Merge branch 'genirq' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[pandora-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val)
311
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
314
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318  _ipw_write16(ipw, ofs, val)
319
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
322
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326  _ipw_write32(ipw, ofs, val)
327
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
330
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
333 {
334         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335         return _ipw_read8(ipw, ofs);
336 }
337
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
340
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
343
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
346 {
347         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348         return _ipw_read16(ipw, ofs);
349 }
350
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
353
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
356
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
359 {
360         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361         return _ipw_read32(ipw, ofs);
362 }
363
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
366
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370                                        struct ipw_priv *a, u32 b, u8 * c, int d)
371 {
372         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
373                      d);
374         _ipw_read_indirect(a, b, c, d);
375 }
376
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
379
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382                                 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385         _ipw_write_indirect(a, b, c, d)
386
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
389 {
390         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
393 }
394
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
397 {
398         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
399         u32 dif_len = reg - aligned_addr;
400
401         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
404 }
405
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
408 {
409         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
410         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
411
412         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
415 }
416
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
419 {
420         u32 word;
421         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424         return (word >> ((reg & 0x3) * 8)) & 0xff;
425 }
426
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
429 {
430         u32 value;
431
432         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
433
434         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437         return value;
438 }
439
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /*    for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443                                int num)
444 {
445         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
446         u32 dif_len = addr - aligned_addr;
447         u32 i;
448
449         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
450
451         if (num <= 0) {
452                 return;
453         }
454
455         /* Read the first dword (or portion) byte by byte */
456         if (unlikely(dif_len)) {
457                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458                 /* Start reading at aligned_addr + dif_len */
459                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461                 aligned_addr += 4;
462         }
463
464         /* Read all of the middle dwords as dwords, with auto-increment */
465         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
468
469         /* Read the last dword (or portion) byte by byte */
470         if (unlikely(num)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 for (i = 0; num > 0; i++, num--)
473                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
474         }
475 }
476
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /*    for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480                                 int num)
481 {
482         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
483         u32 dif_len = addr - aligned_addr;
484         u32 i;
485
486         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
487
488         if (num <= 0) {
489                 return;
490         }
491
492         /* Write the first dword (or portion) byte by byte */
493         if (unlikely(dif_len)) {
494                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495                 /* Start writing at aligned_addr + dif_len */
496                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498                 aligned_addr += 4;
499         }
500
501         /* Write all of the middle dwords as dwords, with auto-increment */
502         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
505
506         /* Write the last dword (or portion) byte by byte */
507         if (unlikely(num)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 for (i = 0; num > 0; i++, num--, buf++)
510                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
511         }
512 }
513
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /*    for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517                              int num)
518 {
519         memcpy_toio((priv->hw_base + addr), buf, num);
520 }
521
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
524 {
525         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
526 }
527
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
530 {
531         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
532 }
533
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
535 {
536         if (priv->status & STATUS_INT_ENABLED)
537                 return;
538         priv->status |= STATUS_INT_ENABLED;
539         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
540 }
541
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
543 {
544         if (!(priv->status & STATUS_INT_ENABLED))
545                 return;
546         priv->status &= ~STATUS_INT_ENABLED;
547         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
548 }
549
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
551 {
552         unsigned long flags;
553
554         spin_lock_irqsave(&priv->irq_lock, flags);
555         __ipw_enable_interrupts(priv);
556         spin_unlock_irqrestore(&priv->irq_lock, flags);
557 }
558
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
560 {
561         unsigned long flags;
562
563         spin_lock_irqsave(&priv->irq_lock, flags);
564         __ipw_disable_interrupts(priv);
565         spin_unlock_irqrestore(&priv->irq_lock, flags);
566 }
567
568 static char *ipw_error_desc(u32 val)
569 {
570         switch (val) {
571         case IPW_FW_ERROR_OK:
572                 return "ERROR_OK";
573         case IPW_FW_ERROR_FAIL:
574                 return "ERROR_FAIL";
575         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576                 return "MEMORY_UNDERFLOW";
577         case IPW_FW_ERROR_MEMORY_OVERFLOW:
578                 return "MEMORY_OVERFLOW";
579         case IPW_FW_ERROR_BAD_PARAM:
580                 return "BAD_PARAM";
581         case IPW_FW_ERROR_BAD_CHECKSUM:
582                 return "BAD_CHECKSUM";
583         case IPW_FW_ERROR_NMI_INTERRUPT:
584                 return "NMI_INTERRUPT";
585         case IPW_FW_ERROR_BAD_DATABASE:
586                 return "BAD_DATABASE";
587         case IPW_FW_ERROR_ALLOC_FAIL:
588                 return "ALLOC_FAIL";
589         case IPW_FW_ERROR_DMA_UNDERRUN:
590                 return "DMA_UNDERRUN";
591         case IPW_FW_ERROR_DMA_STATUS:
592                 return "DMA_STATUS";
593         case IPW_FW_ERROR_DINO_ERROR:
594                 return "DINO_ERROR";
595         case IPW_FW_ERROR_EEPROM_ERROR:
596                 return "EEPROM_ERROR";
597         case IPW_FW_ERROR_SYSASSERT:
598                 return "SYSASSERT";
599         case IPW_FW_ERROR_FATAL_ERROR:
600                 return "FATAL_ERROR";
601         default:
602                 return "UNKNOWN_ERROR";
603         }
604 }
605
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607                                struct ipw_fw_error *error)
608 {
609         u32 i;
610
611         if (!error) {
612                 IPW_ERROR("Error allocating and capturing error log.  "
613                           "Nothing to dump.\n");
614                 return;
615         }
616
617         IPW_ERROR("Start IPW Error Log Dump:\n");
618         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619                   error->status, error->config);
620
621         for (i = 0; i < error->elem_len; i++)
622                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
623                           ipw_error_desc(error->elem[i].desc),
624                           error->elem[i].time,
625                           error->elem[i].blink1,
626                           error->elem[i].blink2,
627                           error->elem[i].link1,
628                           error->elem[i].link2, error->elem[i].data);
629         for (i = 0; i < error->log_len; i++)
630                 IPW_ERROR("%i\t0x%08x\t%i\n",
631                           error->log[i].time,
632                           error->log[i].data, error->log[i].event);
633 }
634
635 static inline int ipw_is_init(struct ipw_priv *priv)
636 {
637         return (priv->status & STATUS_INIT) ? 1 : 0;
638 }
639
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
641 {
642         u32 addr, field_info, field_len, field_count, total_len;
643
644         IPW_DEBUG_ORD("ordinal = %i\n", ord);
645
646         if (!priv || !val || !len) {
647                 IPW_DEBUG_ORD("Invalid argument\n");
648                 return -EINVAL;
649         }
650
651         /* verify device ordinal tables have been initialized */
652         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654                 return -EINVAL;
655         }
656
657         switch (IPW_ORD_TABLE_ID_MASK & ord) {
658         case IPW_ORD_TABLE_0_MASK:
659                 /*
660                  * TABLE 0: Direct access to a table of 32 bit values
661                  *
662                  * This is a very simple table with the data directly
663                  * read from the table
664                  */
665
666                 /* remove the table id from the ordinal */
667                 ord &= IPW_ORD_TABLE_VALUE_MASK;
668
669                 /* boundary check */
670                 if (ord > priv->table0_len) {
671                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
672                                       "max (%i)\n", ord, priv->table0_len);
673                         return -EINVAL;
674                 }
675
676                 /* verify we have enough room to store the value */
677                 if (*len < sizeof(u32)) {
678                         IPW_DEBUG_ORD("ordinal buffer length too small, "
679                                       "need %zd\n", sizeof(u32));
680                         return -EINVAL;
681                 }
682
683                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684                               ord, priv->table0_addr + (ord << 2));
685
686                 *len = sizeof(u32);
687                 ord <<= 2;
688                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689                 break;
690
691         case IPW_ORD_TABLE_1_MASK:
692                 /*
693                  * TABLE 1: Indirect access to a table of 32 bit values
694                  *
695                  * This is a fairly large table of u32 values each
696                  * representing starting addr for the data (which is
697                  * also a u32)
698                  */
699
700                 /* remove the table id from the ordinal */
701                 ord &= IPW_ORD_TABLE_VALUE_MASK;
702
703                 /* boundary check */
704                 if (ord > priv->table1_len) {
705                         IPW_DEBUG_ORD("ordinal value too long\n");
706                         return -EINVAL;
707                 }
708
709                 /* verify we have enough room to store the value */
710                 if (*len < sizeof(u32)) {
711                         IPW_DEBUG_ORD("ordinal buffer length too small, "
712                                       "need %zd\n", sizeof(u32));
713                         return -EINVAL;
714                 }
715
716                 *((u32 *) val) =
717                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718                 *len = sizeof(u32);
719                 break;
720
721         case IPW_ORD_TABLE_2_MASK:
722                 /*
723                  * TABLE 2: Indirect access to a table of variable sized values
724                  *
725                  * This table consist of six values, each containing
726                  *     - dword containing the starting offset of the data
727                  *     - dword containing the lengh in the first 16bits
728                  *       and the count in the second 16bits
729                  */
730
731                 /* remove the table id from the ordinal */
732                 ord &= IPW_ORD_TABLE_VALUE_MASK;
733
734                 /* boundary check */
735                 if (ord > priv->table2_len) {
736                         IPW_DEBUG_ORD("ordinal value too long\n");
737                         return -EINVAL;
738                 }
739
740                 /* get the address of statistic */
741                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
742
743                 /* get the second DW of statistics ;
744                  * two 16-bit words - first is length, second is count */
745                 field_info =
746                     ipw_read_reg32(priv,
747                                    priv->table2_addr + (ord << 3) +
748                                    sizeof(u32));
749
750                 /* get each entry length */
751                 field_len = *((u16 *) & field_info);
752
753                 /* get number of entries */
754                 field_count = *(((u16 *) & field_info) + 1);
755
756                 /* abort if not enought memory */
757                 total_len = field_len * field_count;
758                 if (total_len > *len) {
759                         *len = total_len;
760                         return -EINVAL;
761                 }
762
763                 *len = total_len;
764                 if (!total_len)
765                         return 0;
766
767                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768                               "field_info = 0x%08x\n",
769                               addr, total_len, field_info);
770                 ipw_read_indirect(priv, addr, val, total_len);
771                 break;
772
773         default:
774                 IPW_DEBUG_ORD("Invalid ordinal!\n");
775                 return -EINVAL;
776
777         }
778
779         return 0;
780 }
781
782 static void ipw_init_ordinals(struct ipw_priv *priv)
783 {
784         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785         priv->table0_len = ipw_read32(priv, priv->table0_addr);
786
787         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788                       priv->table0_addr, priv->table0_len);
789
790         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
792
793         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794                       priv->table1_addr, priv->table1_len);
795
796         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798         priv->table2_len &= 0x0000ffff; /* use first two bytes */
799
800         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801                       priv->table2_addr, priv->table2_len);
802
803 }
804
805 static u32 ipw_register_toggle(u32 reg)
806 {
807         reg &= ~IPW_START_STANDBY;
808         if (reg & IPW_GATE_ODMA)
809                 reg &= ~IPW_GATE_ODMA;
810         if (reg & IPW_GATE_IDMA)
811                 reg &= ~IPW_GATE_IDMA;
812         if (reg & IPW_GATE_ADMA)
813                 reg &= ~IPW_GATE_ADMA;
814         return reg;
815 }
816
817 /*
818  * LED behavior:
819  * - On radio ON, turn on any LEDs that require to be on during start
820  * - On initialization, start unassociated blink
821  * - On association, disable unassociated blink
822  * - On disassociation, start unassociated blink
823  * - On radio OFF, turn off any LEDs started during radio on
824  *
825  */
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
829
830 static void ipw_led_link_on(struct ipw_priv *priv)
831 {
832         unsigned long flags;
833         u32 led;
834
835         /* If configured to not use LEDs, or nic_type is 1,
836          * then we don't toggle a LINK led */
837         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838                 return;
839
840         spin_lock_irqsave(&priv->lock, flags);
841
842         if (!(priv->status & STATUS_RF_KILL_MASK) &&
843             !(priv->status & STATUS_LED_LINK_ON)) {
844                 IPW_DEBUG_LED("Link LED On\n");
845                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846                 led |= priv->led_association_on;
847
848                 led = ipw_register_toggle(led);
849
850                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
852
853                 priv->status |= STATUS_LED_LINK_ON;
854
855                 /* If we aren't associated, schedule turning the LED off */
856                 if (!(priv->status & STATUS_ASSOCIATED))
857                         queue_delayed_work(priv->workqueue,
858                                            &priv->led_link_off,
859                                            LD_TIME_LINK_ON);
860         }
861
862         spin_unlock_irqrestore(&priv->lock, flags);
863 }
864
865 static void ipw_bg_led_link_on(struct work_struct *work)
866 {
867         struct ipw_priv *priv =
868                 container_of(work, struct ipw_priv, led_link_on.work);
869         mutex_lock(&priv->mutex);
870         ipw_led_link_on(priv);
871         mutex_unlock(&priv->mutex);
872 }
873
874 static void ipw_led_link_off(struct ipw_priv *priv)
875 {
876         unsigned long flags;
877         u32 led;
878
879         /* If configured not to use LEDs, or nic type is 1,
880          * then we don't goggle the LINK led. */
881         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882                 return;
883
884         spin_lock_irqsave(&priv->lock, flags);
885
886         if (priv->status & STATUS_LED_LINK_ON) {
887                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888                 led &= priv->led_association_off;
889                 led = ipw_register_toggle(led);
890
891                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
893
894                 IPW_DEBUG_LED("Link LED Off\n");
895
896                 priv->status &= ~STATUS_LED_LINK_ON;
897
898                 /* If we aren't associated and the radio is on, schedule
899                  * turning the LED on (blink while unassociated) */
900                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901                     !(priv->status & STATUS_ASSOCIATED))
902                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
903                                            LD_TIME_LINK_OFF);
904
905         }
906
907         spin_unlock_irqrestore(&priv->lock, flags);
908 }
909
910 static void ipw_bg_led_link_off(struct work_struct *work)
911 {
912         struct ipw_priv *priv =
913                 container_of(work, struct ipw_priv, led_link_off.work);
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(priv);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(struct work_struct *work)
991 {
992         struct ipw_priv *priv =
993                 container_of(work, struct ipw_priv, led_act_off.work);
994         mutex_lock(&priv->mutex);
995         ipw_led_activity_off(priv);
996         mutex_unlock(&priv->mutex);
997 }
998
999 static void ipw_led_band_on(struct ipw_priv *priv)
1000 {
1001         unsigned long flags;
1002         u32 led;
1003
1004         /* Only nic type 1 supports mode LEDs */
1005         if (priv->config & CFG_NO_LED ||
1006             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007                 return;
1008
1009         spin_lock_irqsave(&priv->lock, flags);
1010
1011         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012         if (priv->assoc_network->mode == IEEE_A) {
1013                 led |= priv->led_ofdm_on;
1014                 led &= priv->led_association_off;
1015                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016         } else if (priv->assoc_network->mode == IEEE_G) {
1017                 led |= priv->led_ofdm_on;
1018                 led |= priv->led_association_on;
1019                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020         } else {
1021                 led &= priv->led_ofdm_off;
1022                 led |= priv->led_association_on;
1023                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1024         }
1025
1026         led = ipw_register_toggle(led);
1027
1028         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1030
1031         spin_unlock_irqrestore(&priv->lock, flags);
1032 }
1033
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1035 {
1036         unsigned long flags;
1037         u32 led;
1038
1039         /* Only nic type 1 supports mode LEDs */
1040         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041                 return;
1042
1043         spin_lock_irqsave(&priv->lock, flags);
1044
1045         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046         led &= priv->led_ofdm_off;
1047         led &= priv->led_association_off;
1048
1049         led = ipw_register_toggle(led);
1050
1051         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1053
1054         spin_unlock_irqrestore(&priv->lock, flags);
1055 }
1056
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1058 {
1059         ipw_led_link_on(priv);
1060 }
1061
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1063 {
1064         ipw_led_activity_off(priv);
1065         ipw_led_link_off(priv);
1066 }
1067
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1069 {
1070         /* Set the Link Led on for all nic types */
1071         ipw_led_link_on(priv);
1072 }
1073
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1075 {
1076         ipw_led_activity_off(priv);
1077         ipw_led_link_off(priv);
1078
1079         if (priv->status & STATUS_RF_KILL_MASK)
1080                 ipw_led_radio_off(priv);
1081 }
1082
1083 static void ipw_led_init(struct ipw_priv *priv)
1084 {
1085         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1086
1087         /* Set the default PINs for the link and activity leds */
1088         priv->led_activity_on = IPW_ACTIVITY_LED;
1089         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1090
1091         priv->led_association_on = IPW_ASSOCIATED_LED;
1092         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1093
1094         /* Set the default PINs for the OFDM leds */
1095         priv->led_ofdm_on = IPW_OFDM_LED;
1096         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1097
1098         switch (priv->nic_type) {
1099         case EEPROM_NIC_TYPE_1:
1100                 /* In this NIC type, the LEDs are reversed.... */
1101                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103                 priv->led_association_on = IPW_ACTIVITY_LED;
1104                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1105
1106                 if (!(priv->config & CFG_NO_LED))
1107                         ipw_led_band_on(priv);
1108
1109                 /* And we don't blink link LEDs for this nic, so
1110                  * just return here */
1111                 return;
1112
1113         case EEPROM_NIC_TYPE_3:
1114         case EEPROM_NIC_TYPE_2:
1115         case EEPROM_NIC_TYPE_4:
1116         case EEPROM_NIC_TYPE_0:
1117                 break;
1118
1119         default:
1120                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121                                priv->nic_type);
1122                 priv->nic_type = EEPROM_NIC_TYPE_0;
1123                 break;
1124         }
1125
1126         if (!(priv->config & CFG_NO_LED)) {
1127                 if (priv->status & STATUS_ASSOCIATED)
1128                         ipw_led_link_on(priv);
1129                 else
1130                         ipw_led_link_off(priv);
1131         }
1132 }
1133
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1135 {
1136         ipw_led_activity_off(priv);
1137         ipw_led_link_off(priv);
1138         ipw_led_band_off(priv);
1139         cancel_delayed_work(&priv->led_link_on);
1140         cancel_delayed_work(&priv->led_link_off);
1141         cancel_delayed_work(&priv->led_act_off);
1142 }
1143
1144 /*
1145  * The following adds a new attribute to the sysfs representation
1146  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147  * used for controling the debug level.
1148  *
1149  * See the level definitions in ipw for details.
1150  */
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1152 {
1153         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1154 }
1155
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157                                  size_t count)
1158 {
1159         char *p = (char *)buf;
1160         u32 val;
1161
1162         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163                 p++;
1164                 if (p[0] == 'x' || p[0] == 'X')
1165                         p++;
1166                 val = simple_strtoul(p, &p, 16);
1167         } else
1168                 val = simple_strtoul(p, &p, 10);
1169         if (p == buf)
1170                 printk(KERN_INFO DRV_NAME
1171                        ": %s is not in hex or decimal form.\n", buf);
1172         else
1173                 ipw_debug_level = val;
1174
1175         return strnlen(buf, count);
1176 }
1177
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179                    show_debug_level, store_debug_level);
1180
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1182 {
1183         /* length = 1st dword in log */
1184         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1185 }
1186
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188                                   u32 log_len, struct ipw_event *log)
1189 {
1190         u32 base;
1191
1192         if (log_len) {
1193                 base = ipw_read32(priv, IPW_EVENT_LOG);
1194                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195                                   (u8 *) log, sizeof(*log) * log_len);
1196         }
1197 }
1198
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1200 {
1201         struct ipw_fw_error *error;
1202         u32 log_len = ipw_get_event_log_len(priv);
1203         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204         u32 elem_len = ipw_read_reg32(priv, base);
1205
1206         error = kmalloc(sizeof(*error) +
1207                         sizeof(*error->elem) * elem_len +
1208                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1209         if (!error) {
1210                 IPW_ERROR("Memory allocation for firmware error log "
1211                           "failed.\n");
1212                 return NULL;
1213         }
1214         error->jiffies = jiffies;
1215         error->status = priv->status;
1216         error->config = priv->config;
1217         error->elem_len = elem_len;
1218         error->log_len = log_len;
1219         error->elem = (struct ipw_error_elem *)error->payload;
1220         error->log = (struct ipw_event *)(error->elem + elem_len);
1221
1222         ipw_capture_event_log(priv, log_len, error->log);
1223
1224         if (elem_len)
1225                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226                                   sizeof(*error->elem) * elem_len);
1227
1228         return error;
1229 }
1230
1231 static ssize_t show_event_log(struct device *d,
1232                               struct device_attribute *attr, char *buf)
1233 {
1234         struct ipw_priv *priv = dev_get_drvdata(d);
1235         u32 log_len = ipw_get_event_log_len(priv);
1236         u32 log_size;
1237         struct ipw_event *log;
1238         u32 len = 0, i;
1239
1240         /* not using min() because of its strict type checking */
1241         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242                         sizeof(*log) * log_len : PAGE_SIZE;
1243         log = kzalloc(log_size, GFP_KERNEL);
1244         if (!log) {
1245                 IPW_ERROR("Unable to allocate memory for log\n");
1246                 return 0;
1247         }
1248         log_len = log_size / sizeof(*log);
1249         ipw_capture_event_log(priv, log_len, log);
1250
1251         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252         for (i = 0; i < log_len; i++)
1253                 len += snprintf(buf + len, PAGE_SIZE - len,
1254                                 "\n%08X%08X%08X",
1255                                 log[i].time, log[i].event, log[i].data);
1256         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257         kfree(log);
1258         return len;
1259 }
1260
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1262
1263 static ssize_t show_error(struct device *d,
1264                           struct device_attribute *attr, char *buf)
1265 {
1266         struct ipw_priv *priv = dev_get_drvdata(d);
1267         u32 len = 0, i;
1268         if (!priv->error)
1269                 return 0;
1270         len += snprintf(buf + len, PAGE_SIZE - len,
1271                         "%08lX%08X%08X%08X",
1272                         priv->error->jiffies,
1273                         priv->error->status,
1274                         priv->error->config, priv->error->elem_len);
1275         for (i = 0; i < priv->error->elem_len; i++)
1276                 len += snprintf(buf + len, PAGE_SIZE - len,
1277                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1278                                 priv->error->elem[i].time,
1279                                 priv->error->elem[i].desc,
1280                                 priv->error->elem[i].blink1,
1281                                 priv->error->elem[i].blink2,
1282                                 priv->error->elem[i].link1,
1283                                 priv->error->elem[i].link2,
1284                                 priv->error->elem[i].data);
1285
1286         len += snprintf(buf + len, PAGE_SIZE - len,
1287                         "\n%08X", priv->error->log_len);
1288         for (i = 0; i < priv->error->log_len; i++)
1289                 len += snprintf(buf + len, PAGE_SIZE - len,
1290                                 "\n%08X%08X%08X",
1291                                 priv->error->log[i].time,
1292                                 priv->error->log[i].event,
1293                                 priv->error->log[i].data);
1294         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295         return len;
1296 }
1297
1298 static ssize_t clear_error(struct device *d,
1299                            struct device_attribute *attr,
1300                            const char *buf, size_t count)
1301 {
1302         struct ipw_priv *priv = dev_get_drvdata(d);
1303
1304         kfree(priv->error);
1305         priv->error = NULL;
1306         return count;
1307 }
1308
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1310
1311 static ssize_t show_cmd_log(struct device *d,
1312                             struct device_attribute *attr, char *buf)
1313 {
1314         struct ipw_priv *priv = dev_get_drvdata(d);
1315         u32 len = 0, i;
1316         if (!priv->cmdlog)
1317                 return 0;
1318         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320              i = (i + 1) % priv->cmdlog_len) {
1321                 len +=
1322                     snprintf(buf + len, PAGE_SIZE - len,
1323                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325                              priv->cmdlog[i].cmd.len);
1326                 len +=
1327                     snprintk_buf(buf + len, PAGE_SIZE - len,
1328                                  (u8 *) priv->cmdlog[i].cmd.param,
1329                                  priv->cmdlog[i].cmd.len);
1330                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1331         }
1332         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333         return len;
1334 }
1335
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1337
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342                          struct device_attribute *attr,
1343                          const char *buf, size_t count)
1344 {
1345         struct ipw_priv *priv = dev_get_drvdata(d);
1346         int rc = 0;
1347
1348         if (count < 1)
1349                 return -EINVAL;
1350
1351         switch (buf[0]) {
1352         case '0':
1353                 if (!rtap_iface)
1354                         return count;
1355
1356                 if (netif_running(priv->prom_net_dev)) {
1357                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1358                         return count;
1359                 }
1360
1361                 ipw_prom_free(priv);
1362                 rtap_iface = 0;
1363                 break;
1364
1365         case '1':
1366                 if (rtap_iface)
1367                         return count;
1368
1369                 rc = ipw_prom_alloc(priv);
1370                 if (!rc)
1371                         rtap_iface = 1;
1372                 break;
1373
1374         default:
1375                 return -EINVAL;
1376         }
1377
1378         if (rc) {
1379                 IPW_ERROR("Failed to register promiscuous network "
1380                           "device (error %d).\n", rc);
1381         }
1382
1383         return count;
1384 }
1385
1386 static ssize_t show_rtap_iface(struct device *d,
1387                         struct device_attribute *attr,
1388                         char *buf)
1389 {
1390         struct ipw_priv *priv = dev_get_drvdata(d);
1391         if (rtap_iface)
1392                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393         else {
1394                 buf[0] = '-';
1395                 buf[1] = '1';
1396                 buf[2] = '\0';
1397                 return 3;
1398         }
1399 }
1400
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402                    store_rtap_iface);
1403
1404 static ssize_t store_rtap_filter(struct device *d,
1405                          struct device_attribute *attr,
1406                          const char *buf, size_t count)
1407 {
1408         struct ipw_priv *priv = dev_get_drvdata(d);
1409
1410         if (!priv->prom_priv) {
1411                 IPW_ERROR("Attempting to set filter without "
1412                           "rtap_iface enabled.\n");
1413                 return -EPERM;
1414         }
1415
1416         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1417
1418         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419                        BIT_ARG16(priv->prom_priv->filter));
1420
1421         return count;
1422 }
1423
1424 static ssize_t show_rtap_filter(struct device *d,
1425                         struct device_attribute *attr,
1426                         char *buf)
1427 {
1428         struct ipw_priv *priv = dev_get_drvdata(d);
1429         return sprintf(buf, "0x%04X",
1430                        priv->prom_priv ? priv->prom_priv->filter : 0);
1431 }
1432
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434                    store_rtap_filter);
1435 #endif
1436
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438                              char *buf)
1439 {
1440         struct ipw_priv *priv = dev_get_drvdata(d);
1441         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1442 }
1443
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445                               const char *buf, size_t count)
1446 {
1447         struct ipw_priv *priv = dev_get_drvdata(d);
1448         struct net_device *dev = priv->net_dev;
1449         char buffer[] = "00000000";
1450         unsigned long len =
1451             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452         unsigned long val;
1453         char *p = buffer;
1454
1455         IPW_DEBUG_INFO("enter\n");
1456
1457         strncpy(buffer, buf, len);
1458         buffer[len] = 0;
1459
1460         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461                 p++;
1462                 if (p[0] == 'x' || p[0] == 'X')
1463                         p++;
1464                 val = simple_strtoul(p, &p, 16);
1465         } else
1466                 val = simple_strtoul(p, &p, 10);
1467         if (p == buffer) {
1468                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469         } else {
1470                 priv->ieee->scan_age = val;
1471                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472         }
1473
1474         IPW_DEBUG_INFO("exit\n");
1475         return len;
1476 }
1477
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1479
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481                         char *buf)
1482 {
1483         struct ipw_priv *priv = dev_get_drvdata(d);
1484         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488                          const char *buf, size_t count)
1489 {
1490         struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492         IPW_DEBUG_INFO("enter\n");
1493
1494         if (count == 0)
1495                 return 0;
1496
1497         if (*buf == 0) {
1498                 IPW_DEBUG_LED("Disabling LED control.\n");
1499                 priv->config |= CFG_NO_LED;
1500                 ipw_led_shutdown(priv);
1501         } else {
1502                 IPW_DEBUG_LED("Enabling LED control.\n");
1503                 priv->config &= ~CFG_NO_LED;
1504                 ipw_led_init(priv);
1505         }
1506
1507         IPW_DEBUG_INFO("exit\n");
1508         return count;
1509 }
1510
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1512
1513 static ssize_t show_status(struct device *d,
1514                            struct device_attribute *attr, char *buf)
1515 {
1516         struct ipw_priv *p = d->driver_data;
1517         return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1521
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523                         char *buf)
1524 {
1525         struct ipw_priv *p = d->driver_data;
1526         return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1530
1531 static ssize_t show_nic_type(struct device *d,
1532                              struct device_attribute *attr, char *buf)
1533 {
1534         struct ipw_priv *priv = d->driver_data;
1535         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1539
1540 static ssize_t show_ucode_version(struct device *d,
1541                                   struct device_attribute *attr, char *buf)
1542 {
1543         u32 len = sizeof(u32), tmp = 0;
1544         struct ipw_priv *p = d->driver_data;
1545
1546         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547                 return 0;
1548
1549         return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1553
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555                         char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = d->driver_data;
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1567
1568 /*
1569  * Add a device attribute to view/control the delay between eeprom
1570  * operations.
1571  */
1572 static ssize_t show_eeprom_delay(struct device *d,
1573                                  struct device_attribute *attr, char *buf)
1574 {
1575         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576         return sprintf(buf, "%i\n", n);
1577 }
1578 static ssize_t store_eeprom_delay(struct device *d,
1579                                   struct device_attribute *attr,
1580                                   const char *buf, size_t count)
1581 {
1582         struct ipw_priv *p = d->driver_data;
1583         sscanf(buf, "%i", &p->eeprom_delay);
1584         return strnlen(buf, count);
1585 }
1586
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588                    show_eeprom_delay, store_eeprom_delay);
1589
1590 static ssize_t show_command_event_reg(struct device *d,
1591                                       struct device_attribute *attr, char *buf)
1592 {
1593         u32 reg = 0;
1594         struct ipw_priv *p = d->driver_data;
1595
1596         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597         return sprintf(buf, "0x%08x\n", reg);
1598 }
1599 static ssize_t store_command_event_reg(struct device *d,
1600                                        struct device_attribute *attr,
1601                                        const char *buf, size_t count)
1602 {
1603         u32 reg;
1604         struct ipw_priv *p = d->driver_data;
1605
1606         sscanf(buf, "%x", &reg);
1607         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608         return strnlen(buf, count);
1609 }
1610
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612                    show_command_event_reg, store_command_event_reg);
1613
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615                                  struct device_attribute *attr, char *buf)
1616 {
1617         u32 reg = 0;
1618         struct ipw_priv *p = d->driver_data;
1619
1620         reg = ipw_read_reg32(p, 0x301100);
1621         return sprintf(buf, "0x%08x\n", reg);
1622 }
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624                                   struct device_attribute *attr,
1625                                   const char *buf, size_t count)
1626 {
1627         u32 reg;
1628         struct ipw_priv *p = d->driver_data;
1629
1630         sscanf(buf, "%x", &reg);
1631         ipw_write_reg32(p, 0x301100, reg);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636                    show_mem_gpio_reg, store_mem_gpio_reg);
1637
1638 static ssize_t show_indirect_dword(struct device *d,
1639                                    struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *priv = d->driver_data;
1643
1644         if (priv->status & STATUS_INDIRECT_DWORD)
1645                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646         else
1647                 reg = 0;
1648
1649         return sprintf(buf, "0x%08x\n", reg);
1650 }
1651 static ssize_t store_indirect_dword(struct device *d,
1652                                     struct device_attribute *attr,
1653                                     const char *buf, size_t count)
1654 {
1655         struct ipw_priv *priv = d->driver_data;
1656
1657         sscanf(buf, "%x", &priv->indirect_dword);
1658         priv->status |= STATUS_INDIRECT_DWORD;
1659         return strnlen(buf, count);
1660 }
1661
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663                    show_indirect_dword, store_indirect_dword);
1664
1665 static ssize_t show_indirect_byte(struct device *d,
1666                                   struct device_attribute *attr, char *buf)
1667 {
1668         u8 reg = 0;
1669         struct ipw_priv *priv = d->driver_data;
1670
1671         if (priv->status & STATUS_INDIRECT_BYTE)
1672                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673         else
1674                 reg = 0;
1675
1676         return sprintf(buf, "0x%02x\n", reg);
1677 }
1678 static ssize_t store_indirect_byte(struct device *d,
1679                                    struct device_attribute *attr,
1680                                    const char *buf, size_t count)
1681 {
1682         struct ipw_priv *priv = d->driver_data;
1683
1684         sscanf(buf, "%x", &priv->indirect_byte);
1685         priv->status |= STATUS_INDIRECT_BYTE;
1686         return strnlen(buf, count);
1687 }
1688
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690                    show_indirect_byte, store_indirect_byte);
1691
1692 static ssize_t show_direct_dword(struct device *d,
1693                                  struct device_attribute *attr, char *buf)
1694 {
1695         u32 reg = 0;
1696         struct ipw_priv *priv = d->driver_data;
1697
1698         if (priv->status & STATUS_DIRECT_DWORD)
1699                 reg = ipw_read32(priv, priv->direct_dword);
1700         else
1701                 reg = 0;
1702
1703         return sprintf(buf, "0x%08x\n", reg);
1704 }
1705 static ssize_t store_direct_dword(struct device *d,
1706                                   struct device_attribute *attr,
1707                                   const char *buf, size_t count)
1708 {
1709         struct ipw_priv *priv = d->driver_data;
1710
1711         sscanf(buf, "%x", &priv->direct_dword);
1712         priv->status |= STATUS_DIRECT_DWORD;
1713         return strnlen(buf, count);
1714 }
1715
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717                    show_direct_dword, store_direct_dword);
1718
1719 static int rf_kill_active(struct ipw_priv *priv)
1720 {
1721         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722                 priv->status |= STATUS_RF_KILL_HW;
1723         else
1724                 priv->status &= ~STATUS_RF_KILL_HW;
1725
1726         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1727 }
1728
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730                             char *buf)
1731 {
1732         /* 0 - RF kill not enabled
1733            1 - SW based RF kill active (sysfs)
1734            2 - HW based RF kill active
1735            3 - Both HW and SW baed RF kill active */
1736         struct ipw_priv *priv = d->driver_data;
1737         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738             (rf_kill_active(priv) ? 0x2 : 0x0);
1739         return sprintf(buf, "%i\n", val);
1740 }
1741
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1743 {
1744         if ((disable_radio ? 1 : 0) ==
1745             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746                 return 0;
1747
1748         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1749                           disable_radio ? "OFF" : "ON");
1750
1751         if (disable_radio) {
1752                 priv->status |= STATUS_RF_KILL_SW;
1753
1754                 if (priv->workqueue) {
1755                         cancel_delayed_work(&priv->request_scan);
1756                         cancel_delayed_work(&priv->request_direct_scan);
1757                         cancel_delayed_work(&priv->request_passive_scan);
1758                         cancel_delayed_work(&priv->scan_event);
1759                 }
1760                 queue_work(priv->workqueue, &priv->down);
1761         } else {
1762                 priv->status &= ~STATUS_RF_KILL_SW;
1763                 if (rf_kill_active(priv)) {
1764                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765                                           "disabled by HW switch\n");
1766                         /* Make sure the RF_KILL check timer is running */
1767                         cancel_delayed_work(&priv->rf_kill);
1768                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769                                            round_jiffies_relative(2 * HZ));
1770                 } else
1771                         queue_work(priv->workqueue, &priv->up);
1772         }
1773
1774         return 1;
1775 }
1776
1777 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778                              const char *buf, size_t count)
1779 {
1780         struct ipw_priv *priv = d->driver_data;
1781
1782         ipw_radio_kill_sw(priv, buf[0] == '1');
1783
1784         return count;
1785 }
1786
1787 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1788
1789 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790                                char *buf)
1791 {
1792         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793         int pos = 0, len = 0;
1794         if (priv->config & CFG_SPEED_SCAN) {
1795                 while (priv->speed_scan[pos] != 0)
1796                         len += sprintf(&buf[len], "%d ",
1797                                        priv->speed_scan[pos++]);
1798                 return len + sprintf(&buf[len], "\n");
1799         }
1800
1801         return sprintf(buf, "0\n");
1802 }
1803
1804 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805                                 const char *buf, size_t count)
1806 {
1807         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808         int channel, pos = 0;
1809         const char *p = buf;
1810
1811         /* list of space separated channels to scan, optionally ending with 0 */
1812         while ((channel = simple_strtol(p, NULL, 0))) {
1813                 if (pos == MAX_SPEED_SCAN - 1) {
1814                         priv->speed_scan[pos] = 0;
1815                         break;
1816                 }
1817
1818                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819                         priv->speed_scan[pos++] = channel;
1820                 else
1821                         IPW_WARNING("Skipping invalid channel request: %d\n",
1822                                     channel);
1823                 p = strchr(p, ' ');
1824                 if (!p)
1825                         break;
1826                 while (*p == ' ' || *p == '\t')
1827                         p++;
1828         }
1829
1830         if (pos == 0)
1831                 priv->config &= ~CFG_SPEED_SCAN;
1832         else {
1833                 priv->speed_scan_pos = 0;
1834                 priv->config |= CFG_SPEED_SCAN;
1835         }
1836
1837         return count;
1838 }
1839
1840 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841                    store_speed_scan);
1842
1843 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844                               char *buf)
1845 {
1846         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1848 }
1849
1850 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851                                const char *buf, size_t count)
1852 {
1853         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1854         if (buf[0] == '1')
1855                 priv->config |= CFG_NET_STATS;
1856         else
1857                 priv->config &= ~CFG_NET_STATS;
1858
1859         return count;
1860 }
1861
1862 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863                    show_net_stats, store_net_stats);
1864
1865 static ssize_t show_channels(struct device *d,
1866                              struct device_attribute *attr,
1867                              char *buf)
1868 {
1869         struct ipw_priv *priv = dev_get_drvdata(d);
1870         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871         int len = 0, i;
1872
1873         len = sprintf(&buf[len],
1874                       "Displaying %d channels in 2.4Ghz band "
1875                       "(802.11bg):\n", geo->bg_channels);
1876
1877         for (i = 0; i < geo->bg_channels; i++) {
1878                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1879                                geo->bg[i].channel,
1880                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881                                " (radar spectrum)" : "",
1882                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1884                                ? "" : ", IBSS",
1885                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886                                "passive only" : "active/passive",
1887                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1888                                "B" : "B/G");
1889         }
1890
1891         len += sprintf(&buf[len],
1892                        "Displaying %d channels in 5.2Ghz band "
1893                        "(802.11a):\n", geo->a_channels);
1894         for (i = 0; i < geo->a_channels; i++) {
1895                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1896                                geo->a[i].channel,
1897                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898                                " (radar spectrum)" : "",
1899                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1901                                ? "" : ", IBSS",
1902                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903                                "passive only" : "active/passive");
1904         }
1905
1906         return len;
1907 }
1908
1909 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1910
1911 static void notify_wx_assoc_event(struct ipw_priv *priv)
1912 {
1913         union iwreq_data wrqu;
1914         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915         if (priv->status & STATUS_ASSOCIATED)
1916                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1917         else
1918                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1920 }
1921
1922 static void ipw_irq_tasklet(struct ipw_priv *priv)
1923 {
1924         u32 inta, inta_mask, handled = 0;
1925         unsigned long flags;
1926         int rc = 0;
1927
1928         spin_lock_irqsave(&priv->irq_lock, flags);
1929
1930         inta = ipw_read32(priv, IPW_INTA_RW);
1931         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1933
1934         /* Add any cached INTA values that need to be handled */
1935         inta |= priv->isr_inta;
1936
1937         spin_unlock_irqrestore(&priv->irq_lock, flags);
1938
1939         spin_lock_irqsave(&priv->lock, flags);
1940
1941         /* handle all the justifications for the interrupt */
1942         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1943                 ipw_rx(priv);
1944                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1945         }
1946
1947         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948                 IPW_DEBUG_HC("Command completed.\n");
1949                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950                 priv->status &= ~STATUS_HCMD_ACTIVE;
1951                 wake_up_interruptible(&priv->wait_command_queue);
1952                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1953         }
1954
1955         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1959         }
1960
1961         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1965         }
1966
1967         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1971         }
1972
1973         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1977         }
1978
1979         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980                 IPW_WARNING("STATUS_CHANGE\n");
1981                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1982         }
1983
1984         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1987         }
1988
1989         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990                 IPW_WARNING("HOST_CMD_DONE\n");
1991                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1992         }
1993
1994         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1997         }
1998
1999         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000                 IPW_WARNING("PHY_OFF_DONE\n");
2001                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2002         }
2003
2004         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006                 priv->status |= STATUS_RF_KILL_HW;
2007                 wake_up_interruptible(&priv->wait_command_queue);
2008                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009                 cancel_delayed_work(&priv->request_scan);
2010                 cancel_delayed_work(&priv->request_direct_scan);
2011                 cancel_delayed_work(&priv->request_passive_scan);
2012                 cancel_delayed_work(&priv->scan_event);
2013                 schedule_work(&priv->link_down);
2014                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2016         }
2017
2018         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2020                 if (priv->error) {
2021                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023                                 struct ipw_fw_error *error =
2024                                     ipw_alloc_error_log(priv);
2025                                 ipw_dump_error_log(priv, error);
2026                                 kfree(error);
2027                         }
2028                 } else {
2029                         priv->error = ipw_alloc_error_log(priv);
2030                         if (priv->error)
2031                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2032                         else
2033                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2034                                              "log.\n");
2035                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036                                 ipw_dump_error_log(priv, priv->error);
2037                 }
2038
2039                 /* XXX: If hardware encryption is for WPA/WPA2,
2040                  * we have to notify the supplicant. */
2041                 if (priv->ieee->sec.encrypt) {
2042                         priv->status &= ~STATUS_ASSOCIATED;
2043                         notify_wx_assoc_event(priv);
2044                 }
2045
2046                 /* Keep the restart process from trying to send host
2047                  * commands by clearing the INIT status bit */
2048                 priv->status &= ~STATUS_INIT;
2049
2050                 /* Cancel currently queued command. */
2051                 priv->status &= ~STATUS_HCMD_ACTIVE;
2052                 wake_up_interruptible(&priv->wait_command_queue);
2053
2054                 queue_work(priv->workqueue, &priv->adapter_restart);
2055                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2056         }
2057
2058         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059                 IPW_ERROR("Parity error\n");
2060                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2061         }
2062
2063         if (handled != inta) {
2064                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2065         }
2066
2067         spin_unlock_irqrestore(&priv->lock, flags);
2068
2069         /* enable all interrupts */
2070         ipw_enable_interrupts(priv);
2071 }
2072
2073 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074 static char *get_cmd_string(u8 cmd)
2075 {
2076         switch (cmd) {
2077                 IPW_CMD(HOST_COMPLETE);
2078                 IPW_CMD(POWER_DOWN);
2079                 IPW_CMD(SYSTEM_CONFIG);
2080                 IPW_CMD(MULTICAST_ADDRESS);
2081                 IPW_CMD(SSID);
2082                 IPW_CMD(ADAPTER_ADDRESS);
2083                 IPW_CMD(PORT_TYPE);
2084                 IPW_CMD(RTS_THRESHOLD);
2085                 IPW_CMD(FRAG_THRESHOLD);
2086                 IPW_CMD(POWER_MODE);
2087                 IPW_CMD(WEP_KEY);
2088                 IPW_CMD(TGI_TX_KEY);
2089                 IPW_CMD(SCAN_REQUEST);
2090                 IPW_CMD(SCAN_REQUEST_EXT);
2091                 IPW_CMD(ASSOCIATE);
2092                 IPW_CMD(SUPPORTED_RATES);
2093                 IPW_CMD(SCAN_ABORT);
2094                 IPW_CMD(TX_FLUSH);
2095                 IPW_CMD(QOS_PARAMETERS);
2096                 IPW_CMD(DINO_CONFIG);
2097                 IPW_CMD(RSN_CAPABILITIES);
2098                 IPW_CMD(RX_KEY);
2099                 IPW_CMD(CARD_DISABLE);
2100                 IPW_CMD(SEED_NUMBER);
2101                 IPW_CMD(TX_POWER);
2102                 IPW_CMD(COUNTRY_INFO);
2103                 IPW_CMD(AIRONET_INFO);
2104                 IPW_CMD(AP_TX_POWER);
2105                 IPW_CMD(CCKM_INFO);
2106                 IPW_CMD(CCX_VER_INFO);
2107                 IPW_CMD(SET_CALIBRATION);
2108                 IPW_CMD(SENSITIVITY_CALIB);
2109                 IPW_CMD(RETRY_LIMIT);
2110                 IPW_CMD(IPW_PRE_POWER_DOWN);
2111                 IPW_CMD(VAP_BEACON_TEMPLATE);
2112                 IPW_CMD(VAP_DTIM_PERIOD);
2113                 IPW_CMD(EXT_SUPPORTED_RATES);
2114                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115                 IPW_CMD(VAP_QUIET_INTERVALS);
2116                 IPW_CMD(VAP_CHANNEL_SWITCH);
2117                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119                 IPW_CMD(VAP_CF_PARAM_SET);
2120                 IPW_CMD(VAP_SET_BEACONING_STATE);
2121                 IPW_CMD(MEASUREMENT);
2122                 IPW_CMD(POWER_CAPABILITY);
2123                 IPW_CMD(SUPPORTED_CHANNELS);
2124                 IPW_CMD(TPC_REPORT);
2125                 IPW_CMD(WME_INFO);
2126                 IPW_CMD(PRODUCTION_COMMAND);
2127         default:
2128                 return "UNKNOWN";
2129         }
2130 }
2131
2132 #define HOST_COMPLETE_TIMEOUT HZ
2133
2134 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2135 {
2136         int rc = 0;
2137         unsigned long flags;
2138
2139         spin_lock_irqsave(&priv->lock, flags);
2140         if (priv->status & STATUS_HCMD_ACTIVE) {
2141                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142                           get_cmd_string(cmd->cmd));
2143                 spin_unlock_irqrestore(&priv->lock, flags);
2144                 return -EAGAIN;
2145         }
2146
2147         priv->status |= STATUS_HCMD_ACTIVE;
2148
2149         if (priv->cmdlog) {
2150                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2154                        cmd->len);
2155                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2156         }
2157
2158         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2160                      priv->status);
2161
2162 #ifndef DEBUG_CMD_WEP_KEY
2163         if (cmd->cmd == IPW_CMD_WEP_KEY)
2164                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2165         else
2166 #endif
2167                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2168
2169         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2170         if (rc) {
2171                 priv->status &= ~STATUS_HCMD_ACTIVE;
2172                 IPW_ERROR("Failed to send %s: Reason %d\n",
2173                           get_cmd_string(cmd->cmd), rc);
2174                 spin_unlock_irqrestore(&priv->lock, flags);
2175                 goto exit;
2176         }
2177         spin_unlock_irqrestore(&priv->lock, flags);
2178
2179         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2180                                               !(priv->
2181                                                 status & STATUS_HCMD_ACTIVE),
2182                                               HOST_COMPLETE_TIMEOUT);
2183         if (rc == 0) {
2184                 spin_lock_irqsave(&priv->lock, flags);
2185                 if (priv->status & STATUS_HCMD_ACTIVE) {
2186                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2187                                   get_cmd_string(cmd->cmd));
2188                         priv->status &= ~STATUS_HCMD_ACTIVE;
2189                         spin_unlock_irqrestore(&priv->lock, flags);
2190                         rc = -EIO;
2191                         goto exit;
2192                 }
2193                 spin_unlock_irqrestore(&priv->lock, flags);
2194         } else
2195                 rc = 0;
2196
2197         if (priv->status & STATUS_RF_KILL_HW) {
2198                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199                           get_cmd_string(cmd->cmd));
2200                 rc = -EIO;
2201                 goto exit;
2202         }
2203
2204       exit:
2205         if (priv->cmdlog) {
2206                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207                 priv->cmdlog_pos %= priv->cmdlog_len;
2208         }
2209         return rc;
2210 }
2211
2212 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2213 {
2214         struct host_cmd cmd = {
2215                 .cmd = command,
2216         };
2217
2218         return __ipw_send_cmd(priv, &cmd);
2219 }
2220
2221 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2222                             void *data)
2223 {
2224         struct host_cmd cmd = {
2225                 .cmd = command,
2226                 .len = len,
2227                 .param = data,
2228         };
2229
2230         return __ipw_send_cmd(priv, &cmd);
2231 }
2232
2233 static int ipw_send_host_complete(struct ipw_priv *priv)
2234 {
2235         if (!priv) {
2236                 IPW_ERROR("Invalid args\n");
2237                 return -1;
2238         }
2239
2240         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2241 }
2242
2243 static int ipw_send_system_config(struct ipw_priv *priv)
2244 {
2245         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246                                 sizeof(priv->sys_config),
2247                                 &priv->sys_config);
2248 }
2249
2250 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2251 {
2252         if (!priv || !ssid) {
2253                 IPW_ERROR("Invalid args\n");
2254                 return -1;
2255         }
2256
2257         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2258                                 ssid);
2259 }
2260
2261 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2262 {
2263         if (!priv || !mac) {
2264                 IPW_ERROR("Invalid args\n");
2265                 return -1;
2266         }
2267
2268         IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2269                        priv->net_dev->name, print_mac(mac, mac));
2270
2271         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2272 }
2273
2274 /*
2275  * NOTE: This must be executed from our workqueue as it results in udelay
2276  * being called which may corrupt the keyboard if executed on default
2277  * workqueue
2278  */
2279 static void ipw_adapter_restart(void *adapter)
2280 {
2281         struct ipw_priv *priv = adapter;
2282
2283         if (priv->status & STATUS_RF_KILL_MASK)
2284                 return;
2285
2286         ipw_down(priv);
2287
2288         if (priv->assoc_network &&
2289             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290                 ipw_remove_current_network(priv);
2291
2292         if (ipw_up(priv)) {
2293                 IPW_ERROR("Failed to up device\n");
2294                 return;
2295         }
2296 }
2297
2298 static void ipw_bg_adapter_restart(struct work_struct *work)
2299 {
2300         struct ipw_priv *priv =
2301                 container_of(work, struct ipw_priv, adapter_restart);
2302         mutex_lock(&priv->mutex);
2303         ipw_adapter_restart(priv);
2304         mutex_unlock(&priv->mutex);
2305 }
2306
2307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2308
2309 static void ipw_scan_check(void *data)
2310 {
2311         struct ipw_priv *priv = data;
2312         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314                                "adapter after (%dms).\n",
2315                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316                 queue_work(priv->workqueue, &priv->adapter_restart);
2317         }
2318 }
2319
2320 static void ipw_bg_scan_check(struct work_struct *work)
2321 {
2322         struct ipw_priv *priv =
2323                 container_of(work, struct ipw_priv, scan_check.work);
2324         mutex_lock(&priv->mutex);
2325         ipw_scan_check(priv);
2326         mutex_unlock(&priv->mutex);
2327 }
2328
2329 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330                                      struct ipw_scan_request_ext *request)
2331 {
2332         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333                                 sizeof(*request), request);
2334 }
2335
2336 static int ipw_send_scan_abort(struct ipw_priv *priv)
2337 {
2338         if (!priv) {
2339                 IPW_ERROR("Invalid args\n");
2340                 return -1;
2341         }
2342
2343         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2344 }
2345
2346 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2347 {
2348         struct ipw_sensitivity_calib calib = {
2349                 .beacon_rssi_raw = cpu_to_le16(sens),
2350         };
2351
2352         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2353                                 &calib);
2354 }
2355
2356 static int ipw_send_associate(struct ipw_priv *priv,
2357                               struct ipw_associate *associate)
2358 {
2359         if (!priv || !associate) {
2360                 IPW_ERROR("Invalid args\n");
2361                 return -1;
2362         }
2363
2364         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2365                                 associate);
2366 }
2367
2368 static int ipw_send_supported_rates(struct ipw_priv *priv,
2369                                     struct ipw_supported_rates *rates)
2370 {
2371         if (!priv || !rates) {
2372                 IPW_ERROR("Invalid args\n");
2373                 return -1;
2374         }
2375
2376         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2377                                 rates);
2378 }
2379
2380 static int ipw_set_random_seed(struct ipw_priv *priv)
2381 {
2382         u32 val;
2383
2384         if (!priv) {
2385                 IPW_ERROR("Invalid args\n");
2386                 return -1;
2387         }
2388
2389         get_random_bytes(&val, sizeof(val));
2390
2391         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2392 }
2393
2394 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2395 {
2396         __le32 v = cpu_to_le32(phy_off);
2397         if (!priv) {
2398                 IPW_ERROR("Invalid args\n");
2399                 return -1;
2400         }
2401
2402         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2403 }
2404
2405 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2406 {
2407         if (!priv || !power) {
2408                 IPW_ERROR("Invalid args\n");
2409                 return -1;
2410         }
2411
2412         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2413 }
2414
2415 static int ipw_set_tx_power(struct ipw_priv *priv)
2416 {
2417         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418         struct ipw_tx_power tx_power;
2419         s8 max_power;
2420         int i;
2421
2422         memset(&tx_power, 0, sizeof(tx_power));
2423
2424         /* configure device for 'G' band */
2425         tx_power.ieee_mode = IPW_G_MODE;
2426         tx_power.num_channels = geo->bg_channels;
2427         for (i = 0; i < geo->bg_channels; i++) {
2428                 max_power = geo->bg[i].max_power;
2429                 tx_power.channels_tx_power[i].channel_number =
2430                     geo->bg[i].channel;
2431                 tx_power.channels_tx_power[i].tx_power = max_power ?
