32 reg = 0;
1170         int i;
1171
1172         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174                 priv->status &= ~STATUS_RF_KILL_HW;
1175                 return 0;
1176         }
1177
1178         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179                 udelay(RF_KILL_CHECK_DELAY);
1180                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182         }
1183
1184         if (value == 0) {
1185                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186                 priv->status |= STATUS_RF_KILL_HW;
1187         } else {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189                 priv->status &= ~STATUS_RF_KILL_HW;
1190         }
1191
1192         return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197         u32 addr, len;
1198         u32 val;
1199
1200         /*
1201          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202          */
1203         len = sizeof(addr);
1204         if (ipw2100_get_ordinal
1205             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207                                __LINE__);
1208                 return -EIO;
1209         }
1210
1211         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213         /*
1214          * EEPROM version is the byte at offset 0xfd in firmware
1215          * We read 4 bytes, then shift out the byte we actually want */
1216         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217         priv->eeprom_version = (val >> 24) & 0xFF;
1218         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220         /*
1221          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222          *
1223          *  notice that the EEPROM bit is reverse polarity, i.e.
1224          *     bit = 0  signifies HW RF kill switch is supported
1225          *     bit = 1  signifies HW RF kill switch is NOT supported
1226          */
1227         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228         if (!((val >> 24) & 0x01))
1229                 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Start firmware execution after power on and intialization
1239  * The sequence is:
1240  *  1. Release ARC
1241  *  2. Wait for f/w initialization completes;
1242  */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245         int i;
1246         u32 inta, inta_mask, gpio;
1247
1248         IPW_DEBUG_INFO("enter\n");
1249
1250         if (priv->status & STATUS_RUNNING)
1251                 return 0;
1252
1253         /*
1254          * Initialize the hw - drive adapter to DO state by setting
1255          * init_done bit. Wait for clk_ready bit and Download
1256          * fw & dino ucode
1257          */
1258         if (ipw2100_download_firmware(priv)) {
1259                 printk(KERN_ERR DRV_NAME
1260                        ": %s: Failed to power on the adapter.\n",
1261                        priv->net_dev->name);
1262                 return -EIO;
1263         }
1264
1265         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266          * in the firmware RBD and TBD ring queue */
1267         ipw2100_queues_initialize(priv);
1268
1269         ipw2100_hw_set_gpio(priv);
1270
1271         /* TODO -- Look at disabling interrupts here to make sure none
1272          * get fired during FW initialization */
1273
1274         /* Release ARC - clear reset bit */
1275         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277         /* wait for f/w intialization complete */
1278         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279         i = 5000;
1280         do {
1281                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282                 /* Todo... wait for sync command ... */
1283
1284                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286                 /* check "init done" bit */
1287                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288                         /* reset "init done" bit */
1289                         write_register(priv->net_dev, IPW_REG_INTA,
1290                                        IPW2100_INTA_FW_INIT_DONE);
1291                         break;
1292                 }
1293
1294                 /* check error conditions : we check these after the firmware
1295                  * check so that if there is an error, the interrupt handler
1296                  * will see it and the adapter will be reset */
1297                 if (inta &
1298                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299                         /* clear error conditions */
1300                         write_register(priv->net_dev, IPW_REG_INTA,
1301                                        IPW2100_INTA_FATAL_ERROR |
1302                                        IPW2100_INTA_PARITY_ERROR);
1303                 }
1304         } while (--i);
1305
1306         /* Clear out any pending INTAs since we aren't supposed to have
1307          * interrupts enabled at this point... */
1308         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310         inta &= IPW_INTERRUPT_MASK;
1311         /* Clear out any pending interrupts */
1312         if (inta & inta_mask)
1313                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316                      i ? "SUCCESS" : "FAILED");
1317
1318         if (!i) {
1319                 printk(KERN_WARNING DRV_NAME
1320                        ": %s: Firmware did not initialize.\n",
1321                        priv->net_dev->name);
1322                 return -EIO;
1323         }
1324
1325         /* allow firmware to write to GPIO1 & GPIO3 */
1326         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332         /* Ready to receive commands */
1333         priv->status |= STATUS_RUNNING;
1334
1335         /* The adapter has been reset; we are not associated */
1336         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338         IPW_DEBUG_INFO("exit\n");
1339
1340         return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345         if (!priv->fatal_error)
1346                 return;
1347
1348         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350         priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356         u32 reg;
1357         int i;
1358
1359         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361         ipw2100_hw_set_gpio(priv);
1362
1363         /* Step 1. Stop Master Assert */
1364         write_register(priv->net_dev, IPW_REG_RESET_REG,
1365                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367         /* Step 2. Wait for stop Master Assert
1368          *         (not more than 50us, otherwise ret error */
1369         i = 5;
1370         do {
1371                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375                         break;
1376         } while (--i);
1377
1378         priv->status &= ~STATUS_RESET_PENDING;
1379
1380         if (!i) {
1381                 IPW_DEBUG_INFO
1382                     ("exit - waited too long for master assert stop\n");
1383                 return -EIO;
1384         }
1385
1386         write_register(priv->net_dev, IPW_REG_RESET_REG,
1387                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389         /* Reset any fatal_error conditions */
1390         ipw2100_reset_fatalerror(priv);
1391
1392         /* At this point, the adapter is now stopped and disabled */
1393         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394                           STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401  *
1402  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403  *
1404  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405  * if STATUS_ASSN_LOST is sent.
1406  */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412         struct host_command cmd = {
1413                 .host_command = CARD_DISABLE_PHY_OFF,
1414                 .host_command_sequence = 0,
1415                 .host_command_length = 0,
1416         };
1417         int err, i;
1418         u32 val1, val2;
1419
1420         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422         /* Turn off the radio */
1423         err = ipw2100_hw_send_command(priv, &cmd);
1424         if (err)
1425                 return err;
1426
1427         for (i = 0; i < 2500; i++) {
1428                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432                     (val2 & IPW2100_COMMAND_PHY_OFF))
1433                         return 0;
1434
1435                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436         }
1437
1438         return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443         struct host_command cmd = {
1444                 .host_command = HOST_COMPLETE,
1445                 .host_command_sequence = 0,
1446                 .host_command_length = 0
1447         };
1448         int err = 0;
1449
1450         IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452         if (priv->status & STATUS_ENABLED)
1453                 return 0;
1454
1455         mutex_lock(&priv->adapter_mutex);
1456
1457         if (rf_kill_active(priv)) {
1458                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459                 goto fail_up;
1460         }
1461
1462         err = ipw2100_hw_send_command(priv, &cmd);
1463         if (err) {
1464                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465                 goto fail_up;
1466         }
1467
1468         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469         if (err) {
1470                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471                                priv->net_dev->name);
1472                 goto fail_up;
1473         }
1474
1475         if (priv->stop_hang_check) {
1476                 priv->stop_hang_check = 0;
1477                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478         }
1479
1480       fail_up:
1481         mutex_unlock(&priv->adapter_mutex);
1482         return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489         struct host_command cmd = {
1490                 .host_command = HOST_PRE_POWER_DOWN,
1491                 .host_command_sequence = 0,
1492                 .host_command_length = 0,
1493         };
1494         int err, i;
1495         u32 reg;
1496
1497         if (!(priv->status & STATUS_RUNNING))
1498                 return 0;
1499
1500         priv->status |= STATUS_STOPPING;
1501
1502         /* We can only shut down the card if the firmware is operational.  So,
1503          * if we haven't reset since a fatal_error, then we can not send the
1504          * shutdown commands. */
1505         if (!priv->fatal_error) {
1506                 /* First, make sure the adapter is enabled so that the PHY_OFF
1507                  * command can shut it down */
1508                 ipw2100_enable_adapter(priv);
1509
1510                 err = ipw2100_hw_phy_off(priv);
1511                 if (err)
1512                         printk(KERN_WARNING DRV_NAME
1513                                ": Error disabling radio %d\n", err);
1514
1515                 /*
1516                  * If in D0-standby mode going directly to D3 may cause a
1517                  * PCI bus violation.  Therefore we must change out of the D0
1518                  * state.
1519                  *
1520                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521                  * hardware from going into standby mode and will transition
1522                  * out of D0-standby if it is already in that state.
1523                  *
1524                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525                  * driver upon completion.  Once received, the driver can
1526                  * proceed to the D3 state.
1527                  *
1528                  * Prepare for power down command to fw.  This command would
1529                  * take HW out of D0-standby and prepare it for D3 state.
1530                  *
1531                  * Currently FW does not support event notification for this
1532                  * event. Therefore, skip waiting for it.  Just wait a fixed
1533                  * 100ms
1534                  */
1535                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537                 err = ipw2100_hw_send_command(priv, &cmd);
1538                 if (err)
1539                         printk(KERN_WARNING DRV_NAME ": "
1540                                "%s: Power down command failed: Error %d\n",
1541                                priv->net_dev->name, err);
1542                 else
1543                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544         }
1545
1546         priv->status &= ~STATUS_ENABLED;
1547
1548         /*
1549          * Set GPIO 3 writable by FW; GPIO 1 writable
1550          * by driver and enable clock
1551          */
1552         ipw2100_hw_set_gpio(priv);
1553
1554         /*
1555          * Power down adapter.  Sequence:
1556          * 1. Stop master assert (RESET_REG[9]=1)
1557          * 2. Wait for stop master (RESET_REG[8]==1)
1558          * 3. S/w reset assert (RESET_REG[7] = 1)
1559          */
1560
1561         /* Stop master assert */
1562         write_register(priv->net_dev, IPW_REG_RESET_REG,
1563                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565         /* wait stop master not more than 50 usec.
1566          * Otherwise return error. */
1567         for (i = 5; i > 0; i--) {
1568                 udelay(10);
1569
1570                 /* Check master stop bit */
1571                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574                         break;
1575         }
1576
1577         if (i == 0)
1578                 printk(KERN_WARNING DRV_NAME
1579                        ": %s: Could now power down adapter.\n",
1580                        priv->net_dev->name);
1581
1582         /* assert s/w reset */
1583         write_register(priv->net_dev, IPW_REG_RESET_REG,
1584                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588         return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593         struct host_command cmd = {
1594                 .host_command = CARD_DISABLE,
1595                 .host_command_sequence = 0,
1596                 .host_command_length = 0
1597         };
1598         int err = 0;
1599
1600         IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602         if (!(priv->status & STATUS_ENABLED))
1603                 return 0;
1604
1605         /* Make sure we clear the associated state */
1606         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608         if (!priv->stop_hang_check) {
1609                 priv->stop_hang_check = 1;
1610                 cancel_delayed_work(&priv->hang_check);
1611         }
1612
1613         mutex_lock(&priv->adapter_mutex);
1614
1615         err = ipw2100_hw_send_command(priv, &cmd);
1616         if (err) {
1617                 printk(KERN_WARNING DRV_NAME
1618                        ": exit - failed to send CARD_DISABLE command\n");
1619                 goto fail_up;
1620         }
1621
1622         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623         if (err) {
1624                 printk(KERN_WARNING DRV_NAME
1625                        ": exit - card failed to change to DISABLED\n");
1626                 goto fail_up;
1627         }
1628
1629         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631       fail_up:
1632         mutex_unlock(&priv->adapter_mutex);
1633         return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638         struct host_command cmd = {
1639                 .host_command = SET_SCAN_OPTIONS,
1640                 .host_command_sequence = 0,
1641                 .host_command_length = 8
1642         };
1643         int err;
1644
1645         IPW_DEBUG_INFO("enter\n");
1646
1647         IPW_DEBUG_SCAN("setting scan options\n");
1648
1649         cmd.host_command_parameters[0] = 0;
1650
1651         if (!(priv->config & CFG_ASSOCIATE))
1652                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655         if (priv->config & CFG_PASSIVE_SCAN)
1656                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658         cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660         err = ipw2100_hw_send_command(priv, &cmd);
1661
1662         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663                      cmd.host_command_parameters[0]);
1664
1665         return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670         struct host_command cmd = {
1671                 .host_command = BROADCAST_SCAN,
1672                 .host_command_sequence = 0,
1673                 .host_command_length = 4
1674         };
1675         int err;
1676
1677         IPW_DEBUG_HC("START_SCAN\n");
1678
1679         cmd.host_command_parameters[0] = 0;
1680
1681         /* No scanning if in monitor mode */
1682         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683                 return 1;
1684
1685         if (priv->status & STATUS_SCANNING) {
1686                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687                 return 0;
1688         }
1689
1690         IPW_DEBUG_INFO("enter\n");
1691
1692         /* Not clearing here; doing so makes iwlist always return nothing...
1693          *
1694          * We should modify the table logic to use aging tables vs. clearing
1695          * the table on each scan start.
1696          */
1697         IPW_DEBUG_SCAN("starting scan\n");
1698
1699         priv->status |= STATUS_SCANNING;
1700         err = ipw2100_hw_send_command(priv, &cmd);
1701         if (err)
1702                 priv->status &= ~STATUS_SCANNING;
1703
1704         IPW_DEBUG_INFO("exit\n");
1705
1706         return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710         {                       /* Restricted */
1711          "---",
1712          .bg_channels = 14,
1713          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714                 {2427, 4}, {2432, 5}, {2437, 6},
1715                 {2442, 7}, {2447, 8}, {2452, 9},
1716                 {2457, 10}, {2462, 11}, {2467, 12},
1717                 {2472, 13}, {2484, 14}},
1718          },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723         unsigned long flags;
1724         int rc = 0;
1725         u32 lock;
1726         u32 ord_len = sizeof(lock);
1727
1728         /* Age scan list entries found before suspend */
1729         if (priv->suspend_time) {
1730                 libipw_networks_age(priv->ieee, priv->suspend_time);
1731                 priv->suspend_time = 0;
1732         }
1733
1734         /* Quiet if manually disabled. */
1735         if (priv->status & STATUS_RF_KILL_SW) {
1736                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737                                "switch\n", priv->net_dev->name);
1738                 return 0;
1739         }
1740
1741         /* the ipw2100 hardware really doesn't want power management delays
1742          * longer than 175usec
1743          */
1744         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1745
1746         /* If the interrupt is enabled, turn it off... */
1747         spin_lock_irqsave(&priv->low_lock, flags);
1748         ipw2100_disable_interrupts(priv);
1749
1750         /* Reset any fatal_error conditions */
1751         ipw2100_reset_fatalerror(priv);
1752         spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754         if (priv->status & STATUS_POWERED ||
1755             (priv->status & STATUS_RESET_PENDING)) {
1756                 /* Power cycle the card ... */
1757                 if (ipw2100_power_cycle_adapter(priv)) {
1758                         printk(KERN_WARNING DRV_NAME
1759                                ": %s: Could not cycle adapter.\n",
1760                                priv->net_dev->name);
1761                         rc = 1;
1762                         goto exit;
1763                 }
1764         } else
1765                 priv->status |= STATUS_POWERED;
1766
1767         /* Load the firmware, start the clocks, etc. */
1768         if (ipw2100_start_adapter(priv)) {
1769                 printk(KERN_ERR DRV_NAME
1770                        ": %s: Failed to start the firmware.\n",
1771                        priv->net_dev->name);
1772                 rc = 1;
1773                 goto exit;
1774         }
1775
1776         ipw2100_initialize_ordinals(priv);
1777
1778         /* Determine capabilities of this particular HW configuration */
1779         if (ipw2100_get_hw_features(priv)) {
1780                 printk(KERN_ERR DRV_NAME
1781                        ": %s: Failed to determine HW features.\n",
1782                        priv->net_dev->name);
1783                 rc = 1;
1784                 goto exit;
1785         }
1786
1787         /* Initialize the geo */
1788         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790                 return 0;
1791         }
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812                                            round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906         struct ipw2100_priv *priv = libipw_priv(dev);
1907         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908         struct wireless_dev *wdev = &priv->ieee->wdev;
1909         int ret;
1910         int i;
1911
1912         ret = ipw2100_up(priv, 1);
1913         if (ret)
1914                 return ret;
1915
1916         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918         /* fill-out priv->ieee->bg_band */
1919         if (geo->bg_channels) {
1920                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922                 bg_band->band = IEEE80211_BAND_2GHZ;
1923                 bg_band->n_channels = geo->bg_channels;
1924                 bg_band->channels =
1925                         kzalloc(geo->bg_channels *
1926                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
1927                 if (!bg_band->channels) {
1928                         ipw2100_down(priv);
1929                         return -ENOMEM;
1930                 }
1931                 /* translate geo->bg to bg_band.channels */
1932                 for (i = 0; i < geo->bg_channels; i++) {
1933                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1934                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1935                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1936                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1937                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_PASSIVE_SCAN;
1940                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1941                                 bg_band->channels[i].flags |=
1942                                         IEEE80211_CHAN_NO_IBSS;
1943                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1944                                 bg_band->channels[i].flags |=
1945                                         IEEE80211_CHAN_RADAR;
1946                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1947                            LIBIPW_CH_UNIFORM_SPREADING, or
1948                            LIBIPW_CH_B_ONLY... */
1949                 }
1950                 /* point at bitrate info */
1951                 bg_band->bitrates = ipw2100_bg_rates;
1952                 bg_band->n_bitrates = RATE_COUNT;
1953
1954                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1955         }
1956
1957         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958         if (wiphy_register(wdev->wiphy)) {
1959                 ipw2100_down(priv);
1960                 return -EIO;
1961         }
1962         return 0;
1963 }
1964
1965 static void ipw2100_reset_adapter(struct work_struct *work)
1966 {
1967         struct ipw2100_priv *priv =
1968                 container_of(work, struct ipw2100_priv, reset_work.work);
1969         unsigned long flags;
1970         union iwreq_data wrqu = {
1971                 .ap_addr = {
1972                             .sa_family = ARPHRD_ETHER}
1973         };
1974         int associated = priv->status & STATUS_ASSOCIATED;
1975
1976         spin_lock_irqsave(&priv->low_lock, flags);
1977         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1978         priv->resets++;
1979         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1980         priv->status |= STATUS_SECURITY_UPDATED;
1981
1982         /* Force a power cycle even if interface hasn't been opened
1983          * yet */
1984         cancel_delayed_work(&priv->reset_work);
1985         priv->status |= STATUS_RESET_PENDING;
1986         spin_unlock_irqrestore(&priv->low_lock, flags);
1987
1988         mutex_lock(&priv->action_mutex);
1989         /* stop timed checks so that they don't interfere with reset */
1990         priv->stop_hang_check = 1;
1991         cancel_delayed_work(&priv->hang_check);
1992
1993         /* We have to signal any supplicant if we are disassociating */
1994         if (associated)
1995                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1996
1997         ipw2100_up(priv, 0);
1998         mutex_unlock(&priv->action_mutex);
1999
2000 }
2001
2002 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2003 {
2004
2005 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2006         int ret;
2007         unsigned int len, essid_len;
2008         char essid[IW_ESSID_MAX_SIZE];
2009         u32 txrate;
2010         u32 chan;
2011         char *txratename;
2012         u8 bssid[ETH_ALEN];
2013         DECLARE_SSID_BUF(ssid);
2014
2015         /*
2016          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2017          *      an actual MAC of the AP. Seems like FW sets this
2018          *      address too late. Read it later and expose through
2019          *      /proc or schedule a later task to query and update
2020          */
2021
2022         essid_len = IW_ESSID_MAX_SIZE;
2023         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2024                                   essid, &essid_len);
2025         if (ret) {
2026                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2027                                __LINE__);
2028                 return;
2029         }
2030
2031         len = sizeof(u32);
2032         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2033         if (ret) {
2034                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2035                                __LINE__);
2036                 return;
2037         }
2038
2039         len = sizeof(u32);
2040         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2041         if (ret) {
2042                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2043                                __LINE__);
2044                 return;
2045         }
2046         len = ETH_ALEN;
2047         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2048         if (ret) {
2049                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2050                                __LINE__);
2051                 return;
2052         }
2053         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2054
2055         switch (txrate) {
2056         case TX_RATE_1_MBIT:
2057                 txratename = "1Mbps";
2058                 break;
2059         case TX_RATE_2_MBIT:
2060                 txratename = "2Mbsp";
2061                 break;
2062         case TX_RATE_5_5_MBIT:
2063                 txratename = "5.5Mbps";
2064                 break;
2065         case TX_RATE_11_MBIT:
2066                 txratename = "11Mbps";
2067                 break;
2068         default:
2069                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2070                 txratename = "unknown rate";
2071                 break;
2072         }
2073
2074         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2075                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2076                        txratename, chan, bssid);
2077
2078         /* now we copy read ssid into dev */
2079         if (!(priv->config & CFG_STATIC_ESSID)) {
2080                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2081                 memcpy(priv->essid, essid, priv->essid_len);
2082         }
2083         priv->channel = chan;
2084         memcpy(priv->bssid, bssid, ETH_ALEN);
2085
2086         priv->status |= STATUS_ASSOCIATING;
2087         priv->connect_start = get_seconds();
2088
2089         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2090 }
2091
2092 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2093                              int length, int batch_mode)
2094 {
2095         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2096         struct host_command cmd = {
2097                 .host_command = SSID,
2098                 .host_command_sequence = 0,
2099                 .host_command_length = ssid_len
2100         };
2101         int err;
2102         DECLARE_SSID_BUF(ssid);
2103
2104         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2105
2106         if (ssid_len)
2107                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2108
2109         if (!batch_mode) {
2110                 err = ipw2100_disable_adapter(priv);
2111                 if (err)
2112                         return err;
2113         }
2114
2115         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2116          * disable auto association -- so we cheat by setting a bogus SSID */
2117         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2118                 int i;
2119                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2120                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2121                         bogus[i] = 0x18 + i;
2122                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2123         }
2124
2125         /* NOTE:  We always send the SSID command even if the provided ESSID is
2126          * the same as what we currently think is set. */
2127
2128         err = ipw2100_hw_send_command(priv, &cmd);
2129         if (!err) {
2130                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2131                 memcpy(priv->essid, essid, ssid_len);
2132                 priv->essid_len = ssid_len;
2133         }
2134
2135         if (!batch_mode) {
2136                 if (ipw2100_enable_adapter(priv))
2137                         err = -EIO;
2138         }
2139
2140         return err;
2141 }
2142
2143 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2144 {
2145         DECLARE_SSID_BUF(ssid);
2146
2147         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2148                   "disassociated: '%s' %pM\n",
2149                   print_ssid(ssid, priv->essid, priv->essid_len),
2150                   priv->bssid);
2151
2152         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2153
2154         if (priv->status & STATUS_STOPPING) {
2155                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2156                 return;
2157         }
2158
2159         memset(priv->bssid, 0, ETH_ALEN);
2160         memset(priv->ieee->bssid, 0, ETH_ALEN);
2161
2162         netif_carrier_off(priv->net_dev);
2163         netif_stop_queue(priv->net_dev);
2164
2165         if (!(priv->status & STATUS_RUNNING))
2166                 return;
2167
2168         if (priv->status & STATUS_SECURITY_UPDATED)
2169                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2170
2171         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2172 }
2173
2174 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2175 {
2176         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2177                        priv->net_dev->name);
2178
2179         /* RF_KILL is now enabled (else we wouldn't be here) */
2180         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2181         priv->status |= STATUS_RF_KILL_HW;
2182
2183         /* Make sure the RF Kill check timer is running */
2184         priv->stop_rf_kill = 0;
2185         cancel_delayed_work(&priv->rf_kill);
2186         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2187                            round_jiffies_relative(HZ));
2188 }
2189
2190 static void send_scan_event(void *data)
2191 {
2192         struct ipw2100_priv *priv = data;
2193         union iwreq_data wrqu;
2194
2195         wrqu.data.length = 0;
2196         wrqu.data.flags = 0;
2197         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2198 }
2199
2200 static void ipw2100_scan_event_later(struct work_struct *work)
2201 {
2202         send_scan_event(container_of(work, struct ipw2100_priv,
2203                                         scan_event_later.work));
2204 }
2205
2206 static void ipw2100_scan_event_now(struct work_struct *work)
2207 {
2208         send_scan_event(container_of(work, struct ipw2100_priv,
2209                                         scan_event_now));
2210 }
2211
2212 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2213 {
2214         IPW_DEBUG_SCAN("scan complete\n");
2215         /* Age the scan results... */
2216         priv->ieee->scans++;
2217         priv->status &= ~STATUS_SCANNING;
2218
2219         /* Only userspace-requested scan completion events go out immediately */
2220         if (!priv->user_requested_scan) {
2221                 if (!delayed_work_pending(&priv->scan_event_later))
2222                         queue_delayed_work(priv->workqueue,
2223                                         &priv->scan_event_later,
2224                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2225         } else {
2226                 priv->user_requested_scan = 0;
2227                 cancel_delayed_work(&priv->scan_event_later);
2228                 queue_work(priv->workqueue, &priv->scan_event_now);
2229         }
2230 }
2231
2232 #ifdef CONFIG_IPW2100_DEBUG
2233 #define IPW2100_HANDLER(v, f) { v, f, # v }
2234 struct ipw2100_status_indicator {
2235         int status;
2236         void (*cb) (struct ipw2100_priv * priv, u32 status);
2237         char *name;
2238 };
2239 #else
2240 #define IPW2100_HANDLER(v, f) { v, f }
2241 struct ipw2100_status_indicator {
2242         int status;
2243         void (*cb) (struct ipw2100_priv * priv, u32 status);
2244 };
2245 #endif                          /* CONFIG_IPW2100_DEBUG */
2246
2247 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2248 {
2249         IPW_DEBUG_SCAN("Scanning...\n");
2250         priv->status |= STATUS_SCANNING;
2251 }
2252
2253 static const struct ipw2100_status_indicator status_handlers[] = {
2254         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2255         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2256         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2257         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2258         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2259         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2260         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2261         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2262         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2263         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2264         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2265         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2266         IPW2100_HANDLER(-1, NULL)
2267 };
2268
2269 static void isr_status_change(struct ipw2100_priv *priv, int status)
2270 {
2271         int i;
2272
2273         if (status == IPW_STATE_SCANNING &&
2274             priv->status & STATUS_ASSOCIATED &&
2275             !(priv->status & STATUS_SCANNING)) {
2276                 IPW_DEBUG_INFO("Scan detected while associated, with "
2277                                "no scan request.  Restarting firmware.\n");
2278
2279                 /* Wake up any sleeping jobs */
2280                 schedule_reset(priv);
2281         }
2282
2283         for (i = 0; status_handlers[i].status != -1; i++) {
2284                 if (status == status_handlers[i].status) {
2285                         IPW_DEBUG_NOTIF("Status change: %s\n",
2286                                         status_handlers[i].name);
2287                         if (status_handlers[i].cb)
2288                                 status_handlers[i].cb(priv, status);
2289                         priv->wstats.status = status;
2290                         return;
2291                 }
2292         }
2293
2294         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2295 }
2296
2297 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2298                                     struct ipw2100_cmd_header *cmd)
2299 {
2300 #ifdef CONFIG_IPW2100_DEBUG
2301         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2302                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2303                              command_types[cmd->host_command_reg],
2304                              cmd->host_command_reg);
2305         }
2306 #endif
2307         if (cmd->host_command_reg == HOST_COMPLETE)
2308                 priv->status |= STATUS_ENABLED;
2309
2310         if (cmd->host_command_reg == CARD_DISABLE)
2311                 priv->status &= ~STATUS_ENABLED;
2312
2313         priv->status &= ~STATUS_CMD_ACTIVE;
2314
2315         wake_up_interruptible(&priv->wait_command_queue);
