Merge branch 'upstream-fixes' into upstream
[pandora-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
91
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101         'a', 'b', 'g', '?'
102 };
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
104
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
107 #endif
108
109
110 #ifdef CONFIG_IPW2200_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
116
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119          QOS_TX3_CW_MIN_OFDM},
120         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121          QOS_TX3_CW_MAX_OFDM},
122         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 };
127
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130          QOS_TX3_CW_MIN_CCK},
131         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132          QOS_TX3_CW_MAX_CCK},
133         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136          QOS_TX3_TXOP_LIMIT_CCK}
137 };
138
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141          DEF_TX3_CW_MIN_OFDM},
142         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143          DEF_TX3_CW_MAX_OFDM},
144         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152          DEF_TX3_CW_MIN_CCK},
153         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154          DEF_TX3_CW_MAX_CCK},
155         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158          DEF_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
162
163 static int from_priority_to_tx_queue[] = {
164         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 };
167
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
169
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171                                        *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173                                      *qos_param);
174 #endif                          /* CONFIG_IPW2200_QOS */
175
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180                                 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
182
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184                              int len, int sync);
185
186 static void ipw_tx_queue_free(struct ipw_priv *);
187
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197                                 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
200
201 static int snprint_line(char *buf, size_t count,
202                         const u8 * data, u32 len, u32 ofs)
203 {
204         int out, i, j, l;
205         char c;
206
207         out = snprintf(buf, count, "%08X", ofs);
208
209         for (l = 0, i = 0; i < 2; i++) {
210                 out += snprintf(buf + out, count - out, " ");
211                 for (j = 0; j < 8 && l < len; j++, l++)
212                         out += snprintf(buf + out, count - out, "%02X ",
213                                         data[(i * 8 + j)]);
214                 for (; j < 8; j++)
215                         out += snprintf(buf + out, count - out, "   ");
216         }
217
218         out += snprintf(buf + out, count - out, " ");
219         for (l = 0, i = 0; i < 2; i++) {
220                 out += snprintf(buf + out, count - out, " ");
221                 for (j = 0; j < 8 && l < len; j++, l++) {
222                         c = data[(i * 8 + j)];
223                         if (!isascii(c) || !isprint(c))
224                                 c = '.';
225
226                         out += snprintf(buf + out, count - out, "%c", c);
227                 }
228
229                 for (; j < 8; j++)
230                         out += snprintf(buf + out, count - out, " ");
231         }
232
233         return out;
234 }
235
236 static void printk_buf(int level, const u8 * data, u32 len)
237 {
238         char line[81];
239         u32 ofs = 0;
240         if (!(ipw_debug_level & level))
241                 return;
242
243         while (len) {
244                 snprint_line(line, sizeof(line), &data[ofs],
245                              min(len, 16U), ofs);
246                 printk(KERN_DEBUG "%s\n", line);
247                 ofs += 16;
248                 len -= min(len, 16U);
249         }
250 }
251
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
253 {
254         size_t out = size;
255         u32 ofs = 0;
256         int total = 0;
257
258         while (size && len) {
259                 out = snprint_line(output, size, &data[ofs],
260                                    min_t(size_t, len, 16U), ofs);
261
262                 ofs += 16;
263                 output += out;
264                 size -= out;
265                 len -= min_t(size_t, len, 16U);
266                 total += out;
267         }
268         return total;
269 }
270
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
274
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
278
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
282 {
283         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284                      __LINE__, (u32) (b), (u32) (c));
285         _ipw_write_reg8(a, b, c);
286 }
287
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
291 {
292         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293                      __LINE__, (u32) (b), (u32) (c));
294         _ipw_write_reg16(a, b, c);
295 }
296
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
300 {
301         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302                      __LINE__, (u32) (b), (u32) (c));
303         _ipw_write_reg32(a, b, c);
304 }
305
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
308
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312  _ipw_write8(ipw, ofs, val)
313
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320  _ipw_write16(ipw, ofs, val)
321
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328  _ipw_write32(ipw, ofs, val)
329
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 {
336         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337         return _ipw_read8(ipw, ofs);
338 }
339
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 {
349         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350         return _ipw_read16(ipw, ofs);
351 }
352
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 {
362         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363         return _ipw_read32(ipw, ofs);
364 }
365
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372                                        struct ipw_priv *a, u32 b, u8 * c, int d)
373 {
374         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375                      d);
376         _ipw_read_indirect(a, b, c, d);
377 }
378
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384                                 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387         _ipw_write_indirect(a, b, c, d)
388
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 {
392         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 }
396
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 {
400         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
401         u32 dif_len = reg - aligned_addr;
402
403         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 }
407
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 {
411         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
412         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413
414         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 }
418
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 {
422         u32 word;
423         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426         return (word >> ((reg & 0x3) * 8)) & 0xff;
427 }
428
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 {
432         u32 value;
433
434         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435
436         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439         return value;
440 }
441
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /*    for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445                                int num)
446 {
447         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
448         u32 dif_len = addr - aligned_addr;
449         u32 i;
450
451         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452
453         if (num <= 0) {
454                 return;
455         }
456
457         /* Read the first dword (or portion) byte by byte */
458         if (unlikely(dif_len)) {
459                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460                 /* Start reading at aligned_addr + dif_len */
461                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463                 aligned_addr += 4;
464         }
465
466         /* Read all of the middle dwords as dwords, with auto-increment */
467         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470
471         /* Read the last dword (or portion) byte by byte */
472         if (unlikely(num)) {
473                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474                 for (i = 0; num > 0; i++, num--)
475                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
476         }
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                 int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Write the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start writing at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500                 aligned_addr += 4;
501         }
502
503         /* Write all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507
508         /* Write the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--, buf++)
512                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519                              int num)
520 {
521         memcpy_toio((priv->hw_base + addr), buf, num);
522 }
523
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 {
527         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 }
529
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 {
533         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 }
535
536 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 {
538         if (priv->status & STATUS_INT_ENABLED)
539                 return;
540         priv->status |= STATUS_INT_ENABLED;
541         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 }
543
544 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 {
546         if (!(priv->status & STATUS_INT_ENABLED))
547                 return;
548         priv->status &= ~STATUS_INT_ENABLED;
549         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 }
551
552 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 {
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->irq_lock, flags);
557         __ipw_enable_interrupts(priv);
558         spin_unlock_irqrestore(&priv->irq_lock, flags);
559 }
560
561 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&priv->irq_lock, flags);
566         __ipw_disable_interrupts(priv);
567         spin_unlock_irqrestore(&priv->irq_lock, flags);
568 }
569
570 #ifdef CONFIG_IPW2200_DEBUG
571 static char *ipw_error_desc(u32 val)
572 {
573         switch (val) {
574         case IPW_FW_ERROR_OK:
575                 return "ERROR_OK";
576         case IPW_FW_ERROR_FAIL:
577                 return "ERROR_FAIL";
578         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
579                 return "MEMORY_UNDERFLOW";
580         case IPW_FW_ERROR_MEMORY_OVERFLOW:
581                 return "MEMORY_OVERFLOW";
582         case IPW_FW_ERROR_BAD_PARAM:
583                 return "BAD_PARAM";
584         case IPW_FW_ERROR_BAD_CHECKSUM:
585                 return "BAD_CHECKSUM";
586         case IPW_FW_ERROR_NMI_INTERRUPT:
587                 return "NMI_INTERRUPT";
588         case IPW_FW_ERROR_BAD_DATABASE:
589                 return "BAD_DATABASE";
590         case IPW_FW_ERROR_ALLOC_FAIL:
591                 return "ALLOC_FAIL";
592         case IPW_FW_ERROR_DMA_UNDERRUN:
593                 return "DMA_UNDERRUN";
594         case IPW_FW_ERROR_DMA_STATUS:
595                 return "DMA_STATUS";
596         case IPW_FW_ERROR_DINO_ERROR:
597                 return "DINO_ERROR";
598         case IPW_FW_ERROR_EEPROM_ERROR:
599                 return "EEPROM_ERROR";
600         case IPW_FW_ERROR_SYSASSERT:
601                 return "SYSASSERT";
602         case IPW_FW_ERROR_FATAL_ERROR:
603                 return "FATAL_ERROR";
604         default:
605                 return "UNKNOWN_ERROR";
606         }
607 }
608
609 static void ipw_dump_error_log(struct ipw_priv *priv,
610                                struct ipw_fw_error *error)
611 {
612         u32 i;
613
614         if (!error) {
615                 IPW_ERROR("Error allocating and capturing error log.  "
616                           "Nothing to dump.\n");
617                 return;
618         }
619
620         IPW_ERROR("Start IPW Error Log Dump:\n");
621         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
622                   error->status, error->config);
623
624         for (i = 0; i < error->elem_len; i++)
625                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
626                           ipw_error_desc(error->elem[i].desc),
627                           error->elem[i].time,
628                           error->elem[i].blink1,
629                           error->elem[i].blink2,
630                           error->elem[i].link1,
631                           error->elem[i].link2, error->elem[i].data);
632         for (i = 0; i < error->log_len; i++)
633                 IPW_ERROR("%i\t0x%08x\t%i\n",
634                           error->log[i].time,
635                           error->log[i].data, error->log[i].event);
636 }
637 #endif
638
639 static inline int ipw_is_init(struct ipw_priv *priv)
640 {
641         return (priv->status & STATUS_INIT) ? 1 : 0;
642 }
643
644 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
645 {
646         u32 addr, field_info, field_len, field_count, total_len;
647
648         IPW_DEBUG_ORD("ordinal = %i\n", ord);
649
650         if (!priv || !val || !len) {
651                 IPW_DEBUG_ORD("Invalid argument\n");
652                 return -EINVAL;
653         }
654
655         /* verify device ordinal tables have been initialized */
656         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
657                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
658                 return -EINVAL;
659         }
660
661         switch (IPW_ORD_TABLE_ID_MASK & ord) {
662         case IPW_ORD_TABLE_0_MASK:
663                 /*
664                  * TABLE 0: Direct access to a table of 32 bit values
665                  *
666                  * This is a very simple table with the data directly
667                  * read from the table
668                  */
669
670                 /* remove the table id from the ordinal */
671                 ord &= IPW_ORD_TABLE_VALUE_MASK;
672
673                 /* boundary check */
674                 if (ord > priv->table0_len) {
675                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
676                                       "max (%i)\n", ord, priv->table0_len);
677                         return -EINVAL;
678                 }
679
680                 /* verify we have enough room to store the value */
681                 if (*len < sizeof(u32)) {
682                         IPW_DEBUG_ORD("ordinal buffer length too small, "
683                                       "need %zd\n", sizeof(u32));
684                         return -EINVAL;
685                 }
686
687                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
688                               ord, priv->table0_addr + (ord << 2));
689
690                 *len = sizeof(u32);
691                 ord <<= 2;
692                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
693                 break;
694
695         case IPW_ORD_TABLE_1_MASK:
696                 /*
697                  * TABLE 1: Indirect access to a table of 32 bit values
698                  *
699                  * This is a fairly large table of u32 values each
700                  * representing starting addr for the data (which is
701                  * also a u32)
702                  */
703
704                 /* remove the table id from the ordinal */
705                 ord &= IPW_ORD_TABLE_VALUE_MASK;
706
707                 /* boundary check */
708                 if (ord > priv->table1_len) {
709                         IPW_DEBUG_ORD("ordinal value too long\n");
710                         return -EINVAL;
711                 }
712
713                 /* verify we have enough room to store the value */
714                 if (*len < sizeof(u32)) {
715                         IPW_DEBUG_ORD("ordinal buffer length too small, "
716                                       "need %zd\n", sizeof(u32));
717                         return -EINVAL;
718                 }
719
720                 *((u32 *) val) =
721                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
722                 *len = sizeof(u32);
723                 break;
724
725         case IPW_ORD_TABLE_2_MASK:
726                 /*
727                  * TABLE 2: Indirect access to a table of variable sized values
728                  *
729                  * This table consist of six values, each containing
730                  *     - dword containing the starting offset of the data
731                  *     - dword containing the lengh in the first 16bits
732                  *       and the count in the second 16bits
733                  */
734
735                 /* remove the table id from the ordinal */
736                 ord &= IPW_ORD_TABLE_VALUE_MASK;
737
738                 /* boundary check */
739                 if (ord > priv->table2_len) {
740                         IPW_DEBUG_ORD("ordinal value too long\n");
741                         return -EINVAL;
742                 }
743
744                 /* get the address of statistic */
745                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
746
747                 /* get the second DW of statistics ;
748                  * two 16-bit words - first is length, second is count */
749                 field_info =
750                     ipw_read_reg32(priv,
751                                    priv->table2_addr + (ord << 3) +
752                                    sizeof(u32));
753
754                 /* get each entry length */
755                 field_len = *((u16 *) & field_info);
756
757                 /* get number of entries */
758                 field_count = *(((u16 *) & field_info) + 1);
759
760                 /* abort if not enought memory */
761                 total_len = field_len * field_count;
762                 if (total_len > *len) {
763                         *len = total_len;
764                         return -EINVAL;
765                 }
766
767                 *len = total_len;
768                 if (!total_len)
769                         return 0;
770
771                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
772                               "field_info = 0x%08x\n",
773                               addr, total_len, field_info);
774                 ipw_read_indirect(priv, addr, val, total_len);
775                 break;
776
777         default:
778                 IPW_DEBUG_ORD("Invalid ordinal!\n");
779                 return -EINVAL;
780
781         }
782
783         return 0;
784 }
785
786 static void ipw_init_ordinals(struct ipw_priv *priv)
787 {
788         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
789         priv->table0_len = ipw_read32(priv, priv->table0_addr);
790
791         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
792                       priv->table0_addr, priv->table0_len);
793
794         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
795         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
796
797         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
798                       priv->table1_addr, priv->table1_len);
799
800         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
801         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
802         priv->table2_len &= 0x0000ffff; /* use first two bytes */
803
804         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
805                       priv->table2_addr, priv->table2_len);
806
807 }
808
809 static u32 ipw_register_toggle(u32 reg)
810 {
811         reg &= ~IPW_START_STANDBY;
812         if (reg & IPW_GATE_ODMA)
813                 reg &= ~IPW_GATE_ODMA;
814         if (reg & IPW_GATE_IDMA)
815                 reg &= ~IPW_GATE_IDMA;
816         if (reg & IPW_GATE_ADMA)
817                 reg &= ~IPW_GATE_ADMA;
818         return reg;
819 }
820
821 /*
822  * LED behavior:
823  * - On radio ON, turn on any LEDs that require to be on during start
824  * - On initialization, start unassociated blink
825  * - On association, disable unassociated blink
826  * - On disassociation, start unassociated blink
827  * - On radio OFF, turn off any LEDs started during radio on
828  *
829  */
830 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
831 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
832 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
833
834 static void ipw_led_link_on(struct ipw_priv *priv)
835 {
836         unsigned long flags;
837         u32 led;
838
839         /* If configured to not use LEDs, or nic_type is 1,
840          * then we don't toggle a LINK led */
841         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
842                 return;
843
844         spin_lock_irqsave(&priv->lock, flags);
845
846         if (!(priv->status & STATUS_RF_KILL_MASK) &&
847             !(priv->status & STATUS_LED_LINK_ON)) {
848                 IPW_DEBUG_LED("Link LED On\n");
849                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
850                 led |= priv->led_association_on;
851
852                 led = ipw_register_toggle(led);
853
854                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
855                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
856
857                 priv->status |= STATUS_LED_LINK_ON;
858
859                 /* If we aren't associated, schedule turning the LED off */
860                 if (!(priv->status & STATUS_ASSOCIATED))
861                         queue_delayed_work(priv->workqueue,
862                                            &priv->led_link_off,
863                                            LD_TIME_LINK_ON);
864         }
865
866         spin_unlock_irqrestore(&priv->lock, flags);
867 }
868
869 static void ipw_bg_led_link_on(void *data)
870 {
871         struct ipw_priv *priv = data;
872         mutex_lock(&priv->mutex);
873         ipw_led_link_on(data);
874         mutex_unlock(&priv->mutex);
875 }
876
877 static void ipw_led_link_off(struct ipw_priv *priv)
878 {
879         unsigned long flags;
880         u32 led;
881
882         /* If configured not to use LEDs, or nic type is 1,
883          * then we don't goggle the LINK led. */
884         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
885                 return;
886
887         spin_lock_irqsave(&priv->lock, flags);
888
889         if (priv->status & STATUS_LED_LINK_ON) {
890                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
891                 led &= priv->led_association_off;
892                 led = ipw_register_toggle(led);
893
894                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
895                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
896
897                 IPW_DEBUG_LED("Link LED Off\n");
898
899                 priv->status &= ~STATUS_LED_LINK_ON;
900
901                 /* If we aren't associated and the radio is on, schedule
902                  * turning the LED on (blink while unassociated) */
903                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
904                     !(priv->status & STATUS_ASSOCIATED))
905                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
906                                            LD_TIME_LINK_OFF);
907
908         }
909
910         spin_unlock_irqrestore(&priv->lock, flags);
911 }
912
913 static void ipw_bg_led_link_off(void *data)
914 {
915         struct ipw_priv *priv = data;
916         mutex_lock(&priv->mutex);
917         ipw_led_link_off(data);
918         mutex_unlock(&priv->mutex);
919 }
920
921 static void __ipw_led_activity_on(struct ipw_priv *priv)
922 {
923         u32 led;
924
925         if (priv->config & CFG_NO_LED)
926                 return;
927
928         if (priv->status & STATUS_RF_KILL_MASK)
929                 return;
930
931         if (!(priv->status & STATUS_LED_ACT_ON)) {
932                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
933                 led |= priv->led_activity_on;
934
935                 led = ipw_register_toggle(led);
936
937                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
938                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
939
940                 IPW_DEBUG_LED("Activity LED On\n");
941
942                 priv->status |= STATUS_LED_ACT_ON;
943
944                 cancel_delayed_work(&priv->led_act_off);
945                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946                                    LD_TIME_ACT_ON);
947         } else {
948                 /* Reschedule LED off for full time period */
949                 cancel_delayed_work(&priv->led_act_off);
950                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
951                                    LD_TIME_ACT_ON);
952         }
953 }
954
955 #if 0
956 void ipw_led_activity_on(struct ipw_priv *priv)
957 {
958         unsigned long flags;
959         spin_lock_irqsave(&priv->lock, flags);
960         __ipw_led_activity_on(priv);
961         spin_unlock_irqrestore(&priv->lock, flags);
962 }
963 #endif  /*  0  */
964
965 static void ipw_led_activity_off(struct ipw_priv *priv)
966 {
967         unsigned long flags;
968         u32 led;
969
970         if (priv->config & CFG_NO_LED)
971                 return;
972
973         spin_lock_irqsave(&priv->lock, flags);
974
975         if (priv->status & STATUS_LED_ACT_ON) {
976                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
977                 led &= priv->led_activity_off;
978
979                 led = ipw_register_toggle(led);
980
981                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
982                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
983
984                 IPW_DEBUG_LED("Activity LED Off\n");
985
986                 priv->status &= ~STATUS_LED_ACT_ON;
987         }
988
989         spin_unlock_irqrestore(&priv->lock, flags);
990 }
991
992 static void ipw_bg_led_activity_off(void *data)
993 {
994         struct ipw_priv *priv = data;
995         mutex_lock(&priv->mutex);
996         ipw_led_activity_off(data);
997         mutex_unlock(&priv->mutex);
998 }
999
1000 static void ipw_led_band_on(struct ipw_priv *priv)
1001 {
1002         unsigned long flags;
1003         u32 led;
1004
1005         /* Only nic type 1 supports mode LEDs */
1006         if (priv->config & CFG_NO_LED ||
1007             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1008                 return;
1009
1010         spin_lock_irqsave(&priv->lock, flags);
1011
1012         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1013         if (priv->assoc_network->mode == IEEE_A) {
1014                 led |= priv->led_ofdm_on;
1015                 led &= priv->led_association_off;
1016                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1017         } else if (priv->assoc_network->mode == IEEE_G) {
1018                 led |= priv->led_ofdm_on;
1019                 led |= priv->led_association_on;
1020                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021         } else {
1022                 led &= priv->led_ofdm_off;
1023                 led |= priv->led_association_on;
1024                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1025         }
1026
1027         led = ipw_register_toggle(led);
1028
1029         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1030         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031
1032         spin_unlock_irqrestore(&priv->lock, flags);
1033 }
1034
1035 static void ipw_led_band_off(struct ipw_priv *priv)
1036 {
1037         unsigned long flags;
1038         u32 led;
1039
1040         /* Only nic type 1 supports mode LEDs */
1041         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1042                 return;
1043
1044         spin_lock_irqsave(&priv->lock, flags);
1045
1046         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1047         led &= priv->led_ofdm_off;
1048         led &= priv->led_association_off;
1049
1050         led = ipw_register_toggle(led);
1051
1052         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1053         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054
1055         spin_unlock_irqrestore(&priv->lock, flags);
1056 }
1057
1058 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 {
1060         ipw_led_link_on(priv);
1061 }
1062
1063 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 {
1065         ipw_led_activity_off(priv);
1066         ipw_led_link_off(priv);
1067 }
1068
1069 static void ipw_led_link_up(struct ipw_priv *priv)
1070 {
1071         /* Set the Link Led on for all nic types */
1072         ipw_led_link_on(priv);
1073 }
1074
1075 static void ipw_led_link_down(struct ipw_priv *priv)
1076 {
1077         ipw_led_activity_off(priv);
1078         ipw_led_link_off(priv);
1079
1080         if (priv->status & STATUS_RF_KILL_MASK)
1081                 ipw_led_radio_off(priv);
1082 }
1083
1084 static void ipw_led_init(struct ipw_priv *priv)
1085 {
1086         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087
1088         /* Set the default PINs for the link and activity leds */
1089         priv->led_activity_on = IPW_ACTIVITY_LED;
1090         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091
1092         priv->led_association_on = IPW_ASSOCIATED_LED;
1093         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094
1095         /* Set the default PINs for the OFDM leds */
1096         priv->led_ofdm_on = IPW_OFDM_LED;
1097         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098
1099         switch (priv->nic_type) {
1100         case EEPROM_NIC_TYPE_1:
1101                 /* In this NIC type, the LEDs are reversed.... */
1102                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1103                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1104                 priv->led_association_on = IPW_ACTIVITY_LED;
1105                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106
1107                 if (!(priv->config & CFG_NO_LED))
1108                         ipw_led_band_on(priv);
1109
1110                 /* And we don't blink link LEDs for this nic, so
1111                  * just return here */
1112                 return;
1113
1114         case EEPROM_NIC_TYPE_3:
1115         case EEPROM_NIC_TYPE_2:
1116         case EEPROM_NIC_TYPE_4:
1117         case EEPROM_NIC_TYPE_0:
1118                 break;
1119
1120         default:
1121                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122                                priv->nic_type);
1123                 priv->nic_type = EEPROM_NIC_TYPE_0;
1124                 break;
1125         }
1126
1127         if (!(priv->config & CFG_NO_LED)) {
1128                 if (priv->status & STATUS_ASSOCIATED)
1129                         ipw_led_link_on(priv);
1130                 else
1131                         ipw_led_link_off(priv);
1132         }
1133 }
1134
1135 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 {
1137         ipw_led_activity_off(priv);
1138         ipw_led_link_off(priv);
1139         ipw_led_band_off(priv);
1140         cancel_delayed_work(&priv->led_link_on);
1141         cancel_delayed_work(&priv->led_link_off);
1142         cancel_delayed_work(&priv->led_act_off);
1143 }
1144
1145 /*
1146  * The following adds a new attribute to the sysfs representation
1147  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1148  * used for controling the debug level.
1149  *
1150  * See the level definitions in ipw for details.
1151  */
1152 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 {
1154         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1155 }
1156
1157 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1158                                  size_t count)
1159 {
1160         char *p = (char *)buf;
1161         u32 val;
1162
1163         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164                 p++;
1165                 if (p[0] == 'x' || p[0] == 'X')
1166                         p++;
1167                 val = simple_strtoul(p, &p, 16);
1168         } else
1169                 val = simple_strtoul(p, &p, 10);
1170         if (p == buf)
1171                 printk(KERN_INFO DRV_NAME
1172                        ": %s is not in hex or decimal form.\n", buf);
1173         else
1174                 ipw_debug_level = val;
1175
1176         return strnlen(buf, count);
1177 }
1178
1179 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1180                    show_debug_level, store_debug_level);
1181
1182 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 {
1184         /* length = 1st dword in log */
1185         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1186 }
1187
1188 static void ipw_capture_event_log(struct ipw_priv *priv,
1189                                   u32 log_len, struct ipw_event *log)
1190 {
1191         u32 base;
1192
1193         if (log_len) {
1194                 base = ipw_read32(priv, IPW_EVENT_LOG);
1195                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1196                                   (u8 *) log, sizeof(*log) * log_len);
1197         }
1198 }
1199
1200 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 {
1202         struct ipw_fw_error *error;
1203         u32 log_len = ipw_get_event_log_len(priv);
1204         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1205         u32 elem_len = ipw_read_reg32(priv, base);
1206
1207         error = kmalloc(sizeof(*error) +
1208                         sizeof(*error->elem) * elem_len +
1209                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1210         if (!error) {
1211                 IPW_ERROR("Memory allocation for firmware error log "
1212                           "failed.\n");
1213                 return NULL;
1214         }
1215         error->jiffies = jiffies;
1216         error->status = priv->status;
1217         error->config = priv->config;
1218         error->elem_len = elem_len;
1219         error->log_len = log_len;
1220         error->elem = (struct ipw_error_elem *)error->payload;
1221         error->log = (struct ipw_event *)(error->elem + elem_len);
1222
1223         ipw_capture_event_log(priv, log_len, error->log);
1224
1225         if (elem_len)
1226                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1227                                   sizeof(*error->elem) * elem_len);
1228
1229         return error;
1230 }
1231
1232 static ssize_t show_event_log(struct device *d,
1233                               struct device_attribute *attr, char *buf)
1234 {
1235         struct ipw_priv *priv = dev_get_drvdata(d);
1236         u32 log_len = ipw_get_event_log_len(priv);
1237         struct ipw_event log[log_len];
1238         u32 len = 0, i;
1239
1240         ipw_capture_event_log(priv, log_len, log);
1241
1242         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1243         for (i = 0; i < log_len; i++)
1244                 len += snprintf(buf + len, PAGE_SIZE - len,
1245                                 "\n%08X%08X%08X",
1246                                 log[i].time, log[i].event, log[i].data);
1247         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1248         return len;
1249 }
1250
1251 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1252
1253 static ssize_t show_error(struct device *d,
1254                           struct device_attribute *attr, char *buf)
1255 {
1256         struct ipw_priv *priv = dev_get_drvdata(d);
1257         u32 len = 0, i;
1258         if (!priv->error)
1259                 return 0;
1260         len += snprintf(buf + len, PAGE_SIZE - len,
1261                         "%08lX%08X%08X%08X",
1262                         priv->error->jiffies,
1263                         priv->error->status,
1264                         priv->error->config, priv->error->elem_len);
1265         for (i = 0; i < priv->error->elem_len; i++)
1266                 len += snprintf(buf + len, PAGE_SIZE - len,
1267                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1268                                 priv->error->elem[i].time,
1269                                 priv->error->elem[i].desc,
1270                                 priv->error->elem[i].blink1,
1271                                 priv->error->elem[i].blink2,
1272                                 priv->error->elem[i].link1,
1273                                 priv->error->elem[i].link2,
1274                                 priv->error->elem[i].data);
1275
1276         len += snprintf(buf + len, PAGE_SIZE - len,
1277                         "\n%08X", priv->error->log_len);
1278         for (i = 0; i < priv->error->log_len; i++)
1279                 len += snprintf(buf + len, PAGE_SIZE - len,
1280                                 "\n%08X%08X%08X",
1281                                 priv->error->log[i].time,
1282                                 priv->error->log[i].event,
1283                                 priv->error->log[i].data);
1284         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1285         return len;
1286 }
1287
1288 static ssize_t clear_error(struct device *d,
1289                            struct device_attribute *attr,
1290                            const char *buf, size_t count)
1291 {
1292         struct ipw_priv *priv = dev_get_drvdata(d);
1293
1294         kfree(priv->error);
1295         priv->error = NULL;
1296         return count;
1297 }
1298
1299 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1300
1301 static ssize_t show_cmd_log(struct device *d,
1302                             struct device_attribute *attr, char *buf)
1303 {
1304         struct ipw_priv *priv = dev_get_drvdata(d);
1305         u32 len = 0, i;
1306         if (!priv->cmdlog)
1307                 return 0;
1308         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1309              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1310              i = (i + 1) % priv->cmdlog_len) {
1311                 len +=
1312                     snprintf(buf + len, PAGE_SIZE - len,
1313                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1314                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1315                              priv->cmdlog[i].cmd.len);
1316                 len +=
1317                     snprintk_buf(buf + len, PAGE_SIZE - len,
1318                                  (u8 *) priv->cmdlog[i].cmd.param,
1319                                  priv->cmdlog[i].cmd.len);
1320                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321         }
1322         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1323         return len;
1324 }
1325
1326 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1327
1328 #ifdef CONFIG_IPW2200_PROMISCUOUS
1329 static void ipw_prom_free(struct ipw_priv *priv);
1330 static int ipw_prom_alloc(struct ipw_priv *priv);
1331 static ssize_t store_rtap_iface(struct device *d,
1332                          struct device_attribute *attr,
1333                          const char *buf, size_t count)
1334 {
1335         struct ipw_priv *priv = dev_get_drvdata(d);
1336         int rc = 0;
1337
1338         if (count < 1)
1339                 return -EINVAL;
1340
1341         switch (buf[0]) {
1342         case '0':
1343                 if (!rtap_iface)
1344                         return count;
1345
1346                 if (netif_running(priv->prom_net_dev)) {
1347                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1348                         return count;
1349                 }
1350
1351                 ipw_prom_free(priv);
1352                 rtap_iface = 0;
1353                 break;
1354
1355         case '1':
1356                 if (rtap_iface)
1357                         return count;
1358
1359                 rc = ipw_prom_alloc(priv);
1360                 if (!rc)
1361                         rtap_iface = 1;
1362                 break;
1363
1364         default:
1365                 return -EINVAL;
1366         }
1367
1368         if (rc) {
1369                 IPW_ERROR("Failed to register promiscuous network "
1370                           "device (error %d).\n", rc);
1371         }
1372
1373         return count;
1374 }
1375
1376 static ssize_t show_rtap_iface(struct device *d,
1377                         struct device_attribute *attr,
1378                         char *buf)
1379 {
1380         struct ipw_priv *priv = dev_get_drvdata(d);
1381         if (rtap_iface)
1382                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1383         else {
1384                 buf[0] = '-';
1385                 buf[1] = '1';
1386                 buf[2] = '\0';
1387                 return 3;
1388         }
1389 }
1390
1391 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1392                    store_rtap_iface);
1393
1394 static ssize_t store_rtap_filter(struct device *d,
1395                          struct device_attribute *attr,
1396                          const char *buf, size_t count)
1397 {
1398         struct ipw_priv *priv = dev_get_drvdata(d);
1399
1400         if (!priv->prom_priv) {
1401                 IPW_ERROR("Attempting to set filter without "
1402                           "rtap_iface enabled.\n");
1403                 return -EPERM;
1404         }
1405
1406         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1407
1408         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1409                        BIT_ARG16(priv->prom_priv->filter));
1410
1411         return count;
1412 }
1413
1414 static ssize_t show_rtap_filter(struct device *d,
1415                         struct device_attribute *attr,
1416                         char *buf)
1417 {
1418         struct ipw_priv *priv = dev_get_drvdata(d);
1419         return sprintf(buf, "0x%04X",
1420                        priv->prom_priv ? priv->prom_priv->filter : 0);
1421 }
1422
1423 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1424                    store_rtap_filter);
1425 #endif
1426
1427 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1428                              char *buf)
1429 {
1430         struct ipw_priv *priv = dev_get_drvdata(d);
1431         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1432 }
1433
1434 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1435                               const char *buf, size_t count)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438 #ifdef CONFIG_IPW2200_DEBUG
1439         struct net_device *dev = priv->net_dev;
1440 #endif
1441         char buffer[] = "00000000";
1442         unsigned long len =
1443             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1444         unsigned long val;
1445         char *p = buffer;
1446
1447         IPW_DEBUG_INFO("enter\n");
1448
1449         strncpy(buffer, buf, len);
1450         buffer[len] = 0;
1451
1452         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1453                 p++;
1454                 if (p[0] == 'x' || p[0] == 'X')
1455                         p++;
1456                 val = simple_strtoul(p, &p, 16);
1457         } else
1458                 val = simple_strtoul(p, &p, 10);
1459         if (p == buffer) {
1460                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1461         } else {
1462                 priv->ieee->scan_age = val;
1463                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1464         }
1465
1466         IPW_DEBUG_INFO("exit\n");
1467         return len;
1468 }
1469
1470 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1471
1472 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1477 }
1478
1479 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1480                          const char *buf, size_t count)
1481 {
1482         struct ipw_priv *priv = dev_get_drvdata(d);
1483
1484         IPW_DEBUG_INFO("enter\n");
1485
1486         if (count == 0)
1487                 return 0;
1488
1489         if (*buf == 0) {
1490                 IPW_DEBUG_LED("Disabling LED control.\n");
1491                 priv->config |= CFG_NO_LED;
1492                 ipw_led_shutdown(priv);
1493         } else {
1494                 IPW_DEBUG_LED("Enabling LED control.\n");
1495                 priv->config &= ~CFG_NO_LED;
1496                 ipw_led_init(priv);
1497         }
1498
1499         IPW_DEBUG_INFO("exit\n");
1500         return count;
1501 }
1502
1503 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1504
1505 static ssize_t show_status(struct device *d,
1506                            struct device_attribute *attr, char *buf)
1507 {
1508         struct ipw_priv *p = d->driver_data;
1509         return sprintf(buf, "0x%08x\n", (int)p->status);
1510 }
1511
1512 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1513
1514 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1515                         char *buf)
1516 {
1517         struct ipw_priv *p = d->driver_data;
1518         return sprintf(buf, "0x%08x\n", (int)p->config);
1519 }
1520
1521 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1522
1523 static ssize_t show_nic_type(struct device *d,
1524                              struct device_attribute *attr, char *buf)
1525 {
1526         struct ipw_priv *priv = d->driver_data;
1527         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1528 }
1529
1530 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1531
1532 static ssize_t show_ucode_version(struct device *d,
1533                                   struct device_attribute *attr, char *buf)
1534 {
1535         u32 len = sizeof(u32), tmp = 0;
1536         struct ipw_priv *p = d->driver_data;
1537
1538         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1539                 return 0;
1540
1541         return sprintf(buf, "0x%08x\n", tmp);
1542 }
1543
1544 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1545
1546 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1547                         char *buf)
1548 {
1549         u32 len = sizeof(u32), tmp = 0;
1550         struct ipw_priv *p = d->driver_data;
1551
1552         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1553                 return 0;
1554
1555         return sprintf(buf, "0x%08x\n", tmp);
1556 }
1557
1558 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1559
1560 /*
1561  * Add a device attribute to view/control the delay between eeprom
1562  * operations.
