[Bug 455] Fix frequent channel change generates firmware fatal error.
[pandora-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35 #define IPW2200_VERSION "1.0.5"
36 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
37 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
38 #define DRV_VERSION     IPW2200_VERSION
39
40 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
41
42 MODULE_DESCRIPTION(DRV_DESCRIPTION);
43 MODULE_VERSION(DRV_VERSION);
44 MODULE_AUTHOR(DRV_COPYRIGHT);
45 MODULE_LICENSE("GPL");
46
47 static int cmdlog = 0;
48 static int debug = 0;
49 static int channel = 0;
50 static int mode = 0;
51
52 static u32 ipw_debug_level;
53 static int associate = 1;
54 static int auto_create = 1;
55 static int led = 0;
56 static int disable = 0;
57 static int hwcrypto = 1;
58 static const char ipw_modes[] = {
59         'a', 'b', 'g', '?'
60 };
61
62 #ifdef CONFIG_IPW_QOS
63 static int qos_enable = 0;
64 static int qos_burst_enable = 0;
65 static int qos_no_ack_mask = 0;
66 static int burst_duration_CCK = 0;
67 static int burst_duration_OFDM = 0;
68
69 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
70         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
71          QOS_TX3_CW_MIN_OFDM},
72         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
73          QOS_TX3_CW_MAX_OFDM},
74         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
75         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
76         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
77          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
78 };
79
80 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
81         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
82          QOS_TX3_CW_MIN_CCK},
83         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
84          QOS_TX3_CW_MAX_CCK},
85         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
86         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
87         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
88          QOS_TX3_TXOP_LIMIT_CCK}
89 };
90
91 static struct ieee80211_qos_parameters def_parameters_OFDM = {
92         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
93          DEF_TX3_CW_MIN_OFDM},
94         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
95          DEF_TX3_CW_MAX_OFDM},
96         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
97         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
98         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
99          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
100 };
101
102 static struct ieee80211_qos_parameters def_parameters_CCK = {
103         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
104          DEF_TX3_CW_MIN_CCK},
105         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
106          DEF_TX3_CW_MAX_CCK},
107         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
108         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
109         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
110          DEF_TX3_TXOP_LIMIT_CCK}
111 };
112
113 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
114
115 static int from_priority_to_tx_queue[] = {
116         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
117         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
118 };
119
120 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
121
122 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
123                                        *qos_param);
124 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
125                                      *qos_param);
126 #endif                          /* CONFIG_IPW_QOS */
127
128 static void ipw_remove_current_network(struct ipw_priv *priv);
129 static void ipw_rx(struct ipw_priv *priv);
130 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
131                                 struct clx2_tx_queue *txq, int qindex);
132 static int ipw_queue_reset(struct ipw_priv *priv);
133
134 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
135                              int len, int sync);
136
137 static void ipw_tx_queue_free(struct ipw_priv *);
138
139 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
140 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
141 static void ipw_rx_queue_replenish(void *);
142 static int ipw_up(struct ipw_priv *);
143 static void ipw_bg_up(void *);
144 static void ipw_down(struct ipw_priv *);
145 static void ipw_bg_down(void *);
146 static int ipw_config(struct ipw_priv *);
147 static int init_supported_rates(struct ipw_priv *priv,
148                                 struct ipw_supported_rates *prates);
149 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
150 static void ipw_send_wep_keys(struct ipw_priv *, int);
151
152 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
153 static int ipw_channel_to_index(struct ieee80211_device *, u8);
154 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
155 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
156 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
157
158 static int snprint_line(char *buf, size_t count,
159                         const u8 * data, u32 len, u32 ofs)
160 {
161         int out, i, j, l;
162         char c;
163
164         out = snprintf(buf, count, "%08X", ofs);
165
166         for (l = 0, i = 0; i < 2; i++) {
167                 out += snprintf(buf + out, count - out, " ");
168                 for (j = 0; j < 8 && l < len; j++, l++)
169                         out += snprintf(buf + out, count - out, "%02X ",
170                                         data[(i * 8 + j)]);
171                 for (; j < 8; j++)
172                         out += snprintf(buf + out, count - out, "   ");
173         }
174
175         out += snprintf(buf + out, count - out, " ");
176         for (l = 0, i = 0; i < 2; i++) {
177                 out += snprintf(buf + out, count - out, " ");
178                 for (j = 0; j < 8 && l < len; j++, l++) {
179                         c = data[(i * 8 + j)];
180                         if (!isascii(c) || !isprint(c))
181                                 c = '.';
182
183                         out += snprintf(buf + out, count - out, "%c", c);
184                 }
185
186                 for (; j < 8; j++)
187                         out += snprintf(buf + out, count - out, " ");
188         }
189
190         return out;
191 }
192
193 static void printk_buf(int level, const u8 * data, u32 len)
194 {
195         char line[81];
196         u32 ofs = 0;
197         if (!(ipw_debug_level & level))
198                 return;
199
200         while (len) {
201                 snprint_line(line, sizeof(line), &data[ofs],
202                              min(len, 16U), ofs);
203                 printk(KERN_DEBUG "%s\n", line);
204                 ofs += 16;
205                 len -= min(len, 16U);
206         }
207 }
208
209 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
210 {
211         size_t out = size;
212         u32 ofs = 0;
213         int total = 0;
214
215         while (size && len) {
216                 out = snprint_line(output, size, &data[ofs],
217                                    min_t(size_t, len, 16U), ofs);
218
219                 ofs += 16;
220                 output += out;
221                 size -= out;
222                 len -= min_t(size_t, len, 16U);
223                 total += out;
224         }
225         return total;
226 }
227
228 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
229 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
230
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
235 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
236 {
237         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
238                      __LINE__, (u32) (b), (u32) (c));
239         _ipw_write_reg8(a, b, c);
240 }
241
242 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
243 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
244 {
245         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
246                      __LINE__, (u32) (b), (u32) (c));
247         _ipw_write_reg16(a, b, c);
248 }
249
250 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
251 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
252 {
253         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
254                      __LINE__, (u32) (b), (u32) (c));
255         _ipw_write_reg32(a, b, c);
256 }
257
258 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
259 #define ipw_write8(ipw, ofs, val) \
260  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
261  _ipw_write8(ipw, ofs, val)
262
263 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
264 #define ipw_write16(ipw, ofs, val) \
265  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
266  _ipw_write16(ipw, ofs, val)
267
268 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
269 #define ipw_write32(ipw, ofs, val) \
270  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
271  _ipw_write32(ipw, ofs, val)
272
273 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
274 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
275 {
276         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
277         return _ipw_read8(ipw, ofs);
278 }
279
280 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
281
282 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
283 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
284 {
285         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
286         return _ipw_read16(ipw, ofs);
287 }
288
289 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
290
291 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
292 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
293 {
294         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
295         return _ipw_read32(ipw, ofs);
296 }
297
298 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
299
300 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
301 static inline void __ipw_read_indirect(const char *f, int l,
302                                        struct ipw_priv *a, u32 b, u8 * c, int d)
303 {
304         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
305                      d);
306         _ipw_read_indirect(a, b, c, d);
307 }
308
309 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
310
311 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
312                                 int num);
313 #define ipw_write_indirect(a, b, c, d) \
314         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
315         _ipw_write_indirect(a, b, c, d)
316
317 /* indirect write s */
318 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
319 {
320         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
321         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
322         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
323 }
324
325 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
326 {
327         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
328         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
329         _ipw_write8(priv, IPW_INDIRECT_DATA, value);
330 }
331
332 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
333 {
334         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
335         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
336         _ipw_write16(priv, IPW_INDIRECT_DATA, value);
337 }
338
339 /* indirect read s */
340
341 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
342 {
343         u32 word;
344         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
345         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
346         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
347         return (word >> ((reg & 0x3) * 8)) & 0xff;
348 }
349
350 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
351 {
352         u32 value;
353
354         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
355
356         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
357         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
358         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
359         return value;
360 }
361
362 /* iterative/auto-increment 32 bit reads and writes */
363 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
364                                int num)
365 {
366         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
367         u32 dif_len = addr - aligned_addr;
368         u32 i;
369
370         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
371
372         if (num <= 0) {
373                 return;
374         }
375
376         /* Read the first nibble byte by byte */
377         if (unlikely(dif_len)) {
378                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
379                 /* Start reading at aligned_addr + dif_len */
380                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
381                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
382                 aligned_addr += 4;
383         }
384
385         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
386         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
387                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
388
389         /* Copy the last nibble */
390         if (unlikely(num)) {
391                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
392                 for (i = 0; num > 0; i++, num--)
393                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
394         }
395 }
396
397 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
398                                 int num)
399 {
400         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
401         u32 dif_len = addr - aligned_addr;
402         u32 i;
403
404         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
405
406         if (num <= 0) {
407                 return;
408         }
409
410         /* Write the first nibble byte by byte */
411         if (unlikely(dif_len)) {
412                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
413                 /* Start reading at aligned_addr + dif_len */
414                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
415                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
416                 aligned_addr += 4;
417         }
418
419         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
420         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
421                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
422
423         /* Copy the last nibble */
424         if (unlikely(num)) {
425                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426                 for (i = 0; num > 0; i++, num--, buf++)
427                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
428         }
429 }
430
431 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
432                              int num)
433 {
434         memcpy_toio((priv->hw_base + addr), buf, num);
435 }
436
437 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
438 {
439         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
440 }
441
442 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
443 {
444         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
445 }
446
447 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
448 {
449         if (priv->status & STATUS_INT_ENABLED)
450                 return;
451         priv->status |= STATUS_INT_ENABLED;
452         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
453 }
454
455 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
456 {
457         if (!(priv->status & STATUS_INT_ENABLED))
458                 return;
459         priv->status &= ~STATUS_INT_ENABLED;
460         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
461 }
462
463 #ifdef CONFIG_IPW_DEBUG
464 static char *ipw_error_desc(u32 val)
465 {
466         switch (val) {
467         case IPW_FW_ERROR_OK:
468                 return "ERROR_OK";
469         case IPW_FW_ERROR_FAIL:
470                 return "ERROR_FAIL";
471         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
472                 return "MEMORY_UNDERFLOW";
473         case IPW_FW_ERROR_MEMORY_OVERFLOW:
474                 return "MEMORY_OVERFLOW";
475         case IPW_FW_ERROR_BAD_PARAM:
476                 return "BAD_PARAM";
477         case IPW_FW_ERROR_BAD_CHECKSUM:
478                 return "BAD_CHECKSUM";
479         case IPW_FW_ERROR_NMI_INTERRUPT:
480                 return "NMI_INTERRUPT";
481         case IPW_FW_ERROR_BAD_DATABASE:
482                 return "BAD_DATABASE";
483         case IPW_FW_ERROR_ALLOC_FAIL:
484                 return "ALLOC_FAIL";
485         case IPW_FW_ERROR_DMA_UNDERRUN:
486                 return "DMA_UNDERRUN";
487         case IPW_FW_ERROR_DMA_STATUS:
488                 return "DMA_STATUS";
489         case IPW_FW_ERROR_DINO_ERROR:
490                 return "DINO_ERROR";
491         case IPW_FW_ERROR_EEPROM_ERROR:
492                 return "EEPROM_ERROR";
493         case IPW_FW_ERROR_SYSASSERT:
494                 return "SYSASSERT";
495         case IPW_FW_ERROR_FATAL_ERROR:
496                 return "FATAL_ERROR";
497         default:
498                 return "UNKNOWN_ERROR";
499         }
500 }
501
502 static void ipw_dump_error_log(struct ipw_priv *priv,
503                                struct ipw_fw_error *error)
504 {
505         u32 i;
506
507         if (!error) {
508                 IPW_ERROR("Error allocating and capturing error log.  "
509                           "Nothing to dump.\n");
510                 return;
511         }
512
513         IPW_ERROR("Start IPW Error Log Dump:\n");
514         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
515                   error->status, error->config);
516
517         for (i = 0; i < error->elem_len; i++)
518                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
519                           ipw_error_desc(error->elem[i].desc),
520                           error->elem[i].time,
521                           error->elem[i].blink1,
522                           error->elem[i].blink2,
523                           error->elem[i].link1,
524                           error->elem[i].link2, error->elem[i].data);
525         for (i = 0; i < error->log_len; i++)
526                 IPW_ERROR("%i\t0x%08x\t%i\n",
527                           error->log[i].time,
528                           error->log[i].event, error->log[i].data);
529 }
530 #endif
531
532 static inline int ipw_is_init(struct ipw_priv *priv)
533 {
534         return (priv->status & STATUS_INIT) ? 1 : 0;
535 }
536
537 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
538 {
539         u32 addr, field_info, field_len, field_count, total_len;
540
541         IPW_DEBUG_ORD("ordinal = %i\n", ord);
542
543         if (!priv || !val || !len) {
544                 IPW_DEBUG_ORD("Invalid argument\n");
545                 return -EINVAL;
546         }
547
548         /* verify device ordinal tables have been initialized */
549         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
550                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
551                 return -EINVAL;
552         }
553
554         switch (IPW_ORD_TABLE_ID_MASK & ord) {
555         case IPW_ORD_TABLE_0_MASK:
556                 /*
557                  * TABLE 0: Direct access to a table of 32 bit values
558                  *
559                  * This is a very simple table with the data directly
560                  * read from the table
561                  */
562
563                 /* remove the table id from the ordinal */
564                 ord &= IPW_ORD_TABLE_VALUE_MASK;
565
566                 /* boundary check */
567                 if (ord > priv->table0_len) {
568                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
569                                       "max (%i)\n", ord, priv->table0_len);
570                         return -EINVAL;
571                 }
572
573                 /* verify we have enough room to store the value */
574                 if (*len < sizeof(u32)) {
575                         IPW_DEBUG_ORD("ordinal buffer length too small, "
576                                       "need %zd\n", sizeof(u32));
577                         return -EINVAL;
578                 }
579
580                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
581                               ord, priv->table0_addr + (ord << 2));
582
583                 *len = sizeof(u32);
584                 ord <<= 2;
585                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
586                 break;
587
588         case IPW_ORD_TABLE_1_MASK:
589                 /*
590                  * TABLE 1: Indirect access to a table of 32 bit values
591                  *
592                  * This is a fairly large table of u32 values each
593                  * representing starting addr for the data (which is
594                  * also a u32)
595                  */
596
597                 /* remove the table id from the ordinal */
598                 ord &= IPW_ORD_TABLE_VALUE_MASK;
599
600                 /* boundary check */
601                 if (ord > priv->table1_len) {
602                         IPW_DEBUG_ORD("ordinal value too long\n");
603                         return -EINVAL;
604                 }
605
606                 /* verify we have enough room to store the value */
607                 if (*len < sizeof(u32)) {
608                         IPW_DEBUG_ORD("ordinal buffer length too small, "
609                                       "need %zd\n", sizeof(u32));
610                         return -EINVAL;
611                 }
612
613                 *((u32 *) val) =
614                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
615                 *len = sizeof(u32);
616                 break;
617
618         case IPW_ORD_TABLE_2_MASK:
619                 /*
620                  * TABLE 2: Indirect access to a table of variable sized values
621                  *
622                  * This table consist of six values, each containing
623                  *     - dword containing the starting offset of the data
624                  *     - dword containing the lengh in the first 16bits
625                  *       and the count in the second 16bits
626                  */
627
628                 /* remove the table id from the ordinal */
629                 ord &= IPW_ORD_TABLE_VALUE_MASK;
630
631                 /* boundary check */
632                 if (ord > priv->table2_len) {
633                         IPW_DEBUG_ORD("ordinal value too long\n");
634                         return -EINVAL;
635                 }
636
637                 /* get the address of statistic */
638                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
639
640                 /* get the second DW of statistics ;
641                  * two 16-bit words - first is length, second is count */
642                 field_info =
643                     ipw_read_reg32(priv,
644                                    priv->table2_addr + (ord << 3) +
645                                    sizeof(u32));
646
647                 /* get each entry length */
648                 field_len = *((u16 *) & field_info);
649
650                 /* get number of entries */
651                 field_count = *(((u16 *) & field_info) + 1);
652
653                 /* abort if not enought memory */
654                 total_len = field_len * field_count;
655                 if (total_len > *len) {
656                         *len = total_len;
657                         return -EINVAL;
658                 }
659
660                 *len = total_len;
661                 if (!total_len)
662                         return 0;
663
664                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
665                               "field_info = 0x%08x\n",
666                               addr, total_len, field_info);
667                 ipw_read_indirect(priv, addr, val, total_len);
668                 break;
669
670         default:
671                 IPW_DEBUG_ORD("Invalid ordinal!\n");
672                 return -EINVAL;
673
674         }
675
676         return 0;
677 }
678
679 static void ipw_init_ordinals(struct ipw_priv *priv)
680 {
681         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
682         priv->table0_len = ipw_read32(priv, priv->table0_addr);
683
684         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
685                       priv->table0_addr, priv->table0_len);
686
687         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
688         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
689
690         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
691                       priv->table1_addr, priv->table1_len);
692
693         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
694         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
695         priv->table2_len &= 0x0000ffff; /* use first two bytes */
696
697         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
698                       priv->table2_addr, priv->table2_len);
699
700 }
701
702 u32 ipw_register_toggle(u32 reg)
703 {
704         reg &= ~IPW_START_STANDBY;
705         if (reg & IPW_GATE_ODMA)
706                 reg &= ~IPW_GATE_ODMA;
707         if (reg & IPW_GATE_IDMA)
708                 reg &= ~IPW_GATE_IDMA;
709         if (reg & IPW_GATE_ADMA)
710                 reg &= ~IPW_GATE_ADMA;
711         return reg;
712 }
713
714 /*
715  * LED behavior:
716  * - On radio ON, turn on any LEDs that require to be on during start
717  * - On initialization, start unassociated blink
718  * - On association, disable unassociated blink
719  * - On disassociation, start unassociated blink
720  * - On radio OFF, turn off any LEDs started during radio on
721  *
722  */
723 #define LD_TIME_LINK_ON 300
724 #define LD_TIME_LINK_OFF 2700
725 #define LD_TIME_ACT_ON 250
726
727 void ipw_led_link_on(struct ipw_priv *priv)
728 {
729         unsigned long flags;
730         u32 led;
731
732         /* If configured to not use LEDs, or nic_type is 1,
733          * then we don't toggle a LINK led */
734         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
735                 return;
736
737         spin_lock_irqsave(&priv->lock, flags);
738
739         if (!(priv->status & STATUS_RF_KILL_MASK) &&
740             !(priv->status & STATUS_LED_LINK_ON)) {
741                 IPW_DEBUG_LED("Link LED On\n");
742                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
743                 led |= priv->led_association_on;
744
745                 led = ipw_register_toggle(led);
746
747                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
748                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
749
750                 priv->status |= STATUS_LED_LINK_ON;
751
752                 /* If we aren't associated, schedule turning the LED off */
753                 if (!(priv->status & STATUS_ASSOCIATED))
754                         queue_delayed_work(priv->workqueue,
755                                            &priv->led_link_off,
756                                            LD_TIME_LINK_ON);
757         }
758
759         spin_unlock_irqrestore(&priv->lock, flags);
760 }
761
762 static void ipw_bg_led_link_on(void *data)
763 {
764         struct ipw_priv *priv = data;
765         down(&priv->sem);
766         ipw_led_link_on(data);
767         up(&priv->sem);
768 }
769
770 void ipw_led_link_off(struct ipw_priv *priv)
771 {
772         unsigned long flags;
773         u32 led;
774
775         /* If configured not to use LEDs, or nic type is 1,
776          * then we don't goggle the LINK led. */
777         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
778                 return;
779
780         spin_lock_irqsave(&priv->lock, flags);
781
782         if (priv->status & STATUS_LED_LINK_ON) {
783                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
784                 led &= priv->led_association_off;
785                 led = ipw_register_toggle(led);
786
787                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
788                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
789
790                 IPW_DEBUG_LED("Link LED Off\n");
791
792                 priv->status &= ~STATUS_LED_LINK_ON;
793
794                 /* If we aren't associated and the radio is on, schedule
795                  * turning the LED on (blink while unassociated) */
796                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
797                     !(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
799                                            LD_TIME_LINK_OFF);
800
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_off(void *data)
807 {
808         struct ipw_priv *priv = data;
809         down(&priv->sem);
810         ipw_led_link_off(data);
811         up(&priv->sem);
812 }
813
814 static inline void __ipw_led_activity_on(struct ipw_priv *priv)
815 {
816         u32 led;
817
818         if (priv->config & CFG_NO_LED)
819                 return;
820
821         if (priv->status & STATUS_RF_KILL_MASK)
822                 return;
823
824         if (!(priv->status & STATUS_LED_ACT_ON)) {
825                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
826                 led |= priv->led_activity_on;
827
828                 led = ipw_register_toggle(led);
829
830                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
831                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
832
833                 IPW_DEBUG_LED("Activity LED On\n");
834
835                 priv->status |= STATUS_LED_ACT_ON;
836
837                 cancel_delayed_work(&priv->led_act_off);
838                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
839                                    LD_TIME_ACT_ON);
840         } else {
841                 /* Reschedule LED off for full time period */
842                 cancel_delayed_work(&priv->led_act_off);
843                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
844                                    LD_TIME_ACT_ON);
845         }
846 }
847
848 void ipw_led_activity_on(struct ipw_priv *priv)
849 {
850         unsigned long flags;
851         spin_lock_irqsave(&priv->lock, flags);
852         __ipw_led_activity_on(priv);
853         spin_unlock_irqrestore(&priv->lock, flags);
854 }
855
856 void ipw_led_activity_off(struct ipw_priv *priv)
857 {
858         unsigned long flags;
859         u32 led;
860
861         if (priv->config & CFG_NO_LED)
862                 return;
863
864         spin_lock_irqsave(&priv->lock, flags);
865
866         if (priv->status & STATUS_LED_ACT_ON) {
867                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
868                 led &= priv->led_activity_off;
869
870                 led = ipw_register_toggle(led);
871
872                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
873                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
874
875                 IPW_DEBUG_LED("Activity LED Off\n");
876
877                 priv->status &= ~STATUS_LED_ACT_ON;
878         }
879
880         spin_unlock_irqrestore(&priv->lock, flags);
881 }
882
883 static void ipw_bg_led_activity_off(void *data)
884 {
885         struct ipw_priv *priv = data;
886         down(&priv->sem);
887         ipw_led_activity_off(data);
888         up(&priv->sem);
889 }
890
891 void ipw_led_band_on(struct ipw_priv *priv)
892 {
893         unsigned long flags;
894         u32 led;
895
896         /* Only nic type 1 supports mode LEDs */
897         if (priv->config & CFG_NO_LED ||
898             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
899                 return;
900
901         spin_lock_irqsave(&priv->lock, flags);
902
903         led = ipw_read_reg32(priv, IPW_EVENT_REG);
904         if (priv->assoc_network->mode == IEEE_A) {
905                 led |= priv->led_ofdm_on;
906                 led &= priv->led_association_off;
907                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
908         } else if (priv->assoc_network->mode == IEEE_G) {
909                 led |= priv->led_ofdm_on;
910                 led |= priv->led_association_on;
911                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
912         } else {
913                 led &= priv->led_ofdm_off;
914                 led |= priv->led_association_on;
915                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
916         }
917
918         led = ipw_register_toggle(led);
919
920         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
921         ipw_write_reg32(priv, IPW_EVENT_REG, led);
922
923         spin_unlock_irqrestore(&priv->lock, flags);
924 }
925
926 void ipw_led_band_off(struct ipw_priv *priv)
927 {
928         unsigned long flags;
929         u32 led;
930
931         /* Only nic type 1 supports mode LEDs */
932         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
933                 return;
934
935         spin_lock_irqsave(&priv->lock, flags);
936
937         led = ipw_read_reg32(priv, IPW_EVENT_REG);
938         led &= priv->led_ofdm_off;
939         led &= priv->led_association_off;
940
941         led = ipw_register_toggle(led);
942
943         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
944         ipw_write_reg32(priv, IPW_EVENT_REG, led);
945
946         spin_unlock_irqrestore(&priv->lock, flags);
947 }
948
949 void ipw_led_radio_on(struct ipw_priv *priv)
950 {
951         ipw_led_link_on(priv);
952 }
953
954 void ipw_led_radio_off(struct ipw_priv *priv)
955 {
956         ipw_led_activity_off(priv);
957         ipw_led_link_off(priv);
958 }
959
960 void ipw_led_link_up(struct ipw_priv *priv)
961 {
962         /* Set the Link Led on for all nic types */
963         ipw_led_link_on(priv);
964 }
965
966 void ipw_led_link_down(struct ipw_priv *priv)
967 {
968         ipw_led_activity_off(priv);
969         ipw_led_link_off(priv);
970
971         if (priv->status & STATUS_RF_KILL_MASK)
972                 ipw_led_radio_off(priv);
973 }
974
975 void ipw_led_init(struct ipw_priv *priv)
976 {
977         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
978
979         /* Set the default PINs for the link and activity leds */
980         priv->led_activity_on = IPW_ACTIVITY_LED;
981         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
982
983         priv->led_association_on = IPW_ASSOCIATED_LED;
984         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
985
986         /* Set the default PINs for the OFDM leds */
987         priv->led_ofdm_on = IPW_OFDM_LED;
988         priv->led_ofdm_off = ~(IPW_OFDM_LED);
989
990         switch (priv->nic_type) {
991         case EEPROM_NIC_TYPE_1:
992                 /* In this NIC type, the LEDs are reversed.... */
993                 priv->led_activity_on = IPW_ASSOCIATED_LED;
994                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
995                 priv->led_association_on = IPW_ACTIVITY_LED;
996                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
997
998                 if (!(priv->config & CFG_NO_LED))
999                         ipw_led_band_on(priv);
1000
1001                 /* And we don't blink link LEDs for this nic, so
1002                  * just return here */
1003                 return;
1004
1005         case EEPROM_NIC_TYPE_3:
1006         case EEPROM_NIC_TYPE_2:
1007         case EEPROM_NIC_TYPE_4:
1008         case EEPROM_NIC_TYPE_0:
1009                 break;
1010
1011         default:
1012                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1013                                priv->nic_type);
1014                 priv->nic_type = EEPROM_NIC_TYPE_0;
1015                 break;
1016         }
1017
1018         if (!(priv->config & CFG_NO_LED)) {
1019                 if (priv->status & STATUS_ASSOCIATED)
1020                         ipw_led_link_on(priv);
1021                 else
1022                         ipw_led_link_off(priv);
1023         }
1024 }
1025
1026 void ipw_led_shutdown(struct ipw_priv *priv)
1027 {
1028         ipw_led_activity_off(priv);
1029         ipw_led_link_off(priv);
1030         ipw_led_band_off(priv);
1031         cancel_delayed_work(&priv->led_link_on);
1032         cancel_delayed_work(&priv->led_link_off);
1033         cancel_delayed_work(&priv->led_act_off);
1034 }
1035
1036 /*
1037  * The following adds a new attribute to the sysfs representation
1038  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1039  * used for controling the debug level.
1040  *
1041  * See the level definitions in ipw for details.
1042  */
1043 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1044 {
1045         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1046 }
1047
1048 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1049                                  size_t count)
1050 {
1051         char *p = (char *)buf;
1052         u32 val;
1053
1054         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1055                 p++;
1056                 if (p[0] == 'x' || p[0] == 'X')
1057                         p++;
1058                 val = simple_strtoul(p, &p, 16);
1059         } else
1060                 val = simple_strtoul(p, &p, 10);
1061         if (p == buf)
1062                 printk(KERN_INFO DRV_NAME
1063                        ": %s is not in hex or decimal form.\n", buf);
1064         else
1065                 ipw_debug_level = val;
1066
1067         return strnlen(buf, count);
1068 }
1069
1070 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1071                    show_debug_level, store_debug_level);
1072
1073 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1074 {
1075         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1076 }
1077
1078 static void ipw_capture_event_log(struct ipw_priv *priv,
1079                                   u32 log_len, struct ipw_event *log)
1080 {
1081         u32 base;
1082
1083         if (log_len) {
1084                 base = ipw_read32(priv, IPW_EVENT_LOG);
1085                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1086                                   (u8 *) log, sizeof(*log) * log_len);
1087         }
1088 }
1089
1090 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1091 {
1092         struct ipw_fw_error *error;
1093         u32 log_len = ipw_get_event_log_len(priv);
1094         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1095         u32 elem_len = ipw_read_reg32(priv, base);
1096
1097         error = kmalloc(sizeof(*error) +
1098                         sizeof(*error->elem) * elem_len +
1099                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1100         if (!error) {
1101                 IPW_ERROR("Memory allocation for firmware error log "
1102                           "failed.\n");
1103                 return NULL;
1104         }
1105         error->jiffies = jiffies;
1106         error->status = priv->status;
1107         error->config = priv->config;
1108         error->elem_len = elem_len;
1109         error->log_len = log_len;
1110         error->elem = (struct ipw_error_elem *)error->payload;
1111         error->log = (struct ipw_event *)(error->elem +
1112                                           (sizeof(*error->elem) * elem_len));
1113
1114         ipw_capture_event_log(priv, log_len, error->log);
1115
1116         if (elem_len)
1117                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1118                                   sizeof(*error->elem) * elem_len);
1119
1120         return error;
1121 }
1122
1123 static void ipw_free_error_log(struct ipw_fw_error *error)
1124 {
1125         if (error)
1126                 kfree(error);
1127 }
1128
1129 static ssize_t show_event_log(struct device *d,
1130                               struct device_attribute *attr, char *buf)
1131 {
1132         struct ipw_priv *priv = dev_get_drvdata(d);
1133         u32 log_len = ipw_get_event_log_len(priv);
1134         struct ipw_event log[log_len];
1135         u32 len = 0, i;
1136
1137         ipw_capture_event_log(priv, log_len, log);
1138
1139         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1140         for (i = 0; i < log_len; i++)
1141                 len += snprintf(buf + len, PAGE_SIZE - len,
1142                                 "\n%08X%08X%08X",
1143                                 log[i].time, log[i].event, log[i].data);
1144         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1145         return len;
1146 }
1147
1148 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1149
1150 static ssize_t show_error(struct device *d,
1151                           struct device_attribute *attr, char *buf)
1152 {
1153         struct ipw_priv *priv = dev_get_drvdata(d);
1154         u32 len = 0, i;
1155         if (!priv->error)
1156                 return 0;
1157         len += snprintf(buf + len, PAGE_SIZE - len,
1158                         "%08lX%08X%08X%08X",
1159                         priv->error->jiffies,
1160                         priv->error->status,
1161                         priv->error->config, priv->error->elem_len);
1162         for (i = 0; i < priv->error->elem_len; i++)
1163                 len += snprintf(buf + len, PAGE_SIZE - len,
1164                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1165                                 priv->error->elem[i].time,
1166                                 priv->error->elem[i].desc,
1167                                 priv->error->elem[i].blink1,
1168                                 priv->error->elem[i].blink2,
1169                                 priv->error->elem[i].link1,
1170                                 priv->error->elem[i].link2,
1171                                 priv->error->elem[i].data);
1172
1173         len += snprintf(buf + len, PAGE_SIZE - len,
1174                         "\n%08X", priv->error->log_len);
1175         for (i = 0; i < priv->error->log_len; i++)
1176                 len += snprintf(buf + len, PAGE_SIZE - len,
1177                                 "\n%08X%08X%08X",
1178                                 priv->error->log[i].time,
1179                                 priv->error->log[i].event,
1180                                 priv->error->log[i].data);
1181         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1182         return len;
1183 }
1184
1185 static ssize_t clear_error(struct device *d,
1186                            struct device_attribute *attr,
1187                            const char *buf, size_t count)
1188 {
1189         struct ipw_priv *priv = dev_get_drvdata(d);
1190         if (priv->error) {
1191                 ipw_free_error_log(priv->error);
1192                 priv->error = NULL;
1193         }
1194         return count;
1195 }
1196
1197 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1198
1199 static ssize_t show_cmd_log(struct device *d,
1200                             struct device_attribute *attr, char *buf)
1201 {
1202         struct ipw_priv *priv = dev_get_drvdata(d);
1203         u32 len = 0, i;
1204         if (!priv->cmdlog)
1205                 return 0;
1206         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1207              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1208              i = (i + 1) % priv->cmdlog_len) {
1209                 len +=
1210                     snprintf(buf + len, PAGE_SIZE - len,
1211                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1212                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1213                              priv->cmdlog[i].cmd.len);
1214                 len +=
1215                     snprintk_buf(buf + len, PAGE_SIZE - len,
1216                                  (u8 *) priv->cmdlog[i].cmd.param,
1217                                  priv->cmdlog[i].cmd.len);
1218                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1219         }
1220         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1221         return len;
1222 }
1223
1224 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1225
1226 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1227                              char *buf)
1228 {
1229         struct ipw_priv *priv = dev_get_drvdata(d);
1230         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1231 }
1232
1233 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1234                               const char *buf, size_t count)
1235 {
1236         struct ipw_priv *priv = dev_get_drvdata(d);
1237 #ifdef CONFIG_IPW_DEBUG
1238         struct net_device *dev = priv->net_dev;
1239 #endif
1240         char buffer[] = "00000000";
1241         unsigned long len =
1242             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1243         unsigned long val;
1244         char *p = buffer;
1245
1246         IPW_DEBUG_INFO("enter\n");
1247
1248         strncpy(buffer, buf, len);
1249         buffer[len] = 0;
1250
1251         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1252                 p++;
1253                 if (p[0] == 'x' || p[0] == 'X')
1254                         p++;
1255                 val = simple_strtoul(p, &p, 16);
1256         } else
1257                 val = simple_strtoul(p, &p, 10);
1258         if (p == buffer) {
1259                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1260         } else {
1261                 priv->ieee->scan_age = val;
1262                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1263         }
1264
1265         IPW_DEBUG_INFO("exit\n");
1266         return len;
1267 }
1268
1269 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1270
1271 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1272                         char *buf)
1273 {
1274         struct ipw_priv *priv = dev_get_drvdata(d);
1275         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1276 }
1277
1278 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1279                          const char *buf, size_t count)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282
1283         IPW_DEBUG_INFO("enter\n");
1284
1285         if (count == 0)
1286                 return 0;
1287
1288         if (*buf == 0) {
1289                 IPW_DEBUG_LED("Disabling LED control.\n");
1290                 priv->config |= CFG_NO_LED;
1291                 ipw_led_shutdown(priv);
1292         } else {
1293                 IPW_DEBUG_LED("Enabling LED control.\n");
1294                 priv->config &= ~CFG_NO_LED;
1295                 ipw_led_init(priv);
1296         }
1297
1298         IPW_DEBUG_INFO("exit\n");
1299         return count;
1300 }
1301
1302 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1303
1304 static ssize_t show_status(struct device *d,
1305                            struct device_attribute *attr, char *buf)
1306 {
1307         struct ipw_priv *p = d->driver_data;
1308         return sprintf(buf, "0x%08x\n", (int)p->status);
1309 }
1310
1311 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1312
1313 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1314                         char *buf)
1315 {
1316         struct ipw_priv *p = d->driver_data;
1317         return sprintf(buf, "0x%08x\n", (int)p->config);
1318 }
1319
1320 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1321
1322 static ssize_t show_nic_type(struct device *d,
1323                              struct device_attribute *attr, char *buf)
1324 {
1325         struct ipw_priv *priv = d->driver_data;
1326         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1327 }
1328
1329 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1330
1331 static ssize_t show_ucode_version(struct device *d,
1332                                   struct device_attribute *attr, char *buf)
1333 {
1334         u32 len = sizeof(u32), tmp = 0;
1335         struct ipw_priv *p = d->driver_data;
1336
1337         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1338                 return 0;
1339
1340         return sprintf(buf, "0x%08x\n", tmp);
1341 }
1342
1343 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1344
1345 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1346                         char *buf)
1347 {
1348         u32 len = sizeof(u32), tmp = 0;
1349         struct ipw_priv *p = d->driver_data;
1350
1351         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1352                 return 0;
1353
1354         return sprintf(buf, "0x%08x\n", tmp);
1355 }
1356
1357 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1358
1359 /*
1360  * Add a device attribute to view/control the delay between eeprom
1361  * operations.