2316 }
2317
2318 #ifdef CONFIG_IPW2100_DEBUG
2319 static const char *frame_types[] = {
2320         "COMMAND_STATUS_VAL",
2321         "STATUS_CHANGE_VAL",
2322         "P80211_DATA_VAL",
2323         "P8023_DATA_VAL",
2324         "HOST_NOTIFICATION_VAL"
2325 };
2326 #endif
2327
2328 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2329                                     struct ipw2100_rx_packet *packet)
2330 {
2331         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2332         if (!packet->skb)
2333                 return -ENOMEM;
2334
2335         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2336         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2337                                           sizeof(struct ipw2100_rx),
2338                                           PCI_DMA_FROMDEVICE);
2339         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2340          *       dma_addr */
2341
2342         return 0;
2343 }
2344
2345 #define SEARCH_ERROR   0xffffffff
2346 #define SEARCH_FAIL    0xfffffffe
2347 #define SEARCH_SUCCESS 0xfffffff0
2348 #define SEARCH_DISCARD 0
2349 #define SEARCH_SNAPSHOT 1
2350
2351 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2352 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2353 {
2354         int i;
2355         if (!priv->snapshot[0])
2356                 return;
2357         for (i = 0; i < 0x30; i++)
2358                 kfree(priv->snapshot[i]);
2359         priv->snapshot[0] = NULL;
2360 }
2361
2362 #ifdef IPW2100_DEBUG_C3
2363 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2364 {
2365         int i;
2366         if (priv->snapshot[0])
2367                 return 1;
2368         for (i = 0; i < 0x30; i++) {
2369                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2370                 if (!priv->snapshot[i]) {
2371                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2372                                        "buffer %d\n", priv->net_dev->name, i);
2373                         while (i > 0)
2374                                 kfree(priv->snapshot[--i]);
2375                         priv->snapshot[0] = NULL;
2376                         return 0;
2377                 }
2378         }
2379
2380         return 1;
2381 }
2382
2383 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2384                                     size_t len, int mode)
2385 {
2386         u32 i, j;
2387         u32 tmp;
2388         u8 *s, *d;
2389         u32 ret;
2390
2391         s = in_buf;
2392         if (mode == SEARCH_SNAPSHOT) {
2393                 if (!ipw2100_snapshot_alloc(priv))
2394                         mode = SEARCH_DISCARD;
2395         }
2396
2397         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2398                 read_nic_dword(priv->net_dev, i, &tmp);
2399                 if (mode == SEARCH_SNAPSHOT)
2400                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2401                 if (ret == SEARCH_FAIL) {
2402                         d = (u8 *) & tmp;
2403                         for (j = 0; j < 4; j++) {
2404                                 if (*s != *d) {
2405                                         s = in_buf;
2406                                         continue;
2407                                 }
2408
2409                                 s++;
2410                                 d++;
2411
2412                                 if ((s - in_buf) == len)
2413                                         ret = (i + j) - len + 1;
2414                         }
2415                 } else if (mode == SEARCH_DISCARD)
2416                         return ret;
2417         }
2418
2419         return ret;
2420 }
2421 #endif
2422
2423 /*
2424  *
2425  * 0) Disconnect the SKB from the firmware (just unmap)
2426  * 1) Pack the ETH header into the SKB
2427  * 2) Pass the SKB to the network stack
2428  *
2429  * When packet is provided by the firmware, it contains the following:
2430  *
2431  * .  libipw_hdr
2432  * .  libipw_snap_hdr
2433  *
2434  * The size of the constructed ethernet
2435  *
2436  */
2437 #ifdef IPW2100_RX_DEBUG
2438 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2439 #endif
2440
2441 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2442 {
2443 #ifdef IPW2100_DEBUG_C3
2444         struct ipw2100_status *status = &priv->status_queue.drv[i];
2445         u32 match, reg;
2446         int j;
2447 #endif
2448
2449         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2450                        i * sizeof(struct ipw2100_status));
2451
2452 #ifdef IPW2100_DEBUG_C3
2453         /* Halt the firmware so we can get a good image */
2454         write_register(priv->net_dev, IPW_REG_RESET_REG,
2455                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2456         j = 5;
2457         do {
2458                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2459                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2460
2461                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2462                         break;
2463         } while (j--);
2464
2465         match = ipw2100_match_buf(priv, (u8 *) status,
2466                                   sizeof(struct ipw2100_status),
2467                                   SEARCH_SNAPSHOT);
2468         if (match < SEARCH_SUCCESS)
2469                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2470                                "offset 0x%06X, length %d:\n",
2471                                priv->net_dev->name, match,
2472                                sizeof(struct ipw2100_status));
2473         else
2474                 IPW_DEBUG_INFO("%s: No DMA status match in "
2475                                "Firmware.\n", priv->net_dev->name);
2476
2477         printk_buf((u8 *) priv->status_queue.drv,
2478                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2479 #endif
2480
2481         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2482         priv->net_dev->stats.rx_errors++;
2483         schedule_reset(priv);
2484 }
2485
2486 static void isr_rx(struct ipw2100_priv *priv, int i,
2487                           struct libipw_rx_stats *stats)
2488 {
2489         struct net_device *dev = priv->net_dev;
2490         struct ipw2100_status *status = &priv->status_queue.drv[i];
2491         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2492
2493         IPW_DEBUG_RX("Handler...\n");
2494
2495         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2496                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2497                                "  Dropping.\n",
2498                                dev->name,
2499                                status->frame_size, skb_tailroom(packet->skb));
2500                 dev->stats.rx_errors++;
2501                 return;
2502         }
2503
2504         if (unlikely(!netif_running(dev))) {
2505                 dev->stats.rx_errors++;
2506                 priv->wstats.discard.misc++;
2507                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2508                 return;
2509         }
2510
2511         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2512                      !(priv->status & STATUS_ASSOCIATED))) {
2513                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2514                 priv->wstats.discard.misc++;
2515                 return;
2516         }
2517
2518         pci_unmap_single(priv->pci_dev,
2519                          packet->dma_addr,
2520                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2521
2522         skb_put(packet->skb, status->frame_size);
2523
2524 #ifdef IPW2100_RX_DEBUG
2525         /* Make a copy of the frame so we can dump it to the logs if
2526          * libipw_rx fails */
2527         skb_copy_from_linear_data(packet->skb, packet_data,
2528                                   min_t(u32, status->frame_size,
2529                                              IPW_RX_NIC_BUFFER_LENGTH));
2530 #endif
2531
2532         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2533 #ifdef IPW2100_RX_DEBUG
2534                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2535                                dev->name);
2536                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2537 #endif
2538                 dev->stats.rx_errors++;
2539
2540                 /* libipw_rx failed, so it didn't free the SKB */
2541                 dev_kfree_skb_any(packet->skb);
2542                 packet->skb = NULL;
2543         }
2544
2545         /* We need to allocate a new SKB and attach it to the RDB. */
2546         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2547                 printk(KERN_WARNING DRV_NAME ": "
2548                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2549                        "adapter.\n", dev->name);
2550                 /* TODO: schedule adapter shutdown */
2551                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2552         }
2553
2554         /* Update the RDB entry */
2555         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2556 }
2557
2558 #ifdef CONFIG_IPW2100_MONITOR
2559
2560 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2561                    struct libipw_rx_stats *stats)
2562 {
2563         struct net_device *dev = priv->net_dev;
2564         struct ipw2100_status *status = &priv->status_queue.drv[i];
2565         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2566
2567         /* Magic struct that slots into the radiotap header -- no reason
2568          * to build this manually element by element, we can write it much
2569          * more efficiently than we can parse it. ORDER MATTERS HERE */
2570         struct ipw_rt_hdr {
2571                 struct ieee80211_radiotap_header rt_hdr;
2572                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2573         } *ipw_rt;
2574
2575         IPW_DEBUG_RX("Handler...\n");
2576
2577         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2578                                 sizeof(struct ipw_rt_hdr))) {
2579                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2580                                "  Dropping.\n",
2581                                dev->name,
2582                                status->frame_size,
2583                                skb_tailroom(packet->skb));
2584                 dev->stats.rx_errors++;
2585                 return;
2586         }
2587
2588         if (unlikely(!netif_running(dev))) {
2589                 dev->stats.rx_errors++;
2590                 priv->wstats.discard.misc++;
2591                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2592                 return;
2593         }
2594
2595         if (unlikely(priv->config & CFG_CRC_CHECK &&
2596                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2597                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2598                 dev->stats.rx_errors++;
2599                 return;
2600         }
2601
2602         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2603                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2604         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2605                 packet->skb->data, status->frame_size);
2606
2607         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2608
2609         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2610         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2611         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2612
2613         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2614
2615         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2616
2617         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2618
2619         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2620                 dev->stats.rx_errors++;
2621
2622                 /* libipw_rx failed, so it didn't free the SKB */
2623                 dev_kfree_skb_any(packet->skb);
2624                 packet->skb = NULL;
2625         }
2626
2627         /* We need to allocate a new SKB and attach it to the RDB. */
2628         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2629                 IPW_DEBUG_WARNING(
2630                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2631                         "adapter.\n", dev->name);
2632                 /* TODO: schedule adapter shutdown */
2633                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2634         }
2635
2636         /* Update the RDB entry */
2637         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2638 }
2639
2640 #endif
2641
2642 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2643 {
2644         struct ipw2100_status *status = &priv->status_queue.drv[i];
2645         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2646         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2647
2648         switch (frame_type) {
2649         case COMMAND_STATUS_VAL:
2650                 return (status->frame_size != sizeof(u->rx_data.command));
2651         case STATUS_CHANGE_VAL:
2652                 return (status->frame_size != sizeof(u->rx_data.status));
2653         case HOST_NOTIFICATION_VAL:
2654                 return (status->frame_size < sizeof(u->rx_data.notification));
2655         case P80211_DATA_VAL:
2656         case P8023_DATA_VAL:
2657 #ifdef CONFIG_IPW2100_MONITOR
2658                 return 0;
2659 #else
2660                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2661                 case IEEE80211_FTYPE_MGMT:
2662                 case IEEE80211_FTYPE_CTL:
2663                         return 0;
2664                 case IEEE80211_FTYPE_DATA:
2665                         return (status->frame_size >
2666                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2667                 }
2668 #endif
2669         }
2670
2671         return 1;
2672 }
2673
2674 /*
2675  * ipw2100 interrupts are disabled at this point, and the ISR
2676  * is the only code that calls this method.  So, we do not need
2677  * to play with any locks.
2678  *
2679  * RX Queue works as follows:
2680  *
2681  * Read index - firmware places packet in entry identified by the
2682  *              Read index and advances Read index.  In this manner,
2683  *              Read index will always point to the next packet to
2684  *              be filled--but not yet valid.
2685  *
2686  * Write index - driver fills this entry with an unused RBD entry.
2687  *               This entry has not filled by the firmware yet.
2688  *
2689  * In between the W and R indexes are the RBDs that have been received
2690  * but not yet processed.
2691  *
2692  * The process of handling packets will start at WRITE + 1 and advance
2693  * until it reaches the READ index.
2694  *
2695  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2696  *
2697  */
2698 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2699 {
2700         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2701         struct ipw2100_status_queue *sq = &priv->status_queue;
2702         struct ipw2100_rx_packet *packet;
2703         u16 frame_type;
2704         u32 r, w, i, s;
2705         struct ipw2100_rx *u;
2706         struct libipw_rx_stats stats = {
2707                 .mac_time = jiffies,
2708         };
2709
2710         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2711         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2712
2713         if (r >= rxq->entries) {
2714                 IPW_DEBUG_RX("exit - bad read index\n");
2715                 return;
2716         }
2717
2718         i = (rxq->next + 1) % rxq->entries;
2719         s = i;
2720         while (i != r) {
2721                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2722                    r, rxq->next, i); */
2723
2724                 packet = &priv->rx_buffers[i];
2725
2726                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2727                  * the correct values */
2728                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2729                                             sq->nic +
2730                                             sizeof(struct ipw2100_status) * i,
2731                                             sizeof(struct ipw2100_status),
2732                                             PCI_DMA_FROMDEVICE);
2733
2734                 /* Sync the DMA for the RX buffer so CPU is sure to get
2735                  * the correct values */
2736                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2737                                             sizeof(struct ipw2100_rx),
2738                                             PCI_DMA_FROMDEVICE);
2739
2740                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2741                         ipw2100_corruption_detected(priv, i);
2742                         goto increment;
2743                 }
2744
2745                 u = packet->rxp;
2746                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2747                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2748                 stats.len = sq->drv[i].frame_size;
2749
2750                 stats.mask = 0;
2751                 if (stats.rssi != 0)
2752                         stats.mask |= LIBIPW_STATMASK_RSSI;
2753                 stats.freq = LIBIPW_24GHZ_BAND;
2754
2755                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2756                              priv->net_dev->name, frame_types[frame_type],
2757                              stats.len);
2758
2759                 switch (frame_type) {
2760                 case COMMAND_STATUS_VAL:
2761                         /* Reset Rx watchdog */
2762                         isr_rx_complete_command(priv, &u->rx_data.command);
2763                         break;
2764
2765                 case STATUS_CHANGE_VAL:
2766                         isr_status_change(priv, u->rx_data.status);
2767                         break;
2768
2769                 case P80211_DATA_VAL:
2770                 case P8023_DATA_VAL:
2771 #ifdef CONFIG_IPW2100_MONITOR
2772                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2773                                 isr_rx_monitor(priv, i, &stats);
2774                                 break;
2775                         }
2776 #endif
2777                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2778                                 break;
2779                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2780                         case IEEE80211_FTYPE_MGMT:
2781                                 libipw_rx_mgt(priv->ieee,
2782                                                  &u->rx_data.header, &stats);
2783                                 break;
2784
2785                         case IEEE80211_FTYPE_CTL:
2786                                 break;
2787
2788                         case IEEE80211_FTYPE_DATA:
2789                                 isr_rx(priv, i, &stats);
2790                                 break;
2791
2792                         }
2793                         break;
2794                 }
2795
2796               increment:
2797                 /* clear status field associated with this RBD */
2798                 rxq->drv[i].status.info.field = 0;
2799
2800                 i = (i + 1) % rxq->entries;
2801         }
2802
2803         if (i != s) {
2804                 /* backtrack one entry, wrapping to end if at 0 */
2805                 rxq->next = (i ? i : rxq->entries) - 1;
2806
2807                 write_register(priv->net_dev,
2808                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2809         }
2810 }
2811
2812 /*
2813  * __ipw2100_tx_process
2814  *
2815  * This routine will determine whether the next packet on
2816  * the fw_pend_list has been processed by the firmware yet.
2817  *
2818  * If not, then it does nothing and returns.
2819  *
2820  * If so, then it removes the item from the fw_pend_list, frees
2821  * any associated storage, and places the item back on the
2822  * free list of its source (either msg_free_list or tx_free_list)
2823  *
2824  * TX Queue works as follows:
2825  *
2826  * Read index - points to the next TBD that the firmware will
2827  *              process.  The firmware will read the data, and once
2828  *              done processing, it will advance the Read index.
2829  *
2830  * Write index - driver fills this entry with an constructed TBD
2831  *               entry.  The Write index is not advanced until the
2832  *               packet has been configured.
2833  *
2834  * In between the W and R indexes are the TBDs that have NOT been
2835  * processed.  Lagging behind the R index are packets that have
2836  * been processed but have not been freed by the driver.
2837  *
2838  * In order to free old storage, an internal index will be maintained
2839  * that points to the next packet to be freed.  When all used
2840  * packets have been freed, the oldest index will be the same as the
2841  * firmware's read index.
2842  *
2843  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2844  *
2845  * Because the TBD structure can not contain arbitrary data, the
2846  * driver must keep an internal queue of cached allocations such that
2847  * it can put that data back into the tx_free_list and msg_free_list
2848  * for use by future command and data packets.
2849  *
2850  */
2851 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2852 {
2853         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2854         struct ipw2100_bd *tbd;
2855         struct list_head *element;
2856         struct ipw2100_tx_packet *packet;
2857         int descriptors_used;
2858         int e, i;
2859         u32 r, w, frag_num = 0;
2860
2861         if (list_empty(&priv->fw_pend_list))
2862                 return 0;
2863
2864         element = priv->fw_pend_list.next;
2865
2866         packet = list_entry(element, struct ipw2100_tx_packet, list);
2867         tbd = &txq->drv[packet->index];
2868
2869         /* Determine how many TBD entries must be finished... */
2870         switch (packet->type) {
2871         case COMMAND:
2872                 /* COMMAND uses only one slot; don't advance */
2873                 descriptors_used = 1;
2874                 e = txq->oldest;
2875                 break;
2876
2877         case DATA:
2878                 /* DATA uses two slots; advance and loop position. */
2879                 descriptors_used = tbd->num_fragments;
2880                 frag_num = tbd->num_fragments - 1;
2881                 e = txq->oldest + frag_num;
2882                 e %= txq->entries;
2883                 break;
2884
2885         default:
2886                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2887                        priv->net_dev->name);
2888                 return 0;
2889         }
2890
2891         /* if the last TBD is not done by NIC yet, then packet is
2892          * not ready to be released.
2893          *
2894          */
2895         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2896                       &r);
2897         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2898                       &w);
2899         if (w != txq->next)
2900                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2901                        priv->net_dev->name);
2902
2903         /*
2904          * txq->next is the index of the last packet written txq->oldest is
2905          * the index of the r is the index of the next packet to be read by
2906          * firmware
2907          */
2908
2909         /*
2910          * Quick graphic to help you visualize the following
2911          * if / else statement
2912          *
2913          * ===>|                     s---->|===============
2914          *                               e>|
2915          * | a | b | c | d | e | f | g | h | i | j | k | l
2916          *       r---->|
2917          *               w
2918          *
2919          * w - updated by driver
2920          * r - updated by firmware
2921          * s - start of oldest BD entry (txq->oldest)
2922          * e - end of oldest BD entry
2923          *
2924          */
2925         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2926                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2927                 return 0;
2928         }
2929
2930         list_del(element);
2931         DEC_STAT(&priv->fw_pend_stat);
2932
2933 #ifdef CONFIG_IPW2100_DEBUG
2934         {
2935                 i = txq->oldest;
2936                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2937                              &txq->drv[i],
2938                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2939                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2940
2941                 if (packet->type == DATA) {
2942                         i = (i + 1) % txq->entries;
2943
2944                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2945                                      &txq->drv[i],
2946                                      (u32) (txq->nic + i *
2947                                             sizeof(struct ipw2100_bd)),
2948                                      (u32) txq->drv[i].host_addr,
2949                                      txq->drv[i].buf_length);
2950                 }
2951         }
2952 #endif
2953
2954         switch (packet->type) {
2955         case DATA:
2956                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2957                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2958                                "Expecting DATA TBD but pulled "
2959                                "something else: ids %d=%d.\n",
2960                                priv->net_dev->name, txq->oldest, packet->index);
2961
2962                 /* DATA packet; we have to unmap and free the SKB */
2963                 for (i = 0; i < frag_num; i++) {
2964                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2965
2966                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2967                                      (packet->index + 1 + i) % txq->entries,
2968                                      tbd->host_addr, tbd->buf_length);
2969
2970                         pci_unmap_single(priv->pci_dev,
2971                                          tbd->host_addr,
2972                                          tbd->buf_length, PCI_DMA_TODEVICE);
2973                 }
2974
2975                 libipw_txb_free(packet->info.d_struct.txb);
2976                 packet->info.d_struct.txb = NULL;
2977
2978                 list_add_tail(element, &priv->tx_free_list);
2979                 INC_STAT(&priv->tx_free_stat);
2980
2981                 /* We have a free slot in the Tx queue, so wake up the
2982                  * transmit layer if it is stopped. */
2983                 if (priv->status & STATUS_ASSOCIATED)
2984                         netif_wake_queue(priv->net_dev);
2985
2986                 /* A packet was processed by the hardware, so update the
2987                  * watchdog */
2988                 priv->net_dev->trans_start = jiffies;
2989
2990                 break;
2991
2992         case COMMAND:
2993                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2994                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2995                                "Expecting COMMAND TBD but pulled "
2996                                "something else: ids %d=%d.\n",
2997                                priv->net_dev->name, txq->oldest, packet->index);
2998
2999 #ifdef CONFIG_IPW2100_DEBUG
3000                 if (packet->info.c_struct.cmd->host_command_reg <
3001                     ARRAY_SIZE(command_types))
3002                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
3003                                      command_types[packet->info.c_struct.cmd->
3004                                                    host_command_reg],
3005                                      packet->info.c_struct.cmd->
3006                                      host_command_reg,
3007                                      packet->info.c_struct.cmd->cmd_status_reg);
3008 #endif
3009
3010                 list_add_tail(element, &priv->msg_free_list);
3011                 INC_STAT(&priv->msg_free_stat);
3012                 break;
3013         }
3014
3015         /* advance oldest used TBD pointer to start of next entry */
3016         txq->oldest = (e + 1) % txq->entries;
3017         /* increase available TBDs number */
3018         txq->available += descriptors_used;
3019         SET_STAT(&priv->txq_stat, txq->available);
3020
3021         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3022                      jiffies - packet->jiffy_start);
3023
3024         return (!list_empty(&priv->fw_pend_list));
3025 }
3026
3027 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3028 {
3029         int i = 0;
3030
3031         while (__ipw2100_tx_process(priv) && i < 200)
3032                 i++;
3033
3034         if (i == 200) {
3035                 printk(KERN_WARNING DRV_NAME ": "
3036                        "%s: Driver is running slow (%d iters).\n",
3037                        priv->net_dev->name, i);
3038         }
3039 }
3040
3041 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3042 {
3043         struct list_head *element;
3044         struct ipw2100_tx_packet *packet;
3045         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3046         struct ipw2100_bd *tbd;
3047         int next = txq->next;
3048
3049         while (!list_empty(&priv->msg_pend_list)) {
3050                 /* if there isn't enough space in TBD queue, then
3051                  * don't stuff a new one in.
3052                  * NOTE: 3 are needed as a command will take one,
3053                  *       and there is a minimum of 2 that must be
3054                  *       maintained between the r and w indexes
3055                  */
3056                 if (txq->available <= 3) {
3057                         IPW_DEBUG_TX("no room in tx_queue\n");
3058                         break;
3059                 }
3060
3061                 element = priv->msg_pend_list.next;
3062                 list_del(element);
3063                 DEC_STAT(&priv->msg_pend_stat);
3064
3065                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3066
3067                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3068                              &txq->drv[txq->next],
3069                              (u32) (txq->nic + txq->next *
3070                                       sizeof(struct ipw2100_bd)));
3071
3072                 packet->index = txq->next;
3073
3074                 tbd = &txq->drv[txq->next];
3075
3076                 /* initialize TBD */
3077                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3078                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3079                 /* not marking number of fragments causes problems
3080                  * with f/w debug version */
3081                 tbd->num_fragments = 1;
3082                 tbd->status.info.field =
3083                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3084                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3085
3086                 /* update TBD queue counters */
3087                 txq->next++;
3088                 txq->next %= txq->entries;
3089                 txq->available--;
3090                 DEC_STAT(&priv->txq_stat);
3091
3092                 list_add_tail(element, &priv->fw_pend_list);
3093                 INC_STAT(&priv->fw_pend_stat);
3094         }
3095
3096         if (txq->next != next) {
3097                 /* kick off the DMA by notifying firmware the
3098                  * write index has moved; make sure TBD stores are sync'd */
3099                 wmb();
3100                 write_register(priv->net_dev,
3101                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3102                                txq->next);
3103         }
3104 }
3105
3106 /*
3107  * ipw2100_tx_send_data
3108  *
3109  */
3110 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3111 {
3112         struct list_head *element;
3113         struct ipw2100_tx_packet *packet;
3114         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3115         struct ipw2100_bd *tbd;
3116         int next = txq->next;
3117         int i = 0;
3118         struct ipw2100_data_header *ipw_hdr;
3119         struct libipw_hdr_3addr *hdr;
3120
3121         while (!list_empty(&priv->tx_pend_list)) {
3122                 /* if there isn't enough space in TBD queue, then
3123                  * don't stuff a new one in.
3124                  * NOTE: 4 are needed as a data will take two,
3125                  *       and there is a minimum of 2 that must be
3126                  *       maintained between the r and w indexes
3127                  */
3128                 element = priv->tx_pend_list.next;
3129                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3130
3131                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3132                              IPW_MAX_BDS)) {
3133                         /* TODO: Support merging buffers if more than
3134                          * IPW_MAX_BDS are used */
3135                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3136                                        "Increase fragmentation level.\n",
3137                                        priv->net_dev->name);
3138                 }
3139
3140                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3141                         IPW_DEBUG_TX("no room in tx_queue\n");
3142                         break;
3143                 }
3144
3145                 list_del(element);
3146                 DEC_STAT(&priv->tx_pend_stat);
3147
3148                 tbd = &txq->drv[txq->next];
3149
3150                 packet->index = txq->next;
3151
3152                 ipw_hdr = packet->info.d_struct.data;
3153                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3154                     fragments[0]->data;
3155
3156                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3157                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3158                            Addr3 = DA */
3159                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3160                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3161                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3162                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3163                            Addr3 = BSSID */
3164                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3165                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3166                 }
3167
3168                 ipw_hdr->host_command_reg = SEND;
3169                 ipw_hdr->host_command_reg1 = 0;
3170
3171                 /* For now we only support host based encryption */
3172                 ipw_hdr->needs_encryption = 0;
3173                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3174                 if (packet->info.d_struct.txb->nr_frags > 1)
3175                         ipw_hdr->fragment_size =
3176                             packet->info.d_struct.txb->frag_size -
3177                             LIBIPW_3ADDR_LEN;
3178                 else
3179                         ipw_hdr->fragment_size = 0;
3180
3181                 tbd->host_addr = packet->info.d_struct.data_phys;
3182                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3183                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3184                 tbd->status.info.field =
3185                     IPW_BD_STATUS_TX_FRAME_802_3 |
3186                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3187                 txq->next++;
3188                 txq->next %= txq->entries;
3189
3190                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3191                              packet->index, tbd->host_addr, tbd->buf_length);
3192 #ifdef CONFIG_IPW2100_DEBUG
3193                 if (packet->info.d_struct.txb->nr_frags > 1)
3194                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3195                                        packet->info.d_struct.txb->nr_frags);
3196 #endif
3197
3198                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3199                         tbd = &txq->drv[txq->next];
3200                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3201                                 tbd->status.info.field =
3202                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3203                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3204                         else
3205                                 tbd->status.info.field =
3206                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3207                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3208
3209                         tbd->buf_length = packet->info.d_struct.txb->
3210                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3211
3212                         tbd->host_addr = pci_map_single(priv->pci_dev,
3213                                                         packet->info.d_struct.
