Merge master.kernel.org:/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[pandora-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772                 }
1773
1774                 deferred = 1;
1775         }
1776
1777         /* Turn on the interrupt so that commands can be processed */
1778         ipw2100_enable_interrupts(priv);
1779
1780         /* Send all of the commands that must be sent prior to
1781          * HOST_COMPLETE */
1782         if (ipw2100_adapter_setup(priv)) {
1783                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784                        priv->net_dev->name);
1785                 rc = 1;
1786                 goto exit;
1787         }
1788
1789         if (!deferred) {
1790                 /* Enable the adapter - sends HOST_COMPLETE */
1791                 if (ipw2100_enable_adapter(priv)) {
1792                         printk(KERN_ERR DRV_NAME ": "
1793                                "%s: failed in call to enable adapter.\n",
1794                                priv->net_dev->name);
1795                         ipw2100_hw_stop_adapter(priv);
1796                         rc = 1;
1797                         goto exit;
1798                 }
1799
1800                 /* Start a scan . . . */
1801                 ipw2100_set_scan_options(priv);
1802                 ipw2100_start_scan(priv);
1803         }
1804
1805       exit:
1806         return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812         struct ipw2100_priv *priv = ieee80211_priv(dev);
1813         return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818         unsigned long flags;
1819         union iwreq_data wrqu = {
1820                 .ap_addr = {
1821                             .sa_family = ARPHRD_ETHER}
1822         };
1823         int associated = priv->status & STATUS_ASSOCIATED;
1824
1825         /* Kill the RF switch timer */
1826         if (!priv->stop_rf_kill) {
1827                 priv->stop_rf_kill = 1;
1828                 cancel_delayed_work(&priv->rf_kill);
1829         }
1830
1831         /* Kill the firmare hang check timer */
1832         if (!priv->stop_hang_check) {
1833                 priv->stop_hang_check = 1;
1834                 cancel_delayed_work(&priv->hang_check);
1835         }
1836
1837         /* Kill any pending resets */
1838         if (priv->status & STATUS_RESET_PENDING)
1839                 cancel_delayed_work(&priv->reset_work);
1840
1841         /* Make sure the interrupt is on so that FW commands will be
1842          * processed correctly */
1843         spin_lock_irqsave(&priv->low_lock, flags);
1844         ipw2100_enable_interrupts(priv);
1845         spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847         if (ipw2100_hw_stop_adapter(priv))
1848                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849                        priv->net_dev->name);
1850
1851         /* Do not disable the interrupt until _after_ we disable
1852          * the adaptor.  Otherwise the CARD_DISABLE command will never
1853          * be ack'd by the firmware */
1854         spin_lock_irqsave(&priv->low_lock, flags);
1855         ipw2100_disable_interrupts(priv);
1856         spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861         if (priv->config & CFG_C3_DISABLED) {
1862                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863                 acpi_set_cstate_limit(priv->cstate_limit);
1864                 priv->config &= ~CFG_C3_DISABLED;
1865         }
1866 #endif
1867
1868         /* We have to signal any supplicant if we are disassociating */
1869         if (associated)
1870                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873         netif_carrier_off(priv->net_dev);
1874         netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1878 {
1879         struct ipw2100_priv *priv =
1880                 container_of(work, struct ipw2100_priv, reset_work.work);
1881         unsigned long flags;
1882         union iwreq_data wrqu = {
1883                 .ap_addr = {
1884                             .sa_family = ARPHRD_ETHER}
1885         };
1886         int associated = priv->status & STATUS_ASSOCIATED;
1887
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890         priv->resets++;
1891         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892         priv->status |= STATUS_SECURITY_UPDATED;
1893
1894         /* Force a power cycle even if interface hasn't been opened
1895          * yet */
1896         cancel_delayed_work(&priv->reset_work);
1897         priv->status |= STATUS_RESET_PENDING;
1898         spin_unlock_irqrestore(&priv->low_lock, flags);
1899
1900         mutex_lock(&priv->action_mutex);
1901         /* stop timed checks so that they don't interfere with reset */
1902         priv->stop_hang_check = 1;
1903         cancel_delayed_work(&priv->hang_check);
1904
1905         /* We have to signal any supplicant if we are disassociating */