2432                     min(max_power, priv->tx_power) : priv->tx_power;
2433         }
2434         if (ipw_send_tx_power(priv, &tx_power))
2435                 return -EIO;
2436
2437         /* configure device to also handle 'B' band */
2438         tx_power.ieee_mode = IPW_B_MODE;
2439         if (ipw_send_tx_power(priv, &tx_power))
2440                 return -EIO;
2441
2442         /* configure device to also handle 'A' band */
2443         if (priv->ieee->abg_true) {
2444                 tx_power.ieee_mode = IPW_A_MODE;
2445                 tx_power.num_channels = geo->a_channels;
2446                 for (i = 0; i < tx_power.num_channels; i++) {
2447                         max_power = geo->a[i].max_power;
2448                         tx_power.channels_tx_power[i].channel_number =
2449                             geo->a[i].channel;
2450                         tx_power.channels_tx_power[i].tx_power = max_power ?
2451                             min(max_power, priv->tx_power) : priv->tx_power;
2452                 }
2453                 if (ipw_send_tx_power(priv, &tx_power))
2454                         return -EIO;
2455         }
2456         return 0;
2457 }
2458
2459 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2460 {
2461         struct ipw_rts_threshold rts_threshold = {
2462                 .rts_threshold = cpu_to_le16(rts),
2463         };
2464
2465         if (!priv) {
2466                 IPW_ERROR("Invalid args\n");
2467                 return -1;
2468         }
2469
2470         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471                                 sizeof(rts_threshold), &rts_threshold);
2472 }
2473
2474 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2475 {
2476         struct ipw_frag_threshold frag_threshold = {
2477                 .frag_threshold = cpu_to_le16(frag),
2478         };
2479
2480         if (!priv) {
2481                 IPW_ERROR("Invalid args\n");
2482                 return -1;
2483         }
2484
2485         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486                                 sizeof(frag_threshold), &frag_threshold);
2487 }
2488
2489 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2490 {
2491         __le32 param;
2492
2493         if (!priv) {
2494                 IPW_ERROR("Invalid args\n");
2495                 return -1;
2496         }
2497
2498         /* If on battery, set to 3, if AC set to CAM, else user
2499          * level */
2500         switch (mode) {
2501         case IPW_POWER_BATTERY:
2502                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2503                 break;
2504         case IPW_POWER_AC:
2505                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2506                 break;
2507         default:
2508                 param = cpu_to_le32(mode);
2509                 break;
2510         }
2511
2512         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2513                                 &param);
2514 }
2515
2516 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2517 {
2518         struct ipw_retry_limit retry_limit = {
2519                 .short_retry_limit = slimit,
2520                 .long_retry_limit = llimit
2521         };
2522
2523         if (!priv) {
2524                 IPW_ERROR("Invalid args\n");
2525                 return -1;
2526         }
2527
2528         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529                                 &retry_limit);
2530 }
2531
2532 /*
2533  * The IPW device contains a Microwire compatible EEPROM that stores
2534  * various data like the MAC address.  Usually the firmware has exclusive
2535  * access to the eeprom, but during device initialization (before the
2536  * device driver has sent the HostComplete command to the firmware) the
2537  * device driver has read access to the EEPROM by way of indirect addressing
2538  * through a couple of memory mapped registers.
2539  *
2540  * The following is a simplified implementation for pulling data out of the
2541  * the eeprom, along with some helper functions to find information in
2542  * the per device private data's copy of the eeprom.
2543  *
2544  * NOTE: To better understand how these functions work (i.e what is a chip
2545  *       select and why do have to keep driving the eeprom clock?), read
2546  *       just about any data sheet for a Microwire compatible EEPROM.
2547  */
2548
2549 /* write a 32 bit value into the indirect accessor register */
2550 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2551 {
2552         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2553
2554         /* the eeprom requires some time to complete the operation */
2555         udelay(p->eeprom_delay);
2556
2557         return;
2558 }
2559
2560 /* perform a chip select operation */
2561 static void eeprom_cs(struct ipw_priv *priv)
2562 {
2563         eeprom_write_reg(priv, 0);
2564         eeprom_write_reg(priv, EEPROM_BIT_CS);
2565         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566         eeprom_write_reg(priv, EEPROM_BIT_CS);
2567 }
2568
2569 /* perform a chip select operation */
2570 static void eeprom_disable_cs(struct ipw_priv *priv)
2571 {
2572         eeprom_write_reg(priv, EEPROM_BIT_CS);
2573         eeprom_write_reg(priv, 0);
2574         eeprom_write_reg(priv, EEPROM_BIT_SK);
2575 }
2576
2577 /* push a single bit down to the eeprom */
2578 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2579 {
2580         int d = (bit ? EEPROM_BIT_DI : 0);
2581         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2583 }
2584
2585 /* push an opcode followed by an address down to the eeprom */
2586 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2587 {
2588         int i;
2589
2590         eeprom_cs(priv);
2591         eeprom_write_bit(priv, 1);
2592         eeprom_write_bit(priv, op & 2);
2593         eeprom_write_bit(priv, op & 1);
2594         for (i = 7; i >= 0; i--) {
2595                 eeprom_write_bit(priv, addr & (1 << i));
2596         }
2597 }
2598
2599 /* pull 16 bits off the eeprom, one bit at a time */
2600 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2601 {
2602         int i;
2603         u16 r = 0;
2604
2605         /* Send READ Opcode */
2606         eeprom_op(priv, EEPROM_CMD_READ, addr);
2607
2608         /* Send dummy bit */
2609         eeprom_write_reg(priv, EEPROM_BIT_CS);
2610
2611         /* Read the byte off the eeprom one bit at a time */
2612         for (i = 0; i < 16; i++) {
2613                 u32 data = 0;
2614                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2618         }
2619
2620         /* Send another dummy bit */
2621         eeprom_write_reg(priv, 0);
2622         eeprom_disable_cs(priv);
2623
2624         return r;
2625 }
2626
2627 /* helper function for pulling the mac address out of the private */
2628 /* data's copy of the eeprom data                                 */
2629 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2630 {
2631         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2632 }
2633
2634 /*
2635  * Either the device driver (i.e. the host) or the firmware can
2636  * load eeprom data into the designated region in SRAM.  If neither
2637  * happens then the FW will shutdown with a fatal error.
2638  *
2639  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640  * bit needs region of shared SRAM needs to be non-zero.
2641  */
2642 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2643 {
2644         int i;
2645         __le16 *eeprom = (__le16 *) priv->eeprom;
2646
2647         IPW_DEBUG_TRACE(">>\n");
2648
2649         /* read entire contents of eeprom into private buffer */
2650         for (i = 0; i < 128; i++)
2651                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2652
2653         /*
2654            If the data looks correct, then copy it to our private
2655            copy.  Otherwise let the firmware know to perform the operation
2656            on its own.
2657          */
2658         if (priv->eeprom[EEPROM_VERSION] != 0) {
2659                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2660
2661                 /* write the eeprom data to sram */
2662                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2664
2665                 /* Do not load eeprom data on fatal error or suspend */
2666                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2667         } else {
2668                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2669
2670                 /* Load eeprom data on fatal error or suspend */
2671                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2672         }
2673
2674         IPW_DEBUG_TRACE("<<\n");
2675 }
2676
2677 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2678 {
2679         count >>= 2;
2680         if (!count)
2681                 return;
2682         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2683         while (count--)
2684                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2685 }
2686
2687 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2688 {
2689         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690                         CB_NUMBER_OF_ELEMENTS_SMALL *
2691                         sizeof(struct command_block));
2692 }
2693
2694 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695 {                               /* start dma engine but no transfers yet */
2696
2697         IPW_DEBUG_FW(">> : \n");
2698
2699         /* Start the dma */
2700         ipw_fw_dma_reset_command_blocks(priv);
2701
2702         /* Write CB base address */
2703         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2704
2705         IPW_DEBUG_FW("<< : \n");
2706         return 0;
2707 }
2708
2709 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2710 {
2711         u32 control = 0;
2712
2713         IPW_DEBUG_FW(">> :\n");
2714
2715         /* set the Stop and Abort bit */
2716         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718         priv->sram_desc.last_cb_index = 0;
2719
2720         IPW_DEBUG_FW("<< \n");
2721 }
2722
2723 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724                                           struct command_block *cb)
2725 {
2726         u32 address =
2727             IPW_SHARED_SRAM_DMA_CONTROL +
2728             (sizeof(struct command_block) * index);
2729         IPW_DEBUG_FW(">> :\n");
2730
2731         ipw_write_indirect(priv, address, (u8 *) cb,
2732                            (int)sizeof(struct command_block));
2733
2734         IPW_DEBUG_FW("<< :\n");
2735         return 0;
2736
2737 }
2738
2739 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2740 {
2741         u32 control = 0;
2742         u32 index = 0;
2743
2744         IPW_DEBUG_FW(">> :\n");
2745
2746         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747                 ipw_fw_dma_write_command_block(priv, index,
2748                                                &priv->sram_desc.cb_list[index]);
2749
2750         /* Enable the DMA in the CSR register */
2751         ipw_clear_bit(priv, IPW_RESET_REG,
2752                       IPW_RESET_REG_MASTER_DISABLED |
2753                       IPW_RESET_REG_STOP_MASTER);
2754
2755         /* Set the Start bit. */
2756         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2758
2759         IPW_DEBUG_FW("<< :\n");
2760         return 0;
2761 }
2762
2763 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2764 {
2765         u32 address;
2766         u32 register_value = 0;
2767         u32 cb_fields_address = 0;
2768
2769         IPW_DEBUG_FW(">> :\n");
2770         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2772
2773         /* Read the DMA Controlor register */
2774         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2776
2777         /* Print the CB values */
2778         cb_fields_address = address;
2779         register_value = ipw_read_reg32(priv, cb_fields_address);
2780         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2781
2782         cb_fields_address += sizeof(u32);
2783         register_value = ipw_read_reg32(priv, cb_fields_address);
2784         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2785
2786         cb_fields_address += sizeof(u32);
2787         register_value = ipw_read_reg32(priv, cb_fields_address);
2788         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789                           register_value);
2790
2791         cb_fields_address += sizeof(u32);
2792         register_value = ipw_read_reg32(priv, cb_fields_address);
2793         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2794
2795         IPW_DEBUG_FW(">> :\n");
2796 }
2797
2798 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2799 {
2800         u32 current_cb_address = 0;
2801         u32 current_cb_index = 0;
2802
2803         IPW_DEBUG_FW("<< :\n");
2804         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2805
2806         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807             sizeof(struct command_block);
2808
2809         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810                           current_cb_index, current_cb_address);
2811
2812         IPW_DEBUG_FW(">> :\n");
2813         return current_cb_index;
2814
2815 }
2816
2817 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2818                                         u32 src_address,
2819                                         u32 dest_address,
2820                                         u32 length,
2821                                         int interrupt_enabled, int is_last)
2822 {
2823
2824         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2826             CB_DEST_SIZE_LONG;
2827         struct command_block *cb;
2828         u32 last_cb_element = 0;
2829
2830         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831                           src_address, dest_address, length);
2832
2833         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834                 return -1;
2835
2836         last_cb_element = priv->sram_desc.last_cb_index;
2837         cb = &priv->sram_desc.cb_list[last_cb_element];
2838         priv->sram_desc.last_cb_index++;
2839
2840         /* Calculate the new CB control word */
2841         if (interrupt_enabled)
2842                 control |= CB_INT_ENABLED;
2843
2844         if (is_last)
2845                 control |= CB_LAST_VALID;
2846
2847         control |= length;
2848
2849         /* Calculate the CB Element's checksum value */
2850         cb->status = control ^ src_address ^ dest_address;
2851
2852         /* Copy the Source and Destination addresses */
2853         cb->dest_addr = dest_address;
2854         cb->source_addr = src_address;
2855
2856         /* Copy the Control Word last */
2857         cb->control = control;
2858
2859         return 0;
2860 }
2861
2862 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863                                  u32 src_phys, u32 dest_address, u32 length)
2864 {
2865         u32 bytes_left = length;
2866         u32 src_offset = 0;
2867         u32 dest_offset = 0;
2868         int status = 0;
2869         IPW_DEBUG_FW(">> \n");
2870         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871                           src_phys, dest_address, length);
2872         while (bytes_left > CB_MAX_LENGTH) {
2873                 status = ipw_fw_dma_add_command_block(priv,
2874                                                       src_phys + src_offset,
2875                                                       dest_address +
2876                                                       dest_offset,
2877                                                       CB_MAX_LENGTH, 0, 0);
2878                 if (status) {
2879                         IPW_DEBUG_FW_INFO(": Failed\n");
2880                         return -1;
2881                 } else
2882                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2883
2884                 src_offset += CB_MAX_LENGTH;
2885                 dest_offset += CB_MAX_LENGTH;
2886                 bytes_left -= CB_MAX_LENGTH;
2887         }
2888
2889         /* add the buffer tail */
2890         if (bytes_left > 0) {
2891                 status =
2892                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893                                                  dest_address + dest_offset,
2894                                                  bytes_left, 0, 0);
2895                 if (status) {
2896                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2897                         return -1;
2898                 } else
2899                         IPW_DEBUG_FW_INFO
2900                             (": Adding new cb - the buffer tail\n");
2901         }
2902
2903         IPW_DEBUG_FW("<< \n");
2904         return 0;
2905 }
2906
2907 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2908 {
2909         u32 current_index = 0, previous_index;
2910         u32 watchdog = 0;
2911
2912         IPW_DEBUG_FW(">> : \n");
2913
2914         current_index = ipw_fw_dma_command_block_index(priv);
2915         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916                           (int)priv->sram_desc.last_cb_index);
2917
2918         while (current_index < priv->sram_desc.last_cb_index) {
2919                 udelay(50);
2920                 previous_index = current_index;
2921                 current_index = ipw_fw_dma_command_block_index(priv);
2922
2923                 if (previous_index < current_index) {
2924                         watchdog = 0;
2925                         continue;
2926                 }
2927                 if (++watchdog > 400) {
2928                         IPW_DEBUG_FW_INFO("Timeout\n");
2929                         ipw_fw_dma_dump_command_block(priv);
2930                         ipw_fw_dma_abort(priv);
2931                         return -1;
2932                 }
2933         }
2934
2935         ipw_fw_dma_abort(priv);
2936
2937         /*Disable the DMA in the CSR register */
2938         ipw_set_bit(priv, IPW_RESET_REG,
2939                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2940
2941         IPW_DEBUG_FW("<< dmaWaitSync \n");
2942         return 0;
2943 }
2944
2945 static void ipw_remove_current_network(struct ipw_priv *priv)
2946 {
2947         struct list_head *element, *safe;
2948         struct ieee80211_network *network = NULL;
2949         unsigned long flags;
2950
2951         spin_lock_irqsave(&priv->ieee->lock, flags);
2952         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953                 network = list_entry(element, struct ieee80211_network, list);
2954                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2955                         list_del(element);
2956                         list_add_tail(&network->list,
2957                                       &priv->ieee->network_free_list);
2958                 }
2959         }
2960         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2961 }
2962
2963 /**
2964  * Check that card is still alive.
2965  * Reads debug register from domain0.
2966  * If card is present, pre-defined value should
2967  * be found there.
2968  *
2969  * @param priv
2970  * @return 1 if card is present, 0 otherwise
2971  */
2972 static inline int ipw_alive(struct ipw_priv *priv)
2973 {
2974         return ipw_read32(priv, 0x90) == 0xd55555d5;
2975 }
2976
2977 /* timeout in msec, attempted in 10-msec quanta */
2978 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2979                                int timeout)
2980 {
2981         int i = 0;
2982
2983         do {
2984                 if ((ipw_read32(priv, addr) & mask) == mask)
2985                         return i;
2986                 mdelay(10);
2987                 i += 10;
2988         } while (i < timeout);
2989
2990         return -ETIME;
2991 }
2992
2993 /* These functions load the firmware and micro code for the operation of
2994  * the ipw hardware.  It assumes the buffer has all the bits for the
2995  * image and the caller is handling the memory allocation and clean up.
2996  */
2997
2998 static int ipw_stop_master(struct ipw_priv *priv)
2999 {
3000         int rc;
3001
3002         IPW_DEBUG_TRACE(">> \n");
3003         /* stop master. typical delay - 0 */
3004         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3005
3006         /* timeout is in msec, polled in 10-msec quanta */
3007         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008                           IPW_RESET_REG_MASTER_DISABLED, 100);
3009         if (rc < 0) {
3010                 IPW_ERROR("wait for stop master failed after 100ms\n");
3011                 return -1;
3012         }
3013
3014         IPW_DEBUG_INFO("stop master %dms\n", rc);
3015
3016         return rc;
3017 }
3018
3019 static void ipw_arc_release(struct ipw_priv *priv)
3020 {
3021         IPW_DEBUG_TRACE(">> \n");
3022         mdelay(5);
3023
3024         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3025
3026         /* no one knows timing, for safety add some delay */
3027         mdelay(5);
3028 }
3029
3030 struct fw_chunk {
3031         __le32 address;
3032         __le32 length;
3033 };
3034
3035 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3036 {
3037         int rc = 0, i, addr;
3038         u8 cr = 0;
3039         __le16 *image;
3040
3041         image = (__le16 *) data;
3042
3043         IPW_DEBUG_TRACE(">> \n");
3044
3045         rc = ipw_stop_master(priv);
3046
3047         if (rc < 0)
3048                 return rc;
3049
3050         for (addr = IPW_SHARED_LOWER_BOUND;
3051              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052                 ipw_write32(priv, addr, 0);
3053         }
3054
3055         /* no ucode (yet) */
3056         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057         /* destroy DMA queues */
3058         /* reset sequence */
3059
3060         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061         ipw_arc_release(priv);
3062         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3063         mdelay(1);
3064
3065         /* reset PHY */
3066         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067         mdelay(1);
3068
3069         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070         mdelay(1);
3071
3072         /* enable ucode store */
3073         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3075         mdelay(1);
3076
3077         /* write ucode */
3078         /**
3079          * @bug
3080          * Do NOT set indirect address register once and then
3081          * store data to indirect data register in the loop.
3082          * It seems very reasonable, but in this case DINO do not
3083          * accept ucode. It is essential to set address each time.
3084          */
3085         /* load new ipw uCode */
3086         for (i = 0; i < len / 2; i++)
3087                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088                                 le16_to_cpu(image[i]));
3089
3090         /* enable DINO */
3091         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3093
3094         /* this is where the igx / win driver deveates from the VAP driver. */
3095
3096         /* wait for alive response */
3097         for (i = 0; i < 100; i++) {
3098                 /* poll for incoming data */
3099                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100                 if (cr & DINO_RXFIFO_DATA)
3101                         break;
3102                 mdelay(1);
3103         }
3104
3105         if (cr & DINO_RXFIFO_DATA) {
3106                 /* alive_command_responce size is NOT multiple of 4 */
3107                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3108
3109                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110                         response_buffer[i] =
3111                             cpu_to_le32(ipw_read_reg32(priv,
3112                                                        IPW_BASEBAND_RX_FIFO_READ));
3113                 memcpy(&priv->dino_alive, response_buffer,
3114                        sizeof(priv->dino_alive));
3115                 if (priv->dino_alive.alive_command == 1
3116                     && priv->dino_alive.ucode_valid == 1) {
3117                         rc = 0;
3118                         IPW_DEBUG_INFO
3119                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120                              "of %02d/%02d/%02d %02d:%02d\n",
3121                              priv->dino_alive.software_revision,
3122                              priv->dino_alive.software_revision,
3123                              priv->dino_alive.device_identifier,
3124                              priv->dino_alive.device_identifier,
3125                              priv->dino_alive.time_stamp[0],
3126                              priv->dino_alive.time_stamp[1],
3127                              priv->dino_alive.time_stamp[2],
3128                              priv->dino_alive.time_stamp[3],
3129                              priv->dino_alive.time_stamp[4]);
3130                 } else {
3131                         IPW_DEBUG_INFO("Microcode is not alive\n");
3132                         rc = -EINVAL;
3133                 }
3134         } else {
3135                 IPW_DEBUG_INFO("No alive response from DINO\n");
3136                 rc = -ETIME;
3137         }
3138
3139         /* disable DINO, otherwise for some reason
3140            firmware have problem getting alive resp. */
3141         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3142
3143         return rc;
3144 }
3145
3146 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3147 {
3148         int rc = -1;
3149         int offset = 0;
3150         struct fw_chunk *chunk;
3151         dma_addr_t shared_phys;
3152         u8 *shared_virt;
3153
3154         IPW_DEBUG_TRACE("<< : \n");
3155         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3156
3157         if (!shared_virt)
3158                 return -ENOMEM;
3159
3160         memmove(shared_virt, data, len);
3161
3162         /* Start the Dma */
3163         rc = ipw_fw_dma_enable(priv);
3164
3165         if (priv->sram_desc.last_cb_index > 0) {
3166                 /* the DMA is already ready this would be a bug. */
3167                 BUG();
3168                 goto out;
3169         }
3170
3171         do {
3172                 chunk = (struct fw_chunk *)(data + offset);
3173                 offset += sizeof(struct fw_chunk);
3174                 /* build DMA packet and queue up for sending */
3175                 /* dma to chunk->address, the chunk->length bytes from data +
3176                  * offeset*/
3177                 /* Dma loading */
3178                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179                                            le32_to_cpu(chunk->address),
3180                                            le32_to_cpu(chunk->length));
3181                 if (rc) {
3182                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3183                         goto out;
3184                 }
3185
3186                 offset += le32_to_cpu(chunk->length);
3187         } while (offset < len);
3188
3189         /* Run the DMA and wait for the answer */
3190         rc = ipw_fw_dma_kick(priv);
3191         if (rc) {
3192                 IPW_ERROR("dmaKick Failed\n");
3193                 goto out;
3194         }
3195
3196         rc = ipw_fw_dma_wait(priv);
3197         if (rc) {
3198                 IPW_ERROR("dmaWaitSync Failed\n");
3199                 goto out;
3200         }
3201       out:
3202         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203         return rc;
3204 }
3205
3206 /* stop nic */
3207 static int ipw_stop_nic(struct ipw_priv *priv)
3208 {
3209         int rc = 0;
3210
3211         /* stop */
3212         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3213
3214         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215                           IPW_RESET_REG_MASTER_DISABLED, 500);
3216         if (rc < 0) {
3217                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3218                 return rc;
3219         }
3220
3221         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3222
3223         return rc;
3224 }
3225
3226 static void ipw_start_nic(struct ipw_priv *priv)
3227 {
3228         IPW_DEBUG_TRACE(">>\n");
3229
3230         /* prvHwStartNic  release ARC */
3231         ipw_clear_bit(priv, IPW_RESET_REG,
3232                       IPW_RESET_REG_MASTER_DISABLED |
3233                       IPW_RESET_REG_STOP_MASTER |
3234                       CBD_RESET_REG_PRINCETON_RESET);
3235
3236         /* enable power management */
3237         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3239
3240         IPW_DEBUG_TRACE("<<\n");
3241 }
3242
3243 static int ipw_init_nic(struct ipw_priv *priv)
3244 {
3245         int rc;
3246
3247         IPW_DEBUG_TRACE(">>\n");
3248         /* reset */
3249         /*prvHwInitNic */
3250         /* set "initialization complete" bit to move adapter to D0 state */
3251         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3252
3253         /* low-level PLL activation */
3254         ipw_write32(priv, IPW_READ_INT_REGISTER,
3255                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3256
3257         /* wait for clock stabilization */
3258         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3260         if (rc < 0)
3261                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3262
3263         /* assert SW reset */
3264         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3265
3266         udelay(10);
3267
3268         /* set "initialization complete" bit to move adapter to D0 state */
3269         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3270
3271         IPW_DEBUG_TRACE(">>\n");
3272         return 0;
3273 }
3274
3275 /* Call this function from process context, it will sleep in request_firmware.
3276  * Probe is an ok place to call this from.
3277  */
3278 static int ipw_reset_nic(struct ipw_priv *priv)
3279 {
3280         int rc = 0;
3281         unsigned long flags;
3282
3283         IPW_DEBUG_TRACE(">>\n");
3284
3285         rc = ipw_init_nic(priv);
3286
3287         spin_lock_irqsave(&priv->lock, flags);
3288         /* Clear the 'host command active' bit... */
3289         priv->status &= ~STATUS_HCMD_ACTIVE;
3290         wake_up_interruptible(&priv->wait_command_queue);
3291         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292         wake_up_interruptible(&priv->wait_state);
3293         spin_unlock_irqrestore(&priv->lock, flags);
3294
3295         IPW_DEBUG_TRACE("<<\n");
3296         return rc;
3297 }
3298
3299
3300 struct ipw_fw {
3301         __le32 ver;
3302         __le32 boot_size;
3303         __le32 ucode_size;
3304         __le32 fw_size;
3305         u8 data[0];
3306 };
3307
3308 static int ipw_get_fw(struct ipw_priv *priv,
3309                       const struct firmware **raw, const char *name)
3310 {
3311         struct ipw_fw *fw;
3312         int rc;
3313
3314         /* ask firmware_class module to get the boot firmware off disk */
3315         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3316         if (rc < 0) {
3317                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3318                 return rc;
3319         }
3320
3321         if ((*raw)->size < sizeof(*fw)) {
3322                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3323                 return -EINVAL;
3324         }
3325
3326         fw = (void *)(*raw)->data;
3327
3328         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331                           name, (*raw)->size);
3332                 return -EINVAL;
3333         }
3334
3335         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3336                        name,
3337                        le32_to_cpu(fw->ver) >> 16,
3338                        le32_to_cpu(fw->ver) & 0xff,
3339                        (*raw)->size - sizeof(*fw));
3340         return 0;
3341 }
3342
3343 #define IPW_RX_BUF_SIZE (3000)
3344
3345 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346                                       struct ipw_rx_queue *rxq)
3347 {
3348         unsigned long flags;
3349         int i;
3350
3351         spin_lock_irqsave(&rxq->lock, flags);
3352
3353         INIT_LIST_HEAD(&rxq->rx_free);
3354         INIT_LIST_HEAD(&rxq->rx_used);
3355
3356         /* Fill the rx_used queue with _all_ of the Rx buffers */
3357         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358                 /* In the reset function, these buffers may have been allocated
3359                  * to an SKB, so we need to unmap and free potential storage */
3360                 if (rxq->pool[i].skb != NULL) {
3361                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363                         dev_kfree_skb(rxq->pool[i].skb);
3364                         rxq->pool[i].skb = NULL;
3365                 }
3366                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3367         }
3368
3369         /* Set us so that we have processed and used all buffers, but have
3370          * not restocked the Rx queue with fresh buffers */
3371         rxq->read = rxq->write = 0;
3372         rxq->free_count = 0;
3373         spin_unlock_irqrestore(&rxq->lock, flags);
3374 }
3375
3376 #ifdef CONFIG_PM
3377 static int fw_loaded = 0;
3378 static const struct firmware *raw = NULL;
3379
3380 static void free_firmware(void)
3381 {
3382         if (fw_loaded) {
3383                 release_firmware(raw);
3384                 raw = NULL;
3385                 fw_loaded = 0;
3386         }
3387 }
3388 #else
3389 #define free_firmware() do {} while (0)
3390 #endif
3391
3392 static int ipw_load(struct ipw_priv *priv)
3393 {
3394 #ifndef CONFIG_PM
3395         const struct firmware *raw = NULL;
3396 #endif
3397         struct ipw_fw *fw;
3398         u8 *boot_img, *ucode_img, *fw_img;
3399         u8 *name = NULL;
3400         int rc = 0, retries = 3;
3401
3402         switch (priv->ieee->iw_mode) {
3403         case IW_MODE_ADHOC:
3404                 name = "ipw2200-ibss.fw";
3405                 break;
3406 #ifdef CONFIG_IPW2200_MONITOR
3407         case IW_MODE_MONITOR:
3408                 name = "ipw2200-sniffer.fw";
3409                 break;
3410 #endif
3411         case IW_MODE_INFRA:
3412                 name = "ipw2200-bss.fw";
3413                 break;
3414         }
3415
3416         if (!name) {
3417                 rc = -EINVAL;
3418                 goto error;
3419         }
3420
3421 #ifdef CONFIG_PM
3422         if (!fw_loaded) {
3423 #endif
3424                 rc = ipw_get_fw(priv, &raw, name);
3425                 if (rc < 0)
3426                         goto error;
3427 #ifdef CONFIG_PM
3428         }
3429 #endif
3430
3431         fw = (void *)raw->data;
3432         boot_img = &fw->data[0];
3433         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435                            le32_to_cpu(fw->ucode_size)];
3436
3437         if (rc < 0)
3438                 goto error;
3439
3440         if (!priv->rxq)
3441                 priv->rxq = ipw_rx_queue_alloc(priv);
3442         else
3443                 ipw_rx_queue_reset(priv, priv->rxq);
3444         if (!priv->rxq) {
3445                 IPW_ERROR("Unable to initialize Rx queue\n");
3446                 goto error;
3447         }
3448
3449       retry:
3450         /* Ensure interrupts are disabled */
3451         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452         priv->status &= ~STATUS_INT_ENABLED;
3453
3454         /* ack pending interrupts */
3455         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3456
3457         ipw_stop_nic(priv);
3458
3459         rc = ipw_reset_nic(priv);
3460         if (rc < 0) {
3461                 IPW_ERROR("Unable to reset NIC\n");
3462                 goto error;
3463         }
3464
3465         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3467
3468         /* DMA the initial boot firmware into the device */
3469         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470         if (rc < 0) {
3471                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3472                 goto error;
3473         }
3474
3475         /* kick start the device */
3476         ipw_start_nic(priv);
3477
3478         /* wait for the device to finish its initial startup sequence */
3479         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481         if (rc < 0) {
3482                 IPW_ERROR("device failed to boot initial fw image\n");
3483                 goto error;
3484         }
3485         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3486
3487         /* ack fw init done interrupt */
3488         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3489
3490         /* DMA the ucode into the device */
3491         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492         if (rc < 0) {
3493                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3494                 goto error;
3495         }
3496
3497         /* stop nic */
3498         ipw_stop_nic(priv);
3499
3500         /* DMA bss firmware into the device */
3501         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502         if (rc < 0) {
3503                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3504                 goto error;
3505         }
3506 #ifdef CONFIG_PM
3507         fw_loaded = 1;
3508 #endif
3509
3510         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3511
3512         rc = ipw_queue_reset(priv);
3513         if (rc < 0) {
3514                 IPW_ERROR("Unable to initialize queues\n");
3515                 goto error;
3516         }
3517
3518         /* Ensure interrupts are disabled */
3519         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520         /* ack pending interrupts */
3521         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3522
3523         /* kick start the device */
3524         ipw_start_nic(priv);
3525
3526         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527                 if (retries > 0) {
3528                         IPW_WARNING("Parity error.  Retrying init.\n");
3529                         retries--;
3530                         goto retry;
3531                 }
3532
3533                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534                 rc = -EIO;
3535                 goto error;
3536         }
3537
3538         /* wait for the device */
3539         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541         if (rc < 0) {
3542                 IPW_ERROR("device failed to start within 500ms\n");
3543                 goto error;
3544         }
3545         IPW_DEBUG_INFO("device response after %dms\n", rc);
3546
3547         /* ack fw init done interrupt */
3548         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3549
3550         /* read eeprom data and initialize the eeprom region of sram */
3551         priv->eeprom_delay = 1;
3552         ipw_eeprom_init_sram(priv);
3553
3554         /* enable interrupts */
3555         ipw_enable_interrupts(priv);
3556
3557         /* Ensure our queue has valid packets */
3558         ipw_rx_queue_replenish(priv);
3559
3560         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3561
3562         /* ack pending interrupts */
3563         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3564
3565 #ifndef CONFIG_PM
3566         release_firmware(raw);
3567 #endif
3568         return 0;
3569
3570       error:
3571         if (priv->rxq) {
3572                 ipw_rx_queue_free(priv, priv->rxq);
3573                 priv->rxq = NULL;
3574         }
3575         ipw_tx_queue_free(priv);
3576         if (raw)
3577                 release_firmware(raw);
3578 #ifdef CONFIG_PM
3579         fw_loaded = 0;
3580         raw = NULL;
3581 #endif
3582
3583         return rc;
3584 }
3585
3586 /**
3587  * DMA services
3588  *
3589  * Theory of operation
3590  *
3591  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592  * 2 empty entries always kept in the buffer to protect from overflow.