3214                                                         txb->fragments[i]->
3215                                                         data +
3216                                                         LIBIPW_3ADDR_LEN,
3217                                                         tbd->buf_length,
3218                                                         PCI_DMA_TODEVICE);
3219
3220                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3221                                      txq->next, tbd->host_addr,
3222                                      tbd->buf_length);
3223
3224                         pci_dma_sync_single_for_device(priv->pci_dev,
3225                                                        tbd->host_addr,
3226                                                        tbd->buf_length,
3227                                                        PCI_DMA_TODEVICE);
3228
3229                         txq->next++;
3230                         txq->next %= txq->entries;
3231                 }
3232
3233                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3234                 SET_STAT(&priv->txq_stat, txq->available);
3235
3236                 list_add_tail(element, &priv->fw_pend_list);
3237                 INC_STAT(&priv->fw_pend_stat);
3238         }
3239
3240         if (txq->next != next) {
3241                 /* kick off the DMA by notifying firmware the
3242                  * write index has moved; make sure TBD stores are sync'd */
3243                 write_register(priv->net_dev,
3244                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3245                                txq->next);
3246         }
3247 }
3248
3249 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3250 {
3251         struct net_device *dev = priv->net_dev;
3252         unsigned long flags;
3253         u32 inta, tmp;
3254
3255         spin_lock_irqsave(&priv->low_lock, flags);
3256         ipw2100_disable_interrupts(priv);
3257
3258         read_register(dev, IPW_REG_INTA, &inta);
3259
3260         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3261                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3262
3263         priv->in_isr++;
3264         priv->interrupts++;
3265
3266         /* We do not loop and keep polling for more interrupts as this
3267          * is frowned upon and doesn't play nicely with other potentially
3268          * chained IRQs */
3269         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3270                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3271
3272         if (inta & IPW2100_INTA_FATAL_ERROR) {
3273                 printk(KERN_WARNING DRV_NAME
3274                        ": Fatal interrupt. Scheduling firmware restart.\n");
3275                 priv->inta_other++;
3276                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3277
3278                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3279                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3280                                priv->net_dev->name, priv->fatal_error);
3281
3282                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3283                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3284                                priv->net_dev->name, tmp);
3285
3286                 /* Wake up any sleeping jobs */
3287                 schedule_reset(priv);
3288         }
3289
3290         if (inta & IPW2100_INTA_PARITY_ERROR) {
3291                 printk(KERN_ERR DRV_NAME
3292                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3293                 priv->inta_other++;
3294                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3295         }
3296
3297         if (inta & IPW2100_INTA_RX_TRANSFER) {
3298                 IPW_DEBUG_ISR("RX interrupt\n");
3299
3300                 priv->rx_interrupts++;
3301
3302                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3303
3304                 __ipw2100_rx_process(priv);
3305                 __ipw2100_tx_complete(priv);
3306         }
3307
3308         if (inta & IPW2100_INTA_TX_TRANSFER) {
3309                 IPW_DEBUG_ISR("TX interrupt\n");
3310
3311                 priv->tx_interrupts++;
3312
3313                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3314
3315                 __ipw2100_tx_complete(priv);
3316                 ipw2100_tx_send_commands(priv);
3317                 ipw2100_tx_send_data(priv);
3318         }
3319
3320         if (inta & IPW2100_INTA_TX_COMPLETE) {
3321                 IPW_DEBUG_ISR("TX complete\n");
3322                 priv->inta_other++;
3323                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3324
3325                 __ipw2100_tx_complete(priv);
3326         }
3327
3328         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3329                 /* ipw2100_handle_event(dev); */
3330                 priv->inta_other++;
3331                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3332         }
3333
3334         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3335                 IPW_DEBUG_ISR("FW init done interrupt\n");
3336                 priv->inta_other++;
3337
3338                 read_register(dev, IPW_REG_INTA, &tmp);
3339                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3340                            IPW2100_INTA_PARITY_ERROR)) {
3341                         write_register(dev, IPW_REG_INTA,
3342                                        IPW2100_INTA_FATAL_ERROR |
3343                                        IPW2100_INTA_PARITY_ERROR);
3344                 }
3345
3346                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3347         }
3348
3349         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3350                 IPW_DEBUG_ISR("Status change interrupt\n");
3351                 priv->inta_other++;
3352                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3353         }
3354
3355         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3356                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3357                 priv->inta_other++;
3358                 write_register(dev, IPW_REG_INTA,
3359                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3360         }
3361
3362         priv->in_isr--;
3363         ipw2100_enable_interrupts(priv);
3364
3365         spin_unlock_irqrestore(&priv->low_lock, flags);
3366
3367         IPW_DEBUG_ISR("exit\n");
3368 }
3369
3370 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3371 {
3372         struct ipw2100_priv *priv = data;
3373         u32 inta, inta_mask;
3374
3375         if (!data)
3376                 return IRQ_NONE;
3377
3378         spin_lock(&priv->low_lock);
3379
3380         /* We check to see if we should be ignoring interrupts before
3381          * we touch the hardware.  During ucode load if we try and handle
3382          * an interrupt we can cause keyboard problems as well as cause
3383          * the ucode to fail to initialize */
3384         if (!(priv->status & STATUS_INT_ENABLED)) {
3385                 /* Shared IRQ */
3386                 goto none;
3387         }
3388
3389         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3390         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3391
3392         if (inta == 0xFFFFFFFF) {
3393                 /* Hardware disappeared */
3394                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3395                 goto none;
3396         }
3397
3398         inta &= IPW_INTERRUPT_MASK;
3399
3400         if (!(inta & inta_mask)) {
3401                 /* Shared interrupt */
3402                 goto none;
3403         }
3404
3405         /* We disable the hardware interrupt here just to prevent unneeded
3406          * calls to be made.  We disable this again within the actual
3407          * work tasklet, so if another part of the code re-enables the
3408          * interrupt, that is fine */
3409         ipw2100_disable_interrupts(priv);
3410
3411         tasklet_schedule(&priv->irq_tasklet);
3412         spin_unlock(&priv->low_lock);
3413
3414         return IRQ_HANDLED;
3415       none:
3416         spin_unlock(&priv->low_lock);
3417         return IRQ_NONE;
3418 }
3419
3420 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3421                               struct net_device *dev, int pri)
3422 {
3423         struct ipw2100_priv *priv = libipw_priv(dev);
3424         struct list_head *element;
3425         struct ipw2100_tx_packet *packet;
3426         unsigned long flags;
3427
3428         spin_lock_irqsave(&priv->low_lock, flags);
3429
3430         if (!(priv->status & STATUS_ASSOCIATED)) {
3431                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3432                 priv->net_dev->stats.tx_carrier_errors++;
3433                 netif_stop_queue(dev);
3434                 goto fail_unlock;
3435         }
3436
3437         if (list_empty(&priv->tx_free_list))
3438                 goto fail_unlock;
3439
3440         element = priv->tx_free_list.next;
3441         packet = list_entry(element, struct ipw2100_tx_packet, list);
3442
3443         packet->info.d_struct.txb = txb;
3444
3445         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3446         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3447
3448         packet->jiffy_start = jiffies;
3449
3450         list_del(element);
3451         DEC_STAT(&priv->tx_free_stat);
3452
3453         list_add_tail(element, &priv->tx_pend_list);
3454         INC_STAT(&priv->tx_pend_stat);
3455
3456         ipw2100_tx_send_data(priv);
3457
3458         spin_unlock_irqrestore(&priv->low_lock, flags);
3459         return NETDEV_TX_OK;
3460
3461 fail_unlock:
3462         netif_stop_queue(dev);
3463         spin_unlock_irqrestore(&priv->low_lock, flags);
3464         return NETDEV_TX_BUSY;
3465 }
3466
3467 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3468 {
3469         int i, j, err = -EINVAL;
3470         void *v;
3471         dma_addr_t p;
3472
3473         priv->msg_buffers =
3474             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3475                     GFP_KERNEL);
3476         if (!priv->msg_buffers) {
3477                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3478                        "buffers.\n", priv->net_dev->name);
3479                 return -ENOMEM;
3480         }
3481
3482         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3483                 v = pci_alloc_consistent(priv->pci_dev,
3484                                          sizeof(struct ipw2100_cmd_header), &p);
3485                 if (!v) {
3486                         printk(KERN_ERR DRV_NAME ": "
3487                                "%s: PCI alloc failed for msg "
3488                                "buffers.\n", priv->net_dev->name);
3489                         err = -ENOMEM;
3490                         break;
3491                 }
3492
3493                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3494
3495                 priv->msg_buffers[i].type = COMMAND;
3496                 priv->msg_buffers[i].info.c_struct.cmd =
3497                     (struct ipw2100_cmd_header *)v;
3498                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3499         }
3500
3501         if (i == IPW_COMMAND_POOL_SIZE)
3502                 return 0;
3503
3504         for (j = 0; j < i; j++) {
3505                 pci_free_consistent(priv->pci_dev,
3506                                     sizeof(struct ipw2100_cmd_header),
3507                                     priv->msg_buffers[j].info.c_struct.cmd,
3508                                     priv->msg_buffers[j].info.c_struct.
3509                                     cmd_phys);
3510         }
3511
3512         kfree(priv->msg_buffers);
3513         priv->msg_buffers = NULL;
3514
3515         return err;
3516 }
3517
3518 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3519 {
3520         int i;
3521
3522         INIT_LIST_HEAD(&priv->msg_free_list);
3523         INIT_LIST_HEAD(&priv->msg_pend_list);
3524
3525         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3526                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3527         SET_STAT(&priv->msg_free_stat, i);
3528
3529         return 0;
3530 }
3531
3532 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3533 {
3534         int i;
3535
3536         if (!priv->msg_buffers)
3537                 return;
3538
3539         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3540                 pci_free_consistent(priv->pci_dev,
3541                                     sizeof(struct ipw2100_cmd_header),
3542                                     priv->msg_buffers[i].info.c_struct.cmd,
3543                                     priv->msg_buffers[i].info.c_struct.
3544                                     cmd_phys);
3545         }
3546
3547         kfree(priv->msg_buffers);
3548         priv->msg_buffers = NULL;
3549 }
3550
3551 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3552                         char *buf)
3553 {
3554         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3555         char *out = buf;
3556         int i, j;
3557         u32 val;
3558
3559         for (i = 0; i < 16; i++) {
3560                 out += sprintf(out, "[%08X] ", i * 16);
3561                 for (j = 0; j < 16; j += 4) {
3562                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3563                         out += sprintf(out, "%08X ", val);
3564                 }
3565                 out += sprintf(out, "\n");
3566         }
3567
3568         return out - buf;
3569 }
3570
3571 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3572
3573 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3574                         char *buf)
3575 {
3576         struct ipw2100_priv *p = dev_get_drvdata(d);
3577         return sprintf(buf, "0x%08x\n", (int)p->config);
3578 }
3579
3580 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3581
3582 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3583                            char *buf)
3584 {
3585         struct ipw2100_priv *p = dev_get_drvdata(d);
3586         return sprintf(buf, "0x%08x\n", (int)p->status);
3587 }
3588
3589 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3590
3591 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3592                                char *buf)
3593 {
3594         struct ipw2100_priv *p = dev_get_drvdata(d);
3595         return sprintf(buf, "0x%08x\n", (int)p->capability);
3596 }
3597
3598 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3599
3600 #define IPW2100_REG(x) { IPW_ ##x, #x }
3601 static const struct {
3602         u32 addr;
3603         const char *name;
3604 } hw_data[] = {
3605 IPW2100_REG(REG_GP_CNTRL),
3606             IPW2100_REG(REG_GPIO),
3607             IPW2100_REG(REG_INTA),
3608             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3609 #define IPW2100_NIC(x, s) { x, #x, s }
3610 static const struct {
3611         u32 addr;
3612         const char *name;
3613         size_t size;
3614 } nic_data[] = {
3615 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3616             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3617 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3618 static const struct {
3619         u8 index;
3620         const char *name;
3621         const char *desc;
3622 } ord_data[] = {
3623 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3624             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3625                                 "successful Host Tx's (MSDU)"),
3626             IPW2100_ORD(STAT_TX_DIR_DATA,
3627                                 "successful Directed Tx's (MSDU)"),
3628             IPW2100_ORD(STAT_TX_DIR_DATA1,
3629                                 "successful Directed Tx's (MSDU) @ 1MB"),
3630             IPW2100_ORD(STAT_TX_DIR_DATA2,
3631                                 "successful Directed Tx's (MSDU) @ 2MB"),
3632             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3633                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3634             IPW2100_ORD(STAT_TX_DIR_DATA11,
3635                                 "successful Directed Tx's (MSDU) @ 11MB"),
3636             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3637                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3638             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3639                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3640             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3641                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3642             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3643                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3644             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3645             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3646             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3647             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3648             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3649             IPW2100_ORD(STAT_TX_ASSN_RESP,
3650                                 "successful Association response Tx's"),
3651             IPW2100_ORD(STAT_TX_REASSN,
3652                                 "successful Reassociation Tx's"),
3653             IPW2100_ORD(STAT_TX_REASSN_RESP,
3654                                 "successful Reassociation response Tx's"),
3655             IPW2100_ORD(STAT_TX_PROBE,
3656                                 "probes successfully transmitted"),
3657             IPW2100_ORD(STAT_TX_PROBE_RESP,
3658                                 "probe responses successfully transmitted"),
3659             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3660             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3661             IPW2100_ORD(STAT_TX_DISASSN,
3662                                 "successful Disassociation TX"),
3663             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3664             IPW2100_ORD(STAT_TX_DEAUTH,
3665                                 "successful Deauthentication TX"),
3666             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3667                                 "Total successful Tx data bytes"),
3668             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3669             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3670             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3671             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3672             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3673             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3674             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3675                                 "times max tries in a hop failed"),
3676             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3677                                 "times disassociation failed"),
3678             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3679             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3680             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3681             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3682             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3683             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3684             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3685                                 "directed packets at 5.5MB"),
3686             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3687             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3688             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3689                                 "nondirected packets at 1MB"),
3690             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3691                                 "nondirected packets at 2MB"),
3692             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3693                                 "nondirected packets at 5.5MB"),
3694             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3695                                 "nondirected packets at 11MB"),
3696             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3697             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3698                                                                     "Rx CTS"),
3699             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3700             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3701             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3702             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3703             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3704             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3705             IPW2100_ORD(STAT_RX_REASSN_RESP,
3706                                 "Reassociation response Rx's"),
3707             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3708             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3709             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3710             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3711             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3712             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3713             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3714             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3715                                 "Total rx data bytes received"),
3716             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3717             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3718             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3719             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3720             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3721             IPW2100_ORD(STAT_RX_DUPLICATE1,
3722                                 "duplicate rx packets at 1MB"),
3723             IPW2100_ORD(STAT_RX_DUPLICATE2,
3724                                 "duplicate rx packets at 2MB"),
3725             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3726                                 "duplicate rx packets at 5.5MB"),
3727             IPW2100_ORD(STAT_RX_DUPLICATE11,
3728                                 "duplicate rx packets at 11MB"),
3729             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3730             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3731             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3732             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3733             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3734                                 "rx frames with invalid protocol"),
3735             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3736             IPW2100_ORD(STAT_RX_NO_BUFFER,
3737                                 "rx frames rejected due to no buffer"),
3738             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3739                                 "rx frames dropped due to missing fragment"),
3740             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3741                                 "rx frames dropped due to non-sequential fragment"),
3742             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3743                                 "rx frames dropped due to unmatched 1st frame"),
3744             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3745                                 "rx frames dropped due to uncompleted frame"),
3746             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3747                                 "ICV errors during decryption"),
3748             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3749             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3750             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3751                                 "poll response timeouts"),
3752             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3753                                 "timeouts waiting for last {broad,multi}cast pkt"),
3754             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3755             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3756             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3757             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3758             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3759                                 "current calculation of % missed beacons"),
3760             IPW2100_ORD(STAT_PERCENT_RETRIES,
3761                                 "current calculation of % missed tx retries"),
3762             IPW2100_ORD(ASSOCIATED_AP_PTR,
3763                                 "0 if not associated, else pointer to AP table entry"),
3764             IPW2100_ORD(AVAILABLE_AP_CNT,
3765                                 "AP's decsribed in the AP table"),
3766             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3767             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3768             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3769             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3770                                 "failures due to response fail"),
3771             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3772             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3773             IPW2100_ORD(STAT_ROAM_INHIBIT,
3774                                 "times roaming was inhibited due to activity"),
3775             IPW2100_ORD(RSSI_AT_ASSN,
3776                                 "RSSI of associated AP at time of association"),
3777             IPW2100_ORD(STAT_ASSN_CAUSE1,
3778                                 "reassociation: no probe response or TX on hop"),
3779             IPW2100_ORD(STAT_ASSN_CAUSE2,
3780                                 "reassociation: poor tx/rx quality"),
3781             IPW2100_ORD(STAT_ASSN_CAUSE3,
3782                                 "reassociation: tx/rx quality (excessive AP load"),
3783             IPW2100_ORD(STAT_ASSN_CAUSE4,
3784                                 "reassociation: AP RSSI level"),
3785             IPW2100_ORD(STAT_ASSN_CAUSE5,
3786                                 "reassociations due to load leveling"),
3787             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3788             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3789                                 "times authentication response failed"),
3790             IPW2100_ORD(STATION_TABLE_CNT,
3791                                 "entries in association table"),
3792             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3793             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3794             IPW2100_ORD(COUNTRY_CODE,
3795                                 "IEEE country code as recv'd from beacon"),
3796             IPW2100_ORD(COUNTRY_CHANNELS,
3797                                 "channels suported by country"),
3798             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3799             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3800             IPW2100_ORD(ANTENNA_DIVERSITY,
3801                                 "TRUE if antenna diversity is disabled"),
3802             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3803             IPW2100_ORD(OUR_FREQ,
3804                                 "current radio freq lower digits - channel ID"),
3805             IPW2100_ORD(RTC_TIME, "current RTC time"),
3806             IPW2100_ORD(PORT_TYPE, "operating mode"),
3807             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3808             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3809             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3810             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3811             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3812             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3813             IPW2100_ORD(CAPABILITIES,
3814                                 "Management frame capability field"),
3815             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3816             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3817             IPW2100_ORD(RTS_THRESHOLD,
3818                                 "Min packet length for RTS handshaking"),
3819             IPW2100_ORD(INT_MODE, "International mode"),
3820             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3821                                 "protocol frag threshold"),
3822             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3823                                 "EEPROM offset in SRAM"),
3824             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3825                                 "EEPROM size in SRAM"),
3826             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3827             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3828                                 "EEPROM IBSS 11b channel set"),
3829             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3830             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3831             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3832             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3833             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3834
3835 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3836                               char *buf)
3837 {
3838         int i;
3839         struct ipw2100_priv *priv = dev_get_drvdata(d);
3840         struct net_device *dev = priv->net_dev;
3841         char *out = buf;
3842         u32 val = 0;
3843
3844         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3845
3846         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3847                 read_register(dev, hw_data[i].addr, &val);
3848                 out += sprintf(out, "%30s [%08X] : %08X\n",
3849                                hw_data[i].name, hw_data[i].addr, val);
3850         }
3851
3852         return out - buf;
3853 }
3854
3855 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3856
3857 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3858                              char *buf)
3859 {
3860         struct ipw2100_priv *priv = dev_get_drvdata(d);
3861         struct net_device *dev = priv->net_dev;
3862         char *out = buf;
3863         int i;
3864
3865         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3866
3867         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3868                 u8 tmp8;
3869                 u16 tmp16;
3870                 u32 tmp32;
3871
3872                 switch (nic_data[i].size) {
3873                 case 1:
3874                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3875                         out += sprintf(out, "%30s [%08X] : %02X\n",
3876                                        nic_data[i].name, nic_data[i].addr,
3877                                        tmp8);
3878                         break;
3879                 case 2:
3880                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3881                         out += sprintf(out, "%30s [%08X] : %04X\n",
3882                                        nic_data[i].name, nic_data[i].addr,
3883                                        tmp16);
3884                         break;
3885                 case 4:
3886                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3887                         out += sprintf(out, "%30s [%08X] : %08X\n",
3888                                        nic_data[i].name, nic_data[i].addr,
3889                                        tmp32);
3890                         break;
3891                 }
3892         }
3893         return out - buf;
3894 }
3895
3896 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3897
3898 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3899                            char *buf)
3900 {
3901         struct ipw2100_priv *priv = dev_get_drvdata(d);
3902         struct net_device *dev = priv->net_dev;
3903         static unsigned long loop = 0;
3904         int len = 0;
3905         u32 buffer[4];
3906         int i;
3907         char line[81];
3908
3909         if (loop >= 0x30000)
3910                 loop = 0;
3911
3912         /* sysfs provides us PAGE_SIZE buffer */
3913         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3914
3915                 if (priv->snapshot[0])
3916                         for (i = 0; i < 4; i++)
3917                                 buffer[i] =
3918                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3919                 else
3920                         for (i = 0; i < 4; i++)
3921                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3922
3923                 if (priv->dump_raw)
3924                         len += sprintf(buf + len,
3925                                        "%c%c%c%c"
3926                                        "%c%c%c%c"
3927                                        "%c%c%c%c"
3928                                        "%c%c%c%c",
3929                                        ((u8 *) buffer)[0x0],
3930                                        ((u8 *) buffer)[0x1],
3931                                        ((u8 *) buffer)[0x2],
3932                                        ((u8 *) buffer)[0x3],
3933                                        ((u8 *) buffer)[0x4],
3934                                        ((u8 *) buffer)[0x5],
3935                                        ((u8 *) buffer)[0x6],
3936                                        ((u8 *) buffer)[0x7],
3937                                        ((u8 *) buffer)[0x8],
3938                                        ((u8 *) buffer)[0x9],
3939                                        ((u8 *) buffer)[0xa],
3940                                        ((u8 *) buffer)[0xb],
3941                                        ((u8 *) buffer)[0xc],
3942                                        ((u8 *) buffer)[0xd],
3943                                        ((u8 *) buffer)[0xe],
3944                                        ((u8 *) buffer)[0xf]);
3945                 else
3946                         len += sprintf(buf + len, "%s\n",
3947                                        snprint_line(line, sizeof(line),
3948                                                     (u8 *) buffer, 16, loop));
3949                 loop += 16;
3950         }
3951
3952         return len;
3953 }
3954
3955 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3956                             const char *buf, size_t count)
3957 {
3958         struct ipw2100_priv *priv = dev_get_drvdata(d);
3959         struct net_device *dev = priv->net_dev;
3960         const char *p = buf;
3961
3962         (void)dev;              /* kill unused-var warning for debug-only code */
3963
3964         if (count < 1)
3965                 return count;
3966
3967         if (p[0] == '1' ||
3968             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3969                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3970                                dev->name);
3971                 priv->dump_raw = 1;
3972
3973         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3974                                    tolower(p[1]) == 'f')) {
3975                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3976                                dev->name);
3977                 priv->dump_raw = 0;
3978
3979         } else if (tolower(p[0]) == 'r') {
3980                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3981                 ipw2100_snapshot_free(priv);
3982
3983         } else
3984                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3985                                "reset = clear memory snapshot\n", dev->name);
3986
3987         return count;
3988 }
3989
3990 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3991
3992 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3993                              char *buf)
3994 {
3995         struct ipw2100_priv *priv = dev_get_drvdata(d);
3996         u32 val = 0;
3997         int len = 0;
3998         u32 val_len;
3999         static int loop = 0;
4000
4001         if (priv->status & STATUS_RF_KILL_MASK)
4002                 return 0;
4003
4004         if (loop >= ARRAY_SIZE(ord_data))
4005                 loop = 0;
4006
4007         /* sysfs provides us PAGE_SIZE buffer */
4008         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4009                 val_len = sizeof(u32);
4010
4011                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4012                                         &val_len))
4013                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4014                                        ord_data[loop].index,
4015                                        ord_data[loop].desc);
4016                 else
4017                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4018                                        ord_data[loop].index, val,
4019                                        ord_data[loop].desc);
4020                 loop++;
4021         }
4022
4023         return len;
4024 }
4025
4026 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4027
4028 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4029                           char *buf)
4030 {
4031         struct ipw2100_priv *priv = dev_get_drvdata(d);
4032         char *out = buf;
4033
4034         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4035                        priv->interrupts, priv->tx_interrupts,
4036                        priv->rx_interrupts, priv->inta_other);
4037         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4038         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4039 #ifdef CONFIG_IPW2100_DEBUG
4040         out += sprintf(out, "packet mismatch image: %s\n",
4041                        priv->snapshot[0] ? "YES" : "NO");
4042 #endif
4043
4044         return out - buf;
4045 }
4046
4047 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4048
4049 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4050 {
4051         int err;
4052
4053         if (mode == priv->ieee->iw_mode)
4054                 return 0;
4055
4056         err = ipw2100_disable_adapter(priv);
4057         if (err) {
4058                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4059                        priv->net_dev->name, err);
4060                 return err;
4061         }
4062
4063         switch (mode) {
4064         case IW_MODE_INFRA:
4065                 priv->net_dev->type = ARPHRD_ETHER;
4066                 break;
4067         case IW_MODE_ADHOC:
4068                 priv->net_dev->type = ARPHRD_ETHER;
4069                 break;
4070 #ifdef CONFIG_IPW2100_MONITOR
4071         case IW_MODE_MONITOR:
4072                 priv->last_mode = priv->ieee->iw_mode;
4073                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4074                 break;
4075 #endif                          /* CONFIG_IPW2100_MONITOR */
4076         }
4077
4078         priv->ieee->iw_mode = mode;
4079
4080 #ifdef CONFIG_PM
4081         /* Indicate ipw2100_download_firmware download firmware
4082          * from disk instead of memory. */
4083         ipw2100_firmware.version = 0;
4084 #endif
4085
4086         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4087         priv->reset_backoff = 0;
4088         schedule_reset(priv);
4089
4090         return 0;
4091 }
4092
4093 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4094                               char *buf)
4095 {
4096         struct ipw2100_priv *priv = dev_get_drvdata(d);
4097         int len = 0;
4098
4099 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4100
4101         if (priv->status & STATUS_ASSOCIATED)
4102                 len += sprintf(buf + len, "connected: %lu\n",
4103                                get_seconds() - priv->connect_start);