1563  */
1564 static ssize_t show_eeprom_delay(struct device *d,
1565                                  struct device_attribute *attr, char *buf)
1566 {
1567         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1568         return sprintf(buf, "%i\n", n);
1569 }
1570 static ssize_t store_eeprom_delay(struct device *d,
1571                                   struct device_attribute *attr,
1572                                   const char *buf, size_t count)
1573 {
1574         struct ipw_priv *p = d->driver_data;
1575         sscanf(buf, "%i", &p->eeprom_delay);
1576         return strnlen(buf, count);
1577 }
1578
1579 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1580                    show_eeprom_delay, store_eeprom_delay);
1581
1582 static ssize_t show_command_event_reg(struct device *d,
1583                                       struct device_attribute *attr, char *buf)
1584 {
1585         u32 reg = 0;
1586         struct ipw_priv *p = d->driver_data;
1587
1588         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1589         return sprintf(buf, "0x%08x\n", reg);
1590 }
1591 static ssize_t store_command_event_reg(struct device *d,
1592                                        struct device_attribute *attr,
1593                                        const char *buf, size_t count)
1594 {
1595         u32 reg;
1596         struct ipw_priv *p = d->driver_data;
1597
1598         sscanf(buf, "%x", &reg);
1599         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1600         return strnlen(buf, count);
1601 }
1602
1603 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1604                    show_command_event_reg, store_command_event_reg);
1605
1606 static ssize_t show_mem_gpio_reg(struct device *d,
1607                                  struct device_attribute *attr, char *buf)
1608 {
1609         u32 reg = 0;
1610         struct ipw_priv *p = d->driver_data;
1611
1612         reg = ipw_read_reg32(p, 0x301100);
1613         return sprintf(buf, "0x%08x\n", reg);
1614 }
1615 static ssize_t store_mem_gpio_reg(struct device *d,
1616                                   struct device_attribute *attr,
1617                                   const char *buf, size_t count)
1618 {
1619         u32 reg;
1620         struct ipw_priv *p = d->driver_data;
1621
1622         sscanf(buf, "%x", &reg);
1623         ipw_write_reg32(p, 0x301100, reg);
1624         return strnlen(buf, count);
1625 }
1626
1627 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1628                    show_mem_gpio_reg, store_mem_gpio_reg);
1629
1630 static ssize_t show_indirect_dword(struct device *d,
1631                                    struct device_attribute *attr, char *buf)
1632 {
1633         u32 reg = 0;
1634         struct ipw_priv *priv = d->driver_data;
1635
1636         if (priv->status & STATUS_INDIRECT_DWORD)
1637                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1638         else
1639                 reg = 0;
1640
1641         return sprintf(buf, "0x%08x\n", reg);
1642 }
1643 static ssize_t store_indirect_dword(struct device *d,
1644                                     struct device_attribute *attr,
1645                                     const char *buf, size_t count)
1646 {
1647         struct ipw_priv *priv = d->driver_data;
1648
1649         sscanf(buf, "%x", &priv->indirect_dword);
1650         priv->status |= STATUS_INDIRECT_DWORD;
1651         return strnlen(buf, count);
1652 }
1653
1654 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1655                    show_indirect_dword, store_indirect_dword);
1656
1657 static ssize_t show_indirect_byte(struct device *d,
1658                                   struct device_attribute *attr, char *buf)
1659 {
1660         u8 reg = 0;
1661         struct ipw_priv *priv = d->driver_data;
1662
1663         if (priv->status & STATUS_INDIRECT_BYTE)
1664                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1665         else
1666                 reg = 0;
1667
1668         return sprintf(buf, "0x%02x\n", reg);
1669 }
1670 static ssize_t store_indirect_byte(struct device *d,
1671                                    struct device_attribute *attr,
1672                                    const char *buf, size_t count)
1673 {
1674         struct ipw_priv *priv = d->driver_data;
1675
1676         sscanf(buf, "%x", &priv->indirect_byte);
1677         priv->status |= STATUS_INDIRECT_BYTE;
1678         return strnlen(buf, count);
1679 }
1680
1681 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1682                    show_indirect_byte, store_indirect_byte);
1683
1684 static ssize_t show_direct_dword(struct device *d,
1685                                  struct device_attribute *attr, char *buf)
1686 {
1687         u32 reg = 0;
1688         struct ipw_priv *priv = d->driver_data;
1689
1690         if (priv->status & STATUS_DIRECT_DWORD)
1691                 reg = ipw_read32(priv, priv->direct_dword);
1692         else
1693                 reg = 0;
1694
1695         return sprintf(buf, "0x%08x\n", reg);
1696 }
1697 static ssize_t store_direct_dword(struct device *d,
1698                                   struct device_attribute *attr,
1699                                   const char *buf, size_t count)
1700 {
1701         struct ipw_priv *priv = d->driver_data;
1702
1703         sscanf(buf, "%x", &priv->direct_dword);
1704         priv->status |= STATUS_DIRECT_DWORD;
1705         return strnlen(buf, count);
1706 }
1707
1708 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1709                    show_direct_dword, store_direct_dword);
1710
1711 static int rf_kill_active(struct ipw_priv *priv)
1712 {
1713         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1714                 priv->status |= STATUS_RF_KILL_HW;
1715         else
1716                 priv->status &= ~STATUS_RF_KILL_HW;
1717
1718         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1719 }
1720
1721 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1722                             char *buf)
1723 {
1724         /* 0 - RF kill not enabled
1725            1 - SW based RF kill active (sysfs)
1726            2 - HW based RF kill active
1727            3 - Both HW and SW baed RF kill active */
1728         struct ipw_priv *priv = d->driver_data;
1729         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1730             (rf_kill_active(priv) ? 0x2 : 0x0);
1731         return sprintf(buf, "%i\n", val);
1732 }
1733
1734 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1735 {
1736         if ((disable_radio ? 1 : 0) ==
1737             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1738                 return 0;
1739
1740         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1741                           disable_radio ? "OFF" : "ON");
1742
1743         if (disable_radio) {
1744                 priv->status |= STATUS_RF_KILL_SW;
1745
1746                 if (priv->workqueue)
1747                         cancel_delayed_work(&priv->request_scan);
1748                 queue_work(priv->workqueue, &priv->down);
1749         } else {
1750                 priv->status &= ~STATUS_RF_KILL_SW;
1751                 if (rf_kill_active(priv)) {
1752                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1753                                           "disabled by HW switch\n");
1754                         /* Make sure the RF_KILL check timer is running */
1755                         cancel_delayed_work(&priv->rf_kill);
1756                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1757                                            2 * HZ);
1758                 } else
1759                         queue_work(priv->workqueue, &priv->up);
1760         }
1761
1762         return 1;
1763 }
1764
1765 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1766                              const char *buf, size_t count)
1767 {
1768         struct ipw_priv *priv = d->driver_data;
1769
1770         ipw_radio_kill_sw(priv, buf[0] == '1');
1771
1772         return count;
1773 }
1774
1775 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1776
1777 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1778                                char *buf)
1779 {
1780         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1781         int pos = 0, len = 0;
1782         if (priv->config & CFG_SPEED_SCAN) {
1783                 while (priv->speed_scan[pos] != 0)
1784                         len += sprintf(&buf[len], "%d ",
1785                                        priv->speed_scan[pos++]);
1786                 return len + sprintf(&buf[len], "\n");
1787         }
1788
1789         return sprintf(buf, "0\n");
1790 }
1791
1792 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1793                                 const char *buf, size_t count)
1794 {
1795         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1796         int channel, pos = 0;
1797         const char *p = buf;
1798
1799         /* list of space separated channels to scan, optionally ending with 0 */
1800         while ((channel = simple_strtol(p, NULL, 0))) {
1801                 if (pos == MAX_SPEED_SCAN - 1) {
1802                         priv->speed_scan[pos] = 0;
1803                         break;
1804                 }
1805
1806                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1807                         priv->speed_scan[pos++] = channel;
1808                 else
1809                         IPW_WARNING("Skipping invalid channel request: %d\n",
1810                                     channel);
1811                 p = strchr(p, ' ');
1812                 if (!p)
1813                         break;
1814                 while (*p == ' ' || *p == '\t')
1815                         p++;
1816         }
1817
1818         if (pos == 0)
1819                 priv->config &= ~CFG_SPEED_SCAN;
1820         else {
1821                 priv->speed_scan_pos = 0;
1822                 priv->config |= CFG_SPEED_SCAN;
1823         }
1824
1825         return count;
1826 }
1827
1828 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1829                    store_speed_scan);
1830
1831 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1832                               char *buf)
1833 {
1834         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1835         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1836 }
1837
1838 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1839                                const char *buf, size_t count)
1840 {
1841         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1842         if (buf[0] == '1')
1843                 priv->config |= CFG_NET_STATS;
1844         else
1845                 priv->config &= ~CFG_NET_STATS;
1846
1847         return count;
1848 }
1849
1850 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1851                    show_net_stats, store_net_stats);
1852
1853 static void notify_wx_assoc_event(struct ipw_priv *priv)
1854 {
1855         union iwreq_data wrqu;
1856         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1857         if (priv->status & STATUS_ASSOCIATED)
1858                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1859         else
1860                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1861         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1862 }
1863
1864 static void ipw_irq_tasklet(struct ipw_priv *priv)
1865 {
1866         u32 inta, inta_mask, handled = 0;
1867         unsigned long flags;
1868         int rc = 0;
1869
1870         spin_lock_irqsave(&priv->irq_lock, flags);
1871
1872         inta = ipw_read32(priv, IPW_INTA_RW);
1873         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1874         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1875
1876         /* Add any cached INTA values that need to be handled */
1877         inta |= priv->isr_inta;
1878
1879         spin_unlock_irqrestore(&priv->irq_lock, flags);
1880
1881         spin_lock_irqsave(&priv->lock, flags);
1882
1883         /* handle all the justifications for the interrupt */
1884         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1885                 ipw_rx(priv);
1886                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1887         }
1888
1889         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1890                 IPW_DEBUG_HC("Command completed.\n");
1891                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1892                 priv->status &= ~STATUS_HCMD_ACTIVE;
1893                 wake_up_interruptible(&priv->wait_command_queue);
1894                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1895         }
1896
1897         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1898                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1899                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1900                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1901         }
1902
1903         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1904                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1905                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1906                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1907         }
1908
1909         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1910                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1911                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1912                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1913         }
1914
1915         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1916                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1917                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1918                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1919         }
1920
1921         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1922                 IPW_WARNING("STATUS_CHANGE\n");
1923                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1924         }
1925
1926         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1927                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1928                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1929         }
1930
1931         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1932                 IPW_WARNING("HOST_CMD_DONE\n");
1933                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1934         }
1935
1936         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1937                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1938                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1939         }
1940
1941         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1942                 IPW_WARNING("PHY_OFF_DONE\n");
1943                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1944         }
1945
1946         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1947                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1948                 priv->status |= STATUS_RF_KILL_HW;
1949                 wake_up_interruptible(&priv->wait_command_queue);
1950                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1951                 cancel_delayed_work(&priv->request_scan);
1952                 schedule_work(&priv->link_down);
1953                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1954                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1955         }
1956
1957         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1958                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1959                 if (priv->error) {
1960                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1961 #ifdef CONFIG_IPW2200_DEBUG
1962                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1963                                 struct ipw_fw_error *error =
1964                                     ipw_alloc_error_log(priv);
1965                                 ipw_dump_error_log(priv, error);
1966                                 kfree(error);
1967                         }
1968 #endif
1969                 } else {
1970                         priv->error = ipw_alloc_error_log(priv);
1971                         if (priv->error)
1972                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1973                         else
1974                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1975                                              "log.\n");
1976 #ifdef CONFIG_IPW2200_DEBUG
1977                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1978                                 ipw_dump_error_log(priv, priv->error);
1979 #endif
1980                 }
1981
1982                 /* XXX: If hardware encryption is for WPA/WPA2,
1983                  * we have to notify the supplicant. */
1984                 if (priv->ieee->sec.encrypt) {
1985                         priv->status &= ~STATUS_ASSOCIATED;
1986                         notify_wx_assoc_event(priv);
1987                 }
1988
1989                 /* Keep the restart process from trying to send host
1990                  * commands by clearing the INIT status bit */
1991                 priv->status &= ~STATUS_INIT;
1992
1993                 /* Cancel currently queued command. */
1994                 priv->status &= ~STATUS_HCMD_ACTIVE;
1995                 wake_up_interruptible(&priv->wait_command_queue);
1996
1997                 queue_work(priv->workqueue, &priv->adapter_restart);
1998                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1999         }
2000
2001         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2002                 IPW_ERROR("Parity error\n");
2003                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2004         }
2005
2006         if (handled != inta) {
2007                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2008         }
2009
2010         spin_unlock_irqrestore(&priv->lock, flags);
2011
2012         /* enable all interrupts */
2013         ipw_enable_interrupts(priv);
2014 }
2015
2016 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2017 static char *get_cmd_string(u8 cmd)
2018 {
2019         switch (cmd) {
2020                 IPW_CMD(HOST_COMPLETE);
2021                 IPW_CMD(POWER_DOWN);
2022                 IPW_CMD(SYSTEM_CONFIG);
2023                 IPW_CMD(MULTICAST_ADDRESS);
2024                 IPW_CMD(SSID);
2025                 IPW_CMD(ADAPTER_ADDRESS);
2026                 IPW_CMD(PORT_TYPE);
2027                 IPW_CMD(RTS_THRESHOLD);
2028                 IPW_CMD(FRAG_THRESHOLD);
2029                 IPW_CMD(POWER_MODE);
2030                 IPW_CMD(WEP_KEY);
2031                 IPW_CMD(TGI_TX_KEY);
2032                 IPW_CMD(SCAN_REQUEST);
2033                 IPW_CMD(SCAN_REQUEST_EXT);
2034                 IPW_CMD(ASSOCIATE);
2035                 IPW_CMD(SUPPORTED_RATES);
2036                 IPW_CMD(SCAN_ABORT);
2037                 IPW_CMD(TX_FLUSH);
2038                 IPW_CMD(QOS_PARAMETERS);
2039                 IPW_CMD(DINO_CONFIG);
2040                 IPW_CMD(RSN_CAPABILITIES);
2041                 IPW_CMD(RX_KEY);
2042                 IPW_CMD(CARD_DISABLE);
2043                 IPW_CMD(SEED_NUMBER);
2044                 IPW_CMD(TX_POWER);
2045                 IPW_CMD(COUNTRY_INFO);
2046                 IPW_CMD(AIRONET_INFO);
2047                 IPW_CMD(AP_TX_POWER);
2048                 IPW_CMD(CCKM_INFO);
2049                 IPW_CMD(CCX_VER_INFO);
2050                 IPW_CMD(SET_CALIBRATION);
2051                 IPW_CMD(SENSITIVITY_CALIB);
2052                 IPW_CMD(RETRY_LIMIT);
2053                 IPW_CMD(IPW_PRE_POWER_DOWN);
2054                 IPW_CMD(VAP_BEACON_TEMPLATE);
2055                 IPW_CMD(VAP_DTIM_PERIOD);
2056                 IPW_CMD(EXT_SUPPORTED_RATES);
2057                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2058                 IPW_CMD(VAP_QUIET_INTERVALS);
2059                 IPW_CMD(VAP_CHANNEL_SWITCH);
2060                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2061                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2062                 IPW_CMD(VAP_CF_PARAM_SET);
2063                 IPW_CMD(VAP_SET_BEACONING_STATE);
2064                 IPW_CMD(MEASUREMENT);
2065                 IPW_CMD(POWER_CAPABILITY);
2066                 IPW_CMD(SUPPORTED_CHANNELS);
2067                 IPW_CMD(TPC_REPORT);
2068                 IPW_CMD(WME_INFO);
2069                 IPW_CMD(PRODUCTION_COMMAND);
2070         default:
2071                 return "UNKNOWN";
2072         }
2073 }
2074
2075 #define HOST_COMPLETE_TIMEOUT HZ
2076
2077 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2078 {
2079         int rc = 0;
2080         unsigned long flags;
2081
2082         spin_lock_irqsave(&priv->lock, flags);
2083         if (priv->status & STATUS_HCMD_ACTIVE) {
2084                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2085                           get_cmd_string(cmd->cmd));
2086                 spin_unlock_irqrestore(&priv->lock, flags);
2087                 return -EAGAIN;
2088         }
2089
2090         priv->status |= STATUS_HCMD_ACTIVE;
2091
2092         if (priv->cmdlog) {
2093                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2094                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2095                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2096                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2097                        cmd->len);
2098                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2099         }
2100
2101         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2102                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2103                      priv->status);
2104
2105 #ifndef DEBUG_CMD_WEP_KEY
2106         if (cmd->cmd == IPW_CMD_WEP_KEY)
2107                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2108         else
2109 #endif
2110                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2111
2112         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2113         if (rc) {
2114                 priv->status &= ~STATUS_HCMD_ACTIVE;
2115                 IPW_ERROR("Failed to send %s: Reason %d\n",
2116                           get_cmd_string(cmd->cmd), rc);
2117                 spin_unlock_irqrestore(&priv->lock, flags);
2118                 goto exit;
2119         }
2120         spin_unlock_irqrestore(&priv->lock, flags);
2121
2122         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2123                                               !(priv->
2124                                                 status & STATUS_HCMD_ACTIVE),
2125                                               HOST_COMPLETE_TIMEOUT);
2126         if (rc == 0) {
2127                 spin_lock_irqsave(&priv->lock, flags);
2128                 if (priv->status & STATUS_HCMD_ACTIVE) {
2129                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2130                                   get_cmd_string(cmd->cmd));
2131                         priv->status &= ~STATUS_HCMD_ACTIVE;
2132                         spin_unlock_irqrestore(&priv->lock, flags);
2133                         rc = -EIO;
2134                         goto exit;
2135                 }
2136                 spin_unlock_irqrestore(&priv->lock, flags);
2137         } else
2138                 rc = 0;
2139
2140         if (priv->status & STATUS_RF_KILL_HW) {
2141                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2142                           get_cmd_string(cmd->cmd));
2143                 rc = -EIO;
2144                 goto exit;
2145         }
2146
2147       exit:
2148         if (priv->cmdlog) {
2149                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2150                 priv->cmdlog_pos %= priv->cmdlog_len;
2151         }
2152         return rc;
2153 }
2154
2155 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2156 {
2157         struct host_cmd cmd = {
2158                 .cmd = command,
2159         };
2160
2161         return __ipw_send_cmd(priv, &cmd);
2162 }
2163
2164 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2165                             void *data)
2166 {
2167         struct host_cmd cmd = {
2168                 .cmd = command,
2169                 .len = len,
2170                 .param = data,
2171         };
2172
2173         return __ipw_send_cmd(priv, &cmd);
2174 }
2175
2176 static int ipw_send_host_complete(struct ipw_priv *priv)
2177 {
2178         if (!priv) {
2179                 IPW_ERROR("Invalid args\n");
2180                 return -1;
2181         }
2182
2183         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2184 }
2185
2186 static int ipw_send_system_config(struct ipw_priv *priv)
2187 {
2188         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2189                                 sizeof(priv->sys_config),
2190                                 &priv->sys_config);
2191 }
2192
2193 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2194 {
2195         if (!priv || !ssid) {
2196                 IPW_ERROR("Invalid args\n");
2197                 return -1;
2198         }
2199
2200         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2201                                 ssid);
2202 }
2203
2204 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2205 {
2206         if (!priv || !mac) {
2207                 IPW_ERROR("Invalid args\n");
2208                 return -1;
2209         }
2210
2211         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2212                        priv->net_dev->name, MAC_ARG(mac));
2213
2214         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2215 }
2216
2217 /*
2218  * NOTE: This must be executed from our workqueue as it results in udelay
2219  * being called which may corrupt the keyboard if executed on default
2220  * workqueue
2221  */
2222 static void ipw_adapter_restart(void *adapter)
2223 {
2224         struct ipw_priv *priv = adapter;
2225
2226         if (priv->status & STATUS_RF_KILL_MASK)
2227                 return;
2228
2229         ipw_down(priv);
2230
2231         if (priv->assoc_network &&
2232             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2233                 ipw_remove_current_network(priv);
2234
2235         if (ipw_up(priv)) {
2236                 IPW_ERROR("Failed to up device\n");
2237                 return;
2238         }
2239 }
2240
2241 static void ipw_bg_adapter_restart(void *data)
2242 {
2243         struct ipw_priv *priv = data;
2244         mutex_lock(&priv->mutex);
2245         ipw_adapter_restart(data);
2246         mutex_unlock(&priv->mutex);
2247 }
2248
2249 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2250
2251 static void ipw_scan_check(void *data)
2252 {
2253         struct ipw_priv *priv = data;
2254         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2255                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2256                                "adapter after (%dms).\n",
2257                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2258                 queue_work(priv->workqueue, &priv->adapter_restart);
2259         }
2260 }
2261
2262 static void ipw_bg_scan_check(void *data)
2263 {
2264         struct ipw_priv *priv = data;
2265         mutex_lock(&priv->mutex);
2266         ipw_scan_check(data);
2267         mutex_unlock(&priv->mutex);
2268 }
2269
2270 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2271                                      struct ipw_scan_request_ext *request)
2272 {
2273         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2274                                 sizeof(*request), request);
2275 }
2276
2277 static int ipw_send_scan_abort(struct ipw_priv *priv)
2278 {
2279         if (!priv) {
2280                 IPW_ERROR("Invalid args\n");
2281                 return -1;
2282         }
2283
2284         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2285 }
2286
2287 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2288 {
2289         struct ipw_sensitivity_calib calib = {
2290                 .beacon_rssi_raw = sens,
2291         };
2292
2293         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2294                                 &calib);
2295 }
2296
2297 static int ipw_send_associate(struct ipw_priv *priv,
2298                               struct ipw_associate *associate)
2299 {
2300         struct ipw_associate tmp_associate;
2301
2302         if (!priv || !associate) {
2303                 IPW_ERROR("Invalid args\n");
2304                 return -1;
2305         }
2306
2307         memcpy(&tmp_associate, associate, sizeof(*associate));
2308         tmp_associate.policy_support =
2309             cpu_to_le16(tmp_associate.policy_support);
2310         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2311         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2312         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2313         tmp_associate.listen_interval =
2314             cpu_to_le16(tmp_associate.listen_interval);
2315         tmp_associate.beacon_interval =
2316             cpu_to_le16(tmp_associate.beacon_interval);
2317         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2318
2319         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2320                                 &tmp_associate);
2321 }
2322
2323 static int ipw_send_supported_rates(struct ipw_priv *priv,
2324                                     struct ipw_supported_rates *rates)
2325 {
2326         if (!priv || !rates) {
2327                 IPW_ERROR("Invalid args\n");
2328                 return -1;
2329         }
2330
2331         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2332                                 rates);
2333 }
2334
2335 static int ipw_set_random_seed(struct ipw_priv *priv)
2336 {
2337         u32 val;
2338
2339         if (!priv) {
2340                 IPW_ERROR("Invalid args\n");
2341                 return -1;
2342         }
2343
2344         get_random_bytes(&val, sizeof(val));
2345
2346         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2347 }
2348
2349 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2350 {
2351         if (!priv) {
2352                 IPW_ERROR("Invalid args\n");
2353                 return -1;
2354         }
2355
2356         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2357                                 &phy_off);
2358 }
2359
2360 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2361 {
2362         if (!priv || !power) {
2363                 IPW_ERROR("Invalid args\n");
2364                 return -1;
2365         }
2366
2367         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2368 }
2369
2370 static int ipw_set_tx_power(struct ipw_priv *priv)
2371 {
2372         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2373         struct ipw_tx_power tx_power;
2374         s8 max_power;
2375         int i;
2376
2377         memset(&tx_power, 0, sizeof(tx_power));
2378
2379         /* configure device for 'G' band */
2380         tx_power.ieee_mode = IPW_G_MODE;
2381         tx_power.num_channels = geo->bg_channels;
2382         for (i = 0; i < geo->bg_channels; i++) {
2383                 max_power = geo->bg[i].max_power;
2384                 tx_power.channels_tx_power[i].channel_number =
2385                     geo->bg[i].channel;
2386                 tx_power.channels_tx_power[i].tx_power = max_power ?
2387                     min(max_power, priv->tx_power) : priv->tx_power;
2388         }
2389         if (ipw_send_tx_power(priv, &tx_power))
2390                 return -EIO;
2391
2392         /* configure device to also handle 'B' band */
2393         tx_power.ieee_mode = IPW_B_MODE;
2394         if (ipw_send_tx_power(priv, &tx_power))
2395                 return -EIO;
2396
2397         /* configure device to also handle 'A' band */
2398         if (priv->ieee->abg_true) {
2399                 tx_power.ieee_mode = IPW_A_MODE;
2400                 tx_power.num_channels = geo->a_channels;
2401                 for (i = 0; i < tx_power.num_channels; i++) {
2402                         max_power = geo->a[i].max_power;
2403                         tx_power.channels_tx_power[i].channel_number =
2404                             geo->a[i].channel;
2405                         tx_power.channels_tx_power[i].tx_power = max_power ?
2406                             min(max_power, priv->tx_power) : priv->tx_power;
2407                 }
2408                 if (ipw_send_tx_power(priv, &tx_power))
2409                         return -EIO;
2410         }
2411         return 0;
2412 }
2413
2414 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2415 {
2416         struct ipw_rts_threshold rts_threshold = {
2417                 .rts_threshold = rts,
2418         };
2419
2420         if (!priv) {
2421                 IPW_ERROR("Invalid args\n");
2422                 return -1;
2423         }
2424
2425         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2426                                 sizeof(rts_threshold), &rts_threshold);
2427 }
2428
2429 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2430 {
2431         struct ipw_frag_threshold frag_threshold = {
2432                 .frag_threshold = frag,
2433         };
2434
2435         if (!priv) {
2436                 IPW_ERROR("Invalid args\n");
2437                 return -1;
2438         }
2439
2440         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2441                                 sizeof(frag_threshold), &frag_threshold);
2442 }
2443
2444 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2445 {
2446         u32 param;
2447
2448         if (!priv) {
2449                 IPW_ERROR("Invalid args\n");
2450                 return -1;
2451         }
2452
2453         /* If on battery, set to 3, if AC set to CAM, else user
2454          * level */
2455         switch (mode) {
2456         case IPW_POWER_BATTERY:
2457                 param = IPW_POWER_INDEX_3;
2458                 break;
2459         case IPW_POWER_AC:
2460                 param = IPW_POWER_MODE_CAM;
2461                 break;
2462         default:
2463                 param = mode;
2464                 break;
2465         }
2466
2467         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2468                                 &param);
2469 }
2470
2471 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2472 {
2473         struct ipw_retry_limit retry_limit = {
2474                 .short_retry_limit = slimit,
2475                 .long_retry_limit = llimit
2476         };
2477
2478         if (!priv) {
2479                 IPW_ERROR("Invalid args\n");
2480                 return -1;
2481         }
2482
2483         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2484                                 &retry_limit);
2485 }
2486
2487 /*
2488  * The IPW device contains a Microwire compatible EEPROM that stores
2489  * various data like the MAC address.  Usually the firmware has exclusive
2490  * access to the eeprom, but during device initialization (before the
2491  * device driver has sent the HostComplete command to the firmware) the
2492  * device driver has read access to the EEPROM by way of indirect addressing
2493  * through a couple of memory mapped registers.
2494  *
2495  * The following is a simplified implementation for pulling data out of the
2496  * the eeprom, along with some helper functions to find information in
2497  * the per device private data's copy of the eeprom.
2498  *
2499  * NOTE: To better understand how these functions work (i.e what is a chip
2500  *       select and why do have to keep driving the eeprom clock?), read
2501  *       just about any data sheet for a Microwire compatible EEPROM.
2502  */
2503
2504 /* write a 32 bit value into the indirect accessor register */
2505 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2506 {
2507         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2508
2509         /* the eeprom requires some time to complete the operation */
2510         udelay(p->eeprom_delay);
2511
2512         return;
2513 }
2514
2515 /* perform a chip select operation */
2516 static void eeprom_cs(struct ipw_priv *priv)
2517 {
2518         eeprom_write_reg(priv, 0);
2519         eeprom_write_reg(priv, EEPROM_BIT_CS);
2520         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2521         eeprom_write_reg(priv, EEPROM_BIT_CS);
2522 }
2523
2524 /* perform a chip select operation */
2525 static void eeprom_disable_cs(struct ipw_priv *priv)
2526 {
2527         eeprom_write_reg(priv, EEPROM_BIT_CS);
2528         eeprom_write_reg(priv, 0);
2529         eeprom_write_reg(priv, EEPROM_BIT_SK);
2530 }
2531
2532 /* push a single bit down to the eeprom */
2533 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2534 {
2535         int d = (bit ? EEPROM_BIT_DI : 0);
2536         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2537         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2538 }
2539
2540 /* push an opcode followed by an address down to the eeprom */
2541 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2542 {
2543         int i;
2544
2545         eeprom_cs(priv);
2546         eeprom_write_bit(priv, 1);
2547         eeprom_write_bit(priv, op & 2);
2548         eeprom_write_bit(priv, op & 1);
2549         for (i = 7; i >= 0; i--) {
2550                 eeprom_write_bit(priv, addr & (1 << i));
2551         }
2552 }
2553
2554 /* pull 16 bits off the eeprom, one bit at a time */
2555 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2556 {
2557         int i;
2558         u16 r = 0;
2559
2560         /* Send READ Opcode */
2561         eeprom_op(priv, EEPROM_CMD_READ, addr);
2562
2563         /* Send dummy bit */
2564         eeprom_write_reg(priv, EEPROM_BIT_CS);
2565
2566         /* Read the byte off the eeprom one bit at a time */
2567         for (i = 0; i < 16; i++) {
2568                 u32 data = 0;
2569                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2570                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2571                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2572                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2573         }
2574
2575         /* Send another dummy bit */
2576         eeprom_write_reg(priv, 0);
2577         eeprom_disable_cs(priv);
2578
2579         return r;
2580 }
2581
2582 /* helper function for pulling the mac address out of the private */
2583 /* data's copy of the eeprom data                                 */
2584 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2585 {
2586         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2587 }
2588
2589 /*
2590  * Either the device driver (i.e. the host) or the firmware can
2591  * load eeprom data into the designated region in SRAM.  If neither
2592  * happens then the FW will shutdown with a fatal error.
2593  *
2594  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2595  * bit needs region of shared SRAM needs to be non-zero.
2596  */
2597 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2598 {
2599         int i;
2600         u16 *eeprom = (u16 *) priv->eeprom;
2601
2602         IPW_DEBUG_TRACE(">>\n");
2603
2604         /* read entire contents of eeprom into private buffer */
2605         for (i = 0; i < 128; i++)
2606                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2607
2608         /*
2609            If the data looks correct, then copy it to our private
2610            copy.  Otherwise let the firmware know to perform the operation
2611            on its own.
2612          */
2613         if (priv->eeprom[EEPROM_VERSION] != 0) {
2614                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2615
2616                 /* write the eeprom data to sram */
2617                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2618                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2619
2620                 /* Do not load eeprom data on fatal error or suspend */
2621                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2622         } else {
2623                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2624
2625                 /* Load eeprom data on fatal error or suspend */
2626                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2627         }
2628
2629         IPW_DEBUG_TRACE("<<\n");
2630 }
2631
2632 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2633 {
2634         count >>= 2;
2635         if (!count)
2636                 return;
2637         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2638         while (count--)
2639                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2640 }
2641
2642 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2643 {
2644         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2645                         CB_NUMBER_OF_ELEMENTS_SMALL *
2646                         sizeof(struct command_block));
2647 }
2648
2649 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2650 {                               /* start dma engine but no transfers yet */
2651
2652         IPW_DEBUG_FW(">> : \n");
2653
2654         /* Start the dma */
2655         ipw_fw_dma_reset_command_blocks(priv);
2656
2657         /* Write CB base address */
2658         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2659
2660         IPW_DEBUG_FW("<< : \n");
2661         return 0;
2662 }
2663
2664 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2665 {
2666         u32 control = 0;
2667
2668         IPW_DEBUG_FW(">> :\n");
2669
2670         /* set the Stop and Abort bit */
2671         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2672         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2673         priv->sram_desc.last_cb_index = 0;
2674
2675         IPW_DEBUG_FW("<< \n");
2676 }
2677
2678 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2679                                           struct command_block *cb)
2680 {
2681         u32 address =
2682             IPW_SHARED_SRAM_DMA_CONTROL +
2683             (sizeof(struct command_block) * index);
2684         IPW_DEBUG_FW(">> :\n");
2685
2686         ipw_write_indirect(priv, address, (u8 *) cb,
2687                            (int)sizeof(struct command_block));
2688
2689         IPW_DEBUG_FW("<< :\n");
2690         return 0;
2691
2692 }
2693
2694 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2695 {
2696         u32 control = 0;
2697         u32 index = 0;
2698
2699         IPW_DEBUG_FW(">> :\n");
2700
2701         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2702                 ipw_fw_dma_write_command_block(priv, index,
2703                                                &priv->sram_desc.cb_list[index]);
2704
2705         /* Enable the DMA in the CSR register */
2706         ipw_clear_bit(priv, IPW_RESET_REG,
2707                       IPW_RESET_REG_MASTER_DISABLED |
2708                       IPW_RESET_REG_STOP_MASTER);
2709
2710         /* Set the Start bit. */
2711         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2712         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2713
2714         IPW_DEBUG_FW("<< :\n");
2715         return 0;
2716 }
2717
2718 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2719 {
2720         u32 address;
2721         u32 register_value = 0;
2722         u32 cb_fields_address = 0;
2723
2724         IPW_DEBUG_FW(">> :\n");
2725         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2726         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2727
2728         /* Read the DMA Controlor register */
2729         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2730         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2731
2732         /* Print the CB values */
2733         cb_fields_address = address;
2734         register_value = ipw_read_reg32(priv, cb_fields_address);
2735         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2736
2737         cb_fields_address += sizeof(u32);
2738         register_value = ipw_read_reg32(priv, cb_fields_address);
2739         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2740
2741         cb_fields_address += sizeof(u32);
2742         register_value = ipw_read_reg32(priv, cb_fields_address);
2743         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2744                           register_value);
2745
2746         cb_fields_address += sizeof(u32);
2747         register_value = ipw_read_reg32(priv, cb_fields_address);
2748         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2749
2750         IPW_DEBUG_FW(">> :\n");
2751 }
2752
2753 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2754 {
2755         u32 current_cb_address = 0;
2756         u32 current_cb_index = 0;
2757
2758         IPW_DEBUG_FW("<< :\n");
2759         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2760
2761         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2762             sizeof(struct command_block);
2763
2764         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2765                           current_cb_index, current_cb_address);
2766
2767         IPW_DEBUG_FW(">> :\n");
2768         return current_cb_index;
2769
2770 }
2771
2772 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2773                                         u32 src_address,
2774                                         u32 dest_address,
2775                                         u32 length,
2776                                         int interrupt_enabled, int is_last)
2777 {
2778
2779         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2780             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2781             CB_DEST_SIZE_LONG;
2782         struct command_block *cb;
2783         u32 last_cb_element = 0;
2784
2785         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2786                           src_address, dest_address, length);
2787
2788         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2789                 return -1;
2790
2791         last_cb_element = priv->sram_desc.last_cb_index;
2792         cb = &priv->sram_desc.cb_list[last_cb_element];
2793         priv->sram_desc.last_cb_index++;
2794
2795         /* Calculate the new CB control word */
2796         if (interrupt_enabled)
2797                 control |= CB_INT_ENABLED;
2798
2799         if (is_last)
2800                 control |= CB_LAST_VALID;
2801
2802         control |= length;
2803
2804         /* Calculate the CB Element's checksum value */
2805         cb->status = control ^ src_address ^ dest_address;
2806
2807         /* Copy the Source and Destination addresses */
2808         cb->dest_addr = dest_address;
2809         cb->source_addr = src_address;
2810
2811         /* Copy the Control Word last */
2812         cb->control = control;
2813
2814         return 0;
2815 }
2816
2817 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2818                                  u32 src_phys, u32 dest_address, u32 length)
2819 {
2820         u32 bytes_left = length;
2821         u32 src_offset = 0;
2822         u32 dest_offset = 0;
2823         int status = 0;
2824         IPW_DEBUG_FW(">> \n");
2825         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2826                           src_phys, dest_address, length);
2827         while (bytes_left > CB_MAX_LENGTH) {
2828                 status = ipw_fw_dma_add_command_block(priv,
2829                                                       src_phys + src_offset,
2830                                                       dest_address +
2831                                                       dest_offset,
2832                                                       CB_MAX_LENGTH, 0, 0);
2833                 if (status) {
2834                         IPW_DEBUG_FW_INFO(": Failed\n");
2835                         return -1;
2836                 } else
2837                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2838
2839                 src_offset += CB_MAX_LENGTH;
2840                 dest_offset += CB_MAX_LENGTH;
2841                 bytes_left -= CB_MAX_LENGTH;
2842         }
2843
2844         /* add the buffer tail */
2845         if (bytes_left > 0) {
2846                 status =
2847                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2848                                                  dest_address + dest_offset,
2849                                                  bytes_left, 0, 0);
2850                 if (status) {
2851                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2852                         return -1;
2853                 } else
2854                         IPW_DEBUG_FW_INFO
2855                             (": Adding new cb - the buffer tail\n");
2856         }
2857
2858         IPW_DEBUG_FW("<< \n");
2859         return 0;
2860 }
2861
2862 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2863 {
2864         u32 current_index = 0, previous_index;
2865         u32 watchdog = 0;
2866
2867         IPW_DEBUG_FW(">> : \n");
2868
2869         current_index = ipw_fw_dma_command_block_index(priv);
2870         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2871                           (int)priv->sram_desc.last_cb_index);
2872
2873         while (current_index < priv->sram_desc.last_cb_index) {
2874                 udelay(50);
2875                 previous_index = current_index;
2876                 current_index = ipw_fw_dma_command_block_index(priv);
2877
2878                 if (previous_index < current_index) {
2879                         watchdog = 0;
2880                         continue;
2881                 }
2882                 if (++watchdog > 400) {
2883                         IPW_DEBUG_FW_INFO("Timeout\n");
2884                         ipw_fw_dma_dump_command_block(priv);
2885                         ipw_fw_dma_abort(priv);
2886                         return -1;
2887                 }
2888         }
2889
2890         ipw_fw_dma_abort(priv);
2891
2892         /*Disable the DMA in the CSR register */
2893         ipw_set_bit(priv, IPW_RESET_REG,
2894                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2895
2896         IPW_DEBUG_FW("<< dmaWaitSync \n");
2897         return 0;
2898 }
2899
2900 static void ipw_remove_current_network(struct ipw_priv *priv)
2901 {
2902         struct list_head *element, *safe;
2903         struct ieee80211_network *network = NULL;
2904         unsigned long flags;
2905
2906         spin_lock_irqsave(&priv->ieee->lock, flags);
2907         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2908                 network = list_entry(element, struct ieee80211_network, list);
2909                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2910                         list_del(element);
2911                         list_add_tail(&network->list,
2912                                       &priv->ieee->network_free_list);
2913                 }
2914         }
2915         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2916 }
2917
2918 /**
2919  * Check that card is still alive.
2920  * Reads debug register from domain0.
2921  * If card is present, pre-defined value should
2922  * be found there.
2923  *
2924  * @param priv
2925  * @return 1 if card is present, 0 otherwise
2926  */
2927 static inline int ipw_alive(struct ipw_priv *priv)
2928 {
2929         return ipw_read32(priv, 0x90) == 0xd55555d5;
2930 }
2931
2932 /* timeout in msec, attempted in 10-msec quanta */
2933 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2934                                int timeout)
2935 {
2936         int i = 0;
2937
2938         do {
2939                 if ((ipw_read32(priv, addr) & mask) == mask)
2940                         return i;
2941                 mdelay(10);
2942                 i += 10;
2943         } while (i < timeout);
2944
2945         return -ETIME;
2946 }
2947
2948 /* These functions load the firmware and micro code for the operation of
2949  * the ipw hardware.  It assumes the buffer has all the bits for the
2950  * image and the caller is handling the memory allocation and clean up.
2951  */
2952
2953 static int ipw_stop_master(struct ipw_priv *priv)
2954 {
2955         int rc;
2956
2957         IPW_DEBUG_TRACE(">> \n");
2958         /* stop master. typical delay - 0 */
2959         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2960
2961         /* timeout is in msec, polled in 10-msec quanta */
2962         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2963                           IPW_RESET_REG_MASTER_DISABLED, 100);
2964         if (rc < 0) {
2965                 IPW_ERROR("wait for stop master failed after 100ms\n");
2966                 return -1;
2967         }
2968
2969         IPW_DEBUG_INFO("stop master %dms\n", rc);
2970
2971         return rc;
2972 }
2973
2974 static void ipw_arc_release(struct ipw_priv *priv)
2975 {
2976         IPW_DEBUG_TRACE(">> \n");
2977         mdelay(5);
2978
2979         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2980
2981         /* no one knows timing, for safety add some delay */
2982         mdelay(5);
2983 }
2984
2985 struct fw_chunk {
2986         u32 address;
2987         u32 length;
2988 };
2989
2990 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2991 {
2992         int rc = 0, i, addr;
2993         u8 cr = 0;
2994         u16 *image;
2995
2996         image = (u16 *) data;
2997
2998         IPW_DEBUG_TRACE(">> \n");
2999
3000         rc = ipw_stop_master(priv);
3001
3002         if (rc < 0)
3003                 return rc;
3004
3005         for (addr = IPW_SHARED_LOWER_BOUND;
3006              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3007                 ipw_write32(priv, addr, 0);
3008         }
3009
3010         /* no ucode (yet) */
3011         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3012         /* destroy DMA queues */
3013         /* reset sequence */
3014
3015         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3016         ipw_arc_release(priv);
3017         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3018         mdelay(1);
3019
3020         /* reset PHY */
3021         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3022         mdelay(1);
3023
3024         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3025         mdelay(1);
3026
3027         /* enable ucode store */
3028         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3029         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3030         mdelay(1);
3031
3032         /* write ucode */
3033         /**
3034          * @bug
3035          * Do NOT set indirect address register once and then
3036          * store data to indirect data register in the loop.
3037          * It seems very reasonable, but in this case DINO do not
3038          * accept ucode. It is essential to set address each time.
3039          */
3040         /* load new ipw uCode */
3041         for (i = 0; i < len / 2; i++)
3042                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3043                                 cpu_to_le16(image[i]));
3044
3045         /* enable DINO */
3046         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3047         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3048
3049         /* this is where the igx / win driver deveates from the VAP driver. */
3050
3051         /* wait for alive response */
3052         for (i = 0; i < 100; i++) {
3053                 /* poll for incoming data */
3054                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3055                 if (cr & DINO_RXFIFO_DATA)
3056                         break;
3057                 mdelay(1);
3058         }
3059
3060         if (cr & DINO_RXFIFO_DATA) {
3061                 /* alive_command_responce size is NOT multiple of 4 */
3062                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3063
3064                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3065                         response_buffer[i] =
3066                             le32_to_cpu(ipw_read_reg32(priv,
3067                                                        IPW_BASEBAND_RX_FIFO_READ));
3068                 memcpy(&priv->dino_alive, response_buffer,
3069                        sizeof(priv->dino_alive));
3070                 if (priv->dino_alive.alive_command == 1
3071                     && priv->dino_alive.ucode_valid == 1) {
3072                         rc = 0;
3073                         IPW_DEBUG_INFO
3074                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3075                              "of %02d/%02d/%02d %02d:%02d\n",
3076                              priv->dino_alive.software_revision,
3077                              priv->dino_alive.software_revision,
3078                              priv->dino_alive.device_identifier,
3079                              priv->dino_alive.device_identifier,
3080                              priv->dino_alive.time_stamp[0],
3081                              priv->dino_alive.time_stamp[1],
3082                              priv->dino_alive.time_stamp[2],
3083                              priv->dino_alive.time_stamp[3],
3084                              priv->dino_alive.time_stamp[4]);
3085                 } else {
3086                         IPW_DEBUG_INFO("Microcode is not alive\n");
3087                         rc = -EINVAL;
3088                 }
3089         } else {
3090                 IPW_DEBUG_INFO("No alive response from DINO\n");
3091                 rc = -ETIME;
3092         }
3093
3094         /* disable DINO, otherwise for some reason
3095            firmware have problem getting alive resp. */
3096         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3097
3098         return rc;
3099 }
3100
3101 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3102 {
3103         int rc = -1;
3104         int offset = 0;
3105         struct fw_chunk *chunk;
3106         dma_addr_t shared_phys;
3107         u8 *shared_virt;
3108
3109         IPW_DEBUG_TRACE("<< : \n");
3110         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3111
3112         if (!shared_virt)
3113                 return -ENOMEM;
3114
3115         memmove(shared_virt, data, len);
3116
3117         /* Start the Dma */
3118         rc = ipw_fw_dma_enable(priv);
3119
3120         if (priv->sram_desc.last_cb_index > 0) {
3121                 /* the DMA is already ready this would be a bug. */
3122                 BUG();
3123                 goto out;
3124         }
3125
3126         do {
3127                 chunk = (struct fw_chunk *)(data + offset);
3128                 offset += sizeof(struct fw_chunk);
3129                 /* build DMA packet and queue up for sending */
3130                 /* dma to chunk->address, the chunk->length bytes from data +
3131                  * offeset*/
3132                 /* Dma loading */
3133                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3134                                            le32_to_cpu(chunk->address),
3135                                            le32_to_cpu(chunk->length));
3136                 if (rc) {
3137                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3138                         goto out;
3139                 }
3140
3141                 offset += le32_to_cpu(chunk->length);
3142         } while (offset < len);
3143
3144         /* Run the DMA and wait for the answer */
3145         rc = ipw_fw_dma_kick(priv);
3146         if (rc) {
3147                 IPW_ERROR("dmaKick Failed\n");
3148                 goto out;
3149         }
3150
3151         rc = ipw_fw_dma_wait(priv);
3152         if (rc) {
3153                 IPW_ERROR("dmaWaitSync Failed\n");
3154                 goto out;
3155         }
3156       out:
3157         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3158         return rc;
3159 }
3160
3161 /* stop nic */
3162 static int ipw_stop_nic(struct ipw_priv *priv)
3163 {
3164         int rc = 0;
3165
3166         /* stop */
3167         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3168
3169         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3170                           IPW_RESET_REG_MASTER_DISABLED, 500);
3171         if (rc < 0) {
3172                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3173                 return rc;
3174         }
3175
3176         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3177
3178         return rc;
3179 }
3180
3181 static void ipw_start_nic(struct ipw_priv *priv)
3182 {
3183         IPW_DEBUG_TRACE(">>\n");
3184
3185         /* prvHwStartNic  release ARC */
3186         ipw_clear_bit(priv, IPW_RESET_REG,
3187                       IPW_RESET_REG_MASTER_DISABLED |
3188                       IPW_RESET_REG_STOP_MASTER |
3189                       CBD_RESET_REG_PRINCETON_RESET);
3190
3191         /* enable power management */
3192         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3193                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3194
3195         IPW_DEBUG_TRACE("<<\n");
3196 }
3197
3198 static int ipw_init_nic(struct ipw_priv *priv)
3199 {
3200         int rc;
3201
3202         IPW_DEBUG_TRACE(">>\n");
3203         /* reset */
3204         /*prvHwInitNic */
3205         /* set "initialization complete" bit to move adapter to D0 state */
3206         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3207
3208         /* low-level PLL activation */
3209         ipw_write32(priv, IPW_READ_INT_REGISTER,
3210                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3211
3212         /* wait for clock stabilization */
3213         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3214                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3215         if (rc < 0)
3216                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3217
3218         /* assert SW reset */
3219         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3220
3221         udelay(10);
3222
3223         /* set "initialization complete" bit to move adapter to D0 state */
3224         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3225
3226         IPW_DEBUG_TRACE(">>\n");
3227         return 0;
3228 }
3229
3230 /* Call this function from process context, it will sleep in request_firmware.
3231  * Probe is an ok place to call this from.