3593  *
3594  * For Tx queue, there are low mark and high mark limits. If, after queuing
3595  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3597  * Tx queue resumed.
3598  *
3599  * The IPW operates with six queues, one receive queue in the device's
3600  * sram, one transmit queue for sending commands to the device firmware,
3601  * and four transmit queues for data.
3602  *
3603  * The four transmit queues allow for performing quality of service (qos)
3604  * transmissions as per the 802.11 protocol.  Currently Linux does not
3605  * provide a mechanism to the user for utilizing prioritized queues, so
3606  * we only utilize the first data transmit queue (queue1).
3607  */
3608
3609 /**
3610  * Driver allocates buffers of this size for Rx
3611  */
3612
3613 /**
3614  * ipw_rx_queue_space - Return number of free slots available in queue.
3615  */
3616 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3617 {
3618         int s = q->read - q->write;
3619         if (s <= 0)
3620                 s += RX_QUEUE_SIZE;
3621         /* keep some buffer to not confuse full and empty queue */
3622         s -= 2;
3623         if (s < 0)
3624                 s = 0;
3625         return s;
3626 }
3627
3628 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3629 {
3630         int s = q->last_used - q->first_empty;
3631         if (s <= 0)
3632                 s += q->n_bd;
3633         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3634         if (s < 0)
3635                 s = 0;
3636         return s;
3637 }
3638
3639 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3640 {
3641         return (++index == n_bd) ? 0 : index;
3642 }
3643
3644 /**
3645  * Initialize common DMA queue structure
3646  *
3647  * @param q                queue to init
3648  * @param count            Number of BD's to allocate. Should be power of 2
3649  * @param read_register    Address for 'read' register
3650  *                         (not offset within BAR, full address)
3651  * @param write_register   Address for 'write' register
3652  *                         (not offset within BAR, full address)
3653  * @param base_register    Address for 'base' register
3654  *                         (not offset within BAR, full address)
3655  * @param size             Address for 'size' register
3656  *                         (not offset within BAR, full address)
3657  */
3658 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659                            int count, u32 read, u32 write, u32 base, u32 size)
3660 {
3661         q->n_bd = count;
3662
3663         q->low_mark = q->n_bd / 4;
3664         if (q->low_mark < 4)
3665                 q->low_mark = 4;
3666
3667         q->high_mark = q->n_bd / 8;
3668         if (q->high_mark < 2)
3669                 q->high_mark = 2;
3670
3671         q->first_empty = q->last_used = 0;
3672         q->reg_r = read;
3673         q->reg_w = write;
3674
3675         ipw_write32(priv, base, q->dma_addr);
3676         ipw_write32(priv, size, count);
3677         ipw_write32(priv, read, 0);
3678         ipw_write32(priv, write, 0);
3679
3680         _ipw_read32(priv, 0x90);
3681 }
3682
3683 static int ipw_queue_tx_init(struct ipw_priv *priv,
3684                              struct clx2_tx_queue *q,
3685                              int count, u32 read, u32 write, u32 base, u32 size)
3686 {
3687         struct pci_dev *dev = priv->pci_dev;
3688
3689         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3690         if (!q->txb) {
3691                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692                 return -ENOMEM;
3693         }
3694
3695         q->bd =
3696             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3697         if (!q->bd) {
3698                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699                           sizeof(q->bd[0]) * count);
3700                 kfree(q->txb);
3701                 q->txb = NULL;
3702                 return -ENOMEM;
3703         }
3704
3705         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706         return 0;
3707 }
3708
3709 /**
3710  * Free one TFD, those at index [txq->q.last_used].
3711  * Do NOT advance any indexes
3712  *
3713  * @param dev
3714  * @param txq
3715  */
3716 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717                                   struct clx2_tx_queue *txq)
3718 {
3719         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720         struct pci_dev *dev = priv->pci_dev;
3721         int i;
3722
3723         /* classify bd */
3724         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725                 /* nothing to cleanup after for host commands */
3726                 return;
3727
3728         /* sanity check */
3729         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730                 IPW_ERROR("Too many chunks: %i\n",
3731                           le32_to_cpu(bd->u.data.num_chunks));
3732                 /** @todo issue fatal error, it is quite serious situation */
3733                 return;
3734         }
3735
3736         /* unmap chunks if any */
3737         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3740                                  PCI_DMA_TODEVICE);
3741                 if (txq->txb[txq->q.last_used]) {
3742                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743                         txq->txb[txq->q.last_used] = NULL;
3744                 }
3745         }
3746 }
3747
3748 /**
3749  * Deallocate DMA queue.
3750  *
3751  * Empty queue by removing and destroying all BD's.
3752  * Free all buffers.
3753  *
3754  * @param dev
3755  * @param q
3756  */
3757 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3758 {
3759         struct clx2_queue *q = &txq->q;
3760         struct pci_dev *dev = priv->pci_dev;
3761
3762         if (q->n_bd == 0)
3763                 return;
3764
3765         /* first, empty all BD's */
3766         for (; q->first_empty != q->last_used;
3767              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768                 ipw_queue_tx_free_tfd(priv, txq);
3769         }
3770
3771         /* free buffers belonging to queue itself */
3772         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3773                             q->dma_addr);
3774         kfree(txq->txb);
3775
3776         /* 0 fill whole structure */
3777         memset(txq, 0, sizeof(*txq));
3778 }
3779
3780 /**
3781  * Destroy all DMA queues and structures
3782  *
3783  * @param priv
3784  */
3785 static void ipw_tx_queue_free(struct ipw_priv *priv)
3786 {
3787         /* Tx CMD queue */
3788         ipw_queue_tx_free(priv, &priv->txq_cmd);
3789
3790         /* Tx queues */
3791         ipw_queue_tx_free(priv, &priv->txq[0]);
3792         ipw_queue_tx_free(priv, &priv->txq[1]);
3793         ipw_queue_tx_free(priv, &priv->txq[2]);
3794         ipw_queue_tx_free(priv, &priv->txq[3]);
3795 }
3796
3797 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3798 {
3799         /* First 3 bytes are manufacturer */
3800         bssid[0] = priv->mac_addr[0];
3801         bssid[1] = priv->mac_addr[1];
3802         bssid[2] = priv->mac_addr[2];
3803
3804         /* Last bytes are random */
3805         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3806
3807         bssid[0] &= 0xfe;       /* clear multicast bit */
3808         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3809 }
3810
3811 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3812 {
3813         struct ipw_station_entry entry;
3814         int i;
3815         DECLARE_MAC_BUF(mac);
3816
3817         for (i = 0; i < priv->num_stations; i++) {
3818                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3819                         /* Another node is active in network */
3820                         priv->missed_adhoc_beacons = 0;
3821                         if (!(priv->config & CFG_STATIC_CHANNEL))
3822                                 /* when other nodes drop out, we drop out */
3823                                 priv->config &= ~CFG_ADHOC_PERSIST;
3824
3825                         return i;
3826                 }
3827         }
3828
3829         if (i == MAX_STATIONS)
3830                 return IPW_INVALID_STATION;
3831
3832         IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3833
3834         entry.reserved = 0;
3835         entry.support_mode = 0;
3836         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3837         memcpy(priv->stations[i], bssid, ETH_ALEN);
3838         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3839                          &entry, sizeof(entry));
3840         priv->num_stations++;
3841
3842         return i;
3843 }
3844
3845 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3846 {
3847         int i;
3848
3849         for (i = 0; i < priv->num_stations; i++)
3850                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3851                         return i;
3852
3853         return IPW_INVALID_STATION;
3854 }
3855
3856 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3857 {
3858         int err;
3859         DECLARE_MAC_BUF(mac);
3860
3861         if (priv->status & STATUS_ASSOCIATING) {
3862                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3863                 queue_work(priv->workqueue, &priv->disassociate);
3864                 return;
3865         }
3866
3867         if (!(priv->status & STATUS_ASSOCIATED)) {
3868                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3869                 return;
3870         }
3871
3872         IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3873                         "on channel %d.\n",
3874                         print_mac(mac, priv->assoc_request.bssid),
3875                         priv->assoc_request.channel);
3876
3877         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3878         priv->status |= STATUS_DISASSOCIATING;
3879
3880         if (quiet)
3881                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3882         else
3883                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3884
3885         err = ipw_send_associate(priv, &priv->assoc_request);
3886         if (err) {
3887                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3888                              "failed.\n");
3889                 return;
3890         }
3891
3892 }
3893
3894 static int ipw_disassociate(void *data)
3895 {
3896         struct ipw_priv *priv = data;
3897         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3898                 return 0;
3899         ipw_send_disassociate(data, 0);
3900         return 1;
3901 }
3902
3903 static void ipw_bg_disassociate(struct work_struct *work)
3904 {
3905         struct ipw_priv *priv =
3906                 container_of(work, struct ipw_priv, disassociate);
3907         mutex_lock(&priv->mutex);
3908         ipw_disassociate(priv);
3909         mutex_unlock(&priv->mutex);
3910 }
3911
3912 static void ipw_system_config(struct work_struct *work)
3913 {
3914         struct ipw_priv *priv =
3915                 container_of(work, struct ipw_priv, system_config);
3916
3917 #ifdef CONFIG_IPW2200_PROMISCUOUS
3918         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3919                 priv->sys_config.accept_all_data_frames = 1;
3920                 priv->sys_config.accept_non_directed_frames = 1;
3921                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3922                 priv->sys_config.accept_all_mgmt_frames = 1;
3923         }
3924 #endif
3925
3926         ipw_send_system_config(priv);
3927 }
3928
3929 struct ipw_status_code {
3930         u16 status;
3931         const char *reason;
3932 };
3933
3934 static const struct ipw_status_code ipw_status_codes[] = {
3935         {0x00, "Successful"},
3936         {0x01, "Unspecified failure"},
3937         {0x0A, "Cannot support all requested capabilities in the "
3938          "Capability information field"},
3939         {0x0B, "Reassociation denied due to inability to confirm that "
3940          "association exists"},
3941         {0x0C, "Association denied due to reason outside the scope of this "
3942          "standard"},
3943         {0x0D,
3944          "Responding station does not support the specified authentication "
3945          "algorithm"},
3946         {0x0E,
3947          "Received an Authentication frame with authentication sequence "
3948          "transaction sequence number out of expected sequence"},
3949         {0x0F, "Authentication rejected because of challenge failure"},
3950         {0x10, "Authentication rejected due to timeout waiting for next "
3951          "frame in sequence"},
3952         {0x11, "Association denied because AP is unable to handle additional "
3953          "associated stations"},
3954         {0x12,
3955          "Association denied due to requesting station not supporting all "
3956          "of the datarates in the BSSBasicServiceSet Parameter"},
3957         {0x13,
3958          "Association denied due to requesting station not supporting "
3959          "short preamble operation"},
3960         {0x14,
3961          "Association denied due to requesting station not supporting "
3962          "PBCC encoding"},
3963         {0x15,
3964          "Association denied due to requesting station not supporting "
3965          "channel agility"},
3966         {0x19,
3967          "Association denied due to requesting station not supporting "
3968          "short slot operation"},
3969         {0x1A,
3970          "Association denied due to requesting station not supporting "
3971          "DSSS-OFDM operation"},
3972         {0x28, "Invalid Information Element"},
3973         {0x29, "Group Cipher is not valid"},
3974         {0x2A, "Pairwise Cipher is not valid"},
3975         {0x2B, "AKMP is not valid"},
3976         {0x2C, "Unsupported RSN IE version"},
3977         {0x2D, "Invalid RSN IE Capabilities"},
3978         {0x2E, "Cipher suite is rejected per security policy"},
3979 };
3980
3981 static const char *ipw_get_status_code(u16 status)
3982 {
3983         int i;
3984         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3985                 if (ipw_status_codes[i].status == (status & 0xff))
3986                         return ipw_status_codes[i].reason;
3987         return "Unknown status value.";
3988 }
3989
3990 static void inline average_init(struct average *avg)
3991 {
3992         memset(avg, 0, sizeof(*avg));
3993 }
3994
3995 #define DEPTH_RSSI 8
3996 #define DEPTH_NOISE 16
3997 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3998 {
3999         return ((depth-1)*prev_avg +  val)/depth;
4000 }
4001
4002 static void average_add(struct average *avg, s16 val)
4003 {
4004         avg->sum -= avg->entries[avg->pos];
4005         avg->sum += val;
4006         avg->entries[avg->pos++] = val;
4007         if (unlikely(avg->pos == AVG_ENTRIES)) {
4008                 avg->init = 1;
4009                 avg->pos = 0;
4010         }
4011 }
4012
4013 static s16 average_value(struct average *avg)
4014 {
4015         if (!unlikely(avg->init)) {
4016                 if (avg->pos)
4017                         return avg->sum / avg->pos;
4018                 return 0;
4019         }
4020
4021         return avg->sum / AVG_ENTRIES;
4022 }
4023
4024 static void ipw_reset_stats(struct ipw_priv *priv)
4025 {
4026         u32 len = sizeof(u32);
4027
4028         priv->quality = 0;
4029
4030         average_init(&priv->average_missed_beacons);
4031         priv->exp_avg_rssi = -60;
4032         priv->exp_avg_noise = -85 + 0x100;
4033
4034         priv->last_rate = 0;
4035         priv->last_missed_beacons = 0;
4036         priv->last_rx_packets = 0;
4037         priv->last_tx_packets = 0;
4038         priv->last_tx_failures = 0;
4039
4040         /* Firmware managed, reset only when NIC is restarted, so we have to
4041          * normalize on the current value */
4042         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4043                         &priv->last_rx_err, &len);
4044         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4045                         &priv->last_tx_failures, &len);
4046
4047         /* Driver managed, reset with each association */
4048         priv->missed_adhoc_beacons = 0;
4049         priv->missed_beacons = 0;
4050         priv->tx_packets = 0;
4051         priv->rx_packets = 0;
4052
4053 }
4054
4055 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4056 {
4057         u32 i = 0x80000000;
4058         u32 mask = priv->rates_mask;
4059         /* If currently associated in B mode, restrict the maximum
4060          * rate match to B rates */
4061         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4062                 mask &= IEEE80211_CCK_RATES_MASK;
4063
4064         /* TODO: Verify that the rate is supported by the current rates
4065          * list. */
4066
4067         while (i && !(mask & i))
4068                 i >>= 1;
4069         switch (i) {
4070         case IEEE80211_CCK_RATE_1MB_MASK:
4071                 return 1000000;
4072         case IEEE80211_CCK_RATE_2MB_MASK:
4073                 return 2000000;
4074         case IEEE80211_CCK_RATE_5MB_MASK:
4075                 return 5500000;
4076         case IEEE80211_OFDM_RATE_6MB_MASK:
4077                 return 6000000;
4078         case IEEE80211_OFDM_RATE_9MB_MASK:
4079                 return 9000000;
4080         case IEEE80211_CCK_RATE_11MB_MASK:
4081                 return 11000000;
4082         case IEEE80211_OFDM_RATE_12MB_MASK:
4083                 return 12000000;
4084         case IEEE80211_OFDM_RATE_18MB_MASK:
4085                 return 18000000;
4086         case IEEE80211_OFDM_RATE_24MB_MASK:
4087                 return 24000000;
4088         case IEEE80211_OFDM_RATE_36MB_MASK:
4089                 return 36000000;
4090         case IEEE80211_OFDM_RATE_48MB_MASK:
4091                 return 48000000;
4092         case IEEE80211_OFDM_RATE_54MB_MASK:
4093                 return 54000000;
4094         }
4095
4096         if (priv->ieee->mode == IEEE_B)
4097                 return 11000000;
4098         else
4099                 return 54000000;
4100 }
4101
4102 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4103 {
4104         u32 rate, len = sizeof(rate);
4105         int err;
4106
4107         if (!(priv->status & STATUS_ASSOCIATED))
4108                 return 0;
4109
4110         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4111                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4112                                       &len);
4113                 if (err) {
4114                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4115                         return 0;
4116                 }
4117         } else
4118                 return ipw_get_max_rate(priv);
4119
4120         switch (rate) {
4121         case IPW_TX_RATE_1MB:
4122                 return 1000000;
4123         case IPW_TX_RATE_2MB:
4124                 return 2000000;
4125         case IPW_TX_RATE_5MB:
4126                 return 5500000;
4127         case IPW_TX_RATE_6MB:
4128                 return 6000000;
4129         case IPW_TX_RATE_9MB:
4130                 return 9000000;
4131         case IPW_TX_RATE_11MB:
4132                 return 11000000;
4133         case IPW_TX_RATE_12MB:
4134                 return 12000000;
4135         case IPW_TX_RATE_18MB:
4136                 return 18000000;
4137         case IPW_TX_RATE_24MB:
4138                 return 24000000;
4139         case IPW_TX_RATE_36MB:
4140                 return 36000000;
4141         case IPW_TX_RATE_48MB:
4142                 return 48000000;
4143         case IPW_TX_RATE_54MB:
4144                 return 54000000;
4145         }
4146
4147         return 0;
4148 }
4149
4150 #define IPW_STATS_INTERVAL (2 * HZ)
4151 static void ipw_gather_stats(struct ipw_priv *priv)
4152 {
4153         u32 rx_err, rx_err_delta, rx_packets_delta;
4154         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4155         u32 missed_beacons_percent, missed_beacons_delta;
4156         u32 quality = 0;
4157         u32 len = sizeof(u32);
4158         s16 rssi;
4159         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4160             rate_quality;
4161         u32 max_rate;
4162
4163         if (!(priv->status & STATUS_ASSOCIATED)) {
4164                 priv->quality = 0;
4165                 return;
4166         }
4167
4168         /* Update the statistics */
4169         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4170                         &priv->missed_beacons, &len);
4171         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4172         priv->last_missed_beacons = priv->missed_beacons;
4173         if (priv->assoc_request.beacon_interval) {
4174                 missed_beacons_percent = missed_beacons_delta *
4175                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4176                     (IPW_STATS_INTERVAL * 10);
4177         } else {
4178                 missed_beacons_percent = 0;
4179         }
4180         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4181
4182         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4183         rx_err_delta = rx_err - priv->last_rx_err;
4184         priv->last_rx_err = rx_err;
4185
4186         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4187         tx_failures_delta = tx_failures - priv->last_tx_failures;
4188         priv->last_tx_failures = tx_failures;
4189
4190         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4191         priv->last_rx_packets = priv->rx_packets;
4192
4193         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4194         priv->last_tx_packets = priv->tx_packets;
4195
4196         /* Calculate quality based on the following:
4197          *
4198          * Missed beacon: 100% = 0, 0% = 70% missed
4199          * Rate: 60% = 1Mbs, 100% = Max
4200          * Rx and Tx errors represent a straight % of total Rx/Tx
4201          * RSSI: 100% = > -50,  0% = < -80
4202          * Rx errors: 100% = 0, 0% = 50% missed
4203          *
4204          * The lowest computed quality is used.
4205          *
4206          */
4207 #define BEACON_THRESHOLD 5
4208         beacon_quality = 100 - missed_beacons_percent;
4209         if (beacon_quality < BEACON_THRESHOLD)
4210                 beacon_quality = 0;
4211         else
4212                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4213                     (100 - BEACON_THRESHOLD);
4214         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4215                         beacon_quality, missed_beacons_percent);
4216
4217         priv->last_rate = ipw_get_current_rate(priv);
4218         max_rate = ipw_get_max_rate(priv);
4219         rate_quality = priv->last_rate * 40 / max_rate + 60;
4220         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4221                         rate_quality, priv->last_rate / 1000000);
4222
4223         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4224                 rx_quality = 100 - (rx_err_delta * 100) /
4225                     (rx_packets_delta + rx_err_delta);
4226         else
4227                 rx_quality = 100;
4228         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4229                         rx_quality, rx_err_delta, rx_packets_delta);
4230
4231         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4232                 tx_quality = 100 - (tx_failures_delta * 100) /
4233                     (tx_packets_delta + tx_failures_delta);
4234         else
4235                 tx_quality = 100;
4236         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4237                         tx_quality, tx_failures_delta, tx_packets_delta);
4238
4239         rssi = priv->exp_avg_rssi;
4240         signal_quality =
4241             (100 *
4242              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4243              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4244              (priv->ieee->perfect_rssi - rssi) *
4245              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4246               62 * (priv->ieee->perfect_rssi - rssi))) /
4247             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4248              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4249         if (signal_quality > 100)
4250                 signal_quality = 100;
4251         else if (signal_quality < 1)
4252                 signal_quality = 0;
4253
4254         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4255                         signal_quality, rssi);
4256
4257         quality = min(beacon_quality,
4258                       min(rate_quality,
4259                           min(tx_quality, min(rx_quality, signal_quality))));
4260         if (quality == beacon_quality)
4261                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4262                                 quality);
4263         if (quality == rate_quality)
4264                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4265                                 quality);
4266         if (quality == tx_quality)
4267                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4268                                 quality);
4269         if (quality == rx_quality)
4270                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4271                                 quality);
4272         if (quality == signal_quality)
4273                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4274                                 quality);
4275
4276         priv->quality = quality;
4277
4278         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4279                            IPW_STATS_INTERVAL);
4280 }
4281
4282 static void ipw_bg_gather_stats(struct work_struct *work)
4283 {
4284         struct ipw_priv *priv =
4285                 container_of(work, struct ipw_priv, gather_stats.work);
4286         mutex_lock(&priv->mutex);
4287         ipw_gather_stats(priv);
4288         mutex_unlock(&priv->mutex);
4289 }
4290
4291 /* Missed beacon behavior:
4292  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4293  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4294  * Above disassociate threshold, give up and stop scanning.
4295  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4296 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4297                                             int missed_count)
4298 {
4299         priv->notif_missed_beacons = missed_count;
4300
4301         if (missed_count > priv->disassociate_threshold &&
4302             priv->status & STATUS_ASSOCIATED) {
4303                 /* If associated and we've hit the missed
4304                  * beacon threshold, disassociate, turn
4305                  * off roaming, and abort any active scans */
4306                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4307                           IPW_DL_STATE | IPW_DL_ASSOC,
4308                           "Missed beacon: %d - disassociate\n", missed_count);
4309                 priv->status &= ~STATUS_ROAMING;
4310                 if (priv->status & STATUS_SCANNING) {
4311                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4312                                   IPW_DL_STATE,
4313                                   "Aborting scan with missed beacon.\n");
4314                         queue_work(priv->workqueue, &priv->abort_scan);
4315                 }
4316
4317                 queue_work(priv->workqueue, &priv->disassociate);
4318                 return;
4319         }
4320
4321         if (priv->status & STATUS_ROAMING) {
4322                 /* If we are currently roaming, then just
4323                  * print a debug statement... */
4324                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4325                           "Missed beacon: %d - roam in progress\n",
4326                           missed_count);
4327                 return;
4328         }
4329
4330         if (roaming &&
4331             (missed_count > priv->roaming_threshold &&
4332              missed_count <= priv->disassociate_threshold)) {
4333                 /* If we are not already roaming, set the ROAM
4334                  * bit in the status and kick off a scan.
4335                  * This can happen several times before we reach
4336                  * disassociate_threshold. */
4337                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4338                           "Missed beacon: %d - initiate "
4339                           "roaming\n", missed_count);
4340                 if (!(priv->status & STATUS_ROAMING)) {
4341                         priv->status |= STATUS_ROAMING;
4342                         if (!(priv->status & STATUS_SCANNING))
4343                                 queue_delayed_work(priv->workqueue,
4344                                                    &priv->request_scan, 0);
4345                 }
4346                 return;
4347         }
4348
4349         if (priv->status & STATUS_SCANNING) {
4350                 /* Stop scan to keep fw from getting
4351                  * stuck (only if we aren't roaming --
4352                  * otherwise we'll never scan more than 2 or 3
4353                  * channels..) */
4354                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4355                           "Aborting scan with missed beacon.\n");
4356                 queue_work(priv->workqueue, &priv->abort_scan);
4357         }
4358
4359         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4360 }
4361
4362 static void ipw_scan_event(struct work_struct *work)
4363 {
4364         union iwreq_data wrqu;
4365
4366         struct ipw_priv *priv =
4367                 container_of(work, struct ipw_priv, scan_event.work);
4368
4369         wrqu.data.length = 0;
4370         wrqu.data.flags = 0;
4371         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4372 }
4373
4374 static void handle_scan_event(struct ipw_priv *priv)
4375 {
4376         /* Only userspace-requested scan completion events go out immediately */
4377         if (!priv->user_requested_scan) {
4378                 if (!delayed_work_pending(&priv->scan_event))
4379                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4380                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4381         } else {
4382                 union iwreq_data wrqu;
4383
4384                 priv->user_requested_scan = 0;
4385                 cancel_delayed_work(&priv->scan_event);
4386
4387                 wrqu.data.length = 0;
4388                 wrqu.data.flags = 0;
4389                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4390         }
4391 }
4392
4393 /**
4394  * Handle host notification packet.
4395  * Called from interrupt routine
4396  */
4397 static void ipw_rx_notification(struct ipw_priv *priv,
4398                                        struct ipw_rx_notification *notif)
4399 {
4400         DECLARE_MAC_BUF(mac);
4401         u16 size = le16_to_cpu(notif->size);
4402         notif->size = le16_to_cpu(notif->size);
4403
4404         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4405
4406         switch (notif->subtype) {
4407         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4408                         struct notif_association *assoc = &notif->u.assoc;
4409
4410                         switch (assoc->state) {
4411                         case CMAS_ASSOCIATED:{
4412                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413                                                   IPW_DL_ASSOC,
4414                                                   "associated: '%s' %s"
4415                                                   " \n",
4416                                                   escape_essid(priv->essid,
4417                                                                priv->essid_len),
4418                                                   print_mac(mac, priv->bssid));
4419
4420                                         switch (priv->ieee->iw_mode) {
4421                                         case IW_MODE_INFRA:
4422                                                 memcpy(priv->ieee->bssid,
4423                                                        priv->bssid, ETH_ALEN);
4424                                                 break;
4425
4426                                         case IW_MODE_ADHOC:
4427                                                 memcpy(priv->ieee->bssid,
4428                                                        priv->bssid, ETH_ALEN);
4429
4430                                                 /* clear out the station table */
4431                                                 priv->num_stations = 0;
4432
4433                                                 IPW_DEBUG_ASSOC
4434                                                     ("queueing adhoc check\n");
4435                                                 queue_delayed_work(priv->
4436                                                                    workqueue,
4437                                                                    &priv->
4438                                                                    adhoc_check,
4439                                                                    le16_to_cpu(priv->
4440                                                                    assoc_request.
4441                                                                    beacon_interval));
4442                                                 break;
4443                                         }
4444
4445                                         priv->status &= ~STATUS_ASSOCIATING;
4446                                         priv->status |= STATUS_ASSOCIATED;
4447                                         queue_work(priv->workqueue,
4448                                                    &priv->system_config);
4449
4450 #ifdef CONFIG_IPW2200_QOS
4451 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4452                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4453                                         if ((priv->status & STATUS_AUTH) &&
4454                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4455                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4456                                                 if ((sizeof
4457                                                      (struct
4458                                                       ieee80211_assoc_response)
4459                                                      <= size)
4460                                                     && (size <= 2314)) {
4461                                                         struct
4462                                                         ieee80211_rx_stats
4463                                                             stats = {
4464                                                                 .len = size - 1,
4465                                                         };
4466
4467                                                         IPW_DEBUG_QOS
4468                                                             ("QoS Associate "
4469                                                              "size %d\n", size);
4470                                                         ieee80211_rx_mgt(priv->
4471                                                                          ieee,
4472                                                                          (struct
4473                                                                           ieee80211_hdr_4addr
4474                                                                           *)
4475                                                                          &notif->u.raw, &stats);
4476                                                 }
4477                                         }
4478 #endif
4479
4480                                         schedule_work(&priv->link_up);
4481
4482                                         break;
4483                                 }
4484
4485                         case CMAS_AUTHENTICATED:{
4486                                         if (priv->
4487                                             status & (STATUS_ASSOCIATED |
4488                                                       STATUS_AUTH)) {
4489                                                 struct notif_authenticate *auth
4490                                                     = &notif->u.auth;
4491                                                 IPW_DEBUG(IPW_DL_NOTIF |
4492                                                           IPW_DL_STATE |
4493                                                           IPW_DL_ASSOC,
4494                                                           "deauthenticated: '%s' "
4495                                                           "%s"
4496                                                           ": (0x%04X) - %s \n",
4497                                                           escape_essid(priv->
4498                                                                        essid,
4499                                                                        priv->
4500                                                                        essid_len),
4501                                                           print_mac(mac, priv->bssid),
4502                                                           le16_to_cpu(auth->status),
4503                                                           ipw_get_status_code
4504                                                           (le16_to_cpu
4505                                                            (auth->status)));
4506
4507                                                 priv->status &=
4508                                                     ~(STATUS_ASSOCIATING |
4509                                                       STATUS_AUTH |
4510                                                       STATUS_ASSOCIATED);
4511
4512                                                 schedule_work(&priv->link_down);
4513                                                 break;
4514                                         }
4515
4516                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517                                                   IPW_DL_ASSOC,
4518                                                   "authenticated: '%s' %s"
4519                                                   "\n",
4520                                                   escape_essid(priv->essid,
4521                                                                priv->essid_len),
4522                                                   print_mac(mac, priv->bssid));
4523                                         break;
4524                                 }
4525
4526                         case CMAS_INIT:{
4527                                         if (priv->status & STATUS_AUTH) {
4528                                                 struct
4529                                                     ieee80211_assoc_response
4530                                                 *resp;
4531                                                 resp =
4532                                                     (struct
4533                                                      ieee80211_assoc_response
4534                                                      *)&notif->u.raw;
4535                                                 IPW_DEBUG(IPW_DL_NOTIF |
4536                                                           IPW_DL_STATE |
4537                                                           IPW_DL_ASSOC,
4538                                                           "association failed (0x%04X): %s\n",
4539                                                           le16_to_cpu(resp->status),
4540                                                           ipw_get_status_code
4541                                                           (le16_to_cpu
4542                                                            (resp->status)));
4543                                         }
4544
4545                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4546                                                   IPW_DL_ASSOC,
4547                                                   "disassociated: '%s' %s"
4548                                                   " \n",
4549                                                   escape_essid(priv->essid,
4550                                                                priv->essid_len),
4551                                                   print_mac(mac, priv->bssid));
4552
4553                                         priv->status &=
4554                                             ~(STATUS_DISASSOCIATING |
4555                                               STATUS_ASSOCIATING |
4556                                               STATUS_ASSOCIATED | STATUS_AUTH);
4557                                         if (priv->assoc_network
4558                                             && (priv->assoc_network->
4559                                                 capability &
4560                                                 WLAN_CAPABILITY_IBSS))
4561                                                 ipw_remove_current_network
4562                                                     (priv);
4563
4564                                         schedule_work(&priv->link_down);
4565
4566                                         break;
4567                                 }
4568
4569                         case CMAS_RX_ASSOC_RESP:
4570                                 break;
4571
4572                         default:
4573                                 IPW_ERROR("assoc: unknown (%d)\n",
4574                                           assoc->state);
4575                                 break;
4576                         }
4577
4578                         break;
4579                 }
4580
4581         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4582                         struct notif_authenticate *auth = &notif->u.auth;
4583                         switch (auth->state) {
4584                         case CMAS_AUTHENTICATED:
4585                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4586                                           "authenticated: '%s' %s \n",
4587                                           escape_essid(priv->essid,
4588                                                        priv->essid_len),
4589                                           print_mac(mac, priv->bssid));
4590                                 priv->status |= STATUS_AUTH;
4591                                 break;
4592
4593                         case CMAS_INIT:
4594                                 if (priv->status & STATUS_AUTH) {
4595                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4596                                                   IPW_DL_ASSOC,
4597                                                   "authentication failed (0x%04X): %s\n",
4598                                                   le16_to_cpu(auth->status),
4599                                                   ipw_get_status_code(le16_to_cpu
4600                                                                       (auth->
4601                                                                        status)));
4602                                 }
4603                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4604                                           IPW_DL_ASSOC,
4605                                           "deauthenticated: '%s' %s\n",
4606                                           escape_essid(priv->essid,
4607                                                        priv->essid_len),
4608                                           print_mac(mac, priv->bssid));
4609
4610                                 priv->status &= ~(STATUS_ASSOCIATING |
4611                                                   STATUS_AUTH |
4612                                                   STATUS_ASSOCIATED);
4613
4614                                 schedule_work(&priv->link_down);
4615                                 break;
4616
4617                         case CMAS_TX_AUTH_SEQ_1:
4618                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4619                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4620                                 break;
4621                         case CMAS_RX_AUTH_SEQ_2:
4622                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4623                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4624                                 break;
4625                         case CMAS_AUTH_SEQ_1_PASS:
4626                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4627                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4628                                 break;
4629                         case CMAS_AUTH_SEQ_1_FAIL:
4630                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4632                                 break;
4633                         case CMAS_TX_AUTH_SEQ_3:
4634                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4636                                 break;
4637                         case CMAS_RX_AUTH_SEQ_4:
4638                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4640                                 break;
4641                         case CMAS_AUTH_SEQ_2_PASS:
4642                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4644                                 break;
4645                         case CMAS_AUTH_SEQ_2_FAIL:
4646                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4648                                 break;
4649                         case CMAS_TX_ASSOC:
4650                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4652                                 break;
4653                         case CMAS_RX_ASSOC_RESP:
4654                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4656
4657                                 break;
4658                         case CMAS_ASSOCIATED:
4659                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4660                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4661                                 break;
4662                         default:
4663                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4664                                                 auth->state);
4665                                 break;
4666                         }
4667                         break;
4668                 }
4669
4670         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4671                         struct notif_channel_result *x =
4672                             &notif->u.channel_result;
4673
4674                         if (size == sizeof(*x)) {
4675                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4676                                                x->channel_num);
4677                         } else {
4678                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4679                                                "(should be %zd)\n",
4680                                                size, sizeof(*x));
4681                         }
4682                         break;
4683                 }
4684
4685         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4686                         struct notif_scan_complete *x = &notif->u.scan_complete;
4687                         if (size == sizeof(*x)) {
4688                                 IPW_DEBUG_SCAN
4689                                     ("Scan completed: type %d, %d channels, "
4690                                      "%d status\n", x->scan_type,
4691                                      x->num_channels, x->status);
4692                         } else {
4693                                 IPW_ERROR("Scan completed of wrong size %d "
4694                                           "(should be %zd)\n",
4695                                           size, sizeof(*x));
4696                         }
4697
4698                         priv->status &=
4699                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4700
4701                         wake_up_interruptible(&priv->wait_state);
4702                         cancel_delayed_work(&priv->scan_check);
4703
4704                         if (priv->status & STATUS_EXIT_PENDING)
4705                                 break;
4706
4707                         priv->ieee->scans++;
4708
4709 #ifdef CONFIG_IPW2200_MONITOR
4710                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4711                                 priv->status |= STATUS_SCAN_FORCED;
4712                                 queue_delayed_work(priv->workqueue,
4713                                                    &priv->request_scan, 0);
4714                                 break;
4715                         }
4716                         priv->status &= ~STATUS_SCAN_FORCED;
4717 #endif                          /* CONFIG_IPW2200_MONITOR */
4718
4719                         /* Do queued direct scans first */
4720                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4721                                 queue_delayed_work(priv->workqueue,
4722                                                    &priv->request_direct_scan, 0);
4723                         }
4724
4725                         if (!(priv->status & (STATUS_ASSOCIATED |
4726                                               STATUS_ASSOCIATING |
4727                                               STATUS_ROAMING |
4728                                               STATUS_DISASSOCIATING)))
4729                                 queue_work(priv->workqueue, &priv->associate);
4730                         else if (priv->status & STATUS_ROAMING) {
4731                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4732                                         /* If a scan completed and we are in roam mode, then
4733                                          * the scan that completed was the one requested as a
4734                                          * result of entering roam... so, schedule the
4735                                          * roam work */
4736                                         queue_work(priv->workqueue,
4737                                                    &priv->roam);
4738                                 else
4739                                         /* Don't schedule if we aborted the scan */
4740                                         priv->status &= ~STATUS_ROAMING;
4741                         } else if (priv->status & STATUS_SCAN_PENDING)
4742                                 queue_delayed_work(priv->workqueue,
4743                                                    &priv->request_scan, 0);
4744                         else if (priv->config & CFG_BACKGROUND_SCAN
4745                                  && priv->status & STATUS_ASSOCIATED)
4746                                 queue_delayed_work(priv->workqueue,
4747                                                    &priv->request_scan,
4748                                                    round_jiffies_relative(HZ));
4749
4750                         /* Send an empty event to user space.
4751                          * We don't send the received data on the event because
4752                          * it would require us to do complex transcoding, and
4753                          * we want to minimise the work done in the irq handler
4754                          * Use a request to extract the data.
4755                          * Also, we generate this even for any scan, regardless
4756                          * on how the scan was initiated. User space can just
4757                          * sync on periodic scan to get fresh data...
4758                          * Jean II */
4759                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4760                                 handle_scan_event(priv);
4761                         break;
4762                 }
4763
4764         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4765                         struct notif_frag_length *x = &notif->u.frag_len;
4766
4767                         if (size == sizeof(*x))
4768                                 IPW_ERROR("Frag length: %d\n",
4769                                           le16_to_cpu(x->frag_length));
4770                         else
4771                                 IPW_ERROR("Frag length of wrong size %d "
4772                                           "(should be %zd)\n",
4773                                           size, sizeof(*x));
4774                         break;
4775                 }
4776
4777         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4778                         struct notif_link_deterioration *x =
4779                             &notif->u.link_deterioration;
4780
4781                         if (size == sizeof(*x)) {
4782                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4783                                         "link deterioration: type %d, cnt %d\n",
4784                                         x->silence_notification_type,
4785                                         x->silence_count);
4786                                 memcpy(&priv->last_link_deterioration, x,
4787                                        sizeof(*x));
4788                         } else {
4789                                 IPW_ERROR("Link Deterioration of wrong size %d "
4790                                           "(should be %zd)\n",
4791                                           size, sizeof(*x));
4792                         }
4793                         break;
4794                 }
4795
4796         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4797                         IPW_ERROR("Dino config\n");
4798                         if (priv->hcmd
4799                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4800                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4801
4802                         break;
4803                 }
4804
4805         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4806                         struct notif_beacon_state *x = &notif->u.beacon_state;
4807                         if (size != sizeof(*x)) {
4808                                 IPW_ERROR
4809                                     ("Beacon state of wrong size %d (should "
4810                                      "be %zd)\n", size, sizeof(*x));
4811                                 break;
4812                         }
4813
4814                         if (le32_to_cpu(x->state) ==
4815                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4816                                 ipw_handle_missed_beacon(priv,
4817                                                          le32_to_cpu(x->
4818                                                                      number));
4819
4820                         break;
4821                 }
4822
4823         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4824                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4825                         if (size == sizeof(*x)) {
4826                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4827                                           "0x%02x station %d\n",
4828                                           x->key_state, x->security_type,
4829                                           x->station_index);
4830                                 break;
4831                         }
4832
4833                         IPW_ERROR
4834                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4835                              size, sizeof(*x));
4836                         break;
4837                 }
4838
4839         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4840                         struct notif_calibration *x = &notif->u.calibration;
4841
4842                         if (size == sizeof(*x)) {
4843                                 memcpy(&priv->calib, x, sizeof(*x));
4844                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4845                                 break;
4846                         }
4847
4848                         IPW_ERROR
4849                             ("Calibration of wrong size %d (should be %zd)\n",
4850                              size, sizeof(*x));
4851                         break;
4852                 }
4853
4854         case HOST_NOTIFICATION_NOISE_STATS:{
4855                         if (size == sizeof(u32)) {
4856                                 priv->exp_avg_noise =
4857                                     exponential_average(priv->exp_avg_noise,
4858                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4859                                     DEPTH_NOISE);
4860                                 break;
4861                         }
4862
4863                         IPW_ERROR
4864                             ("Noise stat is wrong size %d (should be %zd)\n",
4865                              size, sizeof(u32));
4866                         break;
4867                 }
4868
4869         default:
4870                 IPW_DEBUG_NOTIF("Unknown notification: "
4871                                 "subtype=%d,flags=0x%2x,size=%d\n",
4872                                 notif->subtype, notif->flags, size);
4873         }
4874 }
4875
4876 /**
4877  * Destroys all DMA structures and initialise them again
4878  *
4879  * @param priv
4880  * @return error code
4881  */
4882 static int ipw_queue_reset(struct ipw_priv *priv)
4883 {
4884         int rc = 0;
4885         /** @todo customize queue sizes */
4886         int nTx = 64, nTxCmd = 8;
4887         ipw_tx_queue_free(priv);
4888         /* Tx CMD queue */
4889         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4890                                IPW_TX_CMD_QUEUE_READ_INDEX,
4891                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4892                                IPW_TX_CMD_QUEUE_BD_BASE,
4893                                IPW_TX_CMD_QUEUE_BD_SIZE);
4894         if (rc) {
4895                 IPW_ERROR("Tx Cmd queue init failed\n");
4896                 goto error;
4897         }
4898         /* Tx queue(s) */
4899         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4900                                IPW_TX_QUEUE_0_READ_INDEX,
4901                                IPW_TX_QUEUE_0_WRITE_INDEX,
4902                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4903         if (rc) {
4904                 IPW_ERROR("Tx 0 queue init failed\n");
4905                 goto error;
4906         }
4907         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4908                                IPW_TX_QUEUE_1_READ_INDEX,
4909                                IPW_TX_QUEUE_1_WRITE_INDEX,
4910                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4911         if (rc) {
4912                 IPW_ERROR("Tx 1 queue init failed\n");
4913                 goto error;
4914         }
4915         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4916                                IPW_TX_QUEUE_2_READ_INDEX,
4917                                IPW_TX_QUEUE_2_WRITE_INDEX,
4918                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4919         if (rc) {
4920                 IPW_ERROR("Tx 2 queue init failed\n");
4921                 goto error;
4922         }
4923         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4924                                IPW_TX_QUEUE_3_READ_INDEX,
4925                                IPW_TX_QUEUE_3_WRITE_INDEX,
4926                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4927         if (rc) {
4928                 IPW_ERROR("Tx 3 queue init failed\n");
4929                 goto error;
4930         }
4931         /* statistics */
4932         priv->rx_bufs_min = 0;
4933         priv->rx_pend_max = 0;
4934         return rc;
4935
4936       error:
4937         ipw_tx_queue_free(priv);
4938         return rc;
4939 }
4940
4941 /**
4942  * Reclaim Tx queue entries no more used by NIC.
4943  *
4944  * When FW advances 'R' index, all entries between old and
4945  * new 'R' index need to be reclaimed. As result, some free space
4946  * forms. If there is enough free space (> low mark), wake Tx queue.