1362  */
1363 static ssize_t show_eeprom_delay(struct device *d,
1364                                  struct device_attribute *attr, char *buf)
1365 {
1366         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1367         return sprintf(buf, "%i\n", n);
1368 }
1369 static ssize_t store_eeprom_delay(struct device *d,
1370                                   struct device_attribute *attr,
1371                                   const char *buf, size_t count)
1372 {
1373         struct ipw_priv *p = d->driver_data;
1374         sscanf(buf, "%i", &p->eeprom_delay);
1375         return strnlen(buf, count);
1376 }
1377
1378 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1379                    show_eeprom_delay, store_eeprom_delay);
1380
1381 static ssize_t show_command_event_reg(struct device *d,
1382                                       struct device_attribute *attr, char *buf)
1383 {
1384         u32 reg = 0;
1385         struct ipw_priv *p = d->driver_data;
1386
1387         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1388         return sprintf(buf, "0x%08x\n", reg);
1389 }
1390 static ssize_t store_command_event_reg(struct device *d,
1391                                        struct device_attribute *attr,
1392                                        const char *buf, size_t count)
1393 {
1394         u32 reg;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         sscanf(buf, "%x", &reg);
1398         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1399         return strnlen(buf, count);
1400 }
1401
1402 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1403                    show_command_event_reg, store_command_event_reg);
1404
1405 static ssize_t show_mem_gpio_reg(struct device *d,
1406                                  struct device_attribute *attr, char *buf)
1407 {
1408         u32 reg = 0;
1409         struct ipw_priv *p = d->driver_data;
1410
1411         reg = ipw_read_reg32(p, 0x301100);
1412         return sprintf(buf, "0x%08x\n", reg);
1413 }
1414 static ssize_t store_mem_gpio_reg(struct device *d,
1415                                   struct device_attribute *attr,
1416                                   const char *buf, size_t count)
1417 {
1418         u32 reg;
1419         struct ipw_priv *p = d->driver_data;
1420
1421         sscanf(buf, "%x", &reg);
1422         ipw_write_reg32(p, 0x301100, reg);
1423         return strnlen(buf, count);
1424 }
1425
1426 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1427                    show_mem_gpio_reg, store_mem_gpio_reg);
1428
1429 static ssize_t show_indirect_dword(struct device *d,
1430                                    struct device_attribute *attr, char *buf)
1431 {
1432         u32 reg = 0;
1433         struct ipw_priv *priv = d->driver_data;
1434
1435         if (priv->status & STATUS_INDIRECT_DWORD)
1436                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1437         else
1438                 reg = 0;
1439
1440         return sprintf(buf, "0x%08x\n", reg);
1441 }
1442 static ssize_t store_indirect_dword(struct device *d,
1443                                     struct device_attribute *attr,
1444                                     const char *buf, size_t count)
1445 {
1446         struct ipw_priv *priv = d->driver_data;
1447
1448         sscanf(buf, "%x", &priv->indirect_dword);
1449         priv->status |= STATUS_INDIRECT_DWORD;
1450         return strnlen(buf, count);
1451 }
1452
1453 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1454                    show_indirect_dword, store_indirect_dword);
1455
1456 static ssize_t show_indirect_byte(struct device *d,
1457                                   struct device_attribute *attr, char *buf)
1458 {
1459         u8 reg = 0;
1460         struct ipw_priv *priv = d->driver_data;
1461
1462         if (priv->status & STATUS_INDIRECT_BYTE)
1463                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1464         else
1465                 reg = 0;
1466
1467         return sprintf(buf, "0x%02x\n", reg);
1468 }
1469 static ssize_t store_indirect_byte(struct device *d,
1470                                    struct device_attribute *attr,
1471                                    const char *buf, size_t count)
1472 {
1473         struct ipw_priv *priv = d->driver_data;
1474
1475         sscanf(buf, "%x", &priv->indirect_byte);
1476         priv->status |= STATUS_INDIRECT_BYTE;
1477         return strnlen(buf, count);
1478 }
1479
1480 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1481                    show_indirect_byte, store_indirect_byte);
1482
1483 static ssize_t show_direct_dword(struct device *d,
1484                                  struct device_attribute *attr, char *buf)
1485 {
1486         u32 reg = 0;
1487         struct ipw_priv *priv = d->driver_data;
1488
1489         if (priv->status & STATUS_DIRECT_DWORD)
1490                 reg = ipw_read32(priv, priv->direct_dword);
1491         else
1492                 reg = 0;
1493
1494         return sprintf(buf, "0x%08x\n", reg);
1495 }
1496 static ssize_t store_direct_dword(struct device *d,
1497                                   struct device_attribute *attr,
1498                                   const char *buf, size_t count)
1499 {
1500         struct ipw_priv *priv = d->driver_data;
1501
1502         sscanf(buf, "%x", &priv->direct_dword);
1503         priv->status |= STATUS_DIRECT_DWORD;
1504         return strnlen(buf, count);
1505 }
1506
1507 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1508                    show_direct_dword, store_direct_dword);
1509
1510 static inline int rf_kill_active(struct ipw_priv *priv)
1511 {
1512         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1513                 priv->status |= STATUS_RF_KILL_HW;
1514         else
1515                 priv->status &= ~STATUS_RF_KILL_HW;
1516
1517         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1518 }
1519
1520 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1521                             char *buf)
1522 {
1523         /* 0 - RF kill not enabled
1524            1 - SW based RF kill active (sysfs)
1525            2 - HW based RF kill active
1526            3 - Both HW and SW baed RF kill active */
1527         struct ipw_priv *priv = d->driver_data;
1528         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1529             (rf_kill_active(priv) ? 0x2 : 0x0);
1530         return sprintf(buf, "%i\n", val);
1531 }
1532
1533 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1534 {
1535         if ((disable_radio ? 1 : 0) ==
1536             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1537                 return 0;
1538
1539         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1540                           disable_radio ? "OFF" : "ON");
1541
1542         if (disable_radio) {
1543                 priv->status |= STATUS_RF_KILL_SW;
1544
1545                 if (priv->workqueue)
1546                         cancel_delayed_work(&priv->request_scan);
1547                 queue_work(priv->workqueue, &priv->down);
1548         } else {
1549                 priv->status &= ~STATUS_RF_KILL_SW;
1550                 if (rf_kill_active(priv)) {
1551                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1552                                           "disabled by HW switch\n");
1553                         /* Make sure the RF_KILL check timer is running */
1554                         cancel_delayed_work(&priv->rf_kill);
1555                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1556                                            2 * HZ);
1557                 } else
1558                         queue_work(priv->workqueue, &priv->up);
1559         }
1560
1561         return 1;
1562 }
1563
1564 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1565                              const char *buf, size_t count)
1566 {
1567         struct ipw_priv *priv = d->driver_data;
1568
1569         ipw_radio_kill_sw(priv, buf[0] == '1');
1570
1571         return count;
1572 }
1573
1574 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1575
1576 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1577                                char *buf)
1578 {
1579         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1580         int pos = 0, len = 0;
1581         if (priv->config & CFG_SPEED_SCAN) {
1582                 while (priv->speed_scan[pos] != 0)
1583                         len += sprintf(&buf[len], "%d ",
1584                                        priv->speed_scan[pos++]);
1585                 return len + sprintf(&buf[len], "\n");
1586         }
1587
1588         return sprintf(buf, "0\n");
1589 }
1590
1591 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1592                                 const char *buf, size_t count)
1593 {
1594         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1595         int channel, pos = 0;
1596         const char *p = buf;
1597
1598         /* list of space separated channels to scan, optionally ending with 0 */
1599         while ((channel = simple_strtol(p, NULL, 0))) {
1600                 if (pos == MAX_SPEED_SCAN - 1) {
1601                         priv->speed_scan[pos] = 0;
1602                         break;
1603                 }
1604
1605                 if (ipw_is_valid_channel(priv->ieee, channel))
1606                         priv->speed_scan[pos++] = channel;
1607                 else
1608                         IPW_WARNING("Skipping invalid channel request: %d\n",
1609                                     channel);
1610                 p = strchr(p, ' ');
1611                 if (!p)
1612                         break;
1613                 while (*p == ' ' || *p == '\t')
1614                         p++;
1615         }
1616
1617         if (pos == 0)
1618                 priv->config &= ~CFG_SPEED_SCAN;
1619         else {
1620                 priv->speed_scan_pos = 0;
1621                 priv->config |= CFG_SPEED_SCAN;
1622         }
1623
1624         return count;
1625 }
1626
1627 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1628                    store_speed_scan);
1629
1630 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1631                               char *buf)
1632 {
1633         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1634         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1635 }
1636
1637 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1638                                const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         if (buf[0] == '1')
1642                 priv->config |= CFG_NET_STATS;
1643         else
1644                 priv->config &= ~CFG_NET_STATS;
1645
1646         return count;
1647 }
1648
1649 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1650                    show_net_stats, store_net_stats);
1651
1652 static void notify_wx_assoc_event(struct ipw_priv *priv)
1653 {
1654         union iwreq_data wrqu;
1655         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1656         if (priv->status & STATUS_ASSOCIATED)
1657                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1658         else
1659                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1660         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1661 }
1662
1663 static void ipw_irq_tasklet(struct ipw_priv *priv)
1664 {
1665         u32 inta, inta_mask, handled = 0;
1666         unsigned long flags;
1667         int rc = 0;
1668
1669         spin_lock_irqsave(&priv->lock, flags);
1670
1671         inta = ipw_read32(priv, IPW_INTA_RW);
1672         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1673         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1674
1675         /* Add any cached INTA values that need to be handled */
1676         inta |= priv->isr_inta;
1677
1678         /* handle all the justifications for the interrupt */
1679         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1680                 ipw_rx(priv);
1681                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1682         }
1683
1684         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1685                 IPW_DEBUG_HC("Command completed.\n");
1686                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1687                 priv->status &= ~STATUS_HCMD_ACTIVE;
1688                 wake_up_interruptible(&priv->wait_command_queue);
1689                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1690         }
1691
1692         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1693                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1694                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1695                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1696         }
1697
1698         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1699                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1700                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1701                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1702         }
1703
1704         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1705                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1706                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1707                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1708         }
1709
1710         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1711                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1712                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1713                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1714         }
1715
1716         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1717                 IPW_WARNING("STATUS_CHANGE\n");
1718                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1719         }
1720
1721         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1722                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1723                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1724         }
1725
1726         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1727                 IPW_WARNING("HOST_CMD_DONE\n");
1728                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1729         }
1730
1731         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1732                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1733                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1734         }
1735
1736         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1737                 IPW_WARNING("PHY_OFF_DONE\n");
1738                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1739         }
1740
1741         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1742                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1743                 priv->status |= STATUS_RF_KILL_HW;
1744                 wake_up_interruptible(&priv->wait_command_queue);
1745                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1746                 cancel_delayed_work(&priv->request_scan);
1747                 schedule_work(&priv->link_down);
1748                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1749                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1750         }
1751
1752         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1753                 IPW_ERROR("Firmware error detected.  Restarting.\n");
1754                 if (priv->error) {
1755                         IPW_ERROR("Sysfs 'error' log already exists.\n");
1756 #ifdef CONFIG_IPW_DEBUG
1757                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1758                                 struct ipw_fw_error *error =
1759                                     ipw_alloc_error_log(priv);
1760                                 ipw_dump_error_log(priv, error);
1761                                 if (error)
1762                                         ipw_free_error_log(error);
1763                         }
1764 #endif
1765                 } else {
1766                         priv->error = ipw_alloc_error_log(priv);
1767                         if (priv->error)
1768                                 IPW_ERROR("Sysfs 'error' log captured.\n");
1769                         else
1770                                 IPW_ERROR("Error allocating sysfs 'error' "
1771                                           "log.\n");
1772 #ifdef CONFIG_IPW_DEBUG
1773                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1774                                 ipw_dump_error_log(priv, priv->error);
1775 #endif
1776                 }
1777
1778                 /* XXX: If hardware encryption is for WPA/WPA2,
1779                  * we have to notify the supplicant. */
1780                 if (priv->ieee->sec.encrypt) {
1781                         priv->status &= ~STATUS_ASSOCIATED;
1782                         notify_wx_assoc_event(priv);
1783                 }
1784
1785                 /* Keep the restart process from trying to send host
1786                  * commands by clearing the INIT status bit */
1787                 priv->status &= ~STATUS_INIT;
1788
1789                 /* Cancel currently queued command. */
1790                 priv->status &= ~STATUS_HCMD_ACTIVE;
1791                 wake_up_interruptible(&priv->wait_command_queue);
1792
1793                 queue_work(priv->workqueue, &priv->adapter_restart);
1794                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1795         }
1796
1797         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1798                 IPW_ERROR("Parity error\n");
1799                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1800         }
1801
1802         if (handled != inta) {
1803                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1804         }
1805
1806         /* enable all interrupts */
1807         ipw_enable_interrupts(priv);
1808
1809         spin_unlock_irqrestore(&priv->lock, flags);
1810 }
1811
1812 #ifdef CONFIG_IPW_DEBUG
1813 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1814 static char *get_cmd_string(u8 cmd)
1815 {
1816         switch (cmd) {
1817                 IPW_CMD(HOST_COMPLETE);
1818                 IPW_CMD(POWER_DOWN);
1819                 IPW_CMD(SYSTEM_CONFIG);
1820                 IPW_CMD(MULTICAST_ADDRESS);
1821                 IPW_CMD(SSID);
1822                 IPW_CMD(ADAPTER_ADDRESS);
1823                 IPW_CMD(PORT_TYPE);
1824                 IPW_CMD(RTS_THRESHOLD);
1825                 IPW_CMD(FRAG_THRESHOLD);
1826                 IPW_CMD(POWER_MODE);
1827                 IPW_CMD(WEP_KEY);
1828                 IPW_CMD(TGI_TX_KEY);
1829                 IPW_CMD(SCAN_REQUEST);
1830                 IPW_CMD(SCAN_REQUEST_EXT);
1831                 IPW_CMD(ASSOCIATE);
1832                 IPW_CMD(SUPPORTED_RATES);
1833                 IPW_CMD(SCAN_ABORT);
1834                 IPW_CMD(TX_FLUSH);
1835                 IPW_CMD(QOS_PARAMETERS);
1836                 IPW_CMD(DINO_CONFIG);
1837                 IPW_CMD(RSN_CAPABILITIES);
1838                 IPW_CMD(RX_KEY);
1839                 IPW_CMD(CARD_DISABLE);
1840                 IPW_CMD(SEED_NUMBER);
1841                 IPW_CMD(TX_POWER);
1842                 IPW_CMD(COUNTRY_INFO);
1843                 IPW_CMD(AIRONET_INFO);
1844                 IPW_CMD(AP_TX_POWER);
1845                 IPW_CMD(CCKM_INFO);
1846                 IPW_CMD(CCX_VER_INFO);
1847                 IPW_CMD(SET_CALIBRATION);
1848                 IPW_CMD(SENSITIVITY_CALIB);
1849                 IPW_CMD(RETRY_LIMIT);
1850                 IPW_CMD(IPW_PRE_POWER_DOWN);
1851                 IPW_CMD(VAP_BEACON_TEMPLATE);
1852                 IPW_CMD(VAP_DTIM_PERIOD);
1853                 IPW_CMD(EXT_SUPPORTED_RATES);
1854                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1855                 IPW_CMD(VAP_QUIET_INTERVALS);
1856                 IPW_CMD(VAP_CHANNEL_SWITCH);
1857                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1858                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1859                 IPW_CMD(VAP_CF_PARAM_SET);
1860                 IPW_CMD(VAP_SET_BEACONING_STATE);
1861                 IPW_CMD(MEASUREMENT);
1862                 IPW_CMD(POWER_CAPABILITY);
1863                 IPW_CMD(SUPPORTED_CHANNELS);
1864                 IPW_CMD(TPC_REPORT);
1865                 IPW_CMD(WME_INFO);
1866                 IPW_CMD(PRODUCTION_COMMAND);
1867         default:
1868                 return "UNKNOWN";
1869         }
1870 }
1871 #endif
1872
1873 #define HOST_COMPLETE_TIMEOUT HZ
1874 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1875 {
1876         int rc = 0;
1877         unsigned long flags;
1878
1879         spin_lock_irqsave(&priv->lock, flags);
1880         if (priv->status & STATUS_HCMD_ACTIVE) {
1881                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1882                           get_cmd_string(cmd->cmd));
1883                 spin_unlock_irqrestore(&priv->lock, flags);
1884                 return -EAGAIN;
1885         }
1886
1887         if (priv->status & STATUS_ASSOCIATING) {
1888                 IPW_DEBUG_HC("abandon a command while associating\n");
1889                 spin_unlock_irqrestore(&priv->lock, flags);
1890                 return -1;
1891         }
1892
1893         if (priv->status & STATUS_DISASSOCIATING) {
1894                 IPW_DEBUG_HC("abandon a command while disassociating\n");
1895                 spin_unlock_irqrestore(&priv->lock, flags);
1896                 return -1;
1897         }
1898
1899         priv->status |= STATUS_HCMD_ACTIVE;
1900
1901         if (priv->cmdlog) {
1902                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1903                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1904                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1905                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1906                        cmd->len);
1907                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1908         }
1909
1910         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1911                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1912                      priv->status);
1913         printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1914
1915         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1916         if (rc) {
1917                 priv->status &= ~STATUS_HCMD_ACTIVE;
1918                 IPW_ERROR("Failed to send %s: Reason %d\n",
1919                           get_cmd_string(cmd->cmd), rc);
1920                 spin_unlock_irqrestore(&priv->lock, flags);
1921                 goto exit;
1922         }
1923         spin_unlock_irqrestore(&priv->lock, flags);
1924
1925         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1926                                               !(priv->
1927                                                 status & STATUS_HCMD_ACTIVE),
1928                                               HOST_COMPLETE_TIMEOUT);
1929         if (rc == 0) {
1930                 spin_lock_irqsave(&priv->lock, flags);
1931                 if (priv->status & STATUS_HCMD_ACTIVE) {
1932                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1933                                   get_cmd_string(cmd->cmd));
1934                         priv->status &= ~STATUS_HCMD_ACTIVE;
1935                         spin_unlock_irqrestore(&priv->lock, flags);
1936                         rc = -EIO;
1937                         goto exit;
1938                 }
1939                 spin_unlock_irqrestore(&priv->lock, flags);
1940         } else
1941                 rc = 0;
1942
1943         if (priv->status & STATUS_RF_KILL_HW) {
1944                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1945                           get_cmd_string(cmd->cmd));
1946                 rc = -EIO;
1947                 goto exit;
1948         }
1949
1950       exit:
1951         if (priv->cmdlog) {
1952                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1953                 priv->cmdlog_pos %= priv->cmdlog_len;
1954         }
1955         return rc;
1956 }
1957
1958 static int ipw_send_host_complete(struct ipw_priv *priv)
1959 {
1960         struct host_cmd cmd = {
1961                 .cmd = IPW_CMD_HOST_COMPLETE,
1962                 .len = 0
1963         };
1964
1965         if (!priv) {
1966                 IPW_ERROR("Invalid args\n");
1967                 return -1;
1968         }
1969
1970         return ipw_send_cmd(priv, &cmd);
1971 }
1972
1973 static int ipw_send_system_config(struct ipw_priv *priv,
1974                                   struct ipw_sys_config *config)
1975 {
1976         struct host_cmd cmd = {
1977                 .cmd = IPW_CMD_SYSTEM_CONFIG,
1978                 .len = sizeof(*config)
1979         };
1980
1981         if (!priv || !config) {
1982                 IPW_ERROR("Invalid args\n");
1983                 return -1;
1984         }
1985
1986         memcpy(cmd.param, config, sizeof(*config));
1987         return ipw_send_cmd(priv, &cmd);
1988 }
1989
1990 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1991 {
1992         struct host_cmd cmd = {
1993                 .cmd = IPW_CMD_SSID,
1994                 .len = min(len, IW_ESSID_MAX_SIZE)
1995         };
1996
1997         if (!priv || !ssid) {
1998                 IPW_ERROR("Invalid args\n");
1999                 return -1;
2000         }
2001
2002         memcpy(cmd.param, ssid, cmd.len);
2003         return ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2007 {
2008         struct host_cmd cmd = {
2009                 .cmd = IPW_CMD_ADAPTER_ADDRESS,
2010                 .len = ETH_ALEN
2011         };
2012
2013         if (!priv || !mac) {
2014                 IPW_ERROR("Invalid args\n");
2015                 return -1;
2016         }
2017
2018         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2019                        priv->net_dev->name, MAC_ARG(mac));
2020
2021         memcpy(cmd.param, mac, ETH_ALEN);
2022         return ipw_send_cmd(priv, &cmd);
2023 }
2024
2025 /*
2026  * NOTE: This must be executed from our workqueue as it results in udelay
2027  * being called which may corrupt the keyboard if executed on default
2028  * workqueue
2029  */
2030 static void ipw_adapter_restart(void *adapter)
2031 {
2032         struct ipw_priv *priv = adapter;
2033
2034         if (priv->status & STATUS_RF_KILL_MASK)
2035                 return;
2036
2037         ipw_down(priv);
2038
2039         if (priv->assoc_network &&
2040             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2041                 ipw_remove_current_network(priv);
2042
2043         if (ipw_up(priv)) {
2044                 IPW_ERROR("Failed to up device\n");
2045                 return;
2046         }
2047 }
2048
2049 static void ipw_bg_adapter_restart(void *data)
2050 {
2051         struct ipw_priv *priv = data;
2052         down(&priv->sem);
2053         ipw_adapter_restart(data);
2054         up(&priv->sem);
2055 }
2056
2057 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2058
2059 static void ipw_scan_check(void *data)
2060 {
2061         struct ipw_priv *priv = data;
2062         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2063                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2064                                "adapter (%dms).\n",
2065                                IPW_SCAN_CHECK_WATCHDOG / 100);
2066                 queue_work(priv->workqueue, &priv->adapter_restart);
2067         }
2068 }
2069
2070 static void ipw_bg_scan_check(void *data)
2071 {
2072         struct ipw_priv *priv = data;
2073         down(&priv->sem);
2074         ipw_scan_check(data);
2075         up(&priv->sem);
2076 }
2077
2078 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2079                                      struct ipw_scan_request_ext *request)
2080 {
2081         struct host_cmd cmd = {
2082                 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2083                 .len = sizeof(*request)
2084         };
2085
2086         memcpy(cmd.param, request, sizeof(*request));
2087         return ipw_send_cmd(priv, &cmd);
2088 }
2089
2090 static int ipw_send_scan_abort(struct ipw_priv *priv)
2091 {
2092         struct host_cmd cmd = {
2093                 .cmd = IPW_CMD_SCAN_ABORT,
2094                 .len = 0
2095         };
2096
2097         if (!priv) {
2098                 IPW_ERROR("Invalid args\n");
2099                 return -1;
2100         }
2101
2102         return ipw_send_cmd(priv, &cmd);
2103 }
2104
2105 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2106 {
2107         struct host_cmd cmd = {
2108                 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2109                 .len = sizeof(struct ipw_sensitivity_calib)
2110         };
2111         struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2112             &cmd.param;
2113         calib->beacon_rssi_raw = sens;
2114         return ipw_send_cmd(priv, &cmd);
2115 }
2116
2117 static int ipw_send_associate(struct ipw_priv *priv,
2118                               struct ipw_associate *associate)
2119 {
2120         struct host_cmd cmd = {
2121                 .cmd = IPW_CMD_ASSOCIATE,
2122                 .len = sizeof(*associate)
2123         };
2124
2125         struct ipw_associate tmp_associate;
2126         memcpy(&tmp_associate, associate, sizeof(*associate));
2127         tmp_associate.policy_support =
2128             cpu_to_le16(tmp_associate.policy_support);
2129         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2130         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2131         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2132         tmp_associate.listen_interval =
2133             cpu_to_le16(tmp_associate.listen_interval);
2134         tmp_associate.beacon_interval =
2135             cpu_to_le16(tmp_associate.beacon_interval);
2136         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2137
2138         if (!priv || !associate) {
2139                 IPW_ERROR("Invalid args\n");
2140                 return -1;
2141         }
2142
2143         memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2144         return ipw_send_cmd(priv, &cmd);
2145 }
2146
2147 static int ipw_send_supported_rates(struct ipw_priv *priv,
2148                                     struct ipw_supported_rates *rates)
2149 {
2150         struct host_cmd cmd = {
2151                 .cmd = IPW_CMD_SUPPORTED_RATES,
2152                 .len = sizeof(*rates)
2153         };
2154
2155         if (!priv || !rates) {
2156                 IPW_ERROR("Invalid args\n");
2157                 return -1;
2158         }
2159
2160         memcpy(cmd.param, rates, sizeof(*rates));
2161         return ipw_send_cmd(priv, &cmd);
2162 }
2163
2164 static int ipw_set_random_seed(struct ipw_priv *priv)
2165 {
2166         struct host_cmd cmd = {
2167                 .cmd = IPW_CMD_SEED_NUMBER,
2168                 .len = sizeof(u32)
2169         };
2170
2171         if (!priv) {
2172                 IPW_ERROR("Invalid args\n");
2173                 return -1;
2174         }
2175
2176         get_random_bytes(&cmd.param, sizeof(u32));
2177
2178         return ipw_send_cmd(priv, &cmd);
2179 }
2180
2181 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2182 {
2183         struct host_cmd cmd = {
2184                 .cmd = IPW_CMD_CARD_DISABLE,
2185                 .len = sizeof(u32)
2186         };
2187
2188         if (!priv) {
2189                 IPW_ERROR("Invalid args\n");
2190                 return -1;
2191         }
2192
2193         *((u32 *) & cmd.param) = phy_off;
2194
2195         return ipw_send_cmd(priv, &cmd);
2196 }
2197
2198 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2199 {
2200         struct host_cmd cmd = {
2201                 .cmd = IPW_CMD_TX_POWER,
2202                 .len = sizeof(*power)
2203         };
2204
2205         if (!priv || !power) {
2206                 IPW_ERROR("Invalid args\n");
2207                 return -1;
2208         }
2209
2210         memcpy(cmd.param, power, sizeof(*power));
2211         return ipw_send_cmd(priv, &cmd);
2212 }
2213
2214 static int ipw_set_tx_power(struct ipw_priv *priv)
2215 {
2216         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2217         struct ipw_tx_power tx_power;
2218         s8 max_power;
2219         int i;
2220
2221         memset(&tx_power, 0, sizeof(tx_power));
2222
2223         /* configure device for 'G' band */
2224         tx_power.ieee_mode = IPW_G_MODE;
2225         tx_power.num_channels = geo->bg_channels;
2226         for (i = 0; i < geo->bg_channels; i++) {
2227                 max_power = geo->bg[i].max_power;
2228                 tx_power.channels_tx_power[i].channel_number =
2229                     geo->bg[i].channel;
2230                 tx_power.channels_tx_power[i].tx_power = max_power ?
2231                     min(max_power, priv->tx_power) : priv->tx_power;
2232         }
2233         if (ipw_send_tx_power(priv, &tx_power))
2234                 return -EIO;
2235
2236         /* configure device to also handle 'B' band */
2237         tx_power.ieee_mode = IPW_B_MODE;
2238         if (ipw_send_tx_power(priv, &tx_power))
2239                 return -EIO;
2240
2241         /* configure device to also handle 'A' band */
2242         if (priv->ieee->abg_true) {
2243                 tx_power.ieee_mode = IPW_A_MODE;
2244                 tx_power.num_channels = geo->a_channels;
2245                 for (i = 0; i < tx_power.num_channels; i++) {
2246                         max_power = geo->a[i].max_power;
2247                         tx_power.channels_tx_power[i].channel_number =
2248                             geo->a[i].channel;
2249                         tx_power.channels_tx_power[i].tx_power = max_power ?
2250                             min(max_power, priv->tx_power) : priv->tx_power;
2251                 }
2252                 if (ipw_send_tx_power(priv, &tx_power))
2253                         return -EIO;
2254         }
2255         return 0;
2256 }
2257
2258 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2259 {
2260         struct ipw_rts_threshold rts_threshold = {
2261                 .rts_threshold = rts,
2262         };
2263         struct host_cmd cmd = {
2264                 .cmd = IPW_CMD_RTS_THRESHOLD,
2265                 .len = sizeof(rts_threshold)
2266         };
2267
2268         if (!priv) {
2269                 IPW_ERROR("Invalid args\n");
2270                 return -1;
2271         }
2272
2273         memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2274         return ipw_send_cmd(priv, &cmd);
2275 }
2276
2277 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2278 {
2279         struct ipw_frag_threshold frag_threshold = {
2280                 .frag_threshold = frag,
2281         };
2282         struct host_cmd cmd = {
2283                 .cmd = IPW_CMD_FRAG_THRESHOLD,
2284                 .len = sizeof(frag_threshold)
2285         };
2286
2287         if (!priv) {
2288                 IPW_ERROR("Invalid args\n");
2289                 return -1;
2290         }
2291
2292         memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2293         return ipw_send_cmd(priv, &cmd);
2294 }
2295
2296 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2297 {
2298         struct host_cmd cmd = {
2299                 .cmd = IPW_CMD_POWER_MODE,
2300                 .len = sizeof(u32)
2301         };
2302         u32 *param = (u32 *) (&cmd.param);
2303
2304         if (!priv) {
2305                 IPW_ERROR("Invalid args\n");
2306                 return -1;
2307         }
2308
2309         /* If on battery, set to 3, if AC set to CAM, else user
2310          * level */
2311         switch (mode) {
2312         case IPW_POWER_BATTERY:
2313                 *param = IPW_POWER_INDEX_3;
2314                 break;
2315         case IPW_POWER_AC:
2316                 *param = IPW_POWER_MODE_CAM;
2317                 break;
2318         default:
2319                 *param = mode;
2320                 break;
2321         }
2322
2323         return ipw_send_cmd(priv, &cmd);
2324 }
2325
2326 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2327 {
2328         struct ipw_retry_limit retry_limit = {
2329                 .short_retry_limit = slimit,
2330                 .long_retry_limit = llimit
2331         };
2332         struct host_cmd cmd = {
2333                 .cmd = IPW_CMD_RETRY_LIMIT,
2334                 .len = sizeof(retry_limit)
2335         };
2336
2337         if (!priv) {
2338                 IPW_ERROR("Invalid args\n");
2339                 return -1;
2340         }
2341
2342         memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2343         return ipw_send_cmd(priv, &cmd);
2344 }
2345
2346 /*
2347  * The IPW device contains a Microwire compatible EEPROM that stores
2348  * various data like the MAC address.  Usually the firmware has exclusive
2349  * access to the eeprom, but during device initialization (before the
2350  * device driver has sent the HostComplete command to the firmware) the
2351  * device driver has read access to the EEPROM by way of indirect addressing
2352  * through a couple of memory mapped registers.
2353  *
2354  * The following is a simplified implementation for pulling data out of the
2355  * the eeprom, along with some helper functions to find information in
2356  * the per device private data's copy of the eeprom.
2357  *
2358  * NOTE: To better understand how these functions work (i.e what is a chip
2359  *       select and why do have to keep driving the eeprom clock?), read
2360  *       just about any data sheet for a Microwire compatible EEPROM.
2361  */
2362
2363 /* write a 32 bit value into the indirect accessor register */
2364 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2365 {
2366         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2367
2368         /* the eeprom requires some time to complete the operation */
2369         udelay(p->eeprom_delay);
2370
2371         return;
2372 }
2373
2374 /* perform a chip select operation */
2375 static inline void eeprom_cs(struct ipw_priv *priv)
2376 {
2377         eeprom_write_reg(priv, 0);
2378         eeprom_write_reg(priv, EEPROM_BIT_CS);
2379         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2380         eeprom_write_reg(priv, EEPROM_BIT_CS);
2381 }
2382
2383 /* perform a chip select operation */
2384 static inline void eeprom_disable_cs(struct ipw_priv *priv)
2385 {
2386         eeprom_write_reg(priv, EEPROM_BIT_CS);
2387         eeprom_write_reg(priv, 0);
2388         eeprom_write_reg(priv, EEPROM_BIT_SK);
2389 }
2390
2391 /* push a single bit down to the eeprom */
2392 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2393 {
2394         int d = (bit ? EEPROM_BIT_DI : 0);
2395         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2396         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2397 }
2398
2399 /* push an opcode followed by an address down to the eeprom */
2400 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2401 {
2402         int i;
2403
2404         eeprom_cs(priv);
2405         eeprom_write_bit(priv, 1);
2406         eeprom_write_bit(priv, op & 2);
2407         eeprom_write_bit(priv, op & 1);
2408         for (i = 7; i >= 0; i--) {
2409                 eeprom_write_bit(priv, addr & (1 << i));
2410         }
2411 }
2412
2413 /* pull 16 bits off the eeprom, one bit at a time */
2414 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2415 {
2416         int i;
2417         u16 r = 0;
2418
2419         /* Send READ Opcode */
2420         eeprom_op(priv, EEPROM_CMD_READ, addr);
2421
2422         /* Send dummy bit */
2423         eeprom_write_reg(priv, EEPROM_BIT_CS);
2424
2425         /* Read the byte off the eeprom one bit at a time */
2426         for (i = 0; i < 16; i++) {
2427                 u32 data = 0;
2428                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2429                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2430                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2431                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2432         }
2433
2434         /* Send another dummy bit */
2435         eeprom_write_reg(priv, 0);
2436         eeprom_disable_cs(priv);
2437
2438         return r;
2439 }
2440
2441 /* helper function for pulling the mac address out of the private */
2442 /* data's copy of the eeprom data                                 */
2443 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2444 {
2445         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2446 }
2447
2448 /*
2449  * Either the device driver (i.e. the host) or the firmware can
2450  * load eeprom data into the designated region in SRAM.  If neither
2451  * happens then the FW will shutdown with a fatal error.
2452  *
2453  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2454  * bit needs region of shared SRAM needs to be non-zero.
2455  */
2456 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2457 {
2458         int i;
2459         u16 *eeprom = (u16 *) priv->eeprom;
2460
2461         IPW_DEBUG_TRACE(">>\n");
2462
2463         /* read entire contents of eeprom into private buffer */
2464         for (i = 0; i < 128; i++)
2465                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2466
2467         /*
2468            If the data looks correct, then copy it to our private
2469            copy.  Otherwise let the firmware know to perform the operation
2470            on it's own
2471          */
2472         if ((priv->eeprom + EEPROM_VERSION) != 0) {
2473                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2474
2475                 /* write the eeprom data to sram */
2476                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2477                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2478
2479                 /* Do not load eeprom data on fatal error or suspend */
2480                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2481         } else {
2482                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2483
2484                 /* Load eeprom data on fatal error or suspend */
2485                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2486         }
2487
2488         IPW_DEBUG_TRACE("<<\n");
2489 }
2490
2491 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2492 {
2493         count >>= 2;
2494         if (!count)
2495                 return;
2496         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2497         while (count--)
2498                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2499 }
2500
2501 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2502 {
2503         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2504                         CB_NUMBER_OF_ELEMENTS_SMALL *
2505                         sizeof(struct command_block));
2506 }
2507
2508 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2509 {                               /* start dma engine but no transfers yet */
2510
2511         IPW_DEBUG_FW(">> : \n");
2512
2513         /* Start the dma */
2514         ipw_fw_dma_reset_command_blocks(priv);
2515
2516         /* Write CB base address */
2517         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2518
2519         IPW_DEBUG_FW("<< : \n");
2520         return 0;
2521 }
2522
2523 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2524 {
2525         u32 control = 0;
2526
2527         IPW_DEBUG_FW(">> :\n");
2528
2529         //set the Stop and Abort bit
2530         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2531         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2532         priv->sram_desc.last_cb_index = 0;
2533
2534         IPW_DEBUG_FW("<< \n");
2535 }
2536
2537 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2538                                           struct command_block *cb)
2539 {
2540         u32 address =
2541             IPW_SHARED_SRAM_DMA_CONTROL +
2542             (sizeof(struct command_block) * index);
2543         IPW_DEBUG_FW(">> :\n");
2544
2545         ipw_write_indirect(priv, address, (u8 *) cb,
2546                            (int)sizeof(struct command_block));
2547
2548         IPW_DEBUG_FW("<< :\n");
2549         return 0;
2550
2551 }
2552
2553 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2554 {
2555         u32 control = 0;
2556         u32 index = 0;
2557
2558         IPW_DEBUG_FW(">> :\n");
2559
2560         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2561                 ipw_fw_dma_write_command_block(priv, index,
2562                                                &priv->sram_desc.cb_list[index]);
2563
2564         /* Enable the DMA in the CSR register */
2565         ipw_clear_bit(priv, IPW_RESET_REG,
2566                       IPW_RESET_REG_MASTER_DISABLED |
2567                       IPW_RESET_REG_STOP_MASTER);
2568
2569         /* Set the Start bit. */
2570         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2571         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2572
2573         IPW_DEBUG_FW("<< :\n");
2574         return 0;
2575 }
2576
2577 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2578 {
2579         u32 address;
2580         u32 register_value = 0;
2581         u32 cb_fields_address = 0;
2582
2583         IPW_DEBUG_FW(">> :\n");
2584         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2585         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2586
2587         /* Read the DMA Controlor register */
2588         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2589         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2590
2591         /* Print the CB values */
2592         cb_fields_address = address;
2593         register_value = ipw_read_reg32(priv, cb_fields_address);
2594         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2595
2596         cb_fields_address += sizeof(u32);
2597         register_value = ipw_read_reg32(priv, cb_fields_address);
2598         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2599
2600         cb_fields_address += sizeof(u32);
2601         register_value = ipw_read_reg32(priv, cb_fields_address);
2602         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2603                           register_value);
2604
2605         cb_fields_address += sizeof(u32);
2606         register_value = ipw_read_reg32(priv, cb_fields_address);
2607         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2608
2609         IPW_DEBUG_FW(">> :\n");
2610 }
2611
2612 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2613 {
2614         u32 current_cb_address = 0;
2615         u32 current_cb_index = 0;
2616
2617         IPW_DEBUG_FW("<< :\n");
2618         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2619
2620         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2621             sizeof(struct command_block);
2622
2623         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2624                           current_cb_index, current_cb_address);
2625
2626         IPW_DEBUG_FW(">> :\n");
2627         return current_cb_index;
2628
2629 }
2630
2631 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2632                                         u32 src_address,
2633                                         u32 dest_address,
2634                                         u32 length,
2635                                         int interrupt_enabled, int is_last)
2636 {
2637
2638         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2639             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2640             CB_DEST_SIZE_LONG;
2641         struct command_block *cb;
2642         u32 last_cb_element = 0;
2643
2644         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2645                           src_address, dest_address, length);
2646
2647         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2648                 return -1;
2649
2650         last_cb_element = priv->sram_desc.last_cb_index;
2651         cb = &priv->sram_desc.cb_list[last_cb_element];
2652         priv->sram_desc.last_cb_index++;
2653
2654         /* Calculate the new CB control word */
2655         if (interrupt_enabled)
2656                 control |= CB_INT_ENABLED;
2657
2658         if (is_last)
2659                 control |= CB_LAST_VALID;
2660
2661         control |= length;
2662
2663         /* Calculate the CB Element's checksum value */
2664         cb->status = control ^ src_address ^ dest_address;
2665
2666         /* Copy the Source and Destination addresses */
2667         cb->dest_addr = dest_address;
2668         cb->source_addr = src_address;
2669
2670         /* Copy the Control Word last */
2671         cb->control = control;
2672
2673         return 0;
2674 }
2675
2676 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2677                                  u32 src_phys, u32 dest_address, u32 length)
2678 {
2679         u32 bytes_left = length;
2680         u32 src_offset = 0;
2681         u32 dest_offset = 0;
2682         int status = 0;
2683         IPW_DEBUG_FW(">> \n");
2684         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2685                           src_phys, dest_address, length);
2686         while (bytes_left > CB_MAX_LENGTH) {
2687                 status = ipw_fw_dma_add_command_block(priv,
2688                                                       src_phys + src_offset,
2689                                                       dest_address +
2690                                                       dest_offset,
2691                                                       CB_MAX_LENGTH, 0, 0);
2692                 if (status) {
2693                         IPW_DEBUG_FW_INFO(": Failed\n");
2694                         return -1;
2695                 } else
2696                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2697
2698                 src_offset += CB_MAX_LENGTH;
2699                 dest_offset += CB_MAX_LENGTH;
2700                 bytes_left -= CB_MAX_LENGTH;
2701         }
2702
2703         /* add the buffer tail */
2704         if (bytes_left > 0) {
2705                 status =
2706                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2707                                                  dest_address + dest_offset,
2708                                                  bytes_left, 0, 0);
2709                 if (status) {
2710                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2711                         return -1;
2712                 } else
2713                         IPW_DEBUG_FW_INFO
2714                             (": Adding new cb - the buffer tail\n");
2715         }
2716
2717         IPW_DEBUG_FW("<< \n");
2718         return 0;
2719 }
2720
2721 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2722 {
2723         u32 current_index = 0;
2724         u32 watchdog = 0;
2725
2726         IPW_DEBUG_FW(">> : \n");
2727
2728         current_index = ipw_fw_dma_command_block_index(priv);
2729         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2730                           (int)priv->sram_desc.last_cb_index);
2731
2732         while (current_index < priv->sram_desc.last_cb_index) {
2733                 udelay(50);
2734                 current_index = ipw_fw_dma_command_block_index(priv);
2735
2736                 watchdog++;
2737
2738                 if (watchdog > 400) {
2739                         IPW_DEBUG_FW_INFO("Timeout\n");
2740                         ipw_fw_dma_dump_command_block(priv);
2741                         ipw_fw_dma_abort(priv);
2742                         return -1;
2743                 }
2744         }
2745
2746         ipw_fw_dma_abort(priv);
2747
2748         /*Disable the DMA in the CSR register */
2749         ipw_set_bit(priv, IPW_RESET_REG,
2750                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2751
2752         IPW_DEBUG_FW("<< dmaWaitSync \n");
2753         return 0;
2754 }
2755
2756 static void ipw_remove_current_network(struct ipw_priv *priv)
2757 {
2758         struct list_head *element, *safe;
2759         struct ieee80211_network *network = NULL;
2760         unsigned long flags;
2761
2762         spin_lock_irqsave(&priv->ieee->lock, flags);
2763         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2764                 network = list_entry(element, struct ieee80211_network, list);
2765                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2766                         list_del(element);
2767                         list_add_tail(&network->list,
2768                                       &priv->ieee->network_free_list);
2769                 }
2770         }
2771         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2772 }
2773
2774 /**
2775  * Check that card is still alive.
2776  * Reads debug register from domain0.
2777  * If card is present, pre-defined value should
2778  * be found there.
2779  *
2780  * @param priv
2781  * @return 1 if card is present, 0 otherwise
2782  */
2783 static inline int ipw_alive(struct ipw_priv *priv)
2784 {
2785         return ipw_read32(priv, 0x90) == 0xd55555d5;
2786 }
2787
2788 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2789                                int timeout)
2790 {
2791         int i = 0;
2792
2793         do {
2794                 if ((ipw_read32(priv, addr) & mask) == mask)
2795                         return i;
2796                 mdelay(10);
2797                 i += 10;
2798         } while (i < timeout);
2799
2800         return -ETIME;
2801 }
2802
2803 /* These functions load the firmware and micro code for the operation of
2804  * the ipw hardware.  It assumes the buffer has all the bits for the
2805  * image and the caller is handling the memory allocation and clean up.
2806  */
2807
2808 static int ipw_stop_master(struct ipw_priv *priv)
2809 {
2810         int rc;
2811
2812         IPW_DEBUG_TRACE(">> \n");
2813         /* stop master. typical delay - 0 */
2814         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2815
2816         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2817                           IPW_RESET_REG_MASTER_DISABLED, 100);
2818         if (rc < 0) {
2819                 IPW_ERROR("stop master failed in 10ms\n");
2820                 return -1;
2821         }
2822
2823         IPW_DEBUG_INFO("stop master %dms\n", rc);
2824
2825         return rc;
2826 }
2827
2828 static void ipw_arc_release(struct ipw_priv *priv)
2829 {
2830         IPW_DEBUG_TRACE(">> \n");
2831         mdelay(5);
2832
2833         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2834
2835         /* no one knows timing, for safety add some delay */
2836         mdelay(5);
2837 }
2838
2839 struct fw_header {
2840         u32 version;
2841         u32 mode;
2842 };
2843
2844 struct fw_chunk {
2845         u32 address;
2846         u32 length;
2847 };
2848
2849 #define IPW_FW_MAJOR_VERSION 2
2850 #define IPW_FW_MINOR_VERSION 3
2851
2852 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2853 #define IPW_FW_MAJOR(x) (x & 0xff)
2854
2855 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2856
2857 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2858 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2859
2860 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2861 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2862 #else
2863 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2864 #endif
2865
2866 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2867 {
2868         int rc = 0, i, addr;
2869         u8 cr = 0;
2870         u16 *image;
2871
2872         image = (u16 *) data;
2873
2874         IPW_DEBUG_TRACE(">> \n");
2875
2876         rc = ipw_stop_master(priv);
2877
2878         if (rc < 0)
2879                 return rc;
2880
2881 //      spin_lock_irqsave(&priv->lock, flags);
2882
2883         for (addr = IPW_SHARED_LOWER_BOUND;
2884              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2885                 ipw_write32(priv, addr, 0);
2886         }
2887
2888         /* no ucode (yet) */
2889         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2890         /* destroy DMA queues */
2891         /* reset sequence */
2892
2893         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2894         ipw_arc_release(priv);
2895         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2896         mdelay(1);
2897
2898         /* reset PHY */
2899         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2900         mdelay(1);
2901
2902         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2903         mdelay(1);
2904
2905         /* enable ucode store */
2906         ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2907         ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2908         mdelay(1);
2909
2910         /* write ucode */
2911         /**
2912          * @bug
2913          * Do NOT set indirect address register once and then
2914          * store data to indirect data register in the loop.
2915          * It seems very reasonable, but in this case DINO do not
2916          * accept ucode. It is essential to set address each time.
2917          */
2918         /* load new ipw uCode */
2919         for (i = 0; i < len / 2; i++)
2920                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2921                                 cpu_to_le16(image[i]));
2922
2923         /* enable DINO */
2924         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2925         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2926
2927         /* this is where the igx / win driver deveates from the VAP driver. */
2928
2929         /* wait for alive response */
2930         for (i = 0; i < 100; i++) {
2931                 /* poll for incoming data */
2932                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2933                 if (cr & DINO_RXFIFO_DATA)
2934                         break;
2935                 mdelay(1);
2936         }
2937
2938         if (cr & DINO_RXFIFO_DATA) {
2939                 /* alive_command_responce size is NOT multiple of 4 */
2940                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2941
2942                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2943                         response_buffer[i] =
2944                             le32_to_cpu(ipw_read_reg32(priv,
2945                                                        IPW_BASEBAND_RX_FIFO_READ));
2946                 memcpy(&priv->dino_alive, response_buffer,
2947                        sizeof(priv->dino_alive));
2948                 if (priv->dino_alive.alive_command == 1
2949                     && priv->dino_alive.ucode_valid == 1) {
2950                         rc = 0;
2951                         IPW_DEBUG_INFO
2952                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2953                              "of %02d/%02d/%02d %02d:%02d\n",
2954                              priv->dino_alive.software_revision,
2955                              priv->dino_alive.software_revision,
2956                              priv->dino_alive.device_identifier,
2957                              priv->dino_alive.device_identifier,
2958                              priv->dino_alive.time_stamp[0],
2959                              priv->dino_alive.time_stamp[1],
2960                              priv->dino_alive.time_stamp[2],
2961                              priv->dino_alive.time_stamp[3],
2962                              priv->dino_alive.time_stamp[4]);
2963                 } else {
2964                         IPW_DEBUG_INFO("Microcode is not alive\n");
2965                         rc = -EINVAL;
2966                 }
2967         } else {
2968                 IPW_DEBUG_INFO("No alive response from DINO\n");
2969                 rc = -ETIME;
2970         }
2971
2972         /* disable DINO, otherwise for some reason
2973            firmware have problem getting alive resp. */
2974         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2975
2976 //      spin_unlock_irqrestore(&priv->lock, flags);
2977
2978         return rc;
2979 }
2980
2981 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2982 {
2983         int rc = -1;
2984         int offset = 0;
2985         struct fw_chunk *chunk;
2986         dma_addr_t shared_phys;
2987         u8 *shared_virt;
2988
2989         IPW_DEBUG_TRACE("<< : \n");
2990         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2991
2992         if (!shared_virt)
2993                 return -ENOMEM;
2994
2995         memmove(shared_virt, data, len);
2996
2997         /* Start the Dma */
2998         rc = ipw_fw_dma_enable(priv);
2999
3000         if (priv->sram_desc.last_cb_index > 0) {
3001                 /* the DMA is already ready this would be a bug. */
3002                 BUG();
3003                 goto out;
3004         }
3005
3006         do {
3007                 chunk = (struct fw_chunk *)(data + offset);
3008                 offset += sizeof(struct fw_chunk);
3009                 /* build DMA packet and queue up for sending */
3010                 /* dma to chunk->address, the chunk->length bytes from data +
3011                  * offeset*/
3012                 /* Dma loading */
3013                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3014                                            le32_to_cpu(chunk->address),
3015                                            le32_to_cpu(chunk->length));
3016                 if (rc) {
3017                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3018                         goto out;
3019                 }
3020
3021                 offset += le32_to_cpu(chunk->length);
3022         } while (offset < len);
3023
3024         /* Run the DMA and wait for the answer */
3025         rc = ipw_fw_dma_kick(priv);
3026         if (rc) {
3027                 IPW_ERROR("dmaKick Failed\n");
3028                 goto out;
3029         }
3030
3031         rc = ipw_fw_dma_wait(priv);
3032         if (rc) {
3033                 IPW_ERROR("dmaWaitSync Failed\n");
3034                 goto out;
3035         }
3036       out:
3037         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3038         return rc;
3039 }
3040
3041 /* stop nic */
3042 static int ipw_stop_nic(struct ipw_priv *priv)
3043 {
3044         int rc = 0;
3045
3046         /* stop */
3047         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3048
3049         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3050                           IPW_RESET_REG_MASTER_DISABLED, 500);
3051         if (rc < 0) {
3052                 IPW_ERROR("wait for reg master disabled failed\n");
3053                 return rc;
3054         }
3055
3056         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3057
3058         return rc;
3059 }
3060
3061 static void ipw_start_nic(struct ipw_priv *priv)
3062 {
3063         IPW_DEBUG_TRACE(">>\n");
3064
3065         /* prvHwStartNic  release ARC */
3066         ipw_clear_bit(priv, IPW_RESET_REG,
3067                       IPW_RESET_REG_MASTER_DISABLED |
3068                       IPW_RESET_REG_STOP_MASTER |
3069                       CBD_RESET_REG_PRINCETON_RESET);
3070
3071         /* enable power management */
3072         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3073                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3074
3075         IPW_DEBUG_TRACE("<<\n");
3076 }
3077
3078 static int ipw_init_nic(struct ipw_priv *priv)
3079 {
3080         int rc;
3081
3082         IPW_DEBUG_TRACE(">>\n");
3083         /* reset */
3084         /*prvHwInitNic */
3085         /* set "initialization complete" bit to move adapter to D0 state */
3086         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3087
3088         /* low-level PLL activation */
3089         ipw_write32(priv, IPW_READ_INT_REGISTER,
3090                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3091
3092         /* wait for clock stabilization */
3093         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3094                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3095         if (rc < 0)
3096                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3097
3098         /* assert SW reset */
3099         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3100
3101         udelay(10);
3102
3103         /* set "initialization complete" bit to move adapter to D0 state */
3104         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3105
3106         IPW_DEBUG_TRACE(">>\n");
3107         return 0;
3108 }
3109
3110 /* Call this function from process context, it will sleep in request_firmware.