3232  */
3233 static int ipw_reset_nic(struct ipw_priv *priv)
3234 {
3235         int rc = 0;
3236         unsigned long flags;
3237
3238         IPW_DEBUG_TRACE(">>\n");
3239
3240         rc = ipw_init_nic(priv);
3241
3242         spin_lock_irqsave(&priv->lock, flags);
3243         /* Clear the 'host command active' bit... */
3244         priv->status &= ~STATUS_HCMD_ACTIVE;
3245         wake_up_interruptible(&priv->wait_command_queue);
3246         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3247         wake_up_interruptible(&priv->wait_state);
3248         spin_unlock_irqrestore(&priv->lock, flags);
3249
3250         IPW_DEBUG_TRACE("<<\n");
3251         return rc;
3252 }
3253
3254
3255 struct ipw_fw {
3256         __le32 ver;
3257         __le32 boot_size;
3258         __le32 ucode_size;
3259         __le32 fw_size;
3260         u8 data[0];
3261 };
3262
3263 static int ipw_get_fw(struct ipw_priv *priv,
3264                       const struct firmware **raw, const char *name)
3265 {
3266         struct ipw_fw *fw;
3267         int rc;
3268
3269         /* ask firmware_class module to get the boot firmware off disk */
3270         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3271         if (rc < 0) {
3272                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3273                 return rc;
3274         }
3275
3276         if ((*raw)->size < sizeof(*fw)) {
3277                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3278                 return -EINVAL;
3279         }
3280
3281         fw = (void *)(*raw)->data;
3282
3283         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3284             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3285                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3286                           name, (*raw)->size);
3287                 return -EINVAL;
3288         }
3289
3290         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3291                        name,
3292                        le32_to_cpu(fw->ver) >> 16,
3293                        le32_to_cpu(fw->ver) & 0xff,
3294                        (*raw)->size - sizeof(*fw));
3295         return 0;
3296 }
3297
3298 #define IPW_RX_BUF_SIZE (3000)
3299
3300 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3301                                       struct ipw_rx_queue *rxq)
3302 {
3303         unsigned long flags;
3304         int i;
3305
3306         spin_lock_irqsave(&rxq->lock, flags);
3307
3308         INIT_LIST_HEAD(&rxq->rx_free);
3309         INIT_LIST_HEAD(&rxq->rx_used);
3310
3311         /* Fill the rx_used queue with _all_ of the Rx buffers */
3312         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3313                 /* In the reset function, these buffers may have been allocated
3314                  * to an SKB, so we need to unmap and free potential storage */
3315                 if (rxq->pool[i].skb != NULL) {
3316                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3317                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3318                         dev_kfree_skb(rxq->pool[i].skb);
3319                         rxq->pool[i].skb = NULL;
3320                 }
3321                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3322         }
3323
3324         /* Set us so that we have processed and used all buffers, but have
3325          * not restocked the Rx queue with fresh buffers */
3326         rxq->read = rxq->write = 0;
3327         rxq->processed = RX_QUEUE_SIZE - 1;
3328         rxq->free_count = 0;
3329         spin_unlock_irqrestore(&rxq->lock, flags);
3330 }
3331
3332 #ifdef CONFIG_PM
3333 static int fw_loaded = 0;
3334 static const struct firmware *raw = NULL;
3335
3336 static void free_firmware(void)
3337 {
3338         if (fw_loaded) {
3339                 release_firmware(raw);
3340                 raw = NULL;
3341                 fw_loaded = 0;
3342         }
3343 }
3344 #else
3345 #define free_firmware() do {} while (0)
3346 #endif
3347
3348 static int ipw_load(struct ipw_priv *priv)
3349 {
3350 #ifndef CONFIG_PM
3351         const struct firmware *raw = NULL;
3352 #endif
3353         struct ipw_fw *fw;
3354         u8 *boot_img, *ucode_img, *fw_img;
3355         u8 *name = NULL;
3356         int rc = 0, retries = 3;
3357
3358         switch (priv->ieee->iw_mode) {
3359         case IW_MODE_ADHOC:
3360                 name = "ipw2200-ibss.fw";
3361                 break;
3362 #ifdef CONFIG_IPW2200_MONITOR
3363         case IW_MODE_MONITOR:
3364                 name = "ipw2200-sniffer.fw";
3365                 break;
3366 #endif
3367         case IW_MODE_INFRA:
3368                 name = "ipw2200-bss.fw";
3369                 break;
3370         }
3371
3372         if (!name) {
3373                 rc = -EINVAL;
3374                 goto error;
3375         }
3376
3377 #ifdef CONFIG_PM
3378         if (!fw_loaded) {
3379 #endif
3380                 rc = ipw_get_fw(priv, &raw, name);
3381                 if (rc < 0)
3382                         goto error;
3383 #ifdef CONFIG_PM
3384         }
3385 #endif
3386
3387         fw = (void *)raw->data;
3388         boot_img = &fw->data[0];
3389         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3390         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3391                            le32_to_cpu(fw->ucode_size)];
3392
3393         if (rc < 0)
3394                 goto error;
3395
3396         if (!priv->rxq)
3397                 priv->rxq = ipw_rx_queue_alloc(priv);
3398         else
3399                 ipw_rx_queue_reset(priv, priv->rxq);
3400         if (!priv->rxq) {
3401                 IPW_ERROR("Unable to initialize Rx queue\n");
3402                 goto error;
3403         }
3404
3405       retry:
3406         /* Ensure interrupts are disabled */
3407         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3408         priv->status &= ~STATUS_INT_ENABLED;
3409
3410         /* ack pending interrupts */
3411         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3412
3413         ipw_stop_nic(priv);
3414
3415         rc = ipw_reset_nic(priv);
3416         if (rc < 0) {
3417                 IPW_ERROR("Unable to reset NIC\n");
3418                 goto error;
3419         }
3420
3421         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3422                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3423
3424         /* DMA the initial boot firmware into the device */
3425         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3426         if (rc < 0) {
3427                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3428                 goto error;
3429         }
3430
3431         /* kick start the device */
3432         ipw_start_nic(priv);
3433
3434         /* wait for the device to finish its initial startup sequence */
3435         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3436                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3437         if (rc < 0) {
3438                 IPW_ERROR("device failed to boot initial fw image\n");
3439                 goto error;
3440         }
3441         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3442
3443         /* ack fw init done interrupt */
3444         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3445
3446         /* DMA the ucode into the device */
3447         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3448         if (rc < 0) {
3449                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3450                 goto error;
3451         }
3452
3453         /* stop nic */
3454         ipw_stop_nic(priv);
3455
3456         /* DMA bss firmware into the device */
3457         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3458         if (rc < 0) {
3459                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3460                 goto error;
3461         }
3462 #ifdef CONFIG_PM
3463         fw_loaded = 1;
3464 #endif
3465
3466         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3467
3468         rc = ipw_queue_reset(priv);
3469         if (rc < 0) {
3470                 IPW_ERROR("Unable to initialize queues\n");
3471                 goto error;
3472         }
3473
3474         /* Ensure interrupts are disabled */
3475         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3476         /* ack pending interrupts */
3477         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3478
3479         /* kick start the device */
3480         ipw_start_nic(priv);
3481
3482         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3483                 if (retries > 0) {
3484                         IPW_WARNING("Parity error.  Retrying init.\n");
3485                         retries--;
3486                         goto retry;
3487                 }
3488
3489                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3490                 rc = -EIO;
3491                 goto error;
3492         }
3493
3494         /* wait for the device */
3495         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3496                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3497         if (rc < 0) {
3498                 IPW_ERROR("device failed to start within 500ms\n");
3499                 goto error;
3500         }
3501         IPW_DEBUG_INFO("device response after %dms\n", rc);
3502
3503         /* ack fw init done interrupt */
3504         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3505
3506         /* read eeprom data and initialize the eeprom region of sram */
3507         priv->eeprom_delay = 1;
3508         ipw_eeprom_init_sram(priv);
3509
3510         /* enable interrupts */
3511         ipw_enable_interrupts(priv);
3512
3513         /* Ensure our queue has valid packets */
3514         ipw_rx_queue_replenish(priv);
3515
3516         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3517
3518         /* ack pending interrupts */
3519         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3520
3521 #ifndef CONFIG_PM
3522         release_firmware(raw);
3523 #endif
3524         return 0;
3525
3526       error:
3527         if (priv->rxq) {
3528                 ipw_rx_queue_free(priv, priv->rxq);
3529                 priv->rxq = NULL;
3530         }
3531         ipw_tx_queue_free(priv);
3532         if (raw)
3533                 release_firmware(raw);
3534 #ifdef CONFIG_PM
3535         fw_loaded = 0;
3536         raw = NULL;
3537 #endif
3538
3539         return rc;
3540 }
3541
3542 /**
3543  * DMA services
3544  *
3545  * Theory of operation
3546  *
3547  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3548  * 2 empty entries always kept in the buffer to protect from overflow.
3549  *
3550  * For Tx queue, there are low mark and high mark limits. If, after queuing
3551  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3552  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3553  * Tx queue resumed.
3554  *
3555  * The IPW operates with six queues, one receive queue in the device's
3556  * sram, one transmit queue for sending commands to the device firmware,
3557  * and four transmit queues for data.
3558  *
3559  * The four transmit queues allow for performing quality of service (qos)
3560  * transmissions as per the 802.11 protocol.  Currently Linux does not
3561  * provide a mechanism to the user for utilizing prioritized queues, so
3562  * we only utilize the first data transmit queue (queue1).
3563  */
3564
3565 /**
3566  * Driver allocates buffers of this size for Rx
3567  */
3568
3569 static inline int ipw_queue_space(const struct clx2_queue *q)
3570 {
3571         int s = q->last_used - q->first_empty;
3572         if (s <= 0)
3573                 s += q->n_bd;
3574         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3575         if (s < 0)
3576                 s = 0;
3577         return s;
3578 }
3579
3580 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3581 {
3582         return (++index == n_bd) ? 0 : index;
3583 }
3584
3585 /**
3586  * Initialize common DMA queue structure
3587  *
3588  * @param q                queue to init
3589  * @param count            Number of BD's to allocate. Should be power of 2
3590  * @param read_register    Address for 'read' register
3591  *                         (not offset within BAR, full address)
3592  * @param write_register   Address for 'write' register
3593  *                         (not offset within BAR, full address)
3594  * @param base_register    Address for 'base' register
3595  *                         (not offset within BAR, full address)
3596  * @param size             Address for 'size' register
3597  *                         (not offset within BAR, full address)
3598  */
3599 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3600                            int count, u32 read, u32 write, u32 base, u32 size)
3601 {
3602         q->n_bd = count;
3603
3604         q->low_mark = q->n_bd / 4;
3605         if (q->low_mark < 4)
3606                 q->low_mark = 4;
3607
3608         q->high_mark = q->n_bd / 8;
3609         if (q->high_mark < 2)
3610                 q->high_mark = 2;
3611
3612         q->first_empty = q->last_used = 0;
3613         q->reg_r = read;
3614         q->reg_w = write;
3615
3616         ipw_write32(priv, base, q->dma_addr);
3617         ipw_write32(priv, size, count);
3618         ipw_write32(priv, read, 0);
3619         ipw_write32(priv, write, 0);
3620
3621         _ipw_read32(priv, 0x90);
3622 }
3623
3624 static int ipw_queue_tx_init(struct ipw_priv *priv,
3625                              struct clx2_tx_queue *q,
3626                              int count, u32 read, u32 write, u32 base, u32 size)
3627 {
3628         struct pci_dev *dev = priv->pci_dev;
3629
3630         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3631         if (!q->txb) {
3632                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3633                 return -ENOMEM;
3634         }
3635
3636         q->bd =
3637             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3638         if (!q->bd) {
3639                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3640                           sizeof(q->bd[0]) * count);
3641                 kfree(q->txb);
3642                 q->txb = NULL;
3643                 return -ENOMEM;
3644         }
3645
3646         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3647         return 0;
3648 }
3649
3650 /**
3651  * Free one TFD, those at index [txq->q.last_used].
3652  * Do NOT advance any indexes
3653  *
3654  * @param dev
3655  * @param txq
3656  */
3657 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3658                                   struct clx2_tx_queue *txq)
3659 {
3660         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3661         struct pci_dev *dev = priv->pci_dev;
3662         int i;
3663
3664         /* classify bd */
3665         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3666                 /* nothing to cleanup after for host commands */
3667                 return;
3668
3669         /* sanity check */
3670         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3671                 IPW_ERROR("Too many chunks: %i\n",
3672                           le32_to_cpu(bd->u.data.num_chunks));
3673                 /** @todo issue fatal error, it is quite serious situation */
3674                 return;
3675         }
3676
3677         /* unmap chunks if any */
3678         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3679                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3680                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3681                                  PCI_DMA_TODEVICE);
3682                 if (txq->txb[txq->q.last_used]) {
3683                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3684                         txq->txb[txq->q.last_used] = NULL;
3685                 }
3686         }
3687 }
3688
3689 /**
3690  * Deallocate DMA queue.
3691  *
3692  * Empty queue by removing and destroying all BD's.
3693  * Free all buffers.
3694  *
3695  * @param dev
3696  * @param q
3697  */
3698 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3699 {
3700         struct clx2_queue *q = &txq->q;
3701         struct pci_dev *dev = priv->pci_dev;
3702
3703         if (q->n_bd == 0)
3704                 return;
3705
3706         /* first, empty all BD's */
3707         for (; q->first_empty != q->last_used;
3708              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3709                 ipw_queue_tx_free_tfd(priv, txq);
3710         }
3711
3712         /* free buffers belonging to queue itself */
3713         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3714                             q->dma_addr);
3715         kfree(txq->txb);
3716
3717         /* 0 fill whole structure */
3718         memset(txq, 0, sizeof(*txq));
3719 }
3720
3721 /**
3722  * Destroy all DMA queues and structures
3723  *
3724  * @param priv
3725  */
3726 static void ipw_tx_queue_free(struct ipw_priv *priv)
3727 {
3728         /* Tx CMD queue */
3729         ipw_queue_tx_free(priv, &priv->txq_cmd);
3730
3731         /* Tx queues */
3732         ipw_queue_tx_free(priv, &priv->txq[0]);
3733         ipw_queue_tx_free(priv, &priv->txq[1]);
3734         ipw_queue_tx_free(priv, &priv->txq[2]);
3735         ipw_queue_tx_free(priv, &priv->txq[3]);
3736 }
3737
3738 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3739 {
3740         /* First 3 bytes are manufacturer */
3741         bssid[0] = priv->mac_addr[0];
3742         bssid[1] = priv->mac_addr[1];
3743         bssid[2] = priv->mac_addr[2];
3744
3745         /* Last bytes are random */
3746         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3747
3748         bssid[0] &= 0xfe;       /* clear multicast bit */
3749         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3750 }
3751
3752 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3753 {
3754         struct ipw_station_entry entry;
3755         int i;
3756
3757         for (i = 0; i < priv->num_stations; i++) {
3758                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3759                         /* Another node is active in network */
3760                         priv->missed_adhoc_beacons = 0;
3761                         if (!(priv->config & CFG_STATIC_CHANNEL))
3762                                 /* when other nodes drop out, we drop out */
3763                                 priv->config &= ~CFG_ADHOC_PERSIST;
3764
3765                         return i;
3766                 }
3767         }
3768
3769         if (i == MAX_STATIONS)
3770                 return IPW_INVALID_STATION;
3771
3772         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3773
3774         entry.reserved = 0;
3775         entry.support_mode = 0;
3776         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3777         memcpy(priv->stations[i], bssid, ETH_ALEN);
3778         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3779                          &entry, sizeof(entry));
3780         priv->num_stations++;
3781
3782         return i;
3783 }
3784
3785 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3786 {
3787         int i;
3788
3789         for (i = 0; i < priv->num_stations; i++)
3790                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3791                         return i;
3792
3793         return IPW_INVALID_STATION;
3794 }
3795
3796 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3797 {
3798         int err;
3799
3800         if (priv->status & STATUS_ASSOCIATING) {
3801                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3802                 queue_work(priv->workqueue, &priv->disassociate);
3803                 return;
3804         }
3805
3806         if (!(priv->status & STATUS_ASSOCIATED)) {
3807                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3808                 return;
3809         }
3810
3811         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3812                         "on channel %d.\n",
3813                         MAC_ARG(priv->assoc_request.bssid),
3814                         priv->assoc_request.channel);
3815
3816         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3817         priv->status |= STATUS_DISASSOCIATING;
3818
3819         if (quiet)
3820                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3821         else
3822                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3823
3824         err = ipw_send_associate(priv, &priv->assoc_request);
3825         if (err) {
3826                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3827                              "failed.\n");
3828                 return;
3829         }
3830
3831 }
3832
3833 static int ipw_disassociate(void *data)
3834 {
3835         struct ipw_priv *priv = data;
3836         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3837                 return 0;
3838         ipw_send_disassociate(data, 0);
3839         return 1;
3840 }
3841
3842 static void ipw_bg_disassociate(void *data)
3843 {
3844         struct ipw_priv *priv = data;
3845         mutex_lock(&priv->mutex);
3846         ipw_disassociate(data);
3847         mutex_unlock(&priv->mutex);
3848 }
3849
3850 static void ipw_system_config(void *data)
3851 {
3852         struct ipw_priv *priv = data;
3853
3854 #ifdef CONFIG_IPW2200_PROMISCUOUS
3855         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3856                 priv->sys_config.accept_all_data_frames = 1;
3857                 priv->sys_config.accept_non_directed_frames = 1;
3858                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3859                 priv->sys_config.accept_all_mgmt_frames = 1;
3860         }
3861 #endif
3862
3863         ipw_send_system_config(priv);
3864 }
3865
3866 struct ipw_status_code {
3867         u16 status;
3868         const char *reason;
3869 };
3870
3871 static const struct ipw_status_code ipw_status_codes[] = {
3872         {0x00, "Successful"},
3873         {0x01, "Unspecified failure"},
3874         {0x0A, "Cannot support all requested capabilities in the "
3875          "Capability information field"},
3876         {0x0B, "Reassociation denied due to inability to confirm that "
3877          "association exists"},
3878         {0x0C, "Association denied due to reason outside the scope of this "
3879          "standard"},
3880         {0x0D,
3881          "Responding station does not support the specified authentication "
3882          "algorithm"},
3883         {0x0E,
3884          "Received an Authentication frame with authentication sequence "
3885          "transaction sequence number out of expected sequence"},
3886         {0x0F, "Authentication rejected because of challenge failure"},
3887         {0x10, "Authentication rejected due to timeout waiting for next "
3888          "frame in sequence"},
3889         {0x11, "Association denied because AP is unable to handle additional "
3890          "associated stations"},
3891         {0x12,
3892          "Association denied due to requesting station not supporting all "
3893          "of the datarates in the BSSBasicServiceSet Parameter"},
3894         {0x13,
3895          "Association denied due to requesting station not supporting "
3896          "short preamble operation"},
3897         {0x14,
3898          "Association denied due to requesting station not supporting "
3899          "PBCC encoding"},
3900         {0x15,
3901          "Association denied due to requesting station not supporting "
3902          "channel agility"},
3903         {0x19,
3904          "Association denied due to requesting station not supporting "
3905          "short slot operation"},
3906         {0x1A,
3907          "Association denied due to requesting station not supporting "
3908          "DSSS-OFDM operation"},
3909         {0x28, "Invalid Information Element"},
3910         {0x29, "Group Cipher is not valid"},
3911         {0x2A, "Pairwise Cipher is not valid"},
3912         {0x2B, "AKMP is not valid"},
3913         {0x2C, "Unsupported RSN IE version"},
3914         {0x2D, "Invalid RSN IE Capabilities"},
3915         {0x2E, "Cipher suite is rejected per security policy"},
3916 };
3917
3918 #ifdef CONFIG_IPW2200_DEBUG
3919 static const char *ipw_get_status_code(u16 status)
3920 {
3921         int i;
3922         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3923                 if (ipw_status_codes[i].status == (status & 0xff))
3924                         return ipw_status_codes[i].reason;
3925         return "Unknown status value.";
3926 }
3927 #endif
3928
3929 static void inline average_init(struct average *avg)
3930 {
3931         memset(avg, 0, sizeof(*avg));
3932 }
3933
3934 #define DEPTH_RSSI 8
3935 #define DEPTH_NOISE 16
3936 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3937 {
3938         return ((depth-1)*prev_avg +  val)/depth;
3939 }
3940
3941 static void average_add(struct average *avg, s16 val)
3942 {
3943         avg->sum -= avg->entries[avg->pos];
3944         avg->sum += val;
3945         avg->entries[avg->pos++] = val;
3946         if (unlikely(avg->pos == AVG_ENTRIES)) {
3947                 avg->init = 1;
3948                 avg->pos = 0;
3949         }
3950 }
3951
3952 static s16 average_value(struct average *avg)
3953 {
3954         if (!unlikely(avg->init)) {
3955                 if (avg->pos)
3956                         return avg->sum / avg->pos;
3957                 return 0;
3958         }
3959
3960         return avg->sum / AVG_ENTRIES;
3961 }
3962
3963 static void ipw_reset_stats(struct ipw_priv *priv)
3964 {
3965         u32 len = sizeof(u32);
3966
3967         priv->quality = 0;
3968
3969         average_init(&priv->average_missed_beacons);
3970         priv->exp_avg_rssi = -60;
3971         priv->exp_avg_noise = -85 + 0x100;
3972
3973         priv->last_rate = 0;
3974         priv->last_missed_beacons = 0;
3975         priv->last_rx_packets = 0;
3976         priv->last_tx_packets = 0;
3977         priv->last_tx_failures = 0;
3978
3979         /* Firmware managed, reset only when NIC is restarted, so we have to
3980          * normalize on the current value */
3981         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3982                         &priv->last_rx_err, &len);
3983         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3984                         &priv->last_tx_failures, &len);
3985
3986         /* Driver managed, reset with each association */
3987         priv->missed_adhoc_beacons = 0;
3988         priv->missed_beacons = 0;
3989         priv->tx_packets = 0;
3990         priv->rx_packets = 0;
3991
3992 }
3993
3994 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3995 {
3996         u32 i = 0x80000000;
3997         u32 mask = priv->rates_mask;
3998         /* If currently associated in B mode, restrict the maximum
3999          * rate match to B rates */
4000         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4001                 mask &= IEEE80211_CCK_RATES_MASK;
4002
4003         /* TODO: Verify that the rate is supported by the current rates
4004          * list. */
4005
4006         while (i && !(mask & i))
4007                 i >>= 1;
4008         switch (i) {
4009         case IEEE80211_CCK_RATE_1MB_MASK:
4010                 return 1000000;
4011         case IEEE80211_CCK_RATE_2MB_MASK:
4012                 return 2000000;
4013         case IEEE80211_CCK_RATE_5MB_MASK:
4014                 return 5500000;
4015         case IEEE80211_OFDM_RATE_6MB_MASK:
4016                 return 6000000;
4017         case IEEE80211_OFDM_RATE_9MB_MASK:
4018                 return 9000000;
4019         case IEEE80211_CCK_RATE_11MB_MASK:
4020                 return 11000000;
4021         case IEEE80211_OFDM_RATE_12MB_MASK:
4022                 return 12000000;
4023         case IEEE80211_OFDM_RATE_18MB_MASK:
4024                 return 18000000;
4025         case IEEE80211_OFDM_RATE_24MB_MASK:
4026                 return 24000000;
4027         case IEEE80211_OFDM_RATE_36MB_MASK:
4028                 return 36000000;
4029         case IEEE80211_OFDM_RATE_48MB_MASK:
4030                 return 48000000;
4031         case IEEE80211_OFDM_RATE_54MB_MASK:
4032                 return 54000000;
4033         }
4034
4035         if (priv->ieee->mode == IEEE_B)
4036                 return 11000000;
4037         else
4038                 return 54000000;
4039 }
4040
4041 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4042 {
4043         u32 rate, len = sizeof(rate);
4044         int err;
4045
4046         if (!(priv->status & STATUS_ASSOCIATED))
4047                 return 0;
4048
4049         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4050                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4051                                       &len);
4052                 if (err) {
4053                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4054                         return 0;
4055                 }
4056         } else
4057                 return ipw_get_max_rate(priv);
4058
4059         switch (rate) {
4060         case IPW_TX_RATE_1MB:
4061                 return 1000000;
4062         case IPW_TX_RATE_2MB:
4063                 return 2000000;
4064         case IPW_TX_RATE_5MB:
4065                 return 5500000;
4066         case IPW_TX_RATE_6MB:
4067                 return 6000000;
4068         case IPW_TX_RATE_9MB:
4069                 return 9000000;
4070         case IPW_TX_RATE_11MB:
4071                 return 11000000;
4072         case IPW_TX_RATE_12MB:
4073                 return 12000000;
4074         case IPW_TX_RATE_18MB:
4075                 return 18000000;
4076         case IPW_TX_RATE_24MB:
4077                 return 24000000;
4078         case IPW_TX_RATE_36MB:
4079                 return 36000000;
4080         case IPW_TX_RATE_48MB:
4081                 return 48000000;
4082         case IPW_TX_RATE_54MB:
4083                 return 54000000;
4084         }
4085
4086         return 0;
4087 }
4088
4089 #define IPW_STATS_INTERVAL (2 * HZ)
4090 static void ipw_gather_stats(struct ipw_priv *priv)
4091 {
4092         u32 rx_err, rx_err_delta, rx_packets_delta;
4093         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4094         u32 missed_beacons_percent, missed_beacons_delta;
4095         u32 quality = 0;
4096         u32 len = sizeof(u32);
4097         s16 rssi;
4098         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4099             rate_quality;
4100         u32 max_rate;
4101
4102         if (!(priv->status & STATUS_ASSOCIATED)) {
4103                 priv->quality = 0;
4104                 return;
4105         }
4106
4107         /* Update the statistics */
4108         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4109                         &priv->missed_beacons, &len);
4110         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4111         priv->last_missed_beacons = priv->missed_beacons;
4112         if (priv->assoc_request.beacon_interval) {
4113                 missed_beacons_percent = missed_beacons_delta *
4114                     (HZ * priv->assoc_request.beacon_interval) /
4115                     (IPW_STATS_INTERVAL * 10);
4116         } else {
4117                 missed_beacons_percent = 0;
4118         }
4119         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4120
4121         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4122         rx_err_delta = rx_err - priv->last_rx_err;
4123         priv->last_rx_err = rx_err;
4124
4125         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4126         tx_failures_delta = tx_failures - priv->last_tx_failures;
4127         priv->last_tx_failures = tx_failures;
4128
4129         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4130         priv->last_rx_packets = priv->rx_packets;
4131
4132         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4133         priv->last_tx_packets = priv->tx_packets;
4134
4135         /* Calculate quality based on the following:
4136          *
4137          * Missed beacon: 100% = 0, 0% = 70% missed
4138          * Rate: 60% = 1Mbs, 100% = Max
4139          * Rx and Tx errors represent a straight % of total Rx/Tx
4140          * RSSI: 100% = > -50,  0% = < -80
4141          * Rx errors: 100% = 0, 0% = 50% missed
4142          *
4143          * The lowest computed quality is used.
4144          *
4145          */
4146 #define BEACON_THRESHOLD 5
4147         beacon_quality = 100 - missed_beacons_percent;
4148         if (beacon_quality < BEACON_THRESHOLD)
4149                 beacon_quality = 0;
4150         else
4151                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4152                     (100 - BEACON_THRESHOLD);
4153         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4154                         beacon_quality, missed_beacons_percent);
4155
4156         priv->last_rate = ipw_get_current_rate(priv);
4157         max_rate = ipw_get_max_rate(priv);
4158         rate_quality = priv->last_rate * 40 / max_rate + 60;
4159         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4160                         rate_quality, priv->last_rate / 1000000);
4161
4162         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4163                 rx_quality = 100 - (rx_err_delta * 100) /
4164                     (rx_packets_delta + rx_err_delta);
4165         else
4166                 rx_quality = 100;
4167         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4168                         rx_quality, rx_err_delta, rx_packets_delta);
4169
4170         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4171                 tx_quality = 100 - (tx_failures_delta * 100) /
4172                     (tx_packets_delta + tx_failures_delta);
4173         else
4174                 tx_quality = 100;
4175         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4176                         tx_quality, tx_failures_delta, tx_packets_delta);
4177
4178         rssi = priv->exp_avg_rssi;
4179         signal_quality =
4180             (100 *
4181              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4182              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4183              (priv->ieee->perfect_rssi - rssi) *
4184              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4185               62 * (priv->ieee->perfect_rssi - rssi))) /
4186             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4187              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4188         if (signal_quality > 100)
4189                 signal_quality = 100;
4190         else if (signal_quality < 1)
4191                 signal_quality = 0;
4192
4193         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4194                         signal_quality, rssi);
4195
4196         quality = min(beacon_quality,
4197                       min(rate_quality,
4198                           min(tx_quality, min(rx_quality, signal_quality))));
4199         if (quality == beacon_quality)
4200                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4201                                 quality);
4202         if (quality == rate_quality)
4203                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4204                                 quality);
4205         if (quality == tx_quality)
4206                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4207                                 quality);
4208         if (quality == rx_quality)
4209                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4210                                 quality);
4211         if (quality == signal_quality)
4212                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4213                                 quality);
4214
4215         priv->quality = quality;
4216
4217         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4218                            IPW_STATS_INTERVAL);
4219 }
4220
4221 static void ipw_bg_gather_stats(void *data)
4222 {
4223         struct ipw_priv *priv = data;
4224         mutex_lock(&priv->mutex);
4225         ipw_gather_stats(data);
4226         mutex_unlock(&priv->mutex);
4227 }
4228
4229 /* Missed beacon behavior:
4230  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4231  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4232  * Above disassociate threshold, give up and stop scanning.
4233  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4234 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4235                                             int missed_count)
4236 {
4237         priv->notif_missed_beacons = missed_count;
4238
4239         if (missed_count > priv->disassociate_threshold &&
4240             priv->status & STATUS_ASSOCIATED) {
4241                 /* If associated and we've hit the missed
4242                  * beacon threshold, disassociate, turn
4243                  * off roaming, and abort any active scans */
4244                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4245                           IPW_DL_STATE | IPW_DL_ASSOC,
4246                           "Missed beacon: %d - disassociate\n", missed_count);
4247                 priv->status &= ~STATUS_ROAMING;
4248                 if (priv->status & STATUS_SCANNING) {
4249                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4250                                   IPW_DL_STATE,
4251                                   "Aborting scan with missed beacon.\n");
4252                         queue_work(priv->workqueue, &priv->abort_scan);
4253                 }
4254
4255                 queue_work(priv->workqueue, &priv->disassociate);
4256                 return;
4257         }
4258
4259         if (priv->status & STATUS_ROAMING) {
4260                 /* If we are currently roaming, then just
4261                  * print a debug statement... */
4262                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4263                           "Missed beacon: %d - roam in progress\n",
4264                           missed_count);
4265                 return;
4266         }
4267
4268         if (roaming &&
4269             (missed_count > priv->roaming_threshold &&
4270              missed_count <= priv->disassociate_threshold)) {
4271                 /* If we are not already roaming, set the ROAM
4272                  * bit in the status and kick off a scan.
4273                  * This can happen several times before we reach
4274                  * disassociate_threshold. */
4275                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4276                           "Missed beacon: %d - initiate "
4277                           "roaming\n", missed_count);
4278                 if (!(priv->status & STATUS_ROAMING)) {
4279                         priv->status |= STATUS_ROAMING;
4280                         if (!(priv->status & STATUS_SCANNING))
4281                                 queue_work(priv->workqueue,
4282                                            &priv->request_scan);
4283                 }
4284                 return;
4285         }
4286
4287         if (priv->status & STATUS_SCANNING) {
4288                 /* Stop scan to keep fw from getting
4289                  * stuck (only if we aren't roaming --
4290                  * otherwise we'll never scan more than 2 or 3
4291                  * channels..) */
4292                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4293                           "Aborting scan with missed beacon.\n");
4294                 queue_work(priv->workqueue, &priv->abort_scan);
4295         }
4296
4297         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4298 }
4299
4300 /**
4301  * Handle host notification packet.
4302  * Called from interrupt routine
4303  */
4304 static void ipw_rx_notification(struct ipw_priv *priv,
4305                                        struct ipw_rx_notification *notif)
4306 {
4307         notif->size = le16_to_cpu(notif->size);
4308
4309         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4310
4311         switch (notif->subtype) {
4312         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4313                         struct notif_association *assoc = &notif->u.assoc;
4314
4315                         switch (assoc->state) {
4316                         case CMAS_ASSOCIATED:{
4317                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4318                                                   IPW_DL_ASSOC,
4319                                                   "associated: '%s' " MAC_FMT
4320                                                   " \n",
4321                                                   escape_essid(priv->essid,
4322                                                                priv->essid_len),
4323                                                   MAC_ARG(priv->bssid));
4324
4325                                         switch (priv->ieee->iw_mode) {
4326                                         case IW_MODE_INFRA:
4327                                                 memcpy(priv->ieee->bssid,
4328                                                        priv->bssid, ETH_ALEN);
4329                                                 break;
4330
4331                                         case IW_MODE_ADHOC:
4332                                                 memcpy(priv->ieee->bssid,
4333                                                        priv->bssid, ETH_ALEN);
4334
4335                                                 /* clear out the station table */
4336                                                 priv->num_stations = 0;
4337
4338                                                 IPW_DEBUG_ASSOC
4339                                                     ("queueing adhoc check\n");
4340                                                 queue_delayed_work(priv->
4341                                                                    workqueue,
4342                                                                    &priv->
4343                                                                    adhoc_check,
4344                                                                    priv->
4345                                                                    assoc_request.
4346                                                                    beacon_interval);
4347                                                 break;
4348                                         }
4349
4350                                         priv->status &= ~STATUS_ASSOCIATING;
4351                                         priv->status |= STATUS_ASSOCIATED;
4352                                         queue_work(priv->workqueue,
4353                                                    &priv->system_config);
4354
4355 #ifdef CONFIG_IPW2200_QOS
4356 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4357                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4358                                         if ((priv->status & STATUS_AUTH) &&
4359                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4360                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4361                                                 if ((sizeof
4362                                                      (struct
4363                                                       ieee80211_assoc_response)
4364                                                      <= notif->size)
4365                                                     && (notif->size <= 2314)) {
4366                                                         struct
4367                                                         ieee80211_rx_stats
4368                                                             stats = {
4369                                                                 .len =
4370                                                                     notif->
4371                                                                     size - 1,
4372                                                         };
4373
4374                                                         IPW_DEBUG_QOS
4375                                                             ("QoS Associate "
4376                                                              "size %d\n",
4377                                                              notif->size);
4378                                                         ieee80211_rx_mgt(priv->
4379                                                                          ieee,
4380                                                                          (struct
4381                                                                           ieee80211_hdr_4addr
4382                                                                           *)
4383                                                                          &notif->u.raw, &stats);
4384                                                 }
4385                                         }
4386 #endif
4387
4388                                         schedule_work(&priv->link_up);
4389
4390                                         break;
4391                                 }
4392
4393                         case CMAS_AUTHENTICATED:{
4394                                         if (priv->
4395                                             status & (STATUS_ASSOCIATED |
4396                                                       STATUS_AUTH)) {
4397 #ifdef CONFIG_IPW2200_DEBUG
4398                                                 struct notif_authenticate *auth
4399                                                     = &notif->u.auth;
4400                                                 IPW_DEBUG(IPW_DL_NOTIF |
4401                                                           IPW_DL_STATE |
4402                                                           IPW_DL_ASSOC,
4403                                                           "deauthenticated: '%s' "
4404                                                           MAC_FMT
4405                                                           ": (0x%04X) - %s \n",
4406                                                           escape_essid(priv->
4407                                                                        essid,
4408                                                                        priv->
4409                                                                        essid_len),
4410                                                           MAC_ARG(priv->bssid),
4411                                                           ntohs(auth->status),
4412                                                           ipw_get_status_code
4413                                                           (ntohs
4414                                                            (auth->status)));
4415 #endif
4416
4417                                                 priv->status &=
4418                                                     ~(STATUS_ASSOCIATING |
4419                                                       STATUS_AUTH |
4420                                                       STATUS_ASSOCIATED);
4421
4422                                                 schedule_work(&priv->link_down);
4423                                                 break;
4424                                         }
4425
4426                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4427                                                   IPW_DL_ASSOC,
4428                                                   "authenticated: '%s' " MAC_FMT
4429                                                   "\n",
4430                                                   escape_essid(priv->essid,
4431                                                                priv->essid_len),
4432                                                   MAC_ARG(priv->bssid));
4433                                         break;
4434                                 }
4435
4436                         case CMAS_INIT:{
4437                                         if (priv->status & STATUS_AUTH) {
4438                                                 struct
4439                                                     ieee80211_assoc_response
4440                                                 *resp;
4441                                                 resp =
4442                                                     (struct
4443                                                      ieee80211_assoc_response
4444                                                      *)&notif->u.raw;
4445                                                 IPW_DEBUG(IPW_DL_NOTIF |
4446                                                           IPW_DL_STATE |
4447                                                           IPW_DL_ASSOC,
4448                                                           "association failed (0x%04X): %s\n",
4449                                                           ntohs(resp->status),
4450                                                           ipw_get_status_code
4451                                                           (ntohs
4452                                                            (resp->status)));
4453                                         }
4454
4455                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4456                                                   IPW_DL_ASSOC,
4457                                                   "disassociated: '%s' " MAC_FMT
4458                                                   " \n",
4459                                                   escape_essid(priv->essid,
4460                                                                priv->essid_len),
4461                                                   MAC_ARG(priv->bssid));
4462
4463                                         priv->status &=
4464                                             ~(STATUS_DISASSOCIATING |
4465                                               STATUS_ASSOCIATING |
4466                                               STATUS_ASSOCIATED | STATUS_AUTH);
4467                                         if (priv->assoc_network
4468                                             && (priv->assoc_network->
4469                                                 capability &
4470                                                 WLAN_CAPABILITY_IBSS))
4471                                                 ipw_remove_current_network
4472                                                     (priv);
4473
4474                                         schedule_work(&priv->link_down);
4475
4476                                         break;
4477                                 }
4478
4479                         case CMAS_RX_ASSOC_RESP:
4480                                 break;
4481
4482                         default:
4483                                 IPW_ERROR("assoc: unknown (%d)\n",
4484                                           assoc->state);
4485                                 break;
4486                         }
4487
4488                         break;
4489                 }
4490
4491         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4492                         struct notif_authenticate *auth = &notif->u.auth;
4493                         switch (auth->state) {
4494                         case CMAS_AUTHENTICATED:
4495                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4496                                           "authenticated: '%s' " MAC_FMT " \n",
4497                                           escape_essid(priv->essid,
4498                                                        priv->essid_len),
4499                                           MAC_ARG(priv->bssid));
4500                                 priv->status |= STATUS_AUTH;
4501                                 break;
4502
4503                         case CMAS_INIT:
4504                                 if (priv->status & STATUS_AUTH) {
4505                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4506                                                   IPW_DL_ASSOC,
4507                                                   "authentication failed (0x%04X): %s\n",
4508                                                   ntohs(auth->status),
4509                                                   ipw_get_status_code(ntohs
4510                                                                       (auth->
4511                                                                        status)));
4512                                 }
4513                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4514                                           IPW_DL_ASSOC,
4515                                           "deauthenticated: '%s' " MAC_FMT "\n",
4516                                           escape_essid(priv->essid,
4517                                                        priv->essid_len),
4518                                           MAC_ARG(priv->bssid));
4519
4520                                 priv->status &= ~(STATUS_ASSOCIATING |
4521                                                   STATUS_AUTH |
4522                                                   STATUS_ASSOCIATED);
4523
4524                                 schedule_work(&priv->link_down);
4525                                 break;
4526
4527                         case CMAS_TX_AUTH_SEQ_1:
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4530                                 break;
4531                         case CMAS_RX_AUTH_SEQ_2:
4532                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4533                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4534                                 break;
4535                         case CMAS_AUTH_SEQ_1_PASS:
4536                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4537                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4538                                 break;
4539                         case CMAS_AUTH_SEQ_1_FAIL:
4540                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4542                                 break;
4543                         case CMAS_TX_AUTH_SEQ_3:
4544                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4546                                 break;
4547                         case CMAS_RX_AUTH_SEQ_4:
4548                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4550                                 break;
4551                         case CMAS_AUTH_SEQ_2_PASS:
4552                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4553                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4554                                 break;
4555                         case CMAS_AUTH_SEQ_2_FAIL:
4556                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4558                                 break;
4559                         case CMAS_TX_ASSOC:
4560                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4561                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4562                                 break;
4563                         case CMAS_RX_ASSOC_RESP:
4564                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4565                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4566
4567                                 break;
4568                         case CMAS_ASSOCIATED:
4569                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4570                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4571                                 break;
4572                         default:
4573                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4574                                                 auth->state);
4575                                 break;
4576                         }
4577                         break;
4578                 }
4579
4580         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4581                         struct notif_channel_result *x =
4582                             &notif->u.channel_result;
4583
4584                         if (notif->size == sizeof(*x)) {
4585                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4586                                                x->channel_num);
4587                         } else {
4588                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4589                                                "(should be %zd)\n",
4590                                                notif->size, sizeof(*x));
4591                         }
4592                         break;
4593                 }
4594
4595         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4596                         struct notif_scan_complete *x = &notif->u.scan_complete;
4597                         if (notif->size == sizeof(*x)) {
4598                                 IPW_DEBUG_SCAN
4599                                     ("Scan completed: type %d, %d channels, "
4600                                      "%d status\n", x->scan_type,
4601                                      x->num_channels, x->status);
4602                         } else {
4603                                 IPW_ERROR("Scan completed of wrong size %d "
4604                                           "(should be %zd)\n",
4605                                           notif->size, sizeof(*x));
4606                         }
4607
4608                         priv->status &=
4609                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4610
4611                         wake_up_interruptible(&priv->wait_state);
4612                         cancel_delayed_work(&priv->scan_check);
4613
4614                         if (priv->status & STATUS_EXIT_PENDING)
4615                                 break;
4616
4617                         priv->ieee->scans++;
4618
4619 #ifdef CONFIG_IPW2200_MONITOR
4620                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4621                                 priv->status |= STATUS_SCAN_FORCED;
4622                                 queue_work(priv->workqueue,
4623                                            &priv->request_scan);
4624                                 break;
4625                         }
4626                         priv->status &= ~STATUS_SCAN_FORCED;
4627 #endif                          /* CONFIG_IPW2200_MONITOR */
4628
4629                         if (!(priv->status & (STATUS_ASSOCIATED |
4630                                               STATUS_ASSOCIATING |
4631                                               STATUS_ROAMING |
4632                                               STATUS_DISASSOCIATING)))
4633                                 queue_work(priv->workqueue, &priv->associate);
4634                         else if (priv->status & STATUS_ROAMING) {
4635                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4636                                         /* If a scan completed and we are in roam mode, then
4637                                          * the scan that completed was the one requested as a
4638                                          * result of entering roam... so, schedule the
4639                                          * roam work */
4640                                         queue_work(priv->workqueue,
4641                                                    &priv->roam);
4642                                 else
4643                                         /* Don't schedule if we aborted the scan */
4644                                         priv->status &= ~STATUS_ROAMING;
4645                         } else if (priv->status & STATUS_SCAN_PENDING)
4646                                 queue_work(priv->workqueue,
4647                                            &priv->request_scan);
4648                         else if (priv->config & CFG_BACKGROUND_SCAN
4649                                  && priv->status & STATUS_ASSOCIATED)
4650                                 queue_delayed_work(priv->workqueue,
4651                                                    &priv->request_scan, HZ);
4652
4653                         /* Send an empty event to user space.
4654                          * We don't send the received data on the event because
4655                          * it would require us to do complex transcoding, and
4656                          * we want to minimise the work done in the irq handler
4657                          * Use a request to extract the data.
4658                          * Also, we generate this even for any scan, regardless
4659                          * on how the scan was initiated. User space can just
4660                          * sync on periodic scan to get fresh data...