4947  *
4948  * @note Need to protect against garbage in 'R' index
4949  * @param priv
4950  * @param txq
4951  * @param qindex
4952  * @return Number of used entries remains in the queue
4953  */
4954 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4955                                 struct clx2_tx_queue *txq, int qindex)
4956 {
4957         u32 hw_tail;
4958         int used;
4959         struct clx2_queue *q = &txq->q;
4960
4961         hw_tail = ipw_read32(priv, q->reg_r);
4962         if (hw_tail >= q->n_bd) {
4963                 IPW_ERROR
4964                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4965                      hw_tail, q->n_bd);
4966                 goto done;
4967         }
4968         for (; q->last_used != hw_tail;
4969              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4970                 ipw_queue_tx_free_tfd(priv, txq);
4971                 priv->tx_packets++;
4972         }
4973       done:
4974         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4975             (qindex >= 0) &&
4976             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4977                 netif_wake_queue(priv->net_dev);
4978         used = q->first_empty - q->last_used;
4979         if (used < 0)
4980                 used += q->n_bd;
4981
4982         return used;
4983 }
4984
4985 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4986                              int len, int sync)
4987 {
4988         struct clx2_tx_queue *txq = &priv->txq_cmd;
4989         struct clx2_queue *q = &txq->q;
4990         struct tfd_frame *tfd;
4991
4992         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4993                 IPW_ERROR("No space for Tx\n");
4994                 return -EBUSY;
4995         }
4996
4997         tfd = &txq->bd[q->first_empty];
4998         txq->txb[q->first_empty] = NULL;
4999
5000         memset(tfd, 0, sizeof(*tfd));
5001         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5002         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5003         priv->hcmd_seq++;
5004         tfd->u.cmd.index = hcmd;
5005         tfd->u.cmd.length = len;
5006         memcpy(tfd->u.cmd.payload, buf, len);
5007         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5008         ipw_write32(priv, q->reg_w, q->first_empty);
5009         _ipw_read32(priv, 0x90);
5010
5011         return 0;
5012 }
5013
5014 /*
5015  * Rx theory of operation
5016  *
5017  * The host allocates 32 DMA target addresses and passes the host address
5018  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5019  * 0 to 31
5020  *
5021  * Rx Queue Indexes
5022  * The host/firmware share two index registers for managing the Rx buffers.
5023  *
5024  * The READ index maps to the first position that the firmware may be writing
5025  * to -- the driver can read up to (but not including) this position and get
5026  * good data.
5027  * The READ index is managed by the firmware once the card is enabled.
5028  *
5029  * The WRITE index maps to the last position the driver has read from -- the
5030  * position preceding WRITE is the last slot the firmware can place a packet.
5031  *
5032  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5033  * WRITE = READ.
5034  *
5035  * During initialization the host sets up the READ queue position to the first
5036  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5037  *
5038  * When the firmware places a packet in a buffer it will advance the READ index
5039  * and fire the RX interrupt.  The driver can then query the READ index and
5040  * process as many packets as possible, moving the WRITE index forward as it
5041  * resets the Rx queue buffers with new memory.
5042  *
5043  * The management in the driver is as follows:
5044  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5045  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5046  *   to replensish the ipw->rxq->rx_free.
5047  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5048  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5049  *   'processed' and 'read' driver indexes as well)
5050  * + A received packet is processed and handed to the kernel network stack,
5051  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5052  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5053  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5054  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5055  *   were enough free buffers and RX_STALLED is set it is cleared.
5056  *
5057  *
5058  * Driver sequence:
5059  *
5060  * ipw_rx_queue_alloc()       Allocates rx_free
5061  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5062  *                            ipw_rx_queue_restock
5063  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5064  *                            queue, updates firmware pointers, and updates
5065  *                            the WRITE index.  If insufficient rx_free buffers
5066  *                            are available, schedules ipw_rx_queue_replenish
5067  *
5068  * -- enable interrupts --
5069  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5070  *                            READ INDEX, detaching the SKB from the pool.
5071  *                            Moves the packet buffer from queue to rx_used.
5072  *                            Calls ipw_rx_queue_restock to refill any empty
5073  *                            slots.
5074  * ...
5075  *
5076  */
5077
5078 /*
5079  * If there are slots in the RX queue that  need to be restocked,
5080  * and we have free pre-allocated buffers, fill the ranks as much
5081  * as we can pulling from rx_free.
5082  *
5083  * This moves the 'write' index forward to catch up with 'processed', and
5084  * also updates the memory address in the firmware to reference the new
5085  * target buffer.
5086  */
5087 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5088 {
5089         struct ipw_rx_queue *rxq = priv->rxq;
5090         struct list_head *element;
5091         struct ipw_rx_mem_buffer *rxb;
5092         unsigned long flags;
5093         int write;
5094
5095         spin_lock_irqsave(&rxq->lock, flags);
5096         write = rxq->write;
5097         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5098                 element = rxq->rx_free.next;
5099                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5100                 list_del(element);
5101
5102                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5103                             rxb->dma_addr);
5104                 rxq->queue[rxq->write] = rxb;
5105                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5106                 rxq->free_count--;
5107         }
5108         spin_unlock_irqrestore(&rxq->lock, flags);
5109
5110         /* If the pre-allocated buffer pool is dropping low, schedule to
5111          * refill it */
5112         if (rxq->free_count <= RX_LOW_WATERMARK)
5113                 queue_work(priv->workqueue, &priv->rx_replenish);
5114
5115         /* If we've added more space for the firmware to place data, tell it */
5116         if (write != rxq->write)
5117                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5118 }
5119
5120 /*
5121  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5122  * Also restock the Rx queue via ipw_rx_queue_restock.
5123  *
5124  * This is called as a scheduled work item (except for during intialization)
5125  */
5126 static void ipw_rx_queue_replenish(void *data)
5127 {
5128         struct ipw_priv *priv = data;
5129         struct ipw_rx_queue *rxq = priv->rxq;
5130         struct list_head *element;
5131         struct ipw_rx_mem_buffer *rxb;
5132         unsigned long flags;
5133
5134         spin_lock_irqsave(&rxq->lock, flags);
5135         while (!list_empty(&rxq->rx_used)) {
5136                 element = rxq->rx_used.next;
5137                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5138                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5139                 if (!rxb->skb) {
5140                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5141                                priv->net_dev->name);
5142                         /* We don't reschedule replenish work here -- we will
5143                          * call the restock method and if it still needs
5144                          * more buffers it will schedule replenish */
5145                         break;
5146                 }
5147                 list_del(element);
5148
5149                 rxb->dma_addr =
5150                     pci_map_single(priv->pci_dev, rxb->skb->data,
5151                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5152
5153                 list_add_tail(&rxb->list, &rxq->rx_free);
5154                 rxq->free_count++;
5155         }
5156         spin_unlock_irqrestore(&rxq->lock, flags);
5157
5158         ipw_rx_queue_restock(priv);
5159 }
5160
5161 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5162 {
5163         struct ipw_priv *priv =
5164                 container_of(work, struct ipw_priv, rx_replenish);
5165         mutex_lock(&priv->mutex);
5166         ipw_rx_queue_replenish(priv);
5167         mutex_unlock(&priv->mutex);
5168 }
5169
5170 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5171  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5172  * This free routine walks the list of POOL entries and if SKB is set to
5173  * non NULL it is unmapped and freed
5174  */
5175 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5176 {
5177         int i;
5178
5179         if (!rxq)
5180                 return;
5181
5182         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5183                 if (rxq->pool[i].skb != NULL) {
5184                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5185                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5186                         dev_kfree_skb(rxq->pool[i].skb);
5187                 }
5188         }
5189
5190         kfree(rxq);
5191 }
5192
5193 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5194 {
5195         struct ipw_rx_queue *rxq;
5196         int i;
5197
5198         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5199         if (unlikely(!rxq)) {
5200                 IPW_ERROR("memory allocation failed\n");
5201                 return NULL;
5202         }
5203         spin_lock_init(&rxq->lock);
5204         INIT_LIST_HEAD(&rxq->rx_free);
5205         INIT_LIST_HEAD(&rxq->rx_used);
5206
5207         /* Fill the rx_used queue with _all_ of the Rx buffers */
5208         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5209                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5210
5211         /* Set us so that we have processed and used all buffers, but have
5212          * not restocked the Rx queue with fresh buffers */
5213         rxq->read = rxq->write = 0;
5214         rxq->free_count = 0;
5215
5216         return rxq;
5217 }
5218
5219 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5220 {
5221         rate &= ~IEEE80211_BASIC_RATE_MASK;
5222         if (ieee_mode == IEEE_A) {
5223                 switch (rate) {
5224                 case IEEE80211_OFDM_RATE_6MB:
5225                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5226                             1 : 0;
5227                 case IEEE80211_OFDM_RATE_9MB:
5228                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5229                             1 : 0;
5230                 case IEEE80211_OFDM_RATE_12MB:
5231                         return priv->
5232                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5233                 case IEEE80211_OFDM_RATE_18MB:
5234                         return priv->
5235                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5236                 case IEEE80211_OFDM_RATE_24MB:
5237                         return priv->
5238                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5239                 case IEEE80211_OFDM_RATE_36MB:
5240                         return priv->
5241                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5242                 case IEEE80211_OFDM_RATE_48MB:
5243                         return priv->
5244                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5245                 case IEEE80211_OFDM_RATE_54MB:
5246                         return priv->
5247                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5248                 default:
5249                         return 0;
5250                 }
5251         }
5252
5253         /* B and G mixed */
5254         switch (rate) {
5255         case IEEE80211_CCK_RATE_1MB:
5256                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5257         case IEEE80211_CCK_RATE_2MB:
5258                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5259         case IEEE80211_CCK_RATE_5MB:
5260                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5261         case IEEE80211_CCK_RATE_11MB:
5262                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5263         }
5264
5265         /* If we are limited to B modulations, bail at this point */
5266         if (ieee_mode == IEEE_B)
5267                 return 0;
5268
5269         /* G */
5270         switch (rate) {
5271         case IEEE80211_OFDM_RATE_6MB:
5272                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5273         case IEEE80211_OFDM_RATE_9MB:
5274                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5275         case IEEE80211_OFDM_RATE_12MB:
5276                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5277         case IEEE80211_OFDM_RATE_18MB:
5278                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5279         case IEEE80211_OFDM_RATE_24MB:
5280                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5281         case IEEE80211_OFDM_RATE_36MB:
5282                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5283         case IEEE80211_OFDM_RATE_48MB:
5284                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5285         case IEEE80211_OFDM_RATE_54MB:
5286                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5287         }
5288
5289         return 0;
5290 }
5291
5292 static int ipw_compatible_rates(struct ipw_priv *priv,
5293                                 const struct ieee80211_network *network,
5294                                 struct ipw_supported_rates *rates)
5295 {
5296         int num_rates, i;
5297
5298         memset(rates, 0, sizeof(*rates));
5299         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5300         rates->num_rates = 0;
5301         for (i = 0; i < num_rates; i++) {
5302                 if (!ipw_is_rate_in_mask(priv, network->mode,
5303                                          network->rates[i])) {
5304
5305                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5306                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5307                                                "rate %02X\n",
5308                                                network->rates[i]);
5309                                 rates->supported_rates[rates->num_rates++] =
5310                                     network->rates[i];
5311                                 continue;
5312                         }
5313
5314                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5315                                        network->rates[i], priv->rates_mask);
5316                         continue;
5317                 }
5318
5319                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5320         }
5321
5322         num_rates = min(network->rates_ex_len,
5323                         (u8) (IPW_MAX_RATES - num_rates));
5324         for (i = 0; i < num_rates; i++) {
5325                 if (!ipw_is_rate_in_mask(priv, network->mode,
5326                                          network->rates_ex[i])) {
5327                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5328                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5329                                                "rate %02X\n",
5330                                                network->rates_ex[i]);
5331                                 rates->supported_rates[rates->num_rates++] =
5332                                     network->rates[i];
5333                                 continue;
5334                         }
5335
5336                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5337                                        network->rates_ex[i], priv->rates_mask);
5338                         continue;
5339                 }
5340
5341                 rates->supported_rates[rates->num_rates++] =
5342                     network->rates_ex[i];
5343         }
5344
5345         return 1;
5346 }
5347
5348 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5349                                   const struct ipw_supported_rates *src)
5350 {
5351         u8 i;
5352         for (i = 0; i < src->num_rates; i++)
5353                 dest->supported_rates[i] = src->supported_rates[i];
5354         dest->num_rates = src->num_rates;
5355 }
5356
5357 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5358  * mask should ever be used -- right now all callers to add the scan rates are
5359  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5360 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5361                                    u8 modulation, u32 rate_mask)
5362 {
5363         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5364             IEEE80211_BASIC_RATE_MASK : 0;
5365
5366         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5367                 rates->supported_rates[rates->num_rates++] =
5368                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5369
5370         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5371                 rates->supported_rates[rates->num_rates++] =
5372                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5373
5374         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5375                 rates->supported_rates[rates->num_rates++] = basic_mask |
5376                     IEEE80211_CCK_RATE_5MB;
5377
5378         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5379                 rates->supported_rates[rates->num_rates++] = basic_mask |
5380                     IEEE80211_CCK_RATE_11MB;
5381 }
5382
5383 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5384                                     u8 modulation, u32 rate_mask)
5385 {
5386         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5387             IEEE80211_BASIC_RATE_MASK : 0;
5388
5389         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5390                 rates->supported_rates[rates->num_rates++] = basic_mask |
5391                     IEEE80211_OFDM_RATE_6MB;
5392
5393         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5394                 rates->supported_rates[rates->num_rates++] =
5395                     IEEE80211_OFDM_RATE_9MB;
5396
5397         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5398                 rates->supported_rates[rates->num_rates++] = basic_mask |
5399                     IEEE80211_OFDM_RATE_12MB;
5400
5401         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5402                 rates->supported_rates[rates->num_rates++] =
5403                     IEEE80211_OFDM_RATE_18MB;
5404
5405         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5406                 rates->supported_rates[rates->num_rates++] = basic_mask |
5407                     IEEE80211_OFDM_RATE_24MB;
5408
5409         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5410                 rates->supported_rates[rates->num_rates++] =
5411                     IEEE80211_OFDM_RATE_36MB;
5412
5413         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5414                 rates->supported_rates[rates->num_rates++] =
5415                     IEEE80211_OFDM_RATE_48MB;
5416
5417         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5418                 rates->supported_rates[rates->num_rates++] =
5419                     IEEE80211_OFDM_RATE_54MB;
5420 }
5421
5422 struct ipw_network_match {
5423         struct ieee80211_network *network;
5424         struct ipw_supported_rates rates;
5425 };
5426
5427 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5428                                   struct ipw_network_match *match,
5429                                   struct ieee80211_network *network,
5430                                   int roaming)
5431 {
5432         struct ipw_supported_rates rates;
5433         DECLARE_MAC_BUF(mac);
5434         DECLARE_MAC_BUF(mac2);
5435
5436         /* Verify that this network's capability is compatible with the
5437          * current mode (AdHoc or Infrastructure) */
5438         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5439              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5440                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5441                                 "capability mismatch.\n",
5442                                 escape_essid(network->ssid, network->ssid_len),
5443                                 print_mac(mac, network->bssid));
5444                 return 0;
5445         }
5446
5447         /* If we do not have an ESSID for this AP, we can not associate with
5448          * it */
5449         if (network->flags & NETWORK_EMPTY_ESSID) {
5450                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5451                                 "because of hidden ESSID.\n",
5452                                 escape_essid(network->ssid, network->ssid_len),
5453                                 print_mac(mac, network->bssid));
5454                 return 0;
5455         }
5456
5457         if (unlikely(roaming)) {
5458                 /* If we are roaming, then ensure check if this is a valid
5459                  * network to try and roam to */
5460                 if ((network->ssid_len != match->network->ssid_len) ||
5461                     memcmp(network->ssid, match->network->ssid,
5462                            network->ssid_len)) {
5463                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5464                                         "because of non-network ESSID.\n",
5465                                         escape_essid(network->ssid,
5466                                                      network->ssid_len),
5467                                         print_mac(mac, network->bssid));
5468                         return 0;
5469                 }
5470         } else {
5471                 /* If an ESSID has been configured then compare the broadcast
5472                  * ESSID to ours */
5473                 if ((priv->config & CFG_STATIC_ESSID) &&
5474                     ((network->ssid_len != priv->essid_len) ||
5475                      memcmp(network->ssid, priv->essid,
5476                             min(network->ssid_len, priv->essid_len)))) {
5477                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5478
5479                         strncpy(escaped,
5480                                 escape_essid(network->ssid, network->ssid_len),
5481                                 sizeof(escaped));
5482                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5483                                         "because of ESSID mismatch: '%s'.\n",
5484                                         escaped, print_mac(mac, network->bssid),
5485                                         escape_essid(priv->essid,
5486                                                      priv->essid_len));
5487                         return 0;
5488                 }
5489         }
5490
5491         /* If the old network rate is better than this one, don't bother
5492          * testing everything else. */
5493
5494         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5495                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5496                                 "current network.\n",
5497                                 escape_essid(match->network->ssid,
5498                                              match->network->ssid_len));
5499                 return 0;
5500         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5501                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5502                                 "current network.\n",
5503                                 escape_essid(match->network->ssid,
5504                                              match->network->ssid_len));
5505                 return 0;
5506         }
5507
5508         /* Now go through and see if the requested network is valid... */
5509         if (priv->ieee->scan_age != 0 &&
5510             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5511                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5512                                 "because of age: %ums.\n",
5513                                 escape_essid(network->ssid, network->ssid_len),
5514                                 print_mac(mac, network->bssid),
5515                                 jiffies_to_msecs(jiffies -
5516                                                  network->last_scanned));
5517                 return 0;
5518         }
5519
5520         if ((priv->config & CFG_STATIC_CHANNEL) &&
5521             (network->channel != priv->channel)) {
5522                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5523                                 "because of channel mismatch: %d != %d.\n",
5524                                 escape_essid(network->ssid, network->ssid_len),
5525                                 print_mac(mac, network->bssid),
5526                                 network->channel, priv->channel);
5527                 return 0;
5528         }
5529
5530         /* Verify privacy compatability */
5531         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5532             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5533                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5534                                 "because of privacy mismatch: %s != %s.\n",
5535                                 escape_essid(network->ssid, network->ssid_len),
5536                                 print_mac(mac, network->bssid),
5537                                 priv->
5538                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5539                                 network->
5540                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5541                                 "off");
5542                 return 0;
5543         }
5544
5545         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5546                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5547                                 "because of the same BSSID match: %s"
5548                                 ".\n", escape_essid(network->ssid,
5549                                                     network->ssid_len),
5550                                 print_mac(mac, network->bssid),
5551                                 print_mac(mac2, priv->bssid));
5552                 return 0;
5553         }
5554
5555         /* Filter out any incompatible freq / mode combinations */
5556         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5557                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5558                                 "because of invalid frequency/mode "
5559                                 "combination.\n",
5560                                 escape_essid(network->ssid, network->ssid_len),
5561                                 print_mac(mac, network->bssid));
5562                 return 0;
5563         }
5564
5565         /* Ensure that the rates supported by the driver are compatible with
5566          * this AP, including verification of basic rates (mandatory) */
5567         if (!ipw_compatible_rates(priv, network, &rates)) {
5568                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5569                                 "because configured rate mask excludes "
5570                                 "AP mandatory rate.\n",
5571                                 escape_essid(network->ssid, network->ssid_len),
5572                                 print_mac(mac, network->bssid));
5573                 return 0;
5574         }
5575
5576         if (rates.num_rates == 0) {
5577                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5578                                 "because of no compatible rates.\n",
5579                                 escape_essid(network->ssid, network->ssid_len),
5580                                 print_mac(mac, network->bssid));
5581                 return 0;
5582         }
5583
5584         /* TODO: Perform any further minimal comparititive tests.  We do not
5585          * want to put too much policy logic here; intelligent scan selection
5586          * should occur within a generic IEEE 802.11 user space tool.  */
5587
5588         /* Set up 'new' AP to this network */
5589         ipw_copy_rates(&match->rates, &rates);
5590         match->network = network;
5591         IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5592                         escape_essid(network->ssid, network->ssid_len),
5593                         print_mac(mac, network->bssid));
5594
5595         return 1;
5596 }
5597
5598 static void ipw_merge_adhoc_network(struct work_struct *work)
5599 {
5600         struct ipw_priv *priv =
5601                 container_of(work, struct ipw_priv, merge_networks);
5602         struct ieee80211_network *network = NULL;
5603         struct ipw_network_match match = {
5604                 .network = priv->assoc_network
5605         };
5606
5607         if ((priv->status & STATUS_ASSOCIATED) &&
5608             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5609                 /* First pass through ROAM process -- look for a better
5610                  * network */
5611                 unsigned long flags;
5612
5613                 spin_lock_irqsave(&priv->ieee->lock, flags);
5614                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5615                         if (network != priv->assoc_network)
5616                                 ipw_find_adhoc_network(priv, &match, network,
5617                                                        1);
5618                 }
5619                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5620
5621                 if (match.network == priv->assoc_network) {
5622                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5623                                         "merge to.\n");
5624                         return;
5625                 }
5626
5627                 mutex_lock(&priv->mutex);
5628                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5629                         IPW_DEBUG_MERGE("remove network %s\n",
5630                                         escape_essid(priv->essid,
5631                                                      priv->essid_len));
5632                         ipw_remove_current_network(priv);
5633                 }
5634
5635                 ipw_disassociate(priv);
5636                 priv->assoc_network = match.network;
5637                 mutex_unlock(&priv->mutex);
5638                 return;
5639         }
5640 }
5641
5642 static int ipw_best_network(struct ipw_priv *priv,
5643                             struct ipw_network_match *match,
5644                             struct ieee80211_network *network, int roaming)
5645 {
5646         struct ipw_supported_rates rates;
5647         DECLARE_MAC_BUF(mac);
5648
5649         /* Verify that this network's capability is compatible with the
5650          * current mode (AdHoc or Infrastructure) */
5651         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5652              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5653             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5654              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5655                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5656                                 "capability mismatch.\n",
5657                                 escape_essid(network->ssid, network->ssid_len),
5658                                 print_mac(mac, network->bssid));
5659                 return 0;
5660         }
5661
5662         /* If we do not have an ESSID for this AP, we can not associate with
5663          * it */
5664         if (network->flags & NETWORK_EMPTY_ESSID) {
5665                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5666                                 "because of hidden ESSID.\n",
5667                                 escape_essid(network->ssid, network->ssid_len),
5668                                 print_mac(mac, network->bssid));
5669                 return 0;
5670         }
5671
5672         if (unlikely(roaming)) {
5673                 /* If we are roaming, then ensure check if this is a valid
5674                  * network to try and roam to */
5675                 if ((network->ssid_len != match->network->ssid_len) ||
5676                     memcmp(network->ssid, match->network->ssid,
5677                            network->ssid_len)) {
5678                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5679                                         "because of non-network ESSID.\n",
5680                                         escape_essid(network->ssid,
5681                                                      network->ssid_len),
5682                                         print_mac(mac, network->bssid));
5683                         return 0;
5684                 }
5685         } else {
5686                 /* If an ESSID has been configured then compare the broadcast
5687                  * ESSID to ours */
5688                 if ((priv->config & CFG_STATIC_ESSID) &&
5689                     ((network->ssid_len != priv->essid_len) ||
5690                      memcmp(network->ssid, priv->essid,
5691                             min(network->ssid_len, priv->essid_len)))) {
5692                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693                         strncpy(escaped,
5694                                 escape_essid(network->ssid, network->ssid_len),
5695                                 sizeof(escaped));
5696                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5697                                         "because of ESSID mismatch: '%s'.\n",
5698                                         escaped, print_mac(mac, network->bssid),
5699                                         escape_essid(priv->essid,
5700                                                      priv->essid_len));
5701                         return 0;
5702                 }
5703         }
5704
5705         /* If the old network rate is better than this one, don't bother
5706          * testing everything else. */
5707         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5708                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5709                 strncpy(escaped,
5710                         escape_essid(network->ssid, network->ssid_len),
5711                         sizeof(escaped));
5712                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5713                                 "'%s (%s)' has a stronger signal.\n",
5714                                 escaped, print_mac(mac, network->bssid),
5715                                 escape_essid(match->network->ssid,
5716                                              match->network->ssid_len),
5717                                 print_mac(mac, match->network->bssid));
5718                 return 0;
5719         }
5720
5721         /* If this network has already had an association attempt within the
5722          * last 3 seconds, do not try and associate again... */
5723         if (network->last_associate &&
5724             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5725                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5726                                 "because of storming (%ums since last "
5727                                 "assoc attempt).\n",
5728                                 escape_essid(network->ssid, network->ssid_len),
5729                                 print_mac(mac, network->bssid),
5730                                 jiffies_to_msecs(jiffies -
5731                                                  network->last_associate));
5732                 return 0;
5733         }
5734
5735         /* Now go through and see if the requested network is valid... */
5736         if (priv->ieee->scan_age != 0 &&
5737             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5739                                 "because of age: %ums.\n",
5740                                 escape_essid(network->ssid, network->ssid_len),
5741                                 print_mac(mac, network->bssid),
5742                                 jiffies_to_msecs(jiffies -
5743                                                  network->last_scanned));
5744                 return 0;
5745         }
5746
5747         if ((priv->config & CFG_STATIC_CHANNEL) &&
5748             (network->channel != priv->channel)) {
5749                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5750                                 "because of channel mismatch: %d != %d.\n",
5751                                 escape_essid(network->ssid, network->ssid_len),
5752                                 print_mac(mac, network->bssid),
5753                                 network->channel, priv->channel);
5754                 return 0;
5755         }
5756
5757         /* Verify privacy compatability */
5758         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5759             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5760                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5761                                 "because of privacy mismatch: %s != %s.\n",
5762                                 escape_essid(network->ssid, network->ssid_len),
5763                                 print_mac(mac, network->bssid),
5764                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5765                                 "off",
5766                                 network->capability &
5767                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5768                 return 0;
5769         }
5770
5771         if ((priv->config & CFG_STATIC_BSSID) &&
5772             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5773                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5774                                 "because of BSSID mismatch: %s.\n",
5775                                 escape_essid(network->ssid, network->ssid_len),
5776                                 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5777                 return 0;
5778         }
5779
5780         /* Filter out any incompatible freq / mode combinations */
5781         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5782                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5783                                 "because of invalid frequency/mode "
5784                                 "combination.\n",
5785                                 escape_essid(network->ssid, network->ssid_len),
5786                                 print_mac(mac, network->bssid));
5787                 return 0;
5788         }
5789
5790         /* Filter out invalid channel in current GEO */
5791         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5792                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5793                                 "because of invalid channel in current GEO\n",
5794                                 escape_essid(network->ssid, network->ssid_len),
5795                                 print_mac(mac, network->bssid));
5796                 return 0;
5797         }
5798
5799         /* Ensure that the rates supported by the driver are compatible with
5800          * this AP, including verification of basic rates (mandatory) */
5801         if (!ipw_compatible_rates(priv, network, &rates)) {
5802                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5803                                 "because configured rate mask excludes "
5804                                 "AP mandatory rate.\n",
5805                                 escape_essid(network->ssid, network->ssid_len),
5806                                 print_mac(mac, network->bssid));
5807                 return 0;
5808         }
5809
5810         if (rates.num_rates == 0) {
5811                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5812                                 "because of no compatible rates.\n",
5813                                 escape_essid(network->ssid, network->ssid_len),
5814                                 print_mac(mac, network->bssid));
5815                 return 0;
5816         }
5817
5818         /* TODO: Perform any further minimal comparititive tests.  We do not
5819          * want to put too much policy logic here; intelligent scan selection
5820          * should occur within a generic IEEE 802.11 user space tool.  */
5821
5822         /* Set up 'new' AP to this network */
5823         ipw_copy_rates(&match->rates, &rates);
5824         match->network = network;
5825
5826         IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5827                         escape_essid(network->ssid, network->ssid_len),
5828                         print_mac(mac, network->bssid));
5829
5830         return 1;
5831 }
5832
5833 static void ipw_adhoc_create(struct ipw_priv *priv,
5834                              struct ieee80211_network *network)
5835 {
5836         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5837         int i;
5838
5839         /*
5840          * For the purposes of scanning, we can set our wireless mode
5841          * to trigger scans across combinations of bands, but when it
5842          * comes to creating a new ad-hoc network, we have tell the FW
5843          * exactly which band to use.
5844          *
5845          * We also have the possibility of an invalid channel for the
5846          * chossen band.  Attempting to create a new ad-hoc network
5847          * with an invalid channel for wireless mode will trigger a
5848          * FW fatal error.
5849          *
5850          */
5851         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5852         case IEEE80211_52GHZ_BAND:
5853                 network->mode = IEEE_A;
5854                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5855                 BUG_ON(i == -1);
5856                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5857                         IPW_WARNING("Overriding invalid channel\n");
5858                         priv->channel = geo->a[0].channel;
5859                 }
5860                 break;
5861
5862         case IEEE80211_24GHZ_BAND:
5863                 if (priv->ieee->mode & IEEE_G)
5864                         network->mode = IEEE_G;
5865                 else
5866                         network->mode = IEEE_B;
5867                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5868                 BUG_ON(i == -1);
5869                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5870                         IPW_WARNING("Overriding invalid channel\n");
5871                         priv->channel = geo->bg[0].channel;
5872                 }
5873                 break;
5874
5875         default:
5876                 IPW_WARNING("Overriding invalid channel\n");
5877                 if (priv->ieee->mode & IEEE_A) {
5878                         network->mode = IEEE_A;
5879                         priv->channel = geo->a[0].channel;
5880                 } else if (priv->ieee->mode & IEEE_G) {
5881                         network->mode = IEEE_G;
5882                         priv->channel = geo->bg[0].channel;
5883                 } else {
5884                         network->mode = IEEE_B;
5885                         priv->channel = geo->bg[0].channel;
5886                 }
5887                 break;
5888         }
5889
5890         network->channel = priv->channel;
5891         priv->config |= CFG_ADHOC_PERSIST;
5892         ipw_create_bssid(priv, network->bssid);
5893         network->ssid_len = priv->essid_len;
5894         memcpy(network->ssid, priv->essid, priv->essid_len);
5895         memset(&network->stats, 0, sizeof(network->stats));
5896         network->capability = WLAN_CAPABILITY_IBSS;
5897         if (!(priv->config & CFG_PREAMBLE_LONG))
5898                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5899         if (priv->capability & CAP_PRIVACY_ON)
5900                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5901         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5902         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5903         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5904         memcpy(network->rates_ex,
5905                &priv->rates.supported_rates[network->rates_len],
5906                network->rates_ex_len);
5907         network->last_scanned = 0;
5908         network->flags = 0;
5909         network->last_associate = 0;
5910         network->time_stamp[0] = 0;
5911         network->time_stamp[1] = 0;
5912         network->beacon_interval = 100; /* Default */
5913         network->listen_interval = 10;  /* Default */
5914         network->atim_window = 0;       /* Default */
5915         network->wpa_ie_len = 0;
5916         network->rsn_ie_len = 0;
5917 }
5918
5919 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5920 {
5921         struct ipw_tgi_tx_key key;
5922
5923         if (!(priv->ieee->sec.flags & (1 << index)))
5924                 return;
5925
5926         key.key_id = index;
5927         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5928         key.security_type = type;
5929         key.station_index = 0;  /* always 0 for BSS */
5930         key.flags = 0;
5931         /* 0 for new key; previous value of counter (after fatal error) */
5932         key.tx_counter[0] = cpu_to_le32(0);
5933         key.tx_counter[1] = cpu_to_le32(0);
5934
5935         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5936 }
5937
5938 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5939 {
5940         struct ipw_wep_key key;
5941         int i;
5942
5943         key.cmd_id = DINO_CMD_WEP_KEY;
5944         key.seq_num = 0;
5945
5946         /* Note: AES keys cannot be set for multiple times.
5947          * Only set it at the first time. */
5948         for (i = 0; i < 4; i++) {
5949                 key.key_index = i | type;
5950                 if (!(priv->ieee->sec.flags & (1 << i))) {
5951                         key.key_size = 0;
5952                         continue;
5953                 }
5954
5955                 key.key_size = priv->ieee->sec.key_sizes[i];
5956                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5957
5958                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5959         }
5960 }
5961
5962 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5963 {
5964         if (priv->ieee->host_encrypt)
5965                 return;
5966
5967         switch (level) {
5968         case SEC_LEVEL_3:
5969                 priv->sys_config.disable_unicast_decryption = 0;
5970                 priv->ieee->host_decrypt = 0;
5971                 break;
5972         case SEC_LEVEL_2:
5973                 priv->sys_config.disable_unicast_decryption = 1;
5974                 priv->ieee->host_decrypt = 1;
5975                 break;
5976         case SEC_LEVEL_1:
5977                 priv->sys_config.disable_unicast_decryption = 0;
5978                 priv->ieee->host_decrypt = 0;
5979                 break;
5980         case SEC_LEVEL_0:
5981                 priv->sys_config.disable_unicast_decryption = 1;
5982                 break;
5983         default:
5984                 break;
5985         }
5986 }
5987
5988 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5989 {
5990         if (priv->ieee->host_encrypt)
5991                 return;
5992
5993         switch (level) {
5994         case SEC_LEVEL_3:
5995                 priv->sys_config.disable_multicast_decryption = 0;
5996                 break;
5997         case SEC_LEVEL_2:
5998                 priv->sys_config.disable_multicast_decryption = 1;
5999                 break;
6000         case SEC_LEVEL_1:
6001                 priv->sys_config.disable_multicast_decryption = 0;
6002                 break;
6003         case SEC_LEVEL_0:
6004                 priv->sys_config.disable_multicast_decryption = 1;
6005                 break;
6006         default:
6007                 break;
6008         }
6009 }
6010
6011 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6012 {
6013         switch (priv->ieee->sec.level) {
6014         case SEC_LEVEL_3:
6015                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6016                         ipw_send_tgi_tx_key(priv,
6017                                             DCT_FLAG_EXT_SECURITY_CCM,
6018                                             priv->ieee->sec.active_key);
6019
6020                 if (!priv->ieee->host_mc_decrypt)
6021                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6022                 break;
6023         case SEC_LEVEL_2:
6024                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6025                         ipw_send_tgi_tx_key(priv,
6026                                             DCT_FLAG_EXT_SECURITY_TKIP,
6027                                             priv->ieee->sec.active_key);
6028                 break;
6029         case SEC_LEVEL_1:
6030                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6031                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6032                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6033                 break;
6034         case SEC_LEVEL_0:
6035         default:
6036                 break;
6037         }
6038 }
6039
6040 static void ipw_adhoc_check(void *data)
6041 {
6042         struct ipw_priv *priv = data;
6043
6044         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6045             !(priv->config & CFG_ADHOC_PERSIST)) {
6046                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6047                           IPW_DL_STATE | IPW_DL_ASSOC,
6048                           "Missed beacon: %d - disassociate\n",
6049                           priv->missed_adhoc_beacons);
6050                 ipw_remove_current_network(priv);
6051                 ipw_disassociate(priv);
6052                 return;
6053         }
6054
6055         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6056                            le16_to_cpu(priv->assoc_request.beacon_interval));
6057 }
6058
6059 static void ipw_bg_adhoc_check(struct work_struct *work)
6060 {
6061         struct ipw_priv *priv =
6062                 container_of(work, struct ipw_priv, adhoc_check.work);
6063         mutex_lock(&priv->mutex);
6064         ipw_adhoc_check(priv);
6065         mutex_unlock(&priv->mutex);
6066 }
6067
6068 static void ipw_debug_config(struct ipw_priv *priv)
6069 {
6070         DECLARE_MAC_BUF(mac);
6071         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6072                        "[CFG 0x%08X]\n", priv->config);
6073         if (priv->config & CFG_STATIC_CHANNEL)
6074                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6075         else
6076                 IPW_DEBUG_INFO("Channel unlocked.\n");
6077         if (priv->config & CFG_STATIC_ESSID)
6078                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6079                                escape_essid(priv->essid, priv->essid_len));
6080         else
6081                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6082         if (priv->config & CFG_STATIC_BSSID)
6083                 IPW_DEBUG_INFO("BSSID locked to %s\n",
6084                                print_mac(mac, priv->bssid));
6085         else
6086                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6087         if (priv->capability & CAP_PRIVACY_ON)
6088                 IPW_DEBUG_INFO("PRIVACY on\n");
6089         else
6090                 IPW_DEBUG_INFO("PRIVACY off\n");
6091         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6092 }
6093
6094 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6095 {
6096         /* TODO: Verify that this works... */
6097         struct ipw_fixed_rate fr = {
6098                 .tx_rates = priv->rates_mask
6099         };
6100         u32 reg;
6101         u16 mask = 0;
6102
6103         /* Identify 'current FW band' and match it with the fixed
6104          * Tx rates */
6105
6106         switch (priv->ieee->freq_band) {
6107         case IEEE80211_52GHZ_BAND:      /* A only */
6108                 /* IEEE_A */
6109                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6110                         /* Invalid fixed rate mask */
6111                         IPW_DEBUG_WX
6112                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6113                         fr.tx_rates = 0;
6114                         break;
6115                 }
6116
6117                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6118                 break;
6119
6120         default:                /* 2.4Ghz or Mixed */
6121                 /* IEEE_B */
6122                 if (mode == IEEE_B) {
6123                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6124                                 /* Invalid fixed rate mask */
6125                                 IPW_DEBUG_WX
6126                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6127                                 fr.tx_rates = 0;
6128                         }
6129                         break;
6130                 }
6131
6132                 /* IEEE_G */
6133                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6134                                     IEEE80211_OFDM_RATES_MASK)) {
6135                         /* Invalid fixed rate mask */
6136                         IPW_DEBUG_WX
6137                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6138                         fr.tx_rates = 0;
6139                         break;
6140                 }
6141
6142                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6143                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6144                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6145                 }
6146
6147                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6148                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6149                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6150                 }
6151
6152                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6153                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6154                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6155                 }
6156
6157                 fr.tx_rates |= mask;
6158                 break;
6159         }
6160
6161         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6162         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6163 }
6164
6165 static void ipw_abort_scan(struct ipw_priv *priv)
6166 {
6167         int err;
6168
6169         if (priv->status & STATUS_SCAN_ABORTING) {
6170                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6171                 return;
6172         }
6173         priv->status |= STATUS_SCAN_ABORTING;
6174
6175         err = ipw_send_scan_abort(priv);
6176         if (err)
6177                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6178 }
6179
6180 static void ipw_add_scan_channels(struct ipw_priv *priv,
6181                                   struct ipw_scan_request_ext *scan,
6182                                   int scan_type)
6183 {
6184         int channel_index = 0;
6185         const struct ieee80211_geo *geo;
6186         int i;
6187
6188         geo = ieee80211_get_geo(priv->ieee);
6189
6190         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6191                 int start = channel_index;
6192                 for (i = 0; i < geo->a_channels; i++) {
6193                         if ((priv->status & STATUS_ASSOCIATED) &&
6194                             geo->a[i].channel == priv->channel)
6195                                 continue;
6196                         channel_index++;
6197                         scan->channels_list[channel_index] = geo->a[i].channel;
6198                         ipw_set_scan_type(scan, channel_index,
6199                                           geo->a[i].
6200                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6201                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6202                                           scan_type);
6203                 }
6204
6205                 if (start != channel_index) {
6206                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6207                             (channel_index - start);
6208                         channel_index++;
6209                 }
6210         }
6211
6212         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6213                 int start = channel_index;
6214                 if (priv->config & CFG_SPEED_SCAN) {
6215                         int index;
6216                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6217                                 /* nop out the list */
6218                                 [0] = 0
6219                         };
6220
6221                         u8 channel;
6222                         while (channel_index < IPW_SCAN_CHANNELS) {
6223                                 channel =
6224                                     priv->speed_scan[priv->speed_scan_pos];
6225                                 if (channel == 0) {
6226                                         priv->speed_scan_pos = 0;
6227                                         channel = priv->speed_scan[0];
6228                                 }
6229                                 if ((priv->status & STATUS_ASSOCIATED) &&
6230                                     channel == priv->channel) {
6231                                         priv->speed_scan_pos++;
6232                                         continue;
6233                                 }
6234
6235                                 /* If this channel has already been
6236                                  * added in scan, break from loop
6237                                  * and this will be the first channel
6238                                  * in the next scan.
6239                                  */
6240                                 if (channels[channel - 1] != 0)
6241                                         break;
6242
6243                                 channels[channel - 1] = 1;
6244                                 priv->speed_scan_pos++;
6245                                 channel_index++;
6246                                 scan->channels_list[channel_index] = channel;
6247                                 index =
6248                                     ieee80211_channel_to_index(priv->ieee, channel);
6249                                 ipw_set_scan_type(scan, channel_index,
6250                                                   geo->bg[index].
6251                                                   flags &
6252                                                   IEEE80211_CH_PASSIVE_ONLY ?
6253                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6254                                                   : scan_type);
6255                         }
6256                 } else {
6257                         for (i = 0; i < geo->bg_channels; i++) {
6258                                 if ((priv->status & STATUS_ASSOCIATED) &&
6259                                     geo->bg[i].channel == priv->channel)
6260                                         continue;
6261                                 channel_index++;
6262                                 scan->channels_list[channel_index] =
6263                                     geo->bg[i].channel;
6264                                 ipw_set_scan_type(scan, channel_index,
6265                                                   geo->bg[i].
6266                                                   flags &
6267                                                   IEEE80211_CH_PASSIVE_ONLY ?
6268                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6269                                                   : scan_type);
6270                         }
6271                 }
6272
6273                 if (start != channel_index) {
6274                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6275                             (channel_index - start);
6276                 }
6277         }
6278 }
6279
6280 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6281 {
6282         struct ipw_scan_request_ext scan;
6283         int err = 0, scan_type;
6284
6285         if (!(priv->status & STATUS_INIT) ||
6286             (priv->status & STATUS_EXIT_PENDING))
6287                 return 0;
6288
6289         mutex_lock(&priv->mutex);
6290
6291         if (direct && (priv->direct_scan_ssid_len == 0)) {
6292                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6293                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6294                 goto done;
6295         }
6296
6297         if (priv->status & STATUS_SCANNING) {
6298                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6299                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6300                                         STATUS_SCAN_PENDING;
6301                 goto done;
6302         }
6303
6304         if (!(priv->status & STATUS_SCAN_FORCED) &&
6305             priv->status & STATUS_SCAN_ABORTING) {
6306                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6307                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6308                                         STATUS_SCAN_PENDING;
6309                 goto done;
6310         }
6311
6312         if (priv->status & STATUS_RF_KILL_MASK) {
6313                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6314                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6315                                         STATUS_SCAN_PENDING;
6316                 goto done;
6317         }
6318
6319         memset(&scan, 0, sizeof(scan));
6320         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6321
6322         if (type == IW_SCAN_TYPE_PASSIVE) {
6323                 IPW_DEBUG_WX("use passive scanning\n");
6324                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6325                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6326                         cpu_to_le16(120);
6327                 ipw_add_scan_channels(priv, &scan, scan_type);
6328                 goto send_request;
6329         }
6330
6331         /* Use active scan by default. */
6332         if (priv->config & CFG_SPEED_SCAN)
6333                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6334                         cpu_to_le16(30);
6335         else
6336                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6337                         cpu_to_le16(20);
6338
6339         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6340                 cpu_to_le16(20);
6341
6342         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6343         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6344
6345 #ifdef CONFIG_IPW2200_MONITOR
6346         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6347                 u8 channel;
6348                 u8 band = 0;
6349
6350                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6351                 case IEEE80211_52GHZ_BAND:
6352                         band = (u8) (IPW_A_MODE << 6) | 1;
6353                         channel = priv->channel;
6354                         break;
6355
6356                 case IEEE80211_24GHZ_BAND:
6357                         band = (u8) (IPW_B_MODE << 6) | 1;
6358                         channel = priv->channel;
6359                         break;
6360
6361                 default:
6362                         band = (u8) (IPW_B_MODE << 6) | 1;
6363                         channel = 9;
6364                         break;
6365                 }
6366
6367                 scan.channels_list[0] = band;
6368                 scan.channels_list[1] = channel;
6369                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6370
6371                 /* NOTE:  The card will sit on this channel for this time
6372                  * period.  Scan aborts are timing sensitive and frequently
6373                  * result in firmware restarts.  As such, it is best to
6374                  * set a small dwell_time here and just keep re-issuing
6375                  * scans.  Otherwise fast channel hopping will not actually
6376                  * hop channels.