4104         else
4105                 len += sprintf(buf + len, "not connected\n");
4106
4107         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4108         DUMP_VAR(status, "08lx");
4109         DUMP_VAR(config, "08lx");
4110         DUMP_VAR(capability, "08lx");
4111
4112         len +=
4113             sprintf(buf + len, "last_rtc: %lu\n",
4114                     (unsigned long)priv->last_rtc);
4115
4116         DUMP_VAR(fatal_error, "d");
4117         DUMP_VAR(stop_hang_check, "d");
4118         DUMP_VAR(stop_rf_kill, "d");
4119         DUMP_VAR(messages_sent, "d");
4120
4121         DUMP_VAR(tx_pend_stat.value, "d");
4122         DUMP_VAR(tx_pend_stat.hi, "d");
4123
4124         DUMP_VAR(tx_free_stat.value, "d");
4125         DUMP_VAR(tx_free_stat.lo, "d");
4126
4127         DUMP_VAR(msg_free_stat.value, "d");
4128         DUMP_VAR(msg_free_stat.lo, "d");
4129
4130         DUMP_VAR(msg_pend_stat.value, "d");
4131         DUMP_VAR(msg_pend_stat.hi, "d");
4132
4133         DUMP_VAR(fw_pend_stat.value, "d");
4134         DUMP_VAR(fw_pend_stat.hi, "d");
4135
4136         DUMP_VAR(txq_stat.value, "d");
4137         DUMP_VAR(txq_stat.lo, "d");
4138
4139         DUMP_VAR(ieee->scans, "d");
4140         DUMP_VAR(reset_backoff, "d");
4141
4142         return len;
4143 }
4144
4145 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4146
4147 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4148                             char *buf)
4149 {
4150         struct ipw2100_priv *priv = dev_get_drvdata(d);
4151         char essid[IW_ESSID_MAX_SIZE + 1];
4152         u8 bssid[ETH_ALEN];
4153         u32 chan = 0;
4154         char *out = buf;
4155         unsigned int length;
4156         int ret;
4157
4158         if (priv->status & STATUS_RF_KILL_MASK)
4159                 return 0;
4160
4161         memset(essid, 0, sizeof(essid));
4162         memset(bssid, 0, sizeof(bssid));
4163
4164         length = IW_ESSID_MAX_SIZE;
4165         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4166         if (ret)
4167                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4168                                __LINE__);
4169
4170         length = sizeof(bssid);
4171         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4172                                   bssid, &length);
4173         if (ret)
4174                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4175                                __LINE__);
4176
4177         length = sizeof(u32);
4178         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4179         if (ret)
4180                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4181                                __LINE__);
4182
4183         out += sprintf(out, "ESSID: %s\n", essid);
4184         out += sprintf(out, "BSSID:   %pM\n", bssid);
4185         out += sprintf(out, "Channel: %d\n", chan);
4186
4187         return out - buf;
4188 }
4189
4190 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4191
4192 #ifdef CONFIG_IPW2100_DEBUG
4193 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4194 {
4195         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4196 }
4197
4198 static ssize_t store_debug_level(struct device_driver *d,
4199                                  const char *buf, size_t count)
4200 {
4201         char *p = (char *)buf;
4202         u32 val;
4203
4204         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4205                 p++;
4206                 if (p[0] == 'x' || p[0] == 'X')
4207                         p++;
4208                 val = simple_strtoul(p, &p, 16);
4209         } else
4210                 val = simple_strtoul(p, &p, 10);
4211         if (p == buf)
4212                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4213         else
4214                 ipw2100_debug_level = val;
4215
4216         return strnlen(buf, count);
4217 }
4218
4219 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4220                    store_debug_level);
4221 #endif                          /* CONFIG_IPW2100_DEBUG */
4222
4223 static ssize_t show_fatal_error(struct device *d,
4224                                 struct device_attribute *attr, char *buf)
4225 {
4226         struct ipw2100_priv *priv = dev_get_drvdata(d);
4227         char *out = buf;
4228         int i;
4229
4230         if (priv->fatal_error)
4231                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4232         else
4233                 out += sprintf(out, "0\n");
4234
4235         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4236                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4237                                         IPW2100_ERROR_QUEUE])
4238                         continue;
4239
4240                 out += sprintf(out, "%d. 0x%08X\n", i,
4241                                priv->fatal_errors[(priv->fatal_index - i) %
4242                                                   IPW2100_ERROR_QUEUE]);
4243         }
4244
4245         return out - buf;
4246 }
4247
4248 static ssize_t store_fatal_error(struct device *d,
4249                                  struct device_attribute *attr, const char *buf,
4250                                  size_t count)
4251 {
4252         struct ipw2100_priv *priv = dev_get_drvdata(d);
4253         schedule_reset(priv);
4254         return count;
4255 }
4256
4257 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4258                    store_fatal_error);
4259
4260 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4261                              char *buf)
4262 {
4263         struct ipw2100_priv *priv = dev_get_drvdata(d);
4264         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4265 }
4266
4267 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4268                               const char *buf, size_t count)
4269 {
4270         struct ipw2100_priv *priv = dev_get_drvdata(d);
4271         struct net_device *dev = priv->net_dev;
4272         char buffer[] = "00000000";
4273         unsigned long len =
4274             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4275         unsigned long val;
4276         char *p = buffer;
4277
4278         (void)dev;              /* kill unused-var warning for debug-only code */
4279
4280         IPW_DEBUG_INFO("enter\n");
4281
4282         strncpy(buffer, buf, len);
4283         buffer[len] = 0;
4284
4285         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4286                 p++;
4287                 if (p[0] == 'x' || p[0] == 'X')
4288                         p++;
4289                 val = simple_strtoul(p, &p, 16);
4290         } else
4291                 val = simple_strtoul(p, &p, 10);
4292         if (p == buffer) {
4293                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4294         } else {
4295                 priv->ieee->scan_age = val;
4296                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4297         }
4298
4299         IPW_DEBUG_INFO("exit\n");
4300         return len;
4301 }
4302
4303 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4304
4305 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4306                             char *buf)
4307 {
4308         /* 0 - RF kill not enabled
4309            1 - SW based RF kill active (sysfs)
4310            2 - HW based RF kill active
4311            3 - Both HW and SW baed RF kill active */
4312         struct ipw2100_priv *priv = dev_get_drvdata(d);
4313         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4314             (rf_kill_active(priv) ? 0x2 : 0x0);
4315         return sprintf(buf, "%i\n", val);
4316 }
4317
4318 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4319 {
4320         if ((disable_radio ? 1 : 0) ==
4321             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4322                 return 0;
4323
4324         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4325                           disable_radio ? "OFF" : "ON");
4326
4327         mutex_lock(&priv->action_mutex);
4328
4329         if (disable_radio) {
4330                 priv->status |= STATUS_RF_KILL_SW;
4331                 ipw2100_down(priv);
4332         } else {
4333                 priv->status &= ~STATUS_RF_KILL_SW;
4334                 if (rf_kill_active(priv)) {
4335                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4336                                           "disabled by HW switch\n");
4337                         /* Make sure the RF_KILL check timer is running */
4338                         priv->stop_rf_kill = 0;
4339                         cancel_delayed_work(&priv->rf_kill);
4340                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4341                                            round_jiffies_relative(HZ));
4342                 } else
4343                         schedule_reset(priv);
4344         }
4345
4346         mutex_unlock(&priv->action_mutex);
4347         return 1;
4348 }
4349
4350 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4351                              const char *buf, size_t count)
4352 {
4353         struct ipw2100_priv *priv = dev_get_drvdata(d);
4354         ipw_radio_kill_sw(priv, buf[0] == '1');
4355         return count;
4356 }
4357
4358 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4359
4360 static struct attribute *ipw2100_sysfs_entries[] = {
4361         &dev_attr_hardware.attr,
4362         &dev_attr_registers.attr,
4363         &dev_attr_ordinals.attr,
4364         &dev_attr_pci.attr,
4365         &dev_attr_stats.attr,
4366         &dev_attr_internals.attr,
4367         &dev_attr_bssinfo.attr,
4368         &dev_attr_memory.attr,
4369         &dev_attr_scan_age.attr,
4370         &dev_attr_fatal_error.attr,
4371         &dev_attr_rf_kill.attr,
4372         &dev_attr_cfg.attr,
4373         &dev_attr_status.attr,
4374         &dev_attr_capability.attr,
4375         NULL,
4376 };
4377
4378 static struct attribute_group ipw2100_attribute_group = {
4379         .attrs = ipw2100_sysfs_entries,
4380 };
4381
4382 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4383 {
4384         struct ipw2100_status_queue *q = &priv->status_queue;
4385
4386         IPW_DEBUG_INFO("enter\n");
4387
4388         q->size = entries * sizeof(struct ipw2100_status);
4389         q->drv =
4390             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4391                                                           q->size, &q->nic);
4392         if (!q->drv) {
4393                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4394                 return -ENOMEM;
4395         }
4396
4397         memset(q->drv, 0, q->size);
4398
4399         IPW_DEBUG_INFO("exit\n");
4400
4401         return 0;
4402 }
4403
4404 static void status_queue_free(struct ipw2100_priv *priv)
4405 {
4406         IPW_DEBUG_INFO("enter\n");
4407
4408         if (priv->status_queue.drv) {
4409                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4410                                     priv->status_queue.drv,
4411                                     priv->status_queue.nic);
4412                 priv->status_queue.drv = NULL;
4413         }
4414
4415         IPW_DEBUG_INFO("exit\n");
4416 }
4417
4418 static int bd_queue_allocate(struct ipw2100_priv *priv,
4419                              struct ipw2100_bd_queue *q, int entries)
4420 {
4421         IPW_DEBUG_INFO("enter\n");
4422
4423         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4424
4425         q->entries = entries;
4426         q->size = entries * sizeof(struct ipw2100_bd);
4427         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4428         if (!q->drv) {
4429                 IPW_DEBUG_INFO
4430                     ("can't allocate shared memory for buffer descriptors\n");
4431                 return -ENOMEM;
4432         }
4433         memset(q->drv, 0, q->size);
4434
4435         IPW_DEBUG_INFO("exit\n");
4436
4437         return 0;
4438 }
4439
4440 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4441 {
4442         IPW_DEBUG_INFO("enter\n");
4443
4444         if (!q)
4445                 return;
4446
4447         if (q->drv) {
4448                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4449                 q->drv = NULL;
4450         }
4451
4452         IPW_DEBUG_INFO("exit\n");
4453 }
4454
4455 static void bd_queue_initialize(struct ipw2100_priv *priv,
4456                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4457                                 u32 r, u32 w)
4458 {
4459         IPW_DEBUG_INFO("enter\n");
4460
4461         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4462                        (u32) q->nic);
4463
4464         write_register(priv->net_dev, base, q->nic);
4465         write_register(priv->net_dev, size, q->entries);
4466         write_register(priv->net_dev, r, q->oldest);
4467         write_register(priv->net_dev, w, q->next);
4468
4469         IPW_DEBUG_INFO("exit\n");
4470 }
4471
4472 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4473 {
4474         if (priv->workqueue) {
4475                 priv->stop_rf_kill = 1;
4476                 priv->stop_hang_check = 1;
4477                 cancel_delayed_work(&priv->reset_work);
4478                 cancel_delayed_work(&priv->security_work);
4479                 cancel_delayed_work(&priv->wx_event_work);
4480                 cancel_delayed_work(&priv->hang_check);
4481                 cancel_delayed_work(&priv->rf_kill);
4482                 cancel_delayed_work(&priv->scan_event_later);
4483                 destroy_workqueue(priv->workqueue);
4484                 priv->workqueue = NULL;
4485         }
4486 }
4487
4488 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4489 {
4490         int i, j, err = -EINVAL;
4491         void *v;
4492         dma_addr_t p;
4493
4494         IPW_DEBUG_INFO("enter\n");
4495
4496         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4497         if (err) {
4498                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4499                                 priv->net_dev->name);
4500                 return err;
4501         }
4502
4503         priv->tx_buffers =
4504             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4505                     GFP_ATOMIC);
4506         if (!priv->tx_buffers) {
4507                 printk(KERN_ERR DRV_NAME
4508                        ": %s: alloc failed form tx buffers.\n",
4509                        priv->net_dev->name);
4510                 bd_queue_free(priv, &priv->tx_queue);
4511                 return -ENOMEM;
4512         }
4513
4514         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4515                 v = pci_alloc_consistent(priv->pci_dev,
4516                                          sizeof(struct ipw2100_data_header),
4517                                          &p);
4518                 if (!v) {
4519                         printk(KERN_ERR DRV_NAME
4520                                ": %s: PCI alloc failed for tx " "buffers.\n",
4521                                priv->net_dev->name);
4522                         err = -ENOMEM;
4523                         break;
4524                 }
4525
4526                 priv->tx_buffers[i].type = DATA;
4527                 priv->tx_buffers[i].info.d_struct.data =
4528                     (struct ipw2100_data_header *)v;
4529                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4530                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4531         }
4532
4533         if (i == TX_PENDED_QUEUE_LENGTH)
4534                 return 0;
4535
4536         for (j = 0; j < i; j++) {
4537                 pci_free_consistent(priv->pci_dev,
4538                                     sizeof(struct ipw2100_data_header),
4539                                     priv->tx_buffers[j].info.d_struct.data,
4540                                     priv->tx_buffers[j].info.d_struct.
4541                                     data_phys);
4542         }
4543
4544         kfree(priv->tx_buffers);
4545         priv->tx_buffers = NULL;
4546
4547         return err;
4548 }
4549
4550 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4551 {
4552         int i;
4553
4554         IPW_DEBUG_INFO("enter\n");
4555
4556         /*
4557          * reinitialize packet info lists
4558          */
4559         INIT_LIST_HEAD(&priv->fw_pend_list);
4560         INIT_STAT(&priv->fw_pend_stat);
4561
4562         /*
4563          * reinitialize lists
4564          */
4565         INIT_LIST_HEAD(&priv->tx_pend_list);
4566         INIT_LIST_HEAD(&priv->tx_free_list);
4567         INIT_STAT(&priv->tx_pend_stat);
4568         INIT_STAT(&priv->tx_free_stat);
4569
4570         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4571                 /* We simply drop any SKBs that have been queued for
4572                  * transmit */
4573                 if (priv->tx_buffers[i].info.d_struct.txb) {
4574                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4575                                            txb);
4576                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4577                 }
4578
4579                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4580         }
4581
4582         SET_STAT(&priv->tx_free_stat, i);
4583
4584         priv->tx_queue.oldest = 0;
4585         priv->tx_queue.available = priv->tx_queue.entries;
4586         priv->tx_queue.next = 0;
4587         INIT_STAT(&priv->txq_stat);
4588         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4589
4590         bd_queue_initialize(priv, &priv->tx_queue,
4591                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4592                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4593                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4594                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4595
4596         IPW_DEBUG_INFO("exit\n");
4597
4598 }
4599
4600 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4601 {
4602         int i;
4603
4604         IPW_DEBUG_INFO("enter\n");
4605
4606         bd_queue_free(priv, &priv->tx_queue);
4607
4608         if (!priv->tx_buffers)
4609                 return;
4610
4611         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4612                 if (priv->tx_buffers[i].info.d_struct.txb) {
4613                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4614                                            txb);
4615                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4616                 }
4617                 if (priv->tx_buffers[i].info.d_struct.data)
4618                         pci_free_consistent(priv->pci_dev,
4619                                             sizeof(struct ipw2100_data_header),
4620                                             priv->tx_buffers[i].info.d_struct.
4621                                             data,
4622                                             priv->tx_buffers[i].info.d_struct.
4623                                             data_phys);
4624         }
4625
4626         kfree(priv->tx_buffers);
4627         priv->tx_buffers = NULL;
4628
4629         IPW_DEBUG_INFO("exit\n");
4630 }
4631
4632 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4633 {
4634         int i, j, err = -EINVAL;
4635
4636         IPW_DEBUG_INFO("enter\n");
4637
4638         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4639         if (err) {
4640                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4641                 return err;
4642         }
4643
4644         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4645         if (err) {
4646                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4647                 bd_queue_free(priv, &priv->rx_queue);
4648                 return err;
4649         }
4650
4651         /*
4652          * allocate packets
4653          */
4654         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4655                                    sizeof(struct ipw2100_rx_packet),
4656                                    GFP_KERNEL);
4657         if (!priv->rx_buffers) {
4658                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4659
4660                 bd_queue_free(priv, &priv->rx_queue);
4661
4662                 status_queue_free(priv);
4663
4664                 return -ENOMEM;
4665         }
4666
4667         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4668                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4669
4670                 err = ipw2100_alloc_skb(priv, packet);
4671                 if (unlikely(err)) {
4672                         err = -ENOMEM;
4673                         break;
4674                 }
4675
4676                 /* The BD holds the cache aligned address */
4677                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4678                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4679                 priv->status_queue.drv[i].status_fields = 0;
4680         }
4681
4682         if (i == RX_QUEUE_LENGTH)
4683                 return 0;
4684
4685         for (j = 0; j < i; j++) {
4686                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4687                                  sizeof(struct ipw2100_rx_packet),
4688                                  PCI_DMA_FROMDEVICE);
4689                 dev_kfree_skb(priv->rx_buffers[j].skb);
4690         }
4691
4692         kfree(priv->rx_buffers);
4693         priv->rx_buffers = NULL;
4694
4695         bd_queue_free(priv, &priv->rx_queue);
4696
4697         status_queue_free(priv);
4698
4699         return err;
4700 }
4701
4702 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4703 {
4704         IPW_DEBUG_INFO("enter\n");
4705
4706         priv->rx_queue.oldest = 0;
4707         priv->rx_queue.available = priv->rx_queue.entries - 1;
4708         priv->rx_queue.next = priv->rx_queue.entries - 1;
4709
4710         INIT_STAT(&priv->rxq_stat);
4711         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4712
4713         bd_queue_initialize(priv, &priv->rx_queue,
4714                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4715                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4716                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4717                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4718
4719         /* set up the status queue */
4720         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4721                        priv->status_queue.nic);
4722
4723         IPW_DEBUG_INFO("exit\n");
4724 }
4725
4726 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4727 {
4728         int i;
4729
4730         IPW_DEBUG_INFO("enter\n");
4731
4732         bd_queue_free(priv, &priv->rx_queue);
4733         status_queue_free(priv);
4734
4735         if (!priv->rx_buffers)
4736                 return;
4737
4738         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4739                 if (priv->rx_buffers[i].rxp) {
4740                         pci_unmap_single(priv->pci_dev,
4741                                          priv->rx_buffers[i].dma_addr,
4742                                          sizeof(struct ipw2100_rx),
4743                                          PCI_DMA_FROMDEVICE);
4744                         dev_kfree_skb(priv->rx_buffers[i].skb);
4745                 }
4746         }
4747
4748         kfree(priv->rx_buffers);
4749         priv->rx_buffers = NULL;
4750
4751         IPW_DEBUG_INFO("exit\n");
4752 }
4753
4754 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4755 {
4756         u32 length = ETH_ALEN;
4757         u8 addr[ETH_ALEN];
4758
4759         int err;
4760
4761         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4762         if (err) {
4763                 IPW_DEBUG_INFO("MAC address read failed\n");
4764                 return -EIO;
4765         }
4766
4767         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4768         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4769
4770         return 0;
4771 }
4772
4773 /********************************************************************
4774  *
4775  * Firmware Commands
4776  *
4777  ********************************************************************/
4778
4779 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4780 {
4781         struct host_command cmd = {
4782                 .host_command = ADAPTER_ADDRESS,
4783                 .host_command_sequence = 0,
4784                 .host_command_length = ETH_ALEN
4785         };
4786         int err;
4787
4788         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4789
4790         IPW_DEBUG_INFO("enter\n");
4791
4792         if (priv->config & CFG_CUSTOM_MAC) {
4793                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4794                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4795         } else
4796                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4797                        ETH_ALEN);
4798
4799         err = ipw2100_hw_send_command(priv, &cmd);
4800
4801         IPW_DEBUG_INFO("exit\n");
4802         return err;
4803 }
4804
4805 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4806                                  int batch_mode)
4807 {
4808         struct host_command cmd = {
4809                 .host_command = PORT_TYPE,
4810                 .host_command_sequence = 0,
4811                 .host_command_length = sizeof(u32)
4812         };
4813         int err;
4814
4815         switch (port_type) {
4816         case IW_MODE_INFRA:
4817                 cmd.host_command_parameters[0] = IPW_BSS;
4818                 break;
4819         case IW_MODE_ADHOC:
4820                 cmd.host_command_parameters[0] = IPW_IBSS;
4821                 break;
4822         }
4823
4824         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4825                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4826
4827         if (!batch_mode) {
4828                 err = ipw2100_disable_adapter(priv);
4829                 if (err) {
4830                         printk(KERN_ERR DRV_NAME
4831                                ": %s: Could not disable adapter %d\n",
4832                                priv->net_dev->name, err);
4833                         return err;
4834                 }
4835         }
4836
4837         /* send cmd to firmware */
4838         err = ipw2100_hw_send_command(priv, &cmd);
4839
4840         if (!batch_mode)
4841                 ipw2100_enable_adapter(priv);
4842
4843         return err;
4844 }
4845
4846 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4847                                int batch_mode)
4848 {
4849         struct host_command cmd = {
4850                 .host_command = CHANNEL,
4851                 .host_command_sequence = 0,
4852                 .host_command_length = sizeof(u32)
4853         };
4854         int err;
4855
4856         cmd.host_command_parameters[0] = channel;
4857
4858         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4859
4860         /* If BSS then we don't support channel selection */
4861         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4862                 return 0;
4863
4864         if ((channel != 0) &&
4865             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4866                 return -EINVAL;
4867
4868         if (!batch_mode) {
4869                 err = ipw2100_disable_adapter(priv);
4870                 if (err)
4871                         return err;
4872         }
4873
4874         err = ipw2100_hw_send_command(priv, &cmd);
4875         if (err) {
4876                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4877                 return err;
4878         }
4879
4880         if (channel)
4881                 priv->config |= CFG_STATIC_CHANNEL;
4882         else
4883                 priv->config &= ~CFG_STATIC_CHANNEL;
4884
4885         priv->channel = channel;
4886
4887         if (!batch_mode) {
4888                 err = ipw2100_enable_adapter(priv);
4889                 if (err)
4890                         return err;
4891         }
4892
4893         return 0;
4894 }
4895
4896 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4897 {
4898         struct host_command cmd = {
4899                 .host_command = SYSTEM_CONFIG,
4900                 .host_command_sequence = 0,
4901                 .host_command_length = 12,
4902         };
4903         u32 ibss_mask, len = sizeof(u32);
4904         int err;
4905
4906         /* Set system configuration */
4907
4908         if (!batch_mode) {
4909                 err = ipw2100_disable_adapter(priv);
4910                 if (err)
4911                         return err;
4912         }
4913
4914         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4915                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4916
4917         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4918             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4919
4920         if (!(priv->config & CFG_LONG_PREAMBLE))
4921                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4922
4923         err = ipw2100_get_ordinal(priv,
4924                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4925                                   &ibss_mask, &len);
4926         if (err)
4927                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4928
4929         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4930         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4931
4932         /* 11b only */
4933         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4934
4935         err = ipw2100_hw_send_command(priv, &cmd);
4936         if (err)
4937                 return err;
4938
4939 /* If IPv6 is configured in the kernel then we don't want to filter out all
4940  * of the multicast packets as IPv6 needs some. */
4941 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4942         cmd.host_command = ADD_MULTICAST;
4943         cmd.host_command_sequence = 0;
4944         cmd.host_command_length = 0;
4945
4946         ipw2100_hw_send_command(priv, &cmd);
4947 #endif
4948         if (!batch_mode) {
4949                 err = ipw2100_enable_adapter(priv);
4950                 if (err)
4951                         return err;
4952         }
4953
4954         return 0;
4955 }
4956
4957 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4958                                 int batch_mode)
4959 {
4960         struct host_command cmd = {
4961                 .host_command = BASIC_TX_RATES,
4962                 .host_command_sequence = 0,
4963                 .host_command_length = 4
4964         };
4965         int err;
4966
4967         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4968
4969         if (!batch_mode) {
4970                 err = ipw2100_disable_adapter(priv);
4971                 if (err)
4972                         return err;
4973         }
4974
4975         /* Set BASIC TX Rate first */
4976         ipw2100_hw_send_command(priv, &cmd);
4977
4978         /* Set TX Rate */
4979         cmd.host_command = TX_RATES;
4980         ipw2100_hw_send_command(priv, &cmd);
4981
4982         /* Set MSDU TX Rate */
4983         cmd.host_command = MSDU_TX_RATES;
4984         ipw2100_hw_send_command(priv, &cmd);
4985
4986         if (!batch_mode) {
4987                 err = ipw2100_enable_adapter(priv);
4988                 if (err)
4989                         return err;
4990         }
4991
4992         priv->tx_rates = rate;
4993
4994         return 0;
4995 }
4996
4997 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4998 {
4999         struct host_command cmd = {
5000                 .host_command = POWER_MODE,
5001                 .host_command_sequence = 0,
5002                 .host_command_length = 4
5003         };
5004         int err;
5005
5006         cmd.host_command_parameters[0] = power_level;
5007
5008         err = ipw2100_hw_send_command(priv, &cmd);
5009         if (err)
5010                 return err;
5011
5012         if (power_level == IPW_POWER_MODE_CAM)
5013                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5014         else
5015                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5016
5017 #ifdef IPW2100_TX_POWER
5018         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5019                 /* Set beacon interval */
5020                 cmd.host_command = TX_POWER_INDEX;
5021                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5022
5023                 err = ipw2100_hw_send_command(priv, &cmd);
5024                 if (err)
5025                         return err;
5026         }
5027 #endif
5028
5029         return 0;
5030 }
5031
5032 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5033 {
5034         struct host_command cmd = {
5035                 .host_command = RTS_THRESHOLD,
5036                 .host_command_sequence = 0,
5037                 .host_command_length = 4
5038         };
5039         int err;
5040
5041         if (threshold & RTS_DISABLED)
5042                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5043         else
5044                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5045
5046         err = ipw2100_hw_send_command(priv, &cmd);
5047         if (err)
5048                 return err;
5049
5050         priv->rts_threshold = threshold;
5051
5052         return 0;
5053 }
5054
5055 #if 0
5056 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5057                                         u32 threshold, int batch_mode)
5058 {
5059         struct host_command cmd = {
5060                 .host_command = FRAG_THRESHOLD,
5061                 .host_command_sequence = 0,
5062                 .host_command_length = 4,
5063                 .host_command_parameters[0] = 0,
5064         };
5065         int err;
5066
5067         if (!batch_mode) {
5068                 err = ipw2100_disable_adapter(priv);
5069                 if (err)
5070                         return err;
5071         }
5072
5073         if (threshold == 0)
5074                 threshold = DEFAULT_FRAG_THRESHOLD;
5075         else {
5076                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5077                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5078         }
5079
5080         cmd.host_command_parameters[0] = threshold;
5081
5082         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5083
5084         err = ipw2100_hw_send_command(priv, &cmd);
5085
5086         if (!batch_mode)
5087                 ipw2100_enable_adapter(priv);
5088
5089         if (!err)
5090                 priv->frag_threshold = threshold;
5091
5092         return err;
5093 }
5094 #endif
5095
5096 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5097 {
5098         struct host_command cmd = {
5099                 .host_command = SHORT_RETRY_LIMIT,
5100                 .host_command_sequence = 0,
5101                 .host_command_length = 4
5102         };
5103         int err;
5104
5105         cmd.host_command_parameters[0] = retry;
5106
5107         err = ipw2100_hw_send_command(priv, &cmd);
5108         if (err)
5109                 return err;
5110
5111         priv->short_retry_limit = retry;
5112
5113         return 0;
5114 }
5115
5116 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5117 {
5118         struct host_command cmd = {
5119                 .host_command = LONG_RETRY_LIMIT,
5120                 .host_command_sequence = 0,
5121                 .host_command_length = 4
5122         };
5123         int err;
5124
5125         cmd.host_command_parameters[0] = retry;
5126
5127         err = ipw2100_hw_send_command(priv, &cmd);
5128         if (err)
5129                 return err;
5130
5131         priv->long_retry_limit = retry;
5132
5133         return 0;
5134 }
5135
5136 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5137                                        int batch_mode)
5138 {
5139         struct host_command cmd = {
5140                 .host_command = MANDATORY_BSSID,
5141                 .host_command_sequence = 0,
5142                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5143         };
5144         int err;
5145
5146 #ifdef CONFIG_IPW2100_DEBUG
5147         if (bssid != NULL)
5148                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5149         else
5150                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5151 #endif
5152         /* if BSSID is empty then we disable mandatory bssid mode */
5153         if (bssid != NULL)
5154                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5155
5156         if (!batch_mode) {
5157                 err = ipw2100_disable_adapter(priv);
5158                 if (err)
5159                         return err;
5160         }
5161
5162         err = ipw2100_hw_send_command(priv, &cmd);
5163
5164         if (!batch_mode)
5165                 ipw2100_enable_adapter(priv);
5166
5167         return err;
5168 }
5169
5170 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5171 {
5172         struct host_command cmd = {
5173                 .host_command = DISASSOCIATION_BSSID,
5174                 .host_command_sequence = 0,
5175                 .host_command_length = ETH_ALEN
5176         };
5177         int err;
5178         int len;
5179
5180         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5181
5182         len = ETH_ALEN;
5183         /* The Firmware currently ignores the BSSID and just disassociates from
5184          * the currently associated AP -- but in the off chance that a future
5185          * firmware does use the BSSID provided here, we go ahead and try and
5186          * set it to the currently associated AP's BSSID */
5187         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5188
5189         err = ipw2100_hw_send_command(priv, &cmd);
5190
5191         return err;
5192 }
5193
5194 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5195                               struct ipw2100_wpa_assoc_frame *, int)
5196     __attribute__ ((unused));
5197
5198 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5199                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5200                               int batch_mode)
5201 {
5202         struct host_command cmd = {
5203                 .host_command = SET_WPA_IE,
5204                 .host_command_sequence = 0,
5205                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5206         };
5207         int err;
5208
5209         IPW_DEBUG_HC("SET_WPA_IE\n");
5210
5211         if (!batch_mode) {
5212                 err = ipw2100_disable_adapter(priv);
5213                 if (err)
5214                         return err;
5215         }
5216
5217         memcpy(cmd.host_command_parameters, wpa_frame,
5218                sizeof(struct ipw2100_wpa_assoc_frame));
5219
5220         err = ipw2100_hw_send_command(priv, &cmd);
5221
5222         if (!batch_mode) {
5223                 if (ipw2100_enable_adapter(priv))
5224                         err = -EIO;
5225         }
5226
5227         return err;
5228 }
5229
5230 struct security_info_params {
5231         u32 allowed_ciphers;
5232         u16 version;
5233         u8 auth_mode;
5234         u8 replay_counters_number;
5235         u8 unicast_using_group;
5236 } __packed;
5237
5238 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5239                                             int auth_mode,
5240                                             int security_level,
5241                                             int unicast_using_group,
5242                                             int batch_mode)
5243 {
5244         struct host_command cmd = {
5245                 .host_command = SET_SECURITY_INFORMATION,
5246                 .host_command_sequence = 0,
5247                 .host_command_length = sizeof(struct security_info_params)
5248         };
5249         struct security_info_params *security =
5250             (struct security_info_params *)&cmd.host_command_parameters;
5251         int err;
5252         memset(security, 0, sizeof(*security));
5253
5254         /* If shared key AP authentication is turned on, then we need to
5255          * configure the firmware to try and use it.