4661                          * Jean II */
4662                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4663                                 union iwreq_data wrqu;
4664
4665                                 wrqu.data.length = 0;
4666                                 wrqu.data.flags = 0;
4667                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4668                                                     &wrqu, NULL);
4669                         }
4670                         break;
4671                 }
4672
4673         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4674                         struct notif_frag_length *x = &notif->u.frag_len;
4675
4676                         if (notif->size == sizeof(*x))
4677                                 IPW_ERROR("Frag length: %d\n",
4678                                           le16_to_cpu(x->frag_length));
4679                         else
4680                                 IPW_ERROR("Frag length of wrong size %d "
4681                                           "(should be %zd)\n",
4682                                           notif->size, sizeof(*x));
4683                         break;
4684                 }
4685
4686         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4687                         struct notif_link_deterioration *x =
4688                             &notif->u.link_deterioration;
4689
4690                         if (notif->size == sizeof(*x)) {
4691                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4692                                         "link deterioration: type %d, cnt %d\n",
4693                                         x->silence_notification_type,
4694                                         x->silence_count);
4695                                 memcpy(&priv->last_link_deterioration, x,
4696                                        sizeof(*x));
4697                         } else {
4698                                 IPW_ERROR("Link Deterioration of wrong size %d "
4699                                           "(should be %zd)\n",
4700                                           notif->size, sizeof(*x));
4701                         }
4702                         break;
4703                 }
4704
4705         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4706                         IPW_ERROR("Dino config\n");
4707                         if (priv->hcmd
4708                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4709                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4710
4711                         break;
4712                 }
4713
4714         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4715                         struct notif_beacon_state *x = &notif->u.beacon_state;
4716                         if (notif->size != sizeof(*x)) {
4717                                 IPW_ERROR
4718                                     ("Beacon state of wrong size %d (should "
4719                                      "be %zd)\n", notif->size, sizeof(*x));
4720                                 break;
4721                         }
4722
4723                         if (le32_to_cpu(x->state) ==
4724                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4725                                 ipw_handle_missed_beacon(priv,
4726                                                          le32_to_cpu(x->
4727                                                                      number));
4728
4729                         break;
4730                 }
4731
4732         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4733                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4734                         if (notif->size == sizeof(*x)) {
4735                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4736                                           "0x%02x station %d\n",
4737                                           x->key_state, x->security_type,
4738                                           x->station_index);
4739                                 break;
4740                         }
4741
4742                         IPW_ERROR
4743                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4744                              notif->size, sizeof(*x));
4745                         break;
4746                 }
4747
4748         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4749                         struct notif_calibration *x = &notif->u.calibration;
4750
4751                         if (notif->size == sizeof(*x)) {
4752                                 memcpy(&priv->calib, x, sizeof(*x));
4753                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4754                                 break;
4755                         }
4756
4757                         IPW_ERROR
4758                             ("Calibration of wrong size %d (should be %zd)\n",
4759                              notif->size, sizeof(*x));
4760                         break;
4761                 }
4762
4763         case HOST_NOTIFICATION_NOISE_STATS:{
4764                         if (notif->size == sizeof(u32)) {
4765                                 priv->exp_avg_noise =
4766                                     exponential_average(priv->exp_avg_noise,
4767                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4768                                     DEPTH_NOISE);
4769                                 break;
4770                         }
4771
4772                         IPW_ERROR
4773                             ("Noise stat is wrong size %d (should be %zd)\n",
4774                              notif->size, sizeof(u32));
4775                         break;
4776                 }
4777
4778         default:
4779                 IPW_DEBUG_NOTIF("Unknown notification: "
4780                                 "subtype=%d,flags=0x%2x,size=%d\n",
4781                                 notif->subtype, notif->flags, notif->size);
4782         }
4783 }
4784
4785 /**
4786  * Destroys all DMA structures and initialise them again
4787  *
4788  * @param priv
4789  * @return error code
4790  */
4791 static int ipw_queue_reset(struct ipw_priv *priv)
4792 {
4793         int rc = 0;
4794         /** @todo customize queue sizes */
4795         int nTx = 64, nTxCmd = 8;
4796         ipw_tx_queue_free(priv);
4797         /* Tx CMD queue */
4798         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4799                                IPW_TX_CMD_QUEUE_READ_INDEX,
4800                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4801                                IPW_TX_CMD_QUEUE_BD_BASE,
4802                                IPW_TX_CMD_QUEUE_BD_SIZE);
4803         if (rc) {
4804                 IPW_ERROR("Tx Cmd queue init failed\n");
4805                 goto error;
4806         }
4807         /* Tx queue(s) */
4808         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4809                                IPW_TX_QUEUE_0_READ_INDEX,
4810                                IPW_TX_QUEUE_0_WRITE_INDEX,
4811                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4812         if (rc) {
4813                 IPW_ERROR("Tx 0 queue init failed\n");
4814                 goto error;
4815         }
4816         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4817                                IPW_TX_QUEUE_1_READ_INDEX,
4818                                IPW_TX_QUEUE_1_WRITE_INDEX,
4819                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4820         if (rc) {
4821                 IPW_ERROR("Tx 1 queue init failed\n");
4822                 goto error;
4823         }
4824         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4825                                IPW_TX_QUEUE_2_READ_INDEX,
4826                                IPW_TX_QUEUE_2_WRITE_INDEX,
4827                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4828         if (rc) {
4829                 IPW_ERROR("Tx 2 queue init failed\n");
4830                 goto error;
4831         }
4832         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4833                                IPW_TX_QUEUE_3_READ_INDEX,
4834                                IPW_TX_QUEUE_3_WRITE_INDEX,
4835                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4836         if (rc) {
4837                 IPW_ERROR("Tx 3 queue init failed\n");
4838                 goto error;
4839         }
4840         /* statistics */
4841         priv->rx_bufs_min = 0;
4842         priv->rx_pend_max = 0;
4843         return rc;
4844
4845       error:
4846         ipw_tx_queue_free(priv);
4847         return rc;
4848 }
4849
4850 /**
4851  * Reclaim Tx queue entries no more used by NIC.
4852  *
4853  * When FW adwances 'R' index, all entries between old and
4854  * new 'R' index need to be reclaimed. As result, some free space
4855  * forms. If there is enough free space (> low mark), wake Tx queue.
4856  *
4857  * @note Need to protect against garbage in 'R' index
4858  * @param priv
4859  * @param txq
4860  * @param qindex
4861  * @return Number of used entries remains in the queue
4862  */
4863 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4864                                 struct clx2_tx_queue *txq, int qindex)
4865 {
4866         u32 hw_tail;
4867         int used;
4868         struct clx2_queue *q = &txq->q;
4869
4870         hw_tail = ipw_read32(priv, q->reg_r);
4871         if (hw_tail >= q->n_bd) {
4872                 IPW_ERROR
4873                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4874                      hw_tail, q->n_bd);
4875                 goto done;
4876         }
4877         for (; q->last_used != hw_tail;
4878              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4879                 ipw_queue_tx_free_tfd(priv, txq);
4880                 priv->tx_packets++;
4881         }
4882       done:
4883         if ((ipw_queue_space(q) > q->low_mark) &&
4884             (qindex >= 0) &&
4885             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4886                 netif_wake_queue(priv->net_dev);
4887         used = q->first_empty - q->last_used;
4888         if (used < 0)
4889                 used += q->n_bd;
4890
4891         return used;
4892 }
4893
4894 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4895                              int len, int sync)
4896 {
4897         struct clx2_tx_queue *txq = &priv->txq_cmd;
4898         struct clx2_queue *q = &txq->q;
4899         struct tfd_frame *tfd;
4900
4901         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4902                 IPW_ERROR("No space for Tx\n");
4903                 return -EBUSY;
4904         }
4905
4906         tfd = &txq->bd[q->first_empty];
4907         txq->txb[q->first_empty] = NULL;
4908
4909         memset(tfd, 0, sizeof(*tfd));
4910         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4911         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4912         priv->hcmd_seq++;
4913         tfd->u.cmd.index = hcmd;
4914         tfd->u.cmd.length = len;
4915         memcpy(tfd->u.cmd.payload, buf, len);
4916         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4917         ipw_write32(priv, q->reg_w, q->first_empty);
4918         _ipw_read32(priv, 0x90);
4919
4920         return 0;
4921 }
4922
4923 /*
4924  * Rx theory of operation
4925  *
4926  * The host allocates 32 DMA target addresses and passes the host address
4927  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4928  * 0 to 31
4929  *
4930  * Rx Queue Indexes
4931  * The host/firmware share two index registers for managing the Rx buffers.
4932  *
4933  * The READ index maps to the first position that the firmware may be writing
4934  * to -- the driver can read up to (but not including) this position and get
4935  * good data.
4936  * The READ index is managed by the firmware once the card is enabled.
4937  *
4938  * The WRITE index maps to the last position the driver has read from -- the
4939  * position preceding WRITE is the last slot the firmware can place a packet.
4940  *
4941  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4942  * WRITE = READ.
4943  *
4944  * During initialization the host sets up the READ queue position to the first
4945  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4946  *
4947  * When the firmware places a packet in a buffer it will advance the READ index
4948  * and fire the RX interrupt.  The driver can then query the READ index and
4949  * process as many packets as possible, moving the WRITE index forward as it
4950  * resets the Rx queue buffers with new memory.
4951  *
4952  * The management in the driver is as follows:
4953  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4954  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4955  *   to replensish the ipw->rxq->rx_free.
4956  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4957  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4958  *   'processed' and 'read' driver indexes as well)
4959  * + A received packet is processed and handed to the kernel network stack,
4960  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4961  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4962  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4963  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4964  *   were enough free buffers and RX_STALLED is set it is cleared.
4965  *
4966  *
4967  * Driver sequence:
4968  *
4969  * ipw_rx_queue_alloc()       Allocates rx_free
4970  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4971  *                            ipw_rx_queue_restock
4972  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4973  *                            queue, updates firmware pointers, and updates
4974  *                            the WRITE index.  If insufficient rx_free buffers
4975  *                            are available, schedules ipw_rx_queue_replenish
4976  *
4977  * -- enable interrupts --
4978  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4979  *                            READ INDEX, detaching the SKB from the pool.
4980  *                            Moves the packet buffer from queue to rx_used.
4981  *                            Calls ipw_rx_queue_restock to refill any empty
4982  *                            slots.
4983  * ...
4984  *
4985  */
4986
4987 /*
4988  * If there are slots in the RX queue that  need to be restocked,
4989  * and we have free pre-allocated buffers, fill the ranks as much
4990  * as we can pulling from rx_free.
4991  *
4992  * This moves the 'write' index forward to catch up with 'processed', and
4993  * also updates the memory address in the firmware to reference the new
4994  * target buffer.
4995  */
4996 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4997 {
4998         struct ipw_rx_queue *rxq = priv->rxq;
4999         struct list_head *element;
5000         struct ipw_rx_mem_buffer *rxb;
5001         unsigned long flags;
5002         int write;
5003
5004         spin_lock_irqsave(&rxq->lock, flags);
5005         write = rxq->write;
5006         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5007                 element = rxq->rx_free.next;
5008                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5009                 list_del(element);
5010
5011                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5012                             rxb->dma_addr);
5013                 rxq->queue[rxq->write] = rxb;
5014                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5015                 rxq->free_count--;
5016         }
5017         spin_unlock_irqrestore(&rxq->lock, flags);
5018
5019         /* If the pre-allocated buffer pool is dropping low, schedule to
5020          * refill it */
5021         if (rxq->free_count <= RX_LOW_WATERMARK)
5022                 queue_work(priv->workqueue, &priv->rx_replenish);
5023
5024         /* If we've added more space for the firmware to place data, tell it */
5025         if (write != rxq->write)
5026                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5027 }
5028
5029 /*
5030  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5031  * Also restock the Rx queue via ipw_rx_queue_restock.
5032  *
5033  * This is called as a scheduled work item (except for during intialization)
5034  */
5035 static void ipw_rx_queue_replenish(void *data)
5036 {
5037         struct ipw_priv *priv = data;
5038         struct ipw_rx_queue *rxq = priv->rxq;
5039         struct list_head *element;
5040         struct ipw_rx_mem_buffer *rxb;
5041         unsigned long flags;
5042
5043         spin_lock_irqsave(&rxq->lock, flags);
5044         while (!list_empty(&rxq->rx_used)) {
5045                 element = rxq->rx_used.next;
5046                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5047                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5048                 if (!rxb->skb) {
5049                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5050                                priv->net_dev->name);
5051                         /* We don't reschedule replenish work here -- we will
5052                          * call the restock method and if it still needs
5053                          * more buffers it will schedule replenish */
5054                         break;
5055                 }
5056                 list_del(element);
5057
5058                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
5059                 rxb->dma_addr =
5060                     pci_map_single(priv->pci_dev, rxb->skb->data,
5061                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5062
5063                 list_add_tail(&rxb->list, &rxq->rx_free);
5064                 rxq->free_count++;
5065         }
5066         spin_unlock_irqrestore(&rxq->lock, flags);
5067
5068         ipw_rx_queue_restock(priv);
5069 }
5070
5071 static void ipw_bg_rx_queue_replenish(void *data)
5072 {
5073         struct ipw_priv *priv = data;
5074         mutex_lock(&priv->mutex);
5075         ipw_rx_queue_replenish(data);
5076         mutex_unlock(&priv->mutex);
5077 }
5078
5079 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5080  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5081  * This free routine walks the list of POOL entries and if SKB is set to
5082  * non NULL it is unmapped and freed
5083  */
5084 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5085 {
5086         int i;
5087
5088         if (!rxq)
5089                 return;
5090
5091         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5092                 if (rxq->pool[i].skb != NULL) {
5093                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5094                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5095                         dev_kfree_skb(rxq->pool[i].skb);
5096                 }
5097         }
5098
5099         kfree(rxq);
5100 }
5101
5102 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5103 {
5104         struct ipw_rx_queue *rxq;
5105         int i;
5106
5107         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5108         if (unlikely(!rxq)) {
5109                 IPW_ERROR("memory allocation failed\n");
5110                 return NULL;
5111         }
5112         spin_lock_init(&rxq->lock);
5113         INIT_LIST_HEAD(&rxq->rx_free);
5114         INIT_LIST_HEAD(&rxq->rx_used);
5115
5116         /* Fill the rx_used queue with _all_ of the Rx buffers */
5117         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5118                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5119
5120         /* Set us so that we have processed and used all buffers, but have
5121          * not restocked the Rx queue with fresh buffers */
5122         rxq->read = rxq->write = 0;
5123         rxq->processed = RX_QUEUE_SIZE - 1;
5124         rxq->free_count = 0;
5125
5126         return rxq;
5127 }
5128
5129 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5130 {
5131         rate &= ~IEEE80211_BASIC_RATE_MASK;
5132         if (ieee_mode == IEEE_A) {
5133                 switch (rate) {
5134                 case IEEE80211_OFDM_RATE_6MB:
5135                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5136                             1 : 0;
5137                 case IEEE80211_OFDM_RATE_9MB:
5138                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5139                             1 : 0;
5140                 case IEEE80211_OFDM_RATE_12MB:
5141                         return priv->
5142                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5143                 case IEEE80211_OFDM_RATE_18MB:
5144                         return priv->
5145                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5146                 case IEEE80211_OFDM_RATE_24MB:
5147                         return priv->
5148                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5149                 case IEEE80211_OFDM_RATE_36MB:
5150                         return priv->
5151                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5152                 case IEEE80211_OFDM_RATE_48MB:
5153                         return priv->
5154                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5155                 case IEEE80211_OFDM_RATE_54MB:
5156                         return priv->
5157                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5158                 default:
5159                         return 0;
5160                 }
5161         }
5162
5163         /* B and G mixed */
5164         switch (rate) {
5165         case IEEE80211_CCK_RATE_1MB:
5166                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5167         case IEEE80211_CCK_RATE_2MB:
5168                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5169         case IEEE80211_CCK_RATE_5MB:
5170                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5171         case IEEE80211_CCK_RATE_11MB:
5172                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5173         }
5174
5175         /* If we are limited to B modulations, bail at this point */
5176         if (ieee_mode == IEEE_B)
5177                 return 0;
5178
5179         /* G */
5180         switch (rate) {
5181         case IEEE80211_OFDM_RATE_6MB:
5182                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5183         case IEEE80211_OFDM_RATE_9MB:
5184                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5185         case IEEE80211_OFDM_RATE_12MB:
5186                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5187         case IEEE80211_OFDM_RATE_18MB:
5188                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5189         case IEEE80211_OFDM_RATE_24MB:
5190                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5191         case IEEE80211_OFDM_RATE_36MB:
5192                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5193         case IEEE80211_OFDM_RATE_48MB:
5194                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5195         case IEEE80211_OFDM_RATE_54MB:
5196                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5197         }
5198
5199         return 0;
5200 }
5201
5202 static int ipw_compatible_rates(struct ipw_priv *priv,
5203                                 const struct ieee80211_network *network,
5204                                 struct ipw_supported_rates *rates)
5205 {
5206         int num_rates, i;
5207
5208         memset(rates, 0, sizeof(*rates));
5209         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5210         rates->num_rates = 0;
5211         for (i = 0; i < num_rates; i++) {
5212                 if (!ipw_is_rate_in_mask(priv, network->mode,
5213                                          network->rates[i])) {
5214
5215                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5216                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5217                                                "rate %02X\n",
5218                                                network->rates[i]);
5219                                 rates->supported_rates[rates->num_rates++] =
5220                                     network->rates[i];
5221                                 continue;
5222                         }
5223
5224                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5225                                        network->rates[i], priv->rates_mask);
5226                         continue;
5227                 }
5228
5229                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5230         }
5231
5232         num_rates = min(network->rates_ex_len,
5233                         (u8) (IPW_MAX_RATES - num_rates));
5234         for (i = 0; i < num_rates; i++) {
5235                 if (!ipw_is_rate_in_mask(priv, network->mode,
5236                                          network->rates_ex[i])) {
5237                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5238                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5239                                                "rate %02X\n",
5240                                                network->rates_ex[i]);
5241                                 rates->supported_rates[rates->num_rates++] =
5242                                     network->rates[i];
5243                                 continue;
5244                         }
5245
5246                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5247                                        network->rates_ex[i], priv->rates_mask);
5248                         continue;
5249                 }
5250
5251                 rates->supported_rates[rates->num_rates++] =
5252                     network->rates_ex[i];
5253         }
5254
5255         return 1;
5256 }
5257
5258 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5259                                   const struct ipw_supported_rates *src)
5260 {
5261         u8 i;
5262         for (i = 0; i < src->num_rates; i++)
5263                 dest->supported_rates[i] = src->supported_rates[i];
5264         dest->num_rates = src->num_rates;
5265 }
5266
5267 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5268  * mask should ever be used -- right now all callers to add the scan rates are
5269  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5270 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5271                                    u8 modulation, u32 rate_mask)
5272 {
5273         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5274             IEEE80211_BASIC_RATE_MASK : 0;
5275
5276         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5277                 rates->supported_rates[rates->num_rates++] =
5278                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5279
5280         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5281                 rates->supported_rates[rates->num_rates++] =
5282                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5283
5284         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5285                 rates->supported_rates[rates->num_rates++] = basic_mask |
5286                     IEEE80211_CCK_RATE_5MB;
5287
5288         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5289                 rates->supported_rates[rates->num_rates++] = basic_mask |
5290                     IEEE80211_CCK_RATE_11MB;
5291 }
5292
5293 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5294                                     u8 modulation, u32 rate_mask)
5295 {
5296         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5297             IEEE80211_BASIC_RATE_MASK : 0;
5298
5299         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5300                 rates->supported_rates[rates->num_rates++] = basic_mask |
5301                     IEEE80211_OFDM_RATE_6MB;
5302
5303         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5304                 rates->supported_rates[rates->num_rates++] =
5305                     IEEE80211_OFDM_RATE_9MB;
5306
5307         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5308                 rates->supported_rates[rates->num_rates++] = basic_mask |
5309                     IEEE80211_OFDM_RATE_12MB;
5310
5311         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5312                 rates->supported_rates[rates->num_rates++] =
5313                     IEEE80211_OFDM_RATE_18MB;
5314
5315         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5316                 rates->supported_rates[rates->num_rates++] = basic_mask |
5317                     IEEE80211_OFDM_RATE_24MB;
5318
5319         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5320                 rates->supported_rates[rates->num_rates++] =
5321                     IEEE80211_OFDM_RATE_36MB;
5322
5323         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5324                 rates->supported_rates[rates->num_rates++] =
5325                     IEEE80211_OFDM_RATE_48MB;
5326
5327         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5328                 rates->supported_rates[rates->num_rates++] =
5329                     IEEE80211_OFDM_RATE_54MB;
5330 }
5331
5332 struct ipw_network_match {
5333         struct ieee80211_network *network;
5334         struct ipw_supported_rates rates;
5335 };
5336
5337 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5338                                   struct ipw_network_match *match,
5339                                   struct ieee80211_network *network,
5340                                   int roaming)
5341 {
5342         struct ipw_supported_rates rates;
5343
5344         /* Verify that this network's capability is compatible with the
5345          * current mode (AdHoc or Infrastructure) */
5346         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5347              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5348                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5349                                 "capability mismatch.\n",
5350                                 escape_essid(network->ssid, network->ssid_len),
5351                                 MAC_ARG(network->bssid));
5352                 return 0;
5353         }
5354
5355         /* If we do not have an ESSID for this AP, we can not associate with
5356          * it */
5357         if (network->flags & NETWORK_EMPTY_ESSID) {
5358                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5359                                 "because of hidden ESSID.\n",
5360                                 escape_essid(network->ssid, network->ssid_len),
5361                                 MAC_ARG(network->bssid));
5362                 return 0;
5363         }
5364
5365         if (unlikely(roaming)) {
5366                 /* If we are roaming, then ensure check if this is a valid
5367                  * network to try and roam to */
5368                 if ((network->ssid_len != match->network->ssid_len) ||
5369                     memcmp(network->ssid, match->network->ssid,
5370                            network->ssid_len)) {
5371                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5372                                         "because of non-network ESSID.\n",
5373                                         escape_essid(network->ssid,
5374                                                      network->ssid_len),
5375                                         MAC_ARG(network->bssid));
5376                         return 0;
5377                 }
5378         } else {
5379                 /* If an ESSID has been configured then compare the broadcast
5380                  * ESSID to ours */
5381                 if ((priv->config & CFG_STATIC_ESSID) &&
5382                     ((network->ssid_len != priv->essid_len) ||
5383                      memcmp(network->ssid, priv->essid,
5384                             min(network->ssid_len, priv->essid_len)))) {
5385                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5386
5387                         strncpy(escaped,
5388                                 escape_essid(network->ssid, network->ssid_len),
5389                                 sizeof(escaped));
5390                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5391                                         "because of ESSID mismatch: '%s'.\n",
5392                                         escaped, MAC_ARG(network->bssid),
5393                                         escape_essid(priv->essid,
5394                                                      priv->essid_len));
5395                         return 0;
5396                 }
5397         }
5398
5399         /* If the old network rate is better than this one, don't bother
5400          * testing everything else. */
5401
5402         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5403                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5404                                 "current network.\n",
5405                                 escape_essid(match->network->ssid,
5406                                              match->network->ssid_len));
5407                 return 0;
5408         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5409                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5410                                 "current network.\n",
5411                                 escape_essid(match->network->ssid,
5412                                              match->network->ssid_len));
5413                 return 0;
5414         }
5415
5416         /* Now go through and see if the requested network is valid... */
5417         if (priv->ieee->scan_age != 0 &&
5418             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5419                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5420                                 "because of age: %ums.\n",
5421                                 escape_essid(network->ssid, network->ssid_len),
5422                                 MAC_ARG(network->bssid),
5423                                 jiffies_to_msecs(jiffies -
5424                                                  network->last_scanned));
5425                 return 0;
5426         }
5427
5428         if ((priv->config & CFG_STATIC_CHANNEL) &&
5429             (network->channel != priv->channel)) {
5430                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5431                                 "because of channel mismatch: %d != %d.\n",
5432                                 escape_essid(network->ssid, network->ssid_len),
5433                                 MAC_ARG(network->bssid),
5434                                 network->channel, priv->channel);
5435                 return 0;
5436         }
5437
5438         /* Verify privacy compatability */
5439         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5440             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5441                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5442                                 "because of privacy mismatch: %s != %s.\n",
5443                                 escape_essid(network->ssid, network->ssid_len),
5444                                 MAC_ARG(network->bssid),
5445                                 priv->
5446                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5447                                 network->
5448                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5449                                 "off");
5450                 return 0;
5451         }
5452
5453         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5454                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5455                                 "because of the same BSSID match: " MAC_FMT
5456                                 ".\n", escape_essid(network->ssid,
5457                                                     network->ssid_len),
5458                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5459                 return 0;
5460         }
5461
5462         /* Filter out any incompatible freq / mode combinations */
5463         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5464                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5465                                 "because of invalid frequency/mode "
5466                                 "combination.\n",
5467                                 escape_essid(network->ssid, network->ssid_len),
5468                                 MAC_ARG(network->bssid));
5469                 return 0;
5470         }
5471
5472         /* Ensure that the rates supported by the driver are compatible with
5473          * this AP, including verification of basic rates (mandatory) */
5474         if (!ipw_compatible_rates(priv, network, &rates)) {
5475                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5476                                 "because configured rate mask excludes "
5477                                 "AP mandatory rate.\n",
5478                                 escape_essid(network->ssid, network->ssid_len),
5479                                 MAC_ARG(network->bssid));
5480                 return 0;
5481         }
5482
5483         if (rates.num_rates == 0) {
5484                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5485                                 "because of no compatible rates.\n",
5486                                 escape_essid(network->ssid, network->ssid_len),
5487                                 MAC_ARG(network->bssid));
5488                 return 0;
5489         }
5490
5491         /* TODO: Perform any further minimal comparititive tests.  We do not
5492          * want to put too much policy logic here; intelligent scan selection
5493          * should occur within a generic IEEE 802.11 user space tool.  */
5494
5495         /* Set up 'new' AP to this network */
5496         ipw_copy_rates(&match->rates, &rates);
5497         match->network = network;
5498         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5499                         escape_essid(network->ssid, network->ssid_len),
5500                         MAC_ARG(network->bssid));
5501
5502         return 1;
5503 }
5504
5505 static void ipw_merge_adhoc_network(void *data)
5506 {
5507         struct ipw_priv *priv = data;
5508         struct ieee80211_network *network = NULL;
5509         struct ipw_network_match match = {
5510                 .network = priv->assoc_network
5511         };
5512
5513         if ((priv->status & STATUS_ASSOCIATED) &&
5514             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5515                 /* First pass through ROAM process -- look for a better
5516                  * network */
5517                 unsigned long flags;
5518
5519                 spin_lock_irqsave(&priv->ieee->lock, flags);
5520                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5521                         if (network != priv->assoc_network)
5522                                 ipw_find_adhoc_network(priv, &match, network,
5523                                                        1);
5524                 }
5525                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5526
5527                 if (match.network == priv->assoc_network) {
5528                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5529                                         "merge to.\n");
5530                         return;
5531                 }
5532
5533                 mutex_lock(&priv->mutex);
5534                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5535                         IPW_DEBUG_MERGE("remove network %s\n",
5536                                         escape_essid(priv->essid,
5537                                                      priv->essid_len));
5538                         ipw_remove_current_network(priv);
5539                 }
5540
5541                 ipw_disassociate(priv);
5542                 priv->assoc_network = match.network;
5543                 mutex_unlock(&priv->mutex);
5544                 return;
5545         }
5546 }
5547
5548 static int ipw_best_network(struct ipw_priv *priv,
5549                             struct ipw_network_match *match,
5550                             struct ieee80211_network *network, int roaming)
5551 {
5552         struct ipw_supported_rates rates;
5553
5554         /* Verify that this network's capability is compatible with the
5555          * current mode (AdHoc or Infrastructure) */
5556         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5557              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5558             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5559              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5560                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5561                                 "capability mismatch.\n",
5562                                 escape_essid(network->ssid, network->ssid_len),
5563                                 MAC_ARG(network->bssid));
5564                 return 0;
5565         }
5566
5567         /* If we do not have an ESSID for this AP, we can not associate with
5568          * it */
5569         if (network->flags & NETWORK_EMPTY_ESSID) {
5570                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5571                                 "because of hidden ESSID.\n",
5572                                 escape_essid(network->ssid, network->ssid_len),
5573                                 MAC_ARG(network->bssid));
5574                 return 0;
5575         }
5576
5577         if (unlikely(roaming)) {
5578                 /* If we are roaming, then ensure check if this is a valid
5579                  * network to try and roam to */
5580                 if ((network->ssid_len != match->network->ssid_len) ||
5581                     memcmp(network->ssid, match->network->ssid,
5582                            network->ssid_len)) {
5583                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5584                                         "because of non-network ESSID.\n",
5585                                         escape_essid(network->ssid,
5586                                                      network->ssid_len),
5587                                         MAC_ARG(network->bssid));
5588                         return 0;
5589                 }
5590         } else {
5591                 /* If an ESSID has been configured then compare the broadcast
5592                  * ESSID to ours */
5593                 if ((priv->config & CFG_STATIC_ESSID) &&
5594                     ((network->ssid_len != priv->essid_len) ||
5595                      memcmp(network->ssid, priv->essid,
5596                             min(network->ssid_len, priv->essid_len)))) {
5597                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5598                         strncpy(escaped,
5599                                 escape_essid(network->ssid, network->ssid_len),
5600                                 sizeof(escaped));
5601                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5602                                         "because of ESSID mismatch: '%s'.\n",
5603                                         escaped, MAC_ARG(network->bssid),
5604                                         escape_essid(priv->essid,
5605                                                      priv->essid_len));
5606                         return 0;
5607                 }
5608         }
5609
5610         /* If the old network rate is better than this one, don't bother
5611          * testing everything else. */
5612         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5613                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5614                 strncpy(escaped,
5615                         escape_essid(network->ssid, network->ssid_len),
5616                         sizeof(escaped));
5617                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5618                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5619                                 escaped, MAC_ARG(network->bssid),
5620                                 escape_essid(match->network->ssid,
5621                                              match->network->ssid_len),
5622                                 MAC_ARG(match->network->bssid));
5623                 return 0;
5624         }
5625
5626         /* If this network has already had an association attempt within the
5627          * last 3 seconds, do not try and associate again... */
5628         if (network->last_associate &&
5629             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5630                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5631                                 "because of storming (%ums since last "
5632                                 "assoc attempt).\n",
5633                                 escape_essid(network->ssid, network->ssid_len),
5634                                 MAC_ARG(network->bssid),
5635                                 jiffies_to_msecs(jiffies -
5636                                                  network->last_associate));
5637                 return 0;
5638         }
5639
5640         /* Now go through and see if the requested network is valid... */
5641         if (priv->ieee->scan_age != 0 &&
5642             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5643                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5644                                 "because of age: %ums.\n",
5645                                 escape_essid(network->ssid, network->ssid_len),
5646                                 MAC_ARG(network->bssid),
5647                                 jiffies_to_msecs(jiffies -
5648                                                  network->last_scanned));
5649                 return 0;
5650         }
5651
5652         if ((priv->config & CFG_STATIC_CHANNEL) &&
5653             (network->channel != priv->channel)) {
5654                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5655                                 "because of channel mismatch: %d != %d.\n",
5656                                 escape_essid(network->ssid, network->ssid_len),
5657                                 MAC_ARG(network->bssid),
5658                                 network->channel, priv->channel);
5659                 return 0;
5660         }
5661
5662         /* Verify privacy compatability */
5663         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5664             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5665                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5666                                 "because of privacy mismatch: %s != %s.\n",
5667                                 escape_essid(network->ssid, network->ssid_len),
5668                                 MAC_ARG(network->bssid),
5669                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5670                                 "off",
5671                                 network->capability &
5672                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5673                 return 0;
5674         }
5675
5676         if ((priv->config & CFG_STATIC_BSSID) &&
5677             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5678                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5679                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5680                                 escape_essid(network->ssid, network->ssid_len),
5681                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5682                 return 0;
5683         }
5684
5685         /* Filter out any incompatible freq / mode combinations */
5686         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5687                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5688                                 "because of invalid frequency/mode "
5689                                 "combination.\n",
5690                                 escape_essid(network->ssid, network->ssid_len),
5691                                 MAC_ARG(network->bssid));
5692                 return 0;
5693         }
5694
5695         /* Filter out invalid channel in current GEO */
5696         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5697                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5698                                 "because of invalid channel in current GEO\n",
5699                                 escape_essid(network->ssid, network->ssid_len),
5700                                 MAC_ARG(network->bssid));
5701                 return 0;
5702         }
5703
5704         /* Ensure that the rates supported by the driver are compatible with
5705          * this AP, including verification of basic rates (mandatory) */
5706         if (!ipw_compatible_rates(priv, network, &rates)) {
5707                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5708                                 "because configured rate mask excludes "
5709                                 "AP mandatory rate.\n",
5710                                 escape_essid(network->ssid, network->ssid_len),
5711                                 MAC_ARG(network->bssid));
5712                 return 0;
5713         }
5714
5715         if (rates.num_rates == 0) {
5716                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5717                                 "because of no compatible rates.\n",
5718                                 escape_essid(network->ssid, network->ssid_len),
5719                                 MAC_ARG(network->bssid));
5720                 return 0;
5721         }
5722
5723         /* TODO: Perform any further minimal comparititive tests.  We do not
5724          * want to put too much policy logic here; intelligent scan selection
5725          * should occur within a generic IEEE 802.11 user space tool.  */
5726
5727         /* Set up 'new' AP to this network */
5728         ipw_copy_rates(&match->rates, &rates);
5729         match->network = network;
5730
5731         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5732                         escape_essid(network->ssid, network->ssid_len),
5733                         MAC_ARG(network->bssid));
5734
5735         return 1;
5736 }
5737
5738 static void ipw_adhoc_create(struct ipw_priv *priv,
5739                              struct ieee80211_network *network)
5740 {
5741         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5742         int i;
5743
5744         /*
5745          * For the purposes of scanning, we can set our wireless mode
5746          * to trigger scans across combinations of bands, but when it
5747          * comes to creating a new ad-hoc network, we have tell the FW
5748          * exactly which band to use.
5749          *
5750          * We also have the possibility of an invalid channel for the
5751          * chossen band.  Attempting to create a new ad-hoc network
5752          * with an invalid channel for wireless mode will trigger a
5753          * FW fatal error.
5754          *
5755          */
5756         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5757         case IEEE80211_52GHZ_BAND:
5758                 network->mode = IEEE_A;
5759                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5760                 BUG_ON(i == -1);
5761                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5762                         IPW_WARNING("Overriding invalid channel\n");
5763                         priv->channel = geo->a[0].channel;
5764                 }
5765                 break;
5766
5767         case IEEE80211_24GHZ_BAND:
5768                 if (priv->ieee->mode & IEEE_G)
5769                         network->mode = IEEE_G;
5770                 else
5771                         network->mode = IEEE_B;
5772                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5773                 BUG_ON(i == -1);
5774                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5775                         IPW_WARNING("Overriding invalid channel\n");
5776                         priv->channel = geo->bg[0].channel;
5777                 }
5778                 break;
5779
5780         default:
5781                 IPW_WARNING("Overriding invalid channel\n");
5782                 if (priv->ieee->mode & IEEE_A) {
5783                         network->mode = IEEE_A;
5784                         priv->channel = geo->a[0].channel;
5785                 } else if (priv->ieee->mode & IEEE_G) {
5786                         network->mode = IEEE_G;
5787                         priv->channel = geo->bg[0].channel;
5788                 } else {
5789                         network->mode = IEEE_B;
5790                         priv->channel = geo->bg[0].channel;
5791                 }
5792                 break;
5793         }
5794
5795         network->channel = priv->channel;
5796         priv->config |= CFG_ADHOC_PERSIST;
5797         ipw_create_bssid(priv, network->bssid);
5798         network->ssid_len = priv->essid_len;
5799         memcpy(network->ssid, priv->essid, priv->essid_len);
5800         memset(&network->stats, 0, sizeof(network->stats));
5801         network->capability = WLAN_CAPABILITY_IBSS;
5802         if (!(priv->config & CFG_PREAMBLE_LONG))
5803                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5804         if (priv->capability & CAP_PRIVACY_ON)
5805                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5806         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5807         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5808         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5809         memcpy(network->rates_ex,
5810                &priv->rates.supported_rates[network->rates_len],
5811                network->rates_ex_len);
5812         network->last_scanned = 0;
5813         network->flags = 0;
5814         network->last_associate = 0;
5815         network->time_stamp[0] = 0;
5816         network->time_stamp[1] = 0;
5817         network->beacon_interval = 100; /* Default */
5818         network->listen_interval = 10;  /* Default */
5819         network->atim_window = 0;       /* Default */
5820         network->wpa_ie_len = 0;
5821         network->rsn_ie_len = 0;
5822 }
5823
5824 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5825 {
5826         struct ipw_tgi_tx_key key;
5827
5828         if (!(priv->ieee->sec.flags & (1 << index)))
5829                 return;
5830
5831         key.key_id = index;
5832         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5833         key.security_type = type;
5834         key.station_index = 0;  /* always 0 for BSS */
5835         key.flags = 0;
5836         /* 0 for new key; previous value of counter (after fatal error) */
5837         key.tx_counter[0] = 0;
5838         key.tx_counter[1] = 0;
5839
5840         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5841 }
5842
5843 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5844 {
5845         struct ipw_wep_key key;
5846         int i;
5847
5848         key.cmd_id = DINO_CMD_WEP_KEY;
5849         key.seq_num = 0;
5850
5851         /* Note: AES keys cannot be set for multiple times.
5852          * Only set it at the first time. */
5853         for (i = 0; i < 4; i++) {
5854                 key.key_index = i | type;
5855                 if (!(priv->ieee->sec.flags & (1 << i))) {
5856                         key.key_size = 0;
5857                         continue;
5858                 }
5859
5860                 key.key_size = priv->ieee->sec.key_sizes[i];
5861                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5862
5863                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5864         }
5865 }
5866
5867 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5868 {
5869         if (priv->ieee->host_encrypt)
5870                 return;
5871
5872         switch (level) {
5873         case SEC_LEVEL_3:
5874                 priv->sys_config.disable_unicast_decryption = 0;
5875                 priv->ieee->host_decrypt = 0;
5876                 break;
5877         case SEC_LEVEL_2:
5878                 priv->sys_config.disable_unicast_decryption = 1;
5879                 priv->ieee->host_decrypt = 1;
5880                 break;
5881         case SEC_LEVEL_1:
5882                 priv->sys_config.disable_unicast_decryption = 0;
5883                 priv->ieee->host_decrypt = 0;
5884                 break;
5885         case SEC_LEVEL_0:
5886                 priv->sys_config.disable_unicast_decryption = 1;
5887                 break;
5888         default:
5889                 break;
5890         }
5891 }
5892
5893 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5894 {
5895         if (priv->ieee->host_encrypt)
5896                 return;
5897
5898         switch (level) {
5899         case SEC_LEVEL_3:
5900                 priv->sys_config.disable_multicast_decryption = 0;
5901                 break;
5902         case SEC_LEVEL_2:
5903                 priv->sys_config.disable_multicast_decryption = 1;
5904                 break;
5905         case SEC_LEVEL_1:
5906                 priv->sys_config.disable_multicast_decryption = 0;
5907                 break;
5908         case SEC_LEVEL_0:
5909                 priv->sys_config.disable_multicast_decryption = 1;
5910                 break;
5911         default:
5912                 break;
5913         }
5914 }
5915
5916 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5917 {
5918         switch (priv->ieee->sec.level) {
5919         case SEC_LEVEL_3:
5920                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5921                         ipw_send_tgi_tx_key(priv,
5922                                             DCT_FLAG_EXT_SECURITY_CCM,
5923                                             priv->ieee->sec.active_key);
5924
5925                 if (!priv->ieee->host_mc_decrypt)
5926                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5927                 break;
5928         case SEC_LEVEL_2:
5929                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5930                         ipw_send_tgi_tx_key(priv,
5931                                             DCT_FLAG_EXT_SECURITY_TKIP,
5932                                             priv->ieee->sec.active_key);
5933                 break;
5934         case SEC_LEVEL_1:
5935                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5936                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5937                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5938                 break;
5939         case SEC_LEVEL_0:
5940         default:
5941                 break;
5942         }
5943 }
5944
5945 static void ipw_adhoc_check(void *data)
5946 {
5947         struct ipw_priv *priv = data;
5948
5949         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5950             !(priv->config & CFG_ADHOC_PERSIST)) {
5951                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5952                           IPW_DL_STATE | IPW_DL_ASSOC,
5953                           "Missed beacon: %d - disassociate\n",
5954                           priv->missed_adhoc_beacons);
5955                 ipw_remove_current_network(priv);
5956                 ipw_disassociate(priv);
5957                 return;
5958         }
5959
5960         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5961                            priv->assoc_request.beacon_interval);
5962 }
5963
5964 static void ipw_bg_adhoc_check(void *data)
5965 {
5966         struct ipw_priv *priv = data;
5967         mutex_lock(&priv->mutex);
5968         ipw_adhoc_check(data);
5969         mutex_unlock(&priv->mutex);
5970 }
5971
5972 #ifdef CONFIG_IPW2200_DEBUG
5973 static void ipw_debug_config(struct ipw_priv *priv)
5974 {
5975         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5976                        "[CFG 0x%08X]\n", priv->config);
5977         if (priv->config & CFG_STATIC_CHANNEL)
5978                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5979         else
5980                 IPW_DEBUG_INFO("Channel unlocked.\n");
5981         if (priv->config & CFG_STATIC_ESSID)
5982                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5983                                escape_essid(priv->essid, priv->essid_len));
5984         else
5985                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5986         if (priv->config & CFG_STATIC_BSSID)
5987                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5988                                MAC_ARG(priv->bssid));
5989         else
5990                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5991         if (priv->capability & CAP_PRIVACY_ON)
5992                 IPW_DEBUG_INFO("PRIVACY on\n");
5993         else
5994                 IPW_DEBUG_INFO("PRIVACY off\n");
5995         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5996 }
5997 #else
5998 #define ipw_debug_config(x) do {} while (0)
5999 #endif
6000
6001 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6002 {
6003         /* TODO: Verify that this works... */
6004         struct ipw_fixed_rate fr = {
6005                 .tx_rates = priv->rates_mask
6006         };
6007         u32 reg;
6008         u16 mask = 0;
6009
6010         /* Identify 'current FW band' and match it with the fixed
6011          * Tx rates */
6012
6013         switch (priv->ieee->freq_band) {
6014         case IEEE80211_52GHZ_BAND:      /* A only */
6015                 /* IEEE_A */
6016                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6017                         /* Invalid fixed rate mask */
6018                         IPW_DEBUG_WX
6019                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6020                         fr.tx_rates = 0;
6021                         break;
6022                 }
6023
6024                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6025                 break;
6026
6027         default:                /* 2.4Ghz or Mixed */
6028                 /* IEEE_B */
6029                 if (mode == IEEE_B) {
6030                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6031                                 /* Invalid fixed rate mask */
6032                                 IPW_DEBUG_WX
6033                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6034                                 fr.tx_rates = 0;
6035                         }
6036                         break;
6037                 }
6038
6039                 /* IEEE_G */
6040                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6041                                     IEEE80211_OFDM_RATES_MASK)) {
6042                         /* Invalid fixed rate mask */
6043                         IPW_DEBUG_WX
6044                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6045                         fr.tx_rates = 0;
6046                         break;
6047                 }
6048
6049                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6050                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6051                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6052                 }
6053
6054                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6055                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6056                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6057                 }
6058
6059                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6060                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6061                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6062                 }
6063
6064                 fr.tx_rates |= mask;
6065                 break;
6066         }
6067
6068         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6069         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6070 }
6071
6072 static void ipw_abort_scan(struct ipw_priv *priv)
6073 {
6074         int err;
6075
6076         if (priv->status & STATUS_SCAN_ABORTING) {
6077                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6078                 return;
6079         }
6080         priv->status |= STATUS_SCAN_ABORTING;
6081
6082         err = ipw_send_scan_abort(priv);
6083         if (err)
6084                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6085 }
6086
6087 static void ipw_add_scan_channels(struct ipw_priv *priv,
6088                                   struct ipw_scan_request_ext *scan,
6089                                   int scan_type)
6090 {
6091         int channel_index = 0;
6092         const struct ieee80211_geo *geo;
6093         int i;
6094
6095         geo = ieee80211_get_geo(priv->ieee);
6096
6097         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6098                 int start = channel_index;
6099                 for (i = 0; i < geo->a_channels; i++) {
6100                         if ((priv->status & STATUS_ASSOCIATED) &&
6101                             geo->a[i].channel == priv->channel)
6102                                 continue;
6103                         channel_index++;
6104                         scan->channels_list[channel_index] = geo->a[i].channel;
6105                         ipw_set_scan_type(scan, channel_index,
6106                                           geo->a[i].
6107                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6108                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6109                                           scan_type);
6110                 }
6111
6112                 if (start != channel_index) {
6113                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6114                             (channel_index - start);
6115                         channel_index++;
6116                 }
6117         }
6118
6119         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6120                 int start = channel_index;
6121                 if (priv->config & CFG_SPEED_SCAN) {
6122                         int index;
6123                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6124                                 /* nop out the list */
6125                                 [0] = 0
6126                         };
6127
6128                         u8 channel;
6129                         while (channel_index < IPW_SCAN_CHANNELS) {
6130                                 channel =
6131                                     priv->speed_scan[priv->speed_scan_pos];
6132                                 if (channel == 0) {
6133                                         priv->speed_scan_pos = 0;
6134                                         channel = priv->speed_scan[0];
6135                                 }
6136                                 if ((priv->status & STATUS_ASSOCIATED) &&
6137                                     channel == priv->channel) {
6138                                         priv->speed_scan_pos++;
6139                                         continue;
6140                                 }
6141
6142                                 /* If this channel has already been
6143                                  * added in scan, break from loop
6144                                  * and this will be the first channel
6145                                  * in the next scan.