6377                  *
6378                  * TODO: Move SPEED SCAN support to all modes and bands */
6379                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6380                         cpu_to_le16(2000);
6381         } else {
6382 #endif                          /* CONFIG_IPW2200_MONITOR */
6383                 /* Honor direct scans first, otherwise if we are roaming make
6384                  * this a direct scan for the current network.  Finally,
6385                  * ensure that every other scan is a fast channel hop scan */
6386                 if (direct) {
6387                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6388                                             priv->direct_scan_ssid_len);
6389                         if (err) {
6390                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6391                                              "failed\n");
6392                                 goto done;
6393                         }
6394
6395                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6396                 } else if ((priv->status & STATUS_ROAMING)
6397                            || (!(priv->status & STATUS_ASSOCIATED)
6398                                && (priv->config & CFG_STATIC_ESSID)
6399                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6400                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6401                         if (err) {
6402                                 IPW_DEBUG_HC("Attempt to send SSID command "
6403                                              "failed.\n");
6404                                 goto done;
6405                         }
6406
6407                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6408                 } else
6409                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6410
6411                 ipw_add_scan_channels(priv, &scan, scan_type);
6412 #ifdef CONFIG_IPW2200_MONITOR
6413         }
6414 #endif
6415
6416 send_request:
6417         err = ipw_send_scan_request_ext(priv, &scan);
6418         if (err) {
6419                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6420                 goto done;
6421         }
6422
6423         priv->status |= STATUS_SCANNING;
6424         if (direct) {
6425                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6426                 priv->direct_scan_ssid_len = 0;
6427         } else
6428                 priv->status &= ~STATUS_SCAN_PENDING;
6429
6430         queue_delayed_work(priv->workqueue, &priv->scan_check,
6431                            IPW_SCAN_CHECK_WATCHDOG);
6432 done:
6433         mutex_unlock(&priv->mutex);
6434         return err;
6435 }
6436
6437 static void ipw_request_passive_scan(struct work_struct *work)
6438 {
6439         struct ipw_priv *priv =
6440                 container_of(work, struct ipw_priv, request_passive_scan.work);
6441         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6442 }
6443
6444 static void ipw_request_scan(struct work_struct *work)
6445 {
6446         struct ipw_priv *priv =
6447                 container_of(work, struct ipw_priv, request_scan.work);
6448         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6449 }
6450
6451 static void ipw_request_direct_scan(struct work_struct *work)
6452 {
6453         struct ipw_priv *priv =
6454                 container_of(work, struct ipw_priv, request_direct_scan.work);
6455         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6456 }
6457
6458 static void ipw_bg_abort_scan(struct work_struct *work)
6459 {
6460         struct ipw_priv *priv =
6461                 container_of(work, struct ipw_priv, abort_scan);
6462         mutex_lock(&priv->mutex);
6463         ipw_abort_scan(priv);
6464         mutex_unlock(&priv->mutex);
6465 }
6466
6467 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6468 {
6469         /* This is called when wpa_supplicant loads and closes the driver
6470          * interface. */
6471         priv->ieee->wpa_enabled = value;
6472         return 0;
6473 }
6474
6475 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6476 {
6477         struct ieee80211_device *ieee = priv->ieee;
6478         struct ieee80211_security sec = {
6479                 .flags = SEC_AUTH_MODE,
6480         };
6481         int ret = 0;
6482
6483         if (value & IW_AUTH_ALG_SHARED_KEY) {
6484                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6485                 ieee->open_wep = 0;
6486         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6487                 sec.auth_mode = WLAN_AUTH_OPEN;
6488                 ieee->open_wep = 1;
6489         } else if (value & IW_AUTH_ALG_LEAP) {
6490                 sec.auth_mode = WLAN_AUTH_LEAP;
6491                 ieee->open_wep = 1;
6492         } else
6493                 return -EINVAL;
6494
6495         if (ieee->set_security)
6496                 ieee->set_security(ieee->dev, &sec);
6497         else
6498                 ret = -EOPNOTSUPP;
6499
6500         return ret;
6501 }
6502
6503 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6504                                 int wpa_ie_len)
6505 {
6506         /* make sure WPA is enabled */
6507         ipw_wpa_enable(priv, 1);
6508 }
6509
6510 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6511                             char *capabilities, int length)
6512 {
6513         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6514
6515         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6516                                 capabilities);
6517 }
6518
6519 /*
6520  * WE-18 support
6521  */
6522
6523 /* SIOCSIWGENIE */
6524 static int ipw_wx_set_genie(struct net_device *dev,
6525                             struct iw_request_info *info,
6526                             union iwreq_data *wrqu, char *extra)
6527 {
6528         struct ipw_priv *priv = ieee80211_priv(dev);
6529         struct ieee80211_device *ieee = priv->ieee;
6530         u8 *buf;
6531         int err = 0;
6532
6533         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6534             (wrqu->data.length && extra == NULL))
6535                 return -EINVAL;
6536
6537         if (wrqu->data.length) {
6538                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6539                 if (buf == NULL) {
6540                         err = -ENOMEM;
6541                         goto out;
6542                 }
6543
6544                 memcpy(buf, extra, wrqu->data.length);
6545                 kfree(ieee->wpa_ie);
6546                 ieee->wpa_ie = buf;
6547                 ieee->wpa_ie_len = wrqu->data.length;
6548         } else {
6549                 kfree(ieee->wpa_ie);
6550                 ieee->wpa_ie = NULL;
6551                 ieee->wpa_ie_len = 0;
6552         }
6553
6554         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6555       out:
6556         return err;
6557 }
6558
6559 /* SIOCGIWGENIE */
6560 static int ipw_wx_get_genie(struct net_device *dev,
6561                             struct iw_request_info *info,
6562                             union iwreq_data *wrqu, char *extra)
6563 {
6564         struct ipw_priv *priv = ieee80211_priv(dev);
6565         struct ieee80211_device *ieee = priv->ieee;
6566         int err = 0;
6567
6568         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6569                 wrqu->data.length = 0;
6570                 goto out;
6571         }
6572
6573         if (wrqu->data.length < ieee->wpa_ie_len) {
6574                 err = -E2BIG;
6575                 goto out;
6576         }
6577
6578         wrqu->data.length = ieee->wpa_ie_len;
6579         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6580
6581       out:
6582         return err;
6583 }
6584
6585 static int wext_cipher2level(int cipher)
6586 {
6587         switch (cipher) {
6588         case IW_AUTH_CIPHER_NONE:
6589                 return SEC_LEVEL_0;
6590         case IW_AUTH_CIPHER_WEP40:
6591         case IW_AUTH_CIPHER_WEP104:
6592                 return SEC_LEVEL_1;
6593         case IW_AUTH_CIPHER_TKIP:
6594                 return SEC_LEVEL_2;
6595         case IW_AUTH_CIPHER_CCMP:
6596                 return SEC_LEVEL_3;
6597         default:
6598                 return -1;
6599         }
6600 }
6601
6602 /* SIOCSIWAUTH */
6603 static int ipw_wx_set_auth(struct net_device *dev,
6604                            struct iw_request_info *info,
6605                            union iwreq_data *wrqu, char *extra)
6606 {
6607         struct ipw_priv *priv = ieee80211_priv(dev);
6608         struct ieee80211_device *ieee = priv->ieee;
6609         struct iw_param *param = &wrqu->param;
6610         struct ieee80211_crypt_data *crypt;
6611         unsigned long flags;
6612         int ret = 0;
6613
6614         switch (param->flags & IW_AUTH_INDEX) {
6615         case IW_AUTH_WPA_VERSION:
6616                 break;
6617         case IW_AUTH_CIPHER_PAIRWISE:
6618                 ipw_set_hw_decrypt_unicast(priv,
6619                                            wext_cipher2level(param->value));
6620                 break;
6621         case IW_AUTH_CIPHER_GROUP:
6622                 ipw_set_hw_decrypt_multicast(priv,
6623                                              wext_cipher2level(param->value));
6624                 break;
6625         case IW_AUTH_KEY_MGMT:
6626                 /*
6627                  * ipw2200 does not use these parameters
6628                  */
6629                 break;
6630
6631         case IW_AUTH_TKIP_COUNTERMEASURES:
6632                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6633                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6634                         break;
6635
6636                 flags = crypt->ops->get_flags(crypt->priv);
6637
6638                 if (param->value)
6639                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6640                 else
6641                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6642
6643                 crypt->ops->set_flags(flags, crypt->priv);
6644
6645                 break;
6646
6647         case IW_AUTH_DROP_UNENCRYPTED:{
6648                         /* HACK:
6649                          *
6650                          * wpa_supplicant calls set_wpa_enabled when the driver
6651                          * is loaded and unloaded, regardless of if WPA is being
6652                          * used.  No other calls are made which can be used to
6653                          * determine if encryption will be used or not prior to
6654                          * association being expected.  If encryption is not being
6655                          * used, drop_unencrypted is set to false, else true -- we
6656                          * can use this to determine if the CAP_PRIVACY_ON bit should
6657                          * be set.
6658                          */
6659                         struct ieee80211_security sec = {
6660                                 .flags = SEC_ENABLED,
6661                                 .enabled = param->value,
6662                         };
6663                         priv->ieee->drop_unencrypted = param->value;
6664                         /* We only change SEC_LEVEL for open mode. Others
6665                          * are set by ipw_wpa_set_encryption.
6666                          */
6667                         if (!param->value) {
6668                                 sec.flags |= SEC_LEVEL;
6669                                 sec.level = SEC_LEVEL_0;
6670                         } else {
6671                                 sec.flags |= SEC_LEVEL;
6672                                 sec.level = SEC_LEVEL_1;
6673                         }
6674                         if (priv->ieee->set_security)
6675                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6676                         break;
6677                 }
6678
6679         case IW_AUTH_80211_AUTH_ALG:
6680                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6681                 break;
6682
6683         case IW_AUTH_WPA_ENABLED:
6684                 ret = ipw_wpa_enable(priv, param->value);
6685                 ipw_disassociate(priv);
6686                 break;
6687
6688         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6689                 ieee->ieee802_1x = param->value;
6690                 break;
6691
6692         case IW_AUTH_PRIVACY_INVOKED:
6693                 ieee->privacy_invoked = param->value;
6694                 break;
6695
6696         default:
6697                 return -EOPNOTSUPP;
6698         }
6699         return ret;
6700 }
6701
6702 /* SIOCGIWAUTH */
6703 static int ipw_wx_get_auth(struct net_device *dev,
6704                            struct iw_request_info *info,
6705                            union iwreq_data *wrqu, char *extra)
6706 {
6707         struct ipw_priv *priv = ieee80211_priv(dev);
6708         struct ieee80211_device *ieee = priv->ieee;
6709         struct ieee80211_crypt_data *crypt;
6710         struct iw_param *param = &wrqu->param;
6711         int ret = 0;
6712
6713         switch (param->flags & IW_AUTH_INDEX) {
6714         case IW_AUTH_WPA_VERSION:
6715         case IW_AUTH_CIPHER_PAIRWISE:
6716         case IW_AUTH_CIPHER_GROUP:
6717         case IW_AUTH_KEY_MGMT:
6718                 /*
6719                  * wpa_supplicant will control these internally
6720                  */
6721                 ret = -EOPNOTSUPP;
6722                 break;
6723
6724         case IW_AUTH_TKIP_COUNTERMEASURES:
6725                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6726                 if (!crypt || !crypt->ops->get_flags)
6727                         break;
6728
6729                 param->value = (crypt->ops->get_flags(crypt->priv) &
6730                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6731
6732                 break;
6733
6734         case IW_AUTH_DROP_UNENCRYPTED:
6735                 param->value = ieee->drop_unencrypted;
6736                 break;
6737
6738         case IW_AUTH_80211_AUTH_ALG:
6739                 param->value = ieee->sec.auth_mode;
6740                 break;
6741
6742         case IW_AUTH_WPA_ENABLED:
6743                 param->value = ieee->wpa_enabled;
6744                 break;
6745
6746         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6747                 param->value = ieee->ieee802_1x;
6748                 break;
6749
6750         case IW_AUTH_ROAMING_CONTROL:
6751         case IW_AUTH_PRIVACY_INVOKED:
6752                 param->value = ieee->privacy_invoked;
6753                 break;
6754
6755         default:
6756                 return -EOPNOTSUPP;
6757         }
6758         return 0;
6759 }
6760
6761 /* SIOCSIWENCODEEXT */
6762 static int ipw_wx_set_encodeext(struct net_device *dev,
6763                                 struct iw_request_info *info,
6764                                 union iwreq_data *wrqu, char *extra)
6765 {
6766         struct ipw_priv *priv = ieee80211_priv(dev);
6767         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6768
6769         if (hwcrypto) {
6770                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6771                         /* IPW HW can't build TKIP MIC,
6772                            host decryption still needed */
6773                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6774                                 priv->ieee->host_mc_decrypt = 1;
6775                         else {
6776                                 priv->ieee->host_encrypt = 0;
6777                                 priv->ieee->host_encrypt_msdu = 1;
6778                                 priv->ieee->host_decrypt = 1;
6779                         }
6780                 } else {
6781                         priv->ieee->host_encrypt = 0;
6782                         priv->ieee->host_encrypt_msdu = 0;
6783                         priv->ieee->host_decrypt = 0;
6784                         priv->ieee->host_mc_decrypt = 0;
6785                 }
6786         }
6787
6788         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6789 }
6790
6791 /* SIOCGIWENCODEEXT */
6792 static int ipw_wx_get_encodeext(struct net_device *dev,
6793                                 struct iw_request_info *info,
6794                                 union iwreq_data *wrqu, char *extra)
6795 {
6796         struct ipw_priv *priv = ieee80211_priv(dev);
6797         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6798 }
6799
6800 /* SIOCSIWMLME */
6801 static int ipw_wx_set_mlme(struct net_device *dev,
6802                            struct iw_request_info *info,
6803                            union iwreq_data *wrqu, char *extra)
6804 {
6805         struct ipw_priv *priv = ieee80211_priv(dev);
6806         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6807         __le16 reason;
6808
6809         reason = cpu_to_le16(mlme->reason_code);
6810
6811         switch (mlme->cmd) {
6812         case IW_MLME_DEAUTH:
6813                 /* silently ignore */
6814                 break;
6815
6816         case IW_MLME_DISASSOC:
6817                 ipw_disassociate(priv);
6818                 break;
6819
6820         default:
6821                 return -EOPNOTSUPP;
6822         }
6823         return 0;
6824 }
6825
6826 #ifdef CONFIG_IPW2200_QOS
6827
6828 /* QoS */
6829 /*
6830 * get the modulation type of the current network or
6831 * the card current mode
6832 */
6833 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6834 {
6835         u8 mode = 0;
6836
6837         if (priv->status & STATUS_ASSOCIATED) {
6838                 unsigned long flags;
6839
6840                 spin_lock_irqsave(&priv->ieee->lock, flags);
6841                 mode = priv->assoc_network->mode;
6842                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6843         } else {
6844                 mode = priv->ieee->mode;
6845         }
6846         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6847         return mode;
6848 }
6849
6850 /*
6851 * Handle management frame beacon and probe response
6852 */
6853 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6854                                          int active_network,
6855                                          struct ieee80211_network *network)
6856 {
6857         u32 size = sizeof(struct ieee80211_qos_parameters);
6858
6859         if (network->capability & WLAN_CAPABILITY_IBSS)
6860                 network->qos_data.active = network->qos_data.supported;
6861
6862         if (network->flags & NETWORK_HAS_QOS_MASK) {
6863                 if (active_network &&
6864                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6865                         network->qos_data.active = network->qos_data.supported;
6866
6867                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6868                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6869                     (network->qos_data.old_param_count !=
6870                      network->qos_data.param_count)) {
6871                         network->qos_data.old_param_count =
6872                             network->qos_data.param_count;
6873                         schedule_work(&priv->qos_activate);
6874                         IPW_DEBUG_QOS("QoS parameters change call "
6875                                       "qos_activate\n");
6876                 }
6877         } else {
6878                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6879                         memcpy(&network->qos_data.parameters,
6880                                &def_parameters_CCK, size);
6881                 else
6882                         memcpy(&network->qos_data.parameters,
6883                                &def_parameters_OFDM, size);
6884
6885                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6886                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6887                         schedule_work(&priv->qos_activate);
6888                 }
6889
6890                 network->qos_data.active = 0;
6891                 network->qos_data.supported = 0;
6892         }
6893         if ((priv->status & STATUS_ASSOCIATED) &&
6894             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6895                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6896                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6897                             !(network->flags & NETWORK_EMPTY_ESSID))
6898                                 if ((network->ssid_len ==
6899                                      priv->assoc_network->ssid_len) &&
6900                                     !memcmp(network->ssid,
6901                                             priv->assoc_network->ssid,
6902                                             network->ssid_len)) {
6903                                         queue_work(priv->workqueue,
6904                                                    &priv->merge_networks);
6905                                 }
6906         }
6907
6908         return 0;
6909 }
6910
6911 /*
6912 * This function set up the firmware to support QoS. It sends
6913 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6914 */
6915 static int ipw_qos_activate(struct ipw_priv *priv,
6916                             struct ieee80211_qos_data *qos_network_data)
6917 {
6918         int err;
6919         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6920         struct ieee80211_qos_parameters *active_one = NULL;
6921         u32 size = sizeof(struct ieee80211_qos_parameters);
6922         u32 burst_duration;
6923         int i;
6924         u8 type;
6925
6926         type = ipw_qos_current_mode(priv);
6927
6928         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6929         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6930         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6931         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6932
6933         if (qos_network_data == NULL) {
6934                 if (type == IEEE_B) {
6935                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6936                         active_one = &def_parameters_CCK;
6937                 } else
6938                         active_one = &def_parameters_OFDM;
6939
6940                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941                 burst_duration = ipw_qos_get_burst_duration(priv);
6942                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6943                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6944                             cpu_to_le16(burst_duration);
6945         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6946                 if (type == IEEE_B) {
6947                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6948                                       type);
6949                         if (priv->qos_data.qos_enable == 0)
6950                                 active_one = &def_parameters_CCK;
6951                         else
6952                                 active_one = priv->qos_data.def_qos_parm_CCK;
6953                 } else {
6954                         if (priv->qos_data.qos_enable == 0)
6955                                 active_one = &def_parameters_OFDM;
6956                         else
6957                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6958                 }
6959                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6960         } else {
6961                 unsigned long flags;
6962                 int active;
6963
6964                 spin_lock_irqsave(&priv->ieee->lock, flags);
6965                 active_one = &(qos_network_data->parameters);
6966                 qos_network_data->old_param_count =
6967                     qos_network_data->param_count;
6968                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6969                 active = qos_network_data->supported;
6970                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6971
6972                 if (active == 0) {
6973                         burst_duration = ipw_qos_get_burst_duration(priv);
6974                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6975                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6976                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6977                 }
6978         }
6979
6980         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6981         err = ipw_send_qos_params_command(priv,
6982                                           (struct ieee80211_qos_parameters *)
6983                                           &(qos_parameters[0]));
6984         if (err)
6985                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6986
6987         return err;
6988 }
6989
6990 /*
6991 * send IPW_CMD_WME_INFO to the firmware
6992 */
6993 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6994 {
6995         int ret = 0;
6996         struct ieee80211_qos_information_element qos_info;
6997
6998         if (priv == NULL)
6999                 return -1;
7000
7001         qos_info.elementID = QOS_ELEMENT_ID;
7002         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7003
7004         qos_info.version = QOS_VERSION_1;
7005         qos_info.ac_info = 0;
7006
7007         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7008         qos_info.qui_type = QOS_OUI_TYPE;
7009         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7010
7011         ret = ipw_send_qos_info_command(priv, &qos_info);
7012         if (ret != 0) {
7013                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7014         }
7015         return ret;
7016 }
7017
7018 /*
7019 * Set the QoS parameter with the association request structure
7020 */
7021 static int ipw_qos_association(struct ipw_priv *priv,
7022                                struct ieee80211_network *network)
7023 {
7024         int err = 0;
7025         struct ieee80211_qos_data *qos_data = NULL;
7026         struct ieee80211_qos_data ibss_data = {
7027                 .supported = 1,
7028                 .active = 1,
7029         };
7030
7031         switch (priv->ieee->iw_mode) {
7032         case IW_MODE_ADHOC:
7033                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7034
7035                 qos_data = &ibss_data;
7036                 break;
7037
7038         case IW_MODE_INFRA:
7039                 qos_data = &network->qos_data;
7040                 break;
7041
7042         default:
7043                 BUG();
7044                 break;
7045         }
7046
7047         err = ipw_qos_activate(priv, qos_data);
7048         if (err) {
7049                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7050                 return err;
7051         }
7052
7053         if (priv->qos_data.qos_enable && qos_data->supported) {
7054                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7055                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7056                 return ipw_qos_set_info_element(priv);
7057         }
7058
7059         return 0;
7060 }
7061
7062 /*
7063 * handling the beaconing responses. if we get different QoS setting
7064 * off the network from the associated setting, adjust the QoS
7065 * setting
7066 */
7067 static int ipw_qos_association_resp(struct ipw_priv *priv,
7068                                     struct ieee80211_network *network)
7069 {
7070         int ret = 0;
7071         unsigned long flags;
7072         u32 size = sizeof(struct ieee80211_qos_parameters);
7073         int set_qos_param = 0;
7074
7075         if ((priv == NULL) || (network == NULL) ||
7076             (priv->assoc_network == NULL))
7077                 return ret;
7078
7079         if (!(priv->status & STATUS_ASSOCIATED))
7080                 return ret;
7081
7082         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7083                 return ret;
7084
7085         spin_lock_irqsave(&priv->ieee->lock, flags);
7086         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7087                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7088                        sizeof(struct ieee80211_qos_data));
7089                 priv->assoc_network->qos_data.active = 1;
7090                 if ((network->qos_data.old_param_count !=
7091                      network->qos_data.param_count)) {
7092                         set_qos_param = 1;
7093                         network->qos_data.old_param_count =
7094                             network->qos_data.param_count;
7095                 }
7096
7097         } else {
7098                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7099                         memcpy(&priv->assoc_network->qos_data.parameters,
7100                                &def_parameters_CCK, size);
7101                 else
7102                         memcpy(&priv->assoc_network->qos_data.parameters,
7103                                &def_parameters_OFDM, size);
7104                 priv->assoc_network->qos_data.active = 0;
7105                 priv->assoc_network->qos_data.supported = 0;
7106                 set_qos_param = 1;
7107         }
7108
7109         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7110
7111         if (set_qos_param == 1)
7112                 schedule_work(&priv->qos_activate);
7113
7114         return ret;
7115 }
7116
7117 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7118 {
7119         u32 ret = 0;
7120
7121         if ((priv == NULL))
7122                 return 0;
7123
7124         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7125                 ret = priv->qos_data.burst_duration_CCK;
7126         else
7127                 ret = priv->qos_data.burst_duration_OFDM;
7128
7129         return ret;
7130 }
7131
7132 /*
7133 * Initialize the setting of QoS global
7134 */
7135 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7136                          int burst_enable, u32 burst_duration_CCK,
7137                          u32 burst_duration_OFDM)
7138 {
7139         priv->qos_data.qos_enable = enable;
7140
7141         if (priv->qos_data.qos_enable) {
7142                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7143                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7144                 IPW_DEBUG_QOS("QoS is enabled\n");
7145         } else {
7146                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7147                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7148                 IPW_DEBUG_QOS("QoS is not enabled\n");
7149         }
7150
7151         priv->qos_data.burst_enable = burst_enable;
7152
7153         if (burst_enable) {
7154                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7155                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7156         } else {
7157                 priv->qos_data.burst_duration_CCK = 0;
7158                 priv->qos_data.burst_duration_OFDM = 0;
7159         }
7160 }
7161
7162 /*
7163 * map the packet priority to the right TX Queue
7164 */
7165 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7166 {
7167         if (priority > 7 || !priv->qos_data.qos_enable)
7168                 priority = 0;
7169
7170         return from_priority_to_tx_queue[priority] - 1;
7171 }
7172
7173 static int ipw_is_qos_active(struct net_device *dev,
7174                              struct sk_buff *skb)
7175 {
7176         struct ipw_priv *priv = ieee80211_priv(dev);
7177         struct ieee80211_qos_data *qos_data = NULL;
7178         int active, supported;
7179         u8 *daddr = skb->data + ETH_ALEN;
7180         int unicast = !is_multicast_ether_addr(daddr);
7181
7182         if (!(priv->status & STATUS_ASSOCIATED))
7183                 return 0;
7184
7185         qos_data = &priv->assoc_network->qos_data;
7186
7187         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7188                 if (unicast == 0)
7189                         qos_data->active = 0;
7190                 else
7191                         qos_data->active = qos_data->supported;
7192         }
7193         active = qos_data->active;
7194         supported = qos_data->supported;
7195         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7196                       "unicast %d\n",
7197                       priv->qos_data.qos_enable, active, supported, unicast);
7198         if (active && priv->qos_data.qos_enable)
7199                 return 1;
7200
7201         return 0;
7202
7203 }
7204 /*
7205 * add QoS parameter to the TX command
7206 */
7207 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7208                                         u16 priority,
7209                                         struct tfd_data *tfd)
7210 {
7211         int tx_queue_id = 0;
7212
7213
7214         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7215         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7216
7217         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7218                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7219                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7220         }
7221         return 0;
7222 }
7223
7224 /*
7225 * background support to run QoS activate functionality
7226 */
7227 static void ipw_bg_qos_activate(struct work_struct *work)
7228 {
7229         struct ipw_priv *priv =
7230                 container_of(work, struct ipw_priv, qos_activate);
7231
7232         if (priv == NULL)
7233                 return;
7234
7235         mutex_lock(&priv->mutex);
7236
7237         if (priv->status & STATUS_ASSOCIATED)
7238                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7239
7240         mutex_unlock(&priv->mutex);
7241 }
7242
7243 static int ipw_handle_probe_response(struct net_device *dev,
7244                                      struct ieee80211_probe_response *resp,
7245                                      struct ieee80211_network *network)
7246 {
7247         struct ipw_priv *priv = ieee80211_priv(dev);
7248         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7249                               (network == priv->assoc_network));
7250
7251         ipw_qos_handle_probe_response(priv, active_network, network);
7252
7253         return 0;
7254 }
7255
7256 static int ipw_handle_beacon(struct net_device *dev,
7257                              struct ieee80211_beacon *resp,
7258                              struct ieee80211_network *network)
7259 {
7260         struct ipw_priv *priv = ieee80211_priv(dev);
7261         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7262                               (network == priv->assoc_network));
7263
7264         ipw_qos_handle_probe_response(priv, active_network, network);
7265
7266         return 0;
7267 }
7268
7269 static int ipw_handle_assoc_response(struct net_device *dev,
7270                                      struct ieee80211_assoc_response *resp,
7271                                      struct ieee80211_network *network)
7272 {
7273         struct ipw_priv *priv = ieee80211_priv(dev);
7274         ipw_qos_association_resp(priv, network);
7275         return 0;
7276 }
7277
7278 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7279                                        *qos_param)
7280 {
7281         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7282                                 sizeof(*qos_param) * 3, qos_param);
7283 }
7284
7285 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7286                                      *qos_param)
7287 {
7288         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7289                                 qos_param);
7290 }
7291
7292 #endif                          /* CONFIG_IPW2200_QOS */
7293
7294 static int ipw_associate_network(struct ipw_priv *priv,
7295                                  struct ieee80211_network *network,
7296                                  struct ipw_supported_rates *rates, int roaming)
7297 {
7298         int err;
7299         DECLARE_MAC_BUF(mac);
7300
7301         if (priv->config & CFG_FIXED_RATE)
7302                 ipw_set_fixed_rate(priv, network->mode);
7303
7304         if (!(priv->config & CFG_STATIC_ESSID)) {
7305                 priv->essid_len = min(network->ssid_len,
7306                                       (u8) IW_ESSID_MAX_SIZE);
7307                 memcpy(priv->essid, network->ssid, priv->essid_len);
7308         }
7309
7310         network->last_associate = jiffies;
7311
7312         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7313         priv->assoc_request.channel = network->channel;
7314         priv->assoc_request.auth_key = 0;
7315
7316         if ((priv->capability & CAP_PRIVACY_ON) &&
7317             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7318                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7319                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7320
7321                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7322                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7323
7324         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7325                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7326                 priv->assoc_request.auth_type = AUTH_LEAP;
7327         else
7328                 priv->assoc_request.auth_type = AUTH_OPEN;
7329
7330         if (priv->ieee->wpa_ie_len) {
7331                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7332                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7333                                  priv->ieee->wpa_ie_len);
7334         }
7335
7336         /*
7337          * It is valid for our ieee device to support multiple modes, but
7338          * when it comes to associating to a given network we have to choose
7339          * just one mode.
7340          */
7341         if (network->mode & priv->ieee->mode & IEEE_A)
7342                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7343         else if (network->mode & priv->ieee->mode & IEEE_G)
7344                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7345         else if (network->mode & priv->ieee->mode & IEEE_B)
7346                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7347
7348         priv->assoc_request.capability = cpu_to_le16(network->capability);
7349         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7350             && !(priv->config & CFG_PREAMBLE_LONG)) {
7351                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7352         } else {
7353                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7354
7355                 /* Clear the short preamble if we won't be supporting it */
7356                 priv->assoc_request.capability &=
7357                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7358         }
7359
7360         /* Clear capability bits that aren't used in Ad Hoc */
7361         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7362                 priv->assoc_request.capability &=
7363                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7364
7365         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7366                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7367                         roaming ? "Rea" : "A",
7368                         escape_essid(priv->essid, priv->essid_len),
7369                         network->channel,
7370                         ipw_modes[priv->assoc_request.ieee_mode],
7371                         rates->num_rates,
7372                         (priv->assoc_request.preamble_length ==
7373                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7374                         network->capability &
7375                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7376                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7377                         priv->capability & CAP_PRIVACY_ON ?
7378                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7379                          "(open)") : "",
7380                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7381                         priv->capability & CAP_PRIVACY_ON ?
7382                         '1' + priv->ieee->sec.active_key : '.',
7383                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7384
7385         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7386         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7387             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7388                 priv->assoc_request.assoc_type = HC_IBSS_START;
7389                 priv->assoc_request.assoc_tsf_msw = 0;
7390                 priv->assoc_request.assoc_tsf_lsw = 0;
7391         } else {
7392                 if (unlikely(roaming))
7393                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7394                 else
7395                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7396                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7397                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7398         }
7399
7400         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7401
7402         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7403                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7404                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7405         } else {
7406                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7407                 priv->assoc_request.atim_window = 0;
7408         }
7409
7410         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7411
7412         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7413         if (err) {
7414                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7415                 return err;
7416         }
7417
7418         rates->ieee_mode = priv->assoc_request.ieee_mode;
7419         rates->purpose = IPW_RATE_CONNECT;
7420         ipw_send_supported_rates(priv, rates);
7421
7422         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7423                 priv->sys_config.dot11g_auto_detection = 1;
7424         else
7425                 priv->sys_config.dot11g_auto_detection = 0;
7426
7427         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7428                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7429         else
7430                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7431
7432         err = ipw_send_system_config(priv);
7433         if (err) {
7434                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7435                 return err;
7436         }
7437
7438         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7439         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7440         if (err) {
7441                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7442                 return err;
7443         }
7444
7445         /*
7446          * If preemption is enabled, it is possible for the association
7447          * to complete before we return from ipw_send_associate.  Therefore
7448          * we have to be sure and update our priviate data first.
7449          */
7450         priv->channel = network->channel;
7451         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7452         priv->status |= STATUS_ASSOCIATING;
7453         priv->status &= ~STATUS_SECURITY_UPDATED;
7454
7455         priv->assoc_network = network;
7456
7457 #ifdef CONFIG_IPW2200_QOS
7458         ipw_qos_association(priv, network);
7459 #endif
7460
7461         err = ipw_send_associate(priv, &priv->assoc_request);
7462         if (err) {
7463                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7464                 return err;
7465         }
7466
7467         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7468                   escape_essid(priv->essid, priv->essid_len),
7469                   print_mac(mac, priv->bssid));
7470
7471         return 0;
7472 }
7473
7474 static void ipw_roam(void *data)
7475 {
7476         struct ipw_priv *priv = data;
7477         struct ieee80211_network *network = NULL;
7478         struct ipw_network_match match = {
7479                 .network = priv->assoc_network
7480         };
7481
7482         /* The roaming process is as follows:
7483          *
7484          * 1.  Missed beacon threshold triggers the roaming process by
7485          *     setting the status ROAM bit and requesting a scan.
7486          * 2.  When the scan completes, it schedules the ROAM work
7487          * 3.  The ROAM work looks at all of the known networks for one that
7488          *     is a better network than the currently associated.  If none
7489          *     found, the ROAM process is over (ROAM bit cleared)
7490          * 4.  If a better network is found, a disassociation request is
7491          *     sent.
7492          * 5.  When the disassociation completes, the roam work is again
7493          *     scheduled.  The second time through, the driver is no longer
7494          *     associated, and the newly selected network is sent an
7495          *     association request.
7496          * 6.  At this point ,the roaming process is complete and the ROAM
7497          *     status bit is cleared.
7498          */
7499
7500         /* If we are no longer associated, and the roaming bit is no longer
7501          * set, then we are not actively roaming, so just return */
7502         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7503                 return;
7504
7505         if (priv->status & STATUS_ASSOCIATED) {
7506                 /* First pass through ROAM process -- look for a better
7507                  * network */
7508                 unsigned long flags;
7509                 u8 rssi = priv->assoc_network->stats.rssi;
7510                 priv->assoc_network->stats.rssi = -128;
7511                 spin_lock_irqsave(&priv->ieee->lock, flags);
7512                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7513                         if (network != priv->assoc_network)
7514                                 ipw_best_network(priv, &match, network, 1);
7515                 }
7516                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7517                 priv->assoc_network->stats.rssi = rssi;
7518
7519                 if (match.network == priv->assoc_network) {
7520                         IPW_DEBUG_ASSOC("No better APs in this network to "
7521                                         "roam to.\n");
7522                         priv->status &= ~STATUS_ROAMING;
7523                         ipw_debug_config(priv);
7524                         return;
7525                 }
7526
7527                 ipw_send_disassociate(priv, 1);
7528                 priv->assoc_network = match.network;
7529
7530                 return;
7531         }
7532
7533         /* Second pass through ROAM process -- request association */
7534         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7535         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7536         priv->status &= ~STATUS_ROAMING;
7537 }
7538
7539 static void ipw_bg_roam(struct work_struct *work)
7540 {
7541         struct ipw_priv *priv =
7542                 container_of(work, struct ipw_priv, roam);
7543         mutex_lock(&priv->mutex);
7544         ipw_roam(priv);
7545         mutex_unlock(&priv->mutex);
7546 }
7547
7548 static int ipw_associate(void *data)
7549 {
7550         struct ipw_priv *priv = data;
7551
7552         struct ieee80211_network *network = NULL;
7553         struct ipw_network_match match = {
7554                 .network = NULL
7555         };
7556         struct ipw_supported_rates *rates;
7557         struct list_head *element;
7558         unsigned long flags;
7559
7560         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7561                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7562                 return 0;
7563         }
7564
7565         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7566                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7567                                 "progress)\n");
7568                 return 0;
7569         }
7570
7571         if (priv->status & STATUS_DISASSOCIATING) {
7572                 IPW_DEBUG_ASSOC("Not attempting association (in "
7573                                 "disassociating)\n ");
7574                 queue_work(priv->workqueue, &priv->associate);
7575                 return 0;
7576         }
7577
7578         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7579                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7580                                 "initialized)\n");
7581                 return 0;
7582         }
7583
7584         if (!(priv->config & CFG_ASSOCIATE) &&
7585             !(priv->config & (CFG_STATIC_ESSID |
7586                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7587                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7588                 return 0;
7589         }
7590
7591         /* Protect our use of the network_list */
7592         spin_lock_irqsave(&priv->ieee->lock, flags);
7593         list_for_each_entry(network, &priv->ieee->network_list, list)
7594             ipw_best_network(priv, &match, network, 0);
7595
7596         network = match.network;
7597         rates = &match.rates;
7598
7599         if (network == NULL &&
7600             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7601             priv->config & CFG_ADHOC_CREATE &&
7602             priv->config & CFG_STATIC_ESSID &&
7603             priv->config & CFG_STATIC_CHANNEL) {
7604                 /* Use oldest network if the free list is empty */
7605                 if (list_empty(&priv->ieee->network_free_list)) {
7606                         struct ieee80211_network *oldest = NULL;
7607                         struct ieee80211_network *target;
7608                         DECLARE_MAC_BUF(mac);
7609
7610                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7611                                 if ((oldest == NULL) ||
7612                                     (target->last_scanned < oldest->last_scanned))
7613                                         oldest = target;
7614                         }
7615
7616                         /* If there are no more slots, expire the oldest */
7617                         list_del(&oldest->list);
7618                         target = oldest;
7619                         IPW_DEBUG_ASSOC("Expired '%s' (%s) from "
7620                                         "network list.\n",
7621                                         escape_essid(target->ssid,
7622                                                      target->ssid_len),
7623                                         print_mac(mac, target->bssid));
7624                         list_add_tail(&target->list,
7625                                       &priv->ieee->network_free_list);
7626                 }
7627
7628                 element = priv->ieee->network_free_list.next;
7629                 network = list_entry(element, struct ieee80211_network, list);
7630                 ipw_adhoc_create(priv, network);
7631                 rates = &priv->rates;
7632                 list_del(element);
7633                 list_add_tail(&network->list, &priv->ieee->network_list);
7634         }
7635         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7636
7637         /* If we reached the end of the list, then we don't have any valid
7638          * matching APs */
7639         if (!network) {
7640                 ipw_debug_config(priv);
7641
7642                 if (!(priv->status & STATUS_SCANNING)) {
7643                         if (!(priv->config & CFG_SPEED_SCAN))
7644                                 queue_delayed_work(priv->workqueue,
7645                                                    &priv->request_scan,
7646                                                    SCAN_INTERVAL);
7647                         else
7648                                 queue_delayed_work(priv->workqueue,
7649                                                    &priv->request_scan, 0);
7650                 }
7651
7652                 return 0;
7653         }
7654
7655         ipw_associate_network(priv, network, rates, 0);
7656
7657         return 1;
7658 }
7659
7660 static void ipw_bg_associate(struct work_struct *work)
7661 {
7662         struct ipw_priv *priv =
7663                 container_of(work, struct ipw_priv, associate);
7664         mutex_lock(&priv->mutex);
7665         ipw_associate(priv);
7666         mutex_unlock(&priv->mutex);
7667 }
7668
7669 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7670                                       struct sk_buff *skb)
7671 {
7672         struct ieee80211_hdr *hdr;
7673         u16 fc;
7674
7675         hdr = (struct ieee80211_hdr *)skb->data;
7676         fc = le16_to_cpu(hdr->frame_ctl);
7677         if (!(fc & IEEE80211_FCTL_PROTECTED))
7678                 return;
7679
7680         fc &= ~IEEE80211_FCTL_PROTECTED;
7681         hdr->frame_ctl = cpu_to_le16(fc);
7682         switch (priv->ieee->sec.level) {
7683         case SEC_LEVEL_3:
7684                 /* Remove CCMP HDR */
7685                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7686                         skb->data + IEEE80211_3ADDR_LEN + 8,
7687                         skb->len - IEEE80211_3ADDR_LEN - 8);
7688                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7689                 break;
7690         case SEC_LEVEL_2:
7691                 break;
7692         case SEC_LEVEL_1:
7693                 /* Remove IV */
7694                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7695                         skb->data + IEEE80211_3ADDR_LEN + 4,
7696                         skb->len - IEEE80211_3ADDR_LEN - 4);
7697                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7698                 break;
7699         case SEC_LEVEL_0:
7700                 break;
7701         default:
7702                 printk(KERN_ERR "Unknow security level %d\n",
7703                        priv->ieee->sec.level);
7704                 break;
7705         }
7706 }
7707
7708 static void ipw_handle_data_packet(struct ipw_priv *priv,
7709                                    struct ipw_rx_mem_buffer *rxb,
7710                                    struct ieee80211_rx_stats *stats)
7711 {
7712         struct ieee80211_hdr_4addr *hdr;
7713         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7714
7715         /* We received data from the HW, so stop the watchdog */
7716         priv->net_dev->trans_start = jiffies;
7717
7718         /* We only process data packets if the
7719          * interface is open */
7720         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7721                      skb_tailroom(rxb->skb))) {
7722                 priv->ieee->stats.rx_errors++;
7723                 priv->wstats.discard.misc++;
7724                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7725                 return;
7726         } else if (unlikely(!netif_running(priv->net_dev))) {
7727                 priv->ieee->stats.rx_dropped++;
7728                 priv->wstats.discard.misc++;
7729                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7730                 return;
7731         }
7732
7733         /* Advance skb->data to the start of the actual payload */
7734         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7735
7736         /* Set the size of the skb to the size of the frame */
7737         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7738
7739         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7740
7741         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7742         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7743         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7744             (is_multicast_ether_addr(hdr->addr1) ?