5256          *
5257          * Actual data encryption/decryption is handled by the host. */
5258         security->auth_mode = auth_mode;
5259         security->unicast_using_group = unicast_using_group;
5260
5261         switch (security_level) {
5262         default:
5263         case SEC_LEVEL_0:
5264                 security->allowed_ciphers = IPW_NONE_CIPHER;
5265                 break;
5266         case SEC_LEVEL_1:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER;
5269                 break;
5270         case SEC_LEVEL_2:
5271                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5273                 break;
5274         case SEC_LEVEL_2_CKIP:
5275                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5276                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5277                 break;
5278         case SEC_LEVEL_3:
5279                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5280                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5281                 break;
5282         }
5283
5284         IPW_DEBUG_HC
5285             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5286              security->auth_mode, security->allowed_ciphers, security_level);
5287
5288         security->replay_counters_number = 0;
5289
5290         if (!batch_mode) {
5291                 err = ipw2100_disable_adapter(priv);
5292                 if (err)
5293                         return err;
5294         }
5295
5296         err = ipw2100_hw_send_command(priv, &cmd);
5297
5298         if (!batch_mode)
5299                 ipw2100_enable_adapter(priv);
5300
5301         return err;
5302 }
5303
5304 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5305 {
5306         struct host_command cmd = {
5307                 .host_command = TX_POWER_INDEX,
5308                 .host_command_sequence = 0,
5309                 .host_command_length = 4
5310         };
5311         int err = 0;
5312         u32 tmp = tx_power;
5313
5314         if (tx_power != IPW_TX_POWER_DEFAULT)
5315                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5316                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5317
5318         cmd.host_command_parameters[0] = tmp;
5319
5320         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5321                 err = ipw2100_hw_send_command(priv, &cmd);
5322         if (!err)
5323                 priv->tx_power = tx_power;
5324
5325         return 0;
5326 }
5327
5328 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5329                                             u32 interval, int batch_mode)
5330 {
5331         struct host_command cmd = {
5332                 .host_command = BEACON_INTERVAL,
5333                 .host_command_sequence = 0,
5334                 .host_command_length = 4
5335         };
5336         int err;
5337
5338         cmd.host_command_parameters[0] = interval;
5339
5340         IPW_DEBUG_INFO("enter\n");
5341
5342         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5343                 if (!batch_mode) {
5344                         err = ipw2100_disable_adapter(priv);
5345                         if (err)
5346                                 return err;
5347                 }
5348
5349                 ipw2100_hw_send_command(priv, &cmd);
5350
5351                 if (!batch_mode) {
5352                         err = ipw2100_enable_adapter(priv);
5353                         if (err)
5354                                 return err;
5355                 }
5356         }
5357
5358         IPW_DEBUG_INFO("exit\n");
5359
5360         return 0;
5361 }
5362
5363 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5364 {
5365         ipw2100_tx_initialize(priv);
5366         ipw2100_rx_initialize(priv);
5367         ipw2100_msg_initialize(priv);
5368 }
5369
5370 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5371 {
5372         ipw2100_tx_free(priv);
5373         ipw2100_rx_free(priv);
5374         ipw2100_msg_free(priv);
5375 }
5376
5377 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5378 {
5379         if (ipw2100_tx_allocate(priv) ||
5380             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5381                 goto fail;
5382
5383         return 0;
5384
5385       fail:
5386         ipw2100_tx_free(priv);
5387         ipw2100_rx_free(priv);
5388         ipw2100_msg_free(priv);
5389         return -ENOMEM;
5390 }
5391
5392 #define IPW_PRIVACY_CAPABLE 0x0008
5393
5394 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5395                                  int batch_mode)
5396 {
5397         struct host_command cmd = {
5398                 .host_command = WEP_FLAGS,
5399                 .host_command_sequence = 0,
5400                 .host_command_length = 4
5401         };
5402         int err;
5403
5404         cmd.host_command_parameters[0] = flags;
5405
5406         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5407
5408         if (!batch_mode) {
5409                 err = ipw2100_disable_adapter(priv);
5410                 if (err) {
5411                         printk(KERN_ERR DRV_NAME
5412                                ": %s: Could not disable adapter %d\n",
5413                                priv->net_dev->name, err);
5414                         return err;
5415                 }
5416         }
5417
5418         /* send cmd to firmware */
5419         err = ipw2100_hw_send_command(priv, &cmd);
5420
5421         if (!batch_mode)
5422                 ipw2100_enable_adapter(priv);
5423
5424         return err;
5425 }
5426
5427 struct ipw2100_wep_key {
5428         u8 idx;
5429         u8 len;
5430         u8 key[13];
5431 };
5432
5433 /* Macros to ease up priting WEP keys */
5434 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5435 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5436 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5437 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5438
5439 /**
5440  * Set a the wep key
5441  *
5442  * @priv: struct to work on
5443  * @idx: index of the key we want to set
5444  * @key: ptr to the key data to set
5445  * @len: length of the buffer at @key
5446  * @batch_mode: FIXME perform the operation in batch mode, not
5447  *              disabling the device.
5448  *
5449  * @returns 0 if OK, < 0 errno code on error.
5450  *
5451  * Fill out a command structure with the new wep key, length an
5452  * index and send it down the wire.
5453  */
5454 static int ipw2100_set_key(struct ipw2100_priv *priv,
5455                            int idx, char *key, int len, int batch_mode)
5456 {
5457         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5458         struct host_command cmd = {
5459                 .host_command = WEP_KEY_INFO,
5460                 .host_command_sequence = 0,
5461                 .host_command_length = sizeof(struct ipw2100_wep_key),
5462         };
5463         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5464         int err;
5465
5466         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5467                      idx, keylen, len);
5468
5469         /* NOTE: We don't check cached values in case the firmware was reset
5470          * or some other problem is occurring.  If the user is setting the key,
5471          * then we push the change */
5472
5473         wep_key->idx = idx;
5474         wep_key->len = keylen;
5475
5476         if (keylen) {
5477                 memcpy(wep_key->key, key, len);
5478                 memset(wep_key->key + len, 0, keylen - len);
5479         }
5480
5481         /* Will be optimized out on debug not being configured in */
5482         if (keylen == 0)
5483                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5484                               priv->net_dev->name, wep_key->idx);
5485         else if (keylen == 5)
5486                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5487                               priv->net_dev->name, wep_key->idx, wep_key->len,
5488                               WEP_STR_64(wep_key->key));
5489         else
5490                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5491                               "\n",
5492                               priv->net_dev->name, wep_key->idx, wep_key->len,
5493                               WEP_STR_128(wep_key->key));
5494
5495         if (!batch_mode) {
5496                 err = ipw2100_disable_adapter(priv);
5497                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5498                 if (err) {
5499                         printk(KERN_ERR DRV_NAME
5500                                ": %s: Could not disable adapter %d\n",
5501                                priv->net_dev->name, err);
5502                         return err;
5503                 }
5504         }
5505
5506         /* send cmd to firmware */
5507         err = ipw2100_hw_send_command(priv, &cmd);
5508
5509         if (!batch_mode) {
5510                 int err2 = ipw2100_enable_adapter(priv);
5511                 if (err == 0)
5512                         err = err2;
5513         }
5514         return err;
5515 }
5516
5517 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5518                                  int idx, int batch_mode)
5519 {
5520         struct host_command cmd = {
5521                 .host_command = WEP_KEY_INDEX,
5522                 .host_command_sequence = 0,
5523                 .host_command_length = 4,
5524                 .host_command_parameters = {idx},
5525         };
5526         int err;
5527
5528         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5529
5530         if (idx < 0 || idx > 3)
5531                 return -EINVAL;
5532
5533         if (!batch_mode) {
5534                 err = ipw2100_disable_adapter(priv);
5535                 if (err) {
5536                         printk(KERN_ERR DRV_NAME
5537                                ": %s: Could not disable adapter %d\n",
5538                                priv->net_dev->name, err);
5539                         return err;
5540                 }
5541         }
5542
5543         /* send cmd to firmware */
5544         err = ipw2100_hw_send_command(priv, &cmd);
5545
5546         if (!batch_mode)
5547                 ipw2100_enable_adapter(priv);
5548
5549         return err;
5550 }
5551
5552 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5553 {
5554         int i, err, auth_mode, sec_level, use_group;
5555
5556         if (!(priv->status & STATUS_RUNNING))
5557                 return 0;
5558
5559         if (!batch_mode) {
5560                 err = ipw2100_disable_adapter(priv);
5561                 if (err)
5562                         return err;
5563         }
5564
5565         if (!priv->ieee->sec.enabled) {
5566                 err =
5567                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5568                                                      SEC_LEVEL_0, 0, 1);
5569         } else {
5570                 auth_mode = IPW_AUTH_OPEN;
5571                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5572                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5573                                 auth_mode = IPW_AUTH_SHARED;
5574                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5575                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5576                 }
5577
5578                 sec_level = SEC_LEVEL_0;
5579                 if (priv->ieee->sec.flags & SEC_LEVEL)
5580                         sec_level = priv->ieee->sec.level;
5581
5582                 use_group = 0;
5583                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5584                         use_group = priv->ieee->sec.unicast_uses_group;
5585
5586                 err =
5587                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5588                                                      use_group, 1);
5589         }
5590
5591         if (err)
5592                 goto exit;
5593
5594         if (priv->ieee->sec.enabled) {
5595                 for (i = 0; i < 4; i++) {
5596                         if (!(priv->ieee->sec.flags & (1 << i))) {
5597                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5598                                 priv->ieee->sec.key_sizes[i] = 0;
5599                         } else {
5600                                 err = ipw2100_set_key(priv, i,
5601                                                       priv->ieee->sec.keys[i],
5602                                                       priv->ieee->sec.
5603                                                       key_sizes[i], 1);
5604                                 if (err)
5605                                         goto exit;
5606                         }
5607                 }
5608
5609                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5610         }
5611
5612         /* Always enable privacy so the Host can filter WEP packets if
5613          * encrypted data is sent up */
5614         err =
5615             ipw2100_set_wep_flags(priv,
5616                                   priv->ieee->sec.
5617                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5618         if (err)
5619                 goto exit;
5620
5621         priv->status &= ~STATUS_SECURITY_UPDATED;
5622
5623       exit:
5624         if (!batch_mode)
5625                 ipw2100_enable_adapter(priv);
5626
5627         return err;
5628 }
5629
5630 static void ipw2100_security_work(struct work_struct *work)
5631 {
5632         struct ipw2100_priv *priv =
5633                 container_of(work, struct ipw2100_priv, security_work.work);
5634
5635         /* If we happen to have reconnected before we get a chance to
5636          * process this, then update the security settings--which causes
5637          * a disassociation to occur */
5638         if (!(priv->status & STATUS_ASSOCIATED) &&
5639             priv->status & STATUS_SECURITY_UPDATED)
5640                 ipw2100_configure_security(priv, 0);
5641 }
5642
5643 static void shim__set_security(struct net_device *dev,
5644                                struct libipw_security *sec)
5645 {
5646         struct ipw2100_priv *priv = libipw_priv(dev);
5647         int i, force_update = 0;
5648
5649         mutex_lock(&priv->action_mutex);
5650         if (!(priv->status & STATUS_INITIALIZED))
5651                 goto done;
5652
5653         for (i = 0; i < 4; i++) {
5654                 if (sec->flags & (1 << i)) {
5655                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5656                         if (sec->key_sizes[i] == 0)
5657                                 priv->ieee->sec.flags &= ~(1 << i);
5658                         else
5659                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5660                                        sec->key_sizes[i]);
5661                         if (sec->level == SEC_LEVEL_1) {
5662                                 priv->ieee->sec.flags |= (1 << i);
5663                                 priv->status |= STATUS_SECURITY_UPDATED;
5664                         } else
5665                                 priv->ieee->sec.flags &= ~(1 << i);
5666                 }
5667         }
5668
5669         if ((sec->flags & SEC_ACTIVE_KEY) &&
5670             priv->ieee->sec.active_key != sec->active_key) {
5671                 if (sec->active_key <= 3) {
5672                         priv->ieee->sec.active_key = sec->active_key;
5673                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5674                 } else
5675                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5676
5677                 priv->status |= STATUS_SECURITY_UPDATED;
5678         }
5679
5680         if ((sec->flags & SEC_AUTH_MODE) &&
5681             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5682                 priv->ieee->sec.auth_mode = sec->auth_mode;
5683                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5684                 priv->status |= STATUS_SECURITY_UPDATED;
5685         }
5686
5687         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5688                 priv->ieee->sec.flags |= SEC_ENABLED;
5689                 priv->ieee->sec.enabled = sec->enabled;
5690                 priv->status |= STATUS_SECURITY_UPDATED;
5691                 force_update = 1;
5692         }
5693
5694         if (sec->flags & SEC_ENCRYPT)
5695                 priv->ieee->sec.encrypt = sec->encrypt;
5696
5697         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5698                 priv->ieee->sec.level = sec->level;
5699                 priv->ieee->sec.flags |= SEC_LEVEL;
5700                 priv->status |= STATUS_SECURITY_UPDATED;
5701         }
5702
5703         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5704                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5705                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5706                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5707                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5708                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5709                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5710                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5711                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5712                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5713
5714 /* As a temporary work around to enable WPA until we figure out why
5715  * wpa_supplicant toggles the security capability of the driver, which
5716  * forces a disassocation with force_update...
5717  *
5718  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5719         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5720                 ipw2100_configure_security(priv, 0);
5721       done:
5722         mutex_unlock(&priv->action_mutex);
5723 }
5724
5725 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5726 {
5727         int err;
5728         int batch_mode = 1;
5729         u8 *bssid;
5730
5731         IPW_DEBUG_INFO("enter\n");
5732
5733         err = ipw2100_disable_adapter(priv);
5734         if (err)
5735                 return err;
5736 #ifdef CONFIG_IPW2100_MONITOR
5737         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5738                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5739                 if (err)
5740                         return err;
5741
5742                 IPW_DEBUG_INFO("exit\n");
5743
5744                 return 0;
5745         }
5746 #endif                          /* CONFIG_IPW2100_MONITOR */
5747
5748         err = ipw2100_read_mac_address(priv);
5749         if (err)
5750                 return -EIO;
5751
5752         err = ipw2100_set_mac_address(priv, batch_mode);
5753         if (err)
5754                 return err;
5755
5756         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5757         if (err)
5758                 return err;
5759
5760         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5761                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5762                 if (err)
5763                         return err;
5764         }
5765
5766         err = ipw2100_system_config(priv, batch_mode);
5767         if (err)
5768                 return err;
5769
5770         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5771         if (err)
5772                 return err;
5773
5774         /* Default to power mode OFF */
5775         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5776         if (err)
5777                 return err;
5778
5779         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5780         if (err)
5781                 return err;
5782
5783         if (priv->config & CFG_STATIC_BSSID)
5784                 bssid = priv->bssid;
5785         else
5786                 bssid = NULL;
5787         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5788         if (err)
5789                 return err;
5790
5791         if (priv->config & CFG_STATIC_ESSID)
5792                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5793                                         batch_mode);
5794         else
5795                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5796         if (err)
5797                 return err;
5798
5799         err = ipw2100_configure_security(priv, batch_mode);
5800         if (err)
5801                 return err;
5802
5803         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5804                 err =
5805                     ipw2100_set_ibss_beacon_interval(priv,
5806                                                      priv->beacon_interval,
5807                                                      batch_mode);
5808                 if (err)
5809                         return err;
5810
5811                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5812                 if (err)
5813                         return err;
5814         }
5815
5816         /*
5817            err = ipw2100_set_fragmentation_threshold(
5818            priv, priv->frag_threshold, batch_mode);
5819            if (err)
5820            return err;
5821          */
5822
5823         IPW_DEBUG_INFO("exit\n");
5824
5825         return 0;
5826 }
5827
5828 /*************************************************************************
5829  *
5830  * EXTERNALLY CALLED METHODS
5831  *
5832  *************************************************************************/
5833
5834 /* This method is called by the network layer -- not to be confused with
5835  * ipw2100_set_mac_address() declared above called by this driver (and this
5836  * method as well) to talk to the firmware */
5837 static int ipw2100_set_address(struct net_device *dev, void *p)
5838 {
5839         struct ipw2100_priv *priv = libipw_priv(dev);
5840         struct sockaddr *addr = p;
5841         int err = 0;
5842
5843         if (!is_valid_ether_addr(addr->sa_data))
5844                 return -EADDRNOTAVAIL;
5845
5846         mutex_lock(&priv->action_mutex);
5847
5848         priv->config |= CFG_CUSTOM_MAC;
5849         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5850
5851         err = ipw2100_set_mac_address(priv, 0);
5852         if (err)
5853                 goto done;
5854
5855         priv->reset_backoff = 0;
5856         mutex_unlock(&priv->action_mutex);
5857         ipw2100_reset_adapter(&priv->reset_work.work);
5858         return 0;
5859
5860       done:
5861         mutex_unlock(&priv->action_mutex);
5862         return err;
5863 }
5864
5865 static int ipw2100_open(struct net_device *dev)
5866 {
5867         struct ipw2100_priv *priv = libipw_priv(dev);
5868         unsigned long flags;
5869         IPW_DEBUG_INFO("dev->open\n");
5870
5871         spin_lock_irqsave(&priv->low_lock, flags);
5872         if (priv->status & STATUS_ASSOCIATED) {
5873                 netif_carrier_on(dev);
5874                 netif_start_queue(dev);
5875         }
5876         spin_unlock_irqrestore(&priv->low_lock, flags);
5877
5878         return 0;
5879 }
5880
5881 static int ipw2100_close(struct net_device *dev)
5882 {
5883         struct ipw2100_priv *priv = libipw_priv(dev);
5884         unsigned long flags;
5885         struct list_head *element;
5886         struct ipw2100_tx_packet *packet;
5887
5888         IPW_DEBUG_INFO("enter\n");
5889
5890         spin_lock_irqsave(&priv->low_lock, flags);
5891
5892         if (priv->status & STATUS_ASSOCIATED)
5893                 netif_carrier_off(dev);
5894         netif_stop_queue(dev);
5895
5896         /* Flush the TX queue ... */
5897         while (!list_empty(&priv->tx_pend_list)) {
5898                 element = priv->tx_pend_list.next;
5899                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5900
5901                 list_del(element);
5902                 DEC_STAT(&priv->tx_pend_stat);
5903
5904                 libipw_txb_free(packet->info.d_struct.txb);
5905                 packet->info.d_struct.txb = NULL;
5906
5907                 list_add_tail(element, &priv->tx_free_list);
5908                 INC_STAT(&priv->tx_free_stat);
5909         }
5910         spin_unlock_irqrestore(&priv->low_lock, flags);
5911
5912         IPW_DEBUG_INFO("exit\n");
5913
5914         return 0;
5915 }
5916
5917 /*
5918  * TODO:  Fix this function... its just wrong
5919  */
5920 static void ipw2100_tx_timeout(struct net_device *dev)
5921 {
5922         struct ipw2100_priv *priv = libipw_priv(dev);
5923
5924         dev->stats.tx_errors++;
5925
5926 #ifdef CONFIG_IPW2100_MONITOR
5927         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5928                 return;
5929 #endif
5930
5931         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5932                        dev->name);
5933         schedule_reset(priv);
5934 }
5935
5936 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5937 {
5938         /* This is called when wpa_supplicant loads and closes the driver
5939          * interface. */
5940         priv->ieee->wpa_enabled = value;
5941         return 0;
5942 }
5943
5944 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5945 {
5946
5947         struct libipw_device *ieee = priv->ieee;
5948         struct libipw_security sec = {
5949                 .flags = SEC_AUTH_MODE,
5950         };
5951         int ret = 0;
5952
5953         if (value & IW_AUTH_ALG_SHARED_KEY) {
5954                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5955                 ieee->open_wep = 0;
5956         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5957                 sec.auth_mode = WLAN_AUTH_OPEN;
5958                 ieee->open_wep = 1;
5959         } else if (value & IW_AUTH_ALG_LEAP) {
5960                 sec.auth_mode = WLAN_AUTH_LEAP;
5961                 ieee->open_wep = 1;
5962         } else
5963                 return -EINVAL;
5964
5965         if (ieee->set_security)
5966                 ieee->set_security(ieee->dev, &sec);
5967         else
5968                 ret = -EOPNOTSUPP;
5969
5970         return ret;
5971 }
5972
5973 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5974                                     char *wpa_ie, int wpa_ie_len)
5975 {
5976
5977         struct ipw2100_wpa_assoc_frame frame;
5978
5979         frame.fixed_ie_mask = 0;
5980
5981         /* copy WPA IE */
5982         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5983         frame.var_ie_len = wpa_ie_len;
5984
5985         /* make sure WPA is enabled */
5986         ipw2100_wpa_enable(priv, 1);
5987         ipw2100_set_wpa_ie(priv, &frame, 0);
5988 }
5989
5990 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5991                                     struct ethtool_drvinfo *info)
5992 {
5993         struct ipw2100_priv *priv = libipw_priv(dev);
5994         char fw_ver[64], ucode_ver[64];
5995
5996         strcpy(info->driver, DRV_NAME);
5997         strcpy(info->version, DRV_VERSION);
5998
5999         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6000         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6001
6002         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6003                  fw_ver, priv->eeprom_version, ucode_ver);
6004
6005         strcpy(info->bus_info, pci_name(priv->pci_dev));
6006 }
6007
6008 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6009 {
6010         struct ipw2100_priv *priv = libipw_priv(dev);
6011         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6012 }
6013
6014 static const struct ethtool_ops ipw2100_ethtool_ops = {
6015         .get_link = ipw2100_ethtool_get_link,
6016         .get_drvinfo = ipw_ethtool_get_drvinfo,
6017 };
6018
6019 static void ipw2100_hang_check(struct work_struct *work)
6020 {
6021         struct ipw2100_priv *priv =
6022                 container_of(work, struct ipw2100_priv, hang_check.work);
6023         unsigned long flags;
6024         u32 rtc = 0xa5a5a5a5;
6025         u32 len = sizeof(rtc);
6026         int restart = 0;
6027
6028         spin_lock_irqsave(&priv->low_lock, flags);
6029
6030         if (priv->fatal_error != 0) {
6031                 /* If fatal_error is set then we need to restart */
6032                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6033                                priv->net_dev->name);
6034
6035                 restart = 1;
6036         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6037                    (rtc == priv->last_rtc)) {
6038                 /* Check if firmware is hung */
6039                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6040                                priv->net_dev->name);
6041
6042                 restart = 1;
6043         }
6044
6045         if (restart) {
6046                 /* Kill timer */
6047                 priv->stop_hang_check = 1;
6048                 priv->hangs++;
6049
6050                 /* Restart the NIC */
6051                 schedule_reset(priv);
6052         }
6053
6054         priv->last_rtc = rtc;
6055
6056         if (!priv->stop_hang_check)
6057                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6058
6059         spin_unlock_irqrestore(&priv->low_lock, flags);
6060 }
6061
6062 static void ipw2100_rf_kill(struct work_struct *work)
6063 {
6064         struct ipw2100_priv *priv =
6065                 container_of(work, struct ipw2100_priv, rf_kill.work);
6066         unsigned long flags;
6067
6068         spin_lock_irqsave(&priv->low_lock, flags);
6069
6070         if (rf_kill_active(priv)) {
6071                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6072                 if (!priv->stop_rf_kill)
6073                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
6074                                            round_jiffies_relative(HZ));
6075                 goto exit_unlock;
6076         }
6077
6078         /* RF Kill is now disabled, so bring the device back up */
6079
6080         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6081                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6082                                   "device\n");
6083                 schedule_reset(priv);
6084         } else