6146                                  */
6147                                 if (channels[channel - 1] != 0)
6148                                         break;
6149
6150                                 channels[channel - 1] = 1;
6151                                 priv->speed_scan_pos++;
6152                                 channel_index++;
6153                                 scan->channels_list[channel_index] = channel;
6154                                 index =
6155                                     ieee80211_channel_to_index(priv->ieee, channel);
6156                                 ipw_set_scan_type(scan, channel_index,
6157                                                   geo->bg[index].
6158                                                   flags &
6159                                                   IEEE80211_CH_PASSIVE_ONLY ?
6160                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6161                                                   : scan_type);
6162                         }
6163                 } else {
6164                         for (i = 0; i < geo->bg_channels; i++) {
6165                                 if ((priv->status & STATUS_ASSOCIATED) &&
6166                                     geo->bg[i].channel == priv->channel)
6167                                         continue;
6168                                 channel_index++;
6169                                 scan->channels_list[channel_index] =
6170                                     geo->bg[i].channel;
6171                                 ipw_set_scan_type(scan, channel_index,
6172                                                   geo->bg[i].
6173                                                   flags &
6174                                                   IEEE80211_CH_PASSIVE_ONLY ?
6175                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6176                                                   : scan_type);
6177                         }
6178                 }
6179
6180                 if (start != channel_index) {
6181                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6182                             (channel_index - start);
6183                 }
6184         }
6185 }
6186
6187 static int ipw_request_scan(struct ipw_priv *priv)
6188 {
6189         struct ipw_scan_request_ext scan;
6190         int err = 0, scan_type;
6191
6192         if (!(priv->status & STATUS_INIT) ||
6193             (priv->status & STATUS_EXIT_PENDING))
6194                 return 0;
6195
6196         mutex_lock(&priv->mutex);
6197
6198         if (priv->status & STATUS_SCANNING) {
6199                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6200                 priv->status |= STATUS_SCAN_PENDING;
6201                 goto done;
6202         }
6203
6204         if (!(priv->status & STATUS_SCAN_FORCED) &&
6205             priv->status & STATUS_SCAN_ABORTING) {
6206                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6207                 priv->status |= STATUS_SCAN_PENDING;
6208                 goto done;
6209         }
6210
6211         if (priv->status & STATUS_RF_KILL_MASK) {
6212                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6213                 priv->status |= STATUS_SCAN_PENDING;
6214                 goto done;
6215         }
6216
6217         memset(&scan, 0, sizeof(scan));
6218
6219         if (priv->config & CFG_SPEED_SCAN)
6220                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6221                     cpu_to_le16(30);
6222         else
6223                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6224                     cpu_to_le16(20);
6225
6226         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6227             cpu_to_le16(20);
6228         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6229
6230         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6231
6232 #ifdef CONFIG_IPW2200_MONITOR
6233         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6234                 u8 channel;
6235                 u8 band = 0;
6236
6237                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6238                 case IEEE80211_52GHZ_BAND:
6239                         band = (u8) (IPW_A_MODE << 6) | 1;
6240                         channel = priv->channel;
6241                         break;
6242
6243                 case IEEE80211_24GHZ_BAND:
6244                         band = (u8) (IPW_B_MODE << 6) | 1;
6245                         channel = priv->channel;
6246                         break;
6247
6248                 default:
6249                         band = (u8) (IPW_B_MODE << 6) | 1;
6250                         channel = 9;
6251                         break;
6252                 }
6253
6254                 scan.channels_list[0] = band;
6255                 scan.channels_list[1] = channel;
6256                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6257
6258                 /* NOTE:  The card will sit on this channel for this time
6259                  * period.  Scan aborts are timing sensitive and frequently
6260                  * result in firmware restarts.  As such, it is best to
6261                  * set a small dwell_time here and just keep re-issuing
6262                  * scans.  Otherwise fast channel hopping will not actually
6263                  * hop channels.
6264                  *
6265                  * TODO: Move SPEED SCAN support to all modes and bands */
6266                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6267                     cpu_to_le16(2000);
6268         } else {
6269 #endif                          /* CONFIG_IPW2200_MONITOR */
6270                 /* If we are roaming, then make this a directed scan for the
6271                  * current network.  Otherwise, ensure that every other scan
6272                  * is a fast channel hop scan */
6273                 if ((priv->status & STATUS_ROAMING)
6274                     || (!(priv->status & STATUS_ASSOCIATED)
6275                         && (priv->config & CFG_STATIC_ESSID)
6276                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6277                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6278                         if (err) {
6279                                 IPW_DEBUG_HC("Attempt to send SSID command "
6280                                              "failed.\n");
6281                                 goto done;
6282                         }
6283
6284                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6285                 } else
6286                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6287
6288                 ipw_add_scan_channels(priv, &scan, scan_type);
6289 #ifdef CONFIG_IPW2200_MONITOR
6290         }
6291 #endif
6292
6293         err = ipw_send_scan_request_ext(priv, &scan);
6294         if (err) {
6295                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6296                 goto done;
6297         }
6298
6299         priv->status |= STATUS_SCANNING;
6300         priv->status &= ~STATUS_SCAN_PENDING;
6301         queue_delayed_work(priv->workqueue, &priv->scan_check,
6302                            IPW_SCAN_CHECK_WATCHDOG);
6303       done:
6304         mutex_unlock(&priv->mutex);
6305         return err;
6306 }
6307
6308 static void ipw_bg_abort_scan(void *data)
6309 {
6310         struct ipw_priv *priv = data;
6311         mutex_lock(&priv->mutex);
6312         ipw_abort_scan(data);
6313         mutex_unlock(&priv->mutex);
6314 }
6315
6316 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6317 {
6318         /* This is called when wpa_supplicant loads and closes the driver
6319          * interface. */
6320         priv->ieee->wpa_enabled = value;
6321         return 0;
6322 }
6323
6324 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6325 {
6326         struct ieee80211_device *ieee = priv->ieee;
6327         struct ieee80211_security sec = {
6328                 .flags = SEC_AUTH_MODE,
6329         };
6330         int ret = 0;
6331
6332         if (value & IW_AUTH_ALG_SHARED_KEY) {
6333                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6334                 ieee->open_wep = 0;
6335         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6336                 sec.auth_mode = WLAN_AUTH_OPEN;
6337                 ieee->open_wep = 1;
6338         } else if (value & IW_AUTH_ALG_LEAP) {
6339                 sec.auth_mode = WLAN_AUTH_LEAP;
6340                 ieee->open_wep = 1;
6341         } else
6342                 return -EINVAL;
6343
6344         if (ieee->set_security)
6345                 ieee->set_security(ieee->dev, &sec);
6346         else
6347                 ret = -EOPNOTSUPP;
6348
6349         return ret;
6350 }
6351
6352 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6353                                 int wpa_ie_len)
6354 {
6355         /* make sure WPA is enabled */
6356         ipw_wpa_enable(priv, 1);
6357 }
6358
6359 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6360                             char *capabilities, int length)
6361 {
6362         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6363
6364         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6365                                 capabilities);
6366 }
6367
6368 /*
6369  * WE-18 support
6370  */
6371
6372 /* SIOCSIWGENIE */
6373 static int ipw_wx_set_genie(struct net_device *dev,
6374                             struct iw_request_info *info,
6375                             union iwreq_data *wrqu, char *extra)
6376 {
6377         struct ipw_priv *priv = ieee80211_priv(dev);
6378         struct ieee80211_device *ieee = priv->ieee;
6379         u8 *buf;
6380         int err = 0;
6381
6382         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6383             (wrqu->data.length && extra == NULL))
6384                 return -EINVAL;
6385
6386         if (wrqu->data.length) {
6387                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6388                 if (buf == NULL) {
6389                         err = -ENOMEM;
6390                         goto out;
6391                 }
6392
6393                 memcpy(buf, extra, wrqu->data.length);
6394                 kfree(ieee->wpa_ie);
6395                 ieee->wpa_ie = buf;
6396                 ieee->wpa_ie_len = wrqu->data.length;
6397         } else {
6398                 kfree(ieee->wpa_ie);
6399                 ieee->wpa_ie = NULL;
6400                 ieee->wpa_ie_len = 0;
6401         }
6402
6403         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6404       out:
6405         return err;
6406 }
6407
6408 /* SIOCGIWGENIE */
6409 static int ipw_wx_get_genie(struct net_device *dev,
6410                             struct iw_request_info *info,
6411                             union iwreq_data *wrqu, char *extra)
6412 {
6413         struct ipw_priv *priv = ieee80211_priv(dev);
6414         struct ieee80211_device *ieee = priv->ieee;
6415         int err = 0;
6416
6417         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6418                 wrqu->data.length = 0;
6419                 goto out;
6420         }
6421
6422         if (wrqu->data.length < ieee->wpa_ie_len) {
6423                 err = -E2BIG;
6424                 goto out;
6425         }
6426
6427         wrqu->data.length = ieee->wpa_ie_len;
6428         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6429
6430       out:
6431         return err;
6432 }
6433
6434 static int wext_cipher2level(int cipher)
6435 {
6436         switch (cipher) {
6437         case IW_AUTH_CIPHER_NONE:
6438                 return SEC_LEVEL_0;
6439         case IW_AUTH_CIPHER_WEP40:
6440         case IW_AUTH_CIPHER_WEP104:
6441                 return SEC_LEVEL_1;
6442         case IW_AUTH_CIPHER_TKIP:
6443                 return SEC_LEVEL_2;
6444         case IW_AUTH_CIPHER_CCMP:
6445                 return SEC_LEVEL_3;
6446         default:
6447                 return -1;
6448         }
6449 }
6450
6451 /* SIOCSIWAUTH */
6452 static int ipw_wx_set_auth(struct net_device *dev,
6453                            struct iw_request_info *info,
6454                            union iwreq_data *wrqu, char *extra)
6455 {
6456         struct ipw_priv *priv = ieee80211_priv(dev);
6457         struct ieee80211_device *ieee = priv->ieee;
6458         struct iw_param *param = &wrqu->param;
6459         struct ieee80211_crypt_data *crypt;
6460         unsigned long flags;
6461         int ret = 0;
6462
6463         switch (param->flags & IW_AUTH_INDEX) {
6464         case IW_AUTH_WPA_VERSION:
6465                 break;
6466         case IW_AUTH_CIPHER_PAIRWISE:
6467                 ipw_set_hw_decrypt_unicast(priv,
6468                                            wext_cipher2level(param->value));
6469                 break;
6470         case IW_AUTH_CIPHER_GROUP:
6471                 ipw_set_hw_decrypt_multicast(priv,
6472                                              wext_cipher2level(param->value));
6473                 break;
6474         case IW_AUTH_KEY_MGMT:
6475                 /*
6476                  * ipw2200 does not use these parameters
6477                  */
6478                 break;
6479
6480         case IW_AUTH_TKIP_COUNTERMEASURES:
6481                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6482                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6483                         break;
6484
6485                 flags = crypt->ops->get_flags(crypt->priv);
6486
6487                 if (param->value)
6488                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6489                 else
6490                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6491
6492                 crypt->ops->set_flags(flags, crypt->priv);
6493
6494                 break;
6495
6496         case IW_AUTH_DROP_UNENCRYPTED:{
6497                         /* HACK:
6498                          *
6499                          * wpa_supplicant calls set_wpa_enabled when the driver
6500                          * is loaded and unloaded, regardless of if WPA is being
6501                          * used.  No other calls are made which can be used to
6502                          * determine if encryption will be used or not prior to
6503                          * association being expected.  If encryption is not being
6504                          * used, drop_unencrypted is set to false, else true -- we
6505                          * can use this to determine if the CAP_PRIVACY_ON bit should
6506                          * be set.
6507                          */
6508                         struct ieee80211_security sec = {
6509                                 .flags = SEC_ENABLED,
6510                                 .enabled = param->value,
6511                         };
6512                         priv->ieee->drop_unencrypted = param->value;
6513                         /* We only change SEC_LEVEL for open mode. Others
6514                          * are set by ipw_wpa_set_encryption.
6515                          */
6516                         if (!param->value) {
6517                                 sec.flags |= SEC_LEVEL;
6518                                 sec.level = SEC_LEVEL_0;
6519                         } else {
6520                                 sec.flags |= SEC_LEVEL;
6521                                 sec.level = SEC_LEVEL_1;
6522                         }
6523                         if (priv->ieee->set_security)
6524                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6525                         break;
6526                 }
6527
6528         case IW_AUTH_80211_AUTH_ALG:
6529                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6530                 break;
6531
6532         case IW_AUTH_WPA_ENABLED:
6533                 ret = ipw_wpa_enable(priv, param->value);
6534                 ipw_disassociate(priv);
6535                 break;
6536
6537         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6538                 ieee->ieee802_1x = param->value;
6539                 break;
6540
6541         case IW_AUTH_PRIVACY_INVOKED:
6542                 ieee->privacy_invoked = param->value;
6543                 break;
6544
6545         default:
6546                 return -EOPNOTSUPP;
6547         }
6548         return ret;
6549 }
6550
6551 /* SIOCGIWAUTH */
6552 static int ipw_wx_get_auth(struct net_device *dev,
6553                            struct iw_request_info *info,
6554                            union iwreq_data *wrqu, char *extra)
6555 {
6556         struct ipw_priv *priv = ieee80211_priv(dev);
6557         struct ieee80211_device *ieee = priv->ieee;
6558         struct ieee80211_crypt_data *crypt;
6559         struct iw_param *param = &wrqu->param;
6560         int ret = 0;
6561
6562         switch (param->flags & IW_AUTH_INDEX) {
6563         case IW_AUTH_WPA_VERSION:
6564         case IW_AUTH_CIPHER_PAIRWISE:
6565         case IW_AUTH_CIPHER_GROUP:
6566         case IW_AUTH_KEY_MGMT:
6567                 /*
6568                  * wpa_supplicant will control these internally
6569                  */
6570                 ret = -EOPNOTSUPP;
6571                 break;
6572
6573         case IW_AUTH_TKIP_COUNTERMEASURES:
6574                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6575                 if (!crypt || !crypt->ops->get_flags)
6576                         break;
6577
6578                 param->value = (crypt->ops->get_flags(crypt->priv) &
6579                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6580
6581                 break;
6582
6583         case IW_AUTH_DROP_UNENCRYPTED:
6584                 param->value = ieee->drop_unencrypted;
6585                 break;
6586
6587         case IW_AUTH_80211_AUTH_ALG:
6588                 param->value = ieee->sec.auth_mode;
6589                 break;
6590
6591         case IW_AUTH_WPA_ENABLED:
6592                 param->value = ieee->wpa_enabled;
6593                 break;
6594
6595         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6596                 param->value = ieee->ieee802_1x;
6597                 break;
6598
6599         case IW_AUTH_ROAMING_CONTROL:
6600         case IW_AUTH_PRIVACY_INVOKED:
6601                 param->value = ieee->privacy_invoked;
6602                 break;
6603
6604         default:
6605                 return -EOPNOTSUPP;
6606         }
6607         return 0;
6608 }
6609
6610 /* SIOCSIWENCODEEXT */
6611 static int ipw_wx_set_encodeext(struct net_device *dev,
6612                                 struct iw_request_info *info,
6613                                 union iwreq_data *wrqu, char *extra)
6614 {
6615         struct ipw_priv *priv = ieee80211_priv(dev);
6616         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6617
6618         if (hwcrypto) {
6619                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6620                         /* IPW HW can't build TKIP MIC,
6621                            host decryption still needed */
6622                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6623                                 priv->ieee->host_mc_decrypt = 1;
6624                         else {
6625                                 priv->ieee->host_encrypt = 0;
6626                                 priv->ieee->host_encrypt_msdu = 1;
6627                                 priv->ieee->host_decrypt = 1;
6628                         }
6629                 } else {
6630                         priv->ieee->host_encrypt = 0;
6631                         priv->ieee->host_encrypt_msdu = 0;
6632                         priv->ieee->host_decrypt = 0;
6633                         priv->ieee->host_mc_decrypt = 0;
6634                 }
6635         }
6636
6637         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6638 }
6639
6640 /* SIOCGIWENCODEEXT */
6641 static int ipw_wx_get_encodeext(struct net_device *dev,
6642                                 struct iw_request_info *info,
6643                                 union iwreq_data *wrqu, char *extra)
6644 {
6645         struct ipw_priv *priv = ieee80211_priv(dev);
6646         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6647 }
6648
6649 /* SIOCSIWMLME */
6650 static int ipw_wx_set_mlme(struct net_device *dev,
6651                            struct iw_request_info *info,
6652                            union iwreq_data *wrqu, char *extra)
6653 {
6654         struct ipw_priv *priv = ieee80211_priv(dev);
6655         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6656         u16 reason;
6657
6658         reason = cpu_to_le16(mlme->reason_code);
6659
6660         switch (mlme->cmd) {
6661         case IW_MLME_DEAUTH:
6662                 /* silently ignore */
6663                 break;
6664
6665         case IW_MLME_DISASSOC:
6666                 ipw_disassociate(priv);
6667                 break;
6668
6669         default:
6670                 return -EOPNOTSUPP;
6671         }
6672         return 0;
6673 }
6674
6675 #ifdef CONFIG_IPW2200_QOS
6676
6677 /* QoS */
6678 /*
6679 * get the modulation type of the current network or
6680 * the card current mode
6681 */
6682 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6683 {
6684         u8 mode = 0;
6685
6686         if (priv->status & STATUS_ASSOCIATED) {
6687                 unsigned long flags;
6688
6689                 spin_lock_irqsave(&priv->ieee->lock, flags);
6690                 mode = priv->assoc_network->mode;
6691                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6692         } else {
6693                 mode = priv->ieee->mode;
6694         }
6695         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6696         return mode;
6697 }
6698
6699 /*
6700 * Handle management frame beacon and probe response
6701 */
6702 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6703                                          int active_network,
6704                                          struct ieee80211_network *network)
6705 {
6706         u32 size = sizeof(struct ieee80211_qos_parameters);
6707
6708         if (network->capability & WLAN_CAPABILITY_IBSS)
6709                 network->qos_data.active = network->qos_data.supported;
6710
6711         if (network->flags & NETWORK_HAS_QOS_MASK) {
6712                 if (active_network &&
6713                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6714                         network->qos_data.active = network->qos_data.supported;
6715
6716                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6717                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6718                     (network->qos_data.old_param_count !=
6719                      network->qos_data.param_count)) {
6720                         network->qos_data.old_param_count =
6721                             network->qos_data.param_count;
6722                         schedule_work(&priv->qos_activate);
6723                         IPW_DEBUG_QOS("QoS parameters change call "
6724                                       "qos_activate\n");
6725                 }
6726         } else {
6727                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6728                         memcpy(&network->qos_data.parameters,
6729                                &def_parameters_CCK, size);
6730                 else
6731                         memcpy(&network->qos_data.parameters,
6732                                &def_parameters_OFDM, size);
6733
6734                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6735                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6736                         schedule_work(&priv->qos_activate);
6737                 }
6738
6739                 network->qos_data.active = 0;
6740                 network->qos_data.supported = 0;
6741         }
6742         if ((priv->status & STATUS_ASSOCIATED) &&
6743             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6744                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6745                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6746                             !(network->flags & NETWORK_EMPTY_ESSID))
6747                                 if ((network->ssid_len ==
6748                                      priv->assoc_network->ssid_len) &&
6749                                     !memcmp(network->ssid,
6750                                             priv->assoc_network->ssid,
6751                                             network->ssid_len)) {
6752                                         queue_work(priv->workqueue,
6753                                                    &priv->merge_networks);
6754                                 }
6755         }
6756
6757         return 0;
6758 }
6759
6760 /*
6761 * This function set up the firmware to support QoS. It sends
6762 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6763 */
6764 static int ipw_qos_activate(struct ipw_priv *priv,
6765                             struct ieee80211_qos_data *qos_network_data)
6766 {
6767         int err;
6768         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6769         struct ieee80211_qos_parameters *active_one = NULL;
6770         u32 size = sizeof(struct ieee80211_qos_parameters);
6771         u32 burst_duration;
6772         int i;
6773         u8 type;
6774
6775         type = ipw_qos_current_mode(priv);
6776
6777         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6778         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6779         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6780         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6781
6782         if (qos_network_data == NULL) {
6783                 if (type == IEEE_B) {
6784                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6785                         active_one = &def_parameters_CCK;
6786                 } else
6787                         active_one = &def_parameters_OFDM;
6788
6789                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6790                 burst_duration = ipw_qos_get_burst_duration(priv);
6791                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6792                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6793                             (u16) burst_duration;
6794         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6795                 if (type == IEEE_B) {
6796                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6797                                       type);
6798                         if (priv->qos_data.qos_enable == 0)
6799                                 active_one = &def_parameters_CCK;
6800                         else
6801                                 active_one = priv->qos_data.def_qos_parm_CCK;
6802                 } else {
6803                         if (priv->qos_data.qos_enable == 0)
6804                                 active_one = &def_parameters_OFDM;
6805                         else
6806                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6807                 }
6808                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6809         } else {
6810                 unsigned long flags;
6811                 int active;
6812
6813                 spin_lock_irqsave(&priv->ieee->lock, flags);
6814                 active_one = &(qos_network_data->parameters);
6815                 qos_network_data->old_param_count =
6816                     qos_network_data->param_count;
6817                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6818                 active = qos_network_data->supported;
6819                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6820
6821                 if (active == 0) {
6822                         burst_duration = ipw_qos_get_burst_duration(priv);
6823                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6824                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6825                                     tx_op_limit[i] = (u16) burst_duration;
6826                 }
6827         }
6828
6829         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6830         err = ipw_send_qos_params_command(priv,
6831                                           (struct ieee80211_qos_parameters *)
6832                                           &(qos_parameters[0]));
6833         if (err)
6834                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6835
6836         return err;
6837 }
6838
6839 /*
6840 * send IPW_CMD_WME_INFO to the firmware
6841 */
6842 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6843 {
6844         int ret = 0;
6845         struct ieee80211_qos_information_element qos_info;
6846
6847         if (priv == NULL)
6848                 return -1;
6849
6850         qos_info.elementID = QOS_ELEMENT_ID;
6851         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6852
6853         qos_info.version = QOS_VERSION_1;
6854         qos_info.ac_info = 0;
6855
6856         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6857         qos_info.qui_type = QOS_OUI_TYPE;
6858         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6859
6860         ret = ipw_send_qos_info_command(priv, &qos_info);
6861         if (ret != 0) {
6862                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6863         }
6864         return ret;
6865 }
6866
6867 /*
6868 * Set the QoS parameter with the association request structure
6869 */
6870 static int ipw_qos_association(struct ipw_priv *priv,
6871                                struct ieee80211_network *network)
6872 {
6873         int err = 0;
6874         struct ieee80211_qos_data *qos_data = NULL;
6875         struct ieee80211_qos_data ibss_data = {
6876                 .supported = 1,
6877                 .active = 1,
6878         };
6879
6880         switch (priv->ieee->iw_mode) {
6881         case IW_MODE_ADHOC:
6882                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6883
6884                 qos_data = &ibss_data;
6885                 break;
6886
6887         case IW_MODE_INFRA:
6888                 qos_data = &network->qos_data;
6889                 break;
6890
6891         default:
6892                 BUG();
6893                 break;
6894         }
6895
6896         err = ipw_qos_activate(priv, qos_data);
6897         if (err) {
6898                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6899                 return err;
6900         }
6901
6902         if (priv->qos_data.qos_enable && qos_data->supported) {
6903                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6904                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6905                 return ipw_qos_set_info_element(priv);
6906         }
6907
6908         return 0;
6909 }
6910
6911 /*
6912 * handling the beaconing responces. if we get different QoS setting
6913 * of the network from the the associated setting adjust the QoS
6914 * setting
6915 */
6916 static int ipw_qos_association_resp(struct ipw_priv *priv,
6917                                     struct ieee80211_network *network)
6918 {
6919         int ret = 0;
6920         unsigned long flags;
6921         u32 size = sizeof(struct ieee80211_qos_parameters);
6922         int set_qos_param = 0;
6923
6924         if ((priv == NULL) || (network == NULL) ||
6925             (priv->assoc_network == NULL))
6926                 return ret;
6927
6928         if (!(priv->status & STATUS_ASSOCIATED))
6929                 return ret;
6930
6931         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6932                 return ret;
6933
6934         spin_lock_irqsave(&priv->ieee->lock, flags);
6935         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6936                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6937                        sizeof(struct ieee80211_qos_data));
6938                 priv->assoc_network->qos_data.active = 1;
6939                 if ((network->qos_data.old_param_count !=
6940                      network->qos_data.param_count)) {
6941                         set_qos_param = 1;
6942                         network->qos_data.old_param_count =
6943                             network->qos_data.param_count;
6944                 }
6945
6946         } else {
6947                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6948                         memcpy(&priv->assoc_network->qos_data.parameters,
6949                                &def_parameters_CCK, size);
6950                 else
6951                         memcpy(&priv->assoc_network->qos_data.parameters,
6952                                &def_parameters_OFDM, size);
6953                 priv->assoc_network->qos_data.active = 0;
6954                 priv->assoc_network->qos_data.supported = 0;
6955                 set_qos_param = 1;
6956         }
6957
6958         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6959
6960         if (set_qos_param == 1)
6961                 schedule_work(&priv->qos_activate);
6962
6963         return ret;
6964 }
6965
6966 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6967 {
6968         u32 ret = 0;
6969
6970         if ((priv == NULL))
6971                 return 0;
6972
6973         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6974                 ret = priv->qos_data.burst_duration_CCK;
6975         else
6976                 ret = priv->qos_data.burst_duration_OFDM;
6977
6978         return ret;
6979 }
6980
6981 /*
6982 * Initialize the setting of QoS global
6983 */
6984 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6985                          int burst_enable, u32 burst_duration_CCK,
6986                          u32 burst_duration_OFDM)
6987 {
6988         priv->qos_data.qos_enable = enable;
6989
6990         if (priv->qos_data.qos_enable) {
6991                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6992                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6993                 IPW_DEBUG_QOS("QoS is enabled\n");
6994         } else {
6995                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6996                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6997                 IPW_DEBUG_QOS("QoS is not enabled\n");
6998         }
6999
7000         priv->qos_data.burst_enable = burst_enable;
7001
7002         if (burst_enable) {
7003                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7004                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7005         } else {
7006                 priv->qos_data.burst_duration_CCK = 0;
7007                 priv->qos_data.burst_duration_OFDM = 0;
7008         }
7009 }
7010
7011 /*
7012 * map the packet priority to the right TX Queue
7013 */
7014 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7015 {
7016         if (priority > 7 || !priv->qos_data.qos_enable)
7017                 priority = 0;
7018
7019         return from_priority_to_tx_queue[priority] - 1;
7020 }
7021
7022 static int ipw_is_qos_active(struct net_device *dev,
7023                              struct sk_buff *skb)
7024 {
7025         struct ipw_priv *priv = ieee80211_priv(dev);
7026         struct ieee80211_qos_data *qos_data = NULL;
7027         int active, supported;
7028         u8 *daddr = skb->data + ETH_ALEN;
7029         int unicast = !is_multicast_ether_addr(daddr);
7030
7031         if (!(priv->status & STATUS_ASSOCIATED))
7032                 return 0;
7033
7034         qos_data = &priv->assoc_network->qos_data;
7035
7036         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7037                 if (unicast == 0)
7038                         qos_data->active = 0;
7039                 else
7040                         qos_data->active = qos_data->supported;
7041         }
7042         active = qos_data->active;
7043         supported = qos_data->supported;
7044         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7045                       "unicast %d\n",
7046                       priv->qos_data.qos_enable, active, supported, unicast);
7047         if (active && priv->qos_data.qos_enable)
7048                 return 1;
7049
7050         return 0;
7051
7052 }
7053 /*
7054 * add QoS parameter to the TX command
7055 */
7056 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7057                                         u16 priority,
7058                                         struct tfd_data *tfd)
7059 {
7060         int tx_queue_id = 0;
7061
7062
7063         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7064         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7065
7066         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7067                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7068                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= CTRL_QOS_NO_ACK;
7069         }
7070         return 0;
7071 }
7072
7073 /*
7074 * background support to run QoS activate functionality
7075 */
7076 static void ipw_bg_qos_activate(void *data)
7077 {
7078         struct ipw_priv *priv = data;
7079
7080         if (priv == NULL)
7081                 return;
7082
7083         mutex_lock(&priv->mutex);
7084
7085         if (priv->status & STATUS_ASSOCIATED)
7086                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7087
7088         mutex_unlock(&priv->mutex);
7089 }
7090
7091 static int ipw_handle_probe_response(struct net_device *dev,
7092                                      struct ieee80211_probe_response *resp,
7093                                      struct ieee80211_network *network)
7094 {
7095         struct ipw_priv *priv = ieee80211_priv(dev);
7096         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7097                               (network == priv->assoc_network));
7098
7099         ipw_qos_handle_probe_response(priv, active_network, network);
7100
7101         return 0;
7102 }
7103
7104 static int ipw_handle_beacon(struct net_device *dev,
7105                              struct ieee80211_beacon *resp,
7106                              struct ieee80211_network *network)
7107 {
7108         struct ipw_priv *priv = ieee80211_priv(dev);
7109         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7110                               (network == priv->assoc_network));
7111
7112         ipw_qos_handle_probe_response(priv, active_network, network);
7113
7114         return 0;
7115 }
7116
7117 static int ipw_handle_assoc_response(struct net_device *dev,
7118                                      struct ieee80211_assoc_response *resp,
7119                                      struct ieee80211_network *network)
7120 {
7121         struct ipw_priv *priv = ieee80211_priv(dev);
7122         ipw_qos_association_resp(priv, network);
7123         return 0;
7124 }
7125
7126 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7127                                        *qos_param)
7128 {
7129         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7130                                 sizeof(*qos_param) * 3, qos_param);
7131 }
7132
7133 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7134                                      *qos_param)
7135 {
7136         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7137                                 qos_param);
7138 }
7139
7140 #endif                          /* CONFIG_IPW2200_QOS */
7141
7142 static int ipw_associate_network(struct ipw_priv *priv,
7143                                  struct ieee80211_network *network,
7144                                  struct ipw_supported_rates *rates, int roaming)
7145 {
7146         int err;
7147
7148         if (priv->config & CFG_FIXED_RATE)
7149                 ipw_set_fixed_rate(priv, network->mode);
7150
7151         if (!(priv->config & CFG_STATIC_ESSID)) {
7152                 priv->essid_len = min(network->ssid_len,
7153                                       (u8) IW_ESSID_MAX_SIZE);
7154                 memcpy(priv->essid, network->ssid, priv->essid_len);
7155         }
7156
7157         network->last_associate = jiffies;
7158
7159         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7160         priv->assoc_request.channel = network->channel;
7161         priv->assoc_request.auth_key = 0;
7162
7163         if ((priv->capability & CAP_PRIVACY_ON) &&
7164             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7165                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7166                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7167
7168                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7169                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7170
7171         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7172                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7173                 priv->assoc_request.auth_type = AUTH_LEAP;
7174         else
7175                 priv->assoc_request.auth_type = AUTH_OPEN;
7176
7177         if (priv->ieee->wpa_ie_len) {
7178                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7179                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7180                                  priv->ieee->wpa_ie_len);
7181         }
7182
7183         /*
7184          * It is valid for our ieee device to support multiple modes, but
7185          * when it comes to associating to a given network we have to choose
7186          * just one mode.
7187          */
7188         if (network->mode & priv->ieee->mode & IEEE_A)
7189                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7190         else if (network->mode & priv->ieee->mode & IEEE_G)
7191                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7192         else if (network->mode & priv->ieee->mode & IEEE_B)
7193                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7194
7195         priv->assoc_request.capability = network->capability;
7196         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7197             && !(priv->config & CFG_PREAMBLE_LONG)) {
7198                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7199         } else {
7200                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7201
7202                 /* Clear the short preamble if we won't be supporting it */
7203                 priv->assoc_request.capability &=
7204                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7205         }
7206
7207         /* Clear capability bits that aren't used in Ad Hoc */
7208         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7209                 priv->assoc_request.capability &=
7210                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7211
7212         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7213                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7214                         roaming ? "Rea" : "A",
7215                         escape_essid(priv->essid, priv->essid_len),
7216                         network->channel,
7217                         ipw_modes[priv->assoc_request.ieee_mode],
7218                         rates->num_rates,
7219                         (priv->assoc_request.preamble_length ==
7220                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7221                         network->capability &
7222                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7223                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7224                         priv->capability & CAP_PRIVACY_ON ?
7225                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7226                          "(open)") : "",
7227                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7228                         priv->capability & CAP_PRIVACY_ON ?
7229                         '1' + priv->ieee->sec.active_key : '.',
7230                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7231
7232         priv->assoc_request.beacon_interval = network->beacon_interval;
7233         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7234             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7235                 priv->assoc_request.assoc_type = HC_IBSS_START;
7236                 priv->assoc_request.assoc_tsf_msw = 0;
7237                 priv->assoc_request.assoc_tsf_lsw = 0;
7238         } else {
7239                 if (unlikely(roaming))
7240                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7241                 else
7242                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7243                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7244                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7245         }
7246
7247         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7248
7249         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7250                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7251                 priv->assoc_request.atim_window = network->atim_window;
7252         } else {
7253                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7254                 priv->assoc_request.atim_window = 0;
7255         }
7256
7257         priv->assoc_request.listen_interval = network->listen_interval;
7258
7259         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7260         if (err) {
7261                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7262                 return err;
7263         }
7264
7265         rates->ieee_mode = priv->assoc_request.ieee_mode;
7266         rates->purpose = IPW_RATE_CONNECT;
7267         ipw_send_supported_rates(priv, rates);
7268
7269         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7270                 priv->sys_config.dot11g_auto_detection = 1;
7271         else
7272                 priv->sys_config.dot11g_auto_detection = 0;
7273
7274         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7275                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7276         else
7277                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7278
7279         err = ipw_send_system_config(priv);
7280         if (err) {
7281                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7282                 return err;
7283         }
7284
7285         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7286         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7287         if (err) {
7288                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7289                 return err;
7290         }
7291
7292         /*
7293          * If preemption is enabled, it is possible for the association
7294          * to complete before we return from ipw_send_associate.  Therefore
7295          * we have to be sure and update our priviate data first.
7296          */
7297         priv->channel = network->channel;
7298         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7299         priv->status |= STATUS_ASSOCIATING;
7300         priv->status &= ~STATUS_SECURITY_UPDATED;
7301
7302         priv->assoc_network = network;
7303
7304 #ifdef CONFIG_IPW2200_QOS
7305         ipw_qos_association(priv, network);
7306 #endif
7307
7308         err = ipw_send_associate(priv, &priv->assoc_request);
7309         if (err) {
7310                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7311                 return err;
7312         }
7313
7314         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7315                   escape_essid(priv->essid, priv->essid_len),
7316                   MAC_ARG(priv->bssid));
7317
7318         return 0;
7319 }
7320
7321 static void ipw_roam(void *data)
7322 {
7323         struct ipw_priv *priv = data;
7324         struct ieee80211_network *network = NULL;
7325         struct ipw_network_match match = {
7326                 .network = priv->assoc_network
7327         };
7328
7329         /* The roaming process is as follows:
7330          *
7331          * 1.  Missed beacon threshold triggers the roaming process by
7332          *     setting the status ROAM bit and requesting a scan.
7333          * 2.  When the scan completes, it schedules the ROAM work
7334          * 3.  The ROAM work looks at all of the known networks for one that
7335          *     is a better network than the currently associated.  If none
7336          *     found, the ROAM process is over (ROAM bit cleared)
7337          * 4.  If a better network is found, a disassociation request is
7338          *     sent.
7339          * 5.  When the disassociation completes, the roam work is again
7340          *     scheduled.  The second time through, the driver is no longer
7341          *     associated, and the newly selected network is sent an
7342          *     association request.
7343          * 6.  At this point ,the roaming process is complete and the ROAM
7344          *     status bit is cleared.
7345          */
7346
7347         /* If we are no longer associated, and the roaming bit is no longer
7348          * set, then we are not actively roaming, so just return */
7349         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7350                 return;
7351
7352         if (priv->status & STATUS_ASSOCIATED) {
7353                 /* First pass through ROAM process -- look for a better
7354                  * network */
7355                 unsigned long flags;
7356                 u8 rssi = priv->assoc_network->stats.rssi;
7357                 priv->assoc_network->stats.rssi = -128;
7358                 spin_lock_irqsave(&priv->ieee->lock, flags);
7359                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7360                         if (network != priv->assoc_network)
7361                                 ipw_best_network(priv, &match, network, 1);
7362                 }
7363                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7364                 priv->assoc_network->stats.rssi = rssi;
7365
7366                 if (match.network == priv->assoc_network) {
7367                         IPW_DEBUG_ASSOC("No better APs in this network to "
7368                                         "roam to.\n");
7369                         priv->status &= ~STATUS_ROAMING;
7370                         ipw_debug_config(priv);
7371                         return;
7372                 }
7373
7374                 ipw_send_disassociate(priv, 1);
7375                 priv->assoc_network = match.network;
7376
7377                 return;
7378         }
7379
7380         /* Second pass through ROAM process -- request association */
7381         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7382         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7383         priv->status &= ~STATUS_ROAMING;
7384 }
7385
7386 static void ipw_bg_roam(void *data)
7387 {
7388         struct ipw_priv *priv = data;
7389         mutex_lock(&priv->mutex);
7390         ipw_roam(data);
7391         mutex_unlock(&priv->mutex);
7392 }
7393
7394 static int ipw_associate(void *data)
7395 {
7396         struct ipw_priv *priv = data;
7397
7398         struct ieee80211_network *network = NULL;
7399         struct ipw_network_match match = {
7400                 .network = NULL
7401         };
7402         struct ipw_supported_rates *rates;
7403         struct list_head *element;
7404         unsigned long flags;
7405
7406         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7407                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7408                 return 0;
7409         }
7410
7411         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7412                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7413                                 "progress)\n");
7414                 return 0;
7415         }
7416
7417         if (priv->status & STATUS_DISASSOCIATING) {
7418                 IPW_DEBUG_ASSOC("Not attempting association (in "
7419                                 "disassociating)\n ");
7420                 queue_work(priv->workqueue, &priv->associate);
7421                 return 0;
7422         }
7423
7424         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7425                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7426                                 "initialized)\n");
7427                 return 0;
7428         }
7429
7430         if (!(priv->config & CFG_ASSOCIATE) &&
7431             !(priv->config & (CFG_STATIC_ESSID |
7432                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7433                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7434                 return 0;
7435         }
7436
7437         /* Protect our use of the network_list */
7438         spin_lock_irqsave(&priv->ieee->lock, flags);
7439         list_for_each_entry(network, &priv->ieee->network_list, list)
7440             ipw_best_network(priv, &match, network, 0);
7441
7442         network = match.network;
7443         rates = &match.rates;
7444
7445         if (network == NULL &&
7446             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7447             priv->config & CFG_ADHOC_CREATE &&
7448             priv->config & CFG_STATIC_ESSID &&
7449             priv->config & CFG_STATIC_CHANNEL &&
7450             !list_empty(&priv->ieee->network_free_list)) {
7451                 element = priv->ieee->network_free_list.next;
7452                 network = list_entry(element, struct ieee80211_network, list);
7453                 ipw_adhoc_create(priv, network);
7454                 rates = &priv->rates;
7455                 list_del(element);
7456                 list_add_tail(&network->list, &priv->ieee->network_list);
7457         }
7458         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7459
7460         /* If we reached the end of the list, then we don't have any valid
7461          * matching APs */
7462         if (!network) {
7463                 ipw_debug_config(priv);
7464
7465                 if (!(priv->status & STATUS_SCANNING)) {
7466                         if (!(priv->config & CFG_SPEED_SCAN))
7467                                 queue_delayed_work(priv->workqueue,
7468                                                    &priv->request_scan,
7469                                                    SCAN_INTERVAL);
7470                         else
7471                                 queue_work(priv->workqueue,
7472                                            &priv->request_scan);
7473                 }
7474
7475                 return 0;
7476         }
7477
7478         ipw_associate_network(priv, network, rates, 0);
7479
7480         return 1;
7481 }
7482
7483 static void ipw_bg_associate(void *data)
7484 {
7485         struct ipw_priv *priv = data;
7486         mutex_lock(&priv->mutex);
7487         ipw_associate(data);
7488         mutex_unlock(&priv->mutex);
7489 }
7490
7491 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7492                                       struct sk_buff *skb)
7493 {
7494         struct ieee80211_hdr *hdr;
7495         u16 fc;
7496
7497         hdr = (struct ieee80211_hdr *)skb->data;
7498         fc = le16_to_cpu(hdr->frame_ctl);
7499         if (!(fc & IEEE80211_FCTL_PROTECTED))
7500                 return;
7501
7502         fc &= ~IEEE80211_FCTL_PROTECTED;
7503         hdr->frame_ctl = cpu_to_le16(fc);
7504         switch (priv->ieee->sec.level) {
7505         case SEC_LEVEL_3:
7506                 /* Remove CCMP HDR */
7507                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7508                         skb->data + IEEE80211_3ADDR_LEN + 8,
7509                         skb->len - IEEE80211_3ADDR_LEN - 8);
7510                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7511                 break;
7512         case SEC_LEVEL_2:
7513                 break;
7514         case SEC_LEVEL_1:
7515                 /* Remove IV */
7516                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7517                         skb->data + IEEE80211_3ADDR_LEN + 4,
7518                         skb->len - IEEE80211_3ADDR_LEN - 4);
7519                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7520                 break;
7521         case SEC_LEVEL_0:
7522                 break;
7523         default:
7524                 printk(KERN_ERR "Unknow security level %d\n",
7525                        priv->ieee->sec.level);
7526                 break;
7527         }
7528 }
7529
7530 static void ipw_handle_data_packet(struct ipw_priv *priv,
7531                                    struct ipw_rx_mem_buffer *rxb,
7532                                    struct ieee80211_rx_stats *stats)
7533 {
7534         struct ieee80211_hdr_4addr *hdr;
7535         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7536
7537         /* We received data from the HW, so stop the watchdog */
7538         priv->net_dev->trans_start = jiffies;
7539
7540         /* We only process data packets if the
7541          * interface is open */
7542         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7543                      skb_tailroom(rxb->skb))) {
7544                 priv->ieee->stats.rx_errors++;
7545                 priv->wstats.discard.misc++;
7546                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7547                 return;
7548         } else if (unlikely(!netif_running(priv->net_dev))) {
7549                 priv->ieee->stats.rx_dropped++;
7550                 priv->wstats.discard.misc++;
7551                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7552                 return;
7553         }
7554
7555         /* Advance skb->data to the start of the actual payload */
7556         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7557
7558         /* Set the size of the skb to the size of the frame */
7559         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7560
7561         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7562
7563         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7564         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7565         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7566             (is_multicast_ether_addr(hdr->addr1) ?