3111  * Probe is an ok place to call this from.
3112  */
3113 static int ipw_reset_nic(struct ipw_priv *priv)
3114 {
3115         int rc = 0;
3116         unsigned long flags;
3117
3118         IPW_DEBUG_TRACE(">>\n");
3119
3120         rc = ipw_init_nic(priv);
3121
3122         spin_lock_irqsave(&priv->lock, flags);
3123         /* Clear the 'host command active' bit... */
3124         priv->status &= ~STATUS_HCMD_ACTIVE;
3125         wake_up_interruptible(&priv->wait_command_queue);
3126         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3127         wake_up_interruptible(&priv->wait_state);
3128         spin_unlock_irqrestore(&priv->lock, flags);
3129
3130         IPW_DEBUG_TRACE("<<\n");
3131         return rc;
3132 }
3133
3134 static int ipw_get_fw(struct ipw_priv *priv,
3135                       const struct firmware **fw, const char *name)
3136 {
3137         struct fw_header *header;
3138         int rc;
3139
3140         /* ask firmware_class module to get the boot firmware off disk */
3141         rc = request_firmware(fw, name, &priv->pci_dev->dev);
3142         if (rc < 0) {
3143                 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3144                 return rc;
3145         }
3146
3147         header = (struct fw_header *)(*fw)->data;
3148         if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3149                 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3150                           name,
3151                           IPW_FW_MAJOR(le32_to_cpu(header->version)),
3152                           IPW_FW_MAJOR_VERSION);
3153                 return -EINVAL;
3154         }
3155
3156         IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3157                        name,
3158                        IPW_FW_MAJOR(le32_to_cpu(header->version)),
3159                        IPW_FW_MINOR(le32_to_cpu(header->version)),
3160                        (*fw)->size - sizeof(struct fw_header));
3161         return 0;
3162 }
3163
3164 #define IPW_RX_BUF_SIZE (3000)
3165
3166 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
3167                                       struct ipw_rx_queue *rxq)
3168 {
3169         unsigned long flags;
3170         int i;
3171
3172         spin_lock_irqsave(&rxq->lock, flags);
3173
3174         INIT_LIST_HEAD(&rxq->rx_free);
3175         INIT_LIST_HEAD(&rxq->rx_used);
3176
3177         /* Fill the rx_used queue with _all_ of the Rx buffers */
3178         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3179                 /* In the reset function, these buffers may have been allocated
3180                  * to an SKB, so we need to unmap and free potential storage */
3181                 if (rxq->pool[i].skb != NULL) {
3182                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3183                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3184                         dev_kfree_skb(rxq->pool[i].skb);
3185                         rxq->pool[i].skb = NULL;
3186                 }
3187                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3188         }
3189
3190         /* Set us so that we have processed and used all buffers, but have
3191          * not restocked the Rx queue with fresh buffers */
3192         rxq->read = rxq->write = 0;
3193         rxq->processed = RX_QUEUE_SIZE - 1;
3194         rxq->free_count = 0;
3195         spin_unlock_irqrestore(&rxq->lock, flags);
3196 }
3197
3198 #ifdef CONFIG_PM
3199 static int fw_loaded = 0;
3200 static const struct firmware *bootfw = NULL;
3201 static const struct firmware *firmware = NULL;
3202 static const struct firmware *ucode = NULL;
3203
3204 static void free_firmware(void)
3205 {
3206         if (fw_loaded) {
3207                 release_firmware(bootfw);
3208                 release_firmware(ucode);
3209                 release_firmware(firmware);
3210                 bootfw = ucode = firmware = NULL;
3211                 fw_loaded = 0;
3212         }
3213 }
3214 #else
3215 #define free_firmware() do {} while (0)
3216 #endif
3217
3218 static int ipw_load(struct ipw_priv *priv)
3219 {
3220 #ifndef CONFIG_PM
3221         const struct firmware *bootfw = NULL;
3222         const struct firmware *firmware = NULL;
3223         const struct firmware *ucode = NULL;
3224 #endif
3225         int rc = 0, retries = 3;
3226
3227 #ifdef CONFIG_PM
3228         if (!fw_loaded) {
3229 #endif
3230                 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3231                 if (rc)
3232                         goto error;
3233
3234                 switch (priv->ieee->iw_mode) {
3235                 case IW_MODE_ADHOC:
3236                         rc = ipw_get_fw(priv, &ucode,
3237                                         IPW_FW_NAME("ibss_ucode"));
3238                         if (rc)
3239                                 goto error;
3240
3241                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3242                         break;
3243
3244 #ifdef CONFIG_IPW2200_MONITOR
3245                 case IW_MODE_MONITOR:
3246                         rc = ipw_get_fw(priv, &ucode,
3247                                         IPW_FW_NAME("sniffer_ucode"));
3248                         if (rc)
3249                                 goto error;
3250
3251                         rc = ipw_get_fw(priv, &firmware,
3252                                         IPW_FW_NAME("sniffer"));
3253                         break;
3254 #endif
3255                 case IW_MODE_INFRA:
3256                         rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3257                         if (rc)
3258                                 goto error;
3259
3260                         rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3261                         break;
3262
3263                 default:
3264                         rc = -EINVAL;
3265                 }
3266
3267                 if (rc)
3268                         goto error;
3269
3270 #ifdef CONFIG_PM
3271                 fw_loaded = 1;
3272         }
3273 #endif
3274
3275         if (!priv->rxq)
3276                 priv->rxq = ipw_rx_queue_alloc(priv);
3277         else
3278                 ipw_rx_queue_reset(priv, priv->rxq);
3279         if (!priv->rxq) {
3280                 IPW_ERROR("Unable to initialize Rx queue\n");
3281                 goto error;
3282         }
3283
3284       retry:
3285         /* Ensure interrupts are disabled */
3286         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3287         priv->status &= ~STATUS_INT_ENABLED;
3288
3289         /* ack pending interrupts */
3290         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3291
3292         ipw_stop_nic(priv);
3293
3294         rc = ipw_reset_nic(priv);
3295         if (rc) {
3296                 IPW_ERROR("Unable to reset NIC\n");
3297                 goto error;
3298         }
3299
3300         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3301                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3302
3303         /* DMA the initial boot firmware into the device */
3304         rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3305                                bootfw->size - sizeof(struct fw_header));
3306         if (rc < 0) {
3307                 IPW_ERROR("Unable to load boot firmware\n");
3308                 goto error;
3309         }
3310
3311         /* kick start the device */
3312         ipw_start_nic(priv);
3313
3314         /* wait for the device to finish it's initial startup sequence */
3315         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3316                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3317         if (rc < 0) {
3318                 IPW_ERROR("device failed to boot initial fw image\n");
3319                 goto error;
3320         }
3321         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3322
3323         /* ack fw init done interrupt */
3324         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3325
3326         /* DMA the ucode into the device */
3327         rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3328                             ucode->size - sizeof(struct fw_header));
3329         if (rc < 0) {
3330                 IPW_ERROR("Unable to load ucode\n");
3331                 goto error;
3332         }
3333
3334         /* stop nic */
3335         ipw_stop_nic(priv);
3336
3337         /* DMA bss firmware into the device */
3338         rc = ipw_load_firmware(priv, firmware->data +
3339                                sizeof(struct fw_header),
3340                                firmware->size - sizeof(struct fw_header));
3341         if (rc < 0) {
3342                 IPW_ERROR("Unable to load firmware\n");
3343                 goto error;
3344         }
3345
3346         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3347
3348         rc = ipw_queue_reset(priv);
3349         if (rc) {
3350                 IPW_ERROR("Unable to initialize queues\n");
3351                 goto error;
3352         }
3353
3354         /* Ensure interrupts are disabled */
3355         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3356         /* ack pending interrupts */
3357         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3358
3359         /* kick start the device */
3360         ipw_start_nic(priv);
3361
3362         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3363                 if (retries > 0) {
3364                         IPW_WARNING("Parity error.  Retrying init.\n");
3365                         retries--;
3366                         goto retry;
3367                 }
3368
3369                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3370                 rc = -EIO;
3371                 goto error;
3372         }
3373
3374         /* wait for the device */
3375         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3376                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3377         if (rc < 0) {
3378                 IPW_ERROR("device failed to start after 500ms\n");
3379                 goto error;
3380         }
3381         IPW_DEBUG_INFO("device response after %dms\n", rc);
3382
3383         /* ack fw init done interrupt */
3384         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3385
3386         /* read eeprom data and initialize the eeprom region of sram */
3387         priv->eeprom_delay = 1;
3388         ipw_eeprom_init_sram(priv);
3389
3390         /* enable interrupts */
3391         ipw_enable_interrupts(priv);
3392
3393         /* Ensure our queue has valid packets */
3394         ipw_rx_queue_replenish(priv);
3395
3396         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3397
3398         /* ack pending interrupts */
3399         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3400
3401 #ifndef CONFIG_PM
3402         release_firmware(bootfw);
3403         release_firmware(ucode);
3404         release_firmware(firmware);
3405 #endif
3406         return 0;
3407
3408       error:
3409         if (priv->rxq) {
3410                 ipw_rx_queue_free(priv, priv->rxq);
3411                 priv->rxq = NULL;
3412         }
3413         ipw_tx_queue_free(priv);
3414         if (bootfw)
3415                 release_firmware(bootfw);
3416         if (ucode)
3417                 release_firmware(ucode);
3418         if (firmware)
3419                 release_firmware(firmware);
3420 #ifdef CONFIG_PM
3421         fw_loaded = 0;
3422         bootfw = ucode = firmware = NULL;
3423 #endif
3424
3425         return rc;
3426 }
3427
3428 /**
3429  * DMA services
3430  *
3431  * Theory of operation
3432  *
3433  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3434  * 2 empty entries always kept in the buffer to protect from overflow.
3435  *
3436  * For Tx queue, there are low mark and high mark limits. If, after queuing
3437  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3438  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3439  * Tx queue resumed.
3440  *
3441  * The IPW operates with six queues, one receive queue in the device's
3442  * sram, one transmit queue for sending commands to the device firmware,
3443  * and four transmit queues for data.
3444  *
3445  * The four transmit queues allow for performing quality of service (qos)
3446  * transmissions as per the 802.11 protocol.  Currently Linux does not
3447  * provide a mechanism to the user for utilizing prioritized queues, so
3448  * we only utilize the first data transmit queue (queue1).
3449  */
3450
3451 /**
3452  * Driver allocates buffers of this size for Rx
3453  */
3454
3455 static inline int ipw_queue_space(const struct clx2_queue *q)
3456 {
3457         int s = q->last_used - q->first_empty;
3458         if (s <= 0)
3459                 s += q->n_bd;
3460         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3461         if (s < 0)
3462                 s = 0;
3463         return s;
3464 }
3465
3466 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3467 {
3468         return (++index == n_bd) ? 0 : index;
3469 }
3470
3471 /**
3472  * Initialize common DMA queue structure
3473  *
3474  * @param q                queue to init
3475  * @param count            Number of BD's to allocate. Should be power of 2
3476  * @param read_register    Address for 'read' register
3477  *                         (not offset within BAR, full address)
3478  * @param write_register   Address for 'write' register
3479  *                         (not offset within BAR, full address)
3480  * @param base_register    Address for 'base' register
3481  *                         (not offset within BAR, full address)
3482  * @param size             Address for 'size' register
3483  *                         (not offset within BAR, full address)
3484  */
3485 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3486                            int count, u32 read, u32 write, u32 base, u32 size)
3487 {
3488         q->n_bd = count;
3489
3490         q->low_mark = q->n_bd / 4;
3491         if (q->low_mark < 4)
3492                 q->low_mark = 4;
3493
3494         q->high_mark = q->n_bd / 8;
3495         if (q->high_mark < 2)
3496                 q->high_mark = 2;
3497
3498         q->first_empty = q->last_used = 0;
3499         q->reg_r = read;
3500         q->reg_w = write;
3501
3502         ipw_write32(priv, base, q->dma_addr);
3503         ipw_write32(priv, size, count);
3504         ipw_write32(priv, read, 0);
3505         ipw_write32(priv, write, 0);
3506
3507         _ipw_read32(priv, 0x90);
3508 }
3509
3510 static int ipw_queue_tx_init(struct ipw_priv *priv,
3511                              struct clx2_tx_queue *q,
3512                              int count, u32 read, u32 write, u32 base, u32 size)
3513 {
3514         struct pci_dev *dev = priv->pci_dev;
3515
3516         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3517         if (!q->txb) {
3518                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3519                 return -ENOMEM;
3520         }
3521
3522         q->bd =
3523             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3524         if (!q->bd) {
3525                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3526                           sizeof(q->bd[0]) * count);
3527                 kfree(q->txb);
3528                 q->txb = NULL;
3529                 return -ENOMEM;
3530         }
3531
3532         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3533         return 0;
3534 }
3535
3536 /**
3537  * Free one TFD, those at index [txq->q.last_used].
3538  * Do NOT advance any indexes
3539  *
3540  * @param dev
3541  * @param txq
3542  */
3543 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3544                                   struct clx2_tx_queue *txq)
3545 {
3546         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3547         struct pci_dev *dev = priv->pci_dev;
3548         int i;
3549
3550         /* classify bd */
3551         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3552                 /* nothing to cleanup after for host commands */
3553                 return;
3554
3555         /* sanity check */
3556         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3557                 IPW_ERROR("Too many chunks: %i\n",
3558                           le32_to_cpu(bd->u.data.num_chunks));
3559                 /** @todo issue fatal error, it is quite serious situation */
3560                 return;
3561         }
3562
3563         /* unmap chunks if any */
3564         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3565                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3566                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3567                                  PCI_DMA_TODEVICE);
3568                 if (txq->txb[txq->q.last_used]) {
3569                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3570                         txq->txb[txq->q.last_used] = NULL;
3571                 }
3572         }
3573 }
3574
3575 /**
3576  * Deallocate DMA queue.
3577  *
3578  * Empty queue by removing and destroying all BD's.
3579  * Free all buffers.
3580  *
3581  * @param dev
3582  * @param q
3583  */
3584 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3585 {
3586         struct clx2_queue *q = &txq->q;
3587         struct pci_dev *dev = priv->pci_dev;
3588
3589         if (q->n_bd == 0)
3590                 return;
3591
3592         /* first, empty all BD's */
3593         for (; q->first_empty != q->last_used;
3594              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3595                 ipw_queue_tx_free_tfd(priv, txq);
3596         }
3597
3598         /* free buffers belonging to queue itself */
3599         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3600                             q->dma_addr);
3601         kfree(txq->txb);
3602
3603         /* 0 fill whole structure */
3604         memset(txq, 0, sizeof(*txq));
3605 }
3606
3607 /**
3608  * Destroy all DMA queues and structures
3609  *
3610  * @param priv
3611  */
3612 static void ipw_tx_queue_free(struct ipw_priv *priv)
3613 {
3614         /* Tx CMD queue */
3615         ipw_queue_tx_free(priv, &priv->txq_cmd);
3616
3617         /* Tx queues */
3618         ipw_queue_tx_free(priv, &priv->txq[0]);
3619         ipw_queue_tx_free(priv, &priv->txq[1]);
3620         ipw_queue_tx_free(priv, &priv->txq[2]);
3621         ipw_queue_tx_free(priv, &priv->txq[3]);
3622 }
3623
3624 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3625 {
3626         /* First 3 bytes are manufacturer */
3627         bssid[0] = priv->mac_addr[0];
3628         bssid[1] = priv->mac_addr[1];
3629         bssid[2] = priv->mac_addr[2];
3630
3631         /* Last bytes are random */
3632         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3633
3634         bssid[0] &= 0xfe;       /* clear multicast bit */
3635         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3636 }
3637
3638 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3639 {
3640         struct ipw_station_entry entry;
3641         int i;
3642
3643         for (i = 0; i < priv->num_stations; i++) {
3644                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3645                         /* Another node is active in network */
3646                         priv->missed_adhoc_beacons = 0;
3647                         if (!(priv->config & CFG_STATIC_CHANNEL))
3648                                 /* when other nodes drop out, we drop out */
3649                                 priv->config &= ~CFG_ADHOC_PERSIST;
3650
3651                         return i;
3652                 }
3653         }
3654
3655         if (i == MAX_STATIONS)
3656                 return IPW_INVALID_STATION;
3657
3658         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3659
3660         entry.reserved = 0;
3661         entry.support_mode = 0;
3662         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3663         memcpy(priv->stations[i], bssid, ETH_ALEN);
3664         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3665                          &entry, sizeof(entry));
3666         priv->num_stations++;
3667
3668         return i;
3669 }
3670
3671 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3672 {
3673         int i;
3674
3675         for (i = 0; i < priv->num_stations; i++)
3676                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3677                         return i;
3678
3679         return IPW_INVALID_STATION;
3680 }
3681
3682 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3683 {
3684         int err;
3685
3686         if (priv->status & STATUS_ASSOCIATING) {
3687                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3688                 queue_work(priv->workqueue, &priv->disassociate);
3689                 return;
3690         }
3691
3692         if (!(priv->status & STATUS_ASSOCIATED)) {
3693                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3694                 return;
3695         }
3696
3697         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3698                         "on channel %d.\n",
3699                         MAC_ARG(priv->assoc_request.bssid),
3700                         priv->assoc_request.channel);
3701
3702         if (quiet)
3703                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3704         else
3705                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3706         err = ipw_send_associate(priv, &priv->assoc_request);
3707         if (err) {
3708                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3709                              "failed.\n");
3710                 return;
3711         }
3712
3713         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3714         priv->status |= STATUS_DISASSOCIATING;
3715
3716 }
3717
3718 static int ipw_disassociate(void *data)
3719 {
3720         struct ipw_priv *priv = data;
3721         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3722                 return 0;
3723         ipw_send_disassociate(data, 0);
3724         return 1;
3725 }
3726
3727 static void ipw_bg_disassociate(void *data)
3728 {
3729         struct ipw_priv *priv = data;
3730         down(&priv->sem);
3731         ipw_disassociate(data);
3732         up(&priv->sem);
3733 }
3734
3735 static void ipw_system_config(void *data)
3736 {
3737         struct ipw_priv *priv = data;
3738         ipw_send_system_config(priv, &priv->sys_config);
3739 }
3740
3741 struct ipw_status_code {
3742         u16 status;
3743         const char *reason;
3744 };
3745
3746 static const struct ipw_status_code ipw_status_codes[] = {
3747         {0x00, "Successful"},
3748         {0x01, "Unspecified failure"},
3749         {0x0A, "Cannot support all requested capabilities in the "
3750          "Capability information field"},
3751         {0x0B, "Reassociation denied due to inability to confirm that "
3752          "association exists"},
3753         {0x0C, "Association denied due to reason outside the scope of this "
3754          "standard"},
3755         {0x0D,
3756          "Responding station does not support the specified authentication "
3757          "algorithm"},
3758         {0x0E,
3759          "Received an Authentication frame with authentication sequence "
3760          "transaction sequence number out of expected sequence"},
3761         {0x0F, "Authentication rejected because of challenge failure"},
3762         {0x10, "Authentication rejected due to timeout waiting for next "
3763          "frame in sequence"},
3764         {0x11, "Association denied because AP is unable to handle additional "
3765          "associated stations"},
3766         {0x12,
3767          "Association denied due to requesting station not supporting all "
3768          "of the datarates in the BSSBasicServiceSet Parameter"},
3769         {0x13,
3770          "Association denied due to requesting station not supporting "
3771          "short preamble operation"},
3772         {0x14,
3773          "Association denied due to requesting station not supporting "
3774          "PBCC encoding"},
3775         {0x15,
3776          "Association denied due to requesting station not supporting "
3777          "channel agility"},
3778         {0x19,
3779          "Association denied due to requesting station not supporting "
3780          "short slot operation"},
3781         {0x1A,
3782          "Association denied due to requesting station not supporting "
3783          "DSSS-OFDM operation"},
3784         {0x28, "Invalid Information Element"},
3785         {0x29, "Group Cipher is not valid"},
3786         {0x2A, "Pairwise Cipher is not valid"},
3787         {0x2B, "AKMP is not valid"},
3788         {0x2C, "Unsupported RSN IE version"},
3789         {0x2D, "Invalid RSN IE Capabilities"},
3790         {0x2E, "Cipher suite is rejected per security policy"},
3791 };
3792
3793 #ifdef CONFIG_IPW_DEBUG
3794 static const char *ipw_get_status_code(u16 status)
3795 {
3796         int i;
3797         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3798                 if (ipw_status_codes[i].status == (status & 0xff))
3799                         return ipw_status_codes[i].reason;
3800         return "Unknown status value.";
3801 }
3802 #endif
3803
3804 static void inline average_init(struct average *avg)
3805 {
3806         memset(avg, 0, sizeof(*avg));
3807 }
3808
3809 static void inline average_add(struct average *avg, s16 val)
3810 {
3811         avg->sum -= avg->entries[avg->pos];
3812         avg->sum += val;
3813         avg->entries[avg->pos++] = val;
3814         if (unlikely(avg->pos == AVG_ENTRIES)) {
3815                 avg->init = 1;
3816                 avg->pos = 0;
3817         }
3818 }
3819
3820 static s16 inline average_value(struct average *avg)
3821 {
3822         if (!unlikely(avg->init)) {
3823                 if (avg->pos)
3824                         return avg->sum / avg->pos;
3825                 return 0;
3826         }
3827
3828         return avg->sum / AVG_ENTRIES;
3829 }
3830
3831 static void ipw_reset_stats(struct ipw_priv *priv)
3832 {
3833         u32 len = sizeof(u32);
3834
3835         priv->quality = 0;
3836
3837         average_init(&priv->average_missed_beacons);
3838         average_init(&priv->average_rssi);
3839         average_init(&priv->average_noise);
3840
3841         priv->last_rate = 0;
3842         priv->last_missed_beacons = 0;
3843         priv->last_rx_packets = 0;
3844         priv->last_tx_packets = 0;
3845         priv->last_tx_failures = 0;
3846
3847         /* Firmware managed, reset only when NIC is restarted, so we have to
3848          * normalize on the current value */
3849         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3850                         &priv->last_rx_err, &len);
3851         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3852                         &priv->last_tx_failures, &len);
3853
3854         /* Driver managed, reset with each association */
3855         priv->missed_adhoc_beacons = 0;
3856         priv->missed_beacons = 0;
3857         priv->tx_packets = 0;
3858         priv->rx_packets = 0;
3859
3860 }
3861
3862 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3863 {
3864         u32 i = 0x80000000;
3865         u32 mask = priv->rates_mask;
3866         /* If currently associated in B mode, restrict the maximum
3867          * rate match to B rates */
3868         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3869                 mask &= IEEE80211_CCK_RATES_MASK;
3870
3871         /* TODO: Verify that the rate is supported by the current rates
3872          * list. */
3873
3874         while (i && !(mask & i))
3875                 i >>= 1;
3876         switch (i) {
3877         case IEEE80211_CCK_RATE_1MB_MASK:
3878                 return 1000000;
3879         case IEEE80211_CCK_RATE_2MB_MASK:
3880                 return 2000000;
3881         case IEEE80211_CCK_RATE_5MB_MASK:
3882                 return 5500000;
3883         case IEEE80211_OFDM_RATE_6MB_MASK:
3884                 return 6000000;
3885         case IEEE80211_OFDM_RATE_9MB_MASK:
3886                 return 9000000;
3887         case IEEE80211_CCK_RATE_11MB_MASK:
3888                 return 11000000;
3889         case IEEE80211_OFDM_RATE_12MB_MASK:
3890                 return 12000000;
3891         case IEEE80211_OFDM_RATE_18MB_MASK:
3892                 return 18000000;
3893         case IEEE80211_OFDM_RATE_24MB_MASK:
3894                 return 24000000;
3895         case IEEE80211_OFDM_RATE_36MB_MASK:
3896                 return 36000000;
3897         case IEEE80211_OFDM_RATE_48MB_MASK:
3898                 return 48000000;
3899         case IEEE80211_OFDM_RATE_54MB_MASK:
3900                 return 54000000;
3901         }
3902
3903         if (priv->ieee->mode == IEEE_B)
3904                 return 11000000;
3905         else
3906                 return 54000000;
3907 }
3908
3909 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3910 {
3911         u32 rate, len = sizeof(rate);
3912         int err;
3913
3914         if (!(priv->status & STATUS_ASSOCIATED))
3915                 return 0;
3916
3917         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3918                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3919                                       &len);
3920                 if (err) {
3921                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3922                         return 0;
3923                 }
3924         } else
3925                 return ipw_get_max_rate(priv);
3926
3927         switch (rate) {
3928         case IPW_TX_RATE_1MB:
3929                 return 1000000;
3930         case IPW_TX_RATE_2MB:
3931                 return 2000000;
3932         case IPW_TX_RATE_5MB:
3933                 return 5500000;
3934         case IPW_TX_RATE_6MB:
3935                 return 6000000;
3936         case IPW_TX_RATE_9MB:
3937                 return 9000000;
3938         case IPW_TX_RATE_11MB:
3939                 return 11000000;
3940         case IPW_TX_RATE_12MB:
3941                 return 12000000;
3942         case IPW_TX_RATE_18MB:
3943                 return 18000000;
3944         case IPW_TX_RATE_24MB:
3945                 return 24000000;
3946         case IPW_TX_RATE_36MB:
3947                 return 36000000;
3948         case IPW_TX_RATE_48MB:
3949                 return 48000000;
3950         case IPW_TX_RATE_54MB:
3951                 return 54000000;
3952         }
3953
3954         return 0;
3955 }
3956
3957 #define IPW_STATS_INTERVAL (2 * HZ)
3958 static void ipw_gather_stats(struct ipw_priv *priv)
3959 {
3960         u32 rx_err, rx_err_delta, rx_packets_delta;
3961         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3962         u32 missed_beacons_percent, missed_beacons_delta;
3963         u32 quality = 0;
3964         u32 len = sizeof(u32);
3965         s16 rssi;
3966         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3967             rate_quality;
3968         u32 max_rate;
3969
3970         if (!(priv->status & STATUS_ASSOCIATED)) {
3971                 priv->quality = 0;
3972                 return;
3973         }
3974
3975         /* Update the statistics */
3976         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3977                         &priv->missed_beacons, &len);
3978         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3979         priv->last_missed_beacons = priv->missed_beacons;
3980         if (priv->assoc_request.beacon_interval) {
3981                 missed_beacons_percent = missed_beacons_delta *
3982                     (HZ * priv->assoc_request.beacon_interval) /
3983                     (IPW_STATS_INTERVAL * 10);
3984         } else {
3985                 missed_beacons_percent = 0;
3986         }
3987         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3988
3989         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3990         rx_err_delta = rx_err - priv->last_rx_err;
3991         priv->last_rx_err = rx_err;
3992
3993         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3994         tx_failures_delta = tx_failures - priv->last_tx_failures;
3995         priv->last_tx_failures = tx_failures;
3996
3997         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3998         priv->last_rx_packets = priv->rx_packets;
3999
4000         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4001         priv->last_tx_packets = priv->tx_packets;
4002
4003         /* Calculate quality based on the following:
4004          *
4005          * Missed beacon: 100% = 0, 0% = 70% missed
4006          * Rate: 60% = 1Mbs, 100% = Max
4007          * Rx and Tx errors represent a straight % of total Rx/Tx
4008          * RSSI: 100% = > -50,  0% = < -80
4009          * Rx errors: 100% = 0, 0% = 50% missed
4010          *
4011          * The lowest computed quality is used.
4012          *
4013          */
4014 #define BEACON_THRESHOLD 5
4015         beacon_quality = 100 - missed_beacons_percent;
4016         if (beacon_quality < BEACON_THRESHOLD)
4017                 beacon_quality = 0;
4018         else
4019                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4020                     (100 - BEACON_THRESHOLD);
4021         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4022                         beacon_quality, missed_beacons_percent);
4023
4024         priv->last_rate = ipw_get_current_rate(priv);
4025         max_rate = ipw_get_max_rate(priv);
4026         rate_quality = priv->last_rate * 40 / max_rate + 60;
4027         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4028                         rate_quality, priv->last_rate / 1000000);
4029
4030         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4031                 rx_quality = 100 - (rx_err_delta * 100) /
4032                     (rx_packets_delta + rx_err_delta);
4033         else
4034                 rx_quality = 100;
4035         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4036                         rx_quality, rx_err_delta, rx_packets_delta);
4037
4038         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4039                 tx_quality = 100 - (tx_failures_delta * 100) /
4040                     (tx_packets_delta + tx_failures_delta);
4041         else
4042                 tx_quality = 100;
4043         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4044                         tx_quality, tx_failures_delta, tx_packets_delta);
4045
4046         rssi = average_value(&priv->average_rssi);
4047         signal_quality =
4048             (100 *
4049              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4050              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4051              (priv->ieee->perfect_rssi - rssi) *
4052              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4053               62 * (priv->ieee->perfect_rssi - rssi))) /
4054             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4055              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4056         if (signal_quality > 100)
4057                 signal_quality = 100;
4058         else if (signal_quality < 1)
4059                 signal_quality = 0;
4060
4061         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4062                         signal_quality, rssi);
4063
4064         quality = min(beacon_quality,
4065                       min(rate_quality,
4066                           min(tx_quality, min(rx_quality, signal_quality))));
4067         if (quality == beacon_quality)
4068                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4069                                 quality);
4070         if (quality == rate_quality)
4071                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4072                                 quality);
4073         if (quality == tx_quality)
4074                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4075                                 quality);
4076         if (quality == rx_quality)
4077                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4078                                 quality);
4079         if (quality == signal_quality)
4080                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4081                                 quality);
4082
4083         priv->quality = quality;
4084
4085         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4086                            IPW_STATS_INTERVAL);
4087 }
4088
4089 static void ipw_bg_gather_stats(void *data)
4090 {
4091         struct ipw_priv *priv = data;
4092         down(&priv->sem);
4093         ipw_gather_stats(data);
4094         up(&priv->sem);
4095 }
4096
4097 static inline void ipw_handle_missed_beacon(struct ipw_priv *priv,
4098                                             int missed_count)
4099 {
4100         priv->notif_missed_beacons = missed_count;
4101
4102         if (missed_count > priv->disassociate_threshold &&
4103             priv->status & STATUS_ASSOCIATED) {
4104                 /* If associated and we've hit the missed
4105                  * beacon threshold, disassociate, turn
4106                  * off roaming, and abort any active scans */
4107                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4108                           IPW_DL_STATE | IPW_DL_ASSOC,
4109                           "Missed beacon: %d - disassociate\n", missed_count);
4110                 priv->status &= ~STATUS_ROAMING;
4111                 if (priv->status & STATUS_SCANNING) {
4112                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4113                                   IPW_DL_STATE,
4114                                   "Aborting scan with missed beacon.\n");
4115                         queue_work(priv->workqueue, &priv->abort_scan);
4116                 }
4117
4118                 queue_work(priv->workqueue, &priv->disassociate);
4119                 return;
4120         }
4121
4122         if (priv->status & STATUS_ROAMING) {
4123                 /* If we are currently roaming, then just
4124                  * print a debug statement... */
4125                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4126                           "Missed beacon: %d - roam in progress\n",
4127                           missed_count);
4128                 return;
4129         }
4130
4131         if (missed_count > priv->roaming_threshold) {
4132                 /* If we are not already roaming, set the ROAM
4133                  * bit in the status and kick off a scan */
4134                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4135                           "Missed beacon: %d - initiate "
4136                           "roaming\n", missed_count);
4137                 if (!(priv->status & STATUS_ROAMING)) {
4138                         priv->status |= STATUS_ROAMING;
4139                         if (!(priv->status & STATUS_SCANNING))
4140                                 queue_work(priv->workqueue,
4141                                            &priv->request_scan);
4142                 }
4143                 return;
4144         }
4145
4146         if (priv->status & STATUS_SCANNING) {
4147                 /* Stop scan to keep fw from getting
4148                  * stuck (only if we aren't roaming --
4149                  * otherwise we'll never scan more than 2 or 3
4150                  * channels..) */
4151                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4152                           "Aborting scan with missed beacon.\n");
4153                 queue_work(priv->workqueue, &priv->abort_scan);
4154         }
4155
4156         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4157
4158 }
4159
4160 /**
4161  * Handle host notification packet.
4162  * Called from interrupt routine
4163  */
4164 static inline void ipw_rx_notification(struct ipw_priv *priv,
4165                                        struct ipw_rx_notification *notif)
4166 {
4167         notif->size = le16_to_cpu(notif->size);
4168
4169         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4170
4171         switch (notif->subtype) {
4172         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4173                         struct notif_association *assoc = &notif->u.assoc;
4174
4175                         switch (assoc->state) {
4176                         case CMAS_ASSOCIATED:{
4177                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4178                                                   IPW_DL_ASSOC,
4179                                                   "associated: '%s' " MAC_FMT
4180                                                   " \n",
4181                                                   escape_essid(priv->essid,
4182                                                                priv->essid_len),
4183                                                   MAC_ARG(priv->bssid));
4184
4185                                         switch (priv->ieee->iw_mode) {
4186                                         case IW_MODE_INFRA:
4187                                                 memcpy(priv->ieee->bssid,
4188                                                        priv->bssid, ETH_ALEN);
4189                                                 break;
4190
4191                                         case IW_MODE_ADHOC:
4192                                                 memcpy(priv->ieee->bssid,
4193                                                        priv->bssid, ETH_ALEN);
4194
4195                                                 /* clear out the station table */
4196                                                 priv->num_stations = 0;
4197
4198                                                 IPW_DEBUG_ASSOC
4199                                                     ("queueing adhoc check\n");
4200                                                 queue_delayed_work(priv->
4201                                                                    workqueue,
4202                                                                    &priv->
4203                                                                    adhoc_check,
4204                                                                    priv->
4205                                                                    assoc_request.
4206                                                                    beacon_interval);
4207                                                 break;
4208                                         }
4209
4210                                         priv->status &= ~STATUS_ASSOCIATING;
4211                                         priv->status |= STATUS_ASSOCIATED;
4212                                         queue_work(priv->workqueue,
4213                                                    &priv->system_config);
4214
4215 #ifdef CONFIG_IPW_QOS
4216 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4217                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4218                                         if ((priv->status & STATUS_AUTH) &&
4219                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4220                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4221                                                 if ((sizeof
4222                                                      (struct
4223                                                       ieee80211_assoc_response)
4224                                                      <= notif->size)
4225                                                     && (notif->size <= 2314)) {
4226                                                         struct
4227                                                         ieee80211_rx_stats
4228                                                             stats = {
4229                                                                 .len =
4230                                                                     notif->
4231                                                                     size - 1,
4232                                                         };
4233
4234                                                         IPW_DEBUG_QOS
4235                                                             ("QoS Associate "
4236                                                              "size %d\n",
4237                                                              notif->size);
4238                                                         ieee80211_rx_mgt(priv->
4239                                                                          ieee,
4240                                                                          (struct
4241                                                                           ieee80211_hdr_4addr
4242                                                                           *)
4243                                                                          &notif->u.raw, &stats);
4244                                                 }
4245                                         }
4246 #endif
4247
4248                                         schedule_work(&priv->link_up);
4249
4250                                         break;
4251                                 }
4252
4253                         case CMAS_AUTHENTICATED:{
4254                                         if (priv->
4255                                             status & (STATUS_ASSOCIATED |
4256                                                       STATUS_AUTH)) {
4257 #ifdef CONFIG_IPW_DEBUG
4258                                                 struct notif_authenticate *auth
4259                                                     = &notif->u.auth;
4260                                                 IPW_DEBUG(IPW_DL_NOTIF |
4261                                                           IPW_DL_STATE |
4262                                                           IPW_DL_ASSOC,
4263                                                           "deauthenticated: '%s' "
4264                                                           MAC_FMT
4265                                                           ": (0x%04X) - %s \n",
4266                                                           escape_essid(priv->
4267                                                                        essid,
4268                                                                        priv->
4269                                                                        essid_len),
4270                                                           MAC_ARG(priv->bssid),
4271                                                           ntohs(auth->status),
4272                                                           ipw_get_status_code
4273                                                           (ntohs
4274                                                            (auth->status)));
4275 #endif
4276
4277                                                 priv->status &=
4278                                                     ~(STATUS_ASSOCIATING |
4279                                                       STATUS_AUTH |
4280                                                       STATUS_ASSOCIATED);
4281
4282                                                 schedule_work(&priv->link_down);
4283                                                 break;
4284                                         }
4285
4286                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4287                                                   IPW_DL_ASSOC,
4288                                                   "authenticated: '%s' " MAC_FMT
4289                                                   "\n",
4290                                                   escape_essid(priv->essid,
4291                                                                priv->essid_len),
4292                                                   MAC_ARG(priv->bssid));
4293                                         break;
4294                                 }
4295
4296                         case CMAS_INIT:{
4297                                         if (priv->status & STATUS_AUTH) {
4298                                                 struct
4299                                                     ieee80211_assoc_response
4300                                                 *resp;
4301                                                 resp =
4302                                                     (struct
4303                                                      ieee80211_assoc_response
4304                                                      *)&notif->u.raw;
4305                                                 IPW_DEBUG(IPW_DL_NOTIF |
4306                                                           IPW_DL_STATE |
4307                                                           IPW_DL_ASSOC,
4308                                                           "association failed (0x%04X): %s\n",
4309                                                           ntohs(resp->status),
4310                                                           ipw_get_status_code
4311                                                           (ntohs
4312                                                            (resp->status)));
4313                                         }
4314
4315                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4316                                                   IPW_DL_ASSOC,
4317                                                   "disassociated: '%s' " MAC_FMT
4318                                                   " \n",
4319                                                   escape_essid(priv->essid,
4320                                                                priv->essid_len),
4321                                                   MAC_ARG(priv->bssid));
4322
4323                                         priv->status &=
4324                                             ~(STATUS_DISASSOCIATING |
4325                                               STATUS_ASSOCIATING |
4326                                               STATUS_ASSOCIATED | STATUS_AUTH);
4327                                         if (priv->assoc_network
4328                                             && (priv->assoc_network->
4329                                                 capability &
4330                                                 WLAN_CAPABILITY_IBSS))
4331                                                 ipw_remove_current_network
4332                                                     (priv);
4333
4334                                         schedule_work(&priv->link_down);
4335
4336                                         break;
4337                                 }
4338
4339                         case CMAS_RX_ASSOC_RESP:
4340                                 break;
4341
4342                         default:
4343                                 IPW_ERROR("assoc: unknown (%d)\n",
4344                                           assoc->state);
4345                                 break;
4346                         }
4347
4348                         break;
4349                 }
4350
4351         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4352                         struct notif_authenticate *auth = &notif->u.auth;
4353                         switch (auth->state) {
4354                         case CMAS_AUTHENTICATED:
4355                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4356                                           "authenticated: '%s' " MAC_FMT " \n",
4357                                           escape_essid(priv->essid,
4358                                                        priv->essid_len),
4359                                           MAC_ARG(priv->bssid));
4360                                 priv->status |= STATUS_AUTH;
4361                                 break;
4362
4363                         case CMAS_INIT:
4364                                 if (priv->status & STATUS_AUTH) {
4365                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4366                                                   IPW_DL_ASSOC,
4367                                                   "authentication failed (0x%04X): %s\n",
4368                                                   ntohs(auth->status),
4369                                                   ipw_get_status_code(ntohs
4370                                                                       (auth->
4371                                                                        status)));
4372                                 }
4373                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4374                                           IPW_DL_ASSOC,
4375                                           "deauthenticated: '%s' " MAC_FMT "\n",
4376                                           escape_essid(priv->essid,
4377                                                        priv->essid_len),
4378                                           MAC_ARG(priv->bssid));
4379
4380                                 priv->status &= ~(STATUS_ASSOCIATING |
4381                                                   STATUS_AUTH |
4382                                                   STATUS_ASSOCIATED);
4383
4384                                 schedule_work(&priv->link_down);
4385                                 break;
4386
4387                         case CMAS_TX_AUTH_SEQ_1:
4388                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4390                                 break;
4391                         case CMAS_RX_AUTH_SEQ_2:
4392                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4394                                 break;
4395                         case CMAS_AUTH_SEQ_1_PASS:
4396                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4398                                 break;
4399                         case CMAS_AUTH_SEQ_1_FAIL:
4400                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4402                                 break;
4403                         case CMAS_TX_AUTH_SEQ_3:
4404                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4406                                 break;
4407                         case CMAS_RX_AUTH_SEQ_4:
4408                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4410                                 break;
4411                         case CMAS_AUTH_SEQ_2_PASS:
4412                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4414                                 break;
4415                         case CMAS_AUTH_SEQ_2_FAIL:
4416                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4418                                 break;
4419                         case CMAS_TX_ASSOC:
4420                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4421                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4422                                 break;
4423                         case CMAS_RX_ASSOC_RESP:
4424                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4426
4427                                 break;
4428                         case CMAS_ASSOCIATED:
4429                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4430                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4431                                 break;
4432                         default:
4433                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4434                                                 auth->state);
4435                                 break;
4436                         }
4437                         break;
4438                 }
4439
4440         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4441                         struct notif_channel_result *x =
4442                             &notif->u.channel_result;
4443
4444                         if (notif->size == sizeof(*x)) {
4445                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4446                                                x->channel_num);
4447                         } else {
4448                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4449                                                "(should be %zd)\n",
4450                                                notif->size, sizeof(*x));
4451                         }
4452                         break;
4453                 }
4454
4455         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4456                         struct notif_scan_complete *x = &notif->u.scan_complete;
4457                         if (notif->size == sizeof(*x)) {
4458                                 IPW_DEBUG_SCAN
4459                                     ("Scan completed: type %d, %d channels, "
4460                                      "%d status\n", x->scan_type,
4461                                      x->num_channels, x->status);
4462                         } else {
4463                                 IPW_ERROR("Scan completed of wrong size %d "
4464                                           "(should be %zd)\n",
4465                                           notif->size, sizeof(*x));
4466                         }
4467
4468                         priv->status &=
4469                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4470
4471                         wake_up_interruptible(&priv->wait_state);
4472                         cancel_delayed_work(&priv->scan_check);
4473
4474                         if (priv->status & STATUS_EXIT_PENDING)
4475                                 break;
4476
4477                         priv->ieee->scans++;
4478
4479 #ifdef CONFIG_IPW2200_MONITOR
4480                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4481                                 priv->status |= STATUS_SCAN_FORCED;
4482                                 queue_work(priv->workqueue,
4483                                            &priv->request_scan);
4484                                 break;
4485                         }
4486                         priv->status &= ~STATUS_SCAN_FORCED;
4487 #endif                          /* CONFIG_IPW2200_MONITOR */
4488
4489                         if (!(priv->status & (STATUS_ASSOCIATED |
4490                                               STATUS_ASSOCIATING |
4491                                               STATUS_ROAMING |
4492                                               STATUS_DISASSOCIATING)))
4493                                 queue_work(priv->workqueue, &priv->associate);
4494                         else if (priv->status & STATUS_ROAMING) {
4495                                 /* If a scan completed and we are in roam mode, then
4496                                  * the scan that completed was the one requested as a
4497                                  * result of entering roam... so, schedule the
4498                                  * roam work */
4499                                 queue_work(priv->workqueue, &priv->roam);
4500                         } else if (priv->status & STATUS_SCAN_PENDING)
4501                                 queue_work(priv->workqueue,
4502                                            &priv->request_scan);
4503                         else if (priv->config & CFG_BACKGROUND_SCAN
4504                                  && priv->status & STATUS_ASSOCIATED)
4505                                 queue_delayed_work(priv->workqueue,
4506                                                    &priv->request_scan, HZ);
4507                         break;
4508                 }
4509
4510         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4511                         struct notif_frag_length *x = &notif->u.frag_len;
4512
4513                         if (notif->size == sizeof(*x))
4514                                 IPW_ERROR("Frag length: %d\n",
4515                                           le16_to_cpu(x->frag_length));
4516                         else
4517                                 IPW_ERROR("Frag length of wrong size %d "
4518                                           "(should be %zd)\n",
4519                                           notif->size, sizeof(*x));
4520                         break;
4521                 }
4522
4523         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4524                         struct notif_link_deterioration *x =
4525                             &notif->u.link_deterioration;
4526
4527                         if (notif->size == sizeof(*x)) {
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4529                                           "link deterioration: '%s' " MAC_FMT
4530                                           " \n", escape_essid(priv->essid,
4531                                                               priv->essid_len),
4532                                           MAC_ARG(priv->bssid));
4533                                 memcpy(&priv->last_link_deterioration, x,
4534                                        sizeof(*x));
4535                         } else {
4536                                 IPW_ERROR("Link Deterioration of wrong size %d "
4537                                           "(should be %zd)\n",
4538                                           notif->size, sizeof(*x));
4539                         }
4540                         break;
4541                 }
4542
4543         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4544                         IPW_ERROR("Dino config\n");
4545                         if (priv->hcmd
4546                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4547                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4548
4549                         break;
4550                 }
4551
4552         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4553                         struct notif_beacon_state *x = &notif->u.beacon_state;
4554                         if (notif->size != sizeof(*x)) {
4555                                 IPW_ERROR
4556                                     ("Beacon state of wrong size %d (should "
4557                                      "be %zd)\n", notif->size, sizeof(*x));
4558                                 break;
4559                         }
4560
4561                         if (le32_to_cpu(x->state) ==
4562                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4563                                 ipw_handle_missed_beacon(priv,
4564                                                          le32_to_cpu(x->
4565                                                                      number));
4566
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4571                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4572                         if (notif->size == sizeof(*x)) {
4573                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4574                                           "0x%02x station %d\n",
4575                                           x->key_state, x->security_type,
4576                                           x->station_index);
4577                                 break;
4578                         }
4579
4580                         IPW_ERROR
4581                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4582                              notif->size, sizeof(*x));
4583                         break;
4584                 }
4585
4586         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4587                         struct notif_calibration *x = &notif->u.calibration;
4588
4589                         if (notif->size == sizeof(*x)) {
4590                                 memcpy(&priv->calib, x, sizeof(*x));
4591                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4592                                 break;
4593                         }
4594
4595                         IPW_ERROR
4596                             ("Calibration of wrong size %d (should be %zd)\n",
4597                              notif->size, sizeof(*x));
4598                         break;
4599                 }
4600
4601         case HOST_NOTIFICATION_NOISE_STATS:{
4602                         if (notif->size == sizeof(u32)) {
4603                                 priv->last_noise =
4604                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4605                                           0xff);
4606                                 average_add(&priv->average_noise,
4607                                             priv->last_noise);
4608                                 break;
4609                         }
4610
4611                         IPW_ERROR
4612                             ("Noise stat is wrong size %d (should be %zd)\n",
4613                              notif->size, sizeof(u32));
4614                         break;
4615                 }
4616
4617         default:
4618                 IPW_ERROR("Unknown notification: "
4619                           "subtype=%d,flags=0x%2x,size=%d\n",
4620                           notif->subtype, notif->flags, notif->size);
4621         }
4622 }
4623
4624 /**
4625  * Destroys all DMA structures and initialise them again
4626  *
4627  * @param priv
4628  * @return error code
4629  */
4630 static int ipw_queue_reset(struct ipw_priv *priv)
4631 {
4632         int rc = 0;
4633         /** @todo customize queue sizes */
4634         int nTx = 64, nTxCmd = 8;
4635         ipw_tx_queue_free(priv);
4636         /* Tx CMD queue */
4637         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4638                                IPW_TX_CMD_QUEUE_READ_INDEX,
4639                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4640                                IPW_TX_CMD_QUEUE_BD_BASE,
4641                                IPW_TX_CMD_QUEUE_BD_SIZE);
4642         if (rc) {
4643                 IPW_ERROR("Tx Cmd queue init failed\n");
4644                 goto error;
4645         }
4646         /* Tx queue(s) */
4647         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4648                                IPW_TX_QUEUE_0_READ_INDEX,
4649                                IPW_TX_QUEUE_0_WRITE_INDEX,
4650                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4651         if (rc) {
4652                 IPW_ERROR("Tx 0 queue init failed\n");
4653                 goto error;
4654         }
4655         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4656                                IPW_TX_QUEUE_1_READ_INDEX,
4657                                IPW_TX_QUEUE_1_WRITE_INDEX,
4658                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4659         if (rc) {
4660                 IPW_ERROR("Tx 1 queue init failed\n");
4661                 goto error;
4662         }
4663         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4664                                IPW_TX_QUEUE_2_READ_INDEX,
4665                                IPW_TX_QUEUE_2_WRITE_INDEX,
4666                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4667         if (rc) {
4668                 IPW_ERROR("Tx 2 queue init failed\n");
4669                 goto error;
4670         }
4671         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4672                                IPW_TX_QUEUE_3_READ_INDEX,
4673                                IPW_TX_QUEUE_3_WRITE_INDEX,
4674                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4675         if (rc) {
4676                 IPW_ERROR("Tx 3 queue init failed\n");
4677                 goto error;
4678         }
4679         /* statistics */
4680         priv->rx_bufs_min = 0;
4681         priv->rx_pend_max = 0;
4682         return rc;
4683
4684       error:
4685         ipw_tx_queue_free(priv);
4686         return rc;
4687 }
4688
4689 /**
4690  * Reclaim Tx queue entries no more used by NIC.