6085                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6086                                   "enabled\n");
6087
6088       exit_unlock:
6089         spin_unlock_irqrestore(&priv->low_lock, flags);
6090 }
6091
6092 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6093
6094 static const struct net_device_ops ipw2100_netdev_ops = {
6095         .ndo_open               = ipw2100_open,
6096         .ndo_stop               = ipw2100_close,
6097         .ndo_start_xmit         = libipw_xmit,
6098         .ndo_change_mtu         = libipw_change_mtu,
6099         .ndo_init               = ipw2100_net_init,
6100         .ndo_tx_timeout         = ipw2100_tx_timeout,
6101         .ndo_set_mac_address    = ipw2100_set_address,
6102         .ndo_validate_addr      = eth_validate_addr,
6103 };
6104
6105 /* Look into using netdev destructor to shutdown libipw? */
6106
6107 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6108                                                void __iomem * base_addr,
6109                                                unsigned long mem_start,
6110                                                unsigned long mem_len)
6111 {
6112         struct ipw2100_priv *priv;
6113         struct net_device *dev;
6114
6115         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6116         if (!dev)
6117                 return NULL;
6118         priv = libipw_priv(dev);
6119         priv->ieee = netdev_priv(dev);
6120         priv->pci_dev = pci_dev;
6121         priv->net_dev = dev;
6122
6123         priv->ieee->hard_start_xmit = ipw2100_tx;
6124         priv->ieee->set_security = shim__set_security;
6125
6126         priv->ieee->perfect_rssi = -20;
6127         priv->ieee->worst_rssi = -85;
6128
6129         dev->netdev_ops = &ipw2100_netdev_ops;
6130         dev->ethtool_ops = &ipw2100_ethtool_ops;
6131         dev->wireless_handlers = &ipw2100_wx_handler_def;
6132         priv->wireless_data.libipw = priv->ieee;
6133         dev->wireless_data = &priv->wireless_data;
6134         dev->watchdog_timeo = 3 * HZ;
6135         dev->irq = 0;
6136
6137         dev->base_addr = (unsigned long)base_addr;
6138         dev->mem_start = mem_start;
6139         dev->mem_end = dev->mem_start + mem_len - 1;
6140
6141         /* NOTE: We don't use the wireless_handlers hook
6142          * in dev as the system will start throwing WX requests
6143          * to us before we're actually initialized and it just
6144          * ends up causing problems.  So, we just handle
6145          * the WX extensions through the ipw2100_ioctl interface */
6146
6147         /* memset() puts everything to 0, so we only have explicitly set
6148          * those values that need to be something else */
6149
6150         /* If power management is turned on, default to AUTO mode */
6151         priv->power_mode = IPW_POWER_AUTO;
6152
6153 #ifdef CONFIG_IPW2100_MONITOR
6154         priv->config |= CFG_CRC_CHECK;
6155 #endif
6156         priv->ieee->wpa_enabled = 0;
6157         priv->ieee->drop_unencrypted = 0;
6158         priv->ieee->privacy_invoked = 0;
6159         priv->ieee->ieee802_1x = 1;
6160
6161         /* Set module parameters */
6162         switch (network_mode) {
6163         case 1:
6164                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6165                 break;
6166 #ifdef CONFIG_IPW2100_MONITOR
6167         case 2:
6168                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6169                 break;
6170 #endif
6171         default:
6172         case 0:
6173                 priv->ieee->iw_mode = IW_MODE_INFRA;
6174                 break;
6175         }
6176
6177         if (disable == 1)
6178                 priv->status |= STATUS_RF_KILL_SW;
6179
6180         if (channel != 0 &&
6181             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6182                 priv->config |= CFG_STATIC_CHANNEL;
6183                 priv->channel = channel;
6184         }
6185
6186         if (associate)
6187                 priv->config |= CFG_ASSOCIATE;
6188
6189         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6190         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6191         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6192         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6193         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6194         priv->tx_power = IPW_TX_POWER_DEFAULT;
6195         priv->tx_rates = DEFAULT_TX_RATES;
6196
6197         strcpy(priv->nick, "ipw2100");
6198
6199         spin_lock_init(&priv->low_lock);
6200         mutex_init(&priv->action_mutex);
6201         mutex_init(&priv->adapter_mutex);
6202
6203         init_waitqueue_head(&priv->wait_command_queue);
6204
6205         netif_carrier_off(dev);
6206
6207         INIT_LIST_HEAD(&priv->msg_free_list);
6208         INIT_LIST_HEAD(&priv->msg_pend_list);
6209         INIT_STAT(&priv->msg_free_stat);
6210         INIT_STAT(&priv->msg_pend_stat);
6211
6212         INIT_LIST_HEAD(&priv->tx_free_list);
6213         INIT_LIST_HEAD(&priv->tx_pend_list);
6214         INIT_STAT(&priv->tx_free_stat);
6215         INIT_STAT(&priv->tx_pend_stat);
6216
6217         INIT_LIST_HEAD(&priv->fw_pend_list);
6218         INIT_STAT(&priv->fw_pend_stat);
6219
6220         priv->workqueue = create_workqueue(DRV_NAME);
6221
6222         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6223         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6224         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6225         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6226         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6227         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6228         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6229
6230         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6231                      ipw2100_irq_tasklet, (unsigned long)priv);
6232
6233         /* NOTE:  We do not start the deferred work for status checks yet */
6234         priv->stop_rf_kill = 1;
6235         priv->stop_hang_check = 1;
6236
6237         return dev;
6238 }
6239
6240 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6241                                 const struct pci_device_id *ent)
6242 {
6243         unsigned long mem_start, mem_len, mem_flags;
6244         void __iomem *base_addr = NULL;
6245         struct net_device *dev = NULL;
6246         struct ipw2100_priv *priv = NULL;
6247         int err = 0;
6248         int registered = 0;
6249         u32 val;
6250
6251         IPW_DEBUG_INFO("enter\n");
6252
6253         mem_start = pci_resource_start(pci_dev, 0);
6254         mem_len = pci_resource_len(pci_dev, 0);
6255         mem_flags = pci_resource_flags(pci_dev, 0);
6256
6257         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6258                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6259                 err = -ENODEV;
6260                 goto fail;
6261         }
6262
6263         base_addr = ioremap_nocache(mem_start, mem_len);
6264         if (!base_addr) {
6265                 printk(KERN_WARNING DRV_NAME
6266                        "Error calling ioremap_nocache.\n");
6267                 err = -EIO;
6268                 goto fail;
6269         }
6270
6271         /* allocate and initialize our net_device */
6272         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6273         if (!dev) {
6274                 printk(KERN_WARNING DRV_NAME
6275                        "Error calling ipw2100_alloc_device.\n");
6276                 err = -ENOMEM;
6277                 goto fail;
6278         }
6279
6280         /* set up PCI mappings for device */
6281         err = pci_enable_device(pci_dev);
6282         if (err) {
6283                 printk(KERN_WARNING DRV_NAME
6284                        "Error calling pci_enable_device.\n");
6285                 return err;
6286         }
6287
6288         priv = libipw_priv(dev);
6289
6290         pci_set_master(pci_dev);
6291         pci_set_drvdata(pci_dev, priv);
6292
6293         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6294         if (err) {
6295                 printk(KERN_WARNING DRV_NAME
6296                        "Error calling pci_set_dma_mask.\n");
6297                 pci_disable_device(pci_dev);
6298                 return err;
6299         }
6300
6301         err = pci_request_regions(pci_dev, DRV_NAME);
6302         if (err) {
6303                 printk(KERN_WARNING DRV_NAME
6304                        "Error calling pci_request_regions.\n");
6305                 pci_disable_device(pci_dev);
6306                 return err;
6307         }
6308
6309         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6310          * PCI Tx retries from interfering with C3 CPU state */
6311         pci_read_config_dword(pci_dev, 0x40, &val);
6312         if ((val & 0x0000ff00) != 0)
6313                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6314
6315         pci_set_power_state(pci_dev, PCI_D0);
6316
6317         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6318                 printk(KERN_WARNING DRV_NAME
6319                        "Device not found via register read.\n");
6320                 err = -ENODEV;
6321                 goto fail;
6322         }
6323
6324         SET_NETDEV_DEV(dev, &pci_dev->dev);
6325
6326         /* Force interrupts to be shut off on the device */
6327         priv->status |= STATUS_INT_ENABLED;
6328         ipw2100_disable_interrupts(priv);
6329
6330         /* Allocate and initialize the Tx/Rx queues and lists */
6331         if (ipw2100_queues_allocate(priv)) {
6332                 printk(KERN_WARNING DRV_NAME
6333                        "Error calling ipw2100_queues_allocate.\n");
6334                 err = -ENOMEM;
6335                 goto fail;
6336         }
6337         ipw2100_queues_initialize(priv);
6338
6339         err = request_irq(pci_dev->irq,
6340                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6341         if (err) {
6342                 printk(KERN_WARNING DRV_NAME
6343                        "Error calling request_irq: %d.\n", pci_dev->irq);
6344                 goto fail;
6345         }
6346         dev->irq = pci_dev->irq;
6347
6348         IPW_DEBUG_INFO("Attempting to register device...\n");
6349
6350         printk(KERN_INFO DRV_NAME
6351                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6352
6353         /* Bring up the interface.  Pre 0.46, after we registered the
6354          * network device we would call ipw2100_up.  This introduced a race
6355          * condition with newer hotplug configurations (network was coming
6356          * up and making calls before the device was initialized).
6357          *
6358          * If we called ipw2100_up before we registered the device, then the
6359          * device name wasn't registered.  So, we instead use the net_dev->init
6360          * member to call a function that then just turns and calls ipw2100_up.
6361          * net_dev->init is called after name allocation but before the
6362          * notifier chain is called */
6363         err = register_netdev(dev);
6364         if (err) {
6365                 printk(KERN_WARNING DRV_NAME
6366                        "Error calling register_netdev.\n");
6367                 goto fail;
6368         }
6369
6370         mutex_lock(&priv->action_mutex);
6371         registered = 1;
6372
6373         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6374
6375         /* perform this after register_netdev so that dev->name is set */
6376         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6377         if (err)
6378                 goto fail_unlock;
6379
6380         /* If the RF Kill switch is disabled, go ahead and complete the
6381          * startup sequence */
6382         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6383                 /* Enable the adapter - sends HOST_COMPLETE */
6384                 if (ipw2100_enable_adapter(priv)) {
6385                         printk(KERN_WARNING DRV_NAME
6386                                ": %s: failed in call to enable adapter.\n",
6387                                priv->net_dev->name);
6388                         ipw2100_hw_stop_adapter(priv);
6389                         err = -EIO;
6390                         goto fail_unlock;
6391                 }
6392
6393                 /* Start a scan . . . */
6394                 ipw2100_set_scan_options(priv);
6395                 ipw2100_start_scan(priv);
6396         }
6397
6398         IPW_DEBUG_INFO("exit\n");
6399
6400         priv->status |= STATUS_INITIALIZED;
6401
6402         mutex_unlock(&priv->action_mutex);
6403
6404         return 0;
6405
6406       fail_unlock:
6407         mutex_unlock(&priv->action_mutex);
6408
6409       fail:
6410         if (dev) {
6411                 if (registered)
6412                         unregister_netdev(dev);
6413
6414                 ipw2100_hw_stop_adapter(priv);
6415
6416                 ipw2100_disable_interrupts(priv);
6417
6418                 if (dev->irq)
6419                         free_irq(dev->irq, priv);
6420
6421                 ipw2100_kill_workqueue(priv);
6422
6423                 /* These are safe to call even if they weren't allocated */
6424                 ipw2100_queues_free(priv);
6425                 sysfs_remove_group(&pci_dev->dev.kobj,
6426                                    &ipw2100_attribute_group);
6427
6428                 free_libipw(dev, 0);
6429                 pci_set_drvdata(pci_dev, NULL);
6430         }
6431
6432         if (base_addr)
6433                 iounmap(base_addr);
6434
6435         pci_release_regions(pci_dev);
6436         pci_disable_device(pci_dev);
6437
6438         return err;
6439 }
6440
6441 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6442 {
6443         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444         struct net_device *dev;
6445
6446         if (priv) {
6447                 mutex_lock(&priv->action_mutex);
6448
6449                 priv->status &= ~STATUS_INITIALIZED;
6450
6451                 dev = priv->net_dev;
6452                 sysfs_remove_group(&pci_dev->dev.kobj,
6453                                    &ipw2100_attribute_group);
6454
6455 #ifdef CONFIG_PM
6456                 if (ipw2100_firmware.version)
6457                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6458 #endif
6459                 /* Take down the hardware */
6460                 ipw2100_down(priv);
6461
6462                 /* Release the mutex so that the network subsystem can
6463                  * complete any needed calls into the driver... */
6464                 mutex_unlock(&priv->action_mutex);
6465
6466                 /* Unregister the device first - this results in close()
6467                  * being called if the device is open.  If we free storage
6468                  * first, then close() will crash. */
6469                 unregister_netdev(dev);
6470
6471                 /* ipw2100_down will ensure that there is no more pending work
6472                  * in the workqueue's, so we can safely remove them now. */
6473                 ipw2100_kill_workqueue(priv);
6474
6475                 ipw2100_queues_free(priv);
6476
6477                 /* Free potential debugging firmware snapshot */
6478                 ipw2100_snapshot_free(priv);
6479
6480                 if (dev->irq)
6481                         free_irq(dev->irq, priv);
6482
6483                 if (dev->base_addr)
6484                         iounmap((void __iomem *)dev->base_addr);
6485
6486                 /* wiphy_unregister needs to be here, before free_libipw */
6487                 wiphy_unregister(priv->ieee->wdev.wiphy);
6488                 kfree(priv->ieee->bg_band.channels);
6489                 free_libipw(dev, 0);
6490         }
6491
6492         pci_release_regions(pci_dev);
6493         pci_disable_device(pci_dev);
6494
6495         IPW_DEBUG_INFO("exit\n");
6496 }
6497
6498 #ifdef CONFIG_PM
6499 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6500 {
6501         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6502         struct net_device *dev = priv->net_dev;
6503
6504         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6505
6506         mutex_lock(&priv->action_mutex);
6507         if (priv->status & STATUS_INITIALIZED) {
6508                 /* Take down the device; powers it off, etc. */
6509                 ipw2100_down(priv);
6510         }
6511
6512         /* Remove the PRESENT state of the device */
6513         netif_device_detach(dev);
6514
6515         pci_save_state(pci_dev);
6516         pci_disable_device(pci_dev);
6517         pci_set_power_state(pci_dev, PCI_D3hot);
6518
6519         priv->suspend_at = get_seconds();
6520
6521         mutex_unlock(&priv->action_mutex);
6522
6523         return 0;
6524 }
6525
6526 static int ipw2100_resume(struct pci_dev *pci_dev)
6527 {
6528         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6529         struct net_device *dev = priv->net_dev;
6530         int err;
6531         u32 val;
6532
6533         if (IPW2100_PM_DISABLED)
6534                 return 0;
6535
6536         mutex_lock(&priv->action_mutex);
6537
6538         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6539
6540         pci_set_power_state(pci_dev, PCI_D0);
6541         err = pci_enable_device(pci_dev);
6542         if (err) {
6543                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6544                        dev->name);
6545                 mutex_unlock(&priv->action_mutex);
6546                 return err;
6547         }
6548         pci_restore_state(pci_dev);
6549
6550         /*
6551          * Suspend/Resume resets the PCI configuration space, so we have to
6552          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6553          * from interfering with C3 CPU state. pci_restore_state won't help
6554          * here since it only restores the first 64 bytes pci config header.
6555          */
6556         pci_read_config_dword(pci_dev, 0x40, &val);
6557         if ((val & 0x0000ff00) != 0)
6558                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6559
6560         /* Set the device back into the PRESENT state; this will also wake
6561          * the queue of needed */
6562         netif_device_attach(dev);
6563
6564         priv->suspend_time = get_seconds() - priv->suspend_at;
6565
6566         /* Bring the device back up */
6567         if (!(priv->status & STATUS_RF_KILL_SW))
6568                 ipw2100_up(priv, 0);
6569
6570         mutex_unlock(&priv->action_mutex);
6571
6572         return 0;
6573 }
6574 #endif
6575
6576 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6577 {
6578         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6579
6580         /* Take down the device; powers it off, etc. */
6581         ipw2100_down(priv);
6582
6583         pci_disable_device(pci_dev);
6584 }
6585
6586 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6587
6588 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6589         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6590         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6591         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6592         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6593         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6594         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6595         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6596         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6597         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6598         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6599         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6600         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6601         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6602
6603         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6604         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6605         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6606         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6607         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6608
6609         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6610         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6611         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6612         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6613         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6614         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6615         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6616
6617         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6618
6619         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6620         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6621         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6622         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6623         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6624         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6625         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6626
6627         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6628         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6629         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6630         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6631         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6632         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6633
6634         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6635         {0,},
6636 };
6637
6638 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6639
6640 static struct pci_driver ipw2100_pci_driver = {
6641         .name = DRV_NAME,
6642         .id_table = ipw2100_pci_id_table,
6643         .probe = ipw2100_pci_init_one,
6644         .remove = __devexit_p(ipw2100_pci_remove_one),
6645 #ifdef CONFIG_PM
6646         .suspend = ipw2100_suspend,
6647         .resume = ipw2100_resume,
6648 #endif
6649         .shutdown = ipw2100_shutdown,
6650 };
6651
6652 /**
6653  * Initialize the ipw2100 driver/module
6654  *
6655  * @returns 0 if ok, < 0 errno node con error.
6656  *
6657  * Note: we cannot init the /proc stuff until the PCI driver is there,
6658  * or we risk an unlikely race condition on someone accessing
6659  * uninitialized data in the PCI dev struct through /proc.
6660  */
6661 static int __init ipw2100_init(void)
6662 {
6663         int ret;
6664
6665         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6666         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6667
6668         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6669                            PM_QOS_DEFAULT_VALUE);
6670
6671         ret = pci_register_driver(&ipw2100_pci_driver);
6672         if (ret)
6673                 goto out;
6674
6675 #ifdef CONFIG_IPW2100_DEBUG
6676         ipw2100_debug_level = debug;
6677         ret = driver_create_file(&ipw2100_pci_driver.driver,
6678                                  &driver_attr_debug_level);
6679 #endif
6680
6681 out:
6682         return ret;
6683 }
6684
6685 /**
6686  * Cleanup ipw2100 driver registration
6687  */
6688 static void __exit ipw2100_exit(void)
6689 {
6690         /* FIXME: IPG: check that we have no instances of the devices open */
6691 #ifdef CONFIG_IPW2100_DEBUG
6692         driver_remove_file(&ipw2100_pci_driver.driver,
6693                            &driver_attr_debug_level);
6694 #endif
6695         pci_unregister_driver(&ipw2100_pci_driver);
6696         pm_qos_remove_request(&ipw2100_pm_qos_req);
6697 }
6698
6699 module_init(ipw2100_init);
6700 module_exit(ipw2100_exit);
6701
6702 static int ipw2100_wx_get_name(struct net_device *dev,
6703                                struct iw_request_info *info,
6704                                union iwreq_data *wrqu, char *extra)
6705 {
6706         /*
6707          * This can be called at any time.  No action lock required
6708          */
6709
6710         struct ipw2100_priv *priv = libipw_priv(dev);
6711         if (!(priv->status & STATUS_ASSOCIATED))
6712                 strcpy(wrqu->name, "unassociated");
6713         else
6714                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6715
6716         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6717         return 0;
6718 }
6719
6720 static int ipw2100_wx_set_freq(struct net_device *dev,
6721                                struct iw_request_info *info,
6722                                union iwreq_data *wrqu, char *extra)
6723 {
6724         struct ipw2100_priv *priv = libipw_priv(dev);
6725         struct iw_freq *fwrq = &wrqu->freq;
6726         int err = 0;
6727
6728         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6729                 return -EOPNOTSUPP;
6730
6731         mutex_lock(&priv->action_mutex);
6732         if (!(priv->status & STATUS_INITIALIZED)) {
6733                 err = -EIO;
6734                 goto done;
6735         }
6736
6737         /* if setting by freq convert to channel */
6738         if (fwrq->e == 1) {
6739                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6740                         int f = fwrq->m / 100000;
6741                         int c = 0;
6742
6743                         while ((c < REG_MAX_CHANNEL) &&
6744                                (f != ipw2100_frequencies[c]))
6745                                 c++;
6746
6747                         /* hack to fall through */
6748                         fwrq->e = 0;
6749                         fwrq->m = c + 1;
6750                 }
6751         }
6752
6753         if (fwrq->e > 0 || fwrq->m > 1000) {
6754                 err = -EOPNOTSUPP;
6755                 goto done;
6756         } else {                /* Set the channel */
6757                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6758                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6759         }
6760
6761       done:
6762         mutex_unlock(&priv->action_mutex);
6763         return err;
6764 }
6765
6766 static int ipw2100_wx_get_freq(struct net_device *dev,
6767                                struct iw_request_info *info,
6768                                union iwreq_data *wrqu, char *extra)
6769 {
6770         /*
6771          * This can be called at any time.  No action lock required
6772          */
6773
6774         struct ipw2100_priv *priv = libipw_priv(dev);
6775
6776         wrqu->freq.e = 0;
6777
6778         /* If we are associated, trying to associate, or have a statically
6779          * configured CHANNEL then return that; otherwise return ANY */
6780         if (priv->config & CFG_STATIC_CHANNEL ||
6781             priv->status & STATUS_ASSOCIATED)
6782                 wrqu->freq.m = priv->channel;
6783         else
6784                 wrqu->freq.m = 0;
6785
6786         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6787         return 0;
6788
6789 }
6790
6791 static int ipw2100_wx_set_mode(struct net_device *dev,
6792                                struct iw_request_info *info,
6793                                union iwreq_data *wrqu, char *extra)
6794 {
6795         struct ipw2100_priv *priv = libipw_priv(dev);
6796         int err = 0;
6797
6798         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6799
6800         if (wrqu->mode == priv->ieee->iw_mode)
6801                 return 0;
6802
6803         mutex_lock(&priv->action_mutex);
6804         if (!(priv->status & STATUS_INITIALIZED)) {
6805                 err = -EIO;
6806                 goto done;
6807         }
6808
6809         switch (wrqu->mode) {
6810 #ifdef CONFIG_IPW2100_MONITOR
6811         case IW_MODE_MONITOR:
6812                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6813                 break;
6814 #endif                          /* CONFIG_IPW2100_MONITOR */
6815         case IW_MODE_ADHOC:
6816                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6817                 break;
6818         case IW_MODE_INFRA:
6819         case IW_MODE_AUTO:
6820         default:
6821                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6822                 break;
6823         }
6824
6825       done:
6826         mutex_unlock(&priv->action_mutex);
6827         return err;
6828 }
6829
6830 static int ipw2100_wx_get_mode(struct net_device *dev,
6831                                struct iw_request_info *info,
6832                                union iwreq_data *wrqu, char *extra)
6833 {
6834         /*
6835          * This can be called at any time.  No action lock required
6836          */
6837
6838         struct ipw2100_priv *priv = libipw_priv(dev);
6839
6840         wrqu->mode = priv->ieee->iw_mode;
6841         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6842
6843         return 0;
6844 }
6845
6846 #define POWER_MODES 5
6847
6848 /* Values are in microsecond */
6849 static const s32 timeout_duration[POWER_MODES] = {
6850         350000,
6851         250000,
6852         75000,
6853         37000,
6854         25000,
6855 };
6856
6857 static const s32 period_duration[POWER_MODES] = {
6858         400000,
6859         700000,
6860         1000000,
6861         1000000,
6862         1000000
6863 };
6864
6865 static int ipw2100_wx_get_range(struct net_device *dev,
6866                                 struct iw_request_info *info,
6867                                 union iwreq_data *wrqu, char *extra)
6868 {
6869         /*
6870          * This can be called at any time.  No action lock required
6871          */
6872
6873         struct ipw2100_priv *priv = libipw_priv(dev);
6874         struct iw_range *range = (struct iw_range *)extra;
6875         u16 val;
6876         int i, level;
6877
6878         wrqu->data.length = sizeof(*range);
6879         memset(range, 0, sizeof(*range));
6880
6881         /* Let's try to keep this struct in the same order as in
6882          * linux/include/wireless.h
6883          */
6884
6885         /* TODO: See what values we can set, and remove the ones we can't
6886          * set, or fill them with some default data.