7567              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7568                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7569
7570         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7571                 priv->ieee->stats.rx_errors++;
7572         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7573                 rxb->skb = NULL;
7574                 __ipw_led_activity_on(priv);
7575         }
7576 }
7577
7578 #ifdef CONFIG_IPW2200_RADIOTAP
7579 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7580                                            struct ipw_rx_mem_buffer *rxb,
7581                                            struct ieee80211_rx_stats *stats)
7582 {
7583         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7584         struct ipw_rx_frame *frame = &pkt->u.frame;
7585
7586         /* initial pull of some data */
7587         u16 received_channel = frame->received_channel;
7588         u8 antennaAndPhy = frame->antennaAndPhy;
7589         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7590         u16 pktrate = frame->rate;
7591
7592         /* Magic struct that slots into the radiotap header -- no reason
7593          * to build this manually element by element, we can write it much
7594          * more efficiently than we can parse it. ORDER MATTERS HERE */
7595         struct ipw_rt_hdr *ipw_rt;
7596
7597         short len = le16_to_cpu(pkt->u.frame.length);
7598
7599         /* We received data from the HW, so stop the watchdog */
7600         priv->net_dev->trans_start = jiffies;
7601
7602         /* We only process data packets if the
7603          * interface is open */
7604         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7605                      skb_tailroom(rxb->skb))) {
7606                 priv->ieee->stats.rx_errors++;
7607                 priv->wstats.discard.misc++;
7608                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7609                 return;
7610         } else if (unlikely(!netif_running(priv->net_dev))) {
7611                 priv->ieee->stats.rx_dropped++;
7612                 priv->wstats.discard.misc++;
7613                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7614                 return;
7615         }
7616
7617         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7618          * that now */
7619         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7620                 /* FIXME: Should alloc bigger skb instead */
7621                 priv->ieee->stats.rx_dropped++;
7622                 priv->wstats.discard.misc++;
7623                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7624                 return;
7625         }
7626
7627         /* copy the frame itself */
7628         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7629                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7630
7631         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7632          * part of our real header, saves a little time.
7633          *
7634          * No longer necessary since we fill in all our data.  Purge before merging
7635          * patch officially.
7636          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7637          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7638          */
7639
7640         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7641
7642         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7643         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7644         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7645
7646         /* Big bitfield of all the fields we provide in radiotap */
7647         ipw_rt->rt_hdr.it_present =
7648             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7649              (1 << IEEE80211_RADIOTAP_TSFT) |
7650              (1 << IEEE80211_RADIOTAP_RATE) |
7651              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7652              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7653              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7654              (1 << IEEE80211_RADIOTAP_ANTENNA));
7655
7656         /* Zero the flags, we'll add to them as we go */
7657         ipw_rt->rt_flags = 0;
7658
7659         /* Convert signal to DBM */
7660         ipw_rt->rt_dbmsignal = antsignal;
7661
7662         /* Convert the channel data and set the flags */
7663         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7664         if (received_channel > 14) {    /* 802.11a */
7665                 ipw_rt->rt_chbitmask =
7666                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7667         } else if (antennaAndPhy & 32) {        /* 802.11b */
7668                 ipw_rt->rt_chbitmask =
7669                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7670         } else {                /* 802.11g */
7671                 ipw_rt->rt_chbitmask =
7672                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7673         }
7674
7675         /* set the rate in multiples of 500k/s */
7676         switch (pktrate) {
7677         case IPW_TX_RATE_1MB:
7678                 ipw_rt->rt_rate = 2;
7679                 break;
7680         case IPW_TX_RATE_2MB:
7681                 ipw_rt->rt_rate = 4;
7682                 break;
7683         case IPW_TX_RATE_5MB:
7684                 ipw_rt->rt_rate = 10;
7685                 break;
7686         case IPW_TX_RATE_6MB:
7687                 ipw_rt->rt_rate = 12;
7688                 break;
7689         case IPW_TX_RATE_9MB:
7690                 ipw_rt->rt_rate = 18;
7691                 break;
7692         case IPW_TX_RATE_11MB:
7693                 ipw_rt->rt_rate = 22;
7694                 break;
7695         case IPW_TX_RATE_12MB:
7696                 ipw_rt->rt_rate = 24;
7697                 break;
7698         case IPW_TX_RATE_18MB:
7699                 ipw_rt->rt_rate = 36;
7700                 break;
7701         case IPW_TX_RATE_24MB:
7702                 ipw_rt->rt_rate = 48;
7703                 break;
7704         case IPW_TX_RATE_36MB:
7705                 ipw_rt->rt_rate = 72;
7706                 break;
7707         case IPW_TX_RATE_48MB:
7708                 ipw_rt->rt_rate = 96;
7709                 break;
7710         case IPW_TX_RATE_54MB:
7711                 ipw_rt->rt_rate = 108;
7712                 break;
7713         default:
7714                 ipw_rt->rt_rate = 0;
7715                 break;
7716         }
7717
7718         /* antenna number */
7719         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7720
7721         /* set the preamble flag if we have it */
7722         if ((antennaAndPhy & 64))
7723                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7724
7725         /* Set the size of the skb to the size of the frame */
7726         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7727
7728         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7729
7730         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7731                 priv->ieee->stats.rx_errors++;
7732         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7733                 rxb->skb = NULL;
7734                 /* no LED during capture */
7735         }
7736 }
7737 #endif
7738
7739 #ifdef CONFIG_IPW2200_PROMISCUOUS
7740 #define ieee80211_is_probe_response(fc) \
7741    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7742     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7743
7744 #define ieee80211_is_management(fc) \
7745    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7746
7747 #define ieee80211_is_control(fc) \
7748    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7749
7750 #define ieee80211_is_data(fc) \
7751    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7752
7753 #define ieee80211_is_assoc_request(fc) \
7754    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7755
7756 #define ieee80211_is_reassoc_request(fc) \
7757    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7758
7759 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7760                                       struct ipw_rx_mem_buffer *rxb,
7761                                       struct ieee80211_rx_stats *stats)
7762 {
7763         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7764         struct ipw_rx_frame *frame = &pkt->u.frame;
7765         struct ipw_rt_hdr *ipw_rt;
7766
7767         /* First cache any information we need before we overwrite
7768          * the information provided in the skb from the hardware */
7769         struct ieee80211_hdr *hdr;
7770         u16 channel = frame->received_channel;
7771         u8 phy_flags = frame->antennaAndPhy;
7772         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7773         s8 noise = frame->noise;
7774         u8 rate = frame->rate;
7775         short len = le16_to_cpu(pkt->u.frame.length);
7776         u64 tsf = 0;
7777         struct sk_buff *skb;
7778         int hdr_only = 0;
7779         u16 filter = priv->prom_priv->filter;
7780
7781         /* If the filter is set to not include Rx frames then return */
7782         if (filter & IPW_PROM_NO_RX)
7783                 return;
7784
7785         /* We received data from the HW, so stop the watchdog */
7786         priv->prom_net_dev->trans_start = jiffies;
7787
7788         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7789                 priv->prom_priv->ieee->stats.rx_errors++;
7790                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7791                 return;
7792         }
7793
7794         /* We only process data packets if the interface is open */
7795         if (unlikely(!netif_running(priv->prom_net_dev))) {
7796                 priv->prom_priv->ieee->stats.rx_dropped++;
7797                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7798                 return;
7799         }
7800
7801         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7802          * that now */
7803         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7804                 /* FIXME: Should alloc bigger skb instead */
7805                 priv->prom_priv->ieee->stats.rx_dropped++;
7806                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7807                 return;
7808         }
7809
7810         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7811         if (ieee80211_is_management(hdr->frame_ctl)) {
7812                 if (filter & IPW_PROM_NO_MGMT)
7813                         return;
7814                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7815                         hdr_only = 1;
7816         } else if (ieee80211_is_control(hdr->frame_ctl)) {
7817                 if (filter & IPW_PROM_NO_CTL)
7818                         return;
7819                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7820                         hdr_only = 1;
7821         } else if (ieee80211_is_data(hdr->frame_ctl)) {
7822                 if (filter & IPW_PROM_NO_DATA)
7823                         return;
7824                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7825                         hdr_only = 1;
7826         }
7827
7828         /* Copy the SKB since this is for the promiscuous side */
7829         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7830         if (skb == NULL) {
7831                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7832                 return;
7833         }
7834
7835         /* copy the frame data to write after where the radiotap header goes */
7836         ipw_rt = (void *)skb->data;
7837
7838         if (hdr_only)
7839                 len = ieee80211_get_hdrlen(hdr->frame_ctl);
7840
7841         memcpy(ipw_rt->payload, hdr, len);
7842
7843         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7844          * NOT part of our real header, saves a little time.
7845          *
7846          * No longer necessary since we fill in all our data.  Purge before
7847          * merging patch officially.
7848          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7849          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7850          */
7851
7852         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7853         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7854         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7855
7856         /* Set the size of the skb to the size of the frame */
7857         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7858
7859         /* Big bitfield of all the fields we provide in radiotap */
7860         ipw_rt->rt_hdr.it_present =
7861             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7862              (1 << IEEE80211_RADIOTAP_TSFT) |
7863              (1 << IEEE80211_RADIOTAP_RATE) |
7864              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7865              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7866              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7867              (1 << IEEE80211_RADIOTAP_ANTENNA));
7868
7869         /* Zero the flags, we'll add to them as we go */
7870         ipw_rt->rt_flags = 0;
7871
7872         ipw_rt->rt_tsf = tsf;
7873
7874         /* Convert to DBM */
7875         ipw_rt->rt_dbmsignal = signal;
7876         ipw_rt->rt_dbmnoise = noise;
7877
7878         /* Convert the channel data and set the flags */
7879         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7880         if (channel > 14) {     /* 802.11a */
7881                 ipw_rt->rt_chbitmask =
7882                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7883         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7884                 ipw_rt->rt_chbitmask =
7885                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7886         } else {                /* 802.11g */
7887                 ipw_rt->rt_chbitmask =
7888                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7889         }
7890
7891         /* set the rate in multiples of 500k/s */
7892         switch (rate) {
7893         case IPW_TX_RATE_1MB:
7894                 ipw_rt->rt_rate = 2;
7895                 break;
7896         case IPW_TX_RATE_2MB:
7897                 ipw_rt->rt_rate = 4;
7898                 break;
7899         case IPW_TX_RATE_5MB:
7900                 ipw_rt->rt_rate = 10;
7901                 break;
7902         case IPW_TX_RATE_6MB:
7903                 ipw_rt->rt_rate = 12;
7904                 break;
7905         case IPW_TX_RATE_9MB:
7906                 ipw_rt->rt_rate = 18;
7907                 break;
7908         case IPW_TX_RATE_11MB:
7909                 ipw_rt->rt_rate = 22;
7910                 break;
7911         case IPW_TX_RATE_12MB:
7912                 ipw_rt->rt_rate = 24;
7913                 break;
7914         case IPW_TX_RATE_18MB:
7915                 ipw_rt->rt_rate = 36;
7916                 break;
7917         case IPW_TX_RATE_24MB:
7918                 ipw_rt->rt_rate = 48;
7919                 break;
7920         case IPW_TX_RATE_36MB:
7921                 ipw_rt->rt_rate = 72;
7922                 break;
7923         case IPW_TX_RATE_48MB:
7924                 ipw_rt->rt_rate = 96;
7925                 break;
7926         case IPW_TX_RATE_54MB:
7927                 ipw_rt->rt_rate = 108;
7928                 break;
7929         default:
7930                 ipw_rt->rt_rate = 0;
7931                 break;
7932         }
7933
7934         /* antenna number */
7935         ipw_rt->rt_antenna = (phy_flags & 3);
7936
7937         /* set the preamble flag if we have it */
7938         if (phy_flags & (1 << 6))
7939                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7940
7941         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7942
7943         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7944                 priv->prom_priv->ieee->stats.rx_errors++;
7945                 dev_kfree_skb_any(skb);
7946         }
7947 }
7948 #endif
7949
7950 static int is_network_packet(struct ipw_priv *priv,
7951                                     struct ieee80211_hdr_4addr *header)
7952 {
7953         /* Filter incoming packets to determine if they are targetted toward
7954          * this network, discarding packets coming from ourselves */
7955         switch (priv->ieee->iw_mode) {
7956         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7957                 /* packets from our adapter are dropped (echo) */
7958                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7959                         return 0;
7960
7961                 /* {broad,multi}cast packets to our BSSID go through */
7962                 if (is_multicast_ether_addr(header->addr1))
7963                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7964
7965                 /* packets to our adapter go through */
7966                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7967                                ETH_ALEN);
7968
7969         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7970                 /* packets from our adapter are dropped (echo) */
7971                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7972                         return 0;
7973
7974                 /* {broad,multi}cast packets to our BSS go through */
7975                 if (is_multicast_ether_addr(header->addr1))
7976                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7977
7978                 /* packets to our adapter go through */
7979                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7980                                ETH_ALEN);
7981         }
7982
7983         return 1;
7984 }
7985
7986 #define IPW_PACKET_RETRY_TIME HZ
7987
7988 static  int is_duplicate_packet(struct ipw_priv *priv,
7989                                       struct ieee80211_hdr_4addr *header)
7990 {
7991         u16 sc = le16_to_cpu(header->seq_ctl);
7992         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7993         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7994         u16 *last_seq, *last_frag;
7995         unsigned long *last_time;
7996
7997         switch (priv->ieee->iw_mode) {
7998         case IW_MODE_ADHOC:
7999                 {
8000                         struct list_head *p;
8001                         struct ipw_ibss_seq *entry = NULL;
8002                         u8 *mac = header->addr2;
8003                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8004
8005                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8006                                 entry =
8007                                     list_entry(p, struct ipw_ibss_seq, list);
8008                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8009                                         break;
8010                         }
8011                         if (p == &priv->ibss_mac_hash[index]) {
8012                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8013                                 if (!entry) {
8014                                         IPW_ERROR
8015                                             ("Cannot malloc new mac entry\n");
8016                                         return 0;
8017                                 }
8018                                 memcpy(entry->mac, mac, ETH_ALEN);
8019                                 entry->seq_num = seq;
8020                                 entry->frag_num = frag;
8021                                 entry->packet_time = jiffies;
8022                                 list_add(&entry->list,
8023                                          &priv->ibss_mac_hash[index]);
8024                                 return 0;
8025                         }
8026                         last_seq = &entry->seq_num;
8027                         last_frag = &entry->frag_num;
8028                         last_time = &entry->packet_time;
8029                         break;
8030                 }
8031         case IW_MODE_INFRA:
8032                 last_seq = &priv->last_seq_num;
8033                 last_frag = &priv->last_frag_num;
8034                 last_time = &priv->last_packet_time;
8035                 break;
8036         default:
8037                 return 0;
8038         }
8039         if ((*last_seq == seq) &&
8040             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8041                 if (*last_frag == frag)
8042                         goto drop;
8043                 if (*last_frag + 1 != frag)
8044                         /* out-of-order fragment */
8045                         goto drop;
8046         } else
8047                 *last_seq = seq;
8048
8049         *last_frag = frag;
8050         *last_time = jiffies;
8051         return 0;
8052
8053       drop:
8054         /* Comment this line now since we observed the card receives
8055          * duplicate packets but the FCTL_RETRY bit is not set in the
8056          * IBSS mode with fragmentation enabled.
8057          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8058         return 1;
8059 }
8060
8061 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8062                                    struct ipw_rx_mem_buffer *rxb,
8063                                    struct ieee80211_rx_stats *stats)
8064 {
8065         struct sk_buff *skb = rxb->skb;
8066         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8067         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8068             (skb->data + IPW_RX_FRAME_SIZE);
8069
8070         ieee80211_rx_mgt(priv->ieee, header, stats);
8071
8072         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8073             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8074               IEEE80211_STYPE_PROBE_RESP) ||
8075              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8076               IEEE80211_STYPE_BEACON))) {
8077                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8078                         ipw_add_station(priv, header->addr2);
8079         }
8080
8081         if (priv->config & CFG_NET_STATS) {
8082                 IPW_DEBUG_HC("sending stat packet\n");
8083
8084                 /* Set the size of the skb to the size of the full
8085                  * ipw header and 802.11 frame */
8086                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8087                         IPW_RX_FRAME_SIZE);
8088
8089                 /* Advance past the ipw packet header to the 802.11 frame */
8090                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8091
8092                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8093                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8094
8095                 skb->dev = priv->ieee->dev;
8096
8097                 /* Point raw at the ieee80211_stats */
8098                 skb->mac.raw = skb->data;
8099
8100                 skb->pkt_type = PACKET_OTHERHOST;
8101                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8102                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8103                 netif_rx(skb);
8104                 rxb->skb = NULL;
8105         }
8106 }
8107
8108 /*
8109  * Main entry function for recieving a packet with 80211 headers.  This
8110  * should be called when ever the FW has notified us that there is a new
8111  * skb in the recieve queue.
8112  */
8113 static void ipw_rx(struct ipw_priv *priv)
8114 {
8115         struct ipw_rx_mem_buffer *rxb;
8116         struct ipw_rx_packet *pkt;
8117         struct ieee80211_hdr_4addr *header;
8118         u32 r, w, i;
8119         u8 network_packet;
8120
8121         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8122         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8123         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8124
8125         while (i != r) {
8126                 rxb = priv->rxq->queue[i];
8127                 if (unlikely(rxb == NULL)) {
8128                         printk(KERN_CRIT "Queue not allocated!\n");
8129                         break;
8130                 }
8131                 priv->rxq->queue[i] = NULL;
8132
8133                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8134                                             IPW_RX_BUF_SIZE,
8135                                             PCI_DMA_FROMDEVICE);
8136
8137                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8138                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8139                              pkt->header.message_type,
8140                              pkt->header.rx_seq_num, pkt->header.control_bits);
8141
8142                 switch (pkt->header.message_type) {
8143                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8144                                 struct ieee80211_rx_stats stats = {
8145                                         .rssi =
8146                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8147                                             IPW_RSSI_TO_DBM,
8148                                         .signal =
8149                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8150                                             IPW_RSSI_TO_DBM + 0x100,
8151                                         .noise =
8152                                             le16_to_cpu(pkt->u.frame.noise),
8153                                         .rate = pkt->u.frame.rate,
8154                                         .mac_time = jiffies,
8155                                         .received_channel =
8156                                             pkt->u.frame.received_channel,
8157                                         .freq =
8158                                             (pkt->u.frame.
8159                                              control & (1 << 0)) ?
8160                                             IEEE80211_24GHZ_BAND :
8161                                             IEEE80211_52GHZ_BAND,
8162                                         .len = le16_to_cpu(pkt->u.frame.length),
8163                                 };
8164
8165                                 if (stats.rssi != 0)
8166                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8167                                 if (stats.signal != 0)
8168                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8169                                 if (stats.noise != 0)
8170                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8171                                 if (stats.rate != 0)
8172                                         stats.mask |= IEEE80211_STATMASK_RATE;
8173
8174                                 priv->rx_packets++;
8175
8176 #ifdef CONFIG_IPW2200_PROMISCUOUS
8177         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8178                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8179 #endif
8180
8181 #ifdef CONFIG_IPW2200_MONITOR
8182                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8183 #ifdef CONFIG_IPW2200_RADIOTAP
8184
8185                 ipw_handle_data_packet_monitor(priv,
8186                                                rxb,
8187                                                &stats);
8188 #else
8189                 ipw_handle_data_packet(priv, rxb,
8190                                        &stats);
8191 #endif
8192                                         break;
8193                                 }
8194 #endif
8195
8196                                 header =
8197                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8198                                                                    data +
8199                                                                    IPW_RX_FRAME_SIZE);
8200                                 /* TODO: Check Ad-Hoc dest/source and make sure
8201                                  * that we are actually parsing these packets
8202                                  * correctly -- we should probably use the
8203                                  * frame control of the packet and disregard
8204                                  * the current iw_mode */
8205
8206                                 network_packet =
8207                                     is_network_packet(priv, header);
8208                                 if (network_packet && priv->assoc_network) {
8209                                         priv->assoc_network->stats.rssi =
8210                                             stats.rssi;
8211                                         priv->exp_avg_rssi =
8212                                             exponential_average(priv->exp_avg_rssi,
8213                                             stats.rssi, DEPTH_RSSI);
8214                                 }
8215
8216                                 IPW_DEBUG_RX("Frame: len=%u\n",
8217                                              le16_to_cpu(pkt->u.frame.length));
8218
8219                                 if (le16_to_cpu(pkt->u.frame.length) <
8220                                     ieee80211_get_hdrlen(le16_to_cpu(
8221                                                     header->frame_ctl))) {
8222                                         IPW_DEBUG_DROP
8223                                             ("Received packet is too small. "
8224                                              "Dropping.\n");
8225                                         priv->ieee->stats.rx_errors++;
8226                                         priv->wstats.discard.misc++;
8227                                         break;
8228                                 }
8229
8230                                 switch (WLAN_FC_GET_TYPE
8231                                         (le16_to_cpu(header->frame_ctl))) {
8232
8233                                 case IEEE80211_FTYPE_MGMT:
8234                                         ipw_handle_mgmt_packet(priv, rxb,
8235                                                                &stats);
8236                                         break;
8237
8238                                 case IEEE80211_FTYPE_CTL:
8239                                         break;
8240
8241                                 case IEEE80211_FTYPE_DATA:
8242                                         if (unlikely(!network_packet ||
8243                                                      is_duplicate_packet(priv,
8244                                                                          header)))
8245                                         {
8246                                                 IPW_DEBUG_DROP("Dropping: "
8247                                                                MAC_FMT ", "
8248                                                                MAC_FMT ", "
8249                                                                MAC_FMT "\n",
8250                                                                MAC_ARG(header->
8251                                                                        addr1),
8252                                                                MAC_ARG(header->
8253                                                                        addr2),
8254                                                                MAC_ARG(header->
8255                                                                        addr3));
8256                                                 break;
8257                                         }
8258
8259                                         ipw_handle_data_packet(priv, rxb,
8260                                                                &stats);
8261
8262                                         break;
8263                                 }
8264                                 break;
8265                         }
8266
8267                 case RX_HOST_NOTIFICATION_TYPE:{
8268                                 IPW_DEBUG_RX
8269                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8270                                      pkt->u.notification.subtype,
8271                                      pkt->u.notification.flags,
8272                                      pkt->u.notification.size);
8273                                 ipw_rx_notification(priv, &pkt->u.notification);
8274                                 break;
8275                         }
8276
8277                 default:
8278                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8279                                      pkt->header.message_type);
8280                         break;
8281                 }
8282
8283                 /* For now we just don't re-use anything.  We can tweak this
8284                  * later to try and re-use notification packets and SKBs that
8285                  * fail to Rx correctly */
8286                 if (rxb->skb != NULL) {
8287                         dev_kfree_skb_any(rxb->skb);
8288                         rxb->skb = NULL;
8289                 }
8290
8291                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8292                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8293                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8294
8295                 i = (i + 1) % RX_QUEUE_SIZE;
8296         }
8297
8298         /* Backtrack one entry */
8299         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8300
8301         ipw_rx_queue_restock(priv);
8302 }
8303
8304 #define DEFAULT_RTS_THRESHOLD     2304U
8305 #define MIN_RTS_THRESHOLD         1U
8306 #define MAX_RTS_THRESHOLD         2304U
8307 #define DEFAULT_BEACON_INTERVAL   100U
8308 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8309 #define DEFAULT_LONG_RETRY_LIMIT  4U
8310
8311 /**
8312  * ipw_sw_reset
8313  * @option: options to control different reset behaviour
8314  *          0 = reset everything except the 'disable' module_param
8315  *          1 = reset everything and print out driver info (for probe only)
8316  *          2 = reset everything
8317  */
8318 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8319 {
8320         int band, modulation;
8321         int old_mode = priv->ieee->iw_mode;
8322
8323         /* Initialize module parameter values here */
8324         priv->config = 0;
8325
8326         /* We default to disabling the LED code as right now it causes
8327          * too many systems to lock up... */
8328         if (!led)
8329                 priv->config |= CFG_NO_LED;
8330
8331         if (associate)
8332                 priv->config |= CFG_ASSOCIATE;
8333         else
8334                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8335
8336         if (auto_create)
8337                 priv->config |= CFG_ADHOC_CREATE;
8338         else
8339                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8340
8341         priv->config &= ~CFG_STATIC_ESSID;
8342         priv->essid_len = 0;
8343         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8344
8345         if (disable && option) {
8346                 priv->status |= STATUS_RF_KILL_SW;
8347                 IPW_DEBUG_INFO("Radio disabled.\n");
8348         }
8349
8350         if (channel != 0) {
8351                 priv->config |= CFG_STATIC_CHANNEL;
8352                 priv->channel = channel;
8353                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8354                 /* TODO: Validate that provided channel is in range */
8355         }
8356 #ifdef CONFIG_IPW2200_QOS
8357         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8358                      burst_duration_CCK, burst_duration_OFDM);
8359 #endif                          /* CONFIG_IPW2200_QOS */
8360
8361         switch (mode) {
8362         case 1:
8363                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8364                 priv->net_dev->type = ARPHRD_ETHER;
8365
8366                 break;
8367 #ifdef CONFIG_IPW2200_MONITOR
8368         case 2:
8369                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8370 #ifdef CONFIG_IPW2200_RADIOTAP
8371                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8372 #else
8373                 priv->net_dev->type = ARPHRD_IEEE80211;
8374 #endif
8375                 break;
8376 #endif
8377         default:
8378         case 0:
8379                 priv->net_dev->type = ARPHRD_ETHER;
8380                 priv->ieee->iw_mode = IW_MODE_INFRA;
8381                 break;
8382         }
8383
8384         if (hwcrypto) {
8385                 priv->ieee->host_encrypt = 0;
8386                 priv->ieee->host_encrypt_msdu = 0;
8387                 priv->ieee->host_decrypt = 0;
8388                 priv->ieee->host_mc_decrypt = 0;
8389         }
8390         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8391
8392         /* IPW2200/2915 is abled to do hardware fragmentation. */
8393         priv->ieee->host_open_frag = 0;
8394
8395         if ((priv->pci_dev->device == 0x4223) ||
8396             (priv->pci_dev->device == 0x4224)) {
8397                 if (option == 1)
8398                         printk(KERN_INFO DRV_NAME
8399                                ": Detected Intel PRO/Wireless 2915ABG Network "
8400                                "Connection\n");
8401                 priv->ieee->abg_true = 1;
8402                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8403                 modulation = IEEE80211_OFDM_MODULATION |
8404                     IEEE80211_CCK_MODULATION;
8405                 priv->adapter = IPW_2915ABG;
8406                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8407         } else {
8408                 if (option == 1)
8409                         printk(KERN_INFO DRV_NAME
8410                                ": Detected Intel PRO/Wireless 2200BG Network "
8411                                "Connection\n");
8412
8413                 priv->ieee->abg_true = 0;
8414                 band = IEEE80211_24GHZ_BAND;
8415                 modulation = IEEE80211_OFDM_MODULATION |
8416                     IEEE80211_CCK_MODULATION;
8417                 priv->adapter = IPW_2200BG;
8418                 priv->ieee->mode = IEEE_G | IEEE_B;
8419         }
8420
8421         priv->ieee->freq_band = band;
8422         priv->ieee->modulation = modulation;
8423
8424         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8425
8426         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8427         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8428
8429         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8430         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8431         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8432
8433         /* If power management is turned on, default to AC mode */
8434         priv->power_mode = IPW_POWER_AC;
8435         priv->tx_power = IPW_TX_POWER_DEFAULT;
8436
8437         return old_mode == priv->ieee->iw_mode;
8438 }
8439
8440 /*
8441  * This file defines the Wireless Extension handlers.  It does not
8442  * define any methods of hardware manipulation and relies on the
8443  * functions defined in ipw_main to provide the HW interaction.
8444  *
8445  * The exception to this is the use of the ipw_get_ordinal()
8446  * function used to poll the hardware vs. making unecessary calls.
8447  *
8448  */
8449
8450 static int ipw_wx_get_name(struct net_device *dev,
8451                            struct iw_request_info *info,
8452                            union iwreq_data *wrqu, char *extra)
8453 {
8454         struct ipw_priv *priv = ieee80211_priv(dev);
8455         mutex_lock(&priv->mutex);
8456         if (priv->status & STATUS_RF_KILL_MASK)
8457                 strcpy(wrqu->name, "radio off");
8458         else if (!(priv->status & STATUS_ASSOCIATED))
8459                 strcpy(wrqu->name, "unassociated");
8460         else
8461                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8462                          ipw_modes[priv->assoc_request.ieee_mode]);
8463         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8464         mutex_unlock(&priv->mutex);
8465         return 0;
8466 }
8467
8468 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8469 {
8470         if (channel == 0) {
8471                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8472                 priv->config &= ~CFG_STATIC_CHANNEL;
8473                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8474                                 "parameters.\n");
8475                 ipw_associate(priv);
8476                 return 0;
8477         }
8478
8479         priv->config |= CFG_STATIC_CHANNEL;
8480
8481         if (priv->channel == channel) {
8482                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8483                                channel);
8484                 return 0;
8485         }
8486
8487         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8488         priv->channel = channel;
8489
8490 #ifdef CONFIG_IPW2200_MONITOR
8491         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8492                 int i;
8493                 if (priv->status & STATUS_SCANNING) {
8494                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8495                                        "channel change.\n");
8496                         ipw_abort_scan(priv);
8497                 }
8498
8499                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8500                         udelay(10);
8501
8502                 if (priv->status & STATUS_SCANNING)
8503                         IPW_DEBUG_SCAN("Still scanning...\n");
8504                 else
8505                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8506                                        1000 - i);
8507
8508                 return 0;
8509         }
8510 #endif                          /* CONFIG_IPW2200_MONITOR */
8511
8512         /* Network configuration changed -- force [re]association */
8513         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8514         if (!ipw_disassociate(priv))
8515                 ipw_associate(priv);
8516
8517         return 0;
8518 }
8519
8520 static int ipw_wx_set_freq(struct net_device *dev,
8521                            struct iw_request_info *info,
8522                            union iwreq_data *wrqu, char *extra)
8523 {
8524         struct ipw_priv *priv = ieee80211_priv(dev);
8525         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8526         struct iw_freq *fwrq = &wrqu->freq;
8527         int ret = 0, i;
8528         u8 channel, flags;
8529         int band;
8530
8531         if (fwrq->m == 0) {
8532                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8533                 mutex_lock(&priv->mutex);
8534                 ret = ipw_set_channel(priv, 0);
8535                 mutex_unlock(&priv->mutex);
8536                 return ret;
8537         }
8538         /* if setting by freq convert to channel */
8539         if (fwrq->e == 1) {
8540                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8541                 if (channel == 0)
8542                         return -EINVAL;
8543         } else
8544                 channel = fwrq->m;
8545
8546         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8547                 return -EINVAL;
8548
8549         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8550                 i = ieee80211_channel_to_index(priv->ieee, channel);
8551                 if (i == -1)
8552                         return -EINVAL;
8553
8554                 flags = (band == IEEE80211_24GHZ_BAND) ?
8555                     geo->bg[i].flags : geo->a[i].flags;
8556                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8557                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8558                         return -EINVAL;
8559                 }
8560         }
8561
8562         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8563         mutex_lock(&priv->mutex);
8564         ret = ipw_set_channel(priv, channel);
8565         mutex_unlock(&priv->mutex);
8566         return ret;
8567 }
8568
8569 static int ipw_wx_get_freq(struct net_device *dev,
8570                            struct iw_request_info *info,
8571                            union iwreq_data *wrqu, char *extra)
8572 {
8573         struct ipw_priv *priv = ieee80211_priv(dev);
8574
8575         wrqu->freq.e = 0;
8576
8577         /* If we are associated, trying to associate, or have a statically
8578          * configured CHANNEL then return that; otherwise return ANY */
8579         mutex_lock(&priv->mutex);
8580         if (priv->config & CFG_STATIC_CHANNEL ||
8581             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8582                 wrqu->freq.m = priv->channel;
8583         else
8584                 wrqu->freq.m = 0;
8585
8586         mutex_unlock(&priv->mutex);
8587         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8588         return 0;
8589 }
8590
8591 static int ipw_wx_set_mode(struct net_device *dev,
8592                            struct iw_request_info *info,
8593                            union iwreq_data *wrqu, char *extra)
8594 {
8595         struct ipw_priv *priv = ieee80211_priv(dev);
8596         int err = 0;
8597
8598         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8599
8600         switch (wrqu->mode) {
8601 #ifdef CONFIG_IPW2200_MONITOR
8602         case IW_MODE_MONITOR:
8603 #endif
8604         case IW_MODE_ADHOC:
8605         case IW_MODE_INFRA:
8606                 break;
8607         case IW_MODE_AUTO:
8608                 wrqu->mode = IW_MODE_INFRA;
8609                 break;
8610         default:
8611                 return -EINVAL;
8612         }
8613         if (wrqu->mode == priv->ieee->iw_mode)
8614                 return 0;
8615
8616         mutex_lock(&priv->mutex);
8617
8618         ipw_sw_reset(priv, 0);
8619
8620 #ifdef CONFIG_IPW2200_MONITOR
8621         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8622                 priv->net_dev->type = ARPHRD_ETHER;
8623
8624         if (wrqu->mode == IW_MODE_MONITOR)
8625 #ifdef CONFIG_IPW2200_RADIOTAP
8626                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8627 #else
8628                 priv->net_dev->type = ARPHRD_IEEE80211;
8629 #endif
8630 #endif                          /* CONFIG_IPW2200_MONITOR */
8631
8632         /* Free the existing firmware and reset the fw_loaded
8633          * flag so ipw_load() will bring in the new firmawre */
8634         free_firmware();
8635
8636         priv->ieee->iw_mode = wrqu->mode;
8637
8638         queue_work(priv->workqueue, &priv->adapter_restart);
8639         mutex_unlock(&priv->mutex);
8640         return err;
8641 }
8642
8643 static int ipw_wx_get_mode(struct net_device *dev,
8644                            struct iw_request_info *info,
8645                            union iwreq_data *wrqu, char *extra)
8646 {
8647         struct ipw_priv *priv = ieee80211_priv(dev);
8648         mutex_lock(&priv->mutex);
8649         wrqu->mode = priv->ieee->iw_mode;
8650         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8651         mutex_unlock(&priv->mutex);
8652         return 0;
8653 }
8654
8655 /* Values are in microsecond */
8656 static const s32 timeout_duration[] = {
8657         350000,
8658         250000,
8659         75000,
8660         37000,
8661         25000,
8662 };
8663
8664 static const s32 period_duration[] = {
8665         400000,
8666         700000,
8667         1000000,
8668         1000000,
8669         1000000
8670 };
8671
8672 static int ipw_wx_get_range(struct net_device *dev,
8673                             struct iw_request_info *info,
8674                             union iwreq_data *wrqu, char *extra)
8675 {
8676         struct ipw_priv *priv = ieee80211_priv(dev);
8677         struct iw_range *range = (struct iw_range *)extra;
8678         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8679         int i = 0, j;
8680
8681         wrqu->data.length = sizeof(*range);
8682         memset(range, 0, sizeof(*range));
8683
8684         /* 54Mbs == ~27 Mb/s real (802.11g) */
8685         range->throughput = 27 * 1000 * 1000;
8686
8687         range->max_qual.qual = 100;
8688         /* TODO: Find real max RSSI and stick here */
8689         range->max_qual.level = 0;
8690         range->max_qual.noise = 0;
8691         range->max_qual.updated = 7;    /* Updated all three */
8692
8693         range->avg_qual.qual = 70;
8694         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8695         range->avg_qual.level = 0;      /* FIXME to real average level */
8696         range->avg_qual.noise = 0;
8697         range->avg_qual.updated = 7;    /* Updated all three */
8698         mutex_lock(&priv->mutex);
8699         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8700
8701         for (i = 0; i < range->num_bitrates; i++)
8702                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8703                     500000;
8704
8705         range->max_rts = DEFAULT_RTS_THRESHOLD;
8706         range->min_frag = MIN_FRAG_THRESHOLD;
8707         range->max_frag = MAX_FRAG_THRESHOLD;
8708
8709         range->encoding_size[0] = 5;
8710         range->encoding_size[1] = 13;
8711         range->num_encoding_sizes = 2;
8712         range->max_encoding_tokens = WEP_KEYS;
8713
8714         /* Set the Wireless Extension versions */
8715         range->we_version_compiled = WIRELESS_EXT;
8716         range->we_version_source = 18;
8717
8718         i = 0;
8719         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8720                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8721                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8722                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8723                                 continue;
8724
8725                         range->freq[i].i = geo->bg[j].channel;
8726                         range->freq[i].m = geo->bg[j].freq * 100000;
8727                         range->freq[i].e = 1;
8728                         i++;
8729                 }
8730         }
8731
8732         if (priv->ieee->mode & IEEE_A) {
8733                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8734                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8735                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8736                                 continue;
8737
8738                         range->freq[i].i = geo->a[j].channel;
8739                         range->freq[i].m = geo->a[j].freq * 100000;
8740                         range->freq[i].e = 1;
8741                         i++;
8742                 }
8743         }
8744
8745         range->num_channels = i;
8746         range->num_frequency = i;
8747
8748         mutex_unlock(&priv->mutex);
8749
8750         /* Event capability (kernel + driver) */
8751         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8752                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8753                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8754                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8755         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8756
8757         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8758                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8759
8760         IPW_DEBUG_WX("GET Range\n");
8761         return 0;
8762 }
8763
8764 static int ipw_wx_set_wap(struct net_device *dev,
8765                           struct iw_request_info *info,
8766                           union iwreq_data *wrqu, char *extra)
8767 {
8768         struct ipw_priv *priv = ieee80211_priv(dev);
8769
8770         static const unsigned char any[] = {
8771                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8772         };
8773         static const unsigned char off[] = {
8774                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8775         };
8776
8777         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8778                 return -EINVAL;
8779         mutex_lock(&priv->mutex);
8780         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8781             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8782                 /* we disable mandatory BSSID association */
8783                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8784                 priv->config &= ~CFG_STATIC_BSSID;
8785                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8786                                 "parameters.\n");
8787                 ipw_associate(priv);
8788                 mutex_unlock(&priv->mutex);
8789                 return 0;
8790         }
8791
8792         priv->config |= CFG_STATIC_BSSID;
8793         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8794                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8795                 mutex_unlock(&priv->mutex);
8796                 return 0;
8797         }
8798
8799         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8800                      MAC_ARG(wrqu->ap_addr.sa_data));
8801
8802         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8803
8804         /* Network configuration changed -- force [re]association */
8805         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8806         if (!ipw_disassociate(priv))
8807                 ipw_associate(priv);
8808
8809         mutex_unlock(&priv->mutex);
8810         return 0;
8811 }
8812
8813 static int ipw_wx_get_wap(struct net_device *dev,
8814                           struct iw_request_info *info,
8815                           union iwreq_data *wrqu, char *extra)
8816 {
8817         struct ipw_priv *priv = ieee80211_priv(dev);
8818         /* If we are associated, trying to associate, or have a statically
8819          * configured BSSID then return that; otherwise return ANY */
8820         mutex_lock(&priv->mutex);
8821         if (priv->config & CFG_STATIC_BSSID ||
8822             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8823                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8824                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8825         } else
8826                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8827
8828         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8829                      MAC_ARG(wrqu->ap_addr.sa_data));
8830         mutex_unlock(&priv->mutex);
8831         return 0;
8832 }
8833
8834 static int ipw_wx_set_essid(struct net_device *dev,
8835                             struct iw_request_info *info,
8836                             union iwreq_data *wrqu, char *extra)
8837 {
8838         struct ipw_priv *priv = ieee80211_priv(dev);
8839         char *essid = "";       /* ANY */
8840         int length = 0;
8841         mutex_lock(&priv->mutex);
8842         if (wrqu->essid.flags && wrqu->essid.length) {
8843                 length = wrqu->essid.length - 1;
8844                 essid = extra;
8845         }
8846         if (length == 0) {
8847                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8848                 if ((priv->config & CFG_STATIC_ESSID) &&
8849                     !(priv->status & (STATUS_ASSOCIATED |
8850                                       STATUS_ASSOCIATING))) {
8851                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8852                                         "parameters.\n");
8853                         priv->config &= ~CFG_STATIC_ESSID;
8854                         ipw_associate(priv);
8855                 }
8856                 mutex_unlock(&priv->mutex);
8857                 return 0;
8858         }
8859
8860         length = min(length, IW_ESSID_MAX_SIZE);
8861
8862         priv->config |= CFG_STATIC_ESSID;
8863
8864         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8865                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8866                 mutex_unlock(&priv->mutex);
8867                 return 0;
8868         }
8869
8870         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8871                      length);
8872
8873         priv->essid_len = length;
8874         memcpy(priv->essid, essid, priv->essid_len);
8875
8876         /* Network configuration changed -- force [re]association */
8877         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8878         if (!ipw_disassociate(priv))
8879                 ipw_associate(priv);
8880
8881         mutex_unlock(&priv->mutex);
8882         return 0;
8883 }
8884
8885 static int ipw_wx_get_essid(struct net_device *dev,
8886                             struct iw_request_info *info,
8887                             union iwreq_data *wrqu, char *extra)
8888 {
8889         struct ipw_priv *priv = ieee80211_priv(dev);
8890
8891         /* If we are associated, trying to associate, or have a statically
8892          * configured ESSID then return that; otherwise return ANY */
8893         mutex_lock(&priv->mutex);
8894         if (priv->config & CFG_STATIC_ESSID ||
8895             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8896                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8897                              escape_essid(priv->essid, priv->essid_len));
8898                 memcpy(extra, priv->essid, priv->essid_len);
8899                 wrqu->essid.length = priv->essid_len;
8900                 wrqu->essid.flags = 1;  /* active */
8901         } else {
8902                 IPW_DEBUG_WX("Getting essid: ANY\n");
8903                 wrqu->essid.length = 0;
8904                 wrqu->essid.flags = 0;  /* active */
8905         }
8906         mutex_unlock(&priv->mutex);
8907         return 0;
8908 }
8909
8910 static int ipw_wx_set_nick(struct net_device *dev,
8911                            struct iw_request_info *info,
8912                            union iwreq_data *wrqu, char *extra)
8913 {
8914         struct ipw_priv *priv = ieee80211_priv(dev);
8915
8916         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8917         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8918                 return -E2BIG;
8919         mutex_lock(&priv->mutex);
8920         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8921         memset(priv->nick, 0, sizeof(priv->nick));
8922         memcpy(priv->nick, extra, wrqu->data.length);
8923         IPW_DEBUG_TRACE("<<\n");
8924         mutex_unlock(&priv->mutex);
8925         return 0;
8926
8927 }
8928
8929 static int ipw_wx_get_nick(struct net_device *dev,
8930                            struct iw_request_info *info,
8931                            union iwreq_data *wrqu, char *extra)
8932 {
8933         struct ipw_priv *priv = ieee80211_priv(dev);
8934         IPW_DEBUG_WX("Getting nick\n");
8935         mutex_lock(&priv->mutex);
8936         wrqu->data.length = strlen(priv->nick) + 1;
8937         memcpy(extra, priv->nick, wrqu->data.length);
8938         wrqu->data.flags = 1;   /* active */
8939         mutex_unlock(&priv->mutex);
8940         return 0;
8941 }
8942
8943 static int ipw_wx_set_sens(struct net_device *dev,
8944                             struct iw_request_info *info,
8945                             union iwreq_data *wrqu, char *extra)
8946 {
8947         struct ipw_priv *priv = ieee80211_priv(dev);
8948         int err = 0;
8949
8950         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8951         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8952         mutex_lock(&priv->mutex);
8953
8954         if (wrqu->sens.fixed == 0)
8955         {
8956                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8957                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8958                 goto out;
8959         }
8960         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8961             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8962                 err = -EINVAL;
8963                 goto out;
8964         }
8965
8966         priv->roaming_threshold = wrqu->sens.value;
8967         priv->disassociate_threshold = 3*wrqu->sens.value;
8968       out:
8969         mutex_unlock(&priv->mutex);
8970         return err;
8971 }
8972
8973 static int ipw_wx_get_sens(struct net_device *dev,
8974                             struct iw_request_info *info,
8975                             union iwreq_data *wrqu, char *extra)
8976 {
8977         struct ipw_priv *priv = ieee80211_priv(dev);
8978         mutex_lock(&priv->mutex);
8979         wrqu->sens.fixed = 1;
8980         wrqu->sens.value = priv->roaming_threshold;
8981         mutex_unlock(&priv->mutex);
8982
8983         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8984                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8985
8986         return 0;
8987 }
8988
8989 static int ipw_wx_set_rate(struct net_device *dev,
8990                            struct iw_request_info *info,
8991                            union iwreq_data *wrqu, char *extra)
8992 {
8993         /* TODO: We should use semaphores or locks for access to priv */
8994         struct ipw_priv *priv = ieee80211_priv(dev);
8995         u32 target_rate = wrqu->bitrate.value;
8996         u32 fixed, mask;
8997
8998         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8999         /* value = X, fixed = 1 means only rate X */
9000         /* value = X, fixed = 0 means all rates lower equal X */
9001
9002         if (target_rate == -1) {
9003                 fixed = 0;
9004                 mask = IEEE80211_DEFAULT_RATES_MASK;
9005                 /* Now we should reassociate */
9006                 goto apply;
9007         }
9008
9009         mask = 0;
9010         fixed = wrqu->bitrate.fixed;
9011
9012         if (target_rate == 1000000 || !fixed)
9013                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9014         if (target_rate == 1000000)
9015                 goto apply;
9016
9017         if (target_rate == 2000000 || !fixed)
9018                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9019         if (target_rate == 2000000)
9020                 goto apply;
9021
9022         if (target_rate == 5500000 || !fixed)
9023                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9024         if (target_rate == 5500000)
9025                 goto apply;
9026
9027         if (target_rate == 6000000 || !fixed)
9028                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9029         if (target_rate == 6000000)
9030                 goto apply;
9031
9032         if (target_rate == 9000000 || !fixed)
9033                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9034         if (target_rate == 9000000)
9035                 goto apply;
9036
9037         if (target_rate == 11000000 || !fixed)
9038                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9039         if (target_rate == 11000000)
9040                 goto apply;
9041
9042         if (target_rate == 12000000 || !fixed)
9043                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9044         if (target_rate == 12000000)
9045                 goto apply;
9046
9047         if (target_rate == 18000000 || !fixed)
9048                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9049         if (target_rate == 18000000)
9050                 goto apply;
9051
9052         if (target_rate == 24000000 || !fixed)
9053                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9054         if (target_rate == 24000000)
9055                 goto apply;
9056
9057         if (target_rate == 36000000 || !fixed)
9058                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9059         if (target_rate == 36000000)
9060                 goto apply;
9061
9062         if (target_rate == 48000000 || !fixed)
9063                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9064         if (target_rate == 48000000)
9065                 goto apply;
9066
9067         if (target_rate == 54000000 || !fixed)
9068                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9069         if (target_rate == 54000000)
9070                 goto apply;
9071
9072         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9073         return -EINVAL;
9074
9075       apply:
9076         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9077                      mask, fixed ? "fixed" : "sub-rates");
9078         mutex_lock(&priv->mutex);
9079         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9080                 priv->config &= ~CFG_FIXED_RATE;
9081                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9082         } else
9083                 priv->config |= CFG_FIXED_RATE;
9084
9085         if (priv->rates_mask == mask) {
9086                 IPW_DEBUG_WX("Mask set to current mask.\n");
9087                 mutex_unlock(&priv->mutex);
9088                 return 0;
9089         }
9090
9091         priv->rates_mask = mask;
9092
9093         /* Network configuration changed -- force [re]association */
9094         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9095         if (!ipw_disassociate(priv))
9096                 ipw_associate(priv);
9097
9098         mutex_unlock(&priv->mutex);
9099         return 0;
9100 }
9101
9102 static int ipw_wx_get_rate(struct net_device *dev,
9103                            struct iw_request_info *info,
9104                            union iwreq_data *wrqu, char *extra)
9105 {
9106         struct ipw_priv *priv = ieee80211_priv(dev);
9107         mutex_lock(&priv->mutex);
9108         wrqu->bitrate.value = priv->last_rate;
9109         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9110         mutex_unlock(&priv->mutex);
9111         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9112         return 0;
9113 }
9114
9115 static int ipw_wx_set_rts(struct net_device *dev,
9116                           struct iw_request_info *info,
9117                           union iwreq_data *wrqu, char *extra)
9118 {
9119         struct ipw_priv *priv = ieee80211_priv(dev);
9120         mutex_lock(&priv->mutex);
9121         if (wrqu->rts.disabled)
9122                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9123         else {
9124                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9125                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9126                         mutex_unlock(&priv->mutex);
9127                         return -EINVAL;
9128                 }
9129                 priv->rts_threshold = wrqu->rts.value;
9130         }
9131
9132         ipw_send_rts_threshold(priv, priv->rts_threshold);
9133         mutex_unlock(&priv->mutex);
9134         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9135         return 0;
9136 }
9137
9138 static int ipw_wx_get_rts(struct net_device *dev,
9139                           struct iw_request_info *info,
9140                           union iwreq_data *wrqu, char *extra)
9141 {
9142         struct ipw_priv *priv = ieee80211_priv(dev);
9143         mutex_lock(&priv->mutex);
9144         wrqu->rts.value = priv->rts_threshold;
9145         wrqu->rts.fixed = 0;    /* no auto select */
9146         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9147         mutex_unlock(&priv->mutex);
9148         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9149         return 0;
9150 }
9151
9152 static int ipw_wx_set_txpow(struct net_device *dev,
9153                             struct iw_request_info *info,
9154                             union iwreq_data *wrqu, char *extra)
9155 {
9156         struct ipw_priv *priv = ieee80211_priv(dev);
9157         int err = 0;
9158
9159         mutex_lock(&priv->mutex);
9160         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9161                 err = -EINPROGRESS;
9162                 goto out;
9163         }
9164
9165         if (!wrqu->power.fixed)
9166                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9167
9168         if (wrqu->power.flags != IW_TXPOW_DBM) {
9169                 err = -EINVAL;
9170                 goto out;
9171         }
9172
9173         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9174             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9175                 err = -EINVAL;
9176                 goto out;
9177         }
9178
9179         priv->tx_power = wrqu->power.value;
9180         err = ipw_set_tx_power(priv);
9181       out:
9182         mutex_unlock(&priv->mutex);
9183         return err;
9184 }
9185
9186 static int ipw_wx_get_txpow(struct net_device *dev,
9187                             struct iw_request_info *info,
9188                             union iwreq_data *wrqu, char *extra)
9189 {
9190         struct ipw_priv *priv = ieee80211_priv(dev);
9191         mutex_lock(&priv->mutex);
9192         wrqu->power.value = priv->tx_power;
9193         wrqu->power.fixed = 1;
9194         wrqu->power.flags = IW_TXPOW_DBM;
9195         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9196         mutex_unlock(&priv->mutex);
9197
9198         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9199                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9200
9201         return 0;
9202 }
9203
9204 static int ipw_wx_set_frag(struct net_device *dev,
9205                            struct iw_request_info *info,
9206                            union iwreq_data *wrqu, char *extra)
9207 {
9208         struct ipw_priv *priv = ieee80211_priv(dev);
9209         mutex_lock(&priv->mutex);
9210         if (wrqu->frag.disabled)
9211                 priv->ieee->fts = DEFAULT_FTS;
9212         else {
9213                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9214                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9215                         mutex_unlock(&priv->mutex);
9216                         return -EINVAL;
9217                 }
9218
9219                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9220         }
9221
9222         ipw_send_frag_threshold(priv, wrqu->frag.value);
9223         mutex_unlock(&priv->mutex);
9224         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9225         return 0;
9226 }
9227
9228 static int ipw_wx_get_frag(struct net_device *dev,
9229                            struct iw_request_info *info,
9230                            union iwreq_data *wrqu, char *extra)
9231 {
9232         struct ipw_priv *priv = ieee80211_priv(dev);
9233         mutex_lock(&priv->mutex);
9234         wrqu->frag.value = priv->ieee->fts;
9235         wrqu->frag.fixed = 0;   /* no auto select */
9236         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9237         mutex_unlock(&priv->mutex);
9238         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9239
9240         return 0;
9241 }
9242
9243 static int ipw_wx_set_retry(struct net_device *dev,
9244                             struct iw_request_info *info,
9245                             union iwreq_data *wrqu, char *extra)
9246 {
9247         struct ipw_priv *priv = ieee80211_priv(dev);
9248
9249         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9250                 return -EINVAL;
9251
9252         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9253                 return 0;
9254
9255         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9256                 return -EINVAL;
9257
9258         mutex_lock(&priv->mutex);
9259         if (wrqu->retry.flags & IW_RETRY_MIN)
9260                 priv->short_retry_limit = (u8) wrqu->retry.value;
9261         else if (wrqu->retry.flags & IW_RETRY_MAX)
9262                 priv->long_retry_limit = (u8) wrqu->retry.value;
9263         else {
9264                 priv->short_retry_limit = (u8) wrqu->retry.value;
9265                 priv->long_retry_limit = (u8) wrqu->retry.value;
9266         }
9267
9268         ipw_send_retry_limit(priv, priv->short_retry_limit,
9269                              priv->long_retry_limit);
9270         mutex_unlock(&priv->mutex);
9271         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9272                      priv->short_retry_limit, priv->long_retry_limit);
9273         return 0;
9274 }
9275
9276 static int ipw_wx_get_retry(struct net_device *dev,
9277                             struct iw_request_info *info,
9278                             union iwreq_data *wrqu, char *extra)
9279 {
9280         struct ipw_priv *priv = ieee80211_priv(dev);
9281
9282         mutex_lock(&priv->mutex);
9283         wrqu->retry.disabled = 0;
9284
9285         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9286                 mutex_unlock(&priv->mutex);
9287                 return -EINVAL;
9288         }
9289
9290         if (wrqu->retry.flags & IW_RETRY_MAX) {
9291                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9292                 wrqu->retry.value = priv->long_retry_limit;
9293         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9294                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9295                 wrqu->retry.value = priv->short_retry_limit;
9296         } else {
9297                 wrqu->retry.flags = IW_RETRY_LIMIT;
9298                 wrqu->retry.value = priv->short_retry_limit;
9299         }
9300         mutex_unlock(&priv->mutex);
9301
9302         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9303
9304         return 0;
9305 }
9306
9307 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9308                                    int essid_len)
9309 {
9310         struct ipw_scan_request_ext scan;
9311         int err = 0, scan_type;
9312
9313         if (!(priv->status & STATUS_INIT) ||
9314             (priv->status & STATUS_EXIT_PENDING))
9315                 return 0;
9316
9317         mutex_lock(&priv->mutex);
9318
9319         if (priv->status & STATUS_RF_KILL_MASK) {
9320                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9321                 priv->status |= STATUS_SCAN_PENDING;
9322                 goto done;
9323         }
9324
9325         IPW_DEBUG_HC("starting request direct scan!\n");
9326
9327         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9328                 /* We should not sleep here; otherwise we will block most
9329                  * of the system (for instance, we hold rtnl_lock when we
9330                  * get here).