4691  *
4692  * When FW adwances 'R' index, all entries between old and
4693  * new 'R' index need to be reclaimed. As result, some free space
4694  * forms. If there is enough free space (> low mark), wake Tx queue.
4695  *
4696  * @note Need to protect against garbage in 'R' index
4697  * @param priv
4698  * @param txq
4699  * @param qindex
4700  * @return Number of used entries remains in the queue
4701  */
4702 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4703                                 struct clx2_tx_queue *txq, int qindex)
4704 {
4705         u32 hw_tail;
4706         int used;
4707         struct clx2_queue *q = &txq->q;
4708
4709         hw_tail = ipw_read32(priv, q->reg_r);
4710         if (hw_tail >= q->n_bd) {
4711                 IPW_ERROR
4712                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4713                      hw_tail, q->n_bd);
4714                 goto done;
4715         }
4716         for (; q->last_used != hw_tail;
4717              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4718                 ipw_queue_tx_free_tfd(priv, txq);
4719                 priv->tx_packets++;
4720         }
4721       done:
4722         if ((ipw_queue_space(q) > q->low_mark) &&
4723             (qindex >= 0) &&
4724             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4725                 netif_wake_queue(priv->net_dev);
4726         used = q->first_empty - q->last_used;
4727         if (used < 0)
4728                 used += q->n_bd;
4729
4730         return used;
4731 }
4732
4733 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4734                              int len, int sync)
4735 {
4736         struct clx2_tx_queue *txq = &priv->txq_cmd;
4737         struct clx2_queue *q = &txq->q;
4738         struct tfd_frame *tfd;
4739
4740         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4741                 IPW_ERROR("No space for Tx\n");
4742                 return -EBUSY;
4743         }
4744
4745         tfd = &txq->bd[q->first_empty];
4746         txq->txb[q->first_empty] = NULL;
4747
4748         memset(tfd, 0, sizeof(*tfd));
4749         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4750         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4751         priv->hcmd_seq++;
4752         tfd->u.cmd.index = hcmd;
4753         tfd->u.cmd.length = len;
4754         memcpy(tfd->u.cmd.payload, buf, len);
4755         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4756         ipw_write32(priv, q->reg_w, q->first_empty);
4757         _ipw_read32(priv, 0x90);
4758
4759         return 0;
4760 }
4761
4762 /*
4763  * Rx theory of operation
4764  *
4765  * The host allocates 32 DMA target addresses and passes the host address
4766  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4767  * 0 to 31
4768  *
4769  * Rx Queue Indexes
4770  * The host/firmware share two index registers for managing the Rx buffers.
4771  *
4772  * The READ index maps to the first position that the firmware may be writing
4773  * to -- the driver can read up to (but not including) this position and get
4774  * good data.
4775  * The READ index is managed by the firmware once the card is enabled.
4776  *
4777  * The WRITE index maps to the last position the driver has read from -- the
4778  * position preceding WRITE is the last slot the firmware can place a packet.
4779  *
4780  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4781  * WRITE = READ.
4782  *
4783  * During initialization the host sets up the READ queue position to the first
4784  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4785  *
4786  * When the firmware places a packet in a buffer it will advance the READ index
4787  * and fire the RX interrupt.  The driver can then query the READ index and
4788  * process as many packets as possible, moving the WRITE index forward as it
4789  * resets the Rx queue buffers with new memory.
4790  *
4791  * The management in the driver is as follows:
4792  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4793  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4794  *   to replensish the ipw->rxq->rx_free.
4795  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4796  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4797  *   'processed' and 'read' driver indexes as well)
4798  * + A received packet is processed and handed to the kernel network stack,
4799  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4800  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4801  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4802  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4803  *   were enough free buffers and RX_STALLED is set it is cleared.
4804  *
4805  *
4806  * Driver sequence:
4807  *
4808  * ipw_rx_queue_alloc()       Allocates rx_free
4809  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4810  *                            ipw_rx_queue_restock
4811  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4812  *                            queue, updates firmware pointers, and updates
4813  *                            the WRITE index.  If insufficient rx_free buffers
4814  *                            are available, schedules ipw_rx_queue_replenish
4815  *
4816  * -- enable interrupts --
4817  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4818  *                            READ INDEX, detaching the SKB from the pool.
4819  *                            Moves the packet buffer from queue to rx_used.
4820  *                            Calls ipw_rx_queue_restock to refill any empty
4821  *                            slots.
4822  * ...
4823  *
4824  */
4825
4826 /*
4827  * If there are slots in the RX queue that  need to be restocked,
4828  * and we have free pre-allocated buffers, fill the ranks as much
4829  * as we can pulling from rx_free.
4830  *
4831  * This moves the 'write' index forward to catch up with 'processed', and
4832  * also updates the memory address in the firmware to reference the new
4833  * target buffer.
4834  */
4835 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4836 {
4837         struct ipw_rx_queue *rxq = priv->rxq;
4838         struct list_head *element;
4839         struct ipw_rx_mem_buffer *rxb;
4840         unsigned long flags;
4841         int write;
4842
4843         spin_lock_irqsave(&rxq->lock, flags);
4844         write = rxq->write;
4845         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4846                 element = rxq->rx_free.next;
4847                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4848                 list_del(element);
4849
4850                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4851                             rxb->dma_addr);
4852                 rxq->queue[rxq->write] = rxb;
4853                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4854                 rxq->free_count--;
4855         }
4856         spin_unlock_irqrestore(&rxq->lock, flags);
4857
4858         /* If the pre-allocated buffer pool is dropping low, schedule to
4859          * refill it */
4860         if (rxq->free_count <= RX_LOW_WATERMARK)
4861                 queue_work(priv->workqueue, &priv->rx_replenish);
4862
4863         /* If we've added more space for the firmware to place data, tell it */
4864         if (write != rxq->write)
4865                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4866 }
4867
4868 /*
4869  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4870  * Also restock the Rx queue via ipw_rx_queue_restock.
4871  *
4872  * This is called as a scheduled work item (except for during intialization)
4873  */
4874 static void ipw_rx_queue_replenish(void *data)
4875 {
4876         struct ipw_priv *priv = data;
4877         struct ipw_rx_queue *rxq = priv->rxq;
4878         struct list_head *element;
4879         struct ipw_rx_mem_buffer *rxb;
4880         unsigned long flags;
4881
4882         spin_lock_irqsave(&rxq->lock, flags);
4883         while (!list_empty(&rxq->rx_used)) {
4884                 element = rxq->rx_used.next;
4885                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4886                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4887                 if (!rxb->skb) {
4888                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4889                                priv->net_dev->name);
4890                         /* We don't reschedule replenish work here -- we will
4891                          * call the restock method and if it still needs
4892                          * more buffers it will schedule replenish */
4893                         break;
4894                 }
4895                 list_del(element);
4896
4897                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4898                 rxb->dma_addr =
4899                     pci_map_single(priv->pci_dev, rxb->skb->data,
4900                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4901
4902                 list_add_tail(&rxb->list, &rxq->rx_free);
4903                 rxq->free_count++;
4904         }
4905         spin_unlock_irqrestore(&rxq->lock, flags);
4906
4907         ipw_rx_queue_restock(priv);
4908 }
4909
4910 static void ipw_bg_rx_queue_replenish(void *data)
4911 {
4912         struct ipw_priv *priv = data;
4913         down(&priv->sem);
4914         ipw_rx_queue_replenish(data);
4915         up(&priv->sem);
4916 }
4917
4918 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4919  * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4920  * This free routine walks the list of POOL entries and if SKB is set to
4921  * non NULL it is unmapped and freed
4922  */
4923 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4924 {
4925         int i;
4926
4927         if (!rxq)
4928                 return;
4929
4930         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4931                 if (rxq->pool[i].skb != NULL) {
4932                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4933                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4934                         dev_kfree_skb(rxq->pool[i].skb);
4935                 }
4936         }
4937
4938         kfree(rxq);
4939 }
4940
4941 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4942 {
4943         struct ipw_rx_queue *rxq;
4944         int i;
4945
4946         rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4947         if (unlikely(!rxq)) {
4948                 IPW_ERROR("memory allocation failed\n");
4949                 return NULL;
4950         }
4951         memset(rxq, 0, sizeof(*rxq));
4952         spin_lock_init(&rxq->lock);
4953         INIT_LIST_HEAD(&rxq->rx_free);
4954         INIT_LIST_HEAD(&rxq->rx_used);
4955
4956         /* Fill the rx_used queue with _all_ of the Rx buffers */
4957         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4958                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4959
4960         /* Set us so that we have processed and used all buffers, but have
4961          * not restocked the Rx queue with fresh buffers */
4962         rxq->read = rxq->write = 0;
4963         rxq->processed = RX_QUEUE_SIZE - 1;
4964         rxq->free_count = 0;
4965
4966         return rxq;
4967 }
4968
4969 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4970 {
4971         rate &= ~IEEE80211_BASIC_RATE_MASK;
4972         if (ieee_mode == IEEE_A) {
4973                 switch (rate) {
4974                 case IEEE80211_OFDM_RATE_6MB:
4975                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4976                             1 : 0;
4977                 case IEEE80211_OFDM_RATE_9MB:
4978                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4979                             1 : 0;
4980                 case IEEE80211_OFDM_RATE_12MB:
4981                         return priv->
4982                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4983                 case IEEE80211_OFDM_RATE_18MB:
4984                         return priv->
4985                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4986                 case IEEE80211_OFDM_RATE_24MB:
4987                         return priv->
4988                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4989                 case IEEE80211_OFDM_RATE_36MB:
4990                         return priv->
4991                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4992                 case IEEE80211_OFDM_RATE_48MB:
4993                         return priv->
4994                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4995                 case IEEE80211_OFDM_RATE_54MB:
4996                         return priv->
4997                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4998                 default:
4999                         return 0;
5000                 }
5001         }
5002
5003         /* B and G mixed */
5004         switch (rate) {
5005         case IEEE80211_CCK_RATE_1MB:
5006                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5007         case IEEE80211_CCK_RATE_2MB:
5008                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5009         case IEEE80211_CCK_RATE_5MB:
5010                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5011         case IEEE80211_CCK_RATE_11MB:
5012                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5013         }
5014
5015         /* If we are limited to B modulations, bail at this point */
5016         if (ieee_mode == IEEE_B)
5017                 return 0;
5018
5019         /* G */
5020         switch (rate) {
5021         case IEEE80211_OFDM_RATE_6MB:
5022                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5023         case IEEE80211_OFDM_RATE_9MB:
5024                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5025         case IEEE80211_OFDM_RATE_12MB:
5026                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5027         case IEEE80211_OFDM_RATE_18MB:
5028                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5029         case IEEE80211_OFDM_RATE_24MB:
5030                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5031         case IEEE80211_OFDM_RATE_36MB:
5032                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5033         case IEEE80211_OFDM_RATE_48MB:
5034                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5035         case IEEE80211_OFDM_RATE_54MB:
5036                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5037         }
5038
5039         return 0;
5040 }
5041
5042 static int ipw_compatible_rates(struct ipw_priv *priv,
5043                                 const struct ieee80211_network *network,
5044                                 struct ipw_supported_rates *rates)
5045 {
5046         int num_rates, i;
5047
5048         memset(rates, 0, sizeof(*rates));
5049         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5050         rates->num_rates = 0;
5051         for (i = 0; i < num_rates; i++) {
5052                 if (!ipw_is_rate_in_mask(priv, network->mode,
5053                                          network->rates[i])) {
5054
5055                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5056                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5057                                                "rate %02X\n",
5058                                                network->rates[i]);
5059                                 rates->supported_rates[rates->num_rates++] =
5060                                     network->rates[i];
5061                                 continue;
5062                         }
5063
5064                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5065                                        network->rates[i], priv->rates_mask);
5066                         continue;
5067                 }
5068
5069                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5070         }
5071
5072         num_rates = min(network->rates_ex_len,
5073                         (u8) (IPW_MAX_RATES - num_rates));
5074         for (i = 0; i < num_rates; i++) {
5075                 if (!ipw_is_rate_in_mask(priv, network->mode,
5076                                          network->rates_ex[i])) {
5077                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5078                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5079                                                "rate %02X\n",
5080                                                network->rates_ex[i]);
5081                                 rates->supported_rates[rates->num_rates++] =
5082                                     network->rates[i];
5083                                 continue;
5084                         }
5085
5086                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5087                                        network->rates_ex[i], priv->rates_mask);
5088                         continue;
5089                 }
5090
5091                 rates->supported_rates[rates->num_rates++] =
5092                     network->rates_ex[i];
5093         }
5094
5095         return 1;
5096 }
5097
5098 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
5099                                   const struct ipw_supported_rates *src)
5100 {
5101         u8 i;
5102         for (i = 0; i < src->num_rates; i++)
5103                 dest->supported_rates[i] = src->supported_rates[i];
5104         dest->num_rates = src->num_rates;
5105 }
5106
5107 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5108  * mask should ever be used -- right now all callers to add the scan rates are
5109  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5110 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5111                                    u8 modulation, u32 rate_mask)
5112 {
5113         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5114             IEEE80211_BASIC_RATE_MASK : 0;
5115
5116         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5117                 rates->supported_rates[rates->num_rates++] =
5118                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5119
5120         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5121                 rates->supported_rates[rates->num_rates++] =
5122                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5123
5124         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5125                 rates->supported_rates[rates->num_rates++] = basic_mask |
5126                     IEEE80211_CCK_RATE_5MB;
5127
5128         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5129                 rates->supported_rates[rates->num_rates++] = basic_mask |
5130                     IEEE80211_CCK_RATE_11MB;
5131 }
5132
5133 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5134                                     u8 modulation, u32 rate_mask)
5135 {
5136         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5137             IEEE80211_BASIC_RATE_MASK : 0;
5138
5139         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5140                 rates->supported_rates[rates->num_rates++] = basic_mask |
5141                     IEEE80211_OFDM_RATE_6MB;
5142
5143         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5144                 rates->supported_rates[rates->num_rates++] =
5145                     IEEE80211_OFDM_RATE_9MB;
5146
5147         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5148                 rates->supported_rates[rates->num_rates++] = basic_mask |
5149                     IEEE80211_OFDM_RATE_12MB;
5150
5151         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5152                 rates->supported_rates[rates->num_rates++] =
5153                     IEEE80211_OFDM_RATE_18MB;
5154
5155         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5156                 rates->supported_rates[rates->num_rates++] = basic_mask |
5157                     IEEE80211_OFDM_RATE_24MB;
5158
5159         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5160                 rates->supported_rates[rates->num_rates++] =
5161                     IEEE80211_OFDM_RATE_36MB;
5162
5163         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5164                 rates->supported_rates[rates->num_rates++] =
5165                     IEEE80211_OFDM_RATE_48MB;
5166
5167         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5168                 rates->supported_rates[rates->num_rates++] =
5169                     IEEE80211_OFDM_RATE_54MB;
5170 }
5171
5172 struct ipw_network_match {
5173         struct ieee80211_network *network;
5174         struct ipw_supported_rates rates;
5175 };
5176
5177 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5178                                   struct ipw_network_match *match,
5179                                   struct ieee80211_network *network,
5180                                   int roaming)
5181 {
5182         struct ipw_supported_rates rates;
5183
5184         /* Verify that this network's capability is compatible with the
5185          * current mode (AdHoc or Infrastructure) */
5186         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5187              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5188                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5189                                 "capability mismatch.\n",
5190                                 escape_essid(network->ssid, network->ssid_len),
5191                                 MAC_ARG(network->bssid));
5192                 return 0;
5193         }
5194
5195         /* If we do not have an ESSID for this AP, we can not associate with
5196          * it */
5197         if (network->flags & NETWORK_EMPTY_ESSID) {
5198                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5199                                 "because of hidden ESSID.\n",
5200                                 escape_essid(network->ssid, network->ssid_len),
5201                                 MAC_ARG(network->bssid));
5202                 return 0;
5203         }
5204
5205         if (unlikely(roaming)) {
5206                 /* If we are roaming, then ensure check if this is a valid
5207                  * network to try and roam to */
5208                 if ((network->ssid_len != match->network->ssid_len) ||
5209                     memcmp(network->ssid, match->network->ssid,
5210                            network->ssid_len)) {
5211                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5212                                         "because of non-network ESSID.\n",
5213                                         escape_essid(network->ssid,
5214                                                      network->ssid_len),
5215                                         MAC_ARG(network->bssid));
5216                         return 0;
5217                 }
5218         } else {
5219                 /* If an ESSID has been configured then compare the broadcast
5220                  * ESSID to ours */
5221                 if ((priv->config & CFG_STATIC_ESSID) &&
5222                     ((network->ssid_len != priv->essid_len) ||
5223                      memcmp(network->ssid, priv->essid,
5224                             min(network->ssid_len, priv->essid_len)))) {
5225                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5226
5227                         strncpy(escaped,
5228                                 escape_essid(network->ssid, network->ssid_len),
5229                                 sizeof(escaped));
5230                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5231                                         "because of ESSID mismatch: '%s'.\n",
5232                                         escaped, MAC_ARG(network->bssid),
5233                                         escape_essid(priv->essid,
5234                                                      priv->essid_len));
5235                         return 0;
5236                 }
5237         }
5238
5239         /* If the old network rate is better than this one, don't bother
5240          * testing everything else. */
5241
5242         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5243                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5244                                 "current network.\n",
5245                                 escape_essid(match->network->ssid,
5246                                              match->network->ssid_len));
5247                 return 0;
5248         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5249                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5250                                 "current network.\n",
5251                                 escape_essid(match->network->ssid,
5252                                              match->network->ssid_len));
5253                 return 0;
5254         }
5255
5256         /* Now go through and see if the requested network is valid... */
5257         if (priv->ieee->scan_age != 0 &&
5258             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5259                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5260                                 "because of age: %lums.\n",
5261                                 escape_essid(network->ssid, network->ssid_len),
5262                                 MAC_ARG(network->bssid),
5263                                 1000 * (jiffies - network->last_scanned) / HZ);
5264                 return 0;
5265         }
5266
5267         if ((priv->config & CFG_STATIC_CHANNEL) &&
5268             (network->channel != priv->channel)) {
5269                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5270                                 "because of channel mismatch: %d != %d.\n",
5271                                 escape_essid(network->ssid, network->ssid_len),
5272                                 MAC_ARG(network->bssid),
5273                                 network->channel, priv->channel);
5274                 return 0;
5275         }
5276
5277         /* Verify privacy compatability */
5278         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5279             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5280                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5281                                 "because of privacy mismatch: %s != %s.\n",
5282                                 escape_essid(network->ssid, network->ssid_len),
5283                                 MAC_ARG(network->bssid),
5284                                 priv->
5285                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5286                                 network->
5287                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5288                                 "off");
5289                 return 0;
5290         }
5291
5292         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5293                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5294                                 "because of the same BSSID match: " MAC_FMT
5295                                 ".\n", escape_essid(network->ssid,
5296                                                     network->ssid_len),
5297                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5298                 return 0;
5299         }
5300
5301         /* Filter out any incompatible freq / mode combinations */
5302         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5303                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5304                                 "because of invalid frequency/mode "
5305                                 "combination.\n",
5306                                 escape_essid(network->ssid, network->ssid_len),
5307                                 MAC_ARG(network->bssid));
5308                 return 0;
5309         }
5310
5311         /* Ensure that the rates supported by the driver are compatible with
5312          * this AP, including verification of basic rates (mandatory) */
5313         if (!ipw_compatible_rates(priv, network, &rates)) {
5314                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5315                                 "because configured rate mask excludes "
5316                                 "AP mandatory rate.\n",
5317                                 escape_essid(network->ssid, network->ssid_len),
5318                                 MAC_ARG(network->bssid));
5319                 return 0;
5320         }
5321
5322         if (rates.num_rates == 0) {
5323                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5324                                 "because of no compatible rates.\n",
5325                                 escape_essid(network->ssid, network->ssid_len),
5326                                 MAC_ARG(network->bssid));
5327                 return 0;
5328         }
5329
5330         /* TODO: Perform any further minimal comparititive tests.  We do not
5331          * want to put too much policy logic here; intelligent scan selection
5332          * should occur within a generic IEEE 802.11 user space tool.  */
5333
5334         /* Set up 'new' AP to this network */
5335         ipw_copy_rates(&match->rates, &rates);
5336         match->network = network;
5337         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5338                         escape_essid(network->ssid, network->ssid_len),
5339                         MAC_ARG(network->bssid));
5340
5341         return 1;
5342 }
5343
5344 static void ipw_merge_adhoc_network(void *data)
5345 {
5346         struct ipw_priv *priv = data;
5347         struct ieee80211_network *network = NULL;
5348         struct ipw_network_match match = {
5349                 .network = priv->assoc_network
5350         };
5351
5352         if ((priv->status & STATUS_ASSOCIATED) &&
5353             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5354                 /* First pass through ROAM process -- look for a better
5355                  * network */
5356                 unsigned long flags;
5357
5358                 spin_lock_irqsave(&priv->ieee->lock, flags);
5359                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5360                         if (network != priv->assoc_network)
5361                                 ipw_find_adhoc_network(priv, &match, network,
5362                                                        1);
5363                 }
5364                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5365
5366                 if (match.network == priv->assoc_network) {
5367                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5368                                         "merge to.\n");
5369                         return;
5370                 }
5371
5372                 down(&priv->sem);
5373                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5374                         IPW_DEBUG_MERGE("remove network %s\n",
5375                                         escape_essid(priv->essid,
5376                                                      priv->essid_len));
5377                         ipw_remove_current_network(priv);
5378                 }
5379
5380                 ipw_disassociate(priv);
5381                 priv->assoc_network = match.network;
5382                 up(&priv->sem);
5383                 return;
5384         }
5385 }
5386
5387 static int ipw_best_network(struct ipw_priv *priv,
5388                             struct ipw_network_match *match,
5389                             struct ieee80211_network *network, int roaming)
5390 {
5391         struct ipw_supported_rates rates;
5392
5393         /* Verify that this network's capability is compatible with the
5394          * current mode (AdHoc or Infrastructure) */
5395         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5396              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5397             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5398              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5399                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5400                                 "capability mismatch.\n",
5401                                 escape_essid(network->ssid, network->ssid_len),
5402                                 MAC_ARG(network->bssid));
5403                 return 0;
5404         }
5405
5406         /* If we do not have an ESSID for this AP, we can not associate with
5407          * it */
5408         if (network->flags & NETWORK_EMPTY_ESSID) {
5409                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5410                                 "because of hidden ESSID.\n",
5411                                 escape_essid(network->ssid, network->ssid_len),
5412                                 MAC_ARG(network->bssid));
5413                 return 0;
5414         }
5415
5416         if (unlikely(roaming)) {
5417                 /* If we are roaming, then ensure check if this is a valid
5418                  * network to try and roam to */
5419                 if ((network->ssid_len != match->network->ssid_len) ||
5420                     memcmp(network->ssid, match->network->ssid,
5421                            network->ssid_len)) {
5422                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5423                                         "because of non-network ESSID.\n",
5424                                         escape_essid(network->ssid,
5425                                                      network->ssid_len),
5426                                         MAC_ARG(network->bssid));
5427                         return 0;
5428                 }
5429         } else {
5430                 /* If an ESSID has been configured then compare the broadcast
5431                  * ESSID to ours */
5432                 if ((priv->config & CFG_STATIC_ESSID) &&
5433                     ((network->ssid_len != priv->essid_len) ||
5434                      memcmp(network->ssid, priv->essid,
5435                             min(network->ssid_len, priv->essid_len)))) {
5436                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5437                         strncpy(escaped,
5438                                 escape_essid(network->ssid, network->ssid_len),
5439                                 sizeof(escaped));
5440                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5441                                         "because of ESSID mismatch: '%s'.\n",
5442                                         escaped, MAC_ARG(network->bssid),
5443                                         escape_essid(priv->essid,
5444                                                      priv->essid_len));
5445                         return 0;
5446                 }
5447         }
5448
5449         /* If the old network rate is better than this one, don't bother
5450          * testing everything else. */
5451         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5452                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5453                 strncpy(escaped,
5454                         escape_essid(network->ssid, network->ssid_len),
5455                         sizeof(escaped));
5456                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5457                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5458                                 escaped, MAC_ARG(network->bssid),
5459                                 escape_essid(match->network->ssid,
5460                                              match->network->ssid_len),
5461                                 MAC_ARG(match->network->bssid));
5462                 return 0;
5463         }
5464
5465         /* If this network has already had an association attempt within the
5466          * last 3 seconds, do not try and associate again... */
5467         if (network->last_associate &&
5468             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5469                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5470                                 "because of storming (%lus since last "
5471                                 "assoc attempt).\n",
5472                                 escape_essid(network->ssid, network->ssid_len),
5473                                 MAC_ARG(network->bssid),
5474                                 (jiffies - network->last_associate) / HZ);
5475                 return 0;
5476         }
5477
5478         /* Now go through and see if the requested network is valid... */
5479         if (priv->ieee->scan_age != 0 &&
5480             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5481                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5482                                 "because of age: %lums.\n",
5483                                 escape_essid(network->ssid, network->ssid_len),
5484                                 MAC_ARG(network->bssid),
5485                                 1000 * (jiffies - network->last_scanned) / HZ);
5486                 return 0;
5487         }
5488
5489         if ((priv->config & CFG_STATIC_CHANNEL) &&
5490             (network->channel != priv->channel)) {
5491                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5492                                 "because of channel mismatch: %d != %d.\n",
5493                                 escape_essid(network->ssid, network->ssid_len),
5494                                 MAC_ARG(network->bssid),
5495                                 network->channel, priv->channel);
5496                 return 0;
5497         }
5498
5499         /* Verify privacy compatability */
5500         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5501             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5502                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5503                                 "because of privacy mismatch: %s != %s.\n",
5504                                 escape_essid(network->ssid, network->ssid_len),
5505                                 MAC_ARG(network->bssid),
5506                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5507                                 "off",
5508                                 network->capability &
5509                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5510                 return 0;
5511         }
5512
5513         if ((priv->config & CFG_STATIC_BSSID) &&
5514             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5515                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5516                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5517                                 escape_essid(network->ssid, network->ssid_len),
5518                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5519                 return 0;
5520         }
5521
5522         /* Filter out any incompatible freq / mode combinations */
5523         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5524                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5525                                 "because of invalid frequency/mode "
5526                                 "combination.\n",
5527                                 escape_essid(network->ssid, network->ssid_len),
5528                                 MAC_ARG(network->bssid));
5529                 return 0;
5530         }
5531
5532         /* Filter out invalid channel in current GEO */
5533         if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5534                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5535                                 "because of invalid channel in current GEO\n",
5536                                 escape_essid(network->ssid, network->ssid_len),
5537                                 MAC_ARG(network->bssid));
5538                 return 0;
5539         }
5540
5541         /* Ensure that the rates supported by the driver are compatible with
5542          * this AP, including verification of basic rates (mandatory) */
5543         if (!ipw_compatible_rates(priv, network, &rates)) {
5544                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5545                                 "because configured rate mask excludes "
5546                                 "AP mandatory rate.\n",
5547                                 escape_essid(network->ssid, network->ssid_len),
5548                                 MAC_ARG(network->bssid));
5549                 return 0;
5550         }
5551
5552         if (rates.num_rates == 0) {
5553                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5554                                 "because of no compatible rates.\n",
5555                                 escape_essid(network->ssid, network->ssid_len),
5556                                 MAC_ARG(network->bssid));
5557                 return 0;
5558         }
5559
5560         /* TODO: Perform any further minimal comparititive tests.  We do not
5561          * want to put too much policy logic here; intelligent scan selection
5562          * should occur within a generic IEEE 802.11 user space tool.  */
5563
5564         /* Set up 'new' AP to this network */
5565         ipw_copy_rates(&match->rates, &rates);
5566         match->network = network;
5567
5568         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5569                         escape_essid(network->ssid, network->ssid_len),
5570                         MAC_ARG(network->bssid));
5571
5572         return 1;
5573 }
5574
5575 static void ipw_adhoc_create(struct ipw_priv *priv,
5576                              struct ieee80211_network *network)
5577 {
5578         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5579         int i;
5580
5581         /*
5582          * For the purposes of scanning, we can set our wireless mode
5583          * to trigger scans across combinations of bands, but when it
5584          * comes to creating a new ad-hoc network, we have tell the FW
5585          * exactly which band to use.
5586          *
5587          * We also have the possibility of an invalid channel for the
5588          * chossen band.  Attempting to create a new ad-hoc network
5589          * with an invalid channel for wireless mode will trigger a
5590          * FW fatal error.
5591          *
5592          */
5593         switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5594         case IEEE80211_52GHZ_BAND:
5595                 network->mode = IEEE_A;
5596                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5597                 if (i == -1)
5598                         BUG();
5599                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5600                         IPW_WARNING("Overriding invalid channel\n");
5601                         priv->channel = geo->a[0].channel;
5602                 }
5603                 break;
5604
5605         case IEEE80211_24GHZ_BAND:
5606                 if (priv->ieee->mode & IEEE_G)
5607                         network->mode = IEEE_G;
5608                 else
5609                         network->mode = IEEE_B;
5610                 i = ipw_channel_to_index(priv->ieee, priv->channel);
5611                 if (i == -1)
5612                         BUG();
5613                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5614                         IPW_WARNING("Overriding invalid channel\n");
5615                         priv->channel = geo->bg[0].channel;
5616                 }
5617                 break;
5618
5619         default:
5620                 IPW_WARNING("Overriding invalid channel\n");
5621                 if (priv->ieee->mode & IEEE_A) {
5622                         network->mode = IEEE_A;
5623                         priv->channel = geo->a[0].channel;
5624                 } else if (priv->ieee->mode & IEEE_G) {
5625                         network->mode = IEEE_G;
5626                         priv->channel = geo->bg[0].channel;
5627                 } else {
5628                         network->mode = IEEE_B;
5629                         priv->channel = geo->bg[0].channel;
5630                 }
5631                 break;
5632         }
5633
5634         network->channel = priv->channel;
5635         priv->config |= CFG_ADHOC_PERSIST;
5636         ipw_create_bssid(priv, network->bssid);
5637         network->ssid_len = priv->essid_len;
5638         memcpy(network->ssid, priv->essid, priv->essid_len);
5639         memset(&network->stats, 0, sizeof(network->stats));
5640         network->capability = WLAN_CAPABILITY_IBSS;
5641         if (!(priv->config & CFG_PREAMBLE_LONG))
5642                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5643         if (priv->capability & CAP_PRIVACY_ON)
5644                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5645         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5646         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5647         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5648         memcpy(network->rates_ex,
5649                &priv->rates.supported_rates[network->rates_len],
5650                network->rates_ex_len);
5651         network->last_scanned = 0;
5652         network->flags = 0;
5653         network->last_associate = 0;
5654         network->time_stamp[0] = 0;
5655         network->time_stamp[1] = 0;
5656         network->beacon_interval = 100; /* Default */
5657         network->listen_interval = 10;  /* Default */
5658         network->atim_window = 0;       /* Default */
5659         network->wpa_ie_len = 0;
5660         network->rsn_ie_len = 0;
5661 }
5662
5663 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5664 {
5665         struct ipw_tgi_tx_key *key;
5666         struct host_cmd cmd = {
5667                 .cmd = IPW_CMD_TGI_TX_KEY,
5668                 .len = sizeof(*key)
5669         };
5670
5671         if (!(priv->ieee->sec.flags & (1 << index)))
5672                 return;
5673
5674         key = (struct ipw_tgi_tx_key *)&cmd.param;
5675         key->key_id = index;
5676         memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5677         key->security_type = type;
5678         key->station_index = 0; /* always 0 for BSS */
5679         key->flags = 0;
5680         /* 0 for new key; previous value of counter (after fatal error) */
5681         key->tx_counter[0] = 0;
5682         key->tx_counter[1] = 0;
5683
5684         ipw_send_cmd(priv, &cmd);
5685 }
5686
5687 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5688 {
5689         struct ipw_wep_key *key;
5690         int i;
5691         struct host_cmd cmd = {
5692                 .cmd = IPW_CMD_WEP_KEY,
5693                 .len = sizeof(*key)
5694         };
5695
5696         key = (struct ipw_wep_key *)&cmd.param;
5697         key->cmd_id = DINO_CMD_WEP_KEY;
5698         key->seq_num = 0;
5699
5700         /* Note: AES keys cannot be set for multiple times.
5701          * Only set it at the first time. */
5702         for (i = 0; i < 4; i++) {
5703                 key->key_index = i | type;
5704                 if (!(priv->ieee->sec.flags & (1 << i))) {
5705                         key->key_size = 0;
5706                         continue;
5707                 }
5708
5709                 key->key_size = priv->ieee->sec.key_sizes[i];
5710                 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5711
5712                 ipw_send_cmd(priv, &cmd);
5713         }
5714 }
5715
5716 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5717 {
5718         if (priv->ieee->host_encrypt)
5719                 return;
5720
5721         switch (level) {
5722         case SEC_LEVEL_3:
5723                 priv->sys_config.disable_unicast_decryption = 0;
5724                 priv->ieee->host_decrypt = 0;
5725                 break;
5726         case SEC_LEVEL_2:
5727                 priv->sys_config.disable_unicast_decryption = 1;
5728                 priv->ieee->host_decrypt = 1;
5729                 break;
5730         case SEC_LEVEL_1:
5731                 priv->sys_config.disable_unicast_decryption = 0;
5732                 priv->ieee->host_decrypt = 0;
5733                 break;
5734         case SEC_LEVEL_0:
5735                 priv->sys_config.disable_unicast_decryption = 1;
5736                 break;
5737         default:
5738                 break;
5739         }
5740 }
5741
5742 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5743 {
5744         if (priv->ieee->host_encrypt)
5745                 return;
5746
5747         switch (level) {
5748         case SEC_LEVEL_3:
5749                 priv->sys_config.disable_multicast_decryption = 0;
5750                 break;
5751         case SEC_LEVEL_2:
5752                 priv->sys_config.disable_multicast_decryption = 1;
5753                 break;
5754         case SEC_LEVEL_1:
5755                 priv->sys_config.disable_multicast_decryption = 0;
5756                 break;
5757         case SEC_LEVEL_0:
5758                 priv->sys_config.disable_multicast_decryption = 1;
5759                 break;
5760         default:
5761                 break;
5762         }
5763 }
5764
5765 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5766 {
5767         switch (priv->ieee->sec.level) {
5768         case SEC_LEVEL_3:
5769                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5770                         ipw_send_tgi_tx_key(priv,
5771                                             DCT_FLAG_EXT_SECURITY_CCM,
5772                                             priv->ieee->sec.active_key);
5773
5774                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5775                 break;
5776         case SEC_LEVEL_2:
5777                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5778                         ipw_send_tgi_tx_key(priv,
5779                                             DCT_FLAG_EXT_SECURITY_TKIP,
5780                                             priv->ieee->sec.active_key);
5781                 break;
5782         case SEC_LEVEL_1:
5783                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5784                 break;
5785         case SEC_LEVEL_0:
5786         default:
5787                 break;
5788         }
5789
5790         ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5791         ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5792 }
5793
5794 static void ipw_adhoc_check(void *data)
5795 {
5796         struct ipw_priv *priv = data;
5797
5798         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5799             !(priv->config & CFG_ADHOC_PERSIST)) {
5800                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5801                           IPW_DL_STATE | IPW_DL_ASSOC,
5802                           "Missed beacon: %d - disassociate\n",
5803                           priv->missed_adhoc_beacons);
5804                 ipw_remove_current_network(priv);
5805                 ipw_disassociate(priv);
5806                 return;
5807         }
5808
5809         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5810                            priv->assoc_request.beacon_interval);
5811 }
5812
5813 static void ipw_bg_adhoc_check(void *data)
5814 {
5815         struct ipw_priv *priv = data;
5816         down(&priv->sem);
5817         ipw_adhoc_check(data);
5818         up(&priv->sem);
5819 }
5820
5821 #ifdef CONFIG_IPW_DEBUG
5822 static void ipw_debug_config(struct ipw_priv *priv)
5823 {
5824         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5825                        "[CFG 0x%08X]\n", priv->config);
5826         if (priv->config & CFG_STATIC_CHANNEL)
5827                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5828         else
5829                 IPW_DEBUG_INFO("Channel unlocked.\n");
5830         if (priv->config & CFG_STATIC_ESSID)
5831                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5832                                escape_essid(priv->essid, priv->essid_len));
5833         else
5834                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5835         if (priv->config & CFG_STATIC_BSSID)
5836                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5837                                MAC_ARG(priv->bssid));
5838         else
5839                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5840         if (priv->capability & CAP_PRIVACY_ON)
5841                 IPW_DEBUG_INFO("PRIVACY on\n");
5842         else
5843                 IPW_DEBUG_INFO("PRIVACY off\n");
5844         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5845 }
5846 #else
5847 #define ipw_debug_config(x) do {} while (0)
5848 #endif
5849
5850 static inline void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5851 {
5852         /* TODO: Verify that this works... */
5853         struct ipw_fixed_rate fr = {
5854                 .tx_rates = priv->rates_mask
5855         };
5856         u32 reg;
5857         u16 mask = 0;
5858
5859         /* Identify 'current FW band' and match it with the fixed
5860          * Tx rates */
5861
5862         switch (priv->ieee->freq_band) {
5863         case IEEE80211_52GHZ_BAND:      /* A only */
5864                 /* IEEE_A */
5865                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5866                         /* Invalid fixed rate mask */
5867                         IPW_DEBUG_WX
5868                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5869                         fr.tx_rates = 0;
5870                         break;
5871                 }
5872
5873                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5874                 break;
5875
5876         default:                /* 2.4Ghz or Mixed */
5877                 /* IEEE_B */
5878                 if (mode == IEEE_B) {
5879                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5880                                 /* Invalid fixed rate mask */
5881                                 IPW_DEBUG_WX
5882                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5883                                 fr.tx_rates = 0;
5884                         }
5885                         break;
5886                 }
5887
5888                 /* IEEE_G */
5889                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5890                                     IEEE80211_OFDM_RATES_MASK)) {
5891                         /* Invalid fixed rate mask */
5892                         IPW_DEBUG_WX
5893                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5894                         fr.tx_rates = 0;
5895                         break;
5896                 }
5897
5898                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5899                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5900                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5901                 }
5902
5903                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5904                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5905                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5906                 }
5907
5908                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5909                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5910                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5911                 }
5912
5913                 fr.tx_rates |= mask;
5914                 break;
5915         }
5916
5917         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5918         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5919 }
5920
5921 static void ipw_abort_scan(struct ipw_priv *priv)
5922 {
5923         int err;
5924
5925         if (priv->status & STATUS_SCAN_ABORTING) {
5926                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5927                 return;
5928         }
5929         priv->status |= STATUS_SCAN_ABORTING;
5930
5931         err = ipw_send_scan_abort(priv);
5932         if (err)
5933                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5934 }
5935
5936 static void ipw_add_scan_channels(struct ipw_priv *priv,
5937                                   struct ipw_scan_request_ext *scan,
5938                                   int scan_type)
5939 {
5940         int channel_index = 0;
5941         const struct ieee80211_geo *geo;
5942         int i;
5943
5944         geo = ipw_get_geo(priv->ieee);
5945
5946         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5947                 int start = channel_index;
5948                 for (i = 0; i < geo->a_channels; i++) {
5949                         if ((priv->status & STATUS_ASSOCIATED) &&
5950                             geo->a[i].channel == priv->channel)
5951                                 continue;
5952                         channel_index++;
5953                         scan->channels_list[channel_index] = geo->a[i].channel;
5954                         ipw_set_scan_type(scan, channel_index,
5955                                           geo->a[i].