7745              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7746                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7747
7748         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7749                 priv->ieee->stats.rx_errors++;
7750         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7751                 rxb->skb = NULL;
7752                 __ipw_led_activity_on(priv);
7753         }
7754 }
7755
7756 #ifdef CONFIG_IPW2200_RADIOTAP
7757 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7758                                            struct ipw_rx_mem_buffer *rxb,
7759                                            struct ieee80211_rx_stats *stats)
7760 {
7761         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7762         struct ipw_rx_frame *frame = &pkt->u.frame;
7763
7764         /* initial pull of some data */
7765         u16 received_channel = frame->received_channel;
7766         u8 antennaAndPhy = frame->antennaAndPhy;
7767         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7768         u16 pktrate = frame->rate;
7769
7770         /* Magic struct that slots into the radiotap header -- no reason
7771          * to build this manually element by element, we can write it much
7772          * more efficiently than we can parse it. ORDER MATTERS HERE */
7773         struct ipw_rt_hdr *ipw_rt;
7774
7775         short len = le16_to_cpu(pkt->u.frame.length);
7776
7777         /* We received data from the HW, so stop the watchdog */
7778         priv->net_dev->trans_start = jiffies;
7779
7780         /* We only process data packets if the
7781          * interface is open */
7782         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7783                      skb_tailroom(rxb->skb))) {
7784                 priv->ieee->stats.rx_errors++;
7785                 priv->wstats.discard.misc++;
7786                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7787                 return;
7788         } else if (unlikely(!netif_running(priv->net_dev))) {
7789                 priv->ieee->stats.rx_dropped++;
7790                 priv->wstats.discard.misc++;
7791                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7792                 return;
7793         }
7794
7795         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7796          * that now */
7797         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7798                 /* FIXME: Should alloc bigger skb instead */
7799                 priv->ieee->stats.rx_dropped++;
7800                 priv->wstats.discard.misc++;
7801                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7802                 return;
7803         }
7804
7805         /* copy the frame itself */
7806         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7807                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7808
7809         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7810          * part of our real header, saves a little time.
7811          *
7812          * No longer necessary since we fill in all our data.  Purge before merging
7813          * patch officially.
7814          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7815          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7816          */
7817
7818         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7819
7820         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7821         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7822         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7823
7824         /* Big bitfield of all the fields we provide in radiotap */
7825         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7826              (1 << IEEE80211_RADIOTAP_TSFT) |
7827              (1 << IEEE80211_RADIOTAP_FLAGS) |
7828              (1 << IEEE80211_RADIOTAP_RATE) |
7829              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7830              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7831              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7832              (1 << IEEE80211_RADIOTAP_ANTENNA));
7833
7834         /* Zero the flags, we'll add to them as we go */
7835         ipw_rt->rt_flags = 0;
7836         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7837                                frame->parent_tsf[2] << 16 |
7838                                frame->parent_tsf[1] << 8  |
7839                                frame->parent_tsf[0]);
7840
7841         /* Convert signal to DBM */
7842         ipw_rt->rt_dbmsignal = antsignal;
7843         ipw_rt->rt_dbmnoise = frame->noise;
7844
7845         /* Convert the channel data and set the flags */
7846         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7847         if (received_channel > 14) {    /* 802.11a */
7848                 ipw_rt->rt_chbitmask =
7849                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7850         } else if (antennaAndPhy & 32) {        /* 802.11b */
7851                 ipw_rt->rt_chbitmask =
7852                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7853         } else {                /* 802.11g */
7854                 ipw_rt->rt_chbitmask =
7855                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7856         }
7857
7858         /* set the rate in multiples of 500k/s */
7859         switch (pktrate) {
7860         case IPW_TX_RATE_1MB:
7861                 ipw_rt->rt_rate = 2;
7862                 break;
7863         case IPW_TX_RATE_2MB:
7864                 ipw_rt->rt_rate = 4;
7865                 break;
7866         case IPW_TX_RATE_5MB:
7867                 ipw_rt->rt_rate = 10;
7868                 break;
7869         case IPW_TX_RATE_6MB:
7870                 ipw_rt->rt_rate = 12;
7871                 break;
7872         case IPW_TX_RATE_9MB:
7873                 ipw_rt->rt_rate = 18;
7874                 break;
7875         case IPW_TX_RATE_11MB:
7876                 ipw_rt->rt_rate = 22;
7877                 break;
7878         case IPW_TX_RATE_12MB:
7879                 ipw_rt->rt_rate = 24;
7880                 break;
7881         case IPW_TX_RATE_18MB:
7882                 ipw_rt->rt_rate = 36;
7883                 break;
7884         case IPW_TX_RATE_24MB:
7885                 ipw_rt->rt_rate = 48;
7886                 break;
7887         case IPW_TX_RATE_36MB:
7888                 ipw_rt->rt_rate = 72;
7889                 break;
7890         case IPW_TX_RATE_48MB:
7891                 ipw_rt->rt_rate = 96;
7892                 break;
7893         case IPW_TX_RATE_54MB:
7894                 ipw_rt->rt_rate = 108;
7895                 break;
7896         default:
7897                 ipw_rt->rt_rate = 0;
7898                 break;
7899         }
7900
7901         /* antenna number */
7902         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7903
7904         /* set the preamble flag if we have it */
7905         if ((antennaAndPhy & 64))
7906                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7907
7908         /* Set the size of the skb to the size of the frame */
7909         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7910
7911         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7912
7913         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7914                 priv->ieee->stats.rx_errors++;
7915         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7916                 rxb->skb = NULL;
7917                 /* no LED during capture */
7918         }
7919 }
7920 #endif
7921
7922 #ifdef CONFIG_IPW2200_PROMISCUOUS
7923 #define ieee80211_is_probe_response(fc) \
7924    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7925     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7926
7927 #define ieee80211_is_management(fc) \
7928    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7929
7930 #define ieee80211_is_control(fc) \
7931    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7932
7933 #define ieee80211_is_data(fc) \
7934    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7935
7936 #define ieee80211_is_assoc_request(fc) \
7937    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7938
7939 #define ieee80211_is_reassoc_request(fc) \
7940    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7941
7942 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7943                                       struct ipw_rx_mem_buffer *rxb,
7944                                       struct ieee80211_rx_stats *stats)
7945 {
7946         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7947         struct ipw_rx_frame *frame = &pkt->u.frame;
7948         struct ipw_rt_hdr *ipw_rt;
7949
7950         /* First cache any information we need before we overwrite
7951          * the information provided in the skb from the hardware */
7952         struct ieee80211_hdr *hdr;
7953         u16 channel = frame->received_channel;
7954         u8 phy_flags = frame->antennaAndPhy;
7955         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7956         s8 noise = frame->noise;
7957         u8 rate = frame->rate;
7958         short len = le16_to_cpu(pkt->u.frame.length);
7959         struct sk_buff *skb;
7960         int hdr_only = 0;
7961         u16 filter = priv->prom_priv->filter;
7962
7963         /* If the filter is set to not include Rx frames then return */
7964         if (filter & IPW_PROM_NO_RX)
7965                 return;
7966
7967         /* We received data from the HW, so stop the watchdog */
7968         priv->prom_net_dev->trans_start = jiffies;
7969
7970         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7971                 priv->prom_priv->ieee->stats.rx_errors++;
7972                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7973                 return;
7974         }
7975
7976         /* We only process data packets if the interface is open */
7977         if (unlikely(!netif_running(priv->prom_net_dev))) {
7978                 priv->prom_priv->ieee->stats.rx_dropped++;
7979                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7980                 return;
7981         }
7982
7983         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7984          * that now */
7985         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7986                 /* FIXME: Should alloc bigger skb instead */
7987                 priv->prom_priv->ieee->stats.rx_dropped++;
7988                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7989                 return;
7990         }
7991
7992         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7993         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7994                 if (filter & IPW_PROM_NO_MGMT)
7995                         return;
7996                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7997                         hdr_only = 1;
7998         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7999                 if (filter & IPW_PROM_NO_CTL)
8000                         return;
8001                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8002                         hdr_only = 1;
8003         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
8004                 if (filter & IPW_PROM_NO_DATA)
8005                         return;
8006                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8007                         hdr_only = 1;
8008         }
8009
8010         /* Copy the SKB since this is for the promiscuous side */
8011         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8012         if (skb == NULL) {
8013                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8014                 return;
8015         }
8016
8017         /* copy the frame data to write after where the radiotap header goes */
8018         ipw_rt = (void *)skb->data;
8019
8020         if (hdr_only)
8021                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
8022
8023         memcpy(ipw_rt->payload, hdr, len);
8024
8025         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
8026          * NOT part of our real header, saves a little time.
8027          *
8028          * No longer necessary since we fill in all our data.  Purge before
8029          * merging patch officially.
8030          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8031          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8032          */
8033
8034         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8035         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8036         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8037
8038         /* Set the size of the skb to the size of the frame */
8039         skb_put(skb, sizeof(*ipw_rt) + len);
8040
8041         /* Big bitfield of all the fields we provide in radiotap */
8042         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8043              (1 << IEEE80211_RADIOTAP_TSFT) |
8044              (1 << IEEE80211_RADIOTAP_FLAGS) |
8045              (1 << IEEE80211_RADIOTAP_RATE) |
8046              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8047              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8048              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8049              (1 << IEEE80211_RADIOTAP_ANTENNA));
8050
8051         /* Zero the flags, we'll add to them as we go */
8052         ipw_rt->rt_flags = 0;
8053         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8054                                frame->parent_tsf[2] << 16 |
8055                                frame->parent_tsf[1] << 8  |
8056                                frame->parent_tsf[0]);
8057
8058         /* Convert to DBM */
8059         ipw_rt->rt_dbmsignal = signal;
8060         ipw_rt->rt_dbmnoise = noise;
8061
8062         /* Convert the channel data and set the flags */
8063         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8064         if (channel > 14) {     /* 802.11a */
8065                 ipw_rt->rt_chbitmask =
8066                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8067         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8068                 ipw_rt->rt_chbitmask =
8069                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8070         } else {                /* 802.11g */
8071                 ipw_rt->rt_chbitmask =
8072                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8073         }
8074
8075         /* set the rate in multiples of 500k/s */
8076         switch (rate) {
8077         case IPW_TX_RATE_1MB:
8078                 ipw_rt->rt_rate = 2;
8079                 break;
8080         case IPW_TX_RATE_2MB:
8081                 ipw_rt->rt_rate = 4;
8082                 break;
8083         case IPW_TX_RATE_5MB:
8084                 ipw_rt->rt_rate = 10;
8085                 break;
8086         case IPW_TX_RATE_6MB:
8087                 ipw_rt->rt_rate = 12;
8088                 break;
8089         case IPW_TX_RATE_9MB:
8090                 ipw_rt->rt_rate = 18;
8091                 break;
8092         case IPW_TX_RATE_11MB:
8093                 ipw_rt->rt_rate = 22;
8094                 break;
8095         case IPW_TX_RATE_12MB:
8096                 ipw_rt->rt_rate = 24;
8097                 break;
8098         case IPW_TX_RATE_18MB:
8099                 ipw_rt->rt_rate = 36;
8100                 break;
8101         case IPW_TX_RATE_24MB:
8102                 ipw_rt->rt_rate = 48;
8103                 break;
8104         case IPW_TX_RATE_36MB:
8105                 ipw_rt->rt_rate = 72;
8106                 break;
8107         case IPW_TX_RATE_48MB:
8108                 ipw_rt->rt_rate = 96;
8109                 break;
8110         case IPW_TX_RATE_54MB:
8111                 ipw_rt->rt_rate = 108;
8112                 break;
8113         default:
8114                 ipw_rt->rt_rate = 0;
8115                 break;
8116         }
8117
8118         /* antenna number */
8119         ipw_rt->rt_antenna = (phy_flags & 3);
8120
8121         /* set the preamble flag if we have it */
8122         if (phy_flags & (1 << 6))
8123                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8124
8125         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8126
8127         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8128                 priv->prom_priv->ieee->stats.rx_errors++;
8129                 dev_kfree_skb_any(skb);
8130         }
8131 }
8132 #endif
8133
8134 static int is_network_packet(struct ipw_priv *priv,
8135                                     struct ieee80211_hdr_4addr *header)
8136 {
8137         /* Filter incoming packets to determine if they are targetted toward
8138          * this network, discarding packets coming from ourselves */
8139         switch (priv->ieee->iw_mode) {
8140         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8141                 /* packets from our adapter are dropped (echo) */
8142                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8143                         return 0;
8144
8145                 /* {broad,multi}cast packets to our BSSID go through */
8146                 if (is_multicast_ether_addr(header->addr1))
8147                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8148
8149                 /* packets to our adapter go through */
8150                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8151                                ETH_ALEN);
8152
8153         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8154                 /* packets from our adapter are dropped (echo) */
8155                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8156                         return 0;
8157
8158                 /* {broad,multi}cast packets to our BSS go through */
8159                 if (is_multicast_ether_addr(header->addr1))
8160                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8161
8162                 /* packets to our adapter go through */
8163                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8164                                ETH_ALEN);
8165         }
8166
8167         return 1;
8168 }
8169
8170 #define IPW_PACKET_RETRY_TIME HZ
8171
8172 static  int is_duplicate_packet(struct ipw_priv *priv,
8173                                       struct ieee80211_hdr_4addr *header)
8174 {
8175         u16 sc = le16_to_cpu(header->seq_ctl);
8176         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8177         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8178         u16 *last_seq, *last_frag;
8179         unsigned long *last_time;
8180
8181         switch (priv->ieee->iw_mode) {
8182         case IW_MODE_ADHOC:
8183                 {
8184                         struct list_head *p;
8185                         struct ipw_ibss_seq *entry = NULL;
8186                         u8 *mac = header->addr2;
8187                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8188
8189                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8190                                 entry =
8191                                     list_entry(p, struct ipw_ibss_seq, list);
8192                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8193                                         break;
8194                         }
8195                         if (p == &priv->ibss_mac_hash[index]) {
8196                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8197                                 if (!entry) {
8198                                         IPW_ERROR
8199                                             ("Cannot malloc new mac entry\n");
8200                                         return 0;
8201                                 }
8202                                 memcpy(entry->mac, mac, ETH_ALEN);
8203                                 entry->seq_num = seq;
8204                                 entry->frag_num = frag;
8205                                 entry->packet_time = jiffies;
8206                                 list_add(&entry->list,
8207                                          &priv->ibss_mac_hash[index]);
8208                                 return 0;
8209                         }
8210                         last_seq = &entry->seq_num;
8211                         last_frag = &entry->frag_num;
8212                         last_time = &entry->packet_time;
8213                         break;
8214                 }
8215         case IW_MODE_INFRA:
8216                 last_seq = &priv->last_seq_num;
8217                 last_frag = &priv->last_frag_num;
8218                 last_time = &priv->last_packet_time;
8219                 break;
8220         default:
8221                 return 0;
8222         }
8223         if ((*last_seq == seq) &&
8224             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8225                 if (*last_frag == frag)
8226                         goto drop;
8227                 if (*last_frag + 1 != frag)
8228                         /* out-of-order fragment */
8229                         goto drop;
8230         } else
8231                 *last_seq = seq;
8232
8233         *last_frag = frag;
8234         *last_time = jiffies;
8235         return 0;
8236
8237       drop:
8238         /* Comment this line now since we observed the card receives
8239          * duplicate packets but the FCTL_RETRY bit is not set in the
8240          * IBSS mode with fragmentation enabled.
8241          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8242         return 1;
8243 }
8244
8245 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8246                                    struct ipw_rx_mem_buffer *rxb,
8247                                    struct ieee80211_rx_stats *stats)
8248 {
8249         struct sk_buff *skb = rxb->skb;
8250         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8251         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8252             (skb->data + IPW_RX_FRAME_SIZE);
8253
8254         ieee80211_rx_mgt(priv->ieee, header, stats);
8255
8256         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8257             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8258               IEEE80211_STYPE_PROBE_RESP) ||
8259              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8260               IEEE80211_STYPE_BEACON))) {
8261                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8262                         ipw_add_station(priv, header->addr2);
8263         }
8264
8265         if (priv->config & CFG_NET_STATS) {
8266                 IPW_DEBUG_HC("sending stat packet\n");
8267
8268                 /* Set the size of the skb to the size of the full
8269                  * ipw header and 802.11 frame */
8270                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8271                         IPW_RX_FRAME_SIZE);
8272
8273                 /* Advance past the ipw packet header to the 802.11 frame */
8274                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8275
8276                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8277                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8278
8279                 skb->dev = priv->ieee->dev;
8280
8281                 /* Point raw at the ieee80211_stats */
8282                 skb_reset_mac_header(skb);
8283
8284                 skb->pkt_type = PACKET_OTHERHOST;
8285                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8286                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8287                 netif_rx(skb);
8288                 rxb->skb = NULL;
8289         }
8290 }
8291
8292 /*
8293  * Main entry function for recieving a packet with 80211 headers.  This
8294  * should be called when ever the FW has notified us that there is a new
8295  * skb in the recieve queue.
8296  */
8297 static void ipw_rx(struct ipw_priv *priv)
8298 {
8299         struct ipw_rx_mem_buffer *rxb;
8300         struct ipw_rx_packet *pkt;
8301         struct ieee80211_hdr_4addr *header;
8302         u32 r, w, i;
8303         u8 network_packet;
8304         u8 fill_rx = 0;
8305         DECLARE_MAC_BUF(mac);
8306         DECLARE_MAC_BUF(mac2);
8307         DECLARE_MAC_BUF(mac3);
8308
8309         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8310         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8311         i = priv->rxq->read;
8312
8313         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8314                 fill_rx = 1;
8315
8316         while (i != r) {
8317                 rxb = priv->rxq->queue[i];
8318                 if (unlikely(rxb == NULL)) {
8319                         printk(KERN_CRIT "Queue not allocated!\n");
8320                         break;
8321                 }
8322                 priv->rxq->queue[i] = NULL;
8323
8324                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8325                                             IPW_RX_BUF_SIZE,
8326                                             PCI_DMA_FROMDEVICE);
8327
8328                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8329                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8330                              pkt->header.message_type,
8331                              pkt->header.rx_seq_num, pkt->header.control_bits);
8332
8333                 switch (pkt->header.message_type) {
8334                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8335                                 struct ieee80211_rx_stats stats = {
8336                                         .rssi = pkt->u.frame.rssi_dbm -
8337                                             IPW_RSSI_TO_DBM,
8338                                         .signal =
8339                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8340                                             IPW_RSSI_TO_DBM + 0x100,
8341                                         .noise =
8342                                             le16_to_cpu(pkt->u.frame.noise),
8343                                         .rate = pkt->u.frame.rate,
8344                                         .mac_time = jiffies,
8345                                         .received_channel =
8346                                             pkt->u.frame.received_channel,
8347                                         .freq =
8348                                             (pkt->u.frame.
8349                                              control & (1 << 0)) ?
8350                                             IEEE80211_24GHZ_BAND :
8351                                             IEEE80211_52GHZ_BAND,
8352                                         .len = le16_to_cpu(pkt->u.frame.length),
8353                                 };
8354
8355                                 if (stats.rssi != 0)
8356                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8357                                 if (stats.signal != 0)
8358                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8359                                 if (stats.noise != 0)
8360                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8361                                 if (stats.rate != 0)
8362                                         stats.mask |= IEEE80211_STATMASK_RATE;
8363
8364                                 priv->rx_packets++;
8365
8366 #ifdef CONFIG_IPW2200_PROMISCUOUS
8367         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8368                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8369 #endif
8370
8371 #ifdef CONFIG_IPW2200_MONITOR
8372                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8373 #ifdef CONFIG_IPW2200_RADIOTAP
8374
8375                 ipw_handle_data_packet_monitor(priv,
8376                                                rxb,
8377                                                &stats);
8378 #else
8379                 ipw_handle_data_packet(priv, rxb,
8380                                        &stats);
8381 #endif
8382                                         break;
8383                                 }
8384 #endif
8385
8386                                 header =
8387                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8388                                                                    data +
8389                                                                    IPW_RX_FRAME_SIZE);
8390                                 /* TODO: Check Ad-Hoc dest/source and make sure
8391                                  * that we are actually parsing these packets
8392                                  * correctly -- we should probably use the
8393                                  * frame control of the packet and disregard
8394                                  * the current iw_mode */
8395
8396                                 network_packet =
8397                                     is_network_packet(priv, header);
8398                                 if (network_packet && priv->assoc_network) {
8399                                         priv->assoc_network->stats.rssi =
8400                                             stats.rssi;
8401                                         priv->exp_avg_rssi =
8402                                             exponential_average(priv->exp_avg_rssi,
8403                                             stats.rssi, DEPTH_RSSI);
8404                                 }
8405
8406                                 IPW_DEBUG_RX("Frame: len=%u\n",
8407                                              le16_to_cpu(pkt->u.frame.length));
8408
8409                                 if (le16_to_cpu(pkt->u.frame.length) <
8410                                     ieee80211_get_hdrlen(le16_to_cpu(
8411                                                     header->frame_ctl))) {
8412                                         IPW_DEBUG_DROP
8413                                             ("Received packet is too small. "
8414                                              "Dropping.\n");
8415                                         priv->ieee->stats.rx_errors++;
8416                                         priv->wstats.discard.misc++;
8417                                         break;
8418                                 }
8419
8420                                 switch (WLAN_FC_GET_TYPE
8421                                         (le16_to_cpu(header->frame_ctl))) {
8422
8423                                 case IEEE80211_FTYPE_MGMT:
8424                                         ipw_handle_mgmt_packet(priv, rxb,
8425                                                                &stats);
8426                                         break;
8427
8428                                 case IEEE80211_FTYPE_CTL:
8429                                         break;
8430
8431                                 case IEEE80211_FTYPE_DATA:
8432                                         if (unlikely(!network_packet ||
8433                                                      is_duplicate_packet(priv,
8434                                                                          header)))
8435                                         {
8436                                                 IPW_DEBUG_DROP("Dropping: "
8437                                                                "%s, "
8438                                                                "%s, "
8439                                                                "%s\n",
8440                                                                print_mac(mac,
8441                                                                          header->
8442                                                                        addr1),
8443                                                                print_mac(mac2,
8444                                                                          header->
8445                                                                        addr2),
8446                                                                print_mac(mac3,
8447                                                                          header->
8448                                                                        addr3));
8449                                                 break;
8450                                         }
8451
8452                                         ipw_handle_data_packet(priv, rxb,
8453                                                                &stats);
8454
8455                                         break;
8456                                 }
8457                                 break;
8458                         }
8459
8460                 case RX_HOST_NOTIFICATION_TYPE:{
8461                                 IPW_DEBUG_RX
8462                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8463                                      pkt->u.notification.subtype,
8464                                      pkt->u.notification.flags,
8465                                      le16_to_cpu(pkt->u.notification.size));
8466                                 ipw_rx_notification(priv, &pkt->u.notification);
8467                                 break;
8468                         }
8469
8470                 default:
8471                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8472                                      pkt->header.message_type);
8473                         break;
8474                 }
8475
8476                 /* For now we just don't re-use anything.  We can tweak this
8477                  * later to try and re-use notification packets and SKBs that
8478                  * fail to Rx correctly */
8479                 if (rxb->skb != NULL) {
8480                         dev_kfree_skb_any(rxb->skb);
8481                         rxb->skb = NULL;
8482                 }
8483
8484                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8485                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8486                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8487
8488                 i = (i + 1) % RX_QUEUE_SIZE;
8489
8490                 /* If there are a lot of unsued frames, restock the Rx queue
8491                  * so the ucode won't assert */
8492                 if (fill_rx) {
8493                         priv->rxq->read = i;
8494                         ipw_rx_queue_replenish(priv);
8495                 }
8496         }
8497
8498         /* Backtrack one entry */
8499         priv->rxq->read = i;
8500         ipw_rx_queue_restock(priv);
8501 }
8502
8503 #define DEFAULT_RTS_THRESHOLD     2304U
8504 #define MIN_RTS_THRESHOLD         1U
8505 #define MAX_RTS_THRESHOLD         2304U
8506 #define DEFAULT_BEACON_INTERVAL   100U
8507 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8508 #define DEFAULT_LONG_RETRY_LIMIT  4U
8509
8510 /**
8511  * ipw_sw_reset
8512  * @option: options to control different reset behaviour
8513  *          0 = reset everything except the 'disable' module_param
8514  *          1 = reset everything and print out driver info (for probe only)
8515  *          2 = reset everything
8516  */
8517 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8518 {
8519         int band, modulation;
8520         int old_mode = priv->ieee->iw_mode;
8521
8522         /* Initialize module parameter values here */
8523         priv->config = 0;
8524
8525         /* We default to disabling the LED code as right now it causes
8526          * too many systems to lock up... */
8527         if (!led)
8528                 priv->config |= CFG_NO_LED;
8529
8530         if (associate)
8531                 priv->config |= CFG_ASSOCIATE;
8532         else
8533                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8534
8535         if (auto_create)
8536                 priv->config |= CFG_ADHOC_CREATE;
8537         else
8538                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8539
8540         priv->config &= ~CFG_STATIC_ESSID;
8541         priv->essid_len = 0;
8542         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8543
8544         if (disable && option) {
8545                 priv->status |= STATUS_RF_KILL_SW;
8546                 IPW_DEBUG_INFO("Radio disabled.\n");
8547         }
8548
8549         if (channel != 0) {
8550                 priv->config |= CFG_STATIC_CHANNEL;
8551                 priv->channel = channel;
8552                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8553                 /* TODO: Validate that provided channel is in range */
8554         }
8555 #ifdef CONFIG_IPW2200_QOS
8556         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8557                      burst_duration_CCK, burst_duration_OFDM);
8558 #endif                          /* CONFIG_IPW2200_QOS */
8559
8560         switch (mode) {
8561         case 1:
8562                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8563                 priv->net_dev->type = ARPHRD_ETHER;
8564
8565                 break;
8566 #ifdef CONFIG_IPW2200_MONITOR
8567         case 2:
8568                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8569 #ifdef CONFIG_IPW2200_RADIOTAP
8570                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8571 #else
8572                 priv->net_dev->type = ARPHRD_IEEE80211;
8573 #endif
8574                 break;
8575 #endif
8576         default:
8577         case 0:
8578                 priv->net_dev->type = ARPHRD_ETHER;
8579                 priv->ieee->iw_mode = IW_MODE_INFRA;
8580                 break;
8581         }
8582
8583         if (hwcrypto) {
8584                 priv->ieee->host_encrypt = 0;
8585                 priv->ieee->host_encrypt_msdu = 0;
8586                 priv->ieee->host_decrypt = 0;
8587                 priv->ieee->host_mc_decrypt = 0;
8588         }
8589         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8590
8591         /* IPW2200/2915 is abled to do hardware fragmentation. */
8592         priv->ieee->host_open_frag = 0;
8593
8594         if ((priv->pci_dev->device == 0x4223) ||
8595             (priv->pci_dev->device == 0x4224)) {
8596                 if (option == 1)
8597                         printk(KERN_INFO DRV_NAME
8598                                ": Detected Intel PRO/Wireless 2915ABG Network "
8599                                "Connection\n");
8600                 priv->ieee->abg_true = 1;
8601                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8602                 modulation = IEEE80211_OFDM_MODULATION |
8603                     IEEE80211_CCK_MODULATION;
8604                 priv->adapter = IPW_2915ABG;
8605                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8606         } else {
8607                 if (option == 1)
8608                         printk(KERN_INFO DRV_NAME
8609                                ": Detected Intel PRO/Wireless 2200BG Network "
8610                                "Connection\n");
8611
8612                 priv->ieee->abg_true = 0;
8613                 band = IEEE80211_24GHZ_BAND;
8614                 modulation = IEEE80211_OFDM_MODULATION |
8615                     IEEE80211_CCK_MODULATION;
8616                 priv->adapter = IPW_2200BG;
8617                 priv->ieee->mode = IEEE_G | IEEE_B;
8618         }
8619
8620         priv->ieee->freq_band = band;
8621         priv->ieee->modulation = modulation;
8622
8623         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8624
8625         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8626         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8627
8628         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8629         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8630         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8631
8632         /* If power management is turned on, default to AC mode */
8633         priv->power_mode = IPW_POWER_AC;
8634         priv->tx_power = IPW_TX_POWER_DEFAULT;
8635
8636         return old_mode == priv->ieee->iw_mode;
8637 }
8638
8639 /*
8640  * This file defines the Wireless Extension handlers.  It does not
8641  * define any methods of hardware manipulation and relies on the
8642  * functions defined in ipw_main to provide the HW interaction.
8643  *
8644  * The exception to this is the use of the ipw_get_ordinal()
8645  * function used to poll the hardware vs. making unecessary calls.
8646  *
8647  */
8648
8649 static int ipw_wx_get_name(struct net_device *dev,
8650                            struct iw_request_info *info,
8651                            union iwreq_data *wrqu, char *extra)
8652 {
8653         struct ipw_priv *priv = ieee80211_priv(dev);
8654         mutex_lock(&priv->mutex);
8655         if (priv->status & STATUS_RF_KILL_MASK)
8656                 strcpy(wrqu->name, "radio off");
8657         else if (!(priv->status & STATUS_ASSOCIATED))
8658                 strcpy(wrqu->name, "unassociated");
8659         else
8660                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8661                          ipw_modes[priv->assoc_request.ieee_mode]);
8662         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8663         mutex_unlock(&priv->mutex);
8664         return 0;
8665 }
8666
8667 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8668 {
8669         if (channel == 0) {
8670                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8671                 priv->config &= ~CFG_STATIC_CHANNEL;
8672                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8673                                 "parameters.\n");
8674                 ipw_associate(priv);
8675                 return 0;
8676         }
8677
8678         priv->config |= CFG_STATIC_CHANNEL;
8679
8680         if (priv->channel == channel) {
8681                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8682                                channel);
8683                 return 0;
8684         }
8685
8686         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8687         priv->channel = channel;
8688
8689 #ifdef CONFIG_IPW2200_MONITOR
8690         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8691                 int i;
8692                 if (priv->status & STATUS_SCANNING) {
8693                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8694                                        "channel change.\n");
8695                         ipw_abort_scan(priv);
8696                 }
8697
8698                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8699                         udelay(10);
8700
8701                 if (priv->status & STATUS_SCANNING)
8702                         IPW_DEBUG_SCAN("Still scanning...\n");
8703                 else
8704                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8705                                        1000 - i);
8706
8707                 return 0;
8708         }
8709 #endif                          /* CONFIG_IPW2200_MONITOR */
8710
8711         /* Network configuration changed -- force [re]association */
8712         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8713         if (!ipw_disassociate(priv))
8714                 ipw_associate(priv);
8715
8716         return 0;
8717 }
8718
8719 static int ipw_wx_set_freq(struct net_device *dev,
8720                            struct iw_request_info *info,
8721                            union iwreq_data *wrqu, char *extra)
8722 {
8723         struct ipw_priv *priv = ieee80211_priv(dev);
8724         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8725         struct iw_freq *fwrq = &wrqu->freq;
8726         int ret = 0, i;
8727         u8 channel, flags;
8728         int band;
8729
8730         if (fwrq->m == 0) {
8731                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8732                 mutex_lock(&priv->mutex);
8733                 ret = ipw_set_channel(priv, 0);
8734                 mutex_unlock(&priv->mutex);
8735                 return ret;
8736         }
8737         /* if setting by freq convert to channel */
8738         if (fwrq->e == 1) {
8739                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8740                 if (channel == 0)
8741                         return -EINVAL;
8742         } else
8743                 channel = fwrq->m;
8744
8745         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8746                 return -EINVAL;
8747
8748         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8749                 i = ieee80211_channel_to_index(priv->ieee, channel);
8750                 if (i == -1)
8751                         return -EINVAL;
8752
8753                 flags = (band == IEEE80211_24GHZ_BAND) ?