6887          */
6888
6889         /* ~5 Mb/s real (802.11b) */
6890         range->throughput = 5 * 1000 * 1000;
6891
6892 //      range->sensitivity;     /* signal level threshold range */
6893
6894         range->max_qual.qual = 100;
6895         /* TODO: Find real max RSSI and stick here */
6896         range->max_qual.level = 0;
6897         range->max_qual.noise = 0;
6898         range->max_qual.updated = 7;    /* Updated all three */
6899
6900         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6901         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6902         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6903         range->avg_qual.noise = 0;
6904         range->avg_qual.updated = 7;    /* Updated all three */
6905
6906         range->num_bitrates = RATE_COUNT;
6907
6908         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6909                 range->bitrate[i] = ipw2100_rates_11b[i];
6910         }
6911
6912         range->min_rts = MIN_RTS_THRESHOLD;
6913         range->max_rts = MAX_RTS_THRESHOLD;
6914         range->min_frag = MIN_FRAG_THRESHOLD;
6915         range->max_frag = MAX_FRAG_THRESHOLD;
6916
6917         range->min_pmp = period_duration[0];    /* Minimal PM period */
6918         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6919         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6920         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6921
6922         /* How to decode max/min PM period */
6923         range->pmp_flags = IW_POWER_PERIOD;
6924         /* How to decode max/min PM period */
6925         range->pmt_flags = IW_POWER_TIMEOUT;
6926         /* What PM options are supported */
6927         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6928
6929         range->encoding_size[0] = 5;
6930         range->encoding_size[1] = 13;   /* Different token sizes */
6931         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6932         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6933 //      range->encoding_login_index;            /* token index for login token */
6934
6935         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6936                 range->txpower_capa = IW_TXPOW_DBM;
6937                 range->num_txpower = IW_MAX_TXPOWER;
6938                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6939                      i < IW_MAX_TXPOWER;
6940                      i++, level -=
6941                      ((IPW_TX_POWER_MAX_DBM -
6942                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6943                         range->txpower[i] = level / 16;
6944         } else {
6945                 range->txpower_capa = 0;
6946                 range->num_txpower = 0;
6947         }
6948
6949         /* Set the Wireless Extension versions */
6950         range->we_version_compiled = WIRELESS_EXT;
6951         range->we_version_source = 18;
6952
6953 //      range->retry_capa;      /* What retry options are supported */
6954 //      range->retry_flags;     /* How to decode max/min retry limit */
6955 //      range->r_time_flags;    /* How to decode max/min retry life */
6956 //      range->min_retry;       /* Minimal number of retries */
6957 //      range->max_retry;       /* Maximal number of retries */
6958 //      range->min_r_time;      /* Minimal retry lifetime */
6959 //      range->max_r_time;      /* Maximal retry lifetime */
6960
6961         range->num_channels = FREQ_COUNT;
6962
6963         val = 0;
6964         for (i = 0; i < FREQ_COUNT; i++) {
6965                 // TODO: Include only legal frequencies for some countries
6966 //              if (local->channel_mask & (1 << i)) {
6967                 range->freq[val].i = i + 1;
6968                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6969                 range->freq[val].e = 1;
6970                 val++;
6971 //              }
6972                 if (val == IW_MAX_FREQUENCIES)
6973                         break;
6974         }
6975         range->num_frequency = val;
6976
6977         /* Event capability (kernel + driver) */
6978         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6979                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6980         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6981
6982         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6983                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6984
6985         IPW_DEBUG_WX("GET Range\n");
6986
6987         return 0;
6988 }
6989
6990 static int ipw2100_wx_set_wap(struct net_device *dev,
6991                               struct iw_request_info *info,
6992                               union iwreq_data *wrqu, char *extra)
6993 {
6994         struct ipw2100_priv *priv = libipw_priv(dev);
6995         int err = 0;
6996
6997         static const unsigned char any[] = {
6998                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6999         };
7000         static const unsigned char off[] = {
7001                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7002         };
7003
7004         // sanity checks
7005         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7006                 return -EINVAL;
7007
7008         mutex_lock(&priv->action_mutex);
7009         if (!(priv->status & STATUS_INITIALIZED)) {
7010                 err = -EIO;
7011                 goto done;
7012         }
7013
7014         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7015             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7016                 /* we disable mandatory BSSID association */
7017                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7018                 priv->config &= ~CFG_STATIC_BSSID;
7019                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7020                 goto done;
7021         }
7022
7023         priv->config |= CFG_STATIC_BSSID;
7024         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7025
7026         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7027
7028         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7029
7030       done:
7031         mutex_unlock(&priv->action_mutex);
7032         return err;
7033 }
7034
7035 static int ipw2100_wx_get_wap(struct net_device *dev,
7036                               struct iw_request_info *info,
7037                               union iwreq_data *wrqu, char *extra)
7038 {
7039         /*
7040          * This can be called at any time.  No action lock required
7041          */
7042
7043         struct ipw2100_priv *priv = libipw_priv(dev);
7044
7045         /* If we are associated, trying to associate, or have a statically
7046          * configured BSSID then return that; otherwise return ANY */
7047         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7048                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7049                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7050         } else
7051                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7052
7053         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7054         return 0;
7055 }
7056
7057 static int ipw2100_wx_set_essid(struct net_device *dev,
7058                                 struct iw_request_info *info,
7059                                 union iwreq_data *wrqu, char *extra)
7060 {
7061         struct ipw2100_priv *priv = libipw_priv(dev);
7062         char *essid = "";       /* ANY */
7063         int length = 0;
7064         int err = 0;
7065         DECLARE_SSID_BUF(ssid);
7066
7067         mutex_lock(&priv->action_mutex);
7068         if (!(priv->status & STATUS_INITIALIZED)) {
7069                 err = -EIO;
7070                 goto done;
7071         }
7072
7073         if (wrqu->essid.flags && wrqu->essid.length) {
7074                 length = wrqu->essid.length;
7075                 essid = extra;
7076         }
7077
7078         if (length == 0) {
7079                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7080                 priv->config &= ~CFG_STATIC_ESSID;
7081                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7082                 goto done;
7083         }
7084
7085         length = min(length, IW_ESSID_MAX_SIZE);
7086
7087         priv->config |= CFG_STATIC_ESSID;
7088
7089         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7090                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7091                 err = 0;
7092                 goto done;
7093         }
7094
7095         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7096                      print_ssid(ssid, essid, length), length);
7097
7098         priv->essid_len = length;
7099         memcpy(priv->essid, essid, priv->essid_len);
7100
7101         err = ipw2100_set_essid(priv, essid, length, 0);
7102
7103       done:
7104         mutex_unlock(&priv->action_mutex);
7105         return err;
7106 }
7107
7108 static int ipw2100_wx_get_essid(struct net_device *dev,
7109                                 struct iw_request_info *info,
7110                                 union iwreq_data *wrqu, char *extra)
7111 {
7112         /*
7113          * This can be called at any time.  No action lock required
7114          */
7115
7116         struct ipw2100_priv *priv = libipw_priv(dev);
7117         DECLARE_SSID_BUF(ssid);
7118
7119         /* If we are associated, trying to associate, or have a statically
7120          * configured ESSID then return that; otherwise return ANY */
7121         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7122                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7123                              print_ssid(ssid, priv->essid, priv->essid_len));
7124                 memcpy(extra, priv->essid, priv->essid_len);
7125                 wrqu->essid.length = priv->essid_len;
7126                 wrqu->essid.flags = 1;  /* active */
7127         } else {
7128                 IPW_DEBUG_WX("Getting essid: ANY\n");
7129                 wrqu->essid.length = 0;
7130                 wrqu->essid.flags = 0;  /* active */
7131         }
7132
7133         return 0;
7134 }
7135
7136 static int ipw2100_wx_set_nick(struct net_device *dev,
7137                                struct iw_request_info *info,
7138                                union iwreq_data *wrqu, char *extra)
7139 {
7140         /*
7141          * This can be called at any time.  No action lock required
7142          */
7143
7144         struct ipw2100_priv *priv = libipw_priv(dev);
7145
7146         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7147                 return -E2BIG;
7148
7149         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7150         memset(priv->nick, 0, sizeof(priv->nick));
7151         memcpy(priv->nick, extra, wrqu->data.length);
7152
7153         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7154
7155         return 0;
7156 }
7157
7158 static int ipw2100_wx_get_nick(struct net_device *dev,
7159                                struct iw_request_info *info,
7160                                union iwreq_data *wrqu, char *extra)
7161 {
7162         /*
7163          * This can be called at any time.  No action lock required
7164          */
7165
7166         struct ipw2100_priv *priv = libipw_priv(dev);
7167
7168         wrqu->data.length = strlen(priv->nick);
7169         memcpy(extra, priv->nick, wrqu->data.length);
7170         wrqu->data.flags = 1;   /* active */
7171
7172         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7173
7174         return 0;
7175 }
7176
7177 static int ipw2100_wx_set_rate(struct net_device *dev,
7178                                struct iw_request_info *info,
7179                                union iwreq_data *wrqu, char *extra)
7180 {
7181         struct ipw2100_priv *priv = libipw_priv(dev);
7182         u32 target_rate = wrqu->bitrate.value;
7183         u32 rate;
7184         int err = 0;
7185
7186         mutex_lock(&priv->action_mutex);
7187         if (!(priv->status & STATUS_INITIALIZED)) {
7188                 err = -EIO;
7189                 goto done;
7190         }
7191
7192         rate = 0;
7193
7194         if (target_rate == 1000000 ||
7195             (!wrqu->bitrate.fixed && target_rate > 1000000))
7196                 rate |= TX_RATE_1_MBIT;
7197         if (target_rate == 2000000 ||
7198             (!wrqu->bitrate.fixed && target_rate > 2000000))
7199                 rate |= TX_RATE_2_MBIT;
7200         if (target_rate == 5500000 ||
7201             (!wrqu->bitrate.fixed && target_rate > 5500000))
7202                 rate |= TX_RATE_5_5_MBIT;
7203         if (target_rate == 11000000 ||
7204             (!wrqu->bitrate.fixed && target_rate > 11000000))
7205                 rate |= TX_RATE_11_MBIT;
7206         if (rate == 0)
7207                 rate = DEFAULT_TX_RATES;
7208
7209         err = ipw2100_set_tx_rates(priv, rate, 0);
7210
7211         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7212       done:
7213         mutex_unlock(&priv->action_mutex);
7214         return err;
7215 }
7216
7217 static int ipw2100_wx_get_rate(struct net_device *dev,
7218                                struct iw_request_info *info,
7219                                union iwreq_data *wrqu, char *extra)
7220 {
7221         struct ipw2100_priv *priv = libipw_priv(dev);
7222         int val;
7223         unsigned int len = sizeof(val);
7224         int err = 0;
7225
7226         if (!(priv->status & STATUS_ENABLED) ||
7227             priv->status & STATUS_RF_KILL_MASK ||
7228             !(priv->status & STATUS_ASSOCIATED)) {
7229                 wrqu->bitrate.value = 0;
7230                 return 0;
7231         }
7232
7233         mutex_lock(&priv->action_mutex);
7234         if (!(priv->status & STATUS_INITIALIZED)) {
7235                 err = -EIO;
7236                 goto done;
7237         }
7238
7239         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7240         if (err) {
7241                 IPW_DEBUG_WX("failed querying ordinals.\n");
7242                 goto done;
7243         }
7244
7245         switch (val & TX_RATE_MASK) {
7246         case TX_RATE_1_MBIT:
7247                 wrqu->bitrate.value = 1000000;
7248                 break;
7249         case TX_RATE_2_MBIT:
7250                 wrqu->bitrate.value = 2000000;
7251                 break;
7252         case TX_RATE_5_5_MBIT:
7253                 wrqu->bitrate.value = 5500000;
7254                 break;
7255         case TX_RATE_11_MBIT:
7256                 wrqu->bitrate.value = 11000000;
7257                 break;
7258         default:
7259                 wrqu->bitrate.value = 0;
7260         }
7261
7262         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7263
7264       done:
7265         mutex_unlock(&priv->action_mutex);
7266         return err;
7267 }
7268
7269 static int ipw2100_wx_set_rts(struct net_device *dev,
7270                               struct iw_request_info *info,
7271                               union iwreq_data *wrqu, char *extra)
7272 {
7273         struct ipw2100_priv *priv = libipw_priv(dev);
7274         int value, err;
7275
7276         /* Auto RTS not yet supported */
7277         if (wrqu->rts.fixed == 0)
7278                 return -EINVAL;
7279
7280         mutex_lock(&priv->action_mutex);
7281         if (!(priv->status & STATUS_INITIALIZED)) {
7282                 err = -EIO;
7283                 goto done;
7284         }
7285
7286         if (wrqu->rts.disabled)
7287                 value = priv->rts_threshold | RTS_DISABLED;
7288         else {
7289                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7290                         err = -EINVAL;
7291                         goto done;
7292                 }
7293                 value = wrqu->rts.value;
7294         }
7295
7296         err = ipw2100_set_rts_threshold(priv, value);
7297
7298         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7299       done:
7300         mutex_unlock(&priv->action_mutex);
7301         return err;
7302 }
7303
7304 static int ipw2100_wx_get_rts(struct net_device *dev,
7305                               struct iw_request_info *info,
7306                               union iwreq_data *wrqu, char *extra)
7307 {
7308         /*
7309          * This can be called at any time.  No action lock required
7310          */
7311
7312         struct ipw2100_priv *priv = libipw_priv(dev);
7313
7314         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7315         wrqu->rts.fixed = 1;    /* no auto select */
7316
7317         /* If RTS is set to the default value, then it is disabled */
7318         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7319
7320         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7321
7322         return 0;
7323 }
7324
7325 static int ipw2100_wx_set_txpow(struct net_device *dev,
7326                                 struct iw_request_info *info,
7327                                 union iwreq_data *wrqu, char *extra)
7328 {
7329         struct ipw2100_priv *priv = libipw_priv(dev);
7330         int err = 0, value;
7331         
7332         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7333                 return -EINPROGRESS;
7334
7335         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7336                 return 0;
7337
7338         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7339                 return -EINVAL;
7340
7341         if (wrqu->txpower.fixed == 0)
7342                 value = IPW_TX_POWER_DEFAULT;
7343         else {
7344                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7345                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7346                         return -EINVAL;
7347
7348                 value = wrqu->txpower.value;
7349         }
7350
7351         mutex_lock(&priv->action_mutex);
7352         if (!(priv->status & STATUS_INITIALIZED)) {
7353                 err = -EIO;
7354                 goto done;
7355         }
7356
7357         err = ipw2100_set_tx_power(priv, value);
7358
7359         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7360
7361       done:
7362         mutex_unlock(&priv->action_mutex);
7363         return err;
7364 }
7365
7366 static int ipw2100_wx_get_txpow(struct net_device *dev,
7367                                 struct iw_request_info *info,
7368                                 union iwreq_data *wrqu, char *extra)
7369 {
7370         /*
7371          * This can be called at any time.  No action lock required
7372          */
7373
7374         struct ipw2100_priv *priv = libipw_priv(dev);
7375
7376         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7377
7378         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7379                 wrqu->txpower.fixed = 0;
7380                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7381         } else {
7382                 wrqu->txpower.fixed = 1;
7383                 wrqu->txpower.value = priv->tx_power;
7384         }
7385
7386         wrqu->txpower.flags = IW_TXPOW_DBM;
7387
7388         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7389
7390         return 0;
7391 }
7392
7393 static int ipw2100_wx_set_frag(struct net_device *dev,
7394                                struct iw_request_info *info,
7395                                union iwreq_data *wrqu, char *extra)
7396 {
7397         /*
7398          * This can be called at any time.  No action lock required
7399          */
7400
7401         struct ipw2100_priv *priv = libipw_priv(dev);
7402
7403         if (!wrqu->frag.fixed)
7404                 return -EINVAL;
7405
7406         if (wrqu->frag.disabled) {
7407                 priv->frag_threshold |= FRAG_DISABLED;
7408                 priv->ieee->fts = DEFAULT_FTS;
7409         } else {
7410                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7411                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7412                         return -EINVAL;
7413
7414                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7415                 priv->frag_threshold = priv->ieee->fts;
7416         }
7417
7418         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7419
7420         return 0;
7421 }
7422
7423 static int ipw2100_wx_get_frag(struct net_device *dev,
7424                                struct iw_request_info *info,
7425                                union iwreq_data *wrqu, char *extra)
7426 {
7427         /*
7428          * This can be called at any time.  No action lock required
7429          */
7430
7431         struct ipw2100_priv *priv = libipw_priv(dev);
7432         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7433         wrqu->frag.fixed = 0;   /* no auto select */
7434         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7435
7436         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7437
7438         return 0;
7439 }
7440
7441 static int ipw2100_wx_set_retry(struct net_device *dev,
7442                                 struct iw_request_info *info,
7443                                 union iwreq_data *wrqu, char *extra)
7444 {
7445         struct ipw2100_priv *priv = libipw_priv(dev);
7446         int err = 0;
7447
7448         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7449                 return -EINVAL;
7450
7451         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7452                 return 0;
7453
7454         mutex_lock(&priv->action_mutex);
7455         if (!(priv->status & STATUS_INITIALIZED)) {
7456                 err = -EIO;
7457                 goto done;
7458         }
7459
7460         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7461                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7462                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7463                              wrqu->retry.value);
7464                 goto done;
7465         }
7466
7467         if (wrqu->retry.flags & IW_RETRY_LONG) {
7468                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7469                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7470                              wrqu->retry.value);
7471                 goto done;
7472         }
7473
7474         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7475         if (!err)
7476                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7477
7478         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7479
7480       done:
7481         mutex_unlock(&priv->action_mutex);
7482         return err;
7483 }
7484
7485 static int ipw2100_wx_get_retry(struct net_device *dev,
7486                                 struct iw_request_info *info,
7487                                 union iwreq_data *wrqu, char *extra)
7488 {
7489         /*
7490          * This can be called at any time.  No action lock required
7491          */
7492
7493         struct ipw2100_priv *priv = libipw_priv(dev);
7494
7495         wrqu->retry.disabled = 0;       /* can't be disabled */
7496
7497         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7498                 return -EINVAL;
7499
7500         if (wrqu->retry.flags & IW_RETRY_LONG) {
7501                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7502                 wrqu->retry.value = priv->long_retry_limit;
7503         } else {
7504                 wrqu->retry.flags =
7505                     (priv->short_retry_limit !=
7506                      priv->long_retry_limit) ?
7507                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7508
7509                 wrqu->retry.value = priv->short_retry_limit;
7510         }
7511
7512         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7513
7514         return 0;
7515 }
7516
7517 static int ipw2100_wx_set_scan(struct net_device *dev,
7518                                struct iw_request_info *info,
7519                                union iwreq_data *wrqu, char *extra)
7520 {
7521         struct ipw2100_priv *priv = libipw_priv(dev);
7522         int err = 0;
7523
7524         mutex_lock(&priv->action_mutex);
7525         if (!(priv->status & STATUS_INITIALIZED)) {
7526                 err = -EIO;
7527                 goto done;
7528         }
7529
7530         IPW_DEBUG_WX("Initiating scan...\n");
7531
7532         priv->user_requested_scan = 1;
7533         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7534                 IPW_DEBUG_WX("Start scan failed.\n");
7535
7536                 /* TODO: Mark a scan as pending so when hardware initialized
7537                  *       a scan starts */
7538         }
7539
7540       done:
7541         mutex_unlock(&priv->action_mutex);
7542         return err;
7543 }
7544
7545 static int ipw2100_wx_get_scan(struct net_device *dev,
7546                                struct iw_request_info *info,
7547                                union iwreq_data *wrqu, char *extra)
7548 {
7549         /*
7550          * This can be called at any time.  No action lock required
7551          */
7552
7553         struct ipw2100_priv *priv = libipw_priv(dev);
7554         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7555 }
7556
7557 /*
7558  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7559  */
7560 static int ipw2100_wx_set_encode(struct net_device *dev,
7561                                  struct iw_request_info *info,
7562                                  union iwreq_data *wrqu, char *key)
7563 {
7564         /*
7565          * No check of STATUS_INITIALIZED required
7566          */
7567
7568         struct ipw2100_priv *priv = libipw_priv(dev);
7569         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7570 }
7571
7572 static int ipw2100_wx_get_encode(struct net_device *dev,
7573                                  struct iw_request_info *info,
7574                                  union iwreq_data *wrqu, char *key)
7575 {
7576         /*
7577          * This can be called at any time.  No action lock required
7578          */
7579
7580         struct ipw2100_priv *priv = libipw_priv(dev);
7581         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7582 }
7583
7584 static int ipw2100_wx_set_power(struct net_device *dev,
7585                                 struct iw_request_info *info,
7586                                 union iwreq_data *wrqu, char *extra)
7587 {
7588         struct ipw2100_priv *priv = libipw_priv(dev);
7589         int err = 0;
7590
7591         mutex_lock(&priv->action_mutex);
7592         if (!(priv->status & STATUS_INITIALIZED)) {
7593                 err = -EIO;
7594                 goto done;
7595         }
7596
7597         if (wrqu->power.disabled) {
7598                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7599                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7600                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7601                 goto done;
7602         }
7603
7604         switch (wrqu->power.flags & IW_POWER_MODE) {
7605         case IW_POWER_ON:       /* If not specified */
7606         case IW_POWER_MODE:     /* If set all mask */
7607         case IW_POWER_ALL_R:    /* If explicitly state all */
7608                 break;
7609         default:                /* Otherwise we don't support it */
7610                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7611                              wrqu->power.flags);
7612                 err = -EOPNOTSUPP;
7613                 goto done;
7614         }
7615
7616         /* If the user hasn't specified a power management mode yet, default
7617          * to BATTERY */
7618         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7619         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7620
7621         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7622
7623       done:
7624         mutex_unlock(&priv->action_mutex);
7625         return err;
7626
7627 }
7628
7629 static int ipw2100_wx_get_power(struct net_device *dev,
7630                                 struct iw_request_info *info,
7631                                 union iwreq_data *wrqu, char *extra)
7632 {
7633         /*
7634          * This can be called at any time.  No action lock required
7635          */
7636
7637         struct ipw2100_priv *priv = libipw_priv(dev);
7638
7639         if (!(priv->power_mode & IPW_POWER_ENABLED))
7640                 wrqu->power.disabled = 1;
7641         else {
7642                 wrqu->power.disabled = 0;
7643                 wrqu->power.flags = 0;
7644         }
7645
7646         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7647
7648         return 0;
7649 }
7650
7651 /*
7652  * WE-18 WPA support
7653  */
7654
7655 /* SIOCSIWGENIE */
7656 static int ipw2100_wx_set_genie(struct net_device *dev,
7657                                 struct iw_request_info *info,
7658                                 union iwreq_data *wrqu, char *extra)
7659 {
7660
7661         struct ipw2100_priv *priv = libipw_priv(dev);
7662         struct libipw_device *ieee = priv->ieee;
7663         u8 *buf;
7664
7665         if (!ieee->wpa_enabled)
7666                 return -EOPNOTSUPP;
7667
7668         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7669             (wrqu->data.length && extra == NULL))
7670                 return -EINVAL;
7671
7672         if (wrqu->data.length) {
7673                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7674                 if (buf == NULL)
7675                         return -ENOMEM;
7676
7677                 kfree(ieee->wpa_ie);
7678                 ieee->wpa_ie = buf;
7679                 ieee->wpa_ie_len = wrqu->data.length;
7680         } else {
7681                 kfree(ieee->wpa_ie);
7682                 ieee->wpa_ie = NULL;
7683                 ieee->wpa_ie_len = 0;
7684         }
7685
7686         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7687
7688         return 0;
7689 }
7690
7691 /* SIOCGIWGENIE */
7692 static int ipw2100_wx_get_genie(struct net_device *dev,
7693                                 struct iw_request_info *info,
7694                                 union iwreq_data *wrqu, char *extra)
7695 {
7696         struct ipw2100_priv *priv = libipw_priv(dev);
7697         struct libipw_device *ieee = priv->ieee;
7698
7699         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7700                 wrqu->data.length = 0;
7701                 return 0;
7702         }
7703
7704         if (wrqu->data.length < ieee->wpa_ie_len)
7705                 return -E2BIG;
7706
7707         wrqu->data.length = ieee->wpa_ie_len;
7708         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7709
7710         return 0;
7711 }
7712
7713 /* SIOCSIWAUTH */
7714 static int ipw2100_wx_set_auth(struct net_device *dev,
7715                                struct iw_request_info *info,
7716                                union iwreq_data *wrqu, char *extra)
7717 {
7718         struct ipw2100_priv *priv = libipw_priv(dev);
7719         struct libipw_device *ieee = priv->ieee;
7720         struct iw_param *param = &wrqu->param;
7721         struct lib80211_crypt_data *crypt;
7722         unsigned long flags;
7723         int ret = 0;
7724
7725         switch (param->flags & IW_AUTH_INDEX) {
7726         case IW_AUTH_WPA_VERSION:
7727         case IW_AUTH_CIPHER_PAIRWISE:
7728         case IW_AUTH_CIPHER_GROUP:
7729         case IW_AUTH_KEY_MGMT:
7730                 /*
7731                  * ipw2200 does not use these parameters
7732                  */
7733                 break;
7734
7735         case IW_AUTH_TKIP_COUNTERMEASURES:
7736                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7737                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7738                         break;
7739
7740                 flags = crypt->ops->get_flags(crypt->priv);
7741
7742                 if (param->value)
7743                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7744                 else
7745                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7746
7747                 crypt->ops->set_flags(flags, crypt->priv);
7748
7749                 break;
7750
7751         case IW_AUTH_DROP_UNENCRYPTED:{
7752                         /* HACK:
7753                          *
7754                          * wpa_supplicant calls set_wpa_enabled when the driver
7755                          * is loaded and unloaded, regardless of if WPA is being
7756                          * used.  No other calls are made which can be used to
7757                          * determine if encryption will be used or not prior to
7758                          * association being expected.  If encryption is not being
7759                          * used, drop_unencrypted is set to false, else true -- we
7760                          * can use this to determine if the CAP_PRIVACY_ON bit should
7761                          * be set.
7762                          */
7763                         struct libipw_security sec = {
7764                                 .flags = SEC_ENABLED,
7765                                 .enabled = param->value,
7766                         };
7767                         priv->ieee->drop_unencrypted = param->value;
7768                         /* We only change SEC_LEVEL for open mode. Others
7769                          * are set by ipw_wpa_set_encryption.