5956                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5957                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5958                                           scan_type);
5959                 }
5960
5961                 if (start != channel_index) {
5962                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5963                             (channel_index - start);
5964                         channel_index++;
5965                 }
5966         }
5967
5968         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5969                 int start = channel_index;
5970                 if (priv->config & CFG_SPEED_SCAN) {
5971                         int index;
5972                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5973                                 /* nop out the list */
5974                                 [0] = 0
5975                         };
5976
5977                         u8 channel;
5978                         while (channel_index < IPW_SCAN_CHANNELS) {
5979                                 channel =
5980                                     priv->speed_scan[priv->speed_scan_pos];
5981                                 if (channel == 0) {
5982                                         priv->speed_scan_pos = 0;
5983                                         channel = priv->speed_scan[0];
5984                                 }
5985                                 if ((priv->status & STATUS_ASSOCIATED) &&
5986                                     channel == priv->channel) {
5987                                         priv->speed_scan_pos++;
5988                                         continue;
5989                                 }
5990
5991                                 /* If this channel has already been
5992                                  * added in scan, break from loop
5993                                  * and this will be the first channel
5994                                  * in the next scan.
5995                                  */
5996                                 if (channels[channel - 1] != 0)
5997                                         break;
5998
5999                                 channels[channel - 1] = 1;
6000                                 priv->speed_scan_pos++;
6001                                 channel_index++;
6002                                 scan->channels_list[channel_index] = channel;
6003                                 index =
6004                                     ipw_channel_to_index(priv->ieee, channel);
6005                                 ipw_set_scan_type(scan, channel_index,
6006                                                   geo->bg[index].
6007                                                   flags &
6008                                                   IEEE80211_CH_PASSIVE_ONLY ?
6009                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6010                                                   : scan_type);
6011                         }
6012                 } else {
6013                         for (i = 0; i < geo->bg_channels; i++) {
6014                                 if ((priv->status & STATUS_ASSOCIATED) &&
6015                                     geo->bg[i].channel == priv->channel)
6016                                         continue;
6017                                 channel_index++;
6018                                 scan->channels_list[channel_index] =
6019                                     geo->bg[i].channel;
6020                                 ipw_set_scan_type(scan, channel_index,
6021                                                   geo->bg[i].
6022                                                   flags &
6023                                                   IEEE80211_CH_PASSIVE_ONLY ?
6024                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6025                                                   : scan_type);
6026                         }
6027                 }
6028
6029                 if (start != channel_index) {
6030                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6031                             (channel_index - start);
6032                 }
6033         }
6034 }
6035
6036 static int ipw_request_scan(struct ipw_priv *priv)
6037 {
6038         struct ipw_scan_request_ext scan;
6039         int err = 0, scan_type;
6040
6041         if (!(priv->status & STATUS_INIT) ||
6042             (priv->status & STATUS_EXIT_PENDING))
6043                 return 0;
6044
6045         down(&priv->sem);
6046
6047         if (priv->status & STATUS_SCANNING) {
6048                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6049                 priv->status |= STATUS_SCAN_PENDING;
6050                 goto done;
6051         }
6052
6053         if (!(priv->status & STATUS_SCAN_FORCED) &&
6054             priv->status & STATUS_SCAN_ABORTING) {
6055                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6056                 priv->status |= STATUS_SCAN_PENDING;
6057                 goto done;
6058         }
6059
6060         if (priv->status & STATUS_RF_KILL_MASK) {
6061                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6062                 priv->status |= STATUS_SCAN_PENDING;
6063                 goto done;
6064         }
6065
6066         memset(&scan, 0, sizeof(scan));
6067
6068         if (priv->config & CFG_SPEED_SCAN)
6069                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6070                     cpu_to_le16(30);
6071         else
6072                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6073                     cpu_to_le16(20);
6074
6075         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6076             cpu_to_le16(20);
6077         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6078
6079         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6080
6081 #ifdef CONFIG_IPW2200_MONITOR
6082         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6083                 u8 channel;
6084                 u8 band = 0;
6085
6086                 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6087                 case IEEE80211_52GHZ_BAND:
6088                         band = (u8) (IPW_A_MODE << 6) | 1;
6089                         channel = priv->channel;
6090                         break;
6091
6092                 case IEEE80211_24GHZ_BAND:
6093                         band = (u8) (IPW_B_MODE << 6) | 1;
6094                         channel = priv->channel;
6095                         break;
6096
6097                 default:
6098                         band = (u8) (IPW_B_MODE << 6) | 1;
6099                         channel = 9;
6100                         break;
6101                 }
6102
6103                 scan.channels_list[0] = band;
6104                 scan.channels_list[1] = channel;
6105                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6106
6107                 /* NOTE:  The card will sit on this channel for this time
6108                  * period.  Scan aborts are timing sensitive and frequently
6109                  * result in firmware restarts.  As such, it is best to
6110                  * set a small dwell_time here and just keep re-issuing
6111                  * scans.  Otherwise fast channel hopping will not actually
6112                  * hop channels.
6113                  *
6114                  * TODO: Move SPEED SCAN support to all modes and bands */
6115                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6116                     cpu_to_le16(2000);
6117         } else {
6118 #endif                          /* CONFIG_IPW2200_MONITOR */
6119                 /* If we are roaming, then make this a directed scan for the
6120                  * current network.  Otherwise, ensure that every other scan
6121                  * is a fast channel hop scan */
6122                 if ((priv->status & STATUS_ROAMING)
6123                     || (!(priv->status & STATUS_ASSOCIATED)
6124                         && (priv->config & CFG_STATIC_ESSID)
6125                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6126                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6127                         if (err) {
6128                                 IPW_DEBUG_HC("Attempt to send SSID command "
6129                                              "failed.\n");
6130                                 goto done;
6131                         }
6132
6133                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6134                 } else
6135                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6136
6137                 ipw_add_scan_channels(priv, &scan, scan_type);
6138 #ifdef CONFIG_IPW2200_MONITOR
6139         }
6140 #endif
6141
6142         err = ipw_send_scan_request_ext(priv, &scan);
6143         if (err) {
6144                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6145                 goto done;
6146         }
6147
6148         priv->status |= STATUS_SCANNING;
6149         priv->status &= ~STATUS_SCAN_PENDING;
6150         queue_delayed_work(priv->workqueue, &priv->scan_check,
6151                            IPW_SCAN_CHECK_WATCHDOG);
6152       done:
6153         up(&priv->sem);
6154         return err;
6155 }
6156
6157 static void ipw_bg_abort_scan(void *data)
6158 {
6159         struct ipw_priv *priv = data;
6160         down(&priv->sem);
6161         ipw_abort_scan(data);
6162         up(&priv->sem);
6163 }
6164
6165 #if WIRELESS_EXT < 18
6166 /* Support for wpa_supplicant before WE-18, deprecated. */
6167
6168 /* following definitions must match definitions in driver_ipw.c */
6169
6170 #define IPW_IOCTL_WPA_SUPPLICANT                SIOCIWFIRSTPRIV+30
6171
6172 #define IPW_CMD_SET_WPA_PARAM                   1
6173 #define IPW_CMD_SET_WPA_IE                      2
6174 #define IPW_CMD_SET_ENCRYPTION                  3
6175 #define IPW_CMD_MLME                            4
6176
6177 #define IPW_PARAM_WPA_ENABLED                   1
6178 #define IPW_PARAM_TKIP_COUNTERMEASURES          2
6179 #define IPW_PARAM_DROP_UNENCRYPTED              3
6180 #define IPW_PARAM_PRIVACY_INVOKED               4
6181 #define IPW_PARAM_AUTH_ALGS                     5
6182 #define IPW_PARAM_IEEE_802_1X                   6
6183
6184 #define IPW_MLME_STA_DEAUTH                     1
6185 #define IPW_MLME_STA_DISASSOC                   2
6186
6187 #define IPW_CRYPT_ERR_UNKNOWN_ALG               2
6188 #define IPW_CRYPT_ERR_UNKNOWN_ADDR              3
6189 #define IPW_CRYPT_ERR_CRYPT_INIT_FAILED         4
6190 #define IPW_CRYPT_ERR_KEY_SET_FAILED            5
6191 #define IPW_CRYPT_ERR_TX_KEY_SET_FAILED         6
6192 #define IPW_CRYPT_ERR_CARD_CONF_FAILED          7
6193
6194 #define IPW_CRYPT_ALG_NAME_LEN                  16
6195
6196 struct ipw_param {
6197         u32 cmd;
6198         u8 sta_addr[ETH_ALEN];
6199         union {
6200                 struct {
6201                         u8 name;
6202                         u32 value;
6203                 } wpa_param;
6204                 struct {
6205                         u32 len;
6206                         u8 reserved[32];
6207                         u8 data[0];
6208                 } wpa_ie;
6209                 struct {
6210                         u32 command;
6211                         u32 reason_code;
6212                 } mlme;
6213                 struct {
6214                         u8 alg[IPW_CRYPT_ALG_NAME_LEN];
6215                         u8 set_tx;
6216                         u32 err;
6217                         u8 idx;
6218                         u8 seq[8];      /* sequence counter (set: RX, get: TX) */
6219                         u16 key_len;
6220                         u8 key[0];
6221                 } crypt;
6222
6223         } u;
6224 };
6225
6226 /* end of driver_ipw.c code */
6227 #endif
6228
6229 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6230 {
6231         /* This is called when wpa_supplicant loads and closes the driver
6232          * interface. */
6233         return 0;
6234 }
6235
6236 #if WIRELESS_EXT < 18
6237 #define IW_AUTH_ALG_OPEN_SYSTEM                 0x1
6238 #define IW_AUTH_ALG_SHARED_KEY                  0x2
6239 #endif
6240
6241 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6242 {
6243         struct ieee80211_device *ieee = priv->ieee;
6244         struct ieee80211_security sec = {
6245                 .flags = SEC_AUTH_MODE,
6246         };
6247         int ret = 0;
6248
6249         if (value & IW_AUTH_ALG_SHARED_KEY) {
6250                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6251                 ieee->open_wep = 0;
6252         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6253                 sec.auth_mode = WLAN_AUTH_OPEN;
6254                 ieee->open_wep = 1;
6255         } else
6256                 return -EINVAL;
6257
6258         if (ieee->set_security)
6259                 ieee->set_security(ieee->dev, &sec);
6260         else
6261                 ret = -EOPNOTSUPP;
6262
6263         return ret;
6264 }
6265
6266 void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len)
6267 {
6268         /* make sure WPA is enabled */
6269         ipw_wpa_enable(priv, 1);
6270
6271         ipw_disassociate(priv);
6272 }
6273
6274 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6275                             char *capabilities, int length)
6276 {
6277         struct host_cmd cmd = {
6278                 .cmd = IPW_CMD_RSN_CAPABILITIES,
6279                 .len = length,
6280         };
6281
6282         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6283
6284         memcpy(cmd.param, capabilities, length);
6285         return ipw_send_cmd(priv, &cmd);
6286 }
6287
6288 #if WIRELESS_EXT < 18
6289 static int ipw_wpa_set_param(struct net_device *dev, u8 name, u32 value)
6290 {
6291         struct ipw_priv *priv = ieee80211_priv(dev);
6292         struct ieee80211_crypt_data *crypt;
6293         unsigned long flags;
6294         int ret = 0;
6295
6296         switch (name) {
6297         case IPW_PARAM_WPA_ENABLED:
6298                 ret = ipw_wpa_enable(priv, value);
6299                 break;
6300
6301         case IPW_PARAM_TKIP_COUNTERMEASURES:
6302                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6303                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6304                         IPW_WARNING("Can't set TKIP countermeasures: "
6305                                     "crypt not set!\n");
6306                         break;
6307                 }
6308
6309                 flags = crypt->ops->get_flags(crypt->priv);
6310
6311                 if (value)
6312                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6313                 else
6314                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6315
6316                 crypt->ops->set_flags(flags, crypt->priv);
6317
6318                 break;
6319
6320         case IPW_PARAM_DROP_UNENCRYPTED:{
6321                         /* HACK:
6322                          *
6323                          * wpa_supplicant calls set_wpa_enabled when the driver
6324                          * is loaded and unloaded, regardless of if WPA is being
6325                          * used.  No other calls are made which can be used to
6326                          * determine if encryption will be used or not prior to
6327                          * association being expected.  If encryption is not being
6328                          * used, drop_unencrypted is set to false, else true -- we
6329                          * can use this to determine if the CAP_PRIVACY_ON bit should
6330                          * be set.
6331                          */
6332                         struct ieee80211_security sec = {
6333                                 .flags = SEC_ENABLED,
6334                                 .enabled = value,
6335                         };
6336                         priv->ieee->drop_unencrypted = value;
6337                         /* We only change SEC_LEVEL for open mode. Others
6338                          * are set by ipw_wpa_set_encryption.
6339                          */
6340                         if (!value) {
6341                                 sec.flags |= SEC_LEVEL;
6342                                 sec.level = SEC_LEVEL_0;
6343                         } else {
6344                                 sec.flags |= SEC_LEVEL;
6345                                 sec.level = SEC_LEVEL_1;
6346                         }
6347                         if (priv->ieee->set_security)
6348                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6349                         break;
6350                 }
6351
6352         case IPW_PARAM_PRIVACY_INVOKED:
6353                 priv->ieee->privacy_invoked = value;
6354                 break;
6355
6356         case IPW_PARAM_AUTH_ALGS:
6357                 ret = ipw_wpa_set_auth_algs(priv, value);
6358                 break;
6359
6360         case IPW_PARAM_IEEE_802_1X:
6361                 priv->ieee->ieee802_1x = value;
6362                 break;
6363
6364         default:
6365                 IPW_ERROR("%s: Unknown WPA param: %d\n", dev->name, name);
6366                 ret = -EOPNOTSUPP;
6367         }
6368
6369         return ret;
6370 }
6371
6372 static int ipw_wpa_mlme(struct net_device *dev, int command, int reason)
6373 {
6374         struct ipw_priv *priv = ieee80211_priv(dev);
6375         int ret = 0;
6376
6377         switch (command) {
6378         case IPW_MLME_STA_DEAUTH:
6379                 // silently ignore
6380                 break;
6381
6382         case IPW_MLME_STA_DISASSOC:
6383                 ipw_disassociate(priv);
6384                 break;
6385
6386         default:
6387                 IPW_ERROR("%s: Unknown MLME request: %d\n", dev->name, command);
6388                 ret = -EOPNOTSUPP;
6389         }
6390
6391         return ret;
6392 }
6393
6394 static int ipw_wpa_ie_cipher2level(u8 cipher)
6395 {
6396         switch (cipher) {
6397         case 4:         /* CCMP */
6398                 return SEC_LEVEL_3;
6399         case 2:         /* TKIP */
6400                 return SEC_LEVEL_2;
6401         case 5:         /* WEP104 */
6402         case 1:         /* WEP40 */
6403                 return SEC_LEVEL_1;
6404         case 0:         /* NONE */
6405                 return SEC_LEVEL_0;
6406         default:
6407                 return -1;
6408         }
6409 }
6410
6411 static int ipw_wpa_set_wpa_ie(struct net_device *dev,
6412                               struct ipw_param *param, int plen)
6413 {
6414         struct ipw_priv *priv = ieee80211_priv(dev);
6415         struct ieee80211_device *ieee = priv->ieee;
6416         u8 *buf;
6417         u8 *ptk, *gtk;
6418         int level;
6419
6420         if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
6421             (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
6422                 return -EINVAL;
6423
6424         if (param->u.wpa_ie.len) {
6425                 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
6426                 if (buf == NULL)
6427                         return -ENOMEM;
6428
6429                 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
6430                 kfree(ieee->wpa_ie);
6431                 ieee->wpa_ie = buf;
6432                 ieee->wpa_ie_len = param->u.wpa_ie.len;
6433         } else {
6434                 kfree(ieee->wpa_ie);
6435                 ieee->wpa_ie = NULL;
6436                 ieee->wpa_ie_len = 0;
6437                 goto done;
6438         }
6439
6440         if (priv->ieee->host_encrypt)
6441                 goto done;
6442
6443         /* HACK: Parse wpa_ie here to get pairwise suite, otherwise
6444          * we need to change driver_ipw.c from wpa_supplicant. This
6445          * is OK since -Dipw is deprecated. The -Dwext driver has a
6446          * clean way to handle this. */
6447         gtk = ptk = (u8 *) ieee->wpa_ie;
6448         if (ieee->wpa_ie[0] == 0x30) {  /* RSN IE */
6449                 gtk += 4 + 3;
6450                 ptk += 4 + 4 + 2 + 3;
6451         } else {                /* WPA IE */
6452                 gtk += 8 + 3;
6453                 ptk += 8 + 4 + 2 + 3;
6454         }
6455
6456         if (ptk - (u8 *) ieee->wpa_ie > ieee->wpa_ie_len)
6457                 return -EINVAL;
6458
6459         level = ipw_wpa_ie_cipher2level(*gtk);
6460         ipw_set_hw_decrypt_multicast(priv, level);
6461
6462         level = ipw_wpa_ie_cipher2level(*ptk);
6463         ipw_set_hw_decrypt_unicast(priv, level);
6464
6465       done:
6466         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6467         return 0;
6468 }
6469
6470 /* implementation borrowed from hostap driver */
6471
6472 static int ipw_wpa_set_encryption(struct net_device *dev,
6473                                   struct ipw_param *param, int param_len)
6474 {
6475         int ret = 0;
6476         struct ipw_priv *priv = ieee80211_priv(dev);
6477         struct ieee80211_device *ieee = priv->ieee;
6478         struct ieee80211_crypto_ops *ops;
6479         struct ieee80211_crypt_data **crypt;
6480
6481         struct ieee80211_security sec = {
6482                 .flags = 0,
6483         };
6484
6485         param->u.crypt.err = 0;
6486         param->u.crypt.alg[IPW_CRYPT_ALG_NAME_LEN - 1] = '\0';
6487
6488         if (param_len !=
6489             (int)((char *)param->u.crypt.key - (char *)param) +
6490             param->u.crypt.key_len) {
6491                 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
6492                                param->u.crypt.key_len);
6493                 return -EINVAL;
6494         }
6495         if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
6496             param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
6497             param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
6498                 if (param->u.crypt.idx >= WEP_KEYS)
6499                         return -EINVAL;
6500                 crypt = &ieee->crypt[param->u.crypt.idx];
6501         } else {
6502                 return -EINVAL;
6503         }
6504
6505         sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6506         if (strcmp(param->u.crypt.alg, "none") == 0) {
6507                 if (crypt) {
6508                         sec.enabled = 0;
6509                         sec.encrypt = 0;
6510                         sec.level = SEC_LEVEL_0;
6511                         sec.flags |= SEC_LEVEL;
6512                         ieee80211_crypt_delayed_deinit(ieee, crypt);
6513                 }
6514                 goto done;
6515         }
6516         sec.enabled = 1;
6517         sec.encrypt = 1;
6518
6519         /* IPW HW cannot build TKIP MIC, host decryption still needed. */
6520         if (strcmp(param->u.crypt.alg, "TKIP") == 0)
6521                 ieee->host_encrypt_msdu = 1;
6522
6523         if (!(ieee->host_encrypt || ieee->host_encrypt_msdu ||
6524               ieee->host_decrypt))
6525                 goto skip_host_crypt;
6526
6527         ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6528         if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6529                 request_module("ieee80211_crypt_wep");
6530                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6531         } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6532                 request_module("ieee80211_crypt_tkip");
6533                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6534         } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6535                 request_module("ieee80211_crypt_ccmp");
6536                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6537         }
6538         if (ops == NULL) {
6539                 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6540                                dev->name, param->u.crypt.alg);
6541                 param->u.crypt.err = IPW_CRYPT_ERR_UNKNOWN_ALG;
6542                 ret = -EINVAL;
6543                 goto done;
6544         }
6545
6546         if (*crypt == NULL || (*crypt)->ops != ops) {
6547                 struct ieee80211_crypt_data *new_crypt;
6548
6549                 ieee80211_crypt_delayed_deinit(ieee, crypt);
6550
6551                 new_crypt = (struct ieee80211_crypt_data *)
6552                     kmalloc(sizeof(*new_crypt), GFP_KERNEL);
6553                 if (new_crypt == NULL) {
6554                         ret = -ENOMEM;
6555                         goto done;
6556                 }
6557                 memset(new_crypt, 0, sizeof(struct ieee80211_crypt_data));
6558                 new_crypt->ops = ops;
6559                 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6560                         new_crypt->priv =
6561                             new_crypt->ops->init(param->u.crypt.idx);
6562
6563                 if (new_crypt->priv == NULL) {
6564                         kfree(new_crypt);
6565                         param->u.crypt.err = IPW_CRYPT_ERR_CRYPT_INIT_FAILED;
6566                         ret = -EINVAL;
6567                         goto done;
6568                 }
6569
6570                 *crypt = new_crypt;
6571         }
6572
6573         if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6574             (*crypt)->ops->set_key(param->u.crypt.key,
6575                                    param->u.crypt.key_len, param->u.crypt.seq,
6576                                    (*crypt)->priv) < 0) {
6577                 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6578                 param->u.crypt.err = IPW_CRYPT_ERR_KEY_SET_FAILED;
6579                 ret = -EINVAL;
6580                 goto done;
6581         }
6582
6583       skip_host_crypt:
6584         if (param->u.crypt.set_tx) {
6585                 ieee->tx_keyidx = param->u.crypt.idx;
6586                 sec.active_key = param->u.crypt.idx;
6587                 sec.flags |= SEC_ACTIVE_KEY;
6588         } else
6589                 sec.flags &= ~SEC_ACTIVE_KEY;
6590
6591         if (param->u.crypt.alg != NULL) {
6592                 memcpy(sec.keys[param->u.crypt.idx],
6593                        param->u.crypt.key, param->u.crypt.key_len);
6594                 sec.key_sizes[param->u.crypt.idx] = param->u.crypt.key_len;
6595                 sec.flags |= (1 << param->u.crypt.idx);
6596
6597                 if (strcmp(param->u.crypt.alg, "WEP") == 0) {
6598                         sec.flags |= SEC_LEVEL;
6599                         sec.level = SEC_LEVEL_1;
6600                 } else if (strcmp(param->u.crypt.alg, "TKIP") == 0) {
6601                         sec.flags |= SEC_LEVEL;
6602                         sec.level = SEC_LEVEL_2;
6603                 } else if (strcmp(param->u.crypt.alg, "CCMP") == 0) {
6604                         sec.flags |= SEC_LEVEL;
6605                         sec.level = SEC_LEVEL_3;
6606                 }
6607         }
6608       done:
6609         if (ieee->set_security)
6610                 ieee->set_security(ieee->dev, &sec);
6611
6612         /* Do not reset port if card is in Managed mode since resetting will
6613          * generate new IEEE 802.11 authentication which may end up in looping
6614          * with IEEE 802.1X.  If your hardware requires a reset after WEP
6615          * configuration (for example... Prism2), implement the reset_port in
6616          * the callbacks structures used to initialize the 802.11 stack. */
6617         if (ieee->reset_on_keychange &&
6618             ieee->iw_mode != IW_MODE_INFRA &&
6619             ieee->reset_port && ieee->reset_port(dev)) {
6620                 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6621                 param->u.crypt.err = IPW_CRYPT_ERR_CARD_CONF_FAILED;
6622                 return -EINVAL;
6623         }
6624
6625         return ret;
6626 }
6627
6628 static int ipw_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6629 {
6630         struct ipw_param *param;
6631         struct ipw_priv *priv = ieee80211_priv(dev);
6632         int ret = 0;
6633
6634         IPW_DEBUG_INFO("wpa_supplicant: len=%d\n", p->length);
6635
6636         if (p->length < sizeof(struct ipw_param) || !p->pointer)
6637                 return -EINVAL;
6638
6639         param = (struct ipw_param *)kmalloc(p->length, GFP_KERNEL);
6640         if (param == NULL)
6641                 return -ENOMEM;
6642
6643         if (copy_from_user(param, p->pointer, p->length)) {
6644                 kfree(param);
6645                 return -EFAULT;
6646         }
6647
6648         down(&priv->sem);
6649         switch (param->cmd) {
6650
6651         case IPW_CMD_SET_WPA_PARAM:
6652                 ret = ipw_wpa_set_param(dev, param->u.wpa_param.name,
6653                                         param->u.wpa_param.value);
6654                 break;
6655
6656         case IPW_CMD_SET_WPA_IE:
6657                 ret = ipw_wpa_set_wpa_ie(dev, param, p->length);
6658                 break;
6659
6660         case IPW_CMD_SET_ENCRYPTION:
6661                 ret = ipw_wpa_set_encryption(dev, param, p->length);
6662                 break;
6663
6664         case IPW_CMD_MLME:
6665                 ret = ipw_wpa_mlme(dev, param->u.mlme.command,
6666                                    param->u.mlme.reason_code);
6667                 break;
6668
6669         default:
6670                 IPW_ERROR("%s: Unknown WPA supplicant request: %d\n",
6671                           dev->name, param->cmd);
6672                 ret = -EOPNOTSUPP;
6673         }
6674
6675         up(&priv->sem);
6676         if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6677                 ret = -EFAULT;
6678
6679         kfree(param);
6680         return ret;
6681 }
6682 #else
6683 /*
6684  * WE-18 support
6685  */
6686
6687 /* SIOCSIWGENIE */
6688 static int ipw_wx_set_genie(struct net_device *dev,
6689                             struct iw_request_info *info,
6690                             union iwreq_data *wrqu, char *extra)
6691 {
6692         struct ipw_priv *priv = ieee80211_priv(dev);
6693         struct ieee80211_device *ieee = priv->ieee;
6694         u8 *buf;
6695         int err = 0;
6696
6697         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6698             (wrqu->data.length && extra == NULL))
6699                 return -EINVAL;
6700
6701         //down(&priv->sem);
6702
6703         //if (!ieee->wpa_enabled) {
6704         //      err = -EOPNOTSUPP;
6705         //      goto out;
6706         //}
6707
6708         if (wrqu->data.length) {
6709                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6710                 if (buf == NULL) {
6711                         err = -ENOMEM;
6712                         goto out;
6713                 }
6714
6715                 memcpy(buf, extra, wrqu->data.length);
6716                 kfree(ieee->wpa_ie);
6717                 ieee->wpa_ie = buf;
6718                 ieee->wpa_ie_len = wrqu->data.length;
6719         } else {
6720                 kfree(ieee->wpa_ie);
6721                 ieee->wpa_ie = NULL;
6722                 ieee->wpa_ie_len = 0;
6723         }
6724
6725         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6726       out:
6727         //up(&priv->sem);
6728         return err;
6729 }
6730
6731 /* SIOCGIWGENIE */
6732 static int ipw_wx_get_genie(struct net_device *dev,
6733                             struct iw_request_info *info,
6734                             union iwreq_data *wrqu, char *extra)
6735 {
6736         struct ipw_priv *priv = ieee80211_priv(dev);
6737         struct ieee80211_device *ieee = priv->ieee;
6738         int err = 0;
6739
6740         //down(&priv->sem);
6741
6742         //if (!ieee->wpa_enabled) {
6743         //      err = -EOPNOTSUPP;
6744         //      goto out;
6745         //}
6746
6747         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6748                 wrqu->data.length = 0;
6749                 goto out;
6750         }
6751
6752         if (wrqu->data.length < ieee->wpa_ie_len) {
6753                 err = -E2BIG;
6754                 goto out;
6755         }
6756
6757         wrqu->data.length = ieee->wpa_ie_len;
6758         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6759
6760       out:
6761         //up(&priv->sem);
6762         return err;
6763 }
6764
6765 static int wext_cipher2level(int cipher)
6766 {
6767         switch (cipher) {
6768         case IW_AUTH_CIPHER_NONE:
6769                 return SEC_LEVEL_0;
6770         case IW_AUTH_CIPHER_WEP40:
6771         case IW_AUTH_CIPHER_WEP104:
6772                 return SEC_LEVEL_1;
6773         case IW_AUTH_CIPHER_TKIP:
6774                 return SEC_LEVEL_2;
6775         case IW_AUTH_CIPHER_CCMP:
6776                 return SEC_LEVEL_3;
6777         default:
6778                 return -1;
6779         }
6780 }
6781
6782 /* SIOCSIWAUTH */
6783 static int ipw_wx_set_auth(struct net_device *dev,
6784                            struct iw_request_info *info,
6785                            union iwreq_data *wrqu, char *extra)
6786 {
6787         struct ipw_priv *priv = ieee80211_priv(dev);
6788         struct ieee80211_device *ieee = priv->ieee;
6789         struct iw_param *param = &wrqu->param;
6790         struct ieee80211_crypt_data *crypt;
6791         unsigned long flags;
6792         int ret = 0;
6793
6794         switch (param->flags & IW_AUTH_INDEX) {
6795         case IW_AUTH_WPA_VERSION:
6796                 break;
6797         case IW_AUTH_CIPHER_PAIRWISE:
6798                 ipw_set_hw_decrypt_unicast(priv,
6799                                            wext_cipher2level(param->value));
6800                 break;
6801         case IW_AUTH_CIPHER_GROUP:
6802                 ipw_set_hw_decrypt_multicast(priv,
6803                                              wext_cipher2level(param->value));
6804                 break;
6805         case IW_AUTH_KEY_MGMT:
6806                 /*
6807                  * ipw2200 does not use these parameters
6808                  */
6809                 break;
6810
6811         case IW_AUTH_TKIP_COUNTERMEASURES:
6812                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6813                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags) {
6814                         IPW_WARNING("Can't set TKIP countermeasures: "
6815                                     "crypt not set!\n");
6816                         break;
6817                 }
6818
6819                 flags = crypt->ops->get_flags(crypt->priv);
6820
6821                 if (param->value)
6822                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6823                 else
6824                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6825
6826                 crypt->ops->set_flags(flags, crypt->priv);
6827
6828                 break;
6829
6830         case IW_AUTH_DROP_UNENCRYPTED:{
6831                         /* HACK:
6832                          *
6833                          * wpa_supplicant calls set_wpa_enabled when the driver
6834                          * is loaded and unloaded, regardless of if WPA is being
6835                          * used.  No other calls are made which can be used to
6836                          * determine if encryption will be used or not prior to
6837                          * association being expected.  If encryption is not being
6838                          * used, drop_unencrypted is set to false, else true -- we
6839                          * can use this to determine if the CAP_PRIVACY_ON bit should
6840                          * be set.
6841                          */
6842                         struct ieee80211_security sec = {
6843                                 .flags = SEC_ENABLED,
6844                                 .enabled = param->value,
6845                         };
6846                         priv->ieee->drop_unencrypted = param->value;
6847                         /* We only change SEC_LEVEL for open mode. Others
6848                          * are set by ipw_wpa_set_encryption.
6849                          */
6850                         if (!param->value) {
6851                                 sec.flags |= SEC_LEVEL;
6852                                 sec.level = SEC_LEVEL_0;
6853                         } else {
6854                                 sec.flags |= SEC_LEVEL;
6855                                 sec.level = SEC_LEVEL_1;
6856                         }
6857                         if (priv->ieee->set_security)
6858                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6859                         break;
6860                 }
6861
6862         case IW_AUTH_80211_AUTH_ALG:
6863                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6864                 break;
6865
6866         case IW_AUTH_WPA_ENABLED:
6867                 ret = ipw_wpa_enable(priv, param->value);
6868                 break;
6869
6870         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6871                 ieee->ieee802_1x = param->value;
6872                 break;
6873
6874                 //case IW_AUTH_ROAMING_CONTROL:
6875         case IW_AUTH_PRIVACY_INVOKED:
6876                 ieee->privacy_invoked = param->value;
6877                 break;
6878
6879         default:
6880                 return -EOPNOTSUPP;
6881         }
6882         return ret;
6883 }
6884
6885 /* SIOCGIWAUTH */
6886 static int ipw_wx_get_auth(struct net_device *dev,
6887                            struct iw_request_info *info,
6888                            union iwreq_data *wrqu, char *extra)
6889 {
6890         struct ipw_priv *priv = ieee80211_priv(dev);
6891         struct ieee80211_device *ieee = priv->ieee;
6892         struct ieee80211_crypt_data *crypt;
6893         struct iw_param *param = &wrqu->param;
6894         int ret = 0;
6895
6896         switch (param->flags & IW_AUTH_INDEX) {
6897         case IW_AUTH_WPA_VERSION:
6898         case IW_AUTH_CIPHER_PAIRWISE:
6899         case IW_AUTH_CIPHER_GROUP:
6900         case IW_AUTH_KEY_MGMT:
6901                 /*
6902                  * wpa_supplicant will control these internally
6903                  */
6904                 ret = -EOPNOTSUPP;
6905                 break;
6906
6907         case IW_AUTH_TKIP_COUNTERMEASURES:
6908                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6909                 if (!crypt || !crypt->ops->get_flags) {
6910                         IPW_WARNING("Can't get TKIP countermeasures: "
6911                                     "crypt not set!\n");
6912                         break;
6913                 }
6914
6915                 param->value = (crypt->ops->get_flags(crypt->priv) &
6916                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6917
6918                 break;
6919
6920         case IW_AUTH_DROP_UNENCRYPTED:
6921                 param->value = ieee->drop_unencrypted;
6922                 break;
6923
6924         case IW_AUTH_80211_AUTH_ALG:
6925                 param->value = ieee->sec.auth_mode;
6926                 break;
6927
6928         case IW_AUTH_WPA_ENABLED:
6929                 param->value = ieee->wpa_enabled;
6930                 break;
6931
6932         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6933                 param->value = ieee->ieee802_1x;
6934                 break;
6935
6936         case IW_AUTH_ROAMING_CONTROL:
6937         case IW_AUTH_PRIVACY_INVOKED:
6938                 param->value = ieee->privacy_invoked;
6939                 break;
6940
6941         default:
6942                 return -EOPNOTSUPP;
6943         }
6944         return 0;
6945 }
6946
6947 /* SIOCSIWENCODEEXT */
6948 static int ipw_wx_set_encodeext(struct net_device *dev,
6949                                 struct iw_request_info *info,
6950                                 union iwreq_data *wrqu, char *extra)
6951 {
6952         struct ipw_priv *priv = ieee80211_priv(dev);
6953         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6954
6955         if (hwcrypto) {
6956                 /* IPW HW can't build TKIP MIC, host decryption still needed */
6957                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6958                         priv->ieee->host_encrypt = 0;
6959                         priv->ieee->host_encrypt_msdu = 1;
6960                         priv->ieee->host_decrypt = 1;
6961                 } else {
6962                         priv->ieee->host_encrypt = 0;
6963                         priv->ieee->host_encrypt_msdu = 0;
6964                         priv->ieee->host_decrypt = 0;
6965                 }
6966         }
6967
6968         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6969 }
6970
6971 /* SIOCGIWENCODEEXT */
6972 static int ipw_wx_get_encodeext(struct net_device *dev,
6973                                 struct iw_request_info *info,
6974                                 union iwreq_data *wrqu, char *extra)
6975 {
6976         struct ipw_priv *priv = ieee80211_priv(dev);
6977         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6978 }
6979
6980 /* SIOCSIWMLME */
6981 static int ipw_wx_set_mlme(struct net_device *dev,
6982                            struct iw_request_info *info,
6983                            union iwreq_data *wrqu, char *extra)
6984 {
6985         struct ipw_priv *priv = ieee80211_priv(dev);
6986         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6987         u16 reason;
6988
6989         reason = cpu_to_le16(mlme->reason_code);
6990
6991         switch (mlme->cmd) {
6992         case IW_MLME_DEAUTH:
6993                 // silently ignore
6994                 break;
6995
6996         case IW_MLME_DISASSOC:
6997                 ipw_disassociate(priv);
6998                 break;
6999
7000         default:
7001                 return -EOPNOTSUPP;
7002         }
7003         return 0;
7004 }
7005 #endif
7006
7007 #ifdef CONFIG_IPW_QOS
7008
7009 /* QoS */
7010 /*
7011 * get the modulation type of the current network or
7012 * the card current mode
7013 */
7014 u8 ipw_qos_current_mode(struct ipw_priv * priv)
7015 {
7016         u8 mode = 0;
7017
7018         if (priv->status & STATUS_ASSOCIATED) {
7019                 unsigned long flags;
7020
7021                 spin_lock_irqsave(&priv->ieee->lock, flags);
7022                 mode = priv->assoc_network->mode;
7023                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7024         } else {
7025                 mode = priv->ieee->mode;
7026         }
7027         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
7028         return mode;
7029 }
7030
7031 /*
7032 * Handle management frame beacon and probe response
7033 */
7034 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
7035                                          int active_network,
7036                                          struct ieee80211_network *network)
7037 {
7038         u32 size = sizeof(struct ieee80211_qos_parameters);
7039
7040         if (network->capability & WLAN_CAPABILITY_IBSS)
7041                 network->qos_data.active = network->qos_data.supported;
7042
7043         if (network->flags & NETWORK_HAS_QOS_MASK) {
7044                 if (active_network &&
7045                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
7046                         network->qos_data.active = network->qos_data.supported;
7047
7048                 if ((network->qos_data.active == 1) && (active_network == 1) &&
7049                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
7050                     (network->qos_data.old_param_count !=
7051                      network->qos_data.param_count)) {
7052                         network->qos_data.old_param_count =
7053                             network->qos_data.param_count;
7054                         schedule_work(&priv->qos_activate);
7055                         IPW_DEBUG_QOS("QoS parameters change call "
7056                                       "qos_activate\n");
7057                 }
7058         } else {
7059                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
7060                         memcpy(&network->qos_data.parameters,
7061                                &def_parameters_CCK, size);
7062                 else
7063                         memcpy(&network->qos_data.parameters,
7064                                &def_parameters_OFDM, size);
7065
7066                 if ((network->qos_data.active == 1) && (active_network == 1)) {
7067                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
7068                         schedule_work(&priv->qos_activate);
7069                 }
7070
7071                 network->qos_data.active = 0;
7072                 network->qos_data.supported = 0;
7073         }
7074         if ((priv->status & STATUS_ASSOCIATED) &&
7075             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
7076                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
7077                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
7078                             !(network->flags & NETWORK_EMPTY_ESSID))
7079                                 if ((network->ssid_len ==
7080                                      priv->assoc_network->ssid_len) &&
7081                                     !memcmp(network->ssid,
7082                                             priv->assoc_network->ssid,
7083                                             network->ssid_len)) {
7084                                         queue_work(priv->workqueue,
7085                                                    &priv->merge_networks);
7086                                 }
7087         }
7088
7089         return 0;
7090 }
7091
7092 /*
7093 * This function set up the firmware to support QoS. It sends
7094 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7095 */
7096 static int ipw_qos_activate(struct ipw_priv *priv,
7097                             struct ieee80211_qos_data *qos_network_data)
7098 {
7099         int err;
7100         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
7101         struct ieee80211_qos_parameters *active_one = NULL;
7102         u32 size = sizeof(struct ieee80211_qos_parameters);
7103         u32 burst_duration;
7104         int i;
7105         u8 type;
7106
7107         type = ipw_qos_current_mode(priv);
7108
7109         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7110         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7111         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7112         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7113
7114         if (qos_network_data == NULL) {
7115                 if (type == IEEE_B) {
7116                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7117                         active_one = &def_parameters_CCK;
7118                 } else
7119                         active_one = &def_parameters_OFDM;
7120
7121                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7122                 burst_duration = ipw_qos_get_burst_duration(priv);
7123                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7124                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7125                             (u16) burst_duration;
7126         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7127                 if (type == IEEE_B) {
7128                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7129                                       type);
7130                         if (priv->qos_data.qos_enable == 0)
7131                                 active_one = &def_parameters_CCK;
7132                         else
7133                                 active_one = priv->qos_data.def_qos_parm_CCK;
7134                 } else {
7135                         if (priv->qos_data.qos_enable == 0)
7136                                 active_one = &def_parameters_OFDM;
7137                         else
7138                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7139                 }
7140                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7141         } else {
7142                 unsigned long flags;
7143                 int active;
7144
7145                 spin_lock_irqsave(&priv->ieee->lock, flags);
7146                 active_one = &(qos_network_data->parameters);
7147                 qos_network_data->old_param_count =
7148                     qos_network_data->param_count;
7149                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7150                 active = qos_network_data->supported;
7151                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7152
7153                 if (active == 0) {
7154                         burst_duration = ipw_qos_get_burst_duration(priv);
7155                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7156                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7157                                     tx_op_limit[i] = (u16) burst_duration;
7158                 }
7159         }
7160
7161         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7162         err = ipw_send_qos_params_command(priv,
7163                                           (struct ieee80211_qos_parameters *)
7164                                           &(qos_parameters[0]));
7165         if (err)
7166                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7167
7168         return err;
7169 }
7170
7171 /*
7172 * send IPW_CMD_WME_INFO to the firmware
7173 */
7174 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7175 {
7176         int ret = 0;
7177         struct ieee80211_qos_information_element qos_info;
7178
7179         if (priv == NULL)
7180                 return -1;
7181
7182         qos_info.elementID = QOS_ELEMENT_ID;
7183         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7184
7185         qos_info.version = QOS_VERSION_1;
7186         qos_info.ac_info = 0;
7187
7188         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7189         qos_info.qui_type = QOS_OUI_TYPE;
7190         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7191
7192         ret = ipw_send_qos_info_command(priv, &qos_info);
7193         if (ret != 0) {
7194                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7195         }
7196         return ret;
7197 }
7198
7199 /*
7200 * Set the QoS parameter with the association request structure
7201 */
7202 static int ipw_qos_association(struct ipw_priv *priv,
7203                                struct ieee80211_network *network)
7204 {
7205         int err = 0;
7206         struct ieee80211_qos_data *qos_data = NULL;
7207         struct ieee80211_qos_data ibss_data = {
7208                 .supported = 1,
7209                 .active = 1,
7210         };
7211
7212         switch (priv->ieee->iw_mode) {
7213         case IW_MODE_ADHOC:
7214                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
7215                         BUG();
7216
7217                 qos_data = &ibss_data;
7218                 break;
7219
7220         case IW_MODE_INFRA:
7221                 qos_data = &network->qos_data;
7222                 break;
7223
7224         default:
7225                 BUG();
7226                 break;
7227         }
7228
7229         err = ipw_qos_activate(priv, qos_data);
7230         if (err) {
7231                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7232                 return err;
7233         }
7234
7235         if (priv->qos_data.qos_enable && qos_data->supported) {
7236                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7237                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7238                 return ipw_qos_set_info_element(priv);
7239         }
7240
7241         return 0;
7242 }
7243
7244 /*
7245 * handling the beaconing responces. if we get different QoS setting
7246 * of the network from the the associated setting adjust the QoS
7247 * setting
7248 */
7249 static int ipw_qos_association_resp(struct ipw_priv *priv,
7250                                     struct ieee80211_network *network)
7251 {
7252         int ret = 0;
7253         unsigned long flags;
7254         u32 size = sizeof(struct ieee80211_qos_parameters);
7255         int set_qos_param = 0;
7256
7257         if ((priv == NULL) || (network == NULL) ||
7258             (priv->assoc_network == NULL))
7259                 return ret;
7260
7261         if (!(priv->status & STATUS_ASSOCIATED))
7262                 return ret;
7263
7264         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7265                 return ret;
7266
7267         spin_lock_irqsave(&priv->ieee->lock, flags);
7268         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7269                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7270                        sizeof(struct ieee80211_qos_data));
7271                 priv->assoc_network->qos_data.active = 1;
7272                 if ((network->qos_data.old_param_count !=
7273                      network->qos_data.param_count)) {
7274                         set_qos_param = 1;
7275                         network->qos_data.old_param_count =
7276                             network->qos_data.param_count;
7277                 }
7278
7279         } else {
7280                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7281                         memcpy(&priv->assoc_network->qos_data.parameters,
7282                                &def_parameters_CCK, size);
7283                 else
7284                         memcpy(&priv->assoc_network->qos_data.parameters,
7285                                &def_parameters_OFDM, size);
7286                 priv->assoc_network->qos_data.active = 0;
7287                 priv->assoc_network->qos_data.supported = 0;
7288                 set_qos_param = 1;
7289         }
7290
7291         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7292
7293         if (set_qos_param == 1)
7294                 schedule_work(&priv->qos_activate);
7295
7296         return ret;
7297 }
7298
7299 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7300 {
7301         u32 ret = 0;
7302
7303         if ((priv == NULL))
7304                 return 0;
7305
7306         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7307                 ret = priv->qos_data.burst_duration_CCK;
7308         else
7309                 ret = priv->qos_data.burst_duration_OFDM;
7310
7311         return ret;
7312 }
7313
7314 /*
7315 * Initialize the setting of QoS global
7316 */
7317 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7318                          int burst_enable, u32 burst_duration_CCK,
7319                          u32 burst_duration_OFDM)
7320 {
7321         priv->qos_data.qos_enable = enable;
7322
7323         if (priv->qos_data.qos_enable) {
7324                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7325                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7326                 IPW_DEBUG_QOS("QoS is enabled\n");
7327         } else {
7328                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7329                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7330                 IPW_DEBUG_QOS("QoS is not enabled\n");
7331         }
7332
7333         priv->qos_data.burst_enable = burst_enable;
7334
7335         if (burst_enable) {
7336                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7337                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7338         } else {
7339                 priv->qos_data.burst_duration_CCK = 0;
7340                 priv->qos_data.burst_duration_OFDM = 0;
7341         }
7342 }
7343
7344 /*
7345 * map the packet priority to the right TX Queue
7346 */
7347 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7348 {
7349         if (priority > 7 || !priv->qos_data.qos_enable)
7350                 priority = 0;
7351
7352         return from_priority_to_tx_queue[priority] - 1;
7353 }
7354
7355 /*
7356 * add QoS parameter to the TX command
7357 */
7358 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7359                                         u16 priority,
7360                                         struct tfd_data *tfd, u8 unicast)
7361 {
7362         int ret = 0;
7363         int tx_queue_id = 0;
7364         struct ieee80211_qos_data *qos_data = NULL;
7365         int active, supported;
7366         unsigned long flags;
7367
7368         if (!(priv->status & STATUS_ASSOCIATED))
7369                 return 0;
7370
7371         qos_data = &priv->assoc_network->qos_data;
7372
7373         spin_lock_irqsave(&priv->ieee->lock, flags);
7374
7375         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7376                 if (unicast == 0)
7377                         qos_data->active = 0;
7378                 else
7379                         qos_data->active = qos_data->supported;
7380         }
7381
7382         active = qos_data->active;
7383         supported = qos_data->supported;
7384
7385         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7386
7387         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7388                       "unicast %d\n",
7389                       priv->qos_data.qos_enable, active, supported, unicast);
7390         if (active && priv->qos_data.qos_enable) {
7391                 ret = from_priority_to_tx_queue[priority];
7392                 tx_queue_id = ret - 1;
7393                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
7394                 if (priority <= 7) {
7395                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7396                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
7397                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
7398                             IEEE80211_STYPE_QOS_DATA;
7399
7400                         if (priv->qos_data.qos_no_ack_mask &
7401                             (1UL << tx_queue_id)) {
7402                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7403                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
7404                                     CTRL_QOS_NO_ACK;
7405                         }
7406                 }
7407         }
7408
7409         return ret;
7410 }
7411
7412 /*
7413 * background support to run QoS activate functionality
7414 */
7415 static void ipw_bg_qos_activate(void *data)
7416 {
7417         struct ipw_priv *priv = data;
7418
7419         if (priv == NULL)
7420                 return;
7421
7422         down(&priv->sem);
7423
7424         if (priv->status & STATUS_ASSOCIATED)
7425                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7426
7427         up(&priv->sem);
7428 }
7429
7430 static int ipw_handle_probe_response(struct net_device *dev,
7431                                      struct ieee80211_probe_response *resp,
7432                                      struct ieee80211_network *network)
7433 {
7434         struct ipw_priv *priv = ieee80211_priv(dev);
7435         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7436                               (network == priv->assoc_network));
7437
7438         ipw_qos_handle_probe_response(priv, active_network, network);
7439
7440         return 0;
7441 }
7442
7443 static int ipw_handle_beacon(struct net_device *dev,
7444                              struct ieee80211_beacon *resp,
7445                              struct ieee80211_network *network)
7446 {
7447         struct ipw_priv *priv = ieee80211_priv(dev);
7448         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7449                               (network == priv->assoc_network));
7450
7451         ipw_qos_handle_probe_response(priv, active_network, network);
7452
7453         return 0;
7454 }
7455
7456 static int ipw_handle_assoc_response(struct net_device *dev,
7457                                      struct ieee80211_assoc_response *resp,
7458                                      struct ieee80211_network *network)
7459 {
7460         struct ipw_priv *priv = ieee80211_priv(dev);
7461         ipw_qos_association_resp(priv, network);
7462         return 0;
7463 }
7464
7465 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7466                                        *qos_param)
7467 {
7468         struct host_cmd cmd = {
7469                 .cmd = IPW_CMD_QOS_PARAMETERS,
7470                 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7471         };
7472
7473         memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7474         return ipw_send_cmd(priv, &cmd);
7475 }
7476
7477 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7478                                      *qos_param)
7479 {
7480         struct host_cmd cmd = {
7481                 .cmd = IPW_CMD_WME_INFO,
7482                 .len = sizeof(*qos_param)
7483         };
7484
7485         memcpy(cmd.param, qos_param, sizeof(*qos_param));
7486         return ipw_send_cmd(priv, &cmd);
7487 }
7488
7489 #endif                          /* CONFIG_IPW_QOS */
7490
7491 static int ipw_associate_network(struct ipw_priv *priv,
7492                                  struct ieee80211_network *network,
7493                                  struct ipw_supported_rates *rates, int roaming)
7494 {
7495         int err;
7496
7497         if (priv->config & CFG_FIXED_RATE)
7498                 ipw_set_fixed_rate(priv, network->mode);
7499
7500         if (!(priv->config & CFG_STATIC_ESSID)) {
7501                 priv->essid_len = min(network->ssid_len,
7502                                       (u8) IW_ESSID_MAX_SIZE);
7503                 memcpy(priv->essid, network->ssid, priv->essid_len);
7504         }
7505
7506         network->last_associate = jiffies;
7507
7508         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7509         priv->assoc_request.channel = network->channel;
7510         if ((priv->capability & CAP_PRIVACY_ON) &&
7511             (priv->capability & CAP_SHARED_KEY)) {
7512                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7513                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7514
7515                 if ((priv->capability & CAP_PRIVACY_ON) &&
7516                     (priv->ieee->sec.level == SEC_LEVEL_1) &&
7517                     !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7518                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7519         } else {
7520                 priv->assoc_request.auth_type = AUTH_OPEN;
7521                 priv->assoc_request.auth_key = 0;
7522         }
7523
7524         if (priv->ieee->wpa_ie_len) {
7525                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7526                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7527                                  priv->ieee->wpa_ie_len);
7528         }
7529
7530         /*
7531          * It is valid for our ieee device to support multiple modes, but
7532          * when it comes to associating to a given network we have to choose
7533          * just one mode.