8754                     geo->bg[i].flags : geo->a[i].flags;
8755                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8756                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8757                         return -EINVAL;
8758                 }
8759         }
8760
8761         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8762         mutex_lock(&priv->mutex);
8763         ret = ipw_set_channel(priv, channel);
8764         mutex_unlock(&priv->mutex);
8765         return ret;
8766 }
8767
8768 static int ipw_wx_get_freq(struct net_device *dev,
8769                            struct iw_request_info *info,
8770                            union iwreq_data *wrqu, char *extra)
8771 {
8772         struct ipw_priv *priv = ieee80211_priv(dev);
8773
8774         wrqu->freq.e = 0;
8775
8776         /* If we are associated, trying to associate, or have a statically
8777          * configured CHANNEL then return that; otherwise return ANY */
8778         mutex_lock(&priv->mutex);
8779         if (priv->config & CFG_STATIC_CHANNEL ||
8780             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8781                 int i;
8782
8783                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8784                 BUG_ON(i == -1);
8785                 wrqu->freq.e = 1;
8786
8787                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8788                 case IEEE80211_52GHZ_BAND:
8789                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8790                         break;
8791
8792                 case IEEE80211_24GHZ_BAND:
8793                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8794                         break;
8795
8796                 default:
8797                         BUG();
8798                 }
8799         } else
8800                 wrqu->freq.m = 0;
8801
8802         mutex_unlock(&priv->mutex);
8803         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8804         return 0;
8805 }
8806
8807 static int ipw_wx_set_mode(struct net_device *dev,
8808                            struct iw_request_info *info,
8809                            union iwreq_data *wrqu, char *extra)
8810 {
8811         struct ipw_priv *priv = ieee80211_priv(dev);
8812         int err = 0;
8813
8814         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8815
8816         switch (wrqu->mode) {
8817 #ifdef CONFIG_IPW2200_MONITOR
8818         case IW_MODE_MONITOR:
8819 #endif
8820         case IW_MODE_ADHOC:
8821         case IW_MODE_INFRA:
8822                 break;
8823         case IW_MODE_AUTO:
8824                 wrqu->mode = IW_MODE_INFRA;
8825                 break;
8826         default:
8827                 return -EINVAL;
8828         }
8829         if (wrqu->mode == priv->ieee->iw_mode)
8830                 return 0;
8831
8832         mutex_lock(&priv->mutex);
8833
8834         ipw_sw_reset(priv, 0);
8835
8836 #ifdef CONFIG_IPW2200_MONITOR
8837         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8838                 priv->net_dev->type = ARPHRD_ETHER;
8839
8840         if (wrqu->mode == IW_MODE_MONITOR)
8841 #ifdef CONFIG_IPW2200_RADIOTAP
8842                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8843 #else
8844                 priv->net_dev->type = ARPHRD_IEEE80211;
8845 #endif
8846 #endif                          /* CONFIG_IPW2200_MONITOR */
8847
8848         /* Free the existing firmware and reset the fw_loaded
8849          * flag so ipw_load() will bring in the new firmawre */
8850         free_firmware();
8851
8852         priv->ieee->iw_mode = wrqu->mode;
8853
8854         queue_work(priv->workqueue, &priv->adapter_restart);
8855         mutex_unlock(&priv->mutex);
8856         return err;
8857 }
8858
8859 static int ipw_wx_get_mode(struct net_device *dev,
8860                            struct iw_request_info *info,
8861                            union iwreq_data *wrqu, char *extra)
8862 {
8863         struct ipw_priv *priv = ieee80211_priv(dev);
8864         mutex_lock(&priv->mutex);
8865         wrqu->mode = priv->ieee->iw_mode;
8866         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8867         mutex_unlock(&priv->mutex);
8868         return 0;
8869 }
8870
8871 /* Values are in microsecond */
8872 static const s32 timeout_duration[] = {
8873         350000,
8874         250000,
8875         75000,
8876         37000,
8877         25000,
8878 };
8879
8880 static const s32 period_duration[] = {
8881         400000,
8882         700000,
8883         1000000,
8884         1000000,
8885         1000000
8886 };
8887
8888 static int ipw_wx_get_range(struct net_device *dev,
8889                             struct iw_request_info *info,
8890                             union iwreq_data *wrqu, char *extra)
8891 {
8892         struct ipw_priv *priv = ieee80211_priv(dev);
8893         struct iw_range *range = (struct iw_range *)extra;
8894         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8895         int i = 0, j;
8896
8897         wrqu->data.length = sizeof(*range);
8898         memset(range, 0, sizeof(*range));
8899
8900         /* 54Mbs == ~27 Mb/s real (802.11g) */
8901         range->throughput = 27 * 1000 * 1000;
8902
8903         range->max_qual.qual = 100;
8904         /* TODO: Find real max RSSI and stick here */
8905         range->max_qual.level = 0;
8906         range->max_qual.noise = 0;
8907         range->max_qual.updated = 7;    /* Updated all three */
8908
8909         range->avg_qual.qual = 70;
8910         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8911         range->avg_qual.level = 0;      /* FIXME to real average level */
8912         range->avg_qual.noise = 0;
8913         range->avg_qual.updated = 7;    /* Updated all three */
8914         mutex_lock(&priv->mutex);
8915         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8916
8917         for (i = 0; i < range->num_bitrates; i++)
8918                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8919                     500000;
8920
8921         range->max_rts = DEFAULT_RTS_THRESHOLD;
8922         range->min_frag = MIN_FRAG_THRESHOLD;
8923         range->max_frag = MAX_FRAG_THRESHOLD;
8924
8925         range->encoding_size[0] = 5;
8926         range->encoding_size[1] = 13;
8927         range->num_encoding_sizes = 2;
8928         range->max_encoding_tokens = WEP_KEYS;
8929
8930         /* Set the Wireless Extension versions */
8931         range->we_version_compiled = WIRELESS_EXT;
8932         range->we_version_source = 18;
8933
8934         i = 0;
8935         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8936                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8937                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8938                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8939                                 continue;
8940
8941                         range->freq[i].i = geo->bg[j].channel;
8942                         range->freq[i].m = geo->bg[j].freq * 100000;
8943                         range->freq[i].e = 1;
8944                         i++;
8945                 }
8946         }
8947
8948         if (priv->ieee->mode & IEEE_A) {
8949                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8950                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8951                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8952                                 continue;
8953
8954                         range->freq[i].i = geo->a[j].channel;
8955                         range->freq[i].m = geo->a[j].freq * 100000;
8956                         range->freq[i].e = 1;
8957                         i++;
8958                 }
8959         }
8960
8961         range->num_channels = i;
8962         range->num_frequency = i;
8963
8964         mutex_unlock(&priv->mutex);
8965
8966         /* Event capability (kernel + driver) */
8967         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8968                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8969                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8970                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8971         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8972
8973         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8974                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8975
8976         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8977
8978         IPW_DEBUG_WX("GET Range\n");
8979         return 0;
8980 }
8981
8982 static int ipw_wx_set_wap(struct net_device *dev,
8983                           struct iw_request_info *info,
8984                           union iwreq_data *wrqu, char *extra)
8985 {
8986         struct ipw_priv *priv = ieee80211_priv(dev);
8987         DECLARE_MAC_BUF(mac);
8988
8989         static const unsigned char any[] = {
8990                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8991         };
8992         static const unsigned char off[] = {
8993                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8994         };
8995
8996         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8997                 return -EINVAL;
8998         mutex_lock(&priv->mutex);
8999         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9000             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9001                 /* we disable mandatory BSSID association */
9002                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9003                 priv->config &= ~CFG_STATIC_BSSID;
9004                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9005                                 "parameters.\n");
9006                 ipw_associate(priv);
9007                 mutex_unlock(&priv->mutex);
9008                 return 0;
9009         }
9010
9011         priv->config |= CFG_STATIC_BSSID;
9012         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9013                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9014                 mutex_unlock(&priv->mutex);
9015                 return 0;
9016         }
9017
9018         IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
9019                      print_mac(mac, wrqu->ap_addr.sa_data));
9020
9021         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9022
9023         /* Network configuration changed -- force [re]association */
9024         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9025         if (!ipw_disassociate(priv))
9026                 ipw_associate(priv);
9027
9028         mutex_unlock(&priv->mutex);
9029         return 0;
9030 }
9031
9032 static int ipw_wx_get_wap(struct net_device *dev,
9033                           struct iw_request_info *info,
9034                           union iwreq_data *wrqu, char *extra)
9035 {
9036         struct ipw_priv *priv = ieee80211_priv(dev);
9037         DECLARE_MAC_BUF(mac);
9038
9039         /* If we are associated, trying to associate, or have a statically
9040          * configured BSSID then return that; otherwise return ANY */
9041         mutex_lock(&priv->mutex);
9042         if (priv->config & CFG_STATIC_BSSID ||
9043             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9044                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9045                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9046         } else
9047                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9048
9049         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
9050                      print_mac(mac, wrqu->ap_addr.sa_data));
9051         mutex_unlock(&priv->mutex);
9052         return 0;
9053 }
9054
9055 static int ipw_wx_set_essid(struct net_device *dev,
9056                             struct iw_request_info *info,
9057                             union iwreq_data *wrqu, char *extra)
9058 {
9059         struct ipw_priv *priv = ieee80211_priv(dev);
9060         int length;
9061
9062         mutex_lock(&priv->mutex);
9063
9064         if (!wrqu->essid.flags)
9065         {
9066                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9067                 ipw_disassociate(priv);
9068                 priv->config &= ~CFG_STATIC_ESSID;
9069                 ipw_associate(priv);
9070                 mutex_unlock(&priv->mutex);
9071                 return 0;
9072         }
9073
9074         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9075
9076         priv->config |= CFG_STATIC_ESSID;
9077
9078         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9079             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9080                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9081                 mutex_unlock(&priv->mutex);
9082                 return 0;
9083         }
9084
9085         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9086                      length);
9087
9088         priv->essid_len = length;
9089         memcpy(priv->essid, extra, priv->essid_len);
9090
9091         /* Network configuration changed -- force [re]association */
9092         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9093         if (!ipw_disassociate(priv))
9094                 ipw_associate(priv);
9095
9096         mutex_unlock(&priv->mutex);
9097         return 0;
9098 }
9099
9100 static int ipw_wx_get_essid(struct net_device *dev,
9101                             struct iw_request_info *info,
9102                             union iwreq_data *wrqu, char *extra)
9103 {
9104         struct ipw_priv *priv = ieee80211_priv(dev);
9105
9106         /* If we are associated, trying to associate, or have a statically
9107          * configured ESSID then return that; otherwise return ANY */
9108         mutex_lock(&priv->mutex);
9109         if (priv->config & CFG_STATIC_ESSID ||
9110             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9111                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9112                              escape_essid(priv->essid, priv->essid_len));
9113                 memcpy(extra, priv->essid, priv->essid_len);
9114                 wrqu->essid.length = priv->essid_len;
9115                 wrqu->essid.flags = 1;  /* active */
9116         } else {
9117                 IPW_DEBUG_WX("Getting essid: ANY\n");
9118                 wrqu->essid.length = 0;
9119                 wrqu->essid.flags = 0;  /* active */
9120         }
9121         mutex_unlock(&priv->mutex);
9122         return 0;
9123 }
9124
9125 static int ipw_wx_set_nick(struct net_device *dev,
9126                            struct iw_request_info *info,
9127                            union iwreq_data *wrqu, char *extra)
9128 {
9129         struct ipw_priv *priv = ieee80211_priv(dev);
9130
9131         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9132         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9133                 return -E2BIG;
9134         mutex_lock(&priv->mutex);
9135         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9136         memset(priv->nick, 0, sizeof(priv->nick));
9137         memcpy(priv->nick, extra, wrqu->data.length);
9138         IPW_DEBUG_TRACE("<<\n");
9139         mutex_unlock(&priv->mutex);
9140         return 0;
9141
9142 }
9143
9144 static int ipw_wx_get_nick(struct net_device *dev,
9145                            struct iw_request_info *info,
9146                            union iwreq_data *wrqu, char *extra)
9147 {
9148         struct ipw_priv *priv = ieee80211_priv(dev);
9149         IPW_DEBUG_WX("Getting nick\n");
9150         mutex_lock(&priv->mutex);
9151         wrqu->data.length = strlen(priv->nick);
9152         memcpy(extra, priv->nick, wrqu->data.length);
9153         wrqu->data.flags = 1;   /* active */
9154         mutex_unlock(&priv->mutex);
9155         return 0;
9156 }
9157
9158 static int ipw_wx_set_sens(struct net_device *dev,
9159                             struct iw_request_info *info,
9160                             union iwreq_data *wrqu, char *extra)
9161 {
9162         struct ipw_priv *priv = ieee80211_priv(dev);
9163         int err = 0;
9164
9165         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9166         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9167         mutex_lock(&priv->mutex);
9168
9169         if (wrqu->sens.fixed == 0)
9170         {
9171                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9172                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9173                 goto out;
9174         }
9175         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9176             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9177                 err = -EINVAL;
9178                 goto out;
9179         }
9180
9181         priv->roaming_threshold = wrqu->sens.value;
9182         priv->disassociate_threshold = 3*wrqu->sens.value;
9183       out:
9184         mutex_unlock(&priv->mutex);
9185         return err;
9186 }
9187
9188 static int ipw_wx_get_sens(struct net_device *dev,
9189                             struct iw_request_info *info,
9190                             union iwreq_data *wrqu, char *extra)
9191 {
9192         struct ipw_priv *priv = ieee80211_priv(dev);
9193         mutex_lock(&priv->mutex);
9194         wrqu->sens.fixed = 1;
9195         wrqu->sens.value = priv->roaming_threshold;
9196         mutex_unlock(&priv->mutex);
9197
9198         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9199                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9200
9201         return 0;
9202 }
9203
9204 static int ipw_wx_set_rate(struct net_device *dev,
9205                            struct iw_request_info *info,
9206                            union iwreq_data *wrqu, char *extra)
9207 {
9208         /* TODO: We should use semaphores or locks for access to priv */
9209         struct ipw_priv *priv = ieee80211_priv(dev);
9210         u32 target_rate = wrqu->bitrate.value;
9211         u32 fixed, mask;
9212
9213         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9214         /* value = X, fixed = 1 means only rate X */
9215         /* value = X, fixed = 0 means all rates lower equal X */
9216
9217         if (target_rate == -1) {
9218                 fixed = 0;
9219                 mask = IEEE80211_DEFAULT_RATES_MASK;
9220                 /* Now we should reassociate */
9221                 goto apply;
9222         }
9223
9224         mask = 0;
9225         fixed = wrqu->bitrate.fixed;
9226
9227         if (target_rate == 1000000 || !fixed)
9228                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9229         if (target_rate == 1000000)
9230                 goto apply;
9231
9232         if (target_rate == 2000000 || !fixed)
9233                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9234         if (target_rate == 2000000)
9235                 goto apply;
9236
9237         if (target_rate == 5500000 || !fixed)
9238                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9239         if (target_rate == 5500000)
9240                 goto apply;
9241
9242         if (target_rate == 6000000 || !fixed)
9243                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9244         if (target_rate == 6000000)
9245                 goto apply;
9246
9247         if (target_rate == 9000000 || !fixed)
9248                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9249         if (target_rate == 9000000)
9250                 goto apply;
9251
9252         if (target_rate == 11000000 || !fixed)
9253                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9254         if (target_rate == 11000000)
9255                 goto apply;
9256
9257         if (target_rate == 12000000 || !fixed)
9258                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9259         if (target_rate == 12000000)
9260                 goto apply;
9261
9262         if (target_rate == 18000000 || !fixed)
9263                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9264         if (target_rate == 18000000)
9265                 goto apply;
9266
9267         if (target_rate == 24000000 || !fixed)
9268                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9269         if (target_rate == 24000000)
9270                 goto apply;
9271
9272         if (target_rate == 36000000 || !fixed)
9273                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9274         if (target_rate == 36000000)
9275                 goto apply;
9276
9277         if (target_rate == 48000000 || !fixed)
9278                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9279         if (target_rate == 48000000)
9280                 goto apply;
9281
9282         if (target_rate == 54000000 || !fixed)
9283                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9284         if (target_rate == 54000000)
9285                 goto apply;
9286
9287         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9288         return -EINVAL;
9289
9290       apply:
9291         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9292                      mask, fixed ? "fixed" : "sub-rates");
9293         mutex_lock(&priv->mutex);
9294         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9295                 priv->config &= ~CFG_FIXED_RATE;
9296                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9297         } else
9298                 priv->config |= CFG_FIXED_RATE;
9299
9300         if (priv->rates_mask == mask) {
9301                 IPW_DEBUG_WX("Mask set to current mask.\n");
9302                 mutex_unlock(&priv->mutex);
9303                 return 0;
9304         }
9305
9306         priv->rates_mask = mask;
9307
9308         /* Network configuration changed -- force [re]association */
9309         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9310         if (!ipw_disassociate(priv))
9311                 ipw_associate(priv);
9312
9313         mutex_unlock(&priv->mutex);
9314         return 0;
9315 }
9316
9317 static int ipw_wx_get_rate(struct net_device *dev,
9318                            struct iw_request_info *info,
9319                            union iwreq_data *wrqu, char *extra)
9320 {
9321         struct ipw_priv *priv = ieee80211_priv(dev);
9322         mutex_lock(&priv->mutex);
9323         wrqu->bitrate.value = priv->last_rate;
9324         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9325         mutex_unlock(&priv->mutex);
9326         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9327         return 0;
9328 }
9329
9330 static int ipw_wx_set_rts(struct net_device *dev,
9331                           struct iw_request_info *info,
9332                           union iwreq_data *wrqu, char *extra)
9333 {
9334         struct ipw_priv *priv = ieee80211_priv(dev);
9335         mutex_lock(&priv->mutex);
9336         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9337                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9338         else {
9339                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9340                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9341                         mutex_unlock(&priv->mutex);
9342                         return -EINVAL;
9343                 }
9344                 priv->rts_threshold = wrqu->rts.value;
9345         }
9346
9347         ipw_send_rts_threshold(priv, priv->rts_threshold);
9348         mutex_unlock(&priv->mutex);
9349         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9350         return 0;
9351 }
9352
9353 static int ipw_wx_get_rts(struct net_device *dev,
9354                           struct iw_request_info *info,
9355                           union iwreq_data *wrqu, char *extra)
9356 {
9357         struct ipw_priv *priv = ieee80211_priv(dev);
9358         mutex_lock(&priv->mutex);
9359         wrqu->rts.value = priv->rts_threshold;
9360         wrqu->rts.fixed = 0;    /* no auto select */
9361         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9362         mutex_unlock(&priv->mutex);
9363         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9364         return 0;
9365 }
9366
9367 static int ipw_wx_set_txpow(struct net_device *dev,
9368                             struct iw_request_info *info,
9369                             union iwreq_data *wrqu, char *extra)
9370 {
9371         struct ipw_priv *priv = ieee80211_priv(dev);
9372         int err = 0;
9373
9374         mutex_lock(&priv->mutex);
9375         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9376                 err = -EINPROGRESS;
9377                 goto out;
9378         }
9379
9380         if (!wrqu->power.fixed)
9381                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9382
9383         if (wrqu->power.flags != IW_TXPOW_DBM) {
9384                 err = -EINVAL;
9385                 goto out;
9386         }
9387
9388         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9389             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9390                 err = -EINVAL;
9391                 goto out;
9392         }
9393
9394         priv->tx_power = wrqu->power.value;
9395         err = ipw_set_tx_power(priv);
9396       out:
9397         mutex_unlock(&priv->mutex);
9398         return err;
9399 }
9400
9401 static int ipw_wx_get_txpow(struct net_device *dev,
9402                             struct iw_request_info *info,
9403                             union iwreq_data *wrqu, char *extra)
9404 {
9405         struct ipw_priv *priv = ieee80211_priv(dev);
9406         mutex_lock(&priv->mutex);
9407         wrqu->power.value = priv->tx_power;
9408         wrqu->power.fixed = 1;
9409         wrqu->power.flags = IW_TXPOW_DBM;
9410         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9411         mutex_unlock(&priv->mutex);
9412
9413         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9414                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9415
9416         return 0;
9417 }
9418
9419 static int ipw_wx_set_frag(struct net_device *dev,
9420                            struct iw_request_info *info,
9421                            union iwreq_data *wrqu, char *extra)
9422 {
9423         struct ipw_priv *priv = ieee80211_priv(dev);
9424         mutex_lock(&priv->mutex);
9425         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9426                 priv->ieee->fts = DEFAULT_FTS;
9427         else {
9428                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9429                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9430                         mutex_unlock(&priv->mutex);
9431                         return -EINVAL;
9432                 }
9433
9434                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9435         }
9436
9437         ipw_send_frag_threshold(priv, wrqu->frag.value);
9438         mutex_unlock(&priv->mutex);
9439         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9440         return 0;
9441 }
9442
9443 static int ipw_wx_get_frag(struct net_device *dev,
9444                            struct iw_request_info *info,
9445                            union iwreq_data *wrqu, char *extra)
9446 {
9447         struct ipw_priv *priv = ieee80211_priv(dev);
9448         mutex_lock(&priv->mutex);
9449         wrqu->frag.value = priv->ieee->fts;
9450         wrqu->frag.fixed = 0;   /* no auto select */
9451         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9452         mutex_unlock(&priv->mutex);
9453         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9454
9455         return 0;
9456 }
9457
9458 static int ipw_wx_set_retry(struct net_device *dev,
9459                             struct iw_request_info *info,
9460                             union iwreq_data *wrqu, char *extra)
9461 {
9462         struct ipw_priv *priv = ieee80211_priv(dev);
9463
9464         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9465                 return -EINVAL;
9466
9467         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9468                 return 0;
9469
9470         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9471                 return -EINVAL;
9472
9473         mutex_lock(&priv->mutex);
9474         if (wrqu->retry.flags & IW_RETRY_SHORT)
9475                 priv->short_retry_limit = (u8) wrqu->retry.value;
9476         else if (wrqu->retry.flags & IW_RETRY_LONG)
9477                 priv->long_retry_limit = (u8) wrqu->retry.value;
9478         else {
9479                 priv->short_retry_limit = (u8) wrqu->retry.value;
9480                 priv->long_retry_limit = (u8) wrqu->retry.value;
9481         }
9482
9483         ipw_send_retry_limit(priv, priv->short_retry_limit,
9484                              priv->long_retry_limit);
9485         mutex_unlock(&priv->mutex);
9486         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9487                      priv->short_retry_limit, priv->long_retry_limit);
9488         return 0;
9489 }
9490
9491 static int ipw_wx_get_retry(struct net_device *dev,
9492                             struct iw_request_info *info,
9493                             union iwreq_data *wrqu, char *extra)
9494 {
9495         struct ipw_priv *priv = ieee80211_priv(dev);
9496
9497         mutex_lock(&priv->mutex);
9498         wrqu->retry.disabled = 0;
9499
9500         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9501                 mutex_unlock(&priv->mutex);
9502                 return -EINVAL;
9503         }
9504
9505         if (wrqu->retry.flags & IW_RETRY_LONG) {
9506                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9507                 wrqu->retry.value = priv->long_retry_limit;
9508         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9509                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9510                 wrqu->retry.value = priv->short_retry_limit;
9511         } else {
9512                 wrqu->retry.flags = IW_RETRY_LIMIT;
9513                 wrqu->retry.value = priv->short_retry_limit;
9514         }
9515         mutex_unlock(&priv->mutex);
9516
9517         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9518
9519         return 0;
9520 }
9521
9522 static int ipw_wx_set_scan(struct net_device *dev,
9523                            struct iw_request_info *info,
9524                            union iwreq_data *wrqu, char *extra)
9525 {
9526         struct ipw_priv *priv = ieee80211_priv(dev);
9527         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9528         struct delayed_work *work = NULL;
9529
9530         mutex_lock(&priv->mutex);
9531
9532         priv->user_requested_scan = 1;
9533
9534         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9535                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9536                         int len = min((int)req->essid_len,
9537                                       (int)sizeof(priv->direct_scan_ssid));
9538                         memcpy(priv->direct_scan_ssid, req->essid, len);
9539                         priv->direct_scan_ssid_len = len;
9540                         work = &priv->request_direct_scan;
9541                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9542                         work = &priv->request_passive_scan;
9543                 }
9544         } else {
9545                 /* Normal active broadcast scan */
9546                 work = &priv->request_scan;
9547         }
9548
9549         mutex_unlock(&priv->mutex);
9550
9551         IPW_DEBUG_WX("Start scan\n");
9552
9553         queue_delayed_work(priv->workqueue, work, 0);
9554
9555         return 0;
9556 }
9557
9558 static int ipw_wx_get_scan(struct net_device *dev,
9559                            struct iw_request_info *info,
9560                            union iwreq_data *wrqu, char *extra)
9561 {
9562         struct ipw_priv *priv = ieee80211_priv(dev);
9563         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9564 }
9565
9566 static int ipw_wx_set_encode(struct net_device *dev,
9567                              struct iw_request_info *info,
9568                              union iwreq_data *wrqu, char *key)
9569 {
9570         struct ipw_priv *priv = ieee80211_priv(dev);
9571         int ret;
9572         u32 cap = priv->capability;
9573
9574         mutex_lock(&priv->mutex);
9575         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9576
9577         /* In IBSS mode, we need to notify the firmware to update
9578          * the beacon info after we changed the capability. */
9579         if (cap != priv->capability &&
9580             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9581             priv->status & STATUS_ASSOCIATED)
9582                 ipw_disassociate(priv);
9583
9584         mutex_unlock(&priv->mutex);
9585         return ret;
9586 }
9587
9588 static int ipw_wx_get_encode(struct net_device *dev,
9589                              struct iw_request_info *info,
9590                              union iwreq_data *wrqu, char *key)
9591 {
9592         struct ipw_priv *priv = ieee80211_priv(dev);
9593         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9594 }
9595
9596 static int ipw_wx_set_power(struct net_device *dev,
9597                             struct iw_request_info *info,
9598                             union iwreq_data *wrqu, char *extra)
9599 {
9600         struct ipw_priv *priv = ieee80211_priv(dev);
9601         int err;
9602         mutex_lock(&priv->mutex);
9603         if (wrqu->power.disabled) {
9604                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9605                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9606                 if (err) {
9607                         IPW_DEBUG_WX("failed setting power mode.\n");
9608                         mutex_unlock(&priv->mutex);
9609                         return err;
9610                 }
9611                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9612                 mutex_unlock(&priv->mutex);
9613                 return 0;
9614         }
9615
9616         switch (wrqu->power.flags & IW_POWER_MODE) {
9617         case IW_POWER_ON:       /* If not specified */
9618         case IW_POWER_MODE:     /* If set all mask */
9619         case IW_POWER_ALL_R:    /* If explicitly state all */
9620                 break;
9621         default:                /* Otherwise we don't support it */
9622                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9623                              wrqu->power.flags);
9624                 mutex_unlock(&priv->mutex);
9625                 return -EOPNOTSUPP;
9626         }
9627
9628         /* If the user hasn't specified a power management mode yet, default
9629          * to BATTERY */
9630         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9631                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9632         else
9633                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9634
9635         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9636         if (err) {
9637                 IPW_DEBUG_WX("failed setting power mode.\n");
9638                 mutex_unlock(&priv->mutex);
9639                 return err;
9640         }
9641
9642         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9643         mutex_unlock(&priv->mutex);
9644         return 0;
9645 }
9646
9647 static int ipw_wx_get_power(struct net_device *dev,
9648                             struct iw_request_info *info,
9649                             union iwreq_data *wrqu, char *extra)
9650 {
9651         struct ipw_priv *priv = ieee80211_priv(dev);
9652         mutex_lock(&priv->mutex);
9653         if (!(priv->power_mode & IPW_POWER_ENABLED))
9654                 wrqu->power.disabled = 1;
9655         else
9656                 wrqu->power.disabled = 0;
9657
9658         mutex_unlock(&priv->mutex);
9659         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9660
9661         return 0;
9662 }
9663
9664 static int ipw_wx_set_powermode(struct net_device *dev,
9665                                 struct iw_request_info *info,
9666                                 union iwreq_data *wrqu, char *extra)
9667 {
9668         struct ipw_priv *priv = ieee80211_priv(dev);
9669         int mode = *(int *)extra;
9670         int err;
9671
9672         mutex_lock(&priv->mutex);
9673         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9674                 mode = IPW_POWER_AC;
9675
9676         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9677                 err = ipw_send_power_mode(priv, mode);
9678                 if (err) {
9679                         IPW_DEBUG_WX("failed setting power mode.\n");
9680                         mutex_unlock(&priv->mutex);
9681                         return err;
9682                 }
9683                 priv->power_mode = IPW_POWER_ENABLED | mode;
9684         }
9685         mutex_unlock(&priv->mutex);
9686         return 0;
9687 }
9688
9689 #define MAX_WX_STRING 80
9690 static int ipw_wx_get_powermode(struct net_device *dev,
9691                                 struct iw_request_info *info,
9692                                 union iwreq_data *wrqu, char *extra)
9693 {
9694         struct ipw_priv *priv = ieee80211_priv(dev);
9695         int level = IPW_POWER_LEVEL(priv->power_mode);
9696         char *p = extra;
9697
9698         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9699
9700         switch (level) {
9701         case IPW_POWER_AC:
9702                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9703                 break;
9704         case IPW_POWER_BATTERY:
9705                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9706                 break;
9707         default:
9708                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9709                               "(Timeout %dms, Period %dms)",
9710                               timeout_duration[level - 1] / 1000,
9711                               period_duration[level - 1] / 1000);
9712         }
9713
9714         if (!(priv->power_mode & IPW_POWER_ENABLED))
9715                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9716
9717         wrqu->data.length = p - extra + 1;
9718
9719         return 0;
9720 }
9721
9722 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9723                                     struct iw_request_info *info,
9724                                     union iwreq_data *wrqu, char *extra)
9725 {
9726         struct ipw_priv *priv = ieee80211_priv(dev);
9727         int mode = *(int *)extra;
9728         u8 band = 0, modulation = 0;
9729
9730         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9731                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9732                 return -EINVAL;
9733         }
9734         mutex_lock(&priv->mutex);
9735         if (priv->adapter == IPW_2915ABG) {
9736                 priv->ieee->abg_true = 1;
9737                 if (mode & IEEE_A) {
9738                         band |= IEEE80211_52GHZ_BAND;
9739                         modulation |= IEEE80211_OFDM_MODULATION;
9740                 } else
9741                         priv->ieee->abg_true = 0;
9742         } else {
9743                 if (mode & IEEE_A) {
9744                         IPW_WARNING("Attempt to set 2200BG into "
9745                                     "802.11a mode\n");
9746                         mutex_unlock(&priv->mutex);
9747                         return -EINVAL;
9748                 }
9749
9750                 priv->ieee->abg_true = 0;
9751         }
9752
9753         if (mode & IEEE_B) {
9754                 band |= IEEE80211_24GHZ_BAND;
9755                 modulation |= IEEE80211_CCK_MODULATION;
9756         } else
9757                 priv->ieee->abg_true = 0;
9758
9759         if (mode & IEEE_G) {
9760                 band |= IEEE80211_24GHZ_BAND;
9761                 modulation |= IEEE80211_OFDM_MODULATION;
9762         } else
9763                 priv->ieee->abg_true = 0;
9764
9765         priv->ieee->mode = mode;
9766         priv->ieee->freq_band = band;
9767         priv->ieee->modulation = modulation;
9768         init_supported_rates(priv, &priv->rates);
9769
9770         /* Network configuration changed -- force [re]association */
9771         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9772         if (!ipw_disassociate(priv)) {
9773                 ipw_send_supported_rates(priv, &priv->rates);
9774                 ipw_associate(priv);
9775         }
9776
9777         /* Update the band LEDs */
9778         ipw_led_band_on(priv);
9779
9780         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9781                      mode & IEEE_A ? 'a' : '.',
9782                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9783         mutex_unlock(&priv->mutex);
9784         return 0;
9785 }
9786
9787 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9788                                     struct iw_request_info *info,
9789                                     union iwreq_data *wrqu, char *extra)
9790 {
9791         struct ipw_priv *priv = ieee80211_priv(dev);
9792         mutex_lock(&priv->mutex);
9793         switch (priv->ieee->mode) {
9794         case IEEE_A:
9795                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9796                 break;
9797         case IEEE_B:
9798                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9799                 break;
9800         case IEEE_A | IEEE_B:
9801                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9802                 break;
9803         case IEEE_G:
9804                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9805                 break;
9806         case IEEE_A | IEEE_G:
9807                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9808                 break;
9809         case IEEE_B | IEEE_G:
9810                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9811                 break;
9812         case IEEE_A | IEEE_B | IEEE_G:
9813                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9814                 break;
9815         default:
9816                 strncpy(extra, "unknown", MAX_WX_STRING);
9817                 break;
9818         }
9819
9820         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9821
9822         wrqu->data.length = strlen(extra) + 1;
9823         mutex_unlock(&priv->mutex);
9824
9825         return 0;
9826 }
9827
9828 static int ipw_wx_set_preamble(struct net_device *dev,
9829                                struct iw_request_info *info,
9830                                union iwreq_data *wrqu, char *extra)
9831 {
9832         struct ipw_priv *priv = ieee80211_priv(dev);
9833         int mode = *(int *)extra;
9834         mutex_lock(&priv->mutex);
9835         /* Switching from SHORT -> LONG requires a disassociation */
9836         if (mode == 1) {
9837                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9838                         priv->config |= CFG_PREAMBLE_LONG;
9839
9840                         /* Network configuration changed -- force [re]association */
9841                         IPW_DEBUG_ASSOC
9842                             ("[re]association triggered due to preamble change.\n");
9843                         if (!ipw_disassociate(priv))
9844                                 ipw_associate(priv);
9845                 }
9846                 goto done;
9847         }
9848
9849         if (mode == 0) {
9850                 priv->config &= ~CFG_PREAMBLE_LONG;
9851                 goto done;
9852         }
9853         mutex_unlock(&priv->mutex);
9854         return -EINVAL;
9855
9856       done:
9857         mutex_unlock(&priv->mutex);
9858         return 0;
9859 }
9860
9861 static int ipw_wx_get_preamble(struct net_device *dev,
9862                                struct iw_request_info *info,
9863                                union iwreq_data *wrqu, char *extra)
9864 {
9865         struct ipw_priv *priv = ieee80211_priv(dev);
9866         mutex_lock(&priv->mutex);
9867         if (priv->config & CFG_PREAMBLE_LONG)
9868                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9869         else
9870                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9871         mutex_unlock(&priv->mutex);
9872         return 0;
9873 }
9874
9875 #ifdef CONFIG_IPW2200_MONITOR
9876 static int ipw_wx_set_monitor(struct net_device *dev,
9877                               struct iw_request_info *info,
9878                               union iwreq_data *wrqu, char *extra)
9879 {
9880         struct ipw_priv *priv = ieee80211_priv(dev);
9881         int *parms = (int *)extra;
9882         int enable = (parms[0] > 0);
9883         mutex_lock(&priv->mutex);
9884         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9885         if (enable) {
9886                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9887 #ifdef CONFIG_IPW2200_RADIOTAP
9888                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9889 #else
9890                         priv->net_dev->type = ARPHRD_IEEE80211;
9891 #endif
9892                         queue_work(priv->workqueue, &priv->adapter_restart);
9893                 }
9894
9895                 ipw_set_channel(priv, parms[1]);
9896         } else {
9897                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9898                         mutex_unlock(&priv->mutex);
9899                         return 0;
9900                 }
9901                 priv->net_dev->type = ARPHRD_ETHER;
9902                 queue_work(priv->workqueue, &priv->adapter_restart);
9903         }
9904         mutex_unlock(&priv->mutex);
9905         return 0;
9906 }
9907
9908 #endif                          /* CONFIG_IPW2200_MONITOR */
9909
9910 static int ipw_wx_reset(struct net_device *dev,
9911                         struct iw_request_info *info,
9912                         union iwreq_data *wrqu, char *extra)
9913 {
9914         struct ipw_priv *priv = ieee80211_priv(dev);
9915         IPW_DEBUG_WX("RESET\n");
9916         queue_work(priv->workqueue, &priv->adapter_restart);
9917         return 0;
9918 }
9919
9920 static int ipw_wx_sw_reset(struct net_device *dev,
9921                            struct iw_request_info *info,
9922                            union iwreq_data *wrqu, char *extra)
9923 {
9924         struct ipw_priv *priv = ieee80211_priv(dev);
9925         union iwreq_data wrqu_sec = {
9926                 .encoding = {
9927                              .flags = IW_ENCODE_DISABLED,
9928                              },
9929         };
9930         int ret;
9931
9932         IPW_DEBUG_WX("SW_RESET\n");
9933
9934         mutex_lock(&priv->mutex);
9935
9936         ret = ipw_sw_reset(priv, 2);
9937         if (!ret) {
9938                 free_firmware();
9939                 ipw_adapter_restart(priv);
9940         }
9941
9942         /* The SW reset bit might have been toggled on by the 'disable'
9943          * module parameter, so take appropriate action */
9944         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9945
9946         mutex_unlock(&priv->mutex);
9947         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9948         mutex_lock(&priv->mutex);
9949
9950         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9951                 /* Configuration likely changed -- force [re]association */
9952                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9953                                 "reset.\n");
9954                 if (!ipw_disassociate(priv))
9955                         ipw_associate(priv);
9956         }
9957
9958         mutex_unlock(&priv->mutex);
9959
9960         return 0;
9961 }
9962
9963 /* Rebase the WE IOCTLs to zero for the handler array */
9964 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9965 static iw_handler ipw_wx_handlers[] = {
9966         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9967         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9968         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9969         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9970         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9971         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9972         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9973         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9974         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9975         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9976         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9977         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9978         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9979         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9980         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9981         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9982         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9983         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9984         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9985         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9986         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9987         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9988         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9989         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9990         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9991         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9992         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9993         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9994         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9995         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9996         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9997         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9998         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9999         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10000         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10001         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10002         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10003         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10004         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10005         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10006         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10007 };
10008
10009 enum {
10010         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10011         IPW_PRIV_GET_POWER,
10012         IPW_PRIV_SET_MODE,
10013         IPW_PRIV_GET_MODE,
10014         IPW_PRIV_SET_PREAMBLE,
10015         IPW_PRIV_GET_PREAMBLE,
10016         IPW_PRIV_RESET,
10017         IPW_PRIV_SW_RESET,
10018 #ifdef CONFIG_IPW2200_MONITOR
10019         IPW_PRIV_SET_MONITOR,
10020 #endif
10021 };
10022
10023 static struct iw_priv_args ipw_priv_args[] = {
10024         {
10025          .cmd = IPW_PRIV_SET_POWER,
10026          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10027          .name = "set_power"},
10028         {
10029          .cmd = IPW_PRIV_GET_POWER,
10030          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10031          .name = "get_power"},
10032         {
10033          .cmd = IPW_PRIV_SET_MODE,
10034          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10035          .name = "set_mode"},
10036         {
10037          .cmd = IPW_PRIV_GET_MODE,
10038          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10039          .name = "get_mode"},
10040         {
10041          .cmd = IPW_PRIV_SET_PREAMBLE,
10042          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10043          .name = "set_preamble"},
10044         {
10045          .cmd = IPW_PRIV_GET_PREAMBLE,
10046          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10047          .name = "get_preamble"},
10048         {
10049          IPW_PRIV_RESET,
10050          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10051         {
10052          IPW_PRIV_SW_RESET,
10053          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10054 #ifdef CONFIG_IPW2200_MONITOR
10055         {
10056          IPW_PRIV_SET_MONITOR,
10057          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10058 #endif                          /* CONFIG_IPW2200_MONITOR */
10059 };
10060
10061 static iw_handler ipw_priv_handler[] = {
10062         ipw_wx_set_powermode,
10063         ipw_wx_get_powermode,
10064         ipw_wx_set_wireless_mode,
10065         ipw_wx_get_wireless_mode,
10066         ipw_wx_set_preamble,
10067         ipw_wx_get_preamble,
10068         ipw_wx_reset,
10069         ipw_wx_sw_reset,
10070 #ifdef CONFIG_IPW2200_MONITOR
10071         ipw_wx_set_monitor,
10072 #endif
10073 };
10074
10075 static struct iw_handler_def ipw_wx_handler_def = {
10076         .standard = ipw_wx_handlers,
10077         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10078         .num_private = ARRAY_SIZE(ipw_priv_handler),
10079         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10080         .private = ipw_priv_handler,
10081         .private_args = ipw_priv_args,
10082         .get_wireless_stats = ipw_get_wireless_stats,
10083 };
10084
10085 /*
10086  * Get wireless statistics.
10087  * Called by /proc/net/wireless
10088  * Also called by SIOCGIWSTATS
10089  */
10090 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10091 {
10092         struct ipw_priv *priv = ieee80211_priv(dev);
10093         struct iw_statistics *wstats;
10094
10095         wstats = &priv->wstats;
10096
10097         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10098          * netdev->get_wireless_stats seems to be called before fw is
10099          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10100          * and associated; if not associcated, the values are all meaningless
10101          * anyway, so set them all to NULL and INVALID */
10102         if (!(priv->status & STATUS_ASSOCIATED)) {
10103                 wstats->miss.beacon = 0;
10104                 wstats->discard.retries = 0;
10105                 wstats->qual.qual = 0;
10106                 wstats->qual.level = 0;
10107                 wstats->qual.noise = 0;
10108                 wstats->qual.updated = 7;
10109                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10110                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10111                 return wstats;
10112         }
10113
10114         wstats->qual.qual = priv->quality;
10115         wstats->qual.level = priv->exp_avg_rssi;
10116         wstats->qual.noise = priv->exp_avg_noise;
10117         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10118             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10119
10120         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10121         wstats->discard.retries = priv->last_tx_failures;
10122         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10123
10124 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10125         goto fail_get_ordinal;
10126         wstats->discard.retries += tx_retry; */
10127
10128         return wstats;
10129 }
10130
10131 /* net device stuff */
10132
10133 static  void init_sys_config(struct ipw_sys_config *sys_config)
10134 {
10135         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10136         sys_config->bt_coexistence = 0;
10137         sys_config->answer_broadcast_ssid_probe = 0;
10138         sys_config->accept_all_data_frames = 0;
10139         sys_config->accept_non_directed_frames = 1;
10140         sys_config->exclude_unicast_unencrypted = 0;
10141         sys_config->disable_unicast_decryption = 1;
10142         sys_config->exclude_multicast_unencrypted = 0;
10143         sys_config->disable_multicast_decryption = 1;
10144         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10145                 antenna = CFG_SYS_ANTENNA_BOTH;
10146         sys_config->antenna_diversity = antenna;
10147         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10148         sys_config->dot11g_auto_detection = 0;
10149         sys_config->enable_cts_to_self = 0;
10150         sys_config->bt_coexist_collision_thr = 0;
10151         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10152         sys_config->silence_threshold = 0x1e;
10153 }
10154
10155 static int ipw_net_open(struct net_device *dev)
10156 {
10157         struct ipw_priv *priv = ieee80211_priv(dev);
10158         IPW_DEBUG_INFO("dev->open\n");
10159         /* we should be verifying the device is ready to be opened */
10160         mutex_lock(&priv->mutex);
10161         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10162             (priv->status & STATUS_ASSOCIATED))
10163                 netif_start_queue(dev);
10164         mutex_unlock(&priv->mutex);
10165         return 0;
10166 }
10167
10168 static int ipw_net_stop(struct net_device *dev)
10169 {
10170         IPW_DEBUG_INFO("dev->close\n");
10171         netif_stop_queue(dev);
10172         return 0;
10173 }
10174
10175 /*
10176 todo:
10177
10178 modify to send one tfd per fragment instead of using chunking.  otherwise
10179 we need to heavily modify the ieee80211_skb_to_txb.