1906         if (associated)
1907                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1908
1909         ipw2100_up(priv, 0);
1910         mutex_unlock(&priv->action_mutex);
1911
1912 }
1913
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1915 {
1916
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918         int ret, len, essid_len;
1919         char essid[IW_ESSID_MAX_SIZE];
1920         u32 txrate;
1921         u32 chan;
1922         char *txratename;
1923         u8 bssid[ETH_ALEN];
1924
1925         /*
1926          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927          *      an actual MAC of the AP. Seems like FW sets this
1928          *      address too late. Read it later and expose through
1929          *      /proc or schedule a later task to query and update
1930          */
1931
1932         essid_len = IW_ESSID_MAX_SIZE;
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934                                   essid, &essid_len);
1935         if (ret) {
1936                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937                                __LINE__);
1938                 return;
1939         }
1940
1941         len = sizeof(u32);
1942         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943         if (ret) {
1944                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945                                __LINE__);
1946                 return;
1947         }
1948
1949         len = sizeof(u32);
1950         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951         if (ret) {
1952                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953                                __LINE__);
1954                 return;
1955         }
1956         len = ETH_ALEN;
1957         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958         if (ret) {
1959                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960                                __LINE__);
1961                 return;
1962         }
1963         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1964
1965         switch (txrate) {
1966         case TX_RATE_1_MBIT:
1967                 txratename = "1Mbps";
1968                 break;
1969         case TX_RATE_2_MBIT:
1970                 txratename = "2Mbsp";
1971                 break;
1972         case TX_RATE_5_5_MBIT:
1973                 txratename = "5.5Mbps";
1974                 break;
1975         case TX_RATE_11_MBIT:
1976                 txratename = "11Mbps";
1977                 break;
1978         default:
1979                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980                 txratename = "unknown rate";
1981                 break;
1982         }
1983
1984         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985                        MAC_FMT ")\n",
1986                        priv->net_dev->name, escape_essid(essid, essid_len),
1987                        txratename, chan, MAC_ARG(bssid));
1988
1989         /* now we copy read ssid into dev */
1990         if (!(priv->config & CFG_STATIC_ESSID)) {
1991                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992                 memcpy(priv->essid, essid, priv->essid_len);
1993         }
1994         priv->channel = chan;
1995         memcpy(priv->bssid, bssid, ETH_ALEN);
1996
1997         priv->status |= STATUS_ASSOCIATING;
1998         priv->connect_start = get_seconds();
1999
2000         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2001 }
2002
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004                              int length, int batch_mode)
2005 {
2006         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007         struct host_command cmd = {
2008                 .host_command = SSID,
2009                 .host_command_sequence = 0,
2010                 .host_command_length = ssid_len
2011         };
2012         int err;
2013
2014         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2015
2016         if (ssid_len)
2017                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2018
2019         if (!batch_mode) {
2020                 err = ipw2100_disable_adapter(priv);
2021                 if (err)
2022                         return err;
2023         }
2024
2025         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026          * disable auto association -- so we cheat by setting a bogus SSID */
2027         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028                 int i;
2029                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031                         bogus[i] = 0x18 + i;
2032                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2033         }
2034
2035         /* NOTE:  We always send the SSID command even if the provided ESSID is
2036          * the same as what we currently think is set. */
2037