7534          */
7535         if (network->mode & priv->ieee->mode & IEEE_A)
7536                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7537         else if (network->mode & priv->ieee->mode & IEEE_G)
7538                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7539         else if (network->mode & priv->ieee->mode & IEEE_B)
7540                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7541
7542         priv->assoc_request.capability = network->capability;
7543         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7544             && !(priv->config & CFG_PREAMBLE_LONG)) {
7545                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7546         } else {
7547                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7548
7549                 /* Clear the short preamble if we won't be supporting it */
7550                 priv->assoc_request.capability &=
7551                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7552         }
7553
7554         /* Clear capability bits that aren't used in Ad Hoc */
7555         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7556                 priv->assoc_request.capability &=
7557                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7558
7559         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7560                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7561                         roaming ? "Rea" : "A",
7562                         escape_essid(priv->essid, priv->essid_len),
7563                         network->channel,
7564                         ipw_modes[priv->assoc_request.ieee_mode],
7565                         rates->num_rates,
7566                         (priv->assoc_request.preamble_length ==
7567                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7568                         network->capability &
7569                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7570                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7571                         priv->capability & CAP_PRIVACY_ON ?
7572                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7573                          "(open)") : "",
7574                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7575                         priv->capability & CAP_PRIVACY_ON ?
7576                         '1' + priv->ieee->sec.active_key : '.',
7577                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7578
7579         priv->assoc_request.beacon_interval = network->beacon_interval;
7580         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7581             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7582                 priv->assoc_request.assoc_type = HC_IBSS_START;
7583                 priv->assoc_request.assoc_tsf_msw = 0;
7584                 priv->assoc_request.assoc_tsf_lsw = 0;
7585         } else {
7586                 if (unlikely(roaming))
7587                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7588                 else
7589                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7590                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7591                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7592         }
7593
7594         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7595
7596         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7597                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7598                 priv->assoc_request.atim_window = network->atim_window;
7599         } else {
7600                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7601                 priv->assoc_request.atim_window = 0;
7602         }
7603
7604         priv->assoc_request.listen_interval = network->listen_interval;
7605
7606         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7607         if (err) {
7608                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7609                 return err;
7610         }
7611
7612         rates->ieee_mode = priv->assoc_request.ieee_mode;
7613         rates->purpose = IPW_RATE_CONNECT;
7614         ipw_send_supported_rates(priv, rates);
7615
7616         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7617                 priv->sys_config.dot11g_auto_detection = 1;
7618         else
7619                 priv->sys_config.dot11g_auto_detection = 0;
7620
7621         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7622                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7623         else
7624                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7625
7626         err = ipw_send_system_config(priv, &priv->sys_config);
7627         if (err) {
7628                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7629                 return err;
7630         }
7631
7632         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7633         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7634         if (err) {
7635                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7636                 return err;
7637         }
7638
7639         /*
7640          * If preemption is enabled, it is possible for the association
7641          * to complete before we return from ipw_send_associate.  Therefore
7642          * we have to be sure and update our priviate data first.
7643          */
7644         priv->channel = network->channel;
7645         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7646
7647         priv->assoc_network = network;
7648
7649 #ifdef CONFIG_IPW_QOS
7650         ipw_qos_association(priv, network);
7651 #endif
7652
7653         err = ipw_send_associate(priv, &priv->assoc_request);
7654         if (err) {
7655                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7656                 return err;
7657         }
7658
7659         priv->status |= STATUS_ASSOCIATING;
7660         priv->status &= ~STATUS_SECURITY_UPDATED;
7661
7662         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7663                   escape_essid(priv->essid, priv->essid_len),
7664                   MAC_ARG(priv->bssid));
7665
7666         return 0;
7667 }
7668
7669 static void ipw_roam(void *data)
7670 {
7671         struct ipw_priv *priv = data;
7672         struct ieee80211_network *network = NULL;
7673         struct ipw_network_match match = {
7674                 .network = priv->assoc_network
7675         };
7676
7677         /* The roaming process is as follows:
7678          *
7679          * 1.  Missed beacon threshold triggers the roaming process by
7680          *     setting the status ROAM bit and requesting a scan.
7681          * 2.  When the scan completes, it schedules the ROAM work
7682          * 3.  The ROAM work looks at all of the known networks for one that
7683          *     is a better network than the currently associated.  If none
7684          *     found, the ROAM process is over (ROAM bit cleared)
7685          * 4.  If a better network is found, a disassociation request is
7686          *     sent.
7687          * 5.  When the disassociation completes, the roam work is again
7688          *     scheduled.  The second time through, the driver is no longer
7689          *     associated, and the newly selected network is sent an
7690          *     association request.
7691          * 6.  At this point ,the roaming process is complete and the ROAM
7692          *     status bit is cleared.
7693          */
7694
7695         /* If we are no longer associated, and the roaming bit is no longer
7696          * set, then we are not actively roaming, so just return */
7697         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7698                 return;
7699
7700         if (priv->status & STATUS_ASSOCIATED) {
7701                 /* First pass through ROAM process -- look for a better
7702                  * network */
7703                 unsigned long flags;
7704                 u8 rssi = priv->assoc_network->stats.rssi;
7705                 priv->assoc_network->stats.rssi = -128;
7706                 spin_lock_irqsave(&priv->ieee->lock, flags);
7707                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7708                         if (network != priv->assoc_network)
7709                                 ipw_best_network(priv, &match, network, 1);
7710                 }
7711                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7712                 priv->assoc_network->stats.rssi = rssi;
7713
7714                 if (match.network == priv->assoc_network) {
7715                         IPW_DEBUG_ASSOC("No better APs in this network to "
7716                                         "roam to.\n");
7717                         priv->status &= ~STATUS_ROAMING;
7718                         ipw_debug_config(priv);
7719                         return;
7720                 }
7721
7722                 ipw_send_disassociate(priv, 1);
7723                 priv->assoc_network = match.network;
7724
7725                 return;
7726         }
7727
7728         /* Second pass through ROAM process -- request association */
7729         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7730         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7731         priv->status &= ~STATUS_ROAMING;
7732 }
7733
7734 static void ipw_bg_roam(void *data)
7735 {
7736         struct ipw_priv *priv = data;
7737         down(&priv->sem);
7738         ipw_roam(data);
7739         up(&priv->sem);
7740 }
7741
7742 static int ipw_associate(void *data)
7743 {
7744         struct ipw_priv *priv = data;
7745
7746         struct ieee80211_network *network = NULL;
7747         struct ipw_network_match match = {
7748                 .network = NULL
7749         };
7750         struct ipw_supported_rates *rates;
7751         struct list_head *element;
7752         unsigned long flags;
7753
7754         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7755                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7756                 return 0;
7757         }
7758
7759         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7760                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7761                                 "progress)\n");
7762                 return 0;
7763         }
7764
7765         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7766                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7767                                 "initialized)\n");
7768                 return 0;
7769         }
7770
7771         if (!(priv->config & CFG_ASSOCIATE) &&
7772             !(priv->config & (CFG_STATIC_ESSID |
7773                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7774                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7775                 return 0;
7776         }
7777
7778         /* Protect our use of the network_list */
7779         spin_lock_irqsave(&priv->ieee->lock, flags);
7780         list_for_each_entry(network, &priv->ieee->network_list, list)
7781             ipw_best_network(priv, &match, network, 0);
7782
7783         network = match.network;
7784         rates = &match.rates;
7785
7786         if (network == NULL &&
7787             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7788             priv->config & CFG_ADHOC_CREATE &&
7789             priv->config & CFG_STATIC_ESSID &&
7790             priv->config & CFG_STATIC_CHANNEL &&
7791             !list_empty(&priv->ieee->network_free_list)) {
7792                 element = priv->ieee->network_free_list.next;
7793                 network = list_entry(element, struct ieee80211_network, list);
7794                 ipw_adhoc_create(priv, network);
7795                 rates = &priv->rates;
7796                 list_del(element);
7797                 list_add_tail(&network->list, &priv->ieee->network_list);
7798         }
7799         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7800
7801         /* If we reached the end of the list, then we don't have any valid
7802          * matching APs */
7803         if (!network) {
7804                 ipw_debug_config(priv);
7805
7806                 if (!(priv->status & STATUS_SCANNING)) {
7807                         if (!(priv->config & CFG_SPEED_SCAN))
7808                                 queue_delayed_work(priv->workqueue,
7809                                                    &priv->request_scan,
7810                                                    SCAN_INTERVAL);
7811                         else
7812                                 queue_work(priv->workqueue,
7813                                            &priv->request_scan);
7814                 }
7815
7816                 return 0;
7817         }
7818
7819         ipw_associate_network(priv, network, rates, 0);
7820
7821         return 1;
7822 }
7823
7824 static void ipw_bg_associate(void *data)
7825 {
7826         struct ipw_priv *priv = data;
7827         down(&priv->sem);
7828         ipw_associate(data);
7829         up(&priv->sem);
7830 }
7831
7832 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7833                                       struct sk_buff *skb)
7834 {
7835         struct ieee80211_hdr *hdr;
7836         u16 fc;
7837
7838         hdr = (struct ieee80211_hdr *)skb->data;
7839         fc = le16_to_cpu(hdr->frame_ctl);
7840         if (!(fc & IEEE80211_FCTL_PROTECTED))
7841                 return;
7842
7843         fc &= ~IEEE80211_FCTL_PROTECTED;
7844         hdr->frame_ctl = cpu_to_le16(fc);
7845         switch (priv->ieee->sec.level) {
7846         case SEC_LEVEL_3:
7847                 /* Remove CCMP HDR */
7848                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7849                         skb->data + IEEE80211_3ADDR_LEN + 8,
7850                         skb->len - IEEE80211_3ADDR_LEN - 8);
7851                 if (fc & IEEE80211_FCTL_MOREFRAGS)
7852                         skb_trim(skb, skb->len - 16);   /* 2*MIC */
7853                 else
7854                         skb_trim(skb, skb->len - 8);    /* MIC */
7855                 break;
7856         case SEC_LEVEL_2:
7857                 break;
7858         case SEC_LEVEL_1:
7859                 /* Remove IV */
7860                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7861                         skb->data + IEEE80211_3ADDR_LEN + 4,
7862                         skb->len - IEEE80211_3ADDR_LEN - 4);
7863                 if (fc & IEEE80211_FCTL_MOREFRAGS)
7864                         skb_trim(skb, skb->len - 8);    /* 2*ICV */
7865                 else
7866                         skb_trim(skb, skb->len - 4);    /* ICV */
7867                 break;
7868         case SEC_LEVEL_0:
7869                 break;
7870         default:
7871                 printk(KERN_ERR "Unknow security level %d\n",
7872                        priv->ieee->sec.level);
7873                 break;
7874         }
7875 }
7876
7877 static void ipw_handle_data_packet(struct ipw_priv *priv,
7878                                    struct ipw_rx_mem_buffer *rxb,
7879                                    struct ieee80211_rx_stats *stats)
7880 {
7881         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7882
7883         /* We received data from the HW, so stop the watchdog */
7884         priv->net_dev->trans_start = jiffies;
7885
7886         /* We only process data packets if the
7887          * interface is open */
7888         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7889                      skb_tailroom(rxb->skb))) {
7890                 priv->ieee->stats.rx_errors++;
7891                 priv->wstats.discard.misc++;
7892                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7893                 return;
7894         } else if (unlikely(!netif_running(priv->net_dev))) {
7895                 priv->ieee->stats.rx_dropped++;
7896                 priv->wstats.discard.misc++;
7897                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7898                 return;
7899         }
7900
7901         /* Advance skb->data to the start of the actual payload */
7902         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7903
7904         /* Set the size of the skb to the size of the frame */
7905         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7906
7907         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7908
7909         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7910         if (!priv->ieee->host_decrypt)
7911                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7912
7913         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7914                 priv->ieee->stats.rx_errors++;
7915         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7916                 rxb->skb = NULL;
7917                 __ipw_led_activity_on(priv);
7918         }
7919 }
7920
7921 static inline int is_network_packet(struct ipw_priv *priv,
7922                                     struct ieee80211_hdr_4addr *header)
7923 {
7924         /* Filter incoming packets to determine if they are targetted toward
7925          * this network, discarding packets coming from ourselves */
7926         switch (priv->ieee->iw_mode) {
7927         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7928                 /* packets from our adapter are dropped (echo) */
7929                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7930                         return 0;
7931
7932                 /* multicast packets to our IBSS go through */
7933                 if (is_multicast_ether_addr(header->addr1))
7934                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7935
7936                 /* packets to our adapter go through */
7937                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7938                                ETH_ALEN);
7939
7940         case IW_MODE_INFRA:     /* Header: Dest. | AP{BSSID} | Source */
7941                 /* packets from our adapter are dropped (echo) */
7942                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7943                         return 0;
7944
7945                 /* {broad,multi}cast packets to our IBSS go through */
7946                 if (is_multicast_ether_addr(header->addr1))
7947                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7948
7949                 /* packets to our adapter go through */
7950                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7951                                ETH_ALEN);
7952         }
7953
7954         return 1;
7955 }
7956
7957 #define IPW_PACKET_RETRY_TIME HZ
7958
7959 static inline int is_duplicate_packet(struct ipw_priv *priv,
7960                                       struct ieee80211_hdr_4addr *header)
7961 {
7962         u16 sc = le16_to_cpu(header->seq_ctl);
7963         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7964         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7965         u16 *last_seq, *last_frag;
7966         unsigned long *last_time;
7967
7968         switch (priv->ieee->iw_mode) {
7969         case IW_MODE_ADHOC:
7970                 {
7971                         struct list_head *p;
7972                         struct ipw_ibss_seq *entry = NULL;
7973                         u8 *mac = header->addr2;
7974                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7975
7976                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7977                                 entry =
7978                                     list_entry(p, struct ipw_ibss_seq, list);
7979                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7980                                         break;
7981                         }
7982                         if (p == &priv->ibss_mac_hash[index]) {
7983                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7984                                 if (!entry) {
7985                                         IPW_ERROR
7986                                             ("Cannot malloc new mac entry\n");
7987                                         return 0;
7988                                 }
7989                                 memcpy(entry->mac, mac, ETH_ALEN);
7990                                 entry->seq_num = seq;
7991                                 entry->frag_num = frag;
7992                                 entry->packet_time = jiffies;
7993                                 list_add(&entry->list,
7994                                          &priv->ibss_mac_hash[index]);
7995                                 return 0;
7996                         }
7997                         last_seq = &entry->seq_num;
7998                         last_frag = &entry->frag_num;
7999                         last_time = &entry->packet_time;
8000                         break;
8001                 }
8002         case IW_MODE_INFRA:
8003                 last_seq = &priv->last_seq_num;
8004                 last_frag = &priv->last_frag_num;
8005                 last_time = &priv->last_packet_time;
8006                 break;
8007         default:
8008                 return 0;
8009         }
8010         if ((*last_seq == seq) &&
8011             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8012                 if (*last_frag == frag)
8013                         goto drop;
8014                 if (*last_frag + 1 != frag)
8015                         /* out-of-order fragment */
8016                         goto drop;
8017         } else
8018                 *last_seq = seq;
8019
8020         *last_frag = frag;
8021         *last_time = jiffies;
8022         return 0;
8023
8024       drop:
8025         /* Comment this line now since we observed the card receives
8026          * duplicate packets but the FCTL_RETRY bit is not set in the
8027          * IBSS mode with fragmentation enabled.
8028          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8029         return 1;
8030 }
8031
8032 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8033                                    struct ipw_rx_mem_buffer *rxb,
8034                                    struct ieee80211_rx_stats *stats)
8035 {
8036         struct sk_buff *skb = rxb->skb;
8037         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8038         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8039             (skb->data + IPW_RX_FRAME_SIZE);
8040
8041         ieee80211_rx_mgt(priv->ieee, header, stats);
8042
8043         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8044             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8045               IEEE80211_STYPE_PROBE_RESP) ||
8046              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8047               IEEE80211_STYPE_BEACON))) {
8048                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8049                         ipw_add_station(priv, header->addr2);
8050         }
8051
8052         if (priv->config & CFG_NET_STATS) {
8053                 IPW_DEBUG_HC("sending stat packet\n");
8054
8055                 /* Set the size of the skb to the size of the full
8056                  * ipw header and 802.11 frame */
8057                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8058                         IPW_RX_FRAME_SIZE);
8059
8060                 /* Advance past the ipw packet header to the 802.11 frame */
8061                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8062
8063                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8064                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8065
8066                 skb->dev = priv->ieee->dev;
8067
8068                 /* Point raw at the ieee80211_stats */
8069                 skb->mac.raw = skb->data;
8070
8071                 skb->pkt_type = PACKET_OTHERHOST;
8072                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8073                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8074                 netif_rx(skb);
8075                 rxb->skb = NULL;
8076         }
8077 }
8078
8079 /*
8080  * Main entry function for recieving a packet with 80211 headers.  This
8081  * should be called when ever the FW has notified us that there is a new
8082  * skb in the recieve queue.
8083  */
8084 static void ipw_rx(struct ipw_priv *priv)
8085 {
8086         struct ipw_rx_mem_buffer *rxb;
8087         struct ipw_rx_packet *pkt;
8088         struct ieee80211_hdr_4addr *header;
8089         u32 r, w, i;
8090         u8 network_packet;
8091
8092         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8093         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8094         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8095
8096         while (i != r) {
8097                 rxb = priv->rxq->queue[i];
8098 #ifdef CONFIG_IPW_DEBUG
8099                 if (unlikely(rxb == NULL)) {
8100                         printk(KERN_CRIT "Queue not allocated!\n");
8101                         break;
8102                 }
8103 #endif
8104                 priv->rxq->queue[i] = NULL;
8105
8106                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8107                                             IPW_RX_BUF_SIZE,
8108                                             PCI_DMA_FROMDEVICE);
8109
8110                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8111                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8112                              pkt->header.message_type,
8113                              pkt->header.rx_seq_num, pkt->header.control_bits);
8114
8115                 switch (pkt->header.message_type) {
8116                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8117                                 struct ieee80211_rx_stats stats = {
8118                                         .rssi =
8119                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8120                                             IPW_RSSI_TO_DBM,
8121                                         .signal =
8122                                             le16_to_cpu(pkt->u.frame.signal),
8123                                         .noise =
8124                                             le16_to_cpu(pkt->u.frame.noise),
8125                                         .rate = pkt->u.frame.rate,
8126                                         .mac_time = jiffies,
8127                                         .received_channel =
8128                                             pkt->u.frame.received_channel,
8129                                         .freq =
8130                                             (pkt->u.frame.
8131                                              control & (1 << 0)) ?
8132                                             IEEE80211_24GHZ_BAND :
8133                                             IEEE80211_52GHZ_BAND,
8134                                         .len = le16_to_cpu(pkt->u.frame.length),
8135                                 };
8136
8137                                 if (stats.rssi != 0)
8138                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8139                                 if (stats.signal != 0)
8140                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8141                                 if (stats.noise != 0)
8142                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8143                                 if (stats.rate != 0)
8144                                         stats.mask |= IEEE80211_STATMASK_RATE;
8145
8146                                 priv->rx_packets++;
8147
8148 #ifdef CONFIG_IPW2200_MONITOR
8149                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8150                                         ipw_handle_data_packet(priv, rxb,
8151                                                                &stats);
8152                                         break;
8153                                 }
8154 #endif
8155
8156                                 header =
8157                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8158                                                                    data +
8159                                                                    IPW_RX_FRAME_SIZE);
8160                                 /* TODO: Check Ad-Hoc dest/source and make sure
8161                                  * that we are actually parsing these packets
8162                                  * correctly -- we should probably use the
8163                                  * frame control of the packet and disregard
8164                                  * the current iw_mode */
8165
8166                                 network_packet =
8167                                     is_network_packet(priv, header);
8168                                 if (network_packet && priv->assoc_network) {
8169                                         priv->assoc_network->stats.rssi =
8170                                             stats.rssi;
8171                                         average_add(&priv->average_rssi,
8172                                                     stats.rssi);
8173                                         priv->last_rx_rssi = stats.rssi;
8174                                 }
8175
8176                                 IPW_DEBUG_RX("Frame: len=%u\n",
8177                                              le16_to_cpu(pkt->u.frame.length));
8178
8179                                 if (le16_to_cpu(pkt->u.frame.length) <
8180                                     frame_hdr_len(header)) {
8181                                         IPW_DEBUG_DROP
8182                                             ("Received packet is too small. "
8183                                              "Dropping.\n");
8184                                         priv->ieee->stats.rx_errors++;
8185                                         priv->wstats.discard.misc++;
8186                                         break;
8187                                 }
8188
8189                                 switch (WLAN_FC_GET_TYPE
8190                                         (le16_to_cpu(header->frame_ctl))) {
8191
8192                                 case IEEE80211_FTYPE_MGMT:
8193                                         ipw_handle_mgmt_packet(priv, rxb,
8194                                                                &stats);
8195                                         break;
8196
8197                                 case IEEE80211_FTYPE_CTL:
8198                                         break;
8199
8200                                 case IEEE80211_FTYPE_DATA:
8201                                         if (unlikely(!network_packet ||
8202                                                      is_duplicate_packet(priv,
8203                                                                          header)))
8204                                         {
8205                                                 IPW_DEBUG_DROP("Dropping: "
8206                                                                MAC_FMT ", "
8207                                                                MAC_FMT ", "
8208                                                                MAC_FMT "\n",
8209                                                                MAC_ARG(header->
8210                                                                        addr1),
8211                                                                MAC_ARG(header->
8212                                                                        addr2),
8213                                                                MAC_ARG(header->
8214                                                                        addr3));
8215                                                 break;
8216                                         }
8217
8218                                         ipw_handle_data_packet(priv, rxb,
8219                                                                &stats);
8220
8221                                         break;
8222                                 }
8223                                 break;
8224                         }
8225
8226                 case RX_HOST_NOTIFICATION_TYPE:{
8227                                 IPW_DEBUG_RX
8228                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8229                                      pkt->u.notification.subtype,
8230                                      pkt->u.notification.flags,
8231                                      pkt->u.notification.size);
8232                                 ipw_rx_notification(priv, &pkt->u.notification);
8233                                 break;
8234                         }
8235
8236                 default:
8237                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8238                                      pkt->header.message_type);
8239                         break;
8240                 }
8241
8242                 /* For now we just don't re-use anything.  We can tweak this
8243                  * later to try and re-use notification packets and SKBs that
8244                  * fail to Rx correctly */
8245                 if (rxb->skb != NULL) {
8246                         dev_kfree_skb_any(rxb->skb);
8247                         rxb->skb = NULL;
8248                 }
8249
8250                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8251                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8252                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8253
8254                 i = (i + 1) % RX_QUEUE_SIZE;
8255         }
8256
8257         /* Backtrack one entry */
8258         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8259
8260         ipw_rx_queue_restock(priv);
8261 }
8262
8263 #define DEFAULT_RTS_THRESHOLD     2304U
8264 #define MIN_RTS_THRESHOLD         1U
8265 #define MAX_RTS_THRESHOLD         2304U
8266 #define DEFAULT_BEACON_INTERVAL   100U
8267 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8268 #define DEFAULT_LONG_RETRY_LIMIT  4U
8269
8270 static int ipw_sw_reset(struct ipw_priv *priv, int init)
8271 {
8272         int band, modulation;
8273         int old_mode = priv->ieee->iw_mode;
8274
8275         /* Initialize module parameter values here */
8276         priv->config = 0;
8277
8278         /* We default to disabling the LED code as right now it causes
8279          * too many systems to lock up... */
8280         if (!led)
8281                 priv->config |= CFG_NO_LED;
8282
8283         if (associate)
8284                 priv->config |= CFG_ASSOCIATE;
8285         else
8286                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8287
8288         if (auto_create)
8289                 priv->config |= CFG_ADHOC_CREATE;
8290         else
8291                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8292
8293         if (disable) {
8294                 priv->status |= STATUS_RF_KILL_SW;
8295                 IPW_DEBUG_INFO("Radio disabled.\n");
8296         }
8297
8298         if (channel != 0) {
8299                 priv->config |= CFG_STATIC_CHANNEL;
8300                 priv->channel = channel;
8301                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8302                 /* TODO: Validate that provided channel is in range */
8303         }
8304 #ifdef CONFIG_IPW_QOS
8305         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8306                      burst_duration_CCK, burst_duration_OFDM);
8307 #endif                          /* CONFIG_IPW_QOS */
8308
8309         switch (mode) {
8310         case 1:
8311                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8312                 priv->net_dev->type = ARPHRD_ETHER;
8313
8314                 break;
8315 #ifdef CONFIG_IPW2200_MONITOR
8316         case 2:
8317                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8318                 priv->net_dev->type = ARPHRD_IEEE80211;
8319                 break;
8320 #endif
8321         default:
8322         case 0:
8323                 priv->net_dev->type = ARPHRD_ETHER;
8324                 priv->ieee->iw_mode = IW_MODE_INFRA;
8325                 break;
8326         }
8327
8328         if (hwcrypto) {
8329                 priv->ieee->host_encrypt = 0;
8330                 priv->ieee->host_encrypt_msdu = 0;
8331                 priv->ieee->host_decrypt = 0;
8332         }
8333         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8334
8335         /* IPW2200/2915 is abled to do hardware fragmentation. */
8336         priv->ieee->host_open_frag = 0;
8337
8338         if ((priv->pci_dev->device == 0x4223) ||
8339             (priv->pci_dev->device == 0x4224)) {
8340                 if (init)
8341                         printk(KERN_INFO DRV_NAME
8342                                ": Detected Intel PRO/Wireless 2915ABG Network "
8343                                "Connection\n");
8344                 priv->ieee->abg_true = 1;
8345                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8346                 modulation = IEEE80211_OFDM_MODULATION |
8347                     IEEE80211_CCK_MODULATION;
8348                 priv->adapter = IPW_2915ABG;
8349                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8350         } else {
8351                 if (init)
8352                         printk(KERN_INFO DRV_NAME
8353                                ": Detected Intel PRO/Wireless 2200BG Network "
8354                                "Connection\n");
8355
8356                 priv->ieee->abg_true = 0;
8357                 band = IEEE80211_24GHZ_BAND;
8358                 modulation = IEEE80211_OFDM_MODULATION |
8359                     IEEE80211_CCK_MODULATION;
8360                 priv->adapter = IPW_2200BG;
8361                 priv->ieee->mode = IEEE_G | IEEE_B;
8362         }
8363
8364         priv->ieee->freq_band = band;
8365         priv->ieee->modulation = modulation;
8366
8367         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8368
8369         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8370         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8371
8372         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8373         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8374         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8375
8376         /* If power management is turned on, default to AC mode */
8377         priv->power_mode = IPW_POWER_AC;
8378         priv->tx_power = IPW_TX_POWER_DEFAULT;
8379
8380         return old_mode == priv->ieee->iw_mode;
8381 }
8382
8383 /*
8384  * This file defines the Wireless Extension handlers.  It does not
8385  * define any methods of hardware manipulation and relies on the
8386  * functions defined in ipw_main to provide the HW interaction.
8387  *
8388  * The exception to this is the use of the ipw_get_ordinal()
8389  * function used to poll the hardware vs. making unecessary calls.
8390  *
8391  */
8392
8393 static int ipw_wx_get_name(struct net_device *dev,
8394                            struct iw_request_info *info,
8395                            union iwreq_data *wrqu, char *extra)
8396 {
8397         struct ipw_priv *priv = ieee80211_priv(dev);
8398         down(&priv->sem);
8399         if (priv->status & STATUS_RF_KILL_MASK)
8400                 strcpy(wrqu->name, "radio off");
8401         else if (!(priv->status & STATUS_ASSOCIATED))
8402                 strcpy(wrqu->name, "unassociated");
8403         else
8404                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8405                          ipw_modes[priv->assoc_request.ieee_mode]);
8406         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8407         up(&priv->sem);
8408         return 0;
8409 }
8410
8411 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8412 {
8413         if (channel == 0) {
8414                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8415                 priv->config &= ~CFG_STATIC_CHANNEL;
8416                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8417                                 "parameters.\n");
8418                 ipw_associate(priv);
8419                 return 0;
8420         }
8421
8422         priv->config |= CFG_STATIC_CHANNEL;
8423
8424         if (priv->channel == channel) {
8425                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8426                                channel);
8427                 return 0;
8428         }
8429
8430         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8431         priv->channel = channel;
8432
8433 #ifdef CONFIG_IPW2200_MONITOR
8434         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8435                 int i;
8436                 if (priv->status & STATUS_SCANNING) {
8437                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8438                                        "channel change.\n");
8439                         ipw_abort_scan(priv);
8440                 }
8441
8442                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8443                         udelay(10);
8444
8445                 if (priv->status & STATUS_SCANNING)
8446                         IPW_DEBUG_SCAN("Still scanning...\n");
8447                 else
8448                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8449                                        1000 - i);
8450
8451                 return 0;
8452         }
8453 #endif                          /* CONFIG_IPW2200_MONITOR */
8454
8455         /* Network configuration changed -- force [re]association */
8456         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8457         if (!ipw_disassociate(priv))
8458                 ipw_associate(priv);
8459
8460         return 0;
8461 }
8462
8463 static int ipw_wx_set_freq(struct net_device *dev,
8464                            struct iw_request_info *info,
8465                            union iwreq_data *wrqu, char *extra)
8466 {
8467         struct ipw_priv *priv = ieee80211_priv(dev);
8468         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8469         struct iw_freq *fwrq = &wrqu->freq;
8470         int ret = 0, i;
8471         u8 channel, flags;
8472         int band;
8473
8474         if (fwrq->m == 0) {
8475                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8476                 down(&priv->sem);
8477                 ret = ipw_set_channel(priv, 0);
8478                 up(&priv->sem);
8479                 return ret;
8480         }
8481         /* if setting by freq convert to channel */
8482         if (fwrq->e == 1) {
8483                 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8484                 if (channel == 0)
8485                         return -EINVAL;
8486         } else
8487                 channel = fwrq->m;
8488
8489         if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8490                 return -EINVAL;
8491
8492         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8493                 i = ipw_channel_to_index(priv->ieee, channel);
8494                 if (i == -1)
8495                         return -EINVAL;
8496
8497                 flags = (band == IEEE80211_24GHZ_BAND) ?