7770                          */
7771                         if (!param->value) {
7772                                 sec.flags |= SEC_LEVEL;
7773                                 sec.level = SEC_LEVEL_0;
7774                         } else {
7775                                 sec.flags |= SEC_LEVEL;
7776                                 sec.level = SEC_LEVEL_1;
7777                         }
7778                         if (priv->ieee->set_security)
7779                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7780                         break;
7781                 }
7782
7783         case IW_AUTH_80211_AUTH_ALG:
7784                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7785                 break;
7786
7787         case IW_AUTH_WPA_ENABLED:
7788                 ret = ipw2100_wpa_enable(priv, param->value);
7789                 break;
7790
7791         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7792                 ieee->ieee802_1x = param->value;
7793                 break;
7794
7795                 //case IW_AUTH_ROAMING_CONTROL:
7796         case IW_AUTH_PRIVACY_INVOKED:
7797                 ieee->privacy_invoked = param->value;
7798                 break;
7799
7800         default:
7801                 return -EOPNOTSUPP;
7802         }
7803         return ret;
7804 }
7805
7806 /* SIOCGIWAUTH */
7807 static int ipw2100_wx_get_auth(struct net_device *dev,
7808                                struct iw_request_info *info,
7809                                union iwreq_data *wrqu, char *extra)
7810 {
7811         struct ipw2100_priv *priv = libipw_priv(dev);
7812         struct libipw_device *ieee = priv->ieee;
7813         struct lib80211_crypt_data *crypt;
7814         struct iw_param *param = &wrqu->param;
7815         int ret = 0;
7816
7817         switch (param->flags & IW_AUTH_INDEX) {
7818         case IW_AUTH_WPA_VERSION:
7819         case IW_AUTH_CIPHER_PAIRWISE:
7820         case IW_AUTH_CIPHER_GROUP:
7821         case IW_AUTH_KEY_MGMT:
7822                 /*
7823                  * wpa_supplicant will control these internally
7824                  */
7825                 ret = -EOPNOTSUPP;
7826                 break;
7827
7828         case IW_AUTH_TKIP_COUNTERMEASURES:
7829                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7830                 if (!crypt || !crypt->ops->get_flags) {
7831                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7832                                           "crypt not set!\n");
7833                         break;
7834                 }
7835
7836                 param->value = (crypt->ops->get_flags(crypt->priv) &
7837                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7838
7839                 break;
7840
7841         case IW_AUTH_DROP_UNENCRYPTED:
7842                 param->value = ieee->drop_unencrypted;
7843                 break;
7844
7845         case IW_AUTH_80211_AUTH_ALG:
7846                 param->value = priv->ieee->sec.auth_mode;
7847                 break;
7848
7849         case IW_AUTH_WPA_ENABLED:
7850                 param->value = ieee->wpa_enabled;
7851                 break;
7852
7853         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7854                 param->value = ieee->ieee802_1x;
7855                 break;
7856
7857         case IW_AUTH_ROAMING_CONTROL:
7858         case IW_AUTH_PRIVACY_INVOKED:
7859                 param->value = ieee->privacy_invoked;
7860                 break;
7861
7862         default:
7863                 return -EOPNOTSUPP;
7864         }
7865         return 0;
7866 }
7867
7868 /* SIOCSIWENCODEEXT */
7869 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7870                                     struct iw_request_info *info,
7871                                     union iwreq_data *wrqu, char *extra)
7872 {
7873         struct ipw2100_priv *priv = libipw_priv(dev);
7874         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7875 }
7876
7877 /* SIOCGIWENCODEEXT */
7878 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7879                                     struct iw_request_info *info,
7880                                     union iwreq_data *wrqu, char *extra)
7881 {
7882         struct ipw2100_priv *priv = libipw_priv(dev);
7883         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7884 }
7885
7886 /* SIOCSIWMLME */
7887 static int ipw2100_wx_set_mlme(struct net_device *dev,
7888                                struct iw_request_info *info,
7889                                union iwreq_data *wrqu, char *extra)
7890 {
7891         struct ipw2100_priv *priv = libipw_priv(dev);
7892         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7893         __le16 reason;
7894
7895         reason = cpu_to_le16(mlme->reason_code);
7896
7897         switch (mlme->cmd) {
7898         case IW_MLME_DEAUTH:
7899                 // silently ignore
7900                 break;
7901
7902         case IW_MLME_DISASSOC:
7903                 ipw2100_disassociate_bssid(priv);
7904                 break;
7905
7906         default:
7907                 return -EOPNOTSUPP;
7908         }
7909         return 0;
7910 }
7911
7912 /*
7913  *
7914  * IWPRIV handlers
7915  *
7916  */
7917 #ifdef CONFIG_IPW2100_MONITOR
7918 static int ipw2100_wx_set_promisc(struct net_device *dev,
7919                                   struct iw_request_info *info,
7920                                   union iwreq_data *wrqu, char *extra)
7921 {
7922         struct ipw2100_priv *priv = libipw_priv(dev);
7923         int *parms = (int *)extra;
7924         int enable = (parms[0] > 0);
7925         int err = 0;
7926
7927         mutex_lock(&priv->action_mutex);
7928         if (!(priv->status & STATUS_INITIALIZED)) {
7929                 err = -EIO;
7930                 goto done;
7931         }
7932
7933         if (enable) {
7934                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7935                         err = ipw2100_set_channel(priv, parms[1], 0);
7936                         goto done;
7937                 }
7938                 priv->channel = parms[1];
7939                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7940         } else {
7941                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7942                         err = ipw2100_switch_mode(priv, priv->last_mode);
7943         }
7944       done:
7945         mutex_unlock(&priv->action_mutex);
7946         return err;
7947 }
7948
7949 static int ipw2100_wx_reset(struct net_device *dev,
7950                             struct iw_request_info *info,
7951                             union iwreq_data *wrqu, char *extra)
7952 {
7953         struct ipw2100_priv *priv = libipw_priv(dev);
7954         if (priv->status & STATUS_INITIALIZED)
7955                 schedule_reset(priv);
7956         return 0;
7957 }
7958
7959 #endif
7960
7961 static int ipw2100_wx_set_powermode(struct net_device *dev,
7962                                     struct iw_request_info *info,
7963                                     union iwreq_data *wrqu, char *extra)
7964 {
7965         struct ipw2100_priv *priv = libipw_priv(dev);
7966         int err = 0, mode = *(int *)extra;
7967
7968         mutex_lock(&priv->action_mutex);
7969         if (!(priv->status & STATUS_INITIALIZED)) {
7970                 err = -EIO;
7971                 goto done;
7972         }
7973
7974         if ((mode < 0) || (mode > POWER_MODES))
7975                 mode = IPW_POWER_AUTO;
7976
7977         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7978                 err = ipw2100_set_power_mode(priv, mode);
7979       done:
7980         mutex_unlock(&priv->action_mutex);
7981         return err;
7982 }
7983
7984 #define MAX_POWER_STRING 80
7985 static int ipw2100_wx_get_powermode(struct net_device *dev,
7986                                     struct iw_request_info *info,
7987                                     union iwreq_data *wrqu, char *extra)
7988 {
7989         /*
7990          * This can be called at any time.  No action lock required
7991          */
7992
7993         struct ipw2100_priv *priv = libipw_priv(dev);
7994         int level = IPW_POWER_LEVEL(priv->power_mode);
7995         s32 timeout, period;
7996
7997         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7998                 snprintf(extra, MAX_POWER_STRING,
7999                          "Power save level: %d (Off)", level);
8000         } else {
8001                 switch (level) {
8002                 case IPW_POWER_MODE_CAM:
8003                         snprintf(extra, MAX_POWER_STRING,
8004                                  "Power save level: %d (None)", level);
8005                         break;
8006                 case IPW_POWER_AUTO:
8007                         snprintf(extra, MAX_POWER_STRING,
8008                                  "Power save level: %d (Auto)", level);
8009                         break;
8010                 default:
8011                         timeout = timeout_duration[level - 1] / 1000;
8012                         period = period_duration[level - 1] / 1000;
8013                         snprintf(extra, MAX_POWER_STRING,
8014                                  "Power save level: %d "
8015                                  "(Timeout %dms, Period %dms)",
8016                                  level, timeout, period);
8017                 }
8018         }
8019
8020         wrqu->data.length = strlen(extra) + 1;
8021
8022         return 0;
8023 }
8024
8025 static int ipw2100_wx_set_preamble(struct net_device *dev,
8026                                    struct iw_request_info *info,
8027                                    union iwreq_data *wrqu, char *extra)
8028 {
8029         struct ipw2100_priv *priv = libipw_priv(dev);
8030         int err, mode = *(int *)extra;
8031
8032         mutex_lock(&priv->action_mutex);
8033         if (!(priv->status & STATUS_INITIALIZED)) {
8034                 err = -EIO;
8035                 goto done;
8036         }
8037
8038         if (mode == 1)
8039                 priv->config |= CFG_LONG_PREAMBLE;
8040         else if (mode == 0)
8041                 priv->config &= ~CFG_LONG_PREAMBLE;
8042         else {
8043                 err = -EINVAL;
8044                 goto done;
8045         }
8046
8047         err = ipw2100_system_config(priv, 0);
8048
8049       done:
8050         mutex_unlock(&priv->action_mutex);
8051         return err;
8052 }
8053
8054 static int ipw2100_wx_get_preamble(struct net_device *dev,
8055                                    struct iw_request_info *info,
8056                                    union iwreq_data *wrqu, char *extra)
8057 {
8058         /*
8059          * This can be called at any time.  No action lock required
8060          */
8061
8062         struct ipw2100_priv *priv = libipw_priv(dev);
8063
8064         if (priv->config & CFG_LONG_PREAMBLE)
8065                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8066         else
8067                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8068
8069         return 0;
8070 }
8071
8072 #ifdef CONFIG_IPW2100_MONITOR
8073 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8074                                     struct iw_request_info *info,
8075                                     union iwreq_data *wrqu, char *extra)
8076 {
8077         struct ipw2100_priv *priv = libipw_priv(dev);
8078         int err, mode = *(int *)extra;
8079
8080         mutex_lock(&priv->action_mutex);
8081         if (!(priv->status & STATUS_INITIALIZED)) {
8082                 err = -EIO;
8083                 goto done;
8084         }
8085
8086         if (mode == 1)
8087                 priv->config |= CFG_CRC_CHECK;
8088         else if (mode == 0)
8089                 priv->config &= ~CFG_CRC_CHECK;
8090         else {
8091                 err = -EINVAL;
8092                 goto done;
8093         }
8094         err = 0;
8095
8096       done:
8097         mutex_unlock(&priv->action_mutex);
8098         return err;
8099 }
8100
8101 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8102                                     struct iw_request_info *info,
8103                                     union iwreq_data *wrqu, char *extra)
8104 {
8105         /*
8106          * This can be called at any time.  No action lock required
8107          */
8108
8109         struct ipw2100_priv *priv = libipw_priv(dev);
8110
8111         if (priv->config & CFG_CRC_CHECK)
8112                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8113         else
8114                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8115
8116         return 0;
8117 }
8118 #endif                          /* CONFIG_IPW2100_MONITOR */
8119
8120 static iw_handler ipw2100_wx_handlers[] = {
8121         NULL,                   /* SIOCSIWCOMMIT */
8122         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8123         NULL,                   /* SIOCSIWNWID */
8124         NULL,                   /* SIOCGIWNWID */
8125         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8126         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8127         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8128         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8129         NULL,                   /* SIOCSIWSENS */
8130         NULL,                   /* SIOCGIWSENS */
8131         NULL,                   /* SIOCSIWRANGE */
8132         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8133         NULL,                   /* SIOCSIWPRIV */
8134         NULL,                   /* SIOCGIWPRIV */
8135         NULL,                   /* SIOCSIWSTATS */
8136         NULL,                   /* SIOCGIWSTATS */
8137         NULL,                   /* SIOCSIWSPY */
8138         NULL,                   /* SIOCGIWSPY */
8139         NULL,                   /* SIOCGIWTHRSPY */
8140         NULL,                   /* SIOCWIWTHRSPY */
8141         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8142         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8143         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8144         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8145         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8146         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8147         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8148         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8149         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8150         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8151         NULL,                   /* -- hole -- */
8152         NULL,                   /* -- hole -- */
8153         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8154         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8155         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8156         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8157         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8158         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8159         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8160         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8161         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8162         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8163         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8164         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8165         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8166         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8167         NULL,                   /* -- hole -- */
8168         NULL,                   /* -- hole -- */
8169         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8170         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8171         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8172         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8173         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8174         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8175         NULL,                   /* SIOCSIWPMKSA */
8176 };
8177
8178 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8179 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8180 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8181 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8182 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8183 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8184 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8185 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8186
8187 static const struct iw_priv_args ipw2100_private_args[] = {
8188
8189 #ifdef CONFIG_IPW2100_MONITOR
8190         {
8191          IPW2100_PRIV_SET_MONITOR,
8192          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8193         {
8194          IPW2100_PRIV_RESET,
8195          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8196 #endif                          /* CONFIG_IPW2100_MONITOR */
8197
8198         {
8199          IPW2100_PRIV_SET_POWER,
8200          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8201         {
8202          IPW2100_PRIV_GET_POWER,
8203          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8204          "get_power"},
8205         {
8206          IPW2100_PRIV_SET_LONGPREAMBLE,
8207          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8208         {
8209          IPW2100_PRIV_GET_LONGPREAMBLE,
8210          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8211 #ifdef CONFIG_IPW2100_MONITOR
8212         {
8213          IPW2100_PRIV_SET_CRC_CHECK,
8214          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8215         {
8216          IPW2100_PRIV_GET_CRC_CHECK,
8217          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8218 #endif                          /* CONFIG_IPW2100_MONITOR */
8219 };
8220
8221 static iw_handler ipw2100_private_handler[] = {
8222 #ifdef CONFIG_IPW2100_MONITOR
8223         ipw2100_wx_set_promisc,
8224         ipw2100_wx_reset,
8225 #else                           /* CONFIG_IPW2100_MONITOR */
8226         NULL,
8227         NULL,
8228 #endif                          /* CONFIG_IPW2100_MONITOR */
8229         ipw2100_wx_set_powermode,
8230         ipw2100_wx_get_powermode,
8231         ipw2100_wx_set_preamble,
8232         ipw2100_wx_get_preamble,
8233 #ifdef CONFIG_IPW2100_MONITOR
8234         ipw2100_wx_set_crc_check,
8235         ipw2100_wx_get_crc_check,
8236 #else                           /* CONFIG_IPW2100_MONITOR */
8237         NULL,
8238         NULL,
8239 #endif                          /* CONFIG_IPW2100_MONITOR */
8240 };
8241
8242 /*
8243  * Get wireless statistics.
8244  * Called by /proc/net/wireless
8245  * Also called by SIOCGIWSTATS
8246  */
8247 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8248 {
8249         enum {
8250                 POOR = 30,
8251                 FAIR = 60,
8252                 GOOD = 80,
8253                 VERY_GOOD = 90,
8254                 EXCELLENT = 95,
8255                 PERFECT = 100
8256         };
8257         int rssi_qual;
8258         int tx_qual;
8259         int beacon_qual;
8260         int quality;
8261
8262         struct ipw2100_priv *priv = libipw_priv(dev);
8263         struct iw_statistics *wstats;
8264         u32 rssi, tx_retries, missed_beacons, tx_failures;
8265         u32 ord_len = sizeof(u32);
8266
8267         if (!priv)
8268                 return (struct iw_statistics *)NULL;
8269
8270         wstats = &priv->wstats;
8271
8272         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8273          * ipw2100_wx_wireless_stats seems to be called before fw is
8274          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8275          * and associated; if not associcated, the values are all meaningless
8276          * anyway, so set them all to NULL and INVALID */
8277         if (!(priv->status & STATUS_ASSOCIATED)) {
8278                 wstats->miss.beacon = 0;
8279                 wstats->discard.retries = 0;
8280                 wstats->qual.qual = 0;
8281                 wstats->qual.level = 0;
8282                 wstats->qual.noise = 0;
8283                 wstats->qual.updated = 7;
8284                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8285                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8286                 return wstats;
8287         }
8288
8289         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8290                                 &missed_beacons, &ord_len))
8291                 goto fail_get_ordinal;
8292
8293         /* If we don't have a connection the quality and level is 0 */
8294         if (!(priv->status & STATUS_ASSOCIATED)) {
8295                 wstats->qual.qual = 0;
8296                 wstats->qual.level = 0;
8297         } else {
8298                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8299                                         &rssi, &ord_len))
8300                         goto fail_get_ordinal;
8301                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8302                 if (rssi < 10)
8303                         rssi_qual = rssi * POOR / 10;
8304                 else if (rssi < 15)
8305                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8306                 else if (rssi < 20)
8307                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8308                 else if (rssi < 30)
8309                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8310                             10 + GOOD;
8311                 else
8312                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8313                             10 + VERY_GOOD;
8314
8315                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8316                                         &tx_retries, &ord_len))
8317                         goto fail_get_ordinal;
8318
8319                 if (tx_retries > 75)
8320                         tx_qual = (90 - tx_retries) * POOR / 15;
8321                 else if (tx_retries > 70)
8322                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8323                 else if (tx_retries > 65)
8324                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8325                 else if (tx_retries > 50)
8326                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8327                             15 + GOOD;
8328                 else
8329                         tx_qual = (50 - tx_retries) *
8330                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8331
8332                 if (missed_beacons > 50)
8333                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8334                 else if (missed_beacons > 40)
8335                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8336                             10 + POOR;
8337                 else if (missed_beacons > 32)
8338                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8339                             18 + FAIR;
8340                 else if (missed_beacons > 20)
8341                         beacon_qual = (32 - missed_beacons) *
8342                             (VERY_GOOD - GOOD) / 20 + GOOD;
8343                 else
8344                         beacon_qual = (20 - missed_beacons) *
8345                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8346
8347                 quality = min(tx_qual, rssi_qual);
8348                 quality = min(beacon_qual, quality);
8349
8350 #ifdef CONFIG_IPW2100_DEBUG
8351                 if (beacon_qual == quality)
8352                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8353                 else if (tx_qual == quality)
8354                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8355                 else if (quality != 100)
8356                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8357                 else
8358                         IPW_DEBUG_WX("Quality not clamped.\n");
8359 #endif
8360
8361                 wstats->qual.qual = quality;
8362                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8363         }
8364
8365         wstats->qual.noise = 0;
8366         wstats->qual.updated = 7;
8367         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8368
8369         /* FIXME: this is percent and not a # */
8370         wstats->miss.beacon = missed_beacons;
8371
8372         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8373                                 &tx_failures, &ord_len))
8374                 goto fail_get_ordinal;
8375         wstats->discard.retries = tx_failures;
8376
8377         return wstats;
8378
8379       fail_get_ordinal:
8380         IPW_DEBUG_WX("failed querying ordinals.\n");
8381
8382         return (struct iw_statistics *)NULL;
8383 }
8384
8385 static struct iw_handler_def ipw2100_wx_handler_def = {
8386         .standard = ipw2100_wx_handlers,
8387         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8388         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8389         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8390         .private = (iw_handler *) ipw2100_private_handler,
8391         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8392         .get_wireless_stats = ipw2100_wx_wireless_stats,
8393 };
8394
8395 static void ipw2100_wx_event_work(struct work_struct *work)
8396 {
8397         struct ipw2100_priv *priv =
8398                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8399         union iwreq_data wrqu;
8400         unsigned int len = ETH_ALEN;
8401
8402         if (priv->status & STATUS_STOPPING)
8403                 return;
8404
8405         mutex_lock(&priv->action_mutex);
8406
8407         IPW_DEBUG_WX("enter\n");
8408
8409         mutex_unlock(&priv->action_mutex);
8410
8411         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8412
8413         /* Fetch BSSID from the hardware */
8414         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8415             priv->status & STATUS_RF_KILL_MASK ||
8416             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8417                                 &priv->bssid, &len)) {
8418                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8419         } else {
8420                 /* We now have the BSSID, so can finish setting to the full
8421                  * associated state */
8422                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8423                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8424                 priv->status &= ~STATUS_ASSOCIATING;
8425                 priv->status |= STATUS_ASSOCIATED;
8426                 netif_carrier_on(priv->net_dev);
8427                 netif_wake_queue(priv->net_dev);
8428         }
8429
8430         if (!(priv->status & STATUS_ASSOCIATED)) {
8431                 IPW_DEBUG_WX("Configuring ESSID\n");
8432                 mutex_lock(&priv->action_mutex);
8433                 /* This is a disassociation event, so kick the firmware to
8434                  * look for another AP */
8435                 if (priv->config & CFG_STATIC_ESSID)
8436                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8437                                           0);
8438                 else
8439                         ipw2100_set_essid(priv, NULL, 0, 0);
8440                 mutex_unlock(&priv->action_mutex);
8441         }
8442
8443         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8444 }
8445
8446 #define IPW2100_FW_MAJOR_VERSION 1
8447 #define IPW2100_FW_MINOR_VERSION 3
8448
8449 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8450 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8451
8452 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8453                              IPW2100_FW_MAJOR_VERSION)
8454
8455 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8456 "." __stringify(IPW2100_FW_MINOR_VERSION)
8457
8458 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8459
8460 /*
8461
8462 BINARY FIRMWARE HEADER FORMAT
8463
8464 offset      length   desc
8465 0           2        version
8466 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8467 4           4        fw_len
8468 8           4        uc_len
8469 C           fw_len   firmware data
8470 12 + fw_len uc_len   microcode data
8471
8472 */
8473
8474 struct ipw2100_fw_header {
8475         short version;
8476         short mode;
8477         unsigned int fw_size;
8478         unsigned int uc_size;
8479 } __packed;
8480
8481 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8482 {
8483         struct ipw2100_fw_header *h =
8484             (struct ipw2100_fw_header *)fw->fw_entry->data;
8485
8486         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8487                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8488                        "(detected version id of %u). "
8489                        "See Documentation/networking/README.ipw2100\n",
8490                        h->version);
8491                 return 1;
8492         }
8493
8494         fw->version = h->version;
8495         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8496         fw->fw.size = h->fw_size;
8497         fw->uc.data = fw->fw.data + h->fw_size;
8498         fw->uc.size = h->uc_size;
8499
8500         return 0;
8501 }
8502
8503 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8504                                 struct ipw2100_fw *fw)
8505 {
8506         char *fw_name;
8507         int rc;
8508
8509         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8510                        priv->net_dev->name);
8511
8512         switch (priv->ieee->iw_mode) {
8513         case IW_MODE_ADHOC:
8514                 fw_name = IPW2100_FW_NAME("-i");
8515                 break;
8516 #ifdef CONFIG_IPW2100_MONITOR
8517         case IW_MODE_MONITOR:
8518                 fw_name = IPW2100_FW_NAME("-p");
8519                 break;
8520 #endif
8521         case IW_MODE_INFRA:
8522         default:
8523                 fw_name = IPW2100_FW_NAME("");
8524                 break;
8525         }
8526
8527         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8528
8529         if (rc < 0) {
8530                 printk(KERN_ERR DRV_NAME ": "
8531                        "%s: Firmware '%s' not available or load failed.\n",
8532                        priv->net_dev->name, fw_name);
8533                 return rc;
8534         }
8535         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8536                        fw->fw_entry->size);
8537
8538         ipw2100_mod_firmware_load(fw);
8539
8540         return 0;
8541 }
8542
8543 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8544 #ifdef CONFIG_IPW2100_MONITOR
8545 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8546 #endif
8547 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8548
8549 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8550                                      struct ipw2100_fw *fw)
8551 {
8552         fw->version = 0;
8553         if (fw->fw_entry)
8554                 release_firmware(fw->fw_entry);
8555         fw->fw_entry = NULL;
8556 }
8557
8558 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8559                                  size_t max)
8560 {
8561         char ver[MAX_FW_VERSION_LEN];
8562         u32 len = MAX_FW_VERSION_LEN;
8563         u32 tmp;
8564         int i;
8565         /* firmware version is an ascii string (max len of 14) */
8566         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8567                 return -EIO;
8568         tmp = max;
8569         if (len >= max)
8570                 len = max - 1;
8571         for (i = 0; i < len; i++)
8572                 buf[i] = ver[i];
8573         buf[i] = '\0';
8574         return tmp;
8575 }
8576
8577 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8578                                     size_t max)
8579 {
8580         u32 ver;
8581         u32 len = sizeof(ver);
8582         /* microcode version is a 32 bit integer */
8583         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8584                 return -EIO;
8585         return snprintf(buf, max, "%08X", ver);
8586 }
8587
8588 /*
8589  * On exit, the firmware will have been freed from the fw list
8590  */
8591 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8592 {
8593         /* firmware is constructed of N contiguous entries, each entry is
8594          * structured as:
8595          *
8596          * offset    sie         desc
8597          * 0         4           address to write to
8598          * 4         2           length of data run
8599          * 6         length      data
8600          */
8601         unsigned int addr;
8602         unsigned short len;
8603
8604         const unsigned char *firmware_data = fw->fw.data;
8605         unsigned int firmware_data_left = fw->fw.size;
8606
8607         while (firmware_data_left > 0) {
8608                 addr = *(u32 *) (firmware_data);
8609                 firmware_data += 4;
8610                 firmware_data_left -= 4;
8611
8612                 len = *(u16 *) (firmware_data);
8613                 firmware_data += 2;
8614                 firmware_data_left -= 2;
8615
8616                 if (len > 32) {
8617                         printk(KERN_ERR DRV_NAME ": "
8618                                "Invalid firmware run-length of %d bytes\n",
8619                                len);
8620                         return -EINVAL;
8621                 }
8622
8623                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8624                 firmware_data += len;
8625                 firmware_data_left -= len;
8626         }
8627
8628         return 0;
8629 }
8630
8631 struct symbol_alive_response {
8632         u8 cmd_id;
8633         u8 seq_num;
8634         u8 ucode_rev;
8635         u8 eeprom_valid;
8636         u16 valid_flags;
8637         u8 IEEE_addr[6];
8638         u16 flags;
8639         u16 pcb_rev;
8640         u16 clock_settle_time;  // 1us LSB
8641         u16 powerup_settle_time;        // 1us LSB
8642         u16 hop_settle_time;    // 1us LSB
8643         u8 date[3];             // month, day, year
8644         u8 time[2];             // hours, minutes
8645         u8 ucode_valid;
8646 };
8647
8648 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8649                                   struct ipw2100_fw *fw)
8650 {
8651         struct net_device *dev = priv->net_dev;
8652         const unsigned char *microcode_data = fw->uc.data;
8653         unsigned int microcode_data_left = fw->uc.size;
8654         void __iomem *reg = (void __iomem *)dev->base_addr;
8655
8656         struct symbol_alive_response response;
8657         int i, j;
8658         u8 data;
8659
8660         /* Symbol control */
8661         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8662         readl(reg);
8663         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8664         readl(reg);
8665
8666         /* HW config */
8667         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8668         readl(reg);
8669         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8670         readl(reg);
8671
8672         /* EN_CS_ACCESS bit to reset control store pointer */
8673         write_nic_byte(dev, 0x210000, 0x40);
8674         readl(reg);
8675         write_nic_byte(dev, 0x210000, 0x0);
8676         readl(reg);
8677         write_nic_byte(dev, 0x210000, 0x40);
8678         readl(reg);
8679
8680         /* copy microcode from buffer into Symbol */
8681
8682         while (microcode_data_left > 0) {
8683                 write_nic_byte(dev, 0x210010, *microcode_data++);
8684                 write_nic_byte(dev, 0x210010, *microcode_data++);
8685                 microcode_data_left -= 2;
8686         }
8687
8688         /* EN_CS_ACCESS bit to reset the control store pointer */
8689         write_nic_byte(dev, 0x210000, 0x0);
8690         readl(reg);
8691
8692         /* Enable System (Reg 0)
8693          * first enable causes garbage in RX FIFO */
8694         write_nic_byte(dev, 0x210000, 0x0);
8695         readl(reg);
8696         write_nic_byte(dev, 0x210000, 0x80);
8697         readl(reg);
8698
8699         /* Reset External Baseband Reg */
8700         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8701         readl(reg);
8702         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8703         readl(reg);
8704
8705         /* HW Config (Reg 5) */
8706         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8707         readl(reg);
8708         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8709         readl(reg);
8710
8711         /* Enable System (Reg 0)
8712          * second enable should be OK */
8713         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8714         readl(reg);
8715         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8716
8717         /* check Symbol is enabled - upped this from 5 as it wasn't always
8718          * catching the update */
8719         for (i = 0; i < 10; i++) {
8720                 udelay(10);
8721
8722                 /* check Dino is enabled bit */
8723                 read_nic_byte(dev, 0x210000, &data);
8724                 if (data & 0x1)
8725                         break;
8726         }
8727
8728         if (i == 10) {
8729                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8730                        dev->name);
8731                 return -EIO;
8732         }
8733
8734         /* Get Symbol alive response */
8735         for (i = 0; i < 30; i++) {
8736                 /* Read alive response structure */
8737                 for (j = 0;
8738                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8739                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8740
8741                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8742                         break;
8743                 udelay(10);
8744         }
8745
8746         if (i == 30) {
8747                 printk(KERN_ERR DRV_NAME
8748                        ": %s: No response from Symbol - hw not alive\n",
8749                        dev->name);
8750                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8751                 return -EIO;
8752         }
8753
8754         return 0;
8755 }