2038         err = ipw2100_hw_send_command(priv, &cmd);
2039         if (!err) {
2040                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041                 memcpy(priv->essid, essid, ssid_len);
2042                 priv->essid_len = ssid_len;
2043         }
2044
2045         if (!batch_mode) {
2046                 if (ipw2100_enable_adapter(priv))
2047                         err = -EIO;
2048         }
2049
2050         return err;
2051 }
2052
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2054 {
2055         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056                   "disassociated: '%s' " MAC_FMT " \n",
2057                   escape_essid(priv->essid, priv->essid_len),
2058                   MAC_ARG(priv->bssid));
2059
2060         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2061
2062         if (priv->status & STATUS_STOPPING) {
2063                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064                 return;
2065         }
2066
2067         memset(priv->bssid, 0, ETH_ALEN);
2068         memset(priv->ieee->bssid, 0, ETH_ALEN);
2069
2070         netif_carrier_off(priv->net_dev);
2071         netif_stop_queue(priv->net_dev);
2072
2073         if (!(priv->status & STATUS_RUNNING))
2074                 return;
2075
2076         if (priv->status & STATUS_SECURITY_UPDATED)
2077                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2078
2079         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2080 }
2081
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2083 {
2084         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085                        priv->net_dev->name);
2086
2087         /* RF_KILL is now enabled (else we wouldn't be here) */
2088         priv->status |= STATUS_RF_KILL_HW;
2089
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091         if (priv->config & CFG_C3_DISABLED) {
2092                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093                 acpi_set_cstate_limit(priv->cstate_limit);
2094                 priv->config &= ~CFG_C3_DISABLED;
2095         }
2096 #endif
2097
2098         /* Make sure the RF Kill check timer is running */
2099         priv->stop_rf_kill = 0;
2100         cancel_delayed_work(&priv->rf_kill);
2101         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2102 }
2103
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2105 {
2106         IPW_DEBUG_SCAN("scan complete\n");
2107         /* Age the scan results... */
2108         priv->ieee->scans++;
2109         priv->status &= ~STATUS_SCANNING;
2110 }
2111
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115         int status;
2116         void (*cb) (struct ipw2100_priv * priv, u32 status);
2117         char *name;
2118 };
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122         int status;
2123         void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 };
2125 #endif                          /* CONFIG_IPW2100_DEBUG */
2126
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2128 {
2129         IPW_DEBUG_SCAN("Scanning...\n");
2130         priv->status |= STATUS_SCANNING;
2131 }
2132
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146         IPW2100_HANDLER(-1, NULL)
2147 };
2148
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2150 {
2151         int i;
2152
2153         if (status == IPW_STATE_SCANNING &&
2154             priv->status & STATUS_ASSOCIATED &&
2155             !(priv->status & STATUS_SCANNING)) {
2156                 IPW_DEBUG_INFO("Scan detected while associated, with "
2157                                "no scan request.  Restarting firmware.\n");
2158
2159                 /* Wake up any sleeping jobs */
2160                 schedule_reset(priv);
2161         }
2162
2163         for (i = 0; status_handlers[i].status != -1; i++) {
2164                 if (status == status_handlers[i].status) {
2165                         IPW_DEBUG_NOTIF("Status change: %s\n",
2166                                         status_handlers[i].name);
2167                         if (status_handlers[i].cb)
2168                                 status_handlers[i].cb(priv, status);
2169                         priv->wstats.status = status;
2170                         return;
2171                 }
2172         }
2173
2174         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2175 }
2176
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178                                     struct ipw2100_cmd_header *cmd)
2179 {
2180 #ifdef CONFIG_IPW2100_DEBUG
2181         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183                              command_types[cmd->host_command_reg],
2184                              cmd->host_command_reg);
2185         }
2186 #endif
2187         if (cmd->host_command_reg == HOST_COMPLETE)
2188                 priv->status |= STATUS_ENABLED;
2189
2190         if (cmd->host_command_reg == CARD_DISABLE)