8498                     geo->bg[i].flags : geo->a[i].flags;
8499                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8500                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8501                         return -EINVAL;
8502                 }
8503         }
8504
8505         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8506         down(&priv->sem);
8507         ret = ipw_set_channel(priv, channel);
8508         up(&priv->sem);
8509         return ret;
8510 }
8511
8512 static int ipw_wx_get_freq(struct net_device *dev,
8513                            struct iw_request_info *info,
8514                            union iwreq_data *wrqu, char *extra)
8515 {
8516         struct ipw_priv *priv = ieee80211_priv(dev);
8517
8518         wrqu->freq.e = 0;
8519
8520         /* If we are associated, trying to associate, or have a statically
8521          * configured CHANNEL then return that; otherwise return ANY */
8522         down(&priv->sem);
8523         if (priv->config & CFG_STATIC_CHANNEL ||
8524             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8525                 wrqu->freq.m = priv->channel;
8526         else
8527                 wrqu->freq.m = 0;
8528
8529         up(&priv->sem);
8530         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8531         return 0;
8532 }
8533
8534 static int ipw_wx_set_mode(struct net_device *dev,
8535                            struct iw_request_info *info,
8536                            union iwreq_data *wrqu, char *extra)
8537 {
8538         struct ipw_priv *priv = ieee80211_priv(dev);
8539         int err = 0;
8540
8541         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8542
8543         switch (wrqu->mode) {
8544 #ifdef CONFIG_IPW2200_MONITOR
8545         case IW_MODE_MONITOR:
8546 #endif
8547         case IW_MODE_ADHOC:
8548         case IW_MODE_INFRA:
8549                 break;
8550         case IW_MODE_AUTO:
8551                 wrqu->mode = IW_MODE_INFRA;
8552                 break;
8553         default:
8554                 return -EINVAL;
8555         }
8556         if (wrqu->mode == priv->ieee->iw_mode)
8557                 return 0;
8558
8559         down(&priv->sem);
8560
8561         ipw_sw_reset(priv, 0);
8562
8563 #ifdef CONFIG_IPW2200_MONITOR
8564         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8565                 priv->net_dev->type = ARPHRD_ETHER;
8566
8567         if (wrqu->mode == IW_MODE_MONITOR)
8568                 priv->net_dev->type = ARPHRD_IEEE80211;
8569 #endif                          /* CONFIG_IPW2200_MONITOR */
8570
8571         /* Free the existing firmware and reset the fw_loaded
8572          * flag so ipw_load() will bring in the new firmawre */
8573         free_firmware();
8574
8575         priv->ieee->iw_mode = wrqu->mode;
8576
8577         queue_work(priv->workqueue, &priv->adapter_restart);
8578         up(&priv->sem);
8579         return err;
8580 }
8581
8582 static int ipw_wx_get_mode(struct net_device *dev,
8583                            struct iw_request_info *info,
8584                            union iwreq_data *wrqu, char *extra)
8585 {
8586         struct ipw_priv *priv = ieee80211_priv(dev);
8587         down(&priv->sem);
8588         wrqu->mode = priv->ieee->iw_mode;
8589         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8590         up(&priv->sem);
8591         return 0;
8592 }
8593
8594 /* Values are in microsecond */
8595 static const s32 timeout_duration[] = {
8596         350000,
8597         250000,
8598         75000,
8599         37000,
8600         25000,
8601 };
8602
8603 static const s32 period_duration[] = {
8604         400000,
8605         700000,
8606         1000000,
8607         1000000,
8608         1000000
8609 };
8610
8611 static int ipw_wx_get_range(struct net_device *dev,
8612                             struct iw_request_info *info,
8613                             union iwreq_data *wrqu, char *extra)
8614 {
8615         struct ipw_priv *priv = ieee80211_priv(dev);
8616         struct iw_range *range = (struct iw_range *)extra;
8617         const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8618         int i = 0, j;
8619
8620         wrqu->data.length = sizeof(*range);
8621         memset(range, 0, sizeof(*range));
8622
8623         /* 54Mbs == ~27 Mb/s real (802.11g) */
8624         range->throughput = 27 * 1000 * 1000;
8625
8626         range->max_qual.qual = 100;
8627         /* TODO: Find real max RSSI and stick here */
8628         range->max_qual.level = 0;
8629         range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8630         range->max_qual.updated = 7;    /* Updated all three */
8631
8632         range->avg_qual.qual = 70;
8633         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8634         range->avg_qual.level = 0;      /* FIXME to real average level */
8635         range->avg_qual.noise = 0;
8636         range->avg_qual.updated = 7;    /* Updated all three */
8637         down(&priv->sem);
8638         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8639
8640         for (i = 0; i < range->num_bitrates; i++)
8641                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8642                     500000;
8643
8644         range->max_rts = DEFAULT_RTS_THRESHOLD;
8645         range->min_frag = MIN_FRAG_THRESHOLD;
8646         range->max_frag = MAX_FRAG_THRESHOLD;
8647
8648         range->encoding_size[0] = 5;
8649         range->encoding_size[1] = 13;
8650         range->num_encoding_sizes = 2;
8651         range->max_encoding_tokens = WEP_KEYS;
8652
8653         /* Set the Wireless Extension versions */
8654         range->we_version_compiled = WIRELESS_EXT;
8655         range->we_version_source = 16;
8656
8657         i = 0;
8658         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8659                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8660                      i++, j++) {
8661                         range->freq[i].i = geo->bg[j].channel;
8662                         range->freq[i].m = geo->bg[j].freq * 100000;
8663                         range->freq[i].e = 1;
8664                 }
8665         }
8666
8667         if (priv->ieee->mode & IEEE_A) {
8668                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8669                      i++, j++) {
8670                         range->freq[i].i = geo->a[j].channel;
8671                         range->freq[i].m = geo->a[j].freq * 100000;
8672                         range->freq[i].e = 1;
8673                 }
8674         }
8675
8676         range->num_channels = i;
8677         range->num_frequency = i;
8678
8679         up(&priv->sem);
8680         IPW_DEBUG_WX("GET Range\n");
8681         return 0;
8682 }
8683
8684 static int ipw_wx_set_wap(struct net_device *dev,
8685                           struct iw_request_info *info,
8686                           union iwreq_data *wrqu, char *extra)
8687 {
8688         struct ipw_priv *priv = ieee80211_priv(dev);
8689
8690         static const unsigned char any[] = {
8691                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8692         };
8693         static const unsigned char off[] = {
8694                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8695         };
8696
8697         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8698                 return -EINVAL;
8699         down(&priv->sem);
8700         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8701             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8702                 /* we disable mandatory BSSID association */
8703                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8704                 priv->config &= ~CFG_STATIC_BSSID;
8705                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8706                                 "parameters.\n");
8707                 ipw_associate(priv);
8708                 up(&priv->sem);
8709                 return 0;
8710         }
8711
8712         priv->config |= CFG_STATIC_BSSID;
8713         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8714                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8715                 up(&priv->sem);
8716                 return 0;
8717         }
8718
8719         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8720                      MAC_ARG(wrqu->ap_addr.sa_data));
8721
8722         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8723
8724         /* Network configuration changed -- force [re]association */
8725         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8726         if (!ipw_disassociate(priv))
8727                 ipw_associate(priv);
8728
8729         up(&priv->sem);
8730         return 0;
8731 }
8732
8733 static int ipw_wx_get_wap(struct net_device *dev,
8734                           struct iw_request_info *info,
8735                           union iwreq_data *wrqu, char *extra)
8736 {
8737         struct ipw_priv *priv = ieee80211_priv(dev);
8738         /* If we are associated, trying to associate, or have a statically
8739          * configured BSSID then return that; otherwise return ANY */
8740         down(&priv->sem);
8741         if (priv->config & CFG_STATIC_BSSID ||
8742             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8743                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8744                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8745         } else
8746                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8747
8748         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8749                      MAC_ARG(wrqu->ap_addr.sa_data));
8750         up(&priv->sem);
8751         return 0;
8752 }
8753
8754 static int ipw_wx_set_essid(struct net_device *dev,
8755                             struct iw_request_info *info,
8756                             union iwreq_data *wrqu, char *extra)
8757 {
8758         struct ipw_priv *priv = ieee80211_priv(dev);
8759         char *essid = "";       /* ANY */
8760         int length = 0;
8761         down(&priv->sem);
8762         if (wrqu->essid.flags && wrqu->essid.length) {
8763                 length = wrqu->essid.length - 1;
8764                 essid = extra;
8765         }
8766         if (length == 0) {
8767                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8768                 if ((priv->config & CFG_STATIC_ESSID) &&
8769                     !(priv->status & (STATUS_ASSOCIATED |
8770                                       STATUS_ASSOCIATING))) {
8771                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8772                                         "parameters.\n");
8773                         priv->config &= ~CFG_STATIC_ESSID;
8774                         ipw_associate(priv);
8775                 }
8776                 up(&priv->sem);
8777                 return 0;
8778         }
8779
8780         length = min(length, IW_ESSID_MAX_SIZE);
8781
8782         priv->config |= CFG_STATIC_ESSID;
8783
8784         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8785                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8786                 up(&priv->sem);
8787                 return 0;
8788         }
8789
8790         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8791                      length);
8792
8793         priv->essid_len = length;
8794         memcpy(priv->essid, essid, priv->essid_len);
8795
8796         /* Network configuration changed -- force [re]association */
8797         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8798         if (!ipw_disassociate(priv))
8799                 ipw_associate(priv);
8800
8801         up(&priv->sem);
8802         return 0;
8803 }
8804
8805 static int ipw_wx_get_essid(struct net_device *dev,
8806                             struct iw_request_info *info,
8807                             union iwreq_data *wrqu, char *extra)
8808 {
8809         struct ipw_priv *priv = ieee80211_priv(dev);
8810
8811         /* If we are associated, trying to associate, or have a statically
8812          * configured ESSID then return that; otherwise return ANY */
8813         down(&priv->sem);
8814         if (priv->config & CFG_STATIC_ESSID ||
8815             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8816                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8817                              escape_essid(priv->essid, priv->essid_len));
8818                 memcpy(extra, priv->essid, priv->essid_len);
8819                 wrqu->essid.length = priv->essid_len;
8820                 wrqu->essid.flags = 1;  /* active */
8821         } else {
8822                 IPW_DEBUG_WX("Getting essid: ANY\n");
8823                 wrqu->essid.length = 0;
8824                 wrqu->essid.flags = 0;  /* active */
8825         }
8826         up(&priv->sem);
8827         return 0;
8828 }
8829
8830 static int ipw_wx_set_nick(struct net_device *dev,
8831                            struct iw_request_info *info,
8832                            union iwreq_data *wrqu, char *extra)
8833 {
8834         struct ipw_priv *priv = ieee80211_priv(dev);
8835
8836         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8837         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8838                 return -E2BIG;
8839         down(&priv->sem);
8840         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8841         memset(priv->nick, 0, sizeof(priv->nick));
8842         memcpy(priv->nick, extra, wrqu->data.length);
8843         IPW_DEBUG_TRACE("<<\n");
8844         up(&priv->sem);
8845         return 0;
8846
8847 }
8848
8849 static int ipw_wx_get_nick(struct net_device *dev,
8850                            struct iw_request_info *info,
8851                            union iwreq_data *wrqu, char *extra)
8852 {
8853         struct ipw_priv *priv = ieee80211_priv(dev);
8854         IPW_DEBUG_WX("Getting nick\n");
8855         down(&priv->sem);
8856         wrqu->data.length = strlen(priv->nick) + 1;
8857         memcpy(extra, priv->nick, wrqu->data.length);
8858         wrqu->data.flags = 1;   /* active */
8859         up(&priv->sem);
8860         return 0;
8861 }
8862
8863 static int ipw_wx_set_rate(struct net_device *dev,
8864                            struct iw_request_info *info,
8865                            union iwreq_data *wrqu, char *extra)
8866 {
8867         /* TODO: We should use semaphores or locks for access to priv */
8868         struct ipw_priv *priv = ieee80211_priv(dev);
8869         u32 target_rate = wrqu->bitrate.value;
8870         u32 fixed, mask;
8871
8872         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8873         /* value = X, fixed = 1 means only rate X */
8874         /* value = X, fixed = 0 means all rates lower equal X */
8875
8876         if (target_rate == -1) {
8877                 fixed = 0;
8878                 mask = IEEE80211_DEFAULT_RATES_MASK;
8879                 /* Now we should reassociate */
8880                 goto apply;
8881         }
8882
8883         mask = 0;
8884         fixed = wrqu->bitrate.fixed;
8885
8886         if (target_rate == 1000000 || !fixed)
8887                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8888         if (target_rate == 1000000)
8889                 goto apply;
8890
8891         if (target_rate == 2000000 || !fixed)
8892                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8893         if (target_rate == 2000000)
8894                 goto apply;
8895
8896         if (target_rate == 5500000 || !fixed)
8897                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8898         if (target_rate == 5500000)
8899                 goto apply;
8900
8901         if (target_rate == 6000000 || !fixed)
8902                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8903         if (target_rate == 6000000)
8904                 goto apply;
8905
8906         if (target_rate == 9000000 || !fixed)
8907                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8908         if (target_rate == 9000000)
8909                 goto apply;
8910
8911         if (target_rate == 11000000 || !fixed)
8912                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8913         if (target_rate == 11000000)
8914                 goto apply;
8915
8916         if (target_rate == 12000000 || !fixed)
8917                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8918         if (target_rate == 12000000)
8919                 goto apply;
8920
8921         if (target_rate == 18000000 || !fixed)
8922                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8923         if (target_rate == 18000000)
8924                 goto apply;
8925
8926         if (target_rate == 24000000 || !fixed)
8927                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8928         if (target_rate == 24000000)
8929                 goto apply;
8930
8931         if (target_rate == 36000000 || !fixed)
8932                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8933         if (target_rate == 36000000)
8934                 goto apply;
8935
8936         if (target_rate == 48000000 || !fixed)
8937                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8938         if (target_rate == 48000000)
8939                 goto apply;
8940
8941         if (target_rate == 54000000 || !fixed)
8942                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8943         if (target_rate == 54000000)
8944                 goto apply;
8945
8946         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8947         return -EINVAL;
8948
8949       apply:
8950         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8951                      mask, fixed ? "fixed" : "sub-rates");
8952         down(&priv->sem);
8953         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8954                 priv->config &= ~CFG_FIXED_RATE;
8955                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8956         } else
8957                 priv->config |= CFG_FIXED_RATE;
8958
8959         if (priv->rates_mask == mask) {
8960                 IPW_DEBUG_WX("Mask set to current mask.\n");
8961                 up(&priv->sem);
8962                 return 0;
8963         }
8964
8965         priv->rates_mask = mask;
8966
8967         /* Network configuration changed -- force [re]association */
8968         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8969         if (!ipw_disassociate(priv))
8970                 ipw_associate(priv);
8971
8972         up(&priv->sem);
8973         return 0;
8974 }
8975
8976 static int ipw_wx_get_rate(struct net_device *dev,
8977                            struct iw_request_info *info,
8978                            union iwreq_data *wrqu, char *extra)
8979 {
8980         struct ipw_priv *priv = ieee80211_priv(dev);
8981         down(&priv->sem);
8982         wrqu->bitrate.value = priv->last_rate;
8983         up(&priv->sem);
8984         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8985         return 0;
8986 }
8987
8988 static int ipw_wx_set_rts(struct net_device *dev,
8989                           struct iw_request_info *info,
8990                           union iwreq_data *wrqu, char *extra)
8991 {
8992         struct ipw_priv *priv = ieee80211_priv(dev);
8993         down(&priv->sem);
8994         if (wrqu->rts.disabled)
8995                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8996         else {
8997                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8998                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8999                         up(&priv->sem);
9000                         return -EINVAL;
9001                 }
9002                 priv->rts_threshold = wrqu->rts.value;
9003         }
9004
9005         ipw_send_rts_threshold(priv, priv->rts_threshold);
9006         up(&priv->sem);
9007         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9008         return 0;
9009 }
9010
9011 static int ipw_wx_get_rts(struct net_device *dev,
9012                           struct iw_request_info *info,
9013                           union iwreq_data *wrqu, char *extra)
9014 {
9015         struct ipw_priv *priv = ieee80211_priv(dev);
9016         down(&priv->sem);
9017         wrqu->rts.value = priv->rts_threshold;
9018         wrqu->rts.fixed = 0;    /* no auto select */
9019         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9020         up(&priv->sem);
9021         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9022         return 0;
9023 }
9024
9025 static int ipw_wx_set_txpow(struct net_device *dev,
9026                             struct iw_request_info *info,
9027                             union iwreq_data *wrqu, char *extra)
9028 {
9029         struct ipw_priv *priv = ieee80211_priv(dev);
9030         int err = 0;
9031
9032         down(&priv->sem);
9033         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9034                 err = -EINPROGRESS;
9035                 goto out;
9036         }
9037
9038         if (!wrqu->power.fixed)
9039                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9040
9041         if (wrqu->power.flags != IW_TXPOW_DBM) {
9042                 err = -EINVAL;
9043                 goto out;
9044         }
9045
9046         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9047             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9048                 err = -EINVAL;
9049                 goto out;
9050         }
9051
9052         priv->tx_power = wrqu->power.value;
9053         err = ipw_set_tx_power(priv);
9054       out:
9055         up(&priv->sem);
9056         return err;
9057 }
9058
9059 static int ipw_wx_get_txpow(struct net_device *dev,
9060                             struct iw_request_info *info,
9061                             union iwreq_data *wrqu, char *extra)
9062 {
9063         struct ipw_priv *priv = ieee80211_priv(dev);
9064         down(&priv->sem);
9065         wrqu->power.value = priv->tx_power;
9066         wrqu->power.fixed = 1;
9067         wrqu->power.flags = IW_TXPOW_DBM;
9068         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9069         up(&priv->sem);
9070
9071         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9072                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9073
9074         return 0;
9075 }
9076
9077 static int ipw_wx_set_frag(struct net_device *dev,
9078                            struct iw_request_info *info,
9079                            union iwreq_data *wrqu, char *extra)
9080 {
9081         struct ipw_priv *priv = ieee80211_priv(dev);
9082         down(&priv->sem);
9083         if (wrqu->frag.disabled)
9084                 priv->ieee->fts = DEFAULT_FTS;
9085         else {
9086                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9087                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9088                         up(&priv->sem);
9089                         return -EINVAL;
9090                 }
9091
9092                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9093         }
9094
9095         ipw_send_frag_threshold(priv, wrqu->frag.value);
9096         up(&priv->sem);
9097         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9098         return 0;
9099 }
9100
9101 static int ipw_wx_get_frag(struct net_device *dev,
9102                            struct iw_request_info *info,
9103                            union iwreq_data *wrqu, char *extra)
9104 {
9105         struct ipw_priv *priv = ieee80211_priv(dev);
9106         down(&priv->sem);
9107         wrqu->frag.value = priv->ieee->fts;
9108         wrqu->frag.fixed = 0;   /* no auto select */
9109         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9110         up(&priv->sem);
9111         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9112
9113         return 0;
9114 }
9115
9116 static int ipw_wx_set_retry(struct net_device *dev,
9117                             struct iw_request_info *info,
9118                             union iwreq_data *wrqu, char *extra)
9119 {
9120         struct ipw_priv *priv = ieee80211_priv(dev);
9121
9122         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9123                 return -EINVAL;
9124
9125         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9126                 return 0;
9127
9128         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9129                 return -EINVAL;
9130
9131         down(&priv->sem);
9132         if (wrqu->retry.flags & IW_RETRY_MIN)
9133                 priv->short_retry_limit = (u8) wrqu->retry.value;
9134         else if (wrqu->retry.flags & IW_RETRY_MAX)
9135                 priv->long_retry_limit = (u8) wrqu->retry.value;
9136         else {
9137                 priv->short_retry_limit = (u8) wrqu->retry.value;
9138                 priv->long_retry_limit = (u8) wrqu->retry.value;
9139         }
9140
9141         ipw_send_retry_limit(priv, priv->short_retry_limit,
9142                              priv->long_retry_limit);
9143         up(&priv->sem);
9144         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9145                      priv->short_retry_limit, priv->long_retry_limit);
9146         return 0;
9147 }
9148
9149 static int ipw_wx_get_retry(struct net_device *dev,
9150                             struct iw_request_info *info,
9151                             union iwreq_data *wrqu, char *extra)
9152 {
9153         struct ipw_priv *priv = ieee80211_priv(dev);
9154
9155         down(&priv->sem);
9156         wrqu->retry.disabled = 0;
9157
9158         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9159                 up(&priv->sem);
9160                 return -EINVAL;
9161         }
9162
9163         if (wrqu->retry.flags & IW_RETRY_MAX) {
9164                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9165                 wrqu->retry.value = priv->long_retry_limit;
9166         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9167                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9168                 wrqu->retry.value = priv->short_retry_limit;
9169         } else {
9170                 wrqu->retry.flags = IW_RETRY_LIMIT;
9171                 wrqu->retry.value = priv->short_retry_limit;
9172         }
9173         up(&priv->sem);
9174
9175         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9176
9177         return 0;
9178 }
9179
9180 #if WIRELESS_EXT > 17
9181 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9182                                    int essid_len)
9183 {
9184         struct ipw_scan_request_ext scan;
9185         int err = 0, scan_type;
9186
9187         down(&priv->sem);
9188
9189         if (priv->status & STATUS_RF_KILL_MASK) {
9190                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9191                 priv->status |= STATUS_SCAN_PENDING;
9192                 goto done;
9193         }
9194
9195         IPW_DEBUG_HC("starting request direct scan!\n");
9196
9197         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9198                 err = wait_event_interruptible(priv->wait_state,
9199                                                !(priv->
9200                                                  status & (STATUS_SCANNING |
9201                                                            STATUS_SCAN_ABORTING)));
9202                 if (err) {
9203                         IPW_DEBUG_HC("aborting direct scan");
9204                         goto done;
9205                 }
9206         }
9207         memset(&scan, 0, sizeof(scan));
9208
9209         if (priv->config & CFG_SPEED_SCAN)
9210                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9211                     cpu_to_le16(30);
9212         else
9213                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9214                     cpu_to_le16(20);
9215
9216         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9217             cpu_to_le16(20);
9218         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9219         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9220
9221         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9222
9223         err = ipw_send_ssid(priv, essid, essid_len);
9224         if (err) {
9225                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9226                 goto done;
9227         }
9228         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9229
9230         ipw_add_scan_channels(priv, &scan, scan_type);
9231
9232         err = ipw_send_scan_request_ext(priv, &scan);
9233         if (err) {
9234                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9235                 goto done;
9236         }
9237
9238         priv->status |= STATUS_SCANNING;
9239
9240       done:
9241         up(&priv->sem);
9242         return err;
9243 }
9244 #endif                          /* WIRELESS_EXT > 17 */
9245
9246 static int ipw_wx_set_scan(struct net_device *dev,
9247                            struct iw_request_info *info,
9248                            union iwreq_data *wrqu, char *extra)
9249 {
9250         struct ipw_priv *priv = ieee80211_priv(dev);
9251 #if WIRELESS_EXT > 17
9252         struct iw_scan_req *req = NULL;
9253         if (wrqu->data.length
9254             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9255                 req = (struct iw_scan_req *)extra;
9256                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9257                         ipw_request_direct_scan(priv, req->essid,
9258                                                 req->essid_len);
9259                         return 0;
9260                 }
9261         }
9262 #endif
9263         IPW_DEBUG_WX("Start scan\n");
9264
9265         queue_work(priv->workqueue, &priv->request_scan);
9266
9267         return 0;
9268 }
9269
9270 static int ipw_wx_get_scan(struct net_device *dev,
9271                            struct iw_request_info *info,
9272                            union iwreq_data *wrqu, char *extra)
9273 {
9274         struct ipw_priv *priv = ieee80211_priv(dev);
9275         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9276 }
9277
9278 static int ipw_wx_set_encode(struct net_device *dev,
9279                              struct iw_request_info *info,
9280                              union iwreq_data *wrqu, char *key)
9281 {
9282         struct ipw_priv *priv = ieee80211_priv(dev);
9283         int ret;
9284         u32 cap = priv->capability;
9285
9286         down(&priv->sem);
9287         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9288
9289         /* In IBSS mode, we need to notify the firmware to update
9290          * the beacon info after we changed the capability. */
9291         if (cap != priv->capability &&
9292             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9293             priv->status & STATUS_ASSOCIATED)
9294                 ipw_disassociate(priv);
9295
9296         up(&priv->sem);
9297         return ret;
9298 }
9299
9300 static int ipw_wx_get_encode(struct net_device *dev,
9301                              struct iw_request_info *info,
9302                              union iwreq_data *wrqu, char *key)
9303 {
9304         struct ipw_priv *priv = ieee80211_priv(dev);
9305         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9306 }
9307
9308 static int ipw_wx_set_power(struct net_device *dev,
9309                             struct iw_request_info *info,
9310                             union iwreq_data *wrqu, char *extra)
9311 {
9312         struct ipw_priv *priv = ieee80211_priv(dev);
9313         int err;
9314         down(&priv->sem);
9315         if (wrqu->power.disabled) {
9316                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9317                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9318                 if (err) {
9319                         IPW_DEBUG_WX("failed setting power mode.\n");
9320                         up(&priv->sem);
9321                         return err;
9322                 }
9323                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9324                 up(&priv->sem);
9325                 return 0;
9326         }
9327
9328         switch (wrqu->power.flags & IW_POWER_MODE) {
9329         case IW_POWER_ON:       /* If not specified */
9330         case IW_POWER_MODE:     /* If set all mask */
9331         case IW_POWER_ALL_R:    /* If explicitely state all */
9332                 break;
9333         default:                /* Otherwise we don't support it */
9334                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9335                              wrqu->power.flags);
9336                 up(&priv->sem);
9337                 return -EOPNOTSUPP;
9338         }
9339
9340         /* If the user hasn't specified a power management mode yet, default
9341          * to BATTERY */
9342         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9343                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9344         else
9345                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9346         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9347         if (err) {
9348                 IPW_DEBUG_WX("failed setting power mode.\n");
9349                 up(&priv->sem);
9350                 return err;
9351         }
9352
9353         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9354         up(&priv->sem);
9355         return 0;
9356 }
9357
9358 static int ipw_wx_get_power(struct net_device *dev,
9359                             struct iw_request_info *info,
9360                             union iwreq_data *wrqu, char *extra)
9361 {
9362         struct ipw_priv *priv = ieee80211_priv(dev);
9363         down(&priv->sem);
9364         if (!(priv->power_mode & IPW_POWER_ENABLED))
9365                 wrqu->power.disabled = 1;
9366         else
9367                 wrqu->power.disabled = 0;
9368
9369         up(&priv->sem);
9370         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9371
9372         return 0;
9373 }
9374
9375 static int ipw_wx_set_powermode(struct net_device *dev,
9376                                 struct iw_request_info *info,
9377                                 union iwreq_data *wrqu, char *extra)
9378 {
9379         struct ipw_priv *priv = ieee80211_priv(dev);
9380         int mode = *(int *)extra;
9381         int err;
9382         down(&priv->sem);
9383         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9384                 mode = IPW_POWER_AC;
9385                 priv->power_mode = mode;
9386         } else {
9387                 priv->power_mode = IPW_POWER_ENABLED | mode;
9388         }
9389
9390         if (priv->power_mode != mode) {
9391                 err = ipw_send_power_mode(priv, mode);
9392
9393                 if (err) {
9394                         IPW_DEBUG_WX("failed setting power mode.\n");
9395                         up(&priv->sem);
9396                         return err;
9397                 }
9398         }
9399         up(&priv->sem);
9400         return 0;
9401 }
9402
9403 #define MAX_WX_STRING 80
9404 static int ipw_wx_get_powermode(struct net_device *dev,
9405                                 struct iw_request_info *info,
9406                                 union iwreq_data *wrqu, char *extra)
9407 {
9408         struct ipw_priv *priv = ieee80211_priv(dev);
9409         int level = IPW_POWER_LEVEL(priv->power_mode);
9410         char *p = extra;
9411
9412         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9413
9414         switch (level) {
9415         case IPW_POWER_AC:
9416                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9417                 break;
9418         case IPW_POWER_BATTERY:
9419                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9420                 break;
9421         default:
9422                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9423                               "(Timeout %dms, Period %dms)",
9424                               timeout_duration[level - 1] / 1000,
9425                               period_duration[level - 1] / 1000);
9426         }
9427
9428         if (!(priv->power_mode & IPW_POWER_ENABLED))
9429                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9430
9431         wrqu->data.length = p - extra + 1;
9432
9433         return 0;
9434 }
9435
9436 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9437                                     struct iw_request_info *info,
9438                                     union iwreq_data *wrqu, char *extra)
9439 {
9440         struct ipw_priv *priv = ieee80211_priv(dev);
9441         int mode = *(int *)extra;
9442         u8 band = 0, modulation = 0;
9443
9444         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9445                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9446                 return -EINVAL;
9447         }
9448         down(&priv->sem);
9449         if (priv->adapter == IPW_2915ABG) {
9450                 priv->ieee->abg_true = 1;
9451                 if (mode & IEEE_A) {
9452                         band |= IEEE80211_52GHZ_BAND;
9453                         modulation |= IEEE80211_OFDM_MODULATION;
9454                 } else
9455                         priv->ieee->abg_true = 0;
9456         } else {
9457                 if (mode & IEEE_A) {
9458                         IPW_WARNING("Attempt to set 2200BG into "
9459                                     "802.11a mode\n");
9460                         up(&priv->sem);
9461                         return -EINVAL;
9462                 }
9463
9464                 priv->ieee->abg_true = 0;
9465         }
9466
9467         if (mode & IEEE_B) {
9468                 band |= IEEE80211_24GHZ_BAND;
9469                 modulation |= IEEE80211_CCK_MODULATION;
9470         } else
9471                 priv->ieee->abg_true = 0;
9472
9473         if (mode & IEEE_G) {
9474                 band |= IEEE80211_24GHZ_BAND;
9475                 modulation |= IEEE80211_OFDM_MODULATION;
9476         } else
9477                 priv->ieee->abg_true = 0;
9478
9479         priv->ieee->mode = mode;
9480         priv->ieee->freq_band = band;
9481         priv->ieee->modulation = modulation;
9482         init_supported_rates(priv, &priv->rates);
9483
9484         /* Network configuration changed -- force [re]association */
9485         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9486         if (!ipw_disassociate(priv)) {
9487                 ipw_send_supported_rates(priv, &priv->rates);
9488                 ipw_associate(priv);
9489         }
9490
9491         /* Update the band LEDs */
9492         ipw_led_band_on(priv);
9493
9494         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9495                      mode & IEEE_A ? 'a' : '.',
9496                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9497         up(&priv->sem);
9498         return 0;
9499 }
9500
9501 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9502                                     struct iw_request_info *info,
9503                                     union iwreq_data *wrqu, char *extra)
9504 {
9505         struct ipw_priv *priv = ieee80211_priv(dev);
9506         down(&priv->sem);
9507         switch (priv->ieee->mode) {
9508         case IEEE_A:
9509                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9510                 break;
9511         case IEEE_B:
9512                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9513                 break;
9514         case IEEE_A | IEEE_B:
9515                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9516                 break;
9517         case IEEE_G:
9518                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9519                 break;
9520         case IEEE_A | IEEE_G:
9521                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9522                 break;
9523         case IEEE_B | IEEE_G:
9524                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9525                 break;
9526         case IEEE_A | IEEE_B | IEEE_G:
9527                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9528                 break;
9529         default:
9530                 strncpy(extra, "unknown", MAX_WX_STRING);
9531                 break;
9532         }
9533
9534         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9535
9536         wrqu->data.length = strlen(extra) + 1;
9537         up(&priv->sem);
9538
9539         return 0;
9540 }
9541
9542 static int ipw_wx_set_preamble(struct net_device *dev,
9543                                struct iw_request_info *info,
9544                                union iwreq_data *wrqu, char *extra)
9545 {
9546         struct ipw_priv *priv = ieee80211_priv(dev);
9547         int mode = *(int *)extra;
9548         down(&priv->sem);
9549         /* Switching from SHORT -> LONG requires a disassociation */
9550         if (mode == 1) {
9551                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9552                         priv->config |= CFG_PREAMBLE_LONG;
9553
9554                         /* Network configuration changed -- force [re]association */
9555                         IPW_DEBUG_ASSOC
9556                             ("[re]association triggered due to preamble change.\n");
9557                         if (!ipw_disassociate(priv))
9558                                 ipw_associate(priv);
9559                 }
9560                 goto done;
9561         }
9562
9563         if (mode == 0) {
9564                 priv->config &= ~CFG_PREAMBLE_LONG;
9565                 goto done;
9566         }
9567         up(&priv->sem);
9568         return -EINVAL;
9569
9570       done:
9571         up(&priv->sem);
9572         return 0;
9573 }
9574
9575 static int ipw_wx_get_preamble(struct net_device *dev,
9576                                struct iw_request_info *info,
9577                                union iwreq_data *wrqu, char *extra)
9578 {
9579         struct ipw_priv *priv = ieee80211_priv(dev);
9580         down(&priv->sem);
9581         if (priv->config & CFG_PREAMBLE_LONG)
9582                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9583         else
9584                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9585         up(&priv->sem);
9586         return 0;
9587 }
9588
9589 #ifdef CONFIG_IPW2200_MONITOR
9590 static int ipw_wx_set_monitor(struct net_device *dev,
9591                               struct iw_request_info *info,
9592                               union iwreq_data *wrqu, char *extra)
9593 {
9594         struct ipw_priv *priv = ieee80211_priv(dev);
9595         int *parms = (int *)extra;
9596         int enable = (parms[0] > 0);
9597         down(&priv->sem);
9598         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9599         if (enable) {
9600                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9601                         priv->net_dev->type = ARPHRD_IEEE80211;
9602                         queue_work(priv->workqueue, &priv->adapter_restart);
9603                 }
9604
9605                 ipw_set_channel(priv, parms[1]);
9606         } else {
9607                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9608                         up(&priv->sem);
9609                         return 0;
9610                 }
9611                 priv->net_dev->type = ARPHRD_ETHER;
9612                 queue_work(priv->workqueue, &priv->adapter_restart);
9613         }
9614         up(&priv->sem);
9615         return 0;
9616 }
9617
9618 #endif                          // CONFIG_IPW2200_MONITOR
9619
9620 static int ipw_wx_reset(struct net_device *dev,
9621                         struct iw_request_info *info,
9622                         union iwreq_data *wrqu, char *extra)
9623 {
9624         struct ipw_priv *priv = ieee80211_priv(dev);
9625         IPW_DEBUG_WX("RESET\n");
9626         queue_work(priv->workqueue, &priv->adapter_restart);
9627         return 0;
9628 }
9629
9630 static int ipw_wx_sw_reset(struct net_device *dev,
9631                            struct iw_request_info *info,
9632                            union iwreq_data *wrqu, char *extra)
9633 {
9634         struct ipw_priv *priv = ieee80211_priv(dev);
9635         union iwreq_data wrqu_sec = {
9636                 .encoding = {
9637                              .flags = IW_ENCODE_DISABLED,
9638                              },
9639         };
9640         int ret;
9641
9642         IPW_DEBUG_WX("SW_RESET\n");
9643
9644         down(&priv->sem);
9645
9646         ret = ipw_sw_reset(priv, 0);
9647         if (!ret) {
9648                 free_firmware();
9649                 ipw_adapter_restart(priv);
9650         }
9651
9652         /* The SW reset bit might have been toggled on by the 'disable'
9653          * module parameter, so take appropriate action */
9654         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9655
9656         up(&priv->sem);
9657         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9658         down(&priv->sem);
9659
9660         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9661                 /* Configuration likely changed -- force [re]association */
9662                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9663                                 "reset.\n");
9664                 if (!ipw_disassociate(priv))
9665                         ipw_associate(priv);
9666         }
9667
9668         up(&priv->sem);
9669
9670         return 0;
9671 }
9672
9673 /* Rebase the WE IOCTLs to zero for the handler array */
9674 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9675 static iw_handler ipw_wx_handlers[] = {
9676         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9677         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9678         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9679         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9680         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9681         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9682         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9683         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9684         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9685         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9686         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9687         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9688         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9689         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9690         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9691         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9692         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9693         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9694         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9695         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9696         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9697         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9698         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9699         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9700         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9701         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9702         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9703         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9704         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9705         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9706         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9707         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9708 #if WIRELESS_EXT > 17
9709         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9710         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9711         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9712         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9713         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9714         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9715         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9716 #endif
9717 };
9718
9719 enum {
9720         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9721         IPW_PRIV_GET_POWER,
9722         IPW_PRIV_SET_MODE,
9723         IPW_PRIV_GET_MODE,
9724         IPW_PRIV_SET_PREAMBLE,
9725         IPW_PRIV_GET_PREAMBLE,
9726         IPW_PRIV_RESET,
9727         IPW_PRIV_SW_RESET,
9728 #ifdef CONFIG_IPW2200_MONITOR
9729         IPW_PRIV_SET_MONITOR,
9730 #endif
9731 };
9732
9733 static struct iw_priv_args ipw_priv_args[] = {
9734         {
9735          .cmd = IPW_PRIV_SET_POWER,
9736          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9737          .name = "set_power"},
9738         {
9739          .cmd = IPW_PRIV_GET_POWER,
9740          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9741          .name = "get_power"},
9742         {
9743          .cmd = IPW_PRIV_SET_MODE,
9744          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9745          .name = "set_mode"},
9746         {
9747          .cmd = IPW_PRIV_GET_MODE,
9748          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9749          .name = "get_mode"},
9750         {
9751          .cmd = IPW_PRIV_SET_PREAMBLE,
9752          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9753          .name = "set_preamble"},
9754         {
9755          .cmd = IPW_PRIV_GET_PREAMBLE,
9756          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9757          .name = "get_preamble"},
9758         {
9759          IPW_PRIV_RESET,
9760          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9761         {
9762          IPW_PRIV_SW_RESET,
9763          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9764 #ifdef CONFIG_IPW2200_MONITOR
9765         {
9766          IPW_PRIV_SET_MONITOR,
9767          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9768 #endif                          /* CONFIG_IPW2200_MONITOR */
9769 };
9770
9771 static iw_handler ipw_priv_handler[] = {
9772         ipw_wx_set_powermode,
9773         ipw_wx_get_powermode,
9774         ipw_wx_set_wireless_mode,
9775         ipw_wx_get_wireless_mode,
9776         ipw_wx_set_preamble,
9777         ipw_wx_get_preamble,
9778         ipw_wx_reset,
9779         ipw_wx_sw_reset,
9780 #ifdef CONFIG_IPW2200_MONITOR
9781         ipw_wx_set_monitor,
9782 #endif
9783 };
9784
9785 static struct iw_handler_def ipw_wx_handler_def = {
9786         .standard = ipw_wx_handlers,
9787         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9788         .num_private = ARRAY_SIZE(ipw_priv_handler),
9789         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9790         .private = ipw_priv_handler,
9791         .private_args = ipw_priv_args,
9792 };
9793
9794 static struct iw_public_data ipw_wx_data;
9795
9796 /*
9797  * Get wireless statistics.
9798  * Called by /proc/net/wireless
9799  * Also called by SIOCGIWSTATS
9800  */
9801 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9802 {
9803         struct ipw_priv *priv = ieee80211_priv(dev);
9804         struct iw_statistics *wstats;
9805
9806         wstats = &priv->wstats;
9807
9808         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9809          * netdev->get_wireless_stats seems to be called before fw is
9810          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9811          * and associated; if not associcated, the values are all meaningless
9812          * anyway, so set them all to NULL and INVALID */
9813         if (!(priv->status & STATUS_ASSOCIATED)) {
9814                 wstats->miss.beacon = 0;
9815                 wstats->discard.retries = 0;
9816                 wstats->qual.qual = 0;
9817                 wstats->qual.level = 0;
9818                 wstats->qual.noise = 0;
9819                 wstats->qual.updated = 7;
9820                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9821                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9822                 return wstats;
9823         }
9824
9825         wstats->qual.qual = priv->quality;
9826         wstats->qual.level = average_value(&priv->average_rssi);
9827         wstats->qual.noise = average_value(&priv->average_noise);
9828         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9829             IW_QUAL_NOISE_UPDATED;
9830
9831         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9832         wstats->discard.retries = priv->last_tx_failures;
9833         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9834
9835 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9836         goto fail_get_ordinal;
9837         wstats->discard.retries += tx_retry; */
9838
9839         return wstats;
9840 }
9841
9842 /* net device stuff */
9843
9844 static inline void init_sys_config(struct ipw_sys_config *sys_config)
9845 {
9846         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9847         sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
9848         sys_config->answer_broadcast_ssid_probe = 0;
9849         sys_config->accept_all_data_frames = 0;
9850         sys_config->accept_non_directed_frames = 1;
9851         sys_config->exclude_unicast_unencrypted = 0;
9852         sys_config->disable_unicast_decryption = 1;
9853         sys_config->exclude_multicast_unencrypted = 0;
9854         sys_config->disable_multicast_decryption = 1;
9855         sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9856         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9857         sys_config->dot11g_auto_detection = 0;
9858         sys_config->enable_cts_to_self = 0;
9859         sys_config->bt_coexist_collision_thr = 0;
9860         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9861 }
9862
9863 static int ipw_net_open(struct net_device *dev)
9864 {
9865         struct ipw_priv *priv = ieee80211_priv(dev);
9866         IPW_DEBUG_INFO("dev->open\n");
9867         /* we should be verifying the device is ready to be opened */
9868         down(&priv->sem);
9869         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9870             (priv->status & STATUS_ASSOCIATED))
9871                 netif_start_queue(dev);
9872         up(&priv->sem);
9873         return 0;
9874 }
9875
9876 static int ipw_net_stop(struct net_device *dev)
9877 {
9878         IPW_DEBUG_INFO("dev->close\n");
9879         netif_stop_queue(dev);
9880         return 0;
9881 }
9882
9883 /*
9884 todo:
9885
9886 modify to send one tfd per fragment instead of using chunking.  otherwise
9887 we need to heavily modify the ieee80211_skb_to_txb.