9331                  */
9332                 err = -EAGAIN;
9333                 goto done;
9334         }
9335         memset(&scan, 0, sizeof(scan));
9336
9337         if (priv->config & CFG_SPEED_SCAN)
9338                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9339                     cpu_to_le16(30);
9340         else
9341                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9342                     cpu_to_le16(20);
9343
9344         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9345             cpu_to_le16(20);
9346         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9347         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9348
9349         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9350
9351         err = ipw_send_ssid(priv, essid, essid_len);
9352         if (err) {
9353                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9354                 goto done;
9355         }
9356         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9357
9358         ipw_add_scan_channels(priv, &scan, scan_type);
9359
9360         err = ipw_send_scan_request_ext(priv, &scan);
9361         if (err) {
9362                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9363                 goto done;
9364         }
9365
9366         priv->status |= STATUS_SCANNING;
9367
9368       done:
9369         mutex_unlock(&priv->mutex);
9370         return err;
9371 }
9372
9373 static int ipw_wx_set_scan(struct net_device *dev,
9374                            struct iw_request_info *info,
9375                            union iwreq_data *wrqu, char *extra)
9376 {
9377         struct ipw_priv *priv = ieee80211_priv(dev);
9378         struct iw_scan_req *req = NULL;
9379         if (wrqu->data.length
9380             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9381                 req = (struct iw_scan_req *)extra;
9382                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9383                         ipw_request_direct_scan(priv, req->essid,
9384                                                 req->essid_len);
9385                         return 0;
9386                 }
9387         }
9388
9389         IPW_DEBUG_WX("Start scan\n");
9390
9391         queue_work(priv->workqueue, &priv->request_scan);
9392
9393         return 0;
9394 }
9395
9396 static int ipw_wx_get_scan(struct net_device *dev,
9397                            struct iw_request_info *info,
9398                            union iwreq_data *wrqu, char *extra)
9399 {
9400         struct ipw_priv *priv = ieee80211_priv(dev);
9401         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9402 }
9403
9404 static int ipw_wx_set_encode(struct net_device *dev,
9405                              struct iw_request_info *info,
9406                              union iwreq_data *wrqu, char *key)
9407 {
9408         struct ipw_priv *priv = ieee80211_priv(dev);
9409         int ret;
9410         u32 cap = priv->capability;
9411
9412         mutex_lock(&priv->mutex);
9413         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9414
9415         /* In IBSS mode, we need to notify the firmware to update
9416          * the beacon info after we changed the capability. */
9417         if (cap != priv->capability &&
9418             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9419             priv->status & STATUS_ASSOCIATED)
9420                 ipw_disassociate(priv);
9421
9422         mutex_unlock(&priv->mutex);
9423         return ret;
9424 }
9425
9426 static int ipw_wx_get_encode(struct net_device *dev,
9427                              struct iw_request_info *info,
9428                              union iwreq_data *wrqu, char *key)
9429 {
9430         struct ipw_priv *priv = ieee80211_priv(dev);
9431         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9432 }
9433
9434 static int ipw_wx_set_power(struct net_device *dev,
9435                             struct iw_request_info *info,
9436                             union iwreq_data *wrqu, char *extra)
9437 {
9438         struct ipw_priv *priv = ieee80211_priv(dev);
9439         int err;
9440         mutex_lock(&priv->mutex);
9441         if (wrqu->power.disabled) {
9442                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9443                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9444                 if (err) {
9445                         IPW_DEBUG_WX("failed setting power mode.\n");
9446                         mutex_unlock(&priv->mutex);
9447                         return err;
9448                 }
9449                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9450                 mutex_unlock(&priv->mutex);
9451                 return 0;
9452         }
9453
9454         switch (wrqu->power.flags & IW_POWER_MODE) {
9455         case IW_POWER_ON:       /* If not specified */
9456         case IW_POWER_MODE:     /* If set all mask */
9457         case IW_POWER_ALL_R:    /* If explicitely state all */
9458                 break;
9459         default:                /* Otherwise we don't support it */
9460                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9461                              wrqu->power.flags);
9462                 mutex_unlock(&priv->mutex);
9463                 return -EOPNOTSUPP;
9464         }
9465
9466         /* If the user hasn't specified a power management mode yet, default
9467          * to BATTERY */
9468         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9469                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9470         else
9471                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9472         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9473         if (err) {
9474                 IPW_DEBUG_WX("failed setting power mode.\n");
9475                 mutex_unlock(&priv->mutex);
9476                 return err;
9477         }
9478
9479         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9480         mutex_unlock(&priv->mutex);
9481         return 0;
9482 }
9483
9484 static int ipw_wx_get_power(struct net_device *dev,
9485                             struct iw_request_info *info,
9486                             union iwreq_data *wrqu, char *extra)
9487 {
9488         struct ipw_priv *priv = ieee80211_priv(dev);
9489         mutex_lock(&priv->mutex);
9490         if (!(priv->power_mode & IPW_POWER_ENABLED))
9491                 wrqu->power.disabled = 1;
9492         else
9493                 wrqu->power.disabled = 0;
9494
9495         mutex_unlock(&priv->mutex);
9496         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9497
9498         return 0;
9499 }
9500
9501 static int ipw_wx_set_powermode(struct net_device *dev,
9502                                 struct iw_request_info *info,
9503                                 union iwreq_data *wrqu, char *extra)
9504 {
9505         struct ipw_priv *priv = ieee80211_priv(dev);
9506         int mode = *(int *)extra;
9507         int err;
9508         mutex_lock(&priv->mutex);
9509         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9510                 mode = IPW_POWER_AC;
9511                 priv->power_mode = mode;
9512         } else {
9513                 priv->power_mode = IPW_POWER_ENABLED | mode;
9514         }
9515
9516         if (priv->power_mode != mode) {
9517                 err = ipw_send_power_mode(priv, mode);
9518
9519                 if (err) {
9520                         IPW_DEBUG_WX("failed setting power mode.\n");
9521                         mutex_unlock(&priv->mutex);
9522                         return err;
9523                 }
9524         }
9525         mutex_unlock(&priv->mutex);
9526         return 0;
9527 }
9528
9529 #define MAX_WX_STRING 80
9530 static int ipw_wx_get_powermode(struct net_device *dev,
9531                                 struct iw_request_info *info,
9532                                 union iwreq_data *wrqu, char *extra)
9533 {
9534         struct ipw_priv *priv = ieee80211_priv(dev);
9535         int level = IPW_POWER_LEVEL(priv->power_mode);
9536         char *p = extra;
9537
9538         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9539
9540         switch (level) {
9541         case IPW_POWER_AC:
9542                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9543                 break;
9544         case IPW_POWER_BATTERY:
9545                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9546                 break;
9547         default:
9548                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9549                               "(Timeout %dms, Period %dms)",
9550                               timeout_duration[level - 1] / 1000,
9551                               period_duration[level - 1] / 1000);
9552         }
9553
9554         if (!(priv->power_mode & IPW_POWER_ENABLED))
9555                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9556
9557         wrqu->data.length = p - extra + 1;
9558
9559         return 0;
9560 }
9561
9562 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9563                                     struct iw_request_info *info,
9564                                     union iwreq_data *wrqu, char *extra)
9565 {
9566         struct ipw_priv *priv = ieee80211_priv(dev);
9567         int mode = *(int *)extra;
9568         u8 band = 0, modulation = 0;
9569
9570         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9571                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9572                 return -EINVAL;
9573         }
9574         mutex_lock(&priv->mutex);
9575         if (priv->adapter == IPW_2915ABG) {
9576                 priv->ieee->abg_true = 1;
9577                 if (mode & IEEE_A) {
9578                         band |= IEEE80211_52GHZ_BAND;
9579                         modulation |= IEEE80211_OFDM_MODULATION;
9580                 } else
9581                         priv->ieee->abg_true = 0;
9582         } else {
9583                 if (mode & IEEE_A) {
9584                         IPW_WARNING("Attempt to set 2200BG into "
9585                                     "802.11a mode\n");
9586                         mutex_unlock(&priv->mutex);
9587                         return -EINVAL;
9588                 }
9589
9590                 priv->ieee->abg_true = 0;
9591         }
9592
9593         if (mode & IEEE_B) {
9594                 band |= IEEE80211_24GHZ_BAND;
9595                 modulation |= IEEE80211_CCK_MODULATION;
9596         } else
9597                 priv->ieee->abg_true = 0;
9598
9599         if (mode & IEEE_G) {
9600                 band |= IEEE80211_24GHZ_BAND;
9601                 modulation |= IEEE80211_OFDM_MODULATION;
9602         } else
9603                 priv->ieee->abg_true = 0;
9604
9605         priv->ieee->mode = mode;
9606         priv->ieee->freq_band = band;
9607         priv->ieee->modulation = modulation;
9608         init_supported_rates(priv, &priv->rates);
9609
9610         /* Network configuration changed -- force [re]association */
9611         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9612         if (!ipw_disassociate(priv)) {
9613                 ipw_send_supported_rates(priv, &priv->rates);
9614                 ipw_associate(priv);
9615         }
9616
9617         /* Update the band LEDs */
9618         ipw_led_band_on(priv);
9619
9620         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9621                      mode & IEEE_A ? 'a' : '.',
9622                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9623         mutex_unlock(&priv->mutex);
9624         return 0;
9625 }
9626
9627 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9628                                     struct iw_request_info *info,
9629                                     union iwreq_data *wrqu, char *extra)
9630 {
9631         struct ipw_priv *priv = ieee80211_priv(dev);
9632         mutex_lock(&priv->mutex);
9633         switch (priv->ieee->mode) {
9634         case IEEE_A:
9635                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9636                 break;
9637         case IEEE_B:
9638                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9639                 break;
9640         case IEEE_A | IEEE_B:
9641                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9642                 break;
9643         case IEEE_G:
9644                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9645                 break;
9646         case IEEE_A | IEEE_G:
9647                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9648                 break;
9649         case IEEE_B | IEEE_G:
9650                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9651                 break;
9652         case IEEE_A | IEEE_B | IEEE_G:
9653                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9654                 break;
9655         default:
9656                 strncpy(extra, "unknown", MAX_WX_STRING);
9657                 break;
9658         }
9659
9660         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9661
9662         wrqu->data.length = strlen(extra) + 1;
9663         mutex_unlock(&priv->mutex);
9664
9665         return 0;
9666 }
9667
9668 static int ipw_wx_set_preamble(struct net_device *dev,
9669                                struct iw_request_info *info,
9670                                union iwreq_data *wrqu, char *extra)
9671 {
9672         struct ipw_priv *priv = ieee80211_priv(dev);
9673         int mode = *(int *)extra;
9674         mutex_lock(&priv->mutex);
9675         /* Switching from SHORT -> LONG requires a disassociation */
9676         if (mode == 1) {
9677                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9678                         priv->config |= CFG_PREAMBLE_LONG;
9679
9680                         /* Network configuration changed -- force [re]association */
9681                         IPW_DEBUG_ASSOC
9682                             ("[re]association triggered due to preamble change.\n");
9683                         if (!ipw_disassociate(priv))
9684                                 ipw_associate(priv);
9685                 }
9686                 goto done;
9687         }
9688
9689         if (mode == 0) {
9690                 priv->config &= ~CFG_PREAMBLE_LONG;
9691                 goto done;
9692         }
9693         mutex_unlock(&priv->mutex);
9694         return -EINVAL;
9695
9696       done:
9697         mutex_unlock(&priv->mutex);
9698         return 0;
9699 }
9700
9701 static int ipw_wx_get_preamble(struct net_device *dev,
9702                                struct iw_request_info *info,
9703                                union iwreq_data *wrqu, char *extra)
9704 {
9705         struct ipw_priv *priv = ieee80211_priv(dev);
9706         mutex_lock(&priv->mutex);
9707         if (priv->config & CFG_PREAMBLE_LONG)
9708                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9709         else
9710                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9711         mutex_unlock(&priv->mutex);
9712         return 0;
9713 }
9714
9715 #ifdef CONFIG_IPW2200_MONITOR
9716 static int ipw_wx_set_monitor(struct net_device *dev,
9717                               struct iw_request_info *info,
9718                               union iwreq_data *wrqu, char *extra)
9719 {
9720         struct ipw_priv *priv = ieee80211_priv(dev);
9721         int *parms = (int *)extra;
9722         int enable = (parms[0] > 0);
9723         mutex_lock(&priv->mutex);
9724         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9725         if (enable) {
9726                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9727 #ifdef CONFIG_IPW2200_RADIOTAP
9728                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9729 #else
9730                         priv->net_dev->type = ARPHRD_IEEE80211;
9731 #endif
9732                         queue_work(priv->workqueue, &priv->adapter_restart);
9733                 }
9734
9735                 ipw_set_channel(priv, parms[1]);
9736         } else {
9737                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9738                         mutex_unlock(&priv->mutex);
9739                         return 0;
9740                 }
9741                 priv->net_dev->type = ARPHRD_ETHER;
9742                 queue_work(priv->workqueue, &priv->adapter_restart);
9743         }
9744         mutex_unlock(&priv->mutex);
9745         return 0;
9746 }
9747
9748 #endif                          /* CONFIG_IPW2200_MONITOR */
9749
9750 static int ipw_wx_reset(struct net_device *dev,
9751                         struct iw_request_info *info,
9752                         union iwreq_data *wrqu, char *extra)
9753 {
9754         struct ipw_priv *priv = ieee80211_priv(dev);
9755         IPW_DEBUG_WX("RESET\n");
9756         queue_work(priv->workqueue, &priv->adapter_restart);
9757         return 0;
9758 }
9759
9760 static int ipw_wx_sw_reset(struct net_device *dev,
9761                            struct iw_request_info *info,
9762                            union iwreq_data *wrqu, char *extra)
9763 {
9764         struct ipw_priv *priv = ieee80211_priv(dev);
9765         union iwreq_data wrqu_sec = {
9766                 .encoding = {
9767                              .flags = IW_ENCODE_DISABLED,
9768                              },
9769         };
9770         int ret;
9771
9772         IPW_DEBUG_WX("SW_RESET\n");
9773
9774         mutex_lock(&priv->mutex);
9775
9776         ret = ipw_sw_reset(priv, 2);
9777         if (!ret) {
9778                 free_firmware();
9779                 ipw_adapter_restart(priv);
9780         }
9781
9782         /* The SW reset bit might have been toggled on by the 'disable'
9783          * module parameter, so take appropriate action */
9784         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9785
9786         mutex_unlock(&priv->mutex);
9787         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9788         mutex_lock(&priv->mutex);
9789
9790         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9791                 /* Configuration likely changed -- force [re]association */
9792                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9793                                 "reset.\n");
9794                 if (!ipw_disassociate(priv))
9795                         ipw_associate(priv);
9796         }
9797
9798         mutex_unlock(&priv->mutex);
9799
9800         return 0;
9801 }
9802
9803 /* Rebase the WE IOCTLs to zero for the handler array */
9804 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9805 static iw_handler ipw_wx_handlers[] = {
9806         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9807         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9808         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9809         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9810         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9811         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9812         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9813         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9814         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9815         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9816         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9817         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9818         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9819         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9820         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9821         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9822         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9823         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9824         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9825         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9826         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9827         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9828         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9829         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9830         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9831         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9832         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9833         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9834         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9835         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9836         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9837         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9838         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9839         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9840         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9841         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9842         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9843         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9844         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9845         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9846         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9847 };
9848
9849 enum {
9850         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9851         IPW_PRIV_GET_POWER,
9852         IPW_PRIV_SET_MODE,
9853         IPW_PRIV_GET_MODE,
9854         IPW_PRIV_SET_PREAMBLE,
9855         IPW_PRIV_GET_PREAMBLE,
9856         IPW_PRIV_RESET,
9857         IPW_PRIV_SW_RESET,
9858 #ifdef CONFIG_IPW2200_MONITOR
9859         IPW_PRIV_SET_MONITOR,
9860 #endif
9861 };
9862
9863 static struct iw_priv_args ipw_priv_args[] = {
9864         {
9865          .cmd = IPW_PRIV_SET_POWER,
9866          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9867          .name = "set_power"},
9868         {
9869          .cmd = IPW_PRIV_GET_POWER,
9870          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9871          .name = "get_power"},
9872         {
9873          .cmd = IPW_PRIV_SET_MODE,
9874          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9875          .name = "set_mode"},
9876         {
9877          .cmd = IPW_PRIV_GET_MODE,
9878          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9879          .name = "get_mode"},
9880         {
9881          .cmd = IPW_PRIV_SET_PREAMBLE,
9882          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9883          .name = "set_preamble"},
9884         {
9885          .cmd = IPW_PRIV_GET_PREAMBLE,
9886          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9887          .name = "get_preamble"},
9888         {
9889          IPW_PRIV_RESET,
9890          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9891         {
9892          IPW_PRIV_SW_RESET,
9893          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9894 #ifdef CONFIG_IPW2200_MONITOR
9895         {
9896          IPW_PRIV_SET_MONITOR,
9897          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9898 #endif                          /* CONFIG_IPW2200_MONITOR */
9899 };
9900
9901 static iw_handler ipw_priv_handler[] = {
9902         ipw_wx_set_powermode,
9903         ipw_wx_get_powermode,
9904         ipw_wx_set_wireless_mode,
9905         ipw_wx_get_wireless_mode,
9906         ipw_wx_set_preamble,
9907         ipw_wx_get_preamble,
9908         ipw_wx_reset,
9909         ipw_wx_sw_reset,
9910 #ifdef CONFIG_IPW2200_MONITOR
9911         ipw_wx_set_monitor,
9912 #endif
9913 };
9914
9915 static struct iw_handler_def ipw_wx_handler_def = {
9916         .standard = ipw_wx_handlers,
9917         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9918         .num_private = ARRAY_SIZE(ipw_priv_handler),
9919         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9920         .private = ipw_priv_handler,
9921         .private_args = ipw_priv_args,
9922         .get_wireless_stats = ipw_get_wireless_stats,
9923 };
9924
9925 /*
9926  * Get wireless statistics.
9927  * Called by /proc/net/wireless
9928  * Also called by SIOCGIWSTATS
9929  */
9930 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9931 {
9932         struct ipw_priv *priv = ieee80211_priv(dev);
9933         struct iw_statistics *wstats;
9934
9935         wstats = &priv->wstats;
9936
9937         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9938          * netdev->get_wireless_stats seems to be called before fw is
9939          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9940          * and associated; if not associcated, the values are all meaningless
9941          * anyway, so set them all to NULL and INVALID */
9942         if (!(priv->status & STATUS_ASSOCIATED)) {
9943                 wstats->miss.beacon = 0;
9944                 wstats->discard.retries = 0;
9945                 wstats->qual.qual = 0;
9946                 wstats->qual.level = 0;
9947                 wstats->qual.noise = 0;
9948                 wstats->qual.updated = 7;
9949                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9950                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9951                 return wstats;
9952         }
9953
9954         wstats->qual.qual = priv->quality;
9955         wstats->qual.level = priv->exp_avg_rssi;
9956         wstats->qual.noise = priv->exp_avg_noise;
9957         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9958             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9959
9960         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9961         wstats->discard.retries = priv->last_tx_failures;
9962         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9963
9964 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9965         goto fail_get_ordinal;
9966         wstats->discard.retries += tx_retry; */
9967
9968         return wstats;
9969 }
9970
9971 /* net device stuff */
9972
9973 static  void init_sys_config(struct ipw_sys_config *sys_config)
9974 {
9975         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9976         sys_config->bt_coexistence = 0;
9977         sys_config->answer_broadcast_ssid_probe = 0;
9978         sys_config->accept_all_data_frames = 0;
9979         sys_config->accept_non_directed_frames = 1;
9980         sys_config->exclude_unicast_unencrypted = 0;
9981         sys_config->disable_unicast_decryption = 1;
9982         sys_config->exclude_multicast_unencrypted = 0;
9983         sys_config->disable_multicast_decryption = 1;
9984         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
9985                 antenna = CFG_SYS_ANTENNA_BOTH;
9986         sys_config->antenna_diversity = antenna;
9987         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9988         sys_config->dot11g_auto_detection = 0;
9989         sys_config->enable_cts_to_self = 0;
9990         sys_config->bt_coexist_collision_thr = 0;
9991         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
9992         sys_config->silence_threshold = 0x1e;
9993 }
9994
9995 static int ipw_net_open(struct net_device *dev)
9996 {
9997         struct ipw_priv *priv = ieee80211_priv(dev);
9998         IPW_DEBUG_INFO("dev->open\n");
9999         /* we should be verifying the device is ready to be opened */
10000         mutex_lock(&priv->mutex);
10001         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10002             (priv->status & STATUS_ASSOCIATED))
10003                 netif_start_queue(dev);
10004         mutex_unlock(&priv->mutex);
10005         return 0;
10006 }
10007
10008 static int ipw_net_stop(struct net_device *dev)
10009 {
10010         IPW_DEBUG_INFO("dev->close\n");
10011         netif_stop_queue(dev);
10012         return 0;
10013 }
10014
10015 /*
10016 todo:
10017
10018 modify to send one tfd per fragment instead of using chunking.  otherwise
10019 we need to heavily modify the ieee80211_skb_to_txb.