10180 */
10181
10182 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10183                              int pri)
10184 {
10185         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10186             txb->fragments[0]->data;
10187         int i = 0;
10188         struct tfd_frame *tfd;
10189 #ifdef CONFIG_IPW2200_QOS
10190         int tx_id = ipw_get_tx_queue_number(priv, pri);
10191         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10192 #else
10193         struct clx2_tx_queue *txq = &priv->txq[0];
10194 #endif
10195         struct clx2_queue *q = &txq->q;
10196         u8 id, hdr_len, unicast;
10197         u16 remaining_bytes;
10198         int fc;
10199
10200         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10201         switch (priv->ieee->iw_mode) {
10202         case IW_MODE_ADHOC:
10203                 unicast = !is_multicast_ether_addr(hdr->addr1);
10204                 id = ipw_find_station(priv, hdr->addr1);
10205                 if (id == IPW_INVALID_STATION) {
10206                         id = ipw_add_station(priv, hdr->addr1);
10207                         if (id == IPW_INVALID_STATION) {
10208                                 IPW_WARNING("Attempt to send data to "
10209                                             "invalid cell: " MAC_FMT "\n",
10210                                             hdr->addr1[0], hdr->addr1[1],
10211                                             hdr->addr1[2], hdr->addr1[3],
10212                                             hdr->addr1[4], hdr->addr1[5]);
10213                                 goto drop;
10214                         }
10215                 }
10216                 break;
10217
10218         case IW_MODE_INFRA:
10219         default:
10220                 unicast = !is_multicast_ether_addr(hdr->addr3);
10221                 id = 0;
10222                 break;
10223         }
10224
10225         tfd = &txq->bd[q->first_empty];
10226         txq->txb[q->first_empty] = txb;
10227         memset(tfd, 0, sizeof(*tfd));
10228         tfd->u.data.station_number = id;
10229
10230         tfd->control_flags.message_type = TX_FRAME_TYPE;
10231         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10232
10233         tfd->u.data.cmd_id = DINO_CMD_TX;
10234         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10235         remaining_bytes = txb->payload_size;
10236
10237         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10238                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10239         else
10240                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10241
10242         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10243                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10244
10245         fc = le16_to_cpu(hdr->frame_ctl);
10246         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10247
10248         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10249
10250         if (likely(unicast))
10251                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10252
10253         if (txb->encrypted && !priv->ieee->host_encrypt) {
10254                 switch (priv->ieee->sec.level) {
10255                 case SEC_LEVEL_3:
10256                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10257                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10258                         /* XXX: ACK flag must be set for CCMP even if it
10259                          * is a multicast/broadcast packet, because CCMP
10260                          * group communication encrypted by GTK is
10261                          * actually done by the AP. */
10262                         if (!unicast)
10263                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10264
10265                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10266                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10267                         tfd->u.data.key_index = 0;
10268                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10269                         break;
10270                 case SEC_LEVEL_2:
10271                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10272                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10273                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10274                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10275                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10276                         break;
10277                 case SEC_LEVEL_1:
10278                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10279                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10280                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10281                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10282                             40)
10283                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10284                         else
10285                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10286                         break;
10287                 case SEC_LEVEL_0:
10288                         break;
10289                 default:
10290                         printk(KERN_ERR "Unknow security level %d\n",
10291                                priv->ieee->sec.level);
10292                         break;
10293                 }
10294         } else
10295                 /* No hardware encryption */
10296                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10297
10298 #ifdef CONFIG_IPW2200_QOS
10299         if (fc & IEEE80211_STYPE_QOS_DATA)
10300                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10301 #endif                          /* CONFIG_IPW2200_QOS */
10302
10303         /* payload */
10304         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10305                                                  txb->nr_frags));
10306         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10307                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10308         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10309                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10310                                i, le32_to_cpu(tfd->u.data.num_chunks),
10311                                txb->fragments[i]->len - hdr_len);
10312                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10313                              i, tfd->u.data.num_chunks,
10314                              txb->fragments[i]->len - hdr_len);
10315                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10316                            txb->fragments[i]->len - hdr_len);
10317
10318                 tfd->u.data.chunk_ptr[i] =
10319                     cpu_to_le32(pci_map_single
10320                                 (priv->pci_dev,
10321                                  txb->fragments[i]->data + hdr_len,
10322                                  txb->fragments[i]->len - hdr_len,
10323                                  PCI_DMA_TODEVICE));
10324                 tfd->u.data.chunk_len[i] =
10325                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10326         }
10327
10328         if (i != txb->nr_frags) {
10329                 struct sk_buff *skb;
10330                 u16 remaining_bytes = 0;
10331                 int j;
10332
10333                 for (j = i; j < txb->nr_frags; j++)
10334                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10335
10336                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10337                        remaining_bytes);
10338                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10339                 if (skb != NULL) {
10340                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10341                         for (j = i; j < txb->nr_frags; j++) {
10342                                 int size = txb->fragments[j]->len - hdr_len;
10343
10344                                 printk(KERN_INFO "Adding frag %d %d...\n",
10345                                        j, size);
10346                                 memcpy(skb_put(skb, size),
10347                                        txb->fragments[j]->data + hdr_len, size);
10348                         }
10349                         dev_kfree_skb_any(txb->fragments[i]);
10350                         txb->fragments[i] = skb;
10351                         tfd->u.data.chunk_ptr[i] =
10352                             cpu_to_le32(pci_map_single
10353                                         (priv->pci_dev, skb->data,
10354                                          remaining_bytes,
10355                                          PCI_DMA_TODEVICE));
10356
10357                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10358                 }
10359         }
10360
10361         /* kick DMA */
10362         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10363         ipw_write32(priv, q->reg_w, q->first_empty);
10364
10365         if (ipw_tx_queue_space(q) < q->high_mark)
10366                 netif_stop_queue(priv->net_dev);
10367
10368         return NETDEV_TX_OK;
10369
10370       drop:
10371         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10372         ieee80211_txb_free(txb);
10373         return NETDEV_TX_OK;
10374 }
10375
10376 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10377 {
10378         struct ipw_priv *priv = ieee80211_priv(dev);
10379 #ifdef CONFIG_IPW2200_QOS
10380         int tx_id = ipw_get_tx_queue_number(priv, pri);
10381         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10382 #else
10383         struct clx2_tx_queue *txq = &priv->txq[0];
10384 #endif                          /* CONFIG_IPW2200_QOS */
10385
10386         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10387                 return 1;
10388
10389         return 0;
10390 }
10391
10392 #ifdef CONFIG_IPW2200_PROMISCUOUS
10393 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10394                                       struct ieee80211_txb *txb)
10395 {
10396         struct ieee80211_rx_stats dummystats;
10397         struct ieee80211_hdr *hdr;
10398         u8 n;
10399         u16 filter = priv->prom_priv->filter;
10400         int hdr_only = 0;
10401
10402         if (filter & IPW_PROM_NO_TX)
10403                 return;
10404
10405         memset(&dummystats, 0, sizeof(dummystats));
10406
10407         /* Filtering of fragment chains is done agains the first fragment */
10408         hdr = (void *)txb->fragments[0]->data;
10409         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10410                 if (filter & IPW_PROM_NO_MGMT)
10411                         return;
10412                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10413                         hdr_only = 1;
10414         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10415                 if (filter & IPW_PROM_NO_CTL)
10416                         return;
10417                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10418                         hdr_only = 1;
10419         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10420                 if (filter & IPW_PROM_NO_DATA)
10421                         return;
10422                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10423                         hdr_only = 1;
10424         }
10425
10426         for(n=0; n<txb->nr_frags; ++n) {
10427                 struct sk_buff *src = txb->fragments[n];
10428                 struct sk_buff *dst;
10429                 struct ieee80211_radiotap_header *rt_hdr;
10430                 int len;
10431
10432                 if (hdr_only) {
10433                         hdr = (void *)src->data;
10434                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10435                 } else
10436                         len = src->len;
10437
10438                 dst = alloc_skb(
10439                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10440                 if (!dst) continue;
10441
10442                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10443
10444                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10445                 rt_hdr->it_pad = 0;
10446                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10447                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10448
10449                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10450                         ieee80211chan2mhz(priv->channel));
10451                 if (priv->channel > 14)         /* 802.11a */
10452                         *(__le16*)skb_put(dst, sizeof(u16)) =
10453                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10454                                              IEEE80211_CHAN_5GHZ);
10455                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10456                         *(__le16*)skb_put(dst, sizeof(u16)) =
10457                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10458                                              IEEE80211_CHAN_2GHZ);
10459                 else            /* 802.11g */
10460                         *(__le16*)skb_put(dst, sizeof(u16)) =
10461                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10462                                  IEEE80211_CHAN_2GHZ);
10463
10464                 rt_hdr->it_len = cpu_to_le16(dst->len);
10465
10466                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10467
10468                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10469                         dev_kfree_skb_any(dst);
10470         }
10471 }
10472 #endif
10473
10474 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10475                                    struct net_device *dev, int pri)
10476 {
10477         struct ipw_priv *priv = ieee80211_priv(dev);
10478         unsigned long flags;
10479         int ret;
10480
10481         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10482         spin_lock_irqsave(&priv->lock, flags);
10483
10484         if (!(priv->status & STATUS_ASSOCIATED)) {
10485                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10486                 priv->ieee->stats.tx_carrier_errors++;
10487                 netif_stop_queue(dev);
10488                 goto fail_unlock;
10489         }
10490
10491 #ifdef CONFIG_IPW2200_PROMISCUOUS
10492         if (rtap_iface && netif_running(priv->prom_net_dev))
10493                 ipw_handle_promiscuous_tx(priv, txb);
10494 #endif
10495
10496         ret = ipw_tx_skb(priv, txb, pri);
10497         if (ret == NETDEV_TX_OK)
10498                 __ipw_led_activity_on(priv);
10499         spin_unlock_irqrestore(&priv->lock, flags);
10500
10501         return ret;
10502
10503       fail_unlock:
10504         spin_unlock_irqrestore(&priv->lock, flags);
10505         return 1;
10506 }
10507
10508 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10509 {
10510         struct ipw_priv *priv = ieee80211_priv(dev);
10511
10512         priv->ieee->stats.tx_packets = priv->tx_packets;
10513         priv->ieee->stats.rx_packets = priv->rx_packets;
10514         return &priv->ieee->stats;
10515 }
10516
10517 static void ipw_net_set_multicast_list(struct net_device *dev)
10518 {
10519
10520 }
10521
10522 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10523 {
10524         struct ipw_priv *priv = ieee80211_priv(dev);
10525         struct sockaddr *addr = p;
10526         DECLARE_MAC_BUF(mac);
10527
10528         if (!is_valid_ether_addr(addr->sa_data))
10529                 return -EADDRNOTAVAIL;
10530         mutex_lock(&priv->mutex);
10531         priv->config |= CFG_CUSTOM_MAC;
10532         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10533         printk(KERN_INFO "%s: Setting MAC to %s\n",
10534                priv->net_dev->name, print_mac(mac, priv->mac_addr));
10535         queue_work(priv->workqueue, &priv->adapter_restart);
10536         mutex_unlock(&priv->mutex);
10537         return 0;
10538 }
10539
10540 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10541                                     struct ethtool_drvinfo *info)
10542 {
10543         struct ipw_priv *p = ieee80211_priv(dev);
10544         char vers[64];
10545         char date[32];
10546         u32 len;
10547
10548         strcpy(info->driver, DRV_NAME);
10549         strcpy(info->version, DRV_VERSION);
10550
10551         len = sizeof(vers);
10552         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10553         len = sizeof(date);
10554         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10555
10556         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10557                  vers, date);
10558         strcpy(info->bus_info, pci_name(p->pci_dev));
10559         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10560 }
10561
10562 static u32 ipw_ethtool_get_link(struct net_device *dev)
10563 {
10564         struct ipw_priv *priv = ieee80211_priv(dev);
10565         return (priv->status & STATUS_ASSOCIATED) != 0;
10566 }
10567
10568 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10569 {
10570         return IPW_EEPROM_IMAGE_SIZE;
10571 }
10572
10573 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10574                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10575 {
10576         struct ipw_priv *p = ieee80211_priv(dev);
10577
10578         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10579                 return -EINVAL;
10580         mutex_lock(&p->mutex);
10581         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10582         mutex_unlock(&p->mutex);
10583         return 0;
10584 }
10585
10586 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10587                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10588 {
10589         struct ipw_priv *p = ieee80211_priv(dev);
10590         int i;
10591
10592         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10593                 return -EINVAL;
10594         mutex_lock(&p->mutex);
10595         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10596         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10597                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10598         mutex_unlock(&p->mutex);
10599         return 0;
10600 }
10601
10602 static const struct ethtool_ops ipw_ethtool_ops = {
10603         .get_link = ipw_ethtool_get_link,
10604         .get_drvinfo = ipw_ethtool_get_drvinfo,
10605         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10606         .get_eeprom = ipw_ethtool_get_eeprom,
10607         .set_eeprom = ipw_ethtool_set_eeprom,
10608 };
10609
10610 static irqreturn_t ipw_isr(int irq, void *data)
10611 {
10612         struct ipw_priv *priv = data;
10613         u32 inta, inta_mask;
10614
10615         if (!priv)
10616                 return IRQ_NONE;
10617
10618         spin_lock(&priv->irq_lock);
10619
10620         if (!(priv->status & STATUS_INT_ENABLED)) {
10621                 /* IRQ is disabled */
10622                 goto none;
10623         }
10624
10625         inta = ipw_read32(priv, IPW_INTA_RW);
10626         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10627
10628         if (inta == 0xFFFFFFFF) {
10629                 /* Hardware disappeared */
10630                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10631                 goto none;
10632         }
10633
10634         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10635                 /* Shared interrupt */
10636                 goto none;
10637         }
10638
10639         /* tell the device to stop sending interrupts */
10640         __ipw_disable_interrupts(priv);
10641
10642         /* ack current interrupts */
10643         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10644         ipw_write32(priv, IPW_INTA_RW, inta);
10645
10646         /* Cache INTA value for our tasklet */
10647         priv->isr_inta = inta;
10648
10649         tasklet_schedule(&priv->irq_tasklet);
10650
10651         spin_unlock(&priv->irq_lock);
10652
10653         return IRQ_HANDLED;
10654       none:
10655         spin_unlock(&priv->irq_lock);
10656         return IRQ_NONE;
10657 }
10658
10659 static void ipw_rf_kill(void *adapter)
10660 {
10661         struct ipw_priv *priv = adapter;
10662         unsigned long flags;
10663
10664         spin_lock_irqsave(&priv->lock, flags);
10665
10666         if (rf_kill_active(priv)) {
10667                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10668                 if (priv->workqueue)
10669                         queue_delayed_work(priv->workqueue,
10670                                            &priv->rf_kill, 2 * HZ);
10671                 goto exit_unlock;
10672         }
10673
10674         /* RF Kill is now disabled, so bring the device back up */
10675
10676         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10677                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10678                                   "device\n");
10679
10680                 /* we can not do an adapter restart while inside an irq lock */
10681                 queue_work(priv->workqueue, &priv->adapter_restart);
10682         } else
10683                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10684                                   "enabled\n");
10685
10686       exit_unlock:
10687         spin_unlock_irqrestore(&priv->lock, flags);
10688 }
10689
10690 static void ipw_bg_rf_kill(struct work_struct *work)
10691 {
10692         struct ipw_priv *priv =
10693                 container_of(work, struct ipw_priv, rf_kill.work);
10694         mutex_lock(&priv->mutex);
10695         ipw_rf_kill(priv);
10696         mutex_unlock(&priv->mutex);
10697 }
10698
10699 static void ipw_link_up(struct ipw_priv *priv)
10700 {
10701         priv->last_seq_num = -1;
10702         priv->last_frag_num = -1;
10703         priv->last_packet_time = 0;
10704
10705         netif_carrier_on(priv->net_dev);
10706         if (netif_queue_stopped(priv->net_dev)) {
10707                 IPW_DEBUG_NOTIF("waking queue\n");
10708                 netif_wake_queue(priv->net_dev);
10709         } else {
10710                 IPW_DEBUG_NOTIF("starting queue\n");
10711                 netif_start_queue(priv->net_dev);
10712         }
10713
10714         cancel_delayed_work(&priv->request_scan);
10715         cancel_delayed_work(&priv->request_direct_scan);
10716         cancel_delayed_work(&priv->request_passive_scan);
10717         cancel_delayed_work(&priv->scan_event);
10718         ipw_reset_stats(priv);
10719         /* Ensure the rate is updated immediately */
10720         priv->last_rate = ipw_get_current_rate(priv);
10721         ipw_gather_stats(priv);
10722         ipw_led_link_up(priv);
10723         notify_wx_assoc_event(priv);
10724
10725         if (priv->config & CFG_BACKGROUND_SCAN)
10726                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10727 }
10728
10729 static void ipw_bg_link_up(struct work_struct *work)
10730 {
10731         struct ipw_priv *priv =
10732                 container_of(work, struct ipw_priv, link_up);
10733         mutex_lock(&priv->mutex);
10734         ipw_link_up(priv);
10735         mutex_unlock(&priv->mutex);
10736 }
10737
10738 static void ipw_link_down(struct ipw_priv *priv)
10739 {
10740         ipw_led_link_down(priv);
10741         netif_carrier_off(priv->net_dev);
10742         netif_stop_queue(priv->net_dev);
10743         notify_wx_assoc_event(priv);
10744
10745         /* Cancel any queued work ... */
10746         cancel_delayed_work(&priv->request_scan);
10747         cancel_delayed_work(&priv->request_direct_scan);
10748         cancel_delayed_work(&priv->request_passive_scan);
10749         cancel_delayed_work(&priv->adhoc_check);
10750         cancel_delayed_work(&priv->gather_stats);
10751
10752         ipw_reset_stats(priv);
10753
10754         if (!(priv->status & STATUS_EXIT_PENDING)) {
10755                 /* Queue up another scan... */
10756                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10757         } else
10758                 cancel_delayed_work(&priv->scan_event);
10759 }
10760
10761 static void ipw_bg_link_down(struct work_struct *work)
10762 {
10763         struct ipw_priv *priv =
10764                 container_of(work, struct ipw_priv, link_down);
10765         mutex_lock(&priv->mutex);
10766         ipw_link_down(priv);
10767         mutex_unlock(&priv->mutex);
10768 }
10769
10770 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10771 {
10772         int ret = 0;
10773
10774         priv->workqueue = create_workqueue(DRV_NAME);
10775         init_waitqueue_head(&priv->wait_command_queue);
10776         init_waitqueue_head(&priv->wait_state);
10777
10778         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10779         INIT_WORK(&priv->associate, ipw_bg_associate);
10780         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10781         INIT_WORK(&priv->system_config, ipw_system_config);
10782         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10783         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10784         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10785         INIT_WORK(&priv->up, ipw_bg_up);
10786         INIT_WORK(&priv->down, ipw_bg_down);
10787         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10788         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10789         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10790         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10791         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10792         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10793         INIT_WORK(&priv->roam, ipw_bg_roam);
10794         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10795         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10796         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10797         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10798         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10799         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10800         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10801
10802 #ifdef CONFIG_IPW2200_QOS
10803         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10804 #endif                          /* CONFIG_IPW2200_QOS */
10805
10806         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10807                      ipw_irq_tasklet, (unsigned long)priv);
10808
10809         return ret;
10810 }
10811
10812 static void shim__set_security(struct net_device *dev,
10813                                struct ieee80211_security *sec)
10814 {
10815         struct ipw_priv *priv = ieee80211_priv(dev);
10816         int i;
10817         for (i = 0; i < 4; i++) {
10818                 if (sec->flags & (1 << i)) {
10819                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10820                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10821                         if (sec->key_sizes[i] == 0)
10822                                 priv->ieee->sec.flags &= ~(1 << i);
10823                         else {
10824                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10825                                        sec->key_sizes[i]);
10826                                 priv->ieee->sec.flags |= (1 << i);
10827                         }
10828                         priv->status |= STATUS_SECURITY_UPDATED;
10829                 } else if (sec->level != SEC_LEVEL_1)
10830                         priv->ieee->sec.flags &= ~(1 << i);
10831         }
10832
10833         if (sec->flags & SEC_ACTIVE_KEY) {
10834                 if (sec->active_key <= 3) {
10835                         priv->ieee->sec.active_key = sec->active_key;
10836                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10837                 } else
10838                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10839                 priv->status |= STATUS_SECURITY_UPDATED;
10840         } else
10841                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10842
10843         if ((sec->flags & SEC_AUTH_MODE) &&
10844             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10845                 priv->ieee->sec.auth_mode = sec->auth_mode;
10846                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10847                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10848                         priv->capability |= CAP_SHARED_KEY;
10849                 else
10850                         priv->capability &= ~CAP_SHARED_KEY;
10851                 priv->status |= STATUS_SECURITY_UPDATED;
10852         }
10853
10854         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10855                 priv->ieee->sec.flags |= SEC_ENABLED;
10856                 priv->ieee->sec.enabled = sec->enabled;
10857                 priv->status |= STATUS_SECURITY_UPDATED;
10858                 if (sec->enabled)
10859                         priv->capability |= CAP_PRIVACY_ON;
10860                 else
10861                         priv->capability &= ~CAP_PRIVACY_ON;
10862         }
10863
10864         if (sec->flags & SEC_ENCRYPT)
10865                 priv->ieee->sec.encrypt = sec->encrypt;
10866
10867         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10868                 priv->ieee->sec.level = sec->level;
10869                 priv->ieee->sec.flags |= SEC_LEVEL;
10870                 priv->status |= STATUS_SECURITY_UPDATED;
10871         }
10872
10873         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10874                 ipw_set_hwcrypto_keys(priv);
10875
10876         /* To match current functionality of ipw2100 (which works well w/
10877          * various supplicants, we don't force a disassociate if the
10878          * privacy capability changes ... */
10879 #if 0
10880         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10881             (((priv->assoc_request.capability &
10882                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10883              (!(priv->assoc_request.capability &
10884                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10885                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10886                                 "change.\n");
10887                 ipw_disassociate(priv);
10888         }
10889 #endif
10890 }
10891
10892 static int init_supported_rates(struct ipw_priv *priv,
10893                                 struct ipw_supported_rates *rates)
10894 {
10895         /* TODO: Mask out rates based on priv->rates_mask */
10896
10897         memset(rates, 0, sizeof(*rates));
10898         /* configure supported rates */
10899         switch (priv->ieee->freq_band) {
10900         case IEEE80211_52GHZ_BAND:
10901                 rates->ieee_mode = IPW_A_MODE;
10902                 rates->purpose = IPW_RATE_CAPABILITIES;
10903                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10904                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10905                 break;
10906
10907         default:                /* Mixed or 2.4Ghz */
10908                 rates->ieee_mode = IPW_G_MODE;
10909                 rates->purpose = IPW_RATE_CAPABILITIES;
10910                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10911                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10912                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10913                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10914                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10915                 }
10916                 break;
10917         }
10918
10919         return 0;
10920 }
10921
10922 static int ipw_config(struct ipw_priv *priv)
10923 {
10924         /* This is only called from ipw_up, which resets/reloads the firmware
10925            so, we don't need to first disable the card before we configure
10926            it */
10927         if (ipw_set_tx_power(priv))
10928                 goto error;
10929
10930         /* initialize adapter address */
10931         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10932                 goto error;
10933
10934         /* set basic system config settings */
10935         init_sys_config(&priv->sys_config);
10936
10937         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10938          * Does not support BT priority yet (don't abort or defer our Tx) */
10939         if (bt_coexist) {
10940                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10941
10942                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10943                         priv->sys_config.bt_coexistence
10944                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10945                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10946                         priv->sys_config.bt_coexistence
10947                             |= CFG_BT_COEXISTENCE_OOB;
10948         }
10949
10950 #ifdef CONFIG_IPW2200_PROMISCUOUS
10951         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10952                 priv->sys_config.accept_all_data_frames = 1;
10953                 priv->sys_config.accept_non_directed_frames = 1;
10954                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10955                 priv->sys_config.accept_all_mgmt_frames = 1;
10956         }
10957 #endif
10958
10959         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10960                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10961         else
10962                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10963
10964         if (ipw_send_system_config(priv))
10965                 goto error;
10966
10967         init_supported_rates(priv, &priv->rates);
10968         if (ipw_send_supported_rates(priv, &priv->rates))
10969                 goto error;
10970
10971         /* Set request-to-send threshold */
10972         if (priv->rts_threshold) {
10973                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10974                         goto error;
10975         }
10976 #ifdef CONFIG_IPW2200_QOS
10977         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10978         ipw_qos_activate(priv, NULL);
10979 #endif                          /* CONFIG_IPW2200_QOS */
10980
10981         if (ipw_set_random_seed(priv))
10982                 goto error;
10983
10984         /* final state transition to the RUN state */
10985         if (ipw_send_host_complete(priv))
10986                 goto error;
10987
10988         priv->status |= STATUS_INIT;
10989
10990         ipw_led_init(priv);
10991         ipw_led_radio_on(priv);
10992         priv->notif_missed_beacons = 0;
10993
10994         /* Set hardware WEP key if it is configured. */
10995         if ((priv->capability & CAP_PRIVACY_ON) &&
10996             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10997             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10998                 ipw_set_hwcrypto_keys(priv);
10999
11000         return 0;
11001
11002       error:
11003         return -EIO;
11004 }
11005
11006 /*
11007  * NOTE:
11008  *
11009  * These tables have been tested in conjunction with the
11010  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11011  *
11012  * Altering this values, using it on other hardware, or in geographies
11013  * not intended for resale of the above mentioned Intel adapters has
11014  * not been tested.
11015  *
11016  * Remember to update the table in README.ipw2200 when changing this
11017  * table.
11018  *
11019  */
11020 static const struct ieee80211_geo ipw_geos[] = {
11021         {                       /* Restricted */
11022          "---",
11023          .bg_channels = 11,
11024          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11025                 {2427, 4}, {2432, 5}, {2437, 6},
11026                 {2442, 7}, {2447, 8}, {2452, 9},
11027                 {2457, 10}, {2462, 11}},
11028          },
11029
11030         {                       /* Custom US/Canada */
11031          "ZZF",
11032          .bg_channels = 11,
11033          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11034                 {2427, 4}, {2432, 5}, {2437, 6},
11035                 {2442, 7}, {2447, 8}, {2452, 9},
11036                 {2457, 10}, {2462, 11}},
11037          .a_channels = 8,
11038          .a = {{5180, 36},
11039                {5200, 40},
11040                {5220, 44},
11041                {5240, 48},
11042                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11043                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11044                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11045                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11046          },
11047
11048         {                       /* Rest of World */
11049          "ZZD",
11050          .bg_channels = 13,
11051          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11052                 {2427, 4}, {2432, 5}, {2437, 6},
11053                 {2442, 7}, {2447, 8}, {2452, 9},
11054                 {2457, 10}, {2462, 11}, {2467, 12},
11055                 {2472, 13}},
11056          },
11057
11058         {                       /* Custom USA & Europe & High */
11059          "ZZA",
11060          .bg_channels = 11,
11061          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11062                 {2427, 4}, {2432, 5}, {2437, 6},
11063                 {2442, 7}, {2447, 8}, {2452, 9},
11064                 {2457, 10}, {2462, 11}},
11065          .a_channels = 13,
11066          .a = {{5180, 36},
11067                {5200, 40},
11068                {5220, 44},
11069                {5240, 48},
11070                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11071                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11072                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11073                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11074                {5745, 149},
11075                {5765, 153},
11076                {5785, 157},
11077                {5805, 161},
11078                {5825, 165}},
11079          },
11080
11081         {                       /* Custom NA & Europe */
11082          "ZZB",
11083          .bg_channels = 11,
11084          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11085                 {2427, 4}, {2432, 5}, {2437, 6},
11086                 {2442, 7}, {2447, 8}, {2452, 9},
11087                 {2457, 10}, {2462, 11}},
11088          .a_channels = 13,
11089          .a = {{5180, 36},
11090                {5200, 40},
11091                {5220, 44},
11092                {5240, 48},
11093                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11094                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11095                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11096                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11097                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11098                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11099                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11100                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11101                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11102          },
11103
11104         {                       /* Custom Japan */
11105          "ZZC",
11106          .bg_channels = 11,
11107          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11108                 {2427, 4}, {2432, 5}, {2437, 6},
11109                 {2442, 7}, {2447, 8}, {2452, 9},
11110                 {2457, 10}, {2462, 11}},
11111          .a_channels = 4,
11112          .a = {{5170, 34}, {5190, 38},
11113                {5210, 42}, {5230, 46}},
11114          },
11115
11116         {                       /* Custom */
11117          "ZZM",
11118          .bg_channels = 11,
11119          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11120                 {2427, 4}, {2432, 5}, {2437, 6},
11121                 {2442, 7}, {2447, 8}, {2452, 9},
11122                 {2457, 10}, {2462, 11}},
11123          },
11124
11125         {                       /* Europe */
11126          "ZZE",
11127          .bg_channels = 13,
11128          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11129                 {2427, 4}, {2432, 5}, {2437, 6},
11130                 {2442, 7}, {2447, 8}, {2452, 9},
11131                 {2457, 10}, {2462, 11}, {2467, 12},
11132                 {2472, 13}},
11133          .a_channels = 19,
11134          .a = {{5180, 36},
11135                {5200, 40},
11136                {5220, 44},
11137                {5240, 48},
11138                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11139                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11140                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11141                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11142                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11143                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11144                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11145                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11146                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11147                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11148                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11149                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11150                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11151                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11152                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11153          },
11154
11155         {                       /* Custom Japan */
11156          "ZZJ",
11157          .bg_channels = 14,
11158          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11159                 {2427, 4}, {2432, 5}, {2437, 6},
11160                 {2442, 7}, {2447, 8}, {2452, 9},
11161                 {2457, 10}, {2462, 11}, {2467, 12},
11162                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11163          .a_channels = 4,
11164          .a = {{5170, 34}, {5190, 38},
11165                {5210, 42}, {5230, 46}},
11166          },
11167
11168         {                       /* Rest of World */
11169          "ZZR",
11170          .bg_channels = 14,
11171          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11172                 {2427, 4}, {2432, 5}, {2437, 6},
11173                 {2442, 7}, {2447, 8}, {2452, 9},
11174                 {2457, 10}, {2462, 11}, {2467, 12},
11175                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11176                              IEEE80211_CH_PASSIVE_ONLY}},
11177          },
11178
11179         {                       /* High Band */
11180          "ZZH",
11181          .bg_channels = 13,
11182          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11183                 {2427, 4}, {2432, 5}, {2437, 6},
11184                 {2442, 7}, {2447, 8}, {2452, 9},
11185                 {2457, 10}, {2462, 11},
11186                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11187                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11188          .a_channels = 4,
11189          .a = {{5745, 149}, {5765, 153},
11190                {5785, 157}, {5805, 161}},
11191          },
11192
11193         {                       /* Custom Europe */
11194          "ZZG",
11195          .bg_channels = 13,
11196          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11197                 {2427, 4}, {2432, 5}, {2437, 6},
11198                 {2442, 7}, {2447, 8}, {2452, 9},
11199                 {2457, 10}, {2462, 11},
11200                 {2467, 12}, {2472, 13}},
11201          .a_channels = 4,
11202          .a = {{5180, 36}, {5200, 40},
11203                {5220, 44}, {5240, 48}},
11204          },
11205
11206         {                       /* Europe */
11207          "ZZK",
11208          .bg_channels = 13,
11209          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11210                 {2427, 4}, {2432, 5}, {2437, 6},
11211                 {2442, 7}, {2447, 8}, {2452, 9},
11212                 {2457, 10}, {2462, 11},
11213                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11214                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11215          .a_channels = 24,
11216          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11217                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11218                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11219                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11220                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11221                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11222                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11223                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11224                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11225                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11226                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11227                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11228                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11229                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11230                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11231                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11232                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11233                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11234                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11235                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11236                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11237                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11238                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11239                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11240          },
11241
11242         {                       /* Europe */
11243          "ZZL",
11244          .bg_channels = 11,
11245          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11246                 {2427, 4}, {2432, 5}, {2437, 6},
11247                 {2442, 7}, {2447, 8}, {2452, 9},
11248                 {2457, 10}, {2462, 11}},
11249          .a_channels = 13,
11250          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11251                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11252                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11253                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11254                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11255                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11256                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11257                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11258                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11259                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11260                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11261                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11262                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11263          }
11264 };
11265
11266 #define MAX_HW_RESTARTS 5
11267 static int ipw_up(struct ipw_priv *priv)
11268 {
11269         int rc, i, j;
11270
11271         if (priv->status & STATUS_EXIT_PENDING)
11272                 return -EIO;
11273
11274         if (cmdlog && !priv->cmdlog) {
11275                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11276                                        GFP_KERNEL);
11277                 if (priv->cmdlog == NULL) {
11278                         IPW_ERROR("Error allocating %d command log entries.\n",
11279                                   cmdlog);
11280                         return -ENOMEM;
11281                 } else {
11282                         priv->cmdlog_len = cmdlog;
11283                 }
11284         }
11285
11286         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11287                 /* Load the microcode, firmware, and eeprom.
11288                  * Also start the clocks. */
11289                 rc = ipw_load(priv);
11290                 if (rc) {
11291                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11292                         return rc;
11293                 }
11294
11295                 ipw_init_ordinals(priv);
11296                 if (!(priv->config & CFG_CUSTOM_MAC))
11297                         eeprom_parse_mac(priv, priv->mac_addr);
11298                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11299
11300                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11301                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11302                                     ipw_geos[j].name, 3))
11303                                 break;
11304                 }
11305                 if (j == ARRAY_SIZE(ipw_geos)) {
11306                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11307                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11308                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11309                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11310                         j = 0;
11311                 }
11312                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11313                         IPW_WARNING("Could not set geography.");
11314                         return 0;
11315                 }
11316
11317                 if (priv->status & STATUS_RF_KILL_SW) {
11318                         IPW_WARNING("Radio disabled by module parameter.\n");
11319                         return 0;
11320                 } else if (rf_kill_active(priv)) {
11321                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11322                                     "Kill switch must be turned off for "
11323                                     "wireless networking to work.\n");
11324                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11325                                            2 * HZ);
11326                         return 0;
11327                 }
11328
11329                 rc = ipw_config(priv);
11330                 if (!rc) {
11331                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11332
11333                         /* If configure to try and auto-associate, kick
11334                          * off a scan. */
11335                         queue_delayed_work(priv->workqueue,
11336                                            &priv->request_scan, 0);
11337
11338                         return 0;
11339                 }
11340
11341                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11342                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11343                                i, MAX_HW_RESTARTS);
11344
11345                 /* We had an error bringing up the hardware, so take it
11346                  * all the way back down so we can try again */
11347                 ipw_down(priv);
11348         }
11349
11350         /* tried to restart and config the device for as long as our
11351          * patience could withstand */
11352         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11353
11354         return -EIO;
11355 }
11356
11357 static void ipw_bg_up(struct work_struct *work)
11358 {
11359         struct ipw_priv *priv =
11360                 container_of(work, struct ipw_priv, up);
11361         mutex_lock(&priv->mutex);
11362         ipw_up(priv);
11363         mutex_unlock(&priv->mutex);
11364 }
11365
11366 static void ipw_deinit(struct ipw_priv *priv)
11367 {
11368         int i;
11369
11370         if (priv->status & STATUS_SCANNING) {
11371                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11372                 ipw_abort_scan(priv);
11373         }
11374
11375         if (priv->status & STATUS_ASSOCIATED) {
11376                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11377                 ipw_disassociate(priv);
11378         }
11379
11380         ipw_led_shutdown(priv);
11381
11382         /* Wait up to 1s for status to change to not scanning and not
11383          * associated (disassociation can take a while for a ful 802.11
11384          * exchange */
11385         for (i = 1000; i && (priv->status &
11386                              (STATUS_DISASSOCIATING |
11387                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11388                 udelay(10);
11389
11390         if (priv->status & (STATUS_DISASSOCIATING |
11391                             STATUS_ASSOCIATED | STATUS_SCANNING))
11392                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11393         else
11394                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11395
11396         /* Attempt to disable the card */
11397         ipw_send_card_disable(priv, 0);
11398
11399         priv->status &= ~STATUS_INIT;
11400 }
11401
11402 static void ipw_down(struct ipw_priv *priv)
11403 {
11404         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11405
11406         priv->status |= STATUS_EXIT_PENDING;
11407
11408         if (ipw_is_init(priv))
11409                 ipw_deinit(priv);
11410
11411         /* Wipe out the EXIT_PENDING status bit if we are not actually
11412          * exiting the module */
11413         if (!exit_pending)
11414                 priv->status &= ~STATUS_EXIT_PENDING;
11415
11416         /* tell the device to stop sending interrupts */
11417         ipw_disable_interrupts(priv);
11418
11419         /* Clear all bits but the RF Kill */
11420         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11421         netif_carrier_off(priv->net_dev);
11422         netif_stop_queue(priv->net_dev);
11423
11424         ipw_stop_nic(priv);
11425
11426         ipw_led_radio_off(priv);
11427 }
11428
11429 static void ipw_bg_down(struct work_struct *work)
11430 {
11431         struct ipw_priv *priv =
11432                 container_of(work, struct ipw_priv, down);
11433         mutex_lock(&priv->mutex);
11434         ipw_down(priv);
11435         mutex_unlock(&priv->mutex);
11436 }
11437
11438 /* Called by register_netdev() */
11439 static int ipw_net_init(struct net_device *dev)
11440 {
11441         struct ipw_priv *priv = ieee80211_priv(dev);
11442         mutex_lock(&priv->mutex);
11443
11444         if (ipw_up(priv)) {
11445                 mutex_unlock(&priv->mutex);
11446                 return -EIO;
11447         }
11448
11449         mutex_unlock(&priv->mutex);
11450         return 0;
11451 }
11452
11453 /* PCI driver stuff */
11454 static struct pci_device_id card_ids[] = {
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11457         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11458         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11459         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11460         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11461         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11462         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11463         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11464         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11465         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11466         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11467         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11468         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11469         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11470         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11471         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11472         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11473         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11474         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11475         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11476         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11477
11478         /* required last entry */
11479         {0,}
11480 };
11481
11482 MODULE_DEVICE_TABLE(pci, card_ids);
11483
11484 static struct attribute *ipw_sysfs_entries[] = {
11485         &dev_attr_rf_kill.attr,
11486         &dev_attr_direct_dword.attr,
11487         &dev_attr_indirect_byte.attr,
11488         &dev_attr_indirect_dword.attr,
11489         &dev_attr_mem_gpio_reg.attr,
11490         &dev_attr_command_event_reg.attr,
11491         &dev_attr_nic_type.attr,
11492         &dev_attr_status.attr,
11493         &dev_attr_cfg.attr,
11494         &dev_attr_error.attr,
11495         &dev_attr_event_log.attr,
11496         &dev_attr_cmd_log.attr,
11497         &dev_attr_eeprom_delay.attr,
11498         &dev_attr_ucode_version.attr,
11499         &dev_attr_rtc.attr,
11500         &dev_attr_scan_age.attr,
11501         &dev_attr_led.attr,
11502         &dev_attr_speed_scan.attr,
11503         &dev_attr_net_stats.attr,
11504         &dev_attr_channels.attr,
11505 #ifdef CONFIG_IPW2200_PROMISCUOUS
11506         &dev_attr_rtap_iface.attr,
11507         &dev_attr_rtap_filter.attr,
11508 #endif
11509         NULL
11510 };
11511
11512 static struct attribute_group ipw_attribute_group = {
11513         .name = NULL,           /* put in device directory */
11514         .attrs = ipw_sysfs_entries,
11515 };
11516
11517 #ifdef CONFIG_IPW2200_PROMISCUOUS
11518 static int ipw_prom_open(struct net_device *dev)
11519 {
11520         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11521         struct ipw_priv *priv = prom_priv->priv;
11522
11523         IPW_DEBUG_INFO("prom dev->open\n");
11524         netif_carrier_off(dev);
11525         netif_stop_queue(dev);
11526
11527         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11528                 priv->sys_config.accept_all_data_frames = 1;
11529                 priv->sys_config.accept_non_directed_frames = 1;
11530                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11531                 priv->sys_config.accept_all_mgmt_frames = 1;
11532
11533                 ipw_send_system_config(priv);
11534         }
11535
11536         return 0;
11537 }
11538
11539 static int ipw_prom_stop(struct net_device *dev)
11540 {
11541         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11542         struct ipw_priv *priv = prom_priv->priv;
11543
11544         IPW_DEBUG_INFO("prom dev->stop\n");
11545
11546         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11547                 priv->sys_config.accept_all_data_frames = 0;
11548                 priv->sys_config.accept_non_directed_frames = 0;
11549                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11550                 priv->sys_config.accept_all_mgmt_frames = 0;
11551
11552                 ipw_send_system_config(priv);
11553         }
11554
11555         return 0;
11556 }
11557
11558 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11559 {
11560         IPW_DEBUG_INFO("prom dev->xmit\n");
11561         netif_stop_queue(dev);
11562         return -EOPNOTSUPP;
11563 }
11564
11565 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11566 {
11567         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11568         return &prom_priv->ieee->stats;
11569 }
11570
11571 static int ipw_prom_alloc(struct ipw_priv *priv)
11572 {
11573         int rc = 0;
11574
11575         if (priv->prom_net_dev)
11576                 return -EPERM;
11577
11578         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11579         if (priv->prom_net_dev == NULL)
11580                 return -ENOMEM;
11581
11582         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11583         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11584         priv->prom_priv->priv = priv;
11585
11586         strcpy(priv->prom_net_dev->name, "rtap%d");
11587         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11588
11589         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11590         priv->prom_net_dev->open = ipw_prom_open;
11591         priv->prom_net_dev->stop = ipw_prom_stop;
11592         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11593         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11594
11595         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11596         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11597
11598         rc = register_netdev(priv->prom_net_dev);
11599         if (rc) {
11600                 free_ieee80211(priv->prom_net_dev);
11601                 priv->prom_net_dev = NULL;
11602                 return rc;
11603         }
11604
11605         return 0;
11606 }
11607
11608 static void ipw_prom_free(struct ipw_priv *priv)
11609 {
11610         if (!priv->prom_net_dev)
11611                 return;
11612
11613         unregister_netdev(priv->prom_net_dev);
11614         free_ieee80211(priv->prom_net_dev);
11615
11616         priv->prom_net_dev = NULL;
11617 }
11618
11619 #endif
11620
11621
11622 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11623                                    const struct pci_device_id *ent)
11624 {
11625         int err = 0;
11626         struct net_device *net_dev;
11627         void __iomem *base;
11628         u32 length, val;
11629         struct ipw_priv *priv;
11630         int i;
11631
11632         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11633         if (net_dev == NULL) {
11634                 err = -ENOMEM;
11635                 goto out;
11636         }
11637
11638         priv = ieee80211_priv(net_dev);
11639         priv->ieee = netdev_priv(net_dev);
11640
11641         priv->net_dev = net_dev;
11642         priv->pci_dev = pdev;
11643         ipw_debug_level = debug;
11644         spin_lock_init(&priv->irq_lock);
11645         spin_lock_init(&priv->lock);
11646         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11647                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11648
11649         mutex_init(&priv->mutex);
11650         if (pci_enable_device(pdev)) {
11651                 err = -ENODEV;
11652                 goto out_free_ieee80211;
11653         }
11654
11655         pci_set_master(pdev);
11656
11657         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11658         if (!err)
11659                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11660         if (err) {
11661                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11662                 goto out_pci_disable_device;
11663         }
11664
11665         pci_set_drvdata(pdev, priv);
11666
11667         err = pci_request_regions(pdev, DRV_NAME);
11668         if (err)
11669                 goto out_pci_disable_device;
11670
11671         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11672          * PCI Tx retries from interfering with C3 CPU state */
11673         pci_read_config_dword(pdev, 0x40, &val);
11674         if ((val & 0x0000ff00) != 0)
11675                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11676
11677         length = pci_resource_len(pdev, 0);
11678         priv->hw_len = length;
11679
11680         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11681         if (!base) {
11682                 err = -ENODEV;
11683                 goto out_pci_release_regions;
11684         }
11685
11686         priv->hw_base = base;
11687         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11688         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11689
11690         err = ipw_setup_deferred_work(priv);
11691         if (err) {
11692                 IPW_ERROR("Unable to setup deferred work\n");
11693                 goto out_iounmap;
11694         }
11695
11696         ipw_sw_reset(priv, 1);
11697
11698         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11699         if (err) {
11700                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11701                 goto out_destroy_workqueue;
11702         }
11703
11704         SET_NETDEV_DEV(net_dev, &pdev->dev);
11705
11706         mutex_lock(&priv->mutex);
11707
11708         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11709         priv->ieee->set_security = shim__set_security;
11710         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11711
11712 #ifdef CONFIG_IPW2200_QOS
11713         priv->ieee->is_qos_active = ipw_is_qos_active;
11714         priv->ieee->handle_probe_response = ipw_handle_beacon;
11715         priv->ieee->handle_beacon = ipw_handle_probe_response;
11716         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11717 #endif                          /* CONFIG_IPW2200_QOS */
11718
11719         priv->ieee->perfect_rssi = -20;
11720         priv->ieee->worst_rssi = -85;
11721
11722         net_dev->open = ipw_net_open;
11723         net_dev->stop = ipw_net_stop;
11724         net_dev->init = ipw_net_init;
11725         net_dev->get_stats = ipw_net_get_stats;
11726         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11727         net_dev->set_mac_address = ipw_net_set_mac_address;
11728         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11729         net_dev->wireless_data = &priv->wireless_data;
11730         net_dev->wireless_handlers = &ipw_wx_handler_def;
11731         net_dev->ethtool_ops = &ipw_ethtool_ops;
11732         net_dev->irq = pdev->irq;
11733         net_dev->base_addr = (unsigned long)priv->hw_base;
11734         net_dev->mem_start = pci_resource_start(pdev, 0);
11735         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11736
11737         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11738         if (err) {
11739                 IPW_ERROR("failed to create sysfs device attributes\n");
11740                 mutex_unlock(&priv->mutex);
11741                 goto out_release_irq;
11742         }
11743
11744         mutex_unlock(&priv->mutex);
11745         err = register_netdev(net_dev);
11746         if (err) {
11747                 IPW_ERROR("failed to register network device\n");
11748                 goto out_remove_sysfs;
11749         }
11750
11751 #ifdef CONFIG_IPW2200_PROMISCUOUS
11752         if (rtap_iface) {
11753                 err = ipw_prom_alloc(priv);
11754                 if (err) {
11755                         IPW_ERROR("Failed to register promiscuous network "
11756                                   "device (error %d).\n", err);
11757                         unregister_netdev(priv->net_dev);
11758                         goto out_remove_sysfs;
11759                 }
11760         }
11761 #endif
11762
11763         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11764                "channels, %d 802.11a channels)\n",
11765                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11766                priv->ieee->geo.a_channels);
11767
11768         return 0;
11769
11770       out_remove_sysfs:
11771         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11772       out_release_irq:
11773         free_irq(pdev->irq, priv);
11774       out_destroy_workqueue:
11775         destroy_workqueue(priv->workqueue);
11776         priv->workqueue = NULL;
11777       out_iounmap:
11778         iounmap(priv->hw_base);
11779       out_pci_release_regions:
11780         pci_release_regions(pdev);
11781       out_pci_disable_device:
11782         pci_disable_device(pdev);
11783         pci_set_drvdata(pdev, NULL);
11784       out_free_ieee80211:
11785         free_ieee80211(priv->net_dev);
11786       out:
11787         return err;
11788 }
11789
11790 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11791 {
11792         struct ipw_priv *priv = pci_get_drvdata(pdev);
11793         struct list_head *p, *q;
11794         int i;
11795
11796         if (!priv)
11797                 return;
11798
11799         mutex_lock(&priv->mutex);
11800
11801         priv->status |= STATUS_EXIT_PENDING;
11802         ipw_down(priv);
11803         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11804
11805         mutex_unlock(&priv->mutex);
11806
11807         unregister_netdev(priv->net_dev);
11808
11809         if (priv->rxq) {
11810                 ipw_rx_queue_free(priv, priv->rxq);
11811                 priv->rxq = NULL;
11812         }
11813         ipw_tx_queue_free(priv);
11814
11815         if (priv->cmdlog) {
11816                 kfree(priv->cmdlog);
11817                 priv->cmdlog = NULL;
11818         }
11819         /* ipw_down will ensure that there is no more pending work
11820          * in the workqueue's, so we can safely remove them now. */
11821         cancel_delayed_work(&priv->adhoc_check);
11822         cancel_delayed_work(&priv->gather_stats);
11823         cancel_delayed_work(&priv->request_scan);
11824         cancel_delayed_work(&priv->request_direct_scan);
11825         cancel_delayed_work(&priv->request_passive_scan);
11826         cancel_delayed_work(&priv->scan_event);
11827         cancel_delayed_work(&priv->rf_kill);
11828         cancel_delayed_work(&priv->scan_check);
11829         destroy_workqueue(priv->workqueue);
11830         priv->workqueue = NULL;
11831
11832         /* Free MAC hash list for ADHOC */
11833         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11834                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11835                         list_del(p);
11836                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11837                 }
11838         }
11839
11840         kfree(priv->error);
11841         priv->error = NULL;
11842
11843 #ifdef CONFIG_IPW2200_PROMISCUOUS
11844         ipw_prom_free(priv);
11845 #endif
11846
11847         free_irq(pdev->irq, priv);
11848         iounmap(priv->hw_base);
11849         pci_release_regions(pdev);
11850         pci_disable_device(pdev);
11851         pci_set_drvdata(pdev, NULL);
11852         free_ieee80211(priv->net_dev);
11853         free_firmware();
11854 }
11855
11856 #ifdef CONFIG_PM
11857 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11858 {
11859         struct ipw_priv *priv = pci_get_drvdata(pdev);
11860         struct net_device *dev = priv->net_dev;
11861
11862         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11863
11864         /* Take down the device; powers it off, etc. */
11865         ipw_down(priv);
11866
11867         /* Remove the PRESENT state of the device */
11868         netif_device_detach(dev);
11869
11870         pci_save_state(pdev);
11871         pci_disable_device(pdev);
11872         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11873
11874         return 0;
11875 }
11876
11877 static int ipw_pci_resume(struct pci_dev *pdev)
11878 {
11879         struct ipw_priv *priv = pci_get_drvdata(pdev);
11880         struct net_device *dev = priv->net_dev;
11881         int err;
11882         u32 val;
11883
11884         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11885
11886         pci_set_power_state(pdev, PCI_D0);
11887         err = pci_enable_device(pdev);
11888         if (err) {
11889                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11890                        dev->name);
11891                 return err;
11892         }
11893         pci_restore_state(pdev);
11894
11895         /*
11896          * Suspend/Resume resets the PCI configuration space, so we have to
11897          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11898          * from interfering with C3 CPU state. pci_restore_state won't help
11899          * here since it only restores the first 64 bytes pci config header.
11900          */
11901         pci_read_config_dword(pdev, 0x40, &val);
11902         if ((val & 0x0000ff00) != 0)
11903                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11904
11905         /* Set the device back into the PRESENT state; this will also wake
11906          * the queue of needed */
11907         netif_device_attach(dev);
11908
11909         /* Bring the device back up */
11910         queue_work(priv->workqueue, &priv->up);
11911
11912         return 0;
11913 }
11914 #endif
11915
11916 static void ipw_pci_shutdown(struct pci_dev *pdev)
11917 {
11918         struct ipw_priv *priv = pci_get_drvdata(pdev);
11919
11920         /* Take down the device; powers it off, etc. */
11921         ipw_down(priv);
11922
11923         pci_disable_device(pdev);
11924 }
11925
11926 /* driver initialization stuff */
11927 static struct pci_driver ipw_driver = {
11928         .name = DRV_NAME,
11929         .id_table = card_ids,
11930         .probe = ipw_pci_probe,
11931         .remove = __devexit_p(ipw_pci_remove),
11932 #ifdef CONFIG_PM
11933         .suspend = ipw_pci_suspend,
11934         .resume = ipw_pci_resume,
11935 #endif
11936         .shutdown = ipw_pci_shutdown,
11937 };
11938
11939 static int __init ipw_init(void)
11940 {
11941         int ret;
11942
11943         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11944         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11945
11946         ret = pci_register_driver(&ipw_driver);
11947         if (ret) {
11948                 IPW_ERROR("Unable to initialize PCI module\n");
11949                 return ret;
11950         }
11951
11952         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11953         if (ret) {
11954                 IPW_ERROR("Unable to create driver sysfs file\n");
11955                 pci_unregister_driver(&ipw_driver);
11956                 return ret;
11957         }
11958
11959         return ret;
11960 }
11961
11962 static void __exit ipw_exit(void)
11963 {
11964         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11965         pci_unregister_driver(&ipw_driver);
11966 }
11967
11968 module_param(disable, int, 0444);
11969 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11970
11971 module_param(associate, int, 0444);
11972 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11973
11974 module_param(auto_create, int, 0444);
11975 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11976
11977 module_param(led, int, 0444);
11978 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11979
11980 module_param(debug, int, 0444);
11981 MODULE_PARM_DESC(debug, "debug output mask");
11982
11983 module_param(channel, int, 0444);
11984 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11985
11986 #ifdef CONFIG_IPW2200_PROMISCUOUS
11987 module_param(rtap_iface, int, 0444);
11988 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11989 #endif
11990
11991 #ifdef CONFIG_IPW2200_QOS
11992 module_param(qos_enable, int, 0444);
11993 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11994
11995 module_param(qos_burst_enable, int, 0444);
11996 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11997
11998 module_param(qos_no_ack_mask, int, 0444);
11999 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12000
12001 module_param(burst_duration_CCK, int, 0444);
12002 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12003
12004 module_param(burst_duration_OFDM, int, 0444);
12005 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12006 #endif                          /* CONFIG_IPW2200_QOS */
12007
12008 #ifdef CONFIG_IPW2200_MONITOR
12009 module_param(mode, int, 0444);
12010 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12011 #else
12012 module_param(mode, int, 0444);
12013 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12014 #endif
12015
12016 module_param(bt_coexist, int, 0444);
12017 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12018
12019 module_param(hwcrypto, int, 0444);
12020 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12021
12022 module_param(cmdlog, int, 0444);
12023 MODULE_PARM_DESC(cmdlog,
12024                  "allocate a ring buffer for logging firmware commands");
12025
12026 module_param(roaming, int, 0444);
12027 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12028
12029 module_param(antenna, int, 0444);
12030 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12031
12032 module_exit(ipw_exit);
12033 module_init(ipw_init);