9888 */
9889
9890 static inline int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9891                              int pri)
9892 {
9893         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9894             txb->fragments[0]->data;
9895         int i = 0;
9896         struct tfd_frame *tfd;
9897 #ifdef CONFIG_IPW_QOS
9898         int tx_id = ipw_get_tx_queue_number(priv, pri);
9899         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9900 #else
9901         struct clx2_tx_queue *txq = &priv->txq[0];
9902 #endif
9903         struct clx2_queue *q = &txq->q;
9904         u8 id, hdr_len, unicast;
9905         u16 remaining_bytes;
9906         int fc;
9907
9908         /* If there isn't room in the queue, we return busy and let the
9909          * network stack requeue the packet for us */
9910         if (ipw_queue_space(q) < q->high_mark)
9911                 return NETDEV_TX_BUSY;
9912
9913         switch (priv->ieee->iw_mode) {
9914         case IW_MODE_ADHOC:
9915                 hdr_len = IEEE80211_3ADDR_LEN;
9916                 unicast = !is_multicast_ether_addr(hdr->addr1);
9917                 id = ipw_find_station(priv, hdr->addr1);
9918                 if (id == IPW_INVALID_STATION) {
9919                         id = ipw_add_station(priv, hdr->addr1);
9920                         if (id == IPW_INVALID_STATION) {
9921                                 IPW_WARNING("Attempt to send data to "
9922                                             "invalid cell: " MAC_FMT "\n",
9923                                             MAC_ARG(hdr->addr1));
9924                                 goto drop;
9925                         }
9926                 }
9927                 break;
9928
9929         case IW_MODE_INFRA:
9930         default:
9931                 unicast = !is_multicast_ether_addr(hdr->addr3);
9932                 hdr_len = IEEE80211_3ADDR_LEN;
9933                 id = 0;
9934                 break;
9935         }
9936
9937         tfd = &txq->bd[q->first_empty];
9938         txq->txb[q->first_empty] = txb;
9939         memset(tfd, 0, sizeof(*tfd));
9940         tfd->u.data.station_number = id;
9941
9942         tfd->control_flags.message_type = TX_FRAME_TYPE;
9943         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9944
9945         tfd->u.data.cmd_id = DINO_CMD_TX;
9946         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9947         remaining_bytes = txb->payload_size;
9948
9949         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9950                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9951         else
9952                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9953
9954         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9955                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9956
9957         fc = le16_to_cpu(hdr->frame_ctl);
9958         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9959
9960         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9961
9962         if (likely(unicast))
9963                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9964
9965         if (txb->encrypted && !priv->ieee->host_encrypt) {
9966                 switch (priv->ieee->sec.level) {
9967                 case SEC_LEVEL_3:
9968                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9969                             IEEE80211_FCTL_PROTECTED;
9970                         /* XXX: ACK flag must be set for CCMP even if it
9971                          * is a multicast/broadcast packet, because CCMP
9972                          * group communication encrypted by GTK is
9973                          * actually done by the AP. */
9974                         if (!unicast)
9975                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9976
9977                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9978                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9979                         tfd->u.data.key_index = 0;
9980                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9981                         break;
9982                 case SEC_LEVEL_2:
9983                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9984                             IEEE80211_FCTL_PROTECTED;
9985                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9986                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9987                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9988                         break;
9989                 case SEC_LEVEL_1:
9990                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9991                             IEEE80211_FCTL_PROTECTED;
9992                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9993                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9994                             40)
9995                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9996                         else
9997                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9998                         break;
9999                 case SEC_LEVEL_0:
10000                         break;
10001                 default:
10002                         printk(KERN_ERR "Unknow security level %d\n",
10003                                priv->ieee->sec.level);
10004                         break;
10005                 }
10006         } else
10007                 /* No hardware encryption */
10008                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10009
10010 #ifdef CONFIG_IPW_QOS
10011         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
10012 #endif                          /* CONFIG_IPW_QOS */
10013
10014         /* payload */
10015         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10016                                                  txb->nr_frags));
10017         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10018                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10019         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10020                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10021                                i, le32_to_cpu(tfd->u.data.num_chunks),
10022                                txb->fragments[i]->len - hdr_len);
10023                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10024                              i, tfd->u.data.num_chunks,
10025                              txb->fragments[i]->len - hdr_len);
10026                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10027                            txb->fragments[i]->len - hdr_len);
10028
10029                 tfd->u.data.chunk_ptr[i] =
10030                     cpu_to_le32(pci_map_single
10031                                 (priv->pci_dev,
10032                                  txb->fragments[i]->data + hdr_len,
10033                                  txb->fragments[i]->len - hdr_len,
10034                                  PCI_DMA_TODEVICE));
10035                 tfd->u.data.chunk_len[i] =
10036                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10037         }
10038
10039         if (i != txb->nr_frags) {
10040                 struct sk_buff *skb;
10041                 u16 remaining_bytes = 0;
10042                 int j;
10043
10044                 for (j = i; j < txb->nr_frags; j++)
10045                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10046
10047                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10048                        remaining_bytes);
10049                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10050                 if (skb != NULL) {
10051                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10052                         for (j = i; j < txb->nr_frags; j++) {
10053                                 int size = txb->fragments[j]->len - hdr_len;
10054
10055                                 printk(KERN_INFO "Adding frag %d %d...\n",
10056                                        j, size);
10057                                 memcpy(skb_put(skb, size),
10058                                        txb->fragments[j]->data + hdr_len, size);
10059                         }
10060                         dev_kfree_skb_any(txb->fragments[i]);
10061                         txb->fragments[i] = skb;
10062                         tfd->u.data.chunk_ptr[i] =
10063                             cpu_to_le32(pci_map_single
10064                                         (priv->pci_dev, skb->data,
10065                                          tfd->u.data.chunk_len[i],
10066                                          PCI_DMA_TODEVICE));
10067
10068                         tfd->u.data.num_chunks =
10069                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10070                                         1);
10071                 }
10072         }
10073
10074         /* kick DMA */
10075         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10076         ipw_write32(priv, q->reg_w, q->first_empty);
10077
10078         return NETDEV_TX_OK;
10079
10080       drop:
10081         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10082         ieee80211_txb_free(txb);
10083         return NETDEV_TX_OK;
10084 }
10085
10086 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10087 {
10088         struct ipw_priv *priv = ieee80211_priv(dev);
10089 #ifdef CONFIG_IPW_QOS
10090         int tx_id = ipw_get_tx_queue_number(priv, pri);
10091         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10092 #else
10093         struct clx2_tx_queue *txq = &priv->txq[0];
10094 #endif                          /* CONFIG_IPW_QOS */
10095
10096         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10097                 return 1;
10098
10099         return 0;
10100 }
10101
10102 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10103                                    struct net_device *dev, int pri)
10104 {
10105         struct ipw_priv *priv = ieee80211_priv(dev);
10106         unsigned long flags;
10107         int ret;
10108
10109         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10110         spin_lock_irqsave(&priv->lock, flags);
10111
10112         if (!(priv->status & STATUS_ASSOCIATED)) {
10113                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10114                 priv->ieee->stats.tx_carrier_errors++;
10115                 netif_stop_queue(dev);
10116                 goto fail_unlock;
10117         }
10118
10119         ret = ipw_tx_skb(priv, txb, pri);
10120         if (ret == NETDEV_TX_OK)
10121                 __ipw_led_activity_on(priv);
10122         spin_unlock_irqrestore(&priv->lock, flags);
10123
10124         return ret;
10125
10126       fail_unlock:
10127         spin_unlock_irqrestore(&priv->lock, flags);
10128         return 1;
10129 }
10130
10131 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10132 {
10133         struct ipw_priv *priv = ieee80211_priv(dev);
10134
10135         priv->ieee->stats.tx_packets = priv->tx_packets;
10136         priv->ieee->stats.rx_packets = priv->rx_packets;
10137         return &priv->ieee->stats;
10138 }
10139
10140 static void ipw_net_set_multicast_list(struct net_device *dev)
10141 {
10142
10143 }
10144
10145 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10146 {
10147         struct ipw_priv *priv = ieee80211_priv(dev);
10148         struct sockaddr *addr = p;
10149         if (!is_valid_ether_addr(addr->sa_data))
10150                 return -EADDRNOTAVAIL;
10151         down(&priv->sem);
10152         priv->config |= CFG_CUSTOM_MAC;
10153         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10154         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10155                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10156         queue_work(priv->workqueue, &priv->adapter_restart);
10157         up(&priv->sem);
10158         return 0;
10159 }
10160
10161 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10162                                     struct ethtool_drvinfo *info)
10163 {
10164         struct ipw_priv *p = ieee80211_priv(dev);
10165         char vers[64];
10166         char date[32];
10167         u32 len;
10168
10169         strcpy(info->driver, DRV_NAME);
10170         strcpy(info->version, DRV_VERSION);
10171
10172         len = sizeof(vers);
10173         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10174         len = sizeof(date);
10175         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10176
10177         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10178                  vers, date);
10179         strcpy(info->bus_info, pci_name(p->pci_dev));
10180         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10181 }
10182
10183 static u32 ipw_ethtool_get_link(struct net_device *dev)
10184 {
10185         struct ipw_priv *priv = ieee80211_priv(dev);
10186         return (priv->status & STATUS_ASSOCIATED) != 0;
10187 }
10188
10189 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10190 {
10191         return IPW_EEPROM_IMAGE_SIZE;
10192 }
10193
10194 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10195                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10196 {
10197         struct ipw_priv *p = ieee80211_priv(dev);
10198
10199         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10200                 return -EINVAL;
10201         down(&p->sem);
10202         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10203         up(&p->sem);
10204         return 0;
10205 }
10206
10207 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10208                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10209 {
10210         struct ipw_priv *p = ieee80211_priv(dev);
10211         int i;
10212
10213         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10214                 return -EINVAL;
10215         down(&p->sem);
10216         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10217         for (i = IPW_EEPROM_DATA;
10218              i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
10219                 ipw_write8(p, i, p->eeprom[i]);
10220         up(&p->sem);
10221         return 0;
10222 }
10223
10224 static struct ethtool_ops ipw_ethtool_ops = {
10225         .get_link = ipw_ethtool_get_link,
10226         .get_drvinfo = ipw_ethtool_get_drvinfo,
10227         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10228         .get_eeprom = ipw_ethtool_get_eeprom,
10229         .set_eeprom = ipw_ethtool_set_eeprom,
10230 };
10231
10232 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10233 {
10234         struct ipw_priv *priv = data;
10235         u32 inta, inta_mask;
10236
10237         if (!priv)
10238                 return IRQ_NONE;
10239
10240         spin_lock(&priv->lock);
10241
10242         if (!(priv->status & STATUS_INT_ENABLED)) {
10243                 /* Shared IRQ */
10244                 goto none;
10245         }
10246
10247         inta = ipw_read32(priv, IPW_INTA_RW);
10248         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10249
10250         if (inta == 0xFFFFFFFF) {
10251                 /* Hardware disappeared */
10252                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10253                 goto none;
10254         }
10255
10256         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10257                 /* Shared interrupt */
10258                 goto none;
10259         }
10260
10261         /* tell the device to stop sending interrupts */
10262         ipw_disable_interrupts(priv);
10263
10264         /* ack current interrupts */
10265         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10266         ipw_write32(priv, IPW_INTA_RW, inta);
10267
10268         /* Cache INTA value for our tasklet */
10269         priv->isr_inta = inta;
10270
10271         tasklet_schedule(&priv->irq_tasklet);
10272
10273         spin_unlock(&priv->lock);
10274
10275         return IRQ_HANDLED;
10276       none:
10277         spin_unlock(&priv->lock);
10278         return IRQ_NONE;
10279 }
10280
10281 static void ipw_rf_kill(void *adapter)
10282 {
10283         struct ipw_priv *priv = adapter;
10284         unsigned long flags;
10285
10286         spin_lock_irqsave(&priv->lock, flags);
10287
10288         if (rf_kill_active(priv)) {
10289                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10290                 if (priv->workqueue)
10291                         queue_delayed_work(priv->workqueue,
10292                                            &priv->rf_kill, 2 * HZ);
10293                 goto exit_unlock;
10294         }
10295
10296         /* RF Kill is now disabled, so bring the device back up */
10297
10298         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10299                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10300                                   "device\n");
10301
10302                 /* we can not do an adapter restart while inside an irq lock */
10303                 queue_work(priv->workqueue, &priv->adapter_restart);
10304         } else
10305                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10306                                   "enabled\n");
10307
10308       exit_unlock:
10309         spin_unlock_irqrestore(&priv->lock, flags);
10310 }
10311
10312 static void ipw_bg_rf_kill(void *data)
10313 {
10314         struct ipw_priv *priv = data;
10315         down(&priv->sem);
10316         ipw_rf_kill(data);
10317         up(&priv->sem);
10318 }
10319
10320 void ipw_link_up(struct ipw_priv *priv)
10321 {
10322         priv->last_seq_num = -1;
10323         priv->last_frag_num = -1;
10324         priv->last_packet_time = 0;
10325
10326         netif_carrier_on(priv->net_dev);
10327         if (netif_queue_stopped(priv->net_dev)) {
10328                 IPW_DEBUG_NOTIF("waking queue\n");
10329                 netif_wake_queue(priv->net_dev);
10330         } else {
10331                 IPW_DEBUG_NOTIF("starting queue\n");
10332                 netif_start_queue(priv->net_dev);
10333         }
10334
10335         cancel_delayed_work(&priv->request_scan);
10336         ipw_reset_stats(priv);
10337         /* Ensure the rate is updated immediately */
10338         priv->last_rate = ipw_get_current_rate(priv);
10339         ipw_gather_stats(priv);
10340         ipw_led_link_up(priv);
10341         notify_wx_assoc_event(priv);
10342
10343         if (priv->config & CFG_BACKGROUND_SCAN)
10344                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10345 }
10346
10347 static void ipw_bg_link_up(void *data)
10348 {
10349         struct ipw_priv *priv = data;
10350         down(&priv->sem);
10351         ipw_link_up(data);
10352         up(&priv->sem);
10353 }
10354
10355 void ipw_link_down(struct ipw_priv *priv)
10356 {
10357         ipw_led_link_down(priv);
10358         netif_carrier_off(priv->net_dev);
10359         netif_stop_queue(priv->net_dev);
10360         notify_wx_assoc_event(priv);
10361
10362         /* Cancel any queued work ... */
10363         cancel_delayed_work(&priv->request_scan);
10364         cancel_delayed_work(&priv->adhoc_check);
10365         cancel_delayed_work(&priv->gather_stats);
10366
10367         ipw_reset_stats(priv);
10368
10369         if (!(priv->status & STATUS_EXIT_PENDING)) {
10370                 /* Queue up another scan... */
10371                 queue_work(priv->workqueue, &priv->request_scan);
10372         }
10373 }
10374
10375 static void ipw_bg_link_down(void *data)
10376 {
10377         struct ipw_priv *priv = data;
10378         down(&priv->sem);
10379         ipw_link_down(data);
10380         up(&priv->sem);
10381 }
10382
10383 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10384 {
10385         int ret = 0;
10386
10387         priv->workqueue = create_workqueue(DRV_NAME);
10388         init_waitqueue_head(&priv->wait_command_queue);
10389         init_waitqueue_head(&priv->wait_state);
10390
10391         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10392         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10393         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10394         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10395         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10396         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10397         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10398         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10399         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10400         INIT_WORK(&priv->request_scan,
10401                   (void (*)(void *))ipw_request_scan, priv);
10402         INIT_WORK(&priv->gather_stats,
10403                   (void (*)(void *))ipw_bg_gather_stats, priv);
10404         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10405         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10406         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10407         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10408         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10409         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10410                   priv);
10411         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10412                   priv);
10413         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10414                   priv);
10415         INIT_WORK(&priv->merge_networks,
10416                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10417
10418 #ifdef CONFIG_IPW_QOS
10419         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10420                   priv);
10421 #endif                          /* CONFIG_IPW_QOS */
10422
10423         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10424                      ipw_irq_tasklet, (unsigned long)priv);
10425
10426         return ret;
10427 }
10428
10429 static void shim__set_security(struct net_device *dev,
10430                                struct ieee80211_security *sec)
10431 {
10432         struct ipw_priv *priv = ieee80211_priv(dev);
10433         int i;
10434         for (i = 0; i < 4; i++) {
10435                 if (sec->flags & (1 << i)) {
10436                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10437                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10438                         if (sec->key_sizes[i] == 0)
10439                                 priv->ieee->sec.flags &= ~(1 << i);
10440                         else {
10441                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10442                                        sec->key_sizes[i]);
10443                                 priv->ieee->sec.flags |= (1 << i);
10444                         }
10445                         priv->status |= STATUS_SECURITY_UPDATED;
10446                 } else if (sec->level != SEC_LEVEL_1)
10447                         priv->ieee->sec.flags &= ~(1 << i);
10448         }
10449
10450         if (sec->flags & SEC_ACTIVE_KEY) {
10451                 if (sec->active_key <= 3) {
10452                         priv->ieee->sec.active_key = sec->active_key;
10453                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10454                 } else
10455                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10456                 priv->status |= STATUS_SECURITY_UPDATED;
10457         } else
10458                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10459
10460         if ((sec->flags & SEC_AUTH_MODE) &&
10461             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10462                 priv->ieee->sec.auth_mode = sec->auth_mode;
10463                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10464                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10465                         priv->capability |= CAP_SHARED_KEY;
10466                 else
10467                         priv->capability &= ~CAP_SHARED_KEY;
10468                 priv->status |= STATUS_SECURITY_UPDATED;
10469         }
10470
10471         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10472                 priv->ieee->sec.flags |= SEC_ENABLED;
10473                 priv->ieee->sec.enabled = sec->enabled;
10474                 priv->status |= STATUS_SECURITY_UPDATED;
10475                 if (sec->enabled)
10476                         priv->capability |= CAP_PRIVACY_ON;
10477                 else
10478                         priv->capability &= ~CAP_PRIVACY_ON;
10479         }
10480
10481         if (sec->flags & SEC_ENCRYPT)
10482                 priv->ieee->sec.encrypt = sec->encrypt;
10483
10484         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10485                 priv->ieee->sec.level = sec->level;
10486                 priv->ieee->sec.flags |= SEC_LEVEL;
10487                 priv->status |= STATUS_SECURITY_UPDATED;
10488         }
10489
10490         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10491                 ipw_set_hwcrypto_keys(priv);
10492
10493         /* To match current functionality of ipw2100 (which works well w/
10494          * various supplicants, we don't force a disassociate if the
10495          * privacy capability changes ... */
10496 #if 0
10497         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10498             (((priv->assoc_request.capability &
10499                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10500              (!(priv->assoc_request.capability &
10501                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10502                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10503                                 "change.\n");
10504                 ipw_disassociate(priv);
10505         }
10506 #endif
10507 }
10508
10509 static int init_supported_rates(struct ipw_priv *priv,
10510                                 struct ipw_supported_rates *rates)
10511 {
10512         /* TODO: Mask out rates based on priv->rates_mask */
10513
10514         memset(rates, 0, sizeof(*rates));
10515         /* configure supported rates */
10516         switch (priv->ieee->freq_band) {
10517         case IEEE80211_52GHZ_BAND:
10518                 rates->ieee_mode = IPW_A_MODE;
10519                 rates->purpose = IPW_RATE_CAPABILITIES;
10520                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10521                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10522                 break;
10523
10524         default:                /* Mixed or 2.4Ghz */
10525                 rates->ieee_mode = IPW_G_MODE;
10526                 rates->purpose = IPW_RATE_CAPABILITIES;
10527                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10528                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10529                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10530                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10531                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10532                 }
10533                 break;
10534         }
10535
10536         return 0;
10537 }
10538
10539 static int ipw_config(struct ipw_priv *priv)
10540 {
10541         /* This is only called from ipw_up, which resets/reloads the firmware
10542            so, we don't need to first disable the card before we configure
10543            it */
10544         if (ipw_set_tx_power(priv))
10545                 goto error;
10546
10547         /* initialize adapter address */
10548         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10549                 goto error;
10550
10551         /* set basic system config settings */
10552         init_sys_config(&priv->sys_config);
10553         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10554                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10555         else
10556                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10557
10558         if (ipw_send_system_config(priv, &priv->sys_config))
10559                 goto error;
10560
10561         init_supported_rates(priv, &priv->rates);
10562         if (ipw_send_supported_rates(priv, &priv->rates))
10563                 goto error;
10564
10565         /* Set request-to-send threshold */
10566         if (priv->rts_threshold) {
10567                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10568                         goto error;
10569         }
10570 #ifdef CONFIG_IPW_QOS
10571         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10572         ipw_qos_activate(priv, NULL);
10573 #endif                          /* CONFIG_IPW_QOS */
10574
10575         if (ipw_set_random_seed(priv))
10576                 goto error;
10577
10578         /* final state transition to the RUN state */
10579         if (ipw_send_host_complete(priv))
10580                 goto error;
10581
10582         priv->status |= STATUS_INIT;
10583
10584         ipw_led_init(priv);
10585         ipw_led_radio_on(priv);
10586         priv->notif_missed_beacons = 0;
10587
10588         /* Set hardware WEP key if it is configured. */
10589         if ((priv->capability & CAP_PRIVACY_ON) &&
10590             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10591             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10592                 ipw_set_hwcrypto_keys(priv);
10593
10594         return 0;
10595
10596       error:
10597         return -EIO;
10598 }
10599
10600 /*
10601  * NOTE:
10602  *
10603  * These tables have been tested in conjunction with the
10604  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10605  *
10606  * Altering this values, using it on other hardware, or in geographies
10607  * not intended for resale of the above mentioned Intel adapters has
10608  * not been tested.
10609  *
10610  */
10611 static const struct ieee80211_geo ipw_geos[] = {
10612         {                       /* Restricted */
10613          "---",
10614          .bg_channels = 11,
10615          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10616                 {2427, 4}, {2432, 5}, {2437, 6},
10617                 {2442, 7}, {2447, 8}, {2452, 9},
10618                 {2457, 10}, {2462, 11}},
10619          },
10620
10621         {                       /* Custom US/Canada */
10622          "ZZF",
10623          .bg_channels = 11,
10624          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10625                 {2427, 4}, {2432, 5}, {2437, 6},
10626                 {2442, 7}, {2447, 8}, {2452, 9},
10627                 {2457, 10}, {2462, 11}},
10628          .a_channels = 8,
10629          .a = {{5180, 36},
10630                {5200, 40},
10631                {5220, 44},
10632                {5240, 48},
10633                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10634                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10635                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10636                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10637          },
10638
10639         {                       /* Rest of World */
10640          "ZZD",
10641          .bg_channels = 13,
10642          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10643                 {2427, 4}, {2432, 5}, {2437, 6},
10644                 {2442, 7}, {2447, 8}, {2452, 9},
10645                 {2457, 10}, {2462, 11}, {2467, 12},
10646                 {2472, 13}},
10647          },
10648
10649         {                       /* Custom USA & Europe & High */
10650          "ZZA",
10651          .bg_channels = 11,
10652          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10653                 {2427, 4}, {2432, 5}, {2437, 6},
10654                 {2442, 7}, {2447, 8}, {2452, 9},
10655                 {2457, 10}, {2462, 11}},
10656          .a_channels = 13,
10657          .a = {{5180, 36},
10658                {5200, 40},
10659                {5220, 44},
10660                {5240, 48},
10661                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10662                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10663                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10664                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10665                {5745, 149},
10666                {5765, 153},
10667                {5785, 157},
10668                {5805, 161},
10669                {5825, 165}},
10670          },
10671
10672         {                       /* Custom NA & Europe */
10673          "ZZB",
10674          .bg_channels = 11,
10675          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10676                 {2427, 4}, {2432, 5}, {2437, 6},
10677                 {2442, 7}, {2447, 8}, {2452, 9},
10678                 {2457, 10}, {2462, 11}},
10679          .a_channels = 13,
10680          .a = {{5180, 36},
10681                {5200, 40},
10682                {5220, 44},
10683                {5240, 48},
10684                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10685                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10686                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10687                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10688                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10689                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10690                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10691                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10692                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10693          },
10694
10695         {                       /* Custom Japan */
10696          "ZZC",
10697          .bg_channels = 11,
10698          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10699                 {2427, 4}, {2432, 5}, {2437, 6},
10700                 {2442, 7}, {2447, 8}, {2452, 9},
10701                 {2457, 10}, {2462, 11}},
10702          .a_channels = 4,
10703          .a = {{5170, 34}, {5190, 38},
10704                {5210, 42}, {5230, 46}},
10705          },
10706
10707         {                       /* Custom */
10708          "ZZM",
10709          .bg_channels = 11,
10710          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10711                 {2427, 4}, {2432, 5}, {2437, 6},
10712                 {2442, 7}, {2447, 8}, {2452, 9},
10713                 {2457, 10}, {2462, 11}},
10714          },
10715
10716         {                       /* Europe */
10717          "ZZE",
10718          .bg_channels = 13,
10719          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10720                 {2427, 4}, {2432, 5}, {2437, 6},
10721                 {2442, 7}, {2447, 8}, {2452, 9},
10722                 {2457, 10}, {2462, 11}, {2467, 12},
10723                 {2472, 13}},
10724          .a_channels = 19,
10725          .a = {{5180, 36},
10726                {5200, 40},
10727                {5220, 44},
10728                {5240, 48},
10729                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10730                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10731                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10732                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10733                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10734                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10735                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10736                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10737                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10738                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10739                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10740                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10741                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10742                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10743                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10744          },
10745
10746         {                       /* Custom Japan */
10747          "ZZJ",
10748          .bg_channels = 14,
10749          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10750                 {2427, 4}, {2432, 5}, {2437, 6},
10751                 {2442, 7}, {2447, 8}, {2452, 9},
10752                 {2457, 10}, {2462, 11}, {2467, 12},
10753                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10754          .a_channels = 4,
10755          .a = {{5170, 34}, {5190, 38},
10756                {5210, 42}, {5230, 46}},
10757          },
10758
10759         {                       /* High Band */
10760          "ZZH",
10761          .bg_channels = 13,
10762          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10763                 {2427, 4}, {2432, 5}, {2437, 6},
10764                 {2442, 7}, {2447, 8}, {2452, 9},
10765                 {2457, 10}, {2462, 11},
10766                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10767                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10768          .a_channels = 4,
10769          .a = {{5745, 149}, {5765, 153},
10770                {5785, 157}, {5805, 161}},
10771          },
10772
10773         {                       /* Custom Europe */
10774          "ZZG",
10775          .bg_channels = 13,
10776          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10777                 {2427, 4}, {2432, 5}, {2437, 6},
10778                 {2442, 7}, {2447, 8}, {2452, 9},
10779                 {2457, 10}, {2462, 11},
10780                 {2467, 12}, {2472, 13}},
10781          .a_channels = 4,
10782          .a = {{5180, 36}, {5200, 40},
10783                {5220, 44}, {5240, 48}},
10784          },
10785
10786         {                       /* Europe */
10787          "ZZK",
10788          .bg_channels = 13,
10789          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10790                 {2427, 4}, {2432, 5}, {2437, 6},
10791                 {2442, 7}, {2447, 8}, {2452, 9},
10792                 {2457, 10}, {2462, 11},
10793                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10794                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10795          .a_channels = 24,
10796          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10797                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10798                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10799                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10800                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10801                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10802                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10803                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10804                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10805                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10806                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10807                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10808                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10809                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10810                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10811                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10812                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10813                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10814                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10815                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10816                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10817                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10818                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10819                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10820          },
10821
10822         {                       /* Europe */
10823          "ZZL",
10824          .bg_channels = 11,
10825          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10826                 {2427, 4}, {2432, 5}, {2437, 6},
10827                 {2442, 7}, {2447, 8}, {2452, 9},
10828                 {2457, 10}, {2462, 11}},
10829          .a_channels = 13,
10830          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10831                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10832                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10833                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10834                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10835                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10836                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10837                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10838                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10839                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10840                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10841                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10842                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10843          }
10844 };
10845
10846 /* GEO code borrowed from ieee80211_geo.c */
10847 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
10848 {
10849         int i;
10850
10851         /* Driver needs to initialize the geography map before using
10852          * these helper functions */
10853         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10854
10855         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10856                 for (i = 0; i < ieee->geo.bg_channels; i++)
10857                         /* NOTE: If G mode is currently supported but
10858                          * this is a B only channel, we don't see it
10859                          * as valid. */
10860                         if ((ieee->geo.bg[i].channel == channel) &&
10861                             (!(ieee->mode & IEEE_G) ||
10862                              !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
10863                                 return IEEE80211_24GHZ_BAND;
10864
10865         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10866                 for (i = 0; i < ieee->geo.a_channels; i++)
10867                         if (ieee->geo.a[i].channel == channel)
10868                                 return IEEE80211_52GHZ_BAND;
10869
10870         return 0;
10871 }
10872
10873 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
10874 {
10875         int i;
10876
10877         /* Driver needs to initialize the geography map before using
10878          * these helper functions */
10879         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10880
10881         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10882                 for (i = 0; i < ieee->geo.bg_channels; i++)
10883                         if (ieee->geo.bg[i].channel == channel)
10884                                 return i;
10885
10886         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10887                 for (i = 0; i < ieee->geo.a_channels; i++)
10888                         if (ieee->geo.a[i].channel == channel)
10889                                 return i;
10890
10891         return -1;
10892 }
10893
10894 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
10895 {
10896         int i;
10897
10898         /* Driver needs to initialize the geography map before using
10899          * these helper functions */
10900         BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10901
10902         freq /= 100000;
10903
10904         if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10905                 for (i = 0; i < ieee->geo.bg_channels; i++)
10906                         if (ieee->geo.bg[i].freq == freq)
10907                                 return ieee->geo.bg[i].channel;
10908
10909         if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10910                 for (i = 0; i < ieee->geo.a_channels; i++)
10911                         if (ieee->geo.a[i].freq == freq)
10912                                 return ieee->geo.a[i].channel;
10913
10914         return 0;
10915 }
10916
10917 static int ipw_set_geo(struct ieee80211_device *ieee,
10918                        const struct ieee80211_geo *geo)
10919 {
10920         memcpy(ieee->geo.name, geo->name, 3);
10921         ieee->geo.name[3] = '\0';
10922         ieee->geo.bg_channels = geo->bg_channels;
10923         ieee->geo.a_channels = geo->a_channels;
10924         memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
10925                sizeof(struct ieee80211_channel));
10926         memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
10927                sizeof(struct ieee80211_channel));
10928         return 0;
10929 }
10930
10931 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
10932 {
10933         return &ieee->geo;
10934 }
10935
10936 #define MAX_HW_RESTARTS 5
10937 static int ipw_up(struct ipw_priv *priv)
10938 {
10939         int rc, i, j;
10940
10941         if (priv->status & STATUS_EXIT_PENDING)
10942                 return -EIO;
10943
10944         if (cmdlog && !priv->cmdlog) {
10945                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10946                                        GFP_KERNEL);
10947                 if (priv->cmdlog == NULL) {
10948                         IPW_ERROR("Error allocating %d command log entries.\n",
10949                                   cmdlog);
10950                 } else {
10951                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10952                         priv->cmdlog_len = cmdlog;
10953                 }
10954         }
10955
10956         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10957                 /* Load the microcode, firmware, and eeprom.
10958                  * Also start the clocks. */
10959                 rc = ipw_load(priv);
10960                 if (rc) {
10961                         IPW_ERROR("Unable to load firmware: 0x%08X\n", rc);
10962                         return rc;
10963                 }
10964
10965                 ipw_init_ordinals(priv);
10966                 if (!(priv->config & CFG_CUSTOM_MAC))
10967                         eeprom_parse_mac(priv, priv->mac_addr);
10968                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10969
10970                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10971                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10972                                     ipw_geos[j].name, 3))
10973                                 break;
10974                 }
10975                 if (j == ARRAY_SIZE(ipw_geos))
10976                         j = 0;
10977                 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
10978                         IPW_WARNING("Could not set geography.");
10979                         return 0;
10980                 }
10981
10982                 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10983                                j, priv->ieee->geo.name);
10984
10985                 if (priv->status & STATUS_RF_KILL_SW) {
10986                         IPW_WARNING("Radio disabled by module parameter.\n");
10987                         return 0;
10988                 } else if (rf_kill_active(priv)) {
10989                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10990                                     "Kill switch must be turned off for "
10991                                     "wireless networking to work.\n");
10992                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10993                                            2 * HZ);
10994                         return 0;
10995                 }
10996
10997                 rc = ipw_config(priv);
10998                 if (!rc) {
10999                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11000
11001                         /* If configure to try and auto-associate, kick
11002                          * off a scan. */
11003                         queue_work(priv->workqueue, &priv->request_scan);
11004
11005                         return 0;
11006                 }
11007
11008                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11009                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11010                                i, MAX_HW_RESTARTS);
11011
11012                 /* We had an error bringing up the hardware, so take it
11013                  * all the way back down so we can try again */
11014                 ipw_down(priv);
11015         }
11016
11017         /* tried to restart and config the device for as long as our
11018          * patience could withstand */
11019         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11020
11021         return -EIO;
11022 }
11023
11024 static void ipw_bg_up(void *data)
11025 {
11026         struct ipw_priv *priv = data;
11027         down(&priv->sem);
11028         ipw_up(data);
11029         up(&priv->sem);
11030 }
11031
11032 static void ipw_deinit(struct ipw_priv *priv)
11033 {
11034         int i;
11035
11036         if (priv->status & STATUS_SCANNING) {
11037                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11038                 ipw_abort_scan(priv);
11039         }
11040
11041         if (priv->status & STATUS_ASSOCIATED) {
11042                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11043                 ipw_disassociate(priv);
11044         }
11045
11046         ipw_led_shutdown(priv);
11047
11048         /* Wait up to 1s for status to change to not scanning and not
11049          * associated (disassociation can take a while for a ful 802.11
11050          * exchange */
11051         for (i = 1000; i && (priv->status &
11052                              (STATUS_DISASSOCIATING |
11053                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11054                 udelay(10);
11055
11056         if (priv->status & (STATUS_DISASSOCIATING |
11057                             STATUS_ASSOCIATED | STATUS_SCANNING))
11058                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11059         else
11060                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11061
11062         /* Attempt to disable the card */
11063         ipw_send_card_disable(priv, 0);
11064
11065         priv->status &= ~STATUS_INIT;
11066 }
11067
11068 static void ipw_down(struct ipw_priv *priv)
11069 {
11070         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11071
11072         priv->status |= STATUS_EXIT_PENDING;
11073
11074         if (ipw_is_init(priv))
11075                 ipw_deinit(priv);
11076
11077         /* Wipe out the EXIT_PENDING status bit if we are not actually
11078          * exiting the module */
11079         if (!exit_pending)
11080                 priv->status &= ~STATUS_EXIT_PENDING;
11081
11082         /* tell the device to stop sending interrupts */
11083         ipw_disable_interrupts(priv);
11084
11085         /* Clear all bits but the RF Kill */
11086         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11087         netif_carrier_off(priv->net_dev);
11088         netif_stop_queue(priv->net_dev);
11089
11090         ipw_stop_nic(priv);
11091
11092         ipw_led_radio_off(priv);
11093 }
11094
11095 static void ipw_bg_down(void *data)
11096 {
11097         struct ipw_priv *priv = data;
11098         down(&priv->sem);
11099         ipw_down(data);
11100         up(&priv->sem);
11101 }
11102
11103 #if WIRELESS_EXT < 18
11104 static int ipw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
11105 {
11106         struct iwreq *wrq = (struct iwreq *)rq;
11107         int ret = -1;
11108         switch (cmd) {
11109         case IPW_IOCTL_WPA_SUPPLICANT:
11110                 ret = ipw_wpa_supplicant(dev, &wrq->u.data);
11111                 return ret;
11112
11113         default:
11114                 return -EOPNOTSUPP;
11115         }
11116
11117         return -EOPNOTSUPP;
11118 }
11119 #endif
11120
11121 /* Called by register_netdev() */
11122 static int ipw_net_init(struct net_device *dev)
11123 {
11124         struct ipw_priv *priv = ieee80211_priv(dev);
11125         down(&priv->sem);
11126
11127         if (ipw_up(priv)) {
11128                 up(&priv->sem);
11129                 return -EIO;
11130         }
11131
11132         up(&priv->sem);
11133         return 0;
11134 }
11135
11136 /* PCI driver stuff */
11137 static struct pci_device_id card_ids[] = {
11138         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11139         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11140         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11141         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11142         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11143         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11144         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11145         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11146         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11147         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11148         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11149         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11150         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11151         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11152         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11153         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11154         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11155         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11156         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11157         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11158         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11159         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11160
11161         /* required last entry */
11162         {0,}
11163 };
11164
11165 MODULE_DEVICE_TABLE(pci, card_ids);
11166
11167 static struct attribute *ipw_sysfs_entries[] = {
11168         &dev_attr_rf_kill.attr,
11169         &dev_attr_direct_dword.attr,
11170         &dev_attr_indirect_byte.attr,
11171         &dev_attr_indirect_dword.attr,
11172         &dev_attr_mem_gpio_reg.attr,
11173         &dev_attr_command_event_reg.attr,
11174         &dev_attr_nic_type.attr,
11175         &dev_attr_status.attr,
11176         &dev_attr_cfg.attr,
11177         &dev_attr_error.attr,
11178         &dev_attr_event_log.attr,
11179         &dev_attr_cmd_log.attr,
11180         &dev_attr_eeprom_delay.attr,
11181         &dev_attr_ucode_version.attr,
11182         &dev_attr_rtc.attr,
11183         &dev_attr_scan_age.attr,
11184         &dev_attr_led.attr,
11185         &dev_attr_speed_scan.attr,
11186         &dev_attr_net_stats.attr,
11187         NULL
11188 };
11189
11190 static struct attribute_group ipw_attribute_group = {
11191         .name = NULL,           /* put in device directory */
11192         .attrs = ipw_sysfs_entries,
11193 };
11194
11195 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11196 {
11197         int err = 0;
11198         struct net_device *net_dev;
11199         void __iomem *base;
11200         u32 length, val;
11201         struct ipw_priv *priv;
11202         int i;
11203
11204         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11205         if (net_dev == NULL) {
11206                 err = -ENOMEM;
11207                 goto out;
11208         }
11209
11210         priv = ieee80211_priv(net_dev);
11211         priv->ieee = netdev_priv(net_dev);
11212
11213         priv->net_dev = net_dev;
11214         priv->pci_dev = pdev;
11215 #ifdef CONFIG_IPW_DEBUG
11216         ipw_debug_level = debug;
11217 #endif
11218         spin_lock_init(&priv->lock);
11219         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11220                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11221
11222         init_MUTEX(&priv->sem);
11223         if (pci_enable_device(pdev)) {
11224                 err = -ENODEV;
11225                 goto out_free_ieee80211;
11226         }
11227
11228         pci_set_master(pdev);
11229
11230         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11231         if (!err)
11232                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11233         if (err) {
11234                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11235                 goto out_pci_disable_device;
11236         }
11237
11238         pci_set_drvdata(pdev, priv);
11239
11240         err = pci_request_regions(pdev, DRV_NAME);
11241         if (err)
11242                 goto out_pci_disable_device;
11243
11244         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11245          * PCI Tx retries from interfering with C3 CPU state */
11246         pci_read_config_dword(pdev, 0x40, &val);
11247         if ((val & 0x0000ff00) != 0)
11248                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11249
11250         length = pci_resource_len(pdev, 0);
11251         priv->hw_len = length;
11252
11253         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11254         if (!base) {
11255                 err = -ENODEV;
11256                 goto out_pci_release_regions;
11257         }
11258
11259         priv->hw_base = base;
11260         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11261         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11262
11263         err = ipw_setup_deferred_work(priv);
11264         if (err) {
11265                 IPW_ERROR("Unable to setup deferred work\n");
11266                 goto out_iounmap;
11267         }
11268
11269         ipw_sw_reset(priv, 1);
11270
11271         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11272         if (err) {
11273                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11274                 goto out_destroy_workqueue;
11275         }
11276
11277         SET_MODULE_OWNER(net_dev);
11278         SET_NETDEV_DEV(net_dev, &pdev->dev);
11279
11280         ipw_wx_data.spy_data = &priv->ieee->spy_data;
11281         ipw_wx_data.ieee80211 = priv->ieee;
11282
11283         down(&priv->sem);
11284
11285         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11286         priv->ieee->set_security = shim__set_security;
11287         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11288
11289 #ifdef CONFIG_IPW_QOS
11290         priv->ieee->handle_probe_response = ipw_handle_beacon;
11291         priv->ieee->handle_beacon = ipw_handle_probe_response;
11292         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11293 #endif                          /* CONFIG_IPW_QOS */
11294
11295         priv->ieee->perfect_rssi = -20;
11296         priv->ieee->worst_rssi = -85;
11297
11298         net_dev->open = ipw_net_open;
11299         net_dev->stop = ipw_net_stop;
11300         net_dev->init = ipw_net_init;
11301 #if WIRELESS_EXT < 18
11302         net_dev->do_ioctl = ipw_ioctl;
11303 #endif
11304         net_dev->get_stats = ipw_net_get_stats;
11305         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11306         net_dev->set_mac_address = ipw_net_set_mac_address;
11307         net_dev->get_wireless_stats = ipw_get_wireless_stats;
11308         net_dev->wireless_data = &ipw_wx_data;
11309         net_dev->wireless_handlers = &ipw_wx_handler_def;
11310         net_dev->ethtool_ops = &ipw_ethtool_ops;
11311         net_dev->irq = pdev->irq;
11312         net_dev->base_addr = (unsigned long)priv->hw_base;
11313         net_dev->mem_start = pci_resource_start(pdev, 0);
11314         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11315
11316         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11317         if (err) {
11318                 IPW_ERROR("failed to create sysfs device attributes\n");
11319                 up(&priv->sem);
11320                 goto out_release_irq;
11321         }
11322
11323         up(&priv->sem);
11324         err = register_netdev(net_dev);
11325         if (err) {
11326                 IPW_ERROR("failed to register network device\n");
11327                 goto out_remove_sysfs;
11328         }
11329         return 0;
11330
11331       out_remove_sysfs:
11332         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11333       out_release_irq:
11334         free_irq(pdev->irq, priv);
11335       out_destroy_workqueue:
11336         destroy_workqueue(priv->workqueue);
11337         priv->workqueue = NULL;
11338       out_iounmap:
11339         iounmap(priv->hw_base);
11340       out_pci_release_regions:
11341         pci_release_regions(pdev);
11342       out_pci_disable_device:
11343         pci_disable_device(pdev);
11344         pci_set_drvdata(pdev, NULL);
11345       out_free_ieee80211:
11346         free_ieee80211(priv->net_dev);
11347       out:
11348         return err;
11349 }
11350
11351 static void ipw_pci_remove(struct pci_dev *pdev)
11352 {
11353         struct ipw_priv *priv = pci_get_drvdata(pdev);
11354         struct list_head *p, *q;
11355         int i;
11356
11357         if (!priv)
11358                 return;
11359
11360         down(&priv->sem);
11361
11362         priv->status |= STATUS_EXIT_PENDING;
11363         ipw_down(priv);
11364         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11365
11366         up(&priv->sem);
11367
11368         unregister_netdev(priv->net_dev);
11369
11370         if (priv->rxq) {
11371                 ipw_rx_queue_free(priv, priv->rxq);
11372                 priv->rxq = NULL;
11373         }
11374         ipw_tx_queue_free(priv);
11375
11376         if (priv->cmdlog) {
11377                 kfree(priv->cmdlog);
11378                 priv->cmdlog = NULL;
11379         }
11380         /* ipw_down will ensure that there is no more pending work
11381          * in the workqueue's, so we can safely remove them now. */
11382         cancel_delayed_work(&priv->adhoc_check);
11383         cancel_delayed_work(&priv->gather_stats);
11384         cancel_delayed_work(&priv->request_scan);
11385         cancel_delayed_work(&priv->rf_kill);
11386         cancel_delayed_work(&priv->scan_check);
11387         destroy_workqueue(priv->workqueue);
11388         priv->workqueue = NULL;
11389
11390         /* Free MAC hash list for ADHOC */
11391         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11392                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11393                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11394                         list_del(p);
11395                 }
11396         }
11397
11398         if (priv->error) {
11399                 ipw_free_error_log(priv->error);
11400                 priv->error = NULL;
11401         }
11402
11403         free_irq(pdev->irq, priv);
11404         iounmap(priv->hw_base);
11405         pci_release_regions(pdev);
11406         pci_disable_device(pdev);
11407         pci_set_drvdata(pdev, NULL);
11408         free_ieee80211(priv->net_dev);
11409         free_firmware();
11410 }
11411
11412 #ifdef CONFIG_PM
11413 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11414 {
11415         struct ipw_priv *priv = pci_get_drvdata(pdev);
11416         struct net_device *dev = priv->net_dev;
11417
11418         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11419
11420         /* Take down the device; powers it off, etc. */
11421         ipw_down(priv);
11422
11423         /* Remove the PRESENT state of the device */
11424         netif_device_detach(dev);
11425
11426         pci_save_state(pdev);
11427         pci_disable_device(pdev);
11428         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11429
11430         return 0;
11431 }
11432
11433 static int ipw_pci_resume(struct pci_dev *pdev)
11434 {
11435         struct ipw_priv *priv = pci_get_drvdata(pdev);
11436         struct net_device *dev = priv->net_dev;
11437         u32 val;
11438
11439         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11440
11441         pci_set_power_state(pdev, PCI_D0);
11442         pci_enable_device(pdev);
11443         pci_restore_state(pdev);
11444
11445         /*
11446          * Suspend/Resume resets the PCI configuration space, so we have to
11447          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11448          * from interfering with C3 CPU state. pci_restore_state won't help
11449          * here since it only restores the first 64 bytes pci config header.
11450          */
11451         pci_read_config_dword(pdev, 0x40, &val);
11452         if ((val & 0x0000ff00) != 0)
11453                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11454
11455         /* Set the device back into the PRESENT state; this will also wake
11456          * the queue of needed */
11457         netif_device_attach(dev);
11458
11459         /* Bring the device back up */
11460         queue_work(priv->workqueue, &priv->up);
11461
11462         return 0;
11463 }
11464 #endif
11465
11466 /* driver initialization stuff */
11467 static struct pci_driver ipw_driver = {
11468         .name = DRV_NAME,
11469         .id_table = card_ids,
11470         .probe = ipw_pci_probe,
11471         .remove = __devexit_p(ipw_pci_remove),
11472 #ifdef CONFIG_PM
11473         .suspend = ipw_pci_suspend,
11474         .resume = ipw_pci_resume,
11475 #endif
11476 };
11477
11478 static int __init ipw_init(void)
11479 {
11480         int ret;
11481
11482         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11483         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11484
11485         ret = pci_module_init(&ipw_driver);
11486         if (ret) {
11487                 IPW_ERROR("Unable to initialize PCI module\n");
11488                 return ret;
11489         }
11490
11491         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11492         if (ret) {
11493                 IPW_ERROR("Unable to create driver sysfs file\n");
11494                 pci_unregister_driver(&ipw_driver);
11495                 return ret;
11496         }
11497
11498         return ret;
11499 }
11500
11501 static void __exit ipw_exit(void)
11502 {
11503         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11504         pci_unregister_driver(&ipw_driver);
11505 }
11506
11507 module_param(disable, int, 0444);
11508 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11509
11510 module_param(associate, int, 0444);
11511 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11512
11513 module_param(auto_create, int, 0444);
11514 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11515
11516 module_param(led, int, 0444);
11517 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11518
11519 module_param(debug, int, 0444);
11520 MODULE_PARM_DESC(debug, "debug output mask");
11521
11522 module_param(channel, int, 0444);
11523 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11524
11525 #ifdef CONFIG_IPW_QOS
11526 module_param(qos_enable, int, 0444);
11527 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11528
11529 module_param(qos_burst_enable, int, 0444);
11530 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11531
11532 module_param(qos_no_ack_mask, int, 0444);
11533 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11534
11535 module_param(burst_duration_CCK, int, 0444);
11536 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11537
11538 module_param(burst_duration_OFDM, int, 0444);
11539 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11540 #endif                          /* CONFIG_IPW_QOS */
11541
11542 #ifdef CONFIG_IPW2200_MONITOR
11543 module_param(mode, int, 0444);
11544 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11545 #else
11546 module_param(mode, int, 0444);
11547 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11548 #endif
11549
11550 module_param(hwcrypto, int, 0444);
11551 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11552
11553 module_param(cmdlog, int, 0444);
11554 MODULE_PARM_DESC(cmdlog,
11555                  "allocate a ring buffer for logging firmware commands");
11556
11557 module_exit(ipw_exit);
11558 module_init(ipw_init);