10020 */
10021
10022 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10023                              int pri)
10024 {
10025         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10026             txb->fragments[0]->data;
10027         int i = 0;
10028         struct tfd_frame *tfd;
10029 #ifdef CONFIG_IPW2200_QOS
10030         int tx_id = ipw_get_tx_queue_number(priv, pri);
10031         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10032 #else
10033         struct clx2_tx_queue *txq = &priv->txq[0];
10034 #endif
10035         struct clx2_queue *q = &txq->q;
10036         u8 id, hdr_len, unicast;
10037         u16 remaining_bytes;
10038         int fc;
10039
10040         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10041         switch (priv->ieee->iw_mode) {
10042         case IW_MODE_ADHOC:
10043                 unicast = !is_multicast_ether_addr(hdr->addr1);
10044                 id = ipw_find_station(priv, hdr->addr1);
10045                 if (id == IPW_INVALID_STATION) {
10046                         id = ipw_add_station(priv, hdr->addr1);
10047                         if (id == IPW_INVALID_STATION) {
10048                                 IPW_WARNING("Attempt to send data to "
10049                                             "invalid cell: " MAC_FMT "\n",
10050                                             MAC_ARG(hdr->addr1));
10051                                 goto drop;
10052                         }
10053                 }
10054                 break;
10055
10056         case IW_MODE_INFRA:
10057         default:
10058                 unicast = !is_multicast_ether_addr(hdr->addr3);
10059                 id = 0;
10060                 break;
10061         }
10062
10063         tfd = &txq->bd[q->first_empty];
10064         txq->txb[q->first_empty] = txb;
10065         memset(tfd, 0, sizeof(*tfd));
10066         tfd->u.data.station_number = id;
10067
10068         tfd->control_flags.message_type = TX_FRAME_TYPE;
10069         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10070
10071         tfd->u.data.cmd_id = DINO_CMD_TX;
10072         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10073         remaining_bytes = txb->payload_size;
10074
10075         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10076                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10077         else
10078                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10079
10080         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10081                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10082
10083         fc = le16_to_cpu(hdr->frame_ctl);
10084         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10085
10086         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10087
10088         if (likely(unicast))
10089                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10090
10091         if (txb->encrypted && !priv->ieee->host_encrypt) {
10092                 switch (priv->ieee->sec.level) {
10093                 case SEC_LEVEL_3:
10094                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10095                             IEEE80211_FCTL_PROTECTED;
10096                         /* XXX: ACK flag must be set for CCMP even if it
10097                          * is a multicast/broadcast packet, because CCMP
10098                          * group communication encrypted by GTK is
10099                          * actually done by the AP. */
10100                         if (!unicast)
10101                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10102
10103                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10104                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10105                         tfd->u.data.key_index = 0;
10106                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10107                         break;
10108                 case SEC_LEVEL_2:
10109                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10110                             IEEE80211_FCTL_PROTECTED;
10111                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10112                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10113                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10114                         break;
10115                 case SEC_LEVEL_1:
10116                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10117                             IEEE80211_FCTL_PROTECTED;
10118                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10119                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10120                             40)
10121                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10122                         else
10123                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10124                         break;
10125                 case SEC_LEVEL_0:
10126                         break;
10127                 default:
10128                         printk(KERN_ERR "Unknow security level %d\n",
10129                                priv->ieee->sec.level);
10130                         break;
10131                 }
10132         } else
10133                 /* No hardware encryption */
10134                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10135
10136 #ifdef CONFIG_IPW2200_QOS
10137         if (fc & IEEE80211_STYPE_QOS_DATA)
10138                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10139 #endif                          /* CONFIG_IPW2200_QOS */
10140
10141         /* payload */
10142         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10143                                                  txb->nr_frags));
10144         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10145                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10146         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10147                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10148                                i, le32_to_cpu(tfd->u.data.num_chunks),
10149                                txb->fragments[i]->len - hdr_len);
10150                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10151                              i, tfd->u.data.num_chunks,
10152                              txb->fragments[i]->len - hdr_len);
10153                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10154                            txb->fragments[i]->len - hdr_len);
10155
10156                 tfd->u.data.chunk_ptr[i] =
10157                     cpu_to_le32(pci_map_single
10158                                 (priv->pci_dev,
10159                                  txb->fragments[i]->data + hdr_len,
10160                                  txb->fragments[i]->len - hdr_len,
10161                                  PCI_DMA_TODEVICE));
10162                 tfd->u.data.chunk_len[i] =
10163                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10164         }
10165
10166         if (i != txb->nr_frags) {
10167                 struct sk_buff *skb;
10168                 u16 remaining_bytes = 0;
10169                 int j;
10170
10171                 for (j = i; j < txb->nr_frags; j++)
10172                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10173
10174                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10175                        remaining_bytes);
10176                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10177                 if (skb != NULL) {
10178                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10179                         for (j = i; j < txb->nr_frags; j++) {
10180                                 int size = txb->fragments[j]->len - hdr_len;
10181
10182                                 printk(KERN_INFO "Adding frag %d %d...\n",
10183                                        j, size);
10184                                 memcpy(skb_put(skb, size),
10185                                        txb->fragments[j]->data + hdr_len, size);
10186                         }
10187                         dev_kfree_skb_any(txb->fragments[i]);
10188                         txb->fragments[i] = skb;
10189                         tfd->u.data.chunk_ptr[i] =
10190                             cpu_to_le32(pci_map_single
10191                                         (priv->pci_dev, skb->data,
10192                                          tfd->u.data.chunk_len[i],
10193                                          PCI_DMA_TODEVICE));
10194
10195                         tfd->u.data.num_chunks =
10196                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10197                                         1);
10198                 }
10199         }
10200
10201         /* kick DMA */
10202         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10203         ipw_write32(priv, q->reg_w, q->first_empty);
10204
10205         if (ipw_queue_space(q) < q->high_mark)
10206                 netif_stop_queue(priv->net_dev);
10207
10208         return NETDEV_TX_OK;
10209
10210       drop:
10211         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10212         ieee80211_txb_free(txb);
10213         return NETDEV_TX_OK;
10214 }
10215
10216 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10217 {
10218         struct ipw_priv *priv = ieee80211_priv(dev);
10219 #ifdef CONFIG_IPW2200_QOS
10220         int tx_id = ipw_get_tx_queue_number(priv, pri);
10221         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10222 #else
10223         struct clx2_tx_queue *txq = &priv->txq[0];
10224 #endif                          /* CONFIG_IPW2200_QOS */
10225
10226         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10227                 return 1;
10228
10229         return 0;
10230 }
10231
10232 #ifdef CONFIG_IPW2200_PROMISCUOUS
10233 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10234                                       struct ieee80211_txb *txb)
10235 {
10236         struct ieee80211_rx_stats dummystats;
10237         struct ieee80211_hdr *hdr;
10238         u8 n;
10239         u16 filter = priv->prom_priv->filter;
10240         int hdr_only = 0;
10241
10242         if (filter & IPW_PROM_NO_TX)
10243                 return;
10244
10245         memset(&dummystats, 0, sizeof(dummystats));
10246
10247         /* Filtering of fragment chains is done agains the first fragment */
10248         hdr = (void *)txb->fragments[0]->data;
10249         if (ieee80211_is_management(hdr->frame_ctl)) {
10250                 if (filter & IPW_PROM_NO_MGMT)
10251                         return;
10252                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10253                         hdr_only = 1;
10254         } else if (ieee80211_is_control(hdr->frame_ctl)) {
10255                 if (filter & IPW_PROM_NO_CTL)
10256                         return;
10257                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10258                         hdr_only = 1;
10259         } else if (ieee80211_is_data(hdr->frame_ctl)) {
10260                 if (filter & IPW_PROM_NO_DATA)
10261                         return;
10262                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10263                         hdr_only = 1;
10264         }
10265
10266         for(n=0; n<txb->nr_frags; ++n) {
10267                 struct sk_buff *src = txb->fragments[n];
10268                 struct sk_buff *dst;
10269                 struct ieee80211_radiotap_header *rt_hdr;
10270                 int len;
10271
10272                 if (hdr_only) {
10273                         hdr = (void *)src->data;
10274                         len = ieee80211_get_hdrlen(hdr->frame_ctl);
10275                 } else
10276                         len = src->len;
10277
10278                 dst = alloc_skb(
10279                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10280                 if (!dst) continue;
10281
10282                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10283
10284                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10285                 rt_hdr->it_pad = 0;
10286                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10287                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10288
10289                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10290                         ieee80211chan2mhz(priv->channel));
10291                 if (priv->channel > 14)         /* 802.11a */
10292                         *(u16*)skb_put(dst, sizeof(u16)) =
10293                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10294                                              IEEE80211_CHAN_5GHZ);
10295                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10296                         *(u16*)skb_put(dst, sizeof(u16)) =
10297                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10298                                              IEEE80211_CHAN_2GHZ);
10299                 else            /* 802.11g */
10300                         *(u16*)skb_put(dst, sizeof(u16)) =
10301                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10302                                  IEEE80211_CHAN_2GHZ);
10303
10304                 rt_hdr->it_len = dst->len;
10305
10306                 memcpy(skb_put(dst, len), src->data, len);
10307
10308                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10309                         dev_kfree_skb_any(dst);
10310         }
10311 }
10312 #endif
10313
10314 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10315                                    struct net_device *dev, int pri)
10316 {
10317         struct ipw_priv *priv = ieee80211_priv(dev);
10318         unsigned long flags;
10319         int ret;
10320
10321         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10322         spin_lock_irqsave(&priv->lock, flags);
10323
10324         if (!(priv->status & STATUS_ASSOCIATED)) {
10325                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10326                 priv->ieee->stats.tx_carrier_errors++;
10327                 netif_stop_queue(dev);
10328                 goto fail_unlock;
10329         }
10330
10331 #ifdef CONFIG_IPW2200_PROMISCUOUS
10332         if (rtap_iface && netif_running(priv->prom_net_dev))
10333                 ipw_handle_promiscuous_tx(priv, txb);
10334 #endif
10335
10336         ret = ipw_tx_skb(priv, txb, pri);
10337         if (ret == NETDEV_TX_OK)
10338                 __ipw_led_activity_on(priv);
10339         spin_unlock_irqrestore(&priv->lock, flags);
10340
10341         return ret;
10342
10343       fail_unlock:
10344         spin_unlock_irqrestore(&priv->lock, flags);
10345         return 1;
10346 }
10347
10348 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10349 {
10350         struct ipw_priv *priv = ieee80211_priv(dev);
10351
10352         priv->ieee->stats.tx_packets = priv->tx_packets;
10353         priv->ieee->stats.rx_packets = priv->rx_packets;
10354         return &priv->ieee->stats;
10355 }
10356
10357 static void ipw_net_set_multicast_list(struct net_device *dev)
10358 {
10359
10360 }
10361
10362 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10363 {
10364         struct ipw_priv *priv = ieee80211_priv(dev);
10365         struct sockaddr *addr = p;
10366         if (!is_valid_ether_addr(addr->sa_data))
10367                 return -EADDRNOTAVAIL;
10368         mutex_lock(&priv->mutex);
10369         priv->config |= CFG_CUSTOM_MAC;
10370         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10371         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10372                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10373         queue_work(priv->workqueue, &priv->adapter_restart);
10374         mutex_unlock(&priv->mutex);
10375         return 0;
10376 }
10377
10378 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10379                                     struct ethtool_drvinfo *info)
10380 {
10381         struct ipw_priv *p = ieee80211_priv(dev);
10382         char vers[64];
10383         char date[32];
10384         u32 len;
10385
10386         strcpy(info->driver, DRV_NAME);
10387         strcpy(info->version, DRV_VERSION);
10388
10389         len = sizeof(vers);
10390         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10391         len = sizeof(date);
10392         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10393
10394         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10395                  vers, date);
10396         strcpy(info->bus_info, pci_name(p->pci_dev));
10397         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10398 }
10399
10400 static u32 ipw_ethtool_get_link(struct net_device *dev)
10401 {
10402         struct ipw_priv *priv = ieee80211_priv(dev);
10403         return (priv->status & STATUS_ASSOCIATED) != 0;
10404 }
10405
10406 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10407 {
10408         return IPW_EEPROM_IMAGE_SIZE;
10409 }
10410
10411 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10412                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10413 {
10414         struct ipw_priv *p = ieee80211_priv(dev);
10415
10416         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10417                 return -EINVAL;
10418         mutex_lock(&p->mutex);
10419         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10420         mutex_unlock(&p->mutex);
10421         return 0;
10422 }
10423
10424 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10425                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10426 {
10427         struct ipw_priv *p = ieee80211_priv(dev);
10428         int i;
10429
10430         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10431                 return -EINVAL;
10432         mutex_lock(&p->mutex);
10433         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10434         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10435                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10436         mutex_unlock(&p->mutex);
10437         return 0;
10438 }
10439
10440 static struct ethtool_ops ipw_ethtool_ops = {
10441         .get_link = ipw_ethtool_get_link,
10442         .get_drvinfo = ipw_ethtool_get_drvinfo,
10443         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10444         .get_eeprom = ipw_ethtool_get_eeprom,
10445         .set_eeprom = ipw_ethtool_set_eeprom,
10446 };
10447
10448 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10449 {
10450         struct ipw_priv *priv = data;
10451         u32 inta, inta_mask;
10452
10453         if (!priv)
10454                 return IRQ_NONE;
10455
10456         spin_lock(&priv->irq_lock);
10457
10458         if (!(priv->status & STATUS_INT_ENABLED)) {
10459                 /* Shared IRQ */
10460                 goto none;
10461         }
10462
10463         inta = ipw_read32(priv, IPW_INTA_RW);
10464         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10465
10466         if (inta == 0xFFFFFFFF) {
10467                 /* Hardware disappeared */
10468                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10469                 goto none;
10470         }
10471
10472         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10473                 /* Shared interrupt */
10474                 goto none;
10475         }
10476
10477         /* tell the device to stop sending interrupts */
10478         __ipw_disable_interrupts(priv);
10479
10480         /* ack current interrupts */
10481         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10482         ipw_write32(priv, IPW_INTA_RW, inta);
10483
10484         /* Cache INTA value for our tasklet */
10485         priv->isr_inta = inta;
10486
10487         tasklet_schedule(&priv->irq_tasklet);
10488
10489         spin_unlock(&priv->irq_lock);
10490
10491         return IRQ_HANDLED;
10492       none:
10493         spin_unlock(&priv->irq_lock);
10494         return IRQ_NONE;
10495 }
10496
10497 static void ipw_rf_kill(void *adapter)
10498 {
10499         struct ipw_priv *priv = adapter;
10500         unsigned long flags;
10501
10502         spin_lock_irqsave(&priv->lock, flags);
10503
10504         if (rf_kill_active(priv)) {
10505                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10506                 if (priv->workqueue)
10507                         queue_delayed_work(priv->workqueue,
10508                                            &priv->rf_kill, 2 * HZ);
10509                 goto exit_unlock;
10510         }
10511
10512         /* RF Kill is now disabled, so bring the device back up */
10513
10514         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10515                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10516                                   "device\n");
10517
10518                 /* we can not do an adapter restart while inside an irq lock */
10519                 queue_work(priv->workqueue, &priv->adapter_restart);
10520         } else
10521                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10522                                   "enabled\n");
10523
10524       exit_unlock:
10525         spin_unlock_irqrestore(&priv->lock, flags);
10526 }
10527
10528 static void ipw_bg_rf_kill(void *data)
10529 {
10530         struct ipw_priv *priv = data;
10531         mutex_lock(&priv->mutex);
10532         ipw_rf_kill(data);
10533         mutex_unlock(&priv->mutex);
10534 }
10535
10536 static void ipw_link_up(struct ipw_priv *priv)
10537 {
10538         priv->last_seq_num = -1;
10539         priv->last_frag_num = -1;
10540         priv->last_packet_time = 0;
10541
10542         netif_carrier_on(priv->net_dev);
10543         if (netif_queue_stopped(priv->net_dev)) {
10544                 IPW_DEBUG_NOTIF("waking queue\n");
10545                 netif_wake_queue(priv->net_dev);
10546         } else {
10547                 IPW_DEBUG_NOTIF("starting queue\n");
10548                 netif_start_queue(priv->net_dev);
10549         }
10550
10551         cancel_delayed_work(&priv->request_scan);
10552         ipw_reset_stats(priv);
10553         /* Ensure the rate is updated immediately */
10554         priv->last_rate = ipw_get_current_rate(priv);
10555         ipw_gather_stats(priv);
10556         ipw_led_link_up(priv);
10557         notify_wx_assoc_event(priv);
10558
10559         if (priv->config & CFG_BACKGROUND_SCAN)
10560                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10561 }
10562
10563 static void ipw_bg_link_up(void *data)
10564 {
10565         struct ipw_priv *priv = data;
10566         mutex_lock(&priv->mutex);
10567         ipw_link_up(data);
10568         mutex_unlock(&priv->mutex);
10569 }
10570
10571 static void ipw_link_down(struct ipw_priv *priv)
10572 {
10573         ipw_led_link_down(priv);
10574         netif_carrier_off(priv->net_dev);
10575         netif_stop_queue(priv->net_dev);
10576         notify_wx_assoc_event(priv);
10577
10578         /* Cancel any queued work ... */
10579         cancel_delayed_work(&priv->request_scan);
10580         cancel_delayed_work(&priv->adhoc_check);
10581         cancel_delayed_work(&priv->gather_stats);
10582
10583         ipw_reset_stats(priv);
10584
10585         if (!(priv->status & STATUS_EXIT_PENDING)) {
10586                 /* Queue up another scan... */
10587                 queue_work(priv->workqueue, &priv->request_scan);
10588         }
10589 }
10590
10591 static void ipw_bg_link_down(void *data)
10592 {
10593         struct ipw_priv *priv = data;
10594         mutex_lock(&priv->mutex);
10595         ipw_link_down(data);
10596         mutex_unlock(&priv->mutex);
10597 }
10598
10599 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10600 {
10601         int ret = 0;
10602
10603         priv->workqueue = create_workqueue(DRV_NAME);
10604         init_waitqueue_head(&priv->wait_command_queue);
10605         init_waitqueue_head(&priv->wait_state);
10606
10607         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10608         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10609         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10610         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10611         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10612         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10613         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10614         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10615         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10616         INIT_WORK(&priv->request_scan,
10617                   (void (*)(void *))ipw_request_scan, priv);
10618         INIT_WORK(&priv->gather_stats,
10619                   (void (*)(void *))ipw_bg_gather_stats, priv);
10620         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10621         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10622         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10623         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10624         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10625         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10626                   priv);
10627         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10628                   priv);
10629         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10630                   priv);
10631         INIT_WORK(&priv->merge_networks,
10632                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10633
10634 #ifdef CONFIG_IPW2200_QOS
10635         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10636                   priv);
10637 #endif                          /* CONFIG_IPW2200_QOS */
10638
10639         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10640                      ipw_irq_tasklet, (unsigned long)priv);
10641
10642         return ret;
10643 }
10644
10645 static void shim__set_security(struct net_device *dev,
10646                                struct ieee80211_security *sec)
10647 {
10648         struct ipw_priv *priv = ieee80211_priv(dev);
10649         int i;
10650         for (i = 0; i < 4; i++) {
10651                 if (sec->flags & (1 << i)) {
10652                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10653                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10654                         if (sec->key_sizes[i] == 0)
10655                                 priv->ieee->sec.flags &= ~(1 << i);
10656                         else {
10657                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10658                                        sec->key_sizes[i]);
10659                                 priv->ieee->sec.flags |= (1 << i);
10660                         }
10661                         priv->status |= STATUS_SECURITY_UPDATED;
10662                 } else if (sec->level != SEC_LEVEL_1)
10663                         priv->ieee->sec.flags &= ~(1 << i);
10664         }
10665
10666         if (sec->flags & SEC_ACTIVE_KEY) {
10667                 if (sec->active_key <= 3) {
10668                         priv->ieee->sec.active_key = sec->active_key;
10669                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10670                 } else
10671                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10672                 priv->status |= STATUS_SECURITY_UPDATED;
10673         } else
10674                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10675
10676         if ((sec->flags & SEC_AUTH_MODE) &&
10677             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10678                 priv->ieee->sec.auth_mode = sec->auth_mode;
10679                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10680                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10681                         priv->capability |= CAP_SHARED_KEY;
10682                 else
10683                         priv->capability &= ~CAP_SHARED_KEY;
10684                 priv->status |= STATUS_SECURITY_UPDATED;
10685         }
10686
10687         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10688                 priv->ieee->sec.flags |= SEC_ENABLED;
10689                 priv->ieee->sec.enabled = sec->enabled;
10690                 priv->status |= STATUS_SECURITY_UPDATED;
10691                 if (sec->enabled)
10692                         priv->capability |= CAP_PRIVACY_ON;
10693                 else
10694                         priv->capability &= ~CAP_PRIVACY_ON;
10695         }
10696
10697         if (sec->flags & SEC_ENCRYPT)
10698                 priv->ieee->sec.encrypt = sec->encrypt;
10699
10700         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10701                 priv->ieee->sec.level = sec->level;
10702                 priv->ieee->sec.flags |= SEC_LEVEL;
10703                 priv->status |= STATUS_SECURITY_UPDATED;
10704         }
10705
10706         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10707                 ipw_set_hwcrypto_keys(priv);
10708
10709         /* To match current functionality of ipw2100 (which works well w/
10710          * various supplicants, we don't force a disassociate if the
10711          * privacy capability changes ... */
10712 #if 0
10713         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10714             (((priv->assoc_request.capability &
10715                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10716              (!(priv->assoc_request.capability &
10717                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10718                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10719                                 "change.\n");
10720                 ipw_disassociate(priv);
10721         }
10722 #endif
10723 }
10724
10725 static int init_supported_rates(struct ipw_priv *priv,
10726                                 struct ipw_supported_rates *rates)
10727 {
10728         /* TODO: Mask out rates based on priv->rates_mask */
10729
10730         memset(rates, 0, sizeof(*rates));
10731         /* configure supported rates */
10732         switch (priv->ieee->freq_band) {
10733         case IEEE80211_52GHZ_BAND:
10734                 rates->ieee_mode = IPW_A_MODE;
10735                 rates->purpose = IPW_RATE_CAPABILITIES;
10736                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10737                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10738                 break;
10739
10740         default:                /* Mixed or 2.4Ghz */
10741                 rates->ieee_mode = IPW_G_MODE;
10742                 rates->purpose = IPW_RATE_CAPABILITIES;
10743                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10744                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10745                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10746                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10747                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10748                 }
10749                 break;
10750         }
10751
10752         return 0;
10753 }
10754
10755 static int ipw_config(struct ipw_priv *priv)
10756 {
10757         /* This is only called from ipw_up, which resets/reloads the firmware
10758            so, we don't need to first disable the card before we configure
10759            it */
10760         if (ipw_set_tx_power(priv))
10761                 goto error;
10762
10763         /* initialize adapter address */
10764         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10765                 goto error;
10766
10767         /* set basic system config settings */
10768         init_sys_config(&priv->sys_config);
10769
10770         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10771          * Does not support BT priority yet (don't abort or defer our Tx) */
10772         if (bt_coexist) {
10773                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10774
10775                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10776                         priv->sys_config.bt_coexistence
10777                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10778                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10779                         priv->sys_config.bt_coexistence
10780                             |= CFG_BT_COEXISTENCE_OOB;
10781         }
10782
10783 #ifdef CONFIG_IPW2200_PROMISCUOUS
10784         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10785                 priv->sys_config.accept_all_data_frames = 1;
10786                 priv->sys_config.accept_non_directed_frames = 1;
10787                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10788                 priv->sys_config.accept_all_mgmt_frames = 1;
10789         }
10790 #endif
10791
10792         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10793                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10794         else
10795                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10796
10797         if (ipw_send_system_config(priv))
10798                 goto error;
10799
10800         init_supported_rates(priv, &priv->rates);
10801         if (ipw_send_supported_rates(priv, &priv->rates))
10802                 goto error;
10803
10804         /* Set request-to-send threshold */
10805         if (priv->rts_threshold) {
10806                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10807                         goto error;
10808         }
10809 #ifdef CONFIG_IPW2200_QOS
10810         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10811         ipw_qos_activate(priv, NULL);
10812 #endif                          /* CONFIG_IPW2200_QOS */
10813
10814         if (ipw_set_random_seed(priv))
10815                 goto error;
10816
10817         /* final state transition to the RUN state */
10818         if (ipw_send_host_complete(priv))
10819                 goto error;
10820
10821         priv->status |= STATUS_INIT;
10822
10823         ipw_led_init(priv);
10824         ipw_led_radio_on(priv);
10825         priv->notif_missed_beacons = 0;
10826
10827         /* Set hardware WEP key if it is configured. */
10828         if ((priv->capability & CAP_PRIVACY_ON) &&
10829             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10830             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10831                 ipw_set_hwcrypto_keys(priv);
10832
10833         return 0;
10834
10835       error:
10836         return -EIO;
10837 }
10838
10839 /*
10840  * NOTE:
10841  *
10842  * These tables have been tested in conjunction with the
10843  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10844  *
10845  * Altering this values, using it on other hardware, or in geographies
10846  * not intended for resale of the above mentioned Intel adapters has
10847  * not been tested.
10848  *
10849  * Remember to update the table in README.ipw2200 when changing this
10850  * table.
10851  *
10852  */
10853 static const struct ieee80211_geo ipw_geos[] = {
10854         {                       /* Restricted */
10855          "---",
10856          .bg_channels = 11,
10857          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10858                 {2427, 4}, {2432, 5}, {2437, 6},
10859                 {2442, 7}, {2447, 8}, {2452, 9},
10860                 {2457, 10}, {2462, 11}},
10861          },
10862
10863         {                       /* Custom US/Canada */
10864          "ZZF",
10865          .bg_channels = 11,
10866          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10867                 {2427, 4}, {2432, 5}, {2437, 6},
10868                 {2442, 7}, {2447, 8}, {2452, 9},
10869                 {2457, 10}, {2462, 11}},
10870          .a_channels = 8,
10871          .a = {{5180, 36},
10872                {5200, 40},
10873                {5220, 44},
10874                {5240, 48},
10875                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10876                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10877                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10878                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10879          },
10880
10881         {                       /* Rest of World */
10882          "ZZD",
10883          .bg_channels = 13,
10884          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10885                 {2427, 4}, {2432, 5}, {2437, 6},
10886                 {2442, 7}, {2447, 8}, {2452, 9},
10887                 {2457, 10}, {2462, 11}, {2467, 12},
10888                 {2472, 13}},
10889          },
10890
10891         {                       /* Custom USA & Europe & High */
10892          "ZZA",
10893          .bg_channels = 11,
10894          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10895                 {2427, 4}, {2432, 5}, {2437, 6},
10896                 {2442, 7}, {2447, 8}, {2452, 9},
10897                 {2457, 10}, {2462, 11}},
10898          .a_channels = 13,
10899          .a = {{5180, 36},
10900                {5200, 40},
10901                {5220, 44},
10902                {5240, 48},
10903                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10904                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10905                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10906                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10907                {5745, 149},
10908                {5765, 153},
10909                {5785, 157},
10910                {5805, 161},
10911                {5825, 165}},
10912          },
10913
10914         {                       /* Custom NA & Europe */
10915          "ZZB",
10916          .bg_channels = 11,
10917          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10918                 {2427, 4}, {2432, 5}, {2437, 6},
10919                 {2442, 7}, {2447, 8}, {2452, 9},
10920                 {2457, 10}, {2462, 11}},
10921          .a_channels = 13,
10922          .a = {{5180, 36},
10923                {5200, 40},
10924                {5220, 44},
10925                {5240, 48},
10926                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10927                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10928                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10929                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10930                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10931                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10932                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10933                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10934                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10935          },
10936
10937         {                       /* Custom Japan */
10938          "ZZC",
10939          .bg_channels = 11,
10940          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10941                 {2427, 4}, {2432, 5}, {2437, 6},
10942                 {2442, 7}, {2447, 8}, {2452, 9},
10943                 {2457, 10}, {2462, 11}},
10944          .a_channels = 4,
10945          .a = {{5170, 34}, {5190, 38},
10946                {5210, 42}, {5230, 46}},
10947          },
10948
10949         {                       /* Custom */
10950          "ZZM",
10951          .bg_channels = 11,
10952          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10953                 {2427, 4}, {2432, 5}, {2437, 6},
10954                 {2442, 7}, {2447, 8}, {2452, 9},
10955                 {2457, 10}, {2462, 11}},
10956          },
10957
10958         {                       /* Europe */
10959          "ZZE",
10960          .bg_channels = 13,
10961          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10962                 {2427, 4}, {2432, 5}, {2437, 6},
10963                 {2442, 7}, {2447, 8}, {2452, 9},
10964                 {2457, 10}, {2462, 11}, {2467, 12},
10965                 {2472, 13}},
10966          .a_channels = 19,
10967          .a = {{5180, 36},
10968                {5200, 40},
10969                {5220, 44},
10970                {5240, 48},
10971                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10972                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10973                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10974                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10975                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10976                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10977                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10978                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10979                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10980                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10981                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10982                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10983                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10984                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10985                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10986          },
10987
10988         {                       /* Custom Japan */
10989          "ZZJ",
10990          .bg_channels = 14,
10991          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992                 {2427, 4}, {2432, 5}, {2437, 6},
10993                 {2442, 7}, {2447, 8}, {2452, 9},
10994                 {2457, 10}, {2462, 11}, {2467, 12},
10995                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10996          .a_channels = 4,
10997          .a = {{5170, 34}, {5190, 38},
10998                {5210, 42}, {5230, 46}},
10999          },
11000
11001         {                       /* Rest of World */
11002          "ZZR",
11003          .bg_channels = 14,
11004          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11005                 {2427, 4}, {2432, 5}, {2437, 6},
11006                 {2442, 7}, {2447, 8}, {2452, 9},
11007                 {2457, 10}, {2462, 11}, {2467, 12},
11008                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11009                              IEEE80211_CH_PASSIVE_ONLY}},
11010          },
11011
11012         {                       /* High Band */
11013          "ZZH",
11014          .bg_channels = 13,
11015          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11016                 {2427, 4}, {2432, 5}, {2437, 6},
11017                 {2442, 7}, {2447, 8}, {2452, 9},
11018                 {2457, 10}, {2462, 11},
11019                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11020                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11021          .a_channels = 4,
11022          .a = {{5745, 149}, {5765, 153},
11023                {5785, 157}, {5805, 161}},
11024          },
11025
11026         {                       /* Custom Europe */
11027          "ZZG",
11028          .bg_channels = 13,
11029          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11030                 {2427, 4}, {2432, 5}, {2437, 6},
11031                 {2442, 7}, {2447, 8}, {2452, 9},
11032                 {2457, 10}, {2462, 11},
11033                 {2467, 12}, {2472, 13}},
11034          .a_channels = 4,
11035          .a = {{5180, 36}, {5200, 40},
11036                {5220, 44}, {5240, 48}},
11037          },
11038
11039         {                       /* Europe */
11040          "ZZK",
11041          .bg_channels = 13,
11042          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11043                 {2427, 4}, {2432, 5}, {2437, 6},
11044                 {2442, 7}, {2447, 8}, {2452, 9},
11045                 {2457, 10}, {2462, 11},
11046                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11047                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11048          .a_channels = 24,
11049          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11050                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11051                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11052                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11053                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11054                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11055                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11056                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11057                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11058                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11059                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11060                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11061                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11062                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11063                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11064                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11065                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11066                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11067                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11068                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11069                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11070                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11071                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11072                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11073          },
11074
11075         {                       /* Europe */
11076          "ZZL",
11077          .bg_channels = 11,
11078          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11079                 {2427, 4}, {2432, 5}, {2437, 6},
11080                 {2442, 7}, {2447, 8}, {2452, 9},
11081                 {2457, 10}, {2462, 11}},
11082          .a_channels = 13,
11083          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11084                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11085                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11086                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11087                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11088                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11089                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11090                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11091                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11092                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11093                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11094                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11095                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11096          }
11097 };
11098
11099 #define MAX_HW_RESTARTS 5
11100 static int ipw_up(struct ipw_priv *priv)
11101 {
11102         int rc, i, j;
11103
11104         if (priv->status & STATUS_EXIT_PENDING)
11105                 return -EIO;
11106
11107         if (cmdlog && !priv->cmdlog) {
11108                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11109                                        GFP_KERNEL);
11110                 if (priv->cmdlog == NULL) {
11111                         IPW_ERROR("Error allocating %d command log entries.\n",
11112                                   cmdlog);
11113                         return -ENOMEM;
11114                 } else {
11115                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11116                         priv->cmdlog_len = cmdlog;
11117                 }
11118         }
11119
11120         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11121                 /* Load the microcode, firmware, and eeprom.
11122                  * Also start the clocks. */
11123                 rc = ipw_load(priv);
11124                 if (rc) {
11125                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11126                         return rc;
11127                 }
11128
11129                 ipw_init_ordinals(priv);
11130                 if (!(priv->config & CFG_CUSTOM_MAC))
11131                         eeprom_parse_mac(priv, priv->mac_addr);
11132                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11133
11134                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11135                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11136                                     ipw_geos[j].name, 3))
11137                                 break;
11138                 }
11139                 if (j == ARRAY_SIZE(ipw_geos)) {
11140                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11141                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11142                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11143                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11144                         j = 0;
11145                 }
11146                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11147                         IPW_WARNING("Could not set geography.");
11148                         return 0;
11149                 }
11150
11151                 if (priv->status & STATUS_RF_KILL_SW) {
11152                         IPW_WARNING("Radio disabled by module parameter.\n");
11153                         return 0;
11154                 } else if (rf_kill_active(priv)) {
11155                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11156                                     "Kill switch must be turned off for "
11157                                     "wireless networking to work.\n");
11158                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11159                                            2 * HZ);
11160                         return 0;
11161                 }
11162
11163                 rc = ipw_config(priv);
11164                 if (!rc) {
11165                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11166
11167                         /* If configure to try and auto-associate, kick
11168                          * off a scan. */
11169                         queue_work(priv->workqueue, &priv->request_scan);
11170
11171                         return 0;
11172                 }
11173
11174                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11175                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11176                                i, MAX_HW_RESTARTS);
11177
11178                 /* We had an error bringing up the hardware, so take it
11179                  * all the way back down so we can try again */
11180                 ipw_down(priv);
11181         }
11182
11183         /* tried to restart and config the device for as long as our
11184          * patience could withstand */
11185         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11186
11187         return -EIO;
11188 }
11189
11190 static void ipw_bg_up(void *data)
11191 {
11192         struct ipw_priv *priv = data;
11193         mutex_lock(&priv->mutex);
11194         ipw_up(data);
11195         mutex_unlock(&priv->mutex);
11196 }
11197
11198 static void ipw_deinit(struct ipw_priv *priv)
11199 {
11200         int i;
11201
11202         if (priv->status & STATUS_SCANNING) {
11203                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11204                 ipw_abort_scan(priv);
11205         }
11206
11207         if (priv->status & STATUS_ASSOCIATED) {
11208                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11209                 ipw_disassociate(priv);
11210         }
11211
11212         ipw_led_shutdown(priv);
11213
11214         /* Wait up to 1s for status to change to not scanning and not
11215          * associated (disassociation can take a while for a ful 802.11
11216          * exchange */
11217         for (i = 1000; i && (priv->status &
11218                              (STATUS_DISASSOCIATING |
11219                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11220                 udelay(10);
11221
11222         if (priv->status & (STATUS_DISASSOCIATING |
11223                             STATUS_ASSOCIATED | STATUS_SCANNING))
11224                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11225         else
11226                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11227
11228         /* Attempt to disable the card */
11229         ipw_send_card_disable(priv, 0);
11230
11231         priv->status &= ~STATUS_INIT;
11232 }
11233
11234 static void ipw_down(struct ipw_priv *priv)
11235 {
11236         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11237
11238         priv->status |= STATUS_EXIT_PENDING;
11239
11240         if (ipw_is_init(priv))
11241                 ipw_deinit(priv);
11242
11243         /* Wipe out the EXIT_PENDING status bit if we are not actually
11244          * exiting the module */
11245         if (!exit_pending)
11246                 priv->status &= ~STATUS_EXIT_PENDING;
11247
11248         /* tell the device to stop sending interrupts */
11249         ipw_disable_interrupts(priv);
11250
11251         /* Clear all bits but the RF Kill */
11252         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11253         netif_carrier_off(priv->net_dev);
11254         netif_stop_queue(priv->net_dev);
11255
11256         ipw_stop_nic(priv);
11257
11258         ipw_led_radio_off(priv);
11259 }
11260
11261 static void ipw_bg_down(void *data)
11262 {
11263         struct ipw_priv *priv = data;
11264         mutex_lock(&priv->mutex);
11265         ipw_down(data);
11266         mutex_unlock(&priv->mutex);
11267 }
11268
11269 /* Called by register_netdev() */
11270 static int ipw_net_init(struct net_device *dev)
11271 {
11272         struct ipw_priv *priv = ieee80211_priv(dev);
11273         mutex_lock(&priv->mutex);
11274
11275         if (ipw_up(priv)) {
11276                 mutex_unlock(&priv->mutex);
11277                 return -EIO;
11278         }
11279
11280         mutex_unlock(&priv->mutex);
11281         return 0;
11282 }
11283
11284 /* PCI driver stuff */
11285 static struct pci_device_id card_ids[] = {
11286         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11287         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11288         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11289         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11290         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11291         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11292         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11293         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11294         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11295         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11296         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11297         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11298         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11299         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11300         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11301         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11302         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11303         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11304         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11305         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11306         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11307         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11308
11309         /* required last entry */
11310         {0,}
11311 };
11312
11313 MODULE_DEVICE_TABLE(pci, card_ids);
11314
11315 static struct attribute *ipw_sysfs_entries[] = {
11316         &dev_attr_rf_kill.attr,
11317         &dev_attr_direct_dword.attr,
11318         &dev_attr_indirect_byte.attr,
11319         &dev_attr_indirect_dword.attr,
11320         &dev_attr_mem_gpio_reg.attr,
11321         &dev_attr_command_event_reg.attr,
11322         &dev_attr_nic_type.attr,
11323         &dev_attr_status.attr,
11324         &dev_attr_cfg.attr,
11325         &dev_attr_error.attr,
11326         &dev_attr_event_log.attr,
11327         &dev_attr_cmd_log.attr,
11328         &dev_attr_eeprom_delay.attr,
11329         &dev_attr_ucode_version.attr,
11330         &dev_attr_rtc.attr,
11331         &dev_attr_scan_age.attr,
11332         &dev_attr_led.attr,
11333         &dev_attr_speed_scan.attr,
11334         &dev_attr_net_stats.attr,
11335 #ifdef CONFIG_IPW2200_PROMISCUOUS
11336         &dev_attr_rtap_iface.attr,
11337         &dev_attr_rtap_filter.attr,
11338 #endif
11339         NULL
11340 };
11341
11342 static struct attribute_group ipw_attribute_group = {
11343         .name = NULL,           /* put in device directory */
11344         .attrs = ipw_sysfs_entries,
11345 };
11346
11347 #ifdef CONFIG_IPW2200_PROMISCUOUS
11348 static int ipw_prom_open(struct net_device *dev)
11349 {
11350         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11351         struct ipw_priv *priv = prom_priv->priv;
11352
11353         IPW_DEBUG_INFO("prom dev->open\n");
11354         netif_carrier_off(dev);
11355         netif_stop_queue(dev);
11356
11357         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11358                 priv->sys_config.accept_all_data_frames = 1;
11359                 priv->sys_config.accept_non_directed_frames = 1;
11360                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11361                 priv->sys_config.accept_all_mgmt_frames = 1;
11362
11363                 ipw_send_system_config(priv);
11364         }
11365
11366         return 0;
11367 }
11368
11369 static int ipw_prom_stop(struct net_device *dev)
11370 {
11371         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11372         struct ipw_priv *priv = prom_priv->priv;
11373
11374         IPW_DEBUG_INFO("prom dev->stop\n");
11375
11376         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11377                 priv->sys_config.accept_all_data_frames = 0;
11378                 priv->sys_config.accept_non_directed_frames = 0;
11379                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11380                 priv->sys_config.accept_all_mgmt_frames = 0;
11381
11382                 ipw_send_system_config(priv);
11383         }
11384
11385         return 0;
11386 }
11387
11388 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11389 {
11390         IPW_DEBUG_INFO("prom dev->xmit\n");
11391         netif_stop_queue(dev);
11392         return -EOPNOTSUPP;
11393 }
11394
11395 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11396 {
11397         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11398         return &prom_priv->ieee->stats;
11399 }
11400
11401 static int ipw_prom_alloc(struct ipw_priv *priv)
11402 {
11403         int rc = 0;
11404
11405         if (priv->prom_net_dev)
11406                 return -EPERM;
11407
11408         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11409         if (priv->prom_net_dev == NULL)
11410                 return -ENOMEM;
11411
11412         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11413         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11414         priv->prom_priv->priv = priv;
11415
11416         strcpy(priv->prom_net_dev->name, "rtap%d");
11417
11418         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11419         priv->prom_net_dev->open = ipw_prom_open;
11420         priv->prom_net_dev->stop = ipw_prom_stop;
11421         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11422         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11423
11424         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11425
11426         rc = register_netdev(priv->prom_net_dev);
11427         if (rc) {
11428                 free_ieee80211(priv->prom_net_dev);
11429                 priv->prom_net_dev = NULL;
11430                 return rc;
11431         }
11432
11433         return 0;
11434 }
11435
11436 static void ipw_prom_free(struct ipw_priv *priv)
11437 {
11438         if (!priv->prom_net_dev)
11439                 return;
11440
11441         unregister_netdev(priv->prom_net_dev);
11442         free_ieee80211(priv->prom_net_dev);
11443
11444         priv->prom_net_dev = NULL;
11445 }
11446
11447 #endif
11448
11449
11450 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11451 {
11452         int err = 0;
11453         struct net_device *net_dev;
11454         void __iomem *base;
11455         u32 length, val;
11456         struct ipw_priv *priv;
11457         int i;
11458
11459         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11460         if (net_dev == NULL) {
11461                 err = -ENOMEM;
11462                 goto out;
11463         }
11464
11465         priv = ieee80211_priv(net_dev);
11466         priv->ieee = netdev_priv(net_dev);
11467
11468         priv->net_dev = net_dev;
11469         priv->pci_dev = pdev;
11470 #ifdef CONFIG_IPW2200_DEBUG
11471         ipw_debug_level = debug;
11472 #endif
11473         spin_lock_init(&priv->irq_lock);
11474         spin_lock_init(&priv->lock);
11475         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11476                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11477
11478         mutex_init(&priv->mutex);
11479         if (pci_enable_device(pdev)) {
11480                 err = -ENODEV;
11481                 goto out_free_ieee80211;
11482         }
11483
11484         pci_set_master(pdev);
11485
11486         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11487         if (!err)
11488                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11489         if (err) {
11490                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11491                 goto out_pci_disable_device;
11492         }
11493
11494         pci_set_drvdata(pdev, priv);
11495
11496         err = pci_request_regions(pdev, DRV_NAME);
11497         if (err)
11498                 goto out_pci_disable_device;
11499
11500         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11501          * PCI Tx retries from interfering with C3 CPU state */
11502         pci_read_config_dword(pdev, 0x40, &val);
11503         if ((val & 0x0000ff00) != 0)
11504                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11505
11506         length = pci_resource_len(pdev, 0);
11507         priv->hw_len = length;
11508
11509         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11510         if (!base) {
11511                 err = -ENODEV;
11512                 goto out_pci_release_regions;
11513         }
11514
11515         priv->hw_base = base;
11516         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11517         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11518
11519         err = ipw_setup_deferred_work(priv);
11520         if (err) {
11521                 IPW_ERROR("Unable to setup deferred work\n");
11522                 goto out_iounmap;
11523         }
11524
11525         ipw_sw_reset(priv, 1);
11526
11527         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11528         if (err) {
11529                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11530                 goto out_destroy_workqueue;
11531         }
11532
11533         SET_MODULE_OWNER(net_dev);
11534         SET_NETDEV_DEV(net_dev, &pdev->dev);
11535
11536         mutex_lock(&priv->mutex);
11537
11538         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11539         priv->ieee->set_security = shim__set_security;
11540         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11541
11542 #ifdef CONFIG_IPW2200_QOS
11543         priv->ieee->is_qos_active = ipw_is_qos_active;
11544         priv->ieee->handle_probe_response = ipw_handle_beacon;
11545         priv->ieee->handle_beacon = ipw_handle_probe_response;
11546         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11547 #endif                          /* CONFIG_IPW2200_QOS */
11548
11549         priv->ieee->perfect_rssi = -20;
11550         priv->ieee->worst_rssi = -85;
11551
11552         net_dev->open = ipw_net_open;
11553         net_dev->stop = ipw_net_stop;
11554         net_dev->init = ipw_net_init;
11555         net_dev->get_stats = ipw_net_get_stats;
11556         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11557         net_dev->set_mac_address = ipw_net_set_mac_address;
11558         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11559         net_dev->wireless_data = &priv->wireless_data;
11560         net_dev->wireless_handlers = &ipw_wx_handler_def;
11561         net_dev->ethtool_ops = &ipw_ethtool_ops;
11562         net_dev->irq = pdev->irq;
11563         net_dev->base_addr = (unsigned long)priv->hw_base;
11564         net_dev->mem_start = pci_resource_start(pdev, 0);
11565         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11566
11567         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11568         if (err) {
11569                 IPW_ERROR("failed to create sysfs device attributes\n");
11570                 mutex_unlock(&priv->mutex);
11571                 goto out_release_irq;
11572         }
11573
11574         mutex_unlock(&priv->mutex);
11575         err = register_netdev(net_dev);
11576         if (err) {
11577                 IPW_ERROR("failed to register network device\n");
11578                 goto out_remove_sysfs;
11579         }
11580
11581 #ifdef CONFIG_IPW2200_PROMISCUOUS
11582         if (rtap_iface) {
11583                 err = ipw_prom_alloc(priv);
11584                 if (err) {
11585                         IPW_ERROR("Failed to register promiscuous network "
11586                                   "device (error %d).\n", err);
11587                         unregister_netdev(priv->net_dev);
11588                         goto out_remove_sysfs;
11589                 }
11590         }
11591 #endif
11592
11593         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11594                "channels, %d 802.11a channels)\n",
11595                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11596                priv->ieee->geo.a_channels);
11597
11598         return 0;
11599
11600       out_remove_sysfs:
11601         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11602       out_release_irq:
11603         free_irq(pdev->irq, priv);
11604       out_destroy_workqueue:
11605         destroy_workqueue(priv->workqueue);
11606         priv->workqueue = NULL;
11607       out_iounmap:
11608         iounmap(priv->hw_base);
11609       out_pci_release_regions:
11610         pci_release_regions(pdev);
11611       out_pci_disable_device:
11612         pci_disable_device(pdev);
11613         pci_set_drvdata(pdev, NULL);
11614       out_free_ieee80211:
11615         free_ieee80211(priv->net_dev);
11616       out:
11617         return err;
11618 }
11619
11620 static void ipw_pci_remove(struct pci_dev *pdev)
11621 {
11622         struct ipw_priv *priv = pci_get_drvdata(pdev);
11623         struct list_head *p, *q;
11624         int i;
11625
11626         if (!priv)
11627                 return;
11628
11629         mutex_lock(&priv->mutex);
11630
11631         priv->status |= STATUS_EXIT_PENDING;
11632         ipw_down(priv);
11633         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11634
11635         mutex_unlock(&priv->mutex);
11636
11637         unregister_netdev(priv->net_dev);
11638
11639         if (priv->rxq) {
11640                 ipw_rx_queue_free(priv, priv->rxq);
11641                 priv->rxq = NULL;
11642         }
11643         ipw_tx_queue_free(priv);
11644
11645         if (priv->cmdlog) {
11646                 kfree(priv->cmdlog);
11647                 priv->cmdlog = NULL;
11648         }
11649         /* ipw_down will ensure that there is no more pending work
11650          * in the workqueue's, so we can safely remove them now. */
11651         cancel_delayed_work(&priv->adhoc_check);
11652         cancel_delayed_work(&priv->gather_stats);
11653         cancel_delayed_work(&priv->request_scan);
11654         cancel_delayed_work(&priv->rf_kill);
11655         cancel_delayed_work(&priv->scan_check);
11656         destroy_workqueue(priv->workqueue);
11657         priv->workqueue = NULL;
11658
11659         /* Free MAC hash list for ADHOC */
11660         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11661                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11662                         list_del(p);
11663                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11664                 }
11665         }
11666
11667         kfree(priv->error);
11668         priv->error = NULL;
11669
11670 #ifdef CONFIG_IPW2200_PROMISCUOUS
11671         ipw_prom_free(priv);
11672 #endif
11673
11674         free_irq(pdev->irq, priv);
11675         iounmap(priv->hw_base);
11676         pci_release_regions(pdev);
11677         pci_disable_device(pdev);
11678         pci_set_drvdata(pdev, NULL);
11679         free_ieee80211(priv->net_dev);
11680         free_firmware();
11681 }
11682
11683 #ifdef CONFIG_PM
11684 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11685 {
11686         struct ipw_priv *priv = pci_get_drvdata(pdev);
11687         struct net_device *dev = priv->net_dev;
11688
11689         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11690
11691         /* Take down the device; powers it off, etc. */
11692         ipw_down(priv);
11693
11694         /* Remove the PRESENT state of the device */
11695         netif_device_detach(dev);
11696
11697         pci_save_state(pdev);
11698         pci_disable_device(pdev);
11699         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11700
11701         return 0;
11702 }
11703
11704 static int ipw_pci_resume(struct pci_dev *pdev)
11705 {
11706         struct ipw_priv *priv = pci_get_drvdata(pdev);
11707         struct net_device *dev = priv->net_dev;
11708         u32 val;
11709
11710         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11711
11712         pci_set_power_state(pdev, PCI_D0);
11713         pci_enable_device(pdev);
11714         pci_restore_state(pdev);
11715
11716         /*
11717          * Suspend/Resume resets the PCI configuration space, so we have to
11718          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11719          * from interfering with C3 CPU state. pci_restore_state won't help
11720          * here since it only restores the first 64 bytes pci config header.
11721          */
11722         pci_read_config_dword(pdev, 0x40, &val);
11723         if ((val & 0x0000ff00) != 0)
11724                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11725
11726         /* Set the device back into the PRESENT state; this will also wake
11727          * the queue of needed */
11728         netif_device_attach(dev);
11729
11730         /* Bring the device back up */
11731         queue_work(priv->workqueue, &priv->up);
11732
11733         return 0;
11734 }
11735 #endif
11736
11737 /* driver initialization stuff */
11738 static struct pci_driver ipw_driver = {
11739         .name = DRV_NAME,
11740         .id_table = card_ids,
11741         .probe = ipw_pci_probe,
11742         .remove = __devexit_p(ipw_pci_remove),
11743 #ifdef CONFIG_PM
11744         .suspend = ipw_pci_suspend,
11745         .resume = ipw_pci_resume,
11746 #endif
11747 };
11748
11749 static int __init ipw_init(void)
11750 {
11751         int ret;
11752
11753         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11754         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11755
11756         ret = pci_module_init(&ipw_driver);
11757         if (ret) {
11758                 IPW_ERROR("Unable to initialize PCI module\n");
11759                 return ret;
11760         }
11761
11762         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11763         if (ret) {
11764                 IPW_ERROR("Unable to create driver sysfs file\n");
11765                 pci_unregister_driver(&ipw_driver);
11766                 return ret;
11767         }
11768
11769         return ret;
11770 }
11771
11772 static void __exit ipw_exit(void)
11773 {
11774         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11775         pci_unregister_driver(&ipw_driver);
11776 }
11777
11778 module_param(disable, int, 0444);
11779 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11780
11781 module_param(associate, int, 0444);
11782 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11783
11784 module_param(auto_create, int, 0444);
11785 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11786
11787 module_param(led, int, 0444);
11788 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11789
11790 #ifdef CONFIG_IPW2200_DEBUG
11791 module_param(debug, int, 0444);
11792 MODULE_PARM_DESC(debug, "debug output mask");
11793 #endif
11794
11795 module_param(channel, int, 0444);
11796 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11797
11798 #ifdef CONFIG_IPW2200_PROMISCUOUS
11799 module_param(rtap_iface, int, 0444);
11800 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11801 #endif
11802
11803 #ifdef CONFIG_IPW2200_QOS
11804 module_param(qos_enable, int, 0444);
11805 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11806
11807 module_param(qos_burst_enable, int, 0444);
11808 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11809
11810 module_param(qos_no_ack_mask, int, 0444);
11811 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11812
11813 module_param(burst_duration_CCK, int, 0444);
11814 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11815
11816 module_param(burst_duration_OFDM, int, 0444);
11817 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11818 #endif                          /* CONFIG_IPW2200_QOS */
11819
11820 #ifdef CONFIG_IPW2200_MONITOR
11821 module_param(mode, int, 0444);
11822 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11823 #else
11824 module_param(mode, int, 0444);
11825 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11826 #endif
11827
11828 module_param(bt_coexist, int, 0444);
11829 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11830
11831 module_param(hwcrypto, int, 0444);
11832 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11833
11834 module_param(cmdlog, int, 0444);
11835 MODULE_PARM_DESC(cmdlog,
11836                  "allocate a ring buffer for logging firmware commands");
11837
11838 module_param(roaming, int, 0444);
11839 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11840
11841 module_param(antenna, int, 0444);
11842 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11843
11844 module_exit(ipw_exit);
11845 module_init(ipw_init);