2191                 priv->status &= ~STATUS_ENABLED;
2192
2193         priv->status &= ~STATUS_CMD_ACTIVE;
2194
2195         wake_up_interruptible(&priv->wait_command_queue);
2196 }
2197
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200         "COMMAND_STATUS_VAL",
2201         "STATUS_CHANGE_VAL",
2202         "P80211_DATA_VAL",
2203         "P8023_DATA_VAL",
2204         "HOST_NOTIFICATION_VAL"
2205 };
2206 #endif
2207
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209                                     struct ipw2100_rx_packet *packet)
2210 {
2211         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212         if (!packet->skb)
2213                 return -ENOMEM;
2214
2215         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217                                           sizeof(struct ipw2100_rx),
2218                                           PCI_DMA_FROMDEVICE);
2219         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220          *       dma_addr */
2221
2222         return 0;
2223 }
2224
2225 #define SEARCH_ERROR   0xffffffff
2226 #define SEARCH_FAIL    0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2230
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2233 {
2234         int i;
2235         if (!priv->snapshot[0])
2236                 return;
2237         for (i = 0; i < 0x30; i++)
2238                 kfree(priv->snapshot[i]);
2239         priv->snapshot[0] = NULL;
2240 }
2241
2242 #ifdef IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2244 {
2245         int i;
2246         if (priv->snapshot[0])
2247                 return 1;
2248         for (i = 0; i < 0x30; i++) {
2249                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250                 if (!priv->snapshot[i]) {
2251                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252                                        "buffer %d\n", priv->net_dev->name, i);
2253                         while (i > 0)
2254                                 kfree(priv->snapshot[--i]);
2255                         priv->snapshot[0] = NULL;
2256                         return 0;
2257                 }
2258         }
2259
2260         return 1;
2261 }
2262
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264                                     size_t len, int mode)
2265 {
2266         u32 i, j;
2267         u32 tmp;
2268         u8 *s, *d;
2269         u32 ret;
2270
2271         s = in_buf;
2272         if (mode == SEARCH_SNAPSHOT) {
2273                 if (!ipw2100_snapshot_alloc(priv))
2274                         mode = SEARCH_DISCARD;
2275         }
2276
2277         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278                 read_nic_dword(priv->net_dev, i, &tmp);
2279                 if (mode == SEARCH_SNAPSHOT)
2280                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281                 if (ret == SEARCH_FAIL) {
2282                         d = (u8 *) & tmp;
2283                         for (j = 0; j < 4; j++) {
2284                                 if (*s != *d) {
2285                                         s = in_buf;
2286                                         continue;
2287                                 }
2288
2289                                 s++;
2290                                 d++;
2291
2292                                 if ((s - in_buf) == len)
2293                                         ret = (i + j) - len + 1;
2294                         }
2295                 } else if (mode == SEARCH_DISCARD)
2296                         return ret;
2297         }
2298
2299         return ret;
2300 }
2301 #endif
2302
2303 /*
2304  *
2305  * 0) Disconnect the SKB from the firmware (just unmap)
2306  * 1) Pack the ETH header into the SKB
2307  * 2) Pass the SKB to the network stack
2308  *
2309  * When packet is provided by the firmware, it contains the following:
2310  *
2311  * .  ieee80211_hdr
2312  * .  ieee80211_snap_hdr
2313  *
2314  * The size of the constructed ethernet
2315  *
2316  */
2317 #ifdef IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2320
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2322 {
2323 #ifdef IPW2100_DEBUG_C3
2324         struct ipw2100_status *status = &priv->status_queue.drv[i];
2325         u32 match, reg;
2326         int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329         int limit;
2330 #endif
2331
2332         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333                        i * sizeof(struct ipw2100_status));
2334
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337         limit = acpi_get_cstate_limit();
2338         if (limit > 2) {
2339                 priv->cstate_limit = limit;
2340                 acpi_set_cstate_limit(2);
2341                 priv->config |= CFG_C3_DISABLED;
2342         }
2343 #endif
2344
2345 #ifdef IPW2100_DEBUG_C3
2346         /* Halt the fimrware so we can get a good image */
2347         write_register(priv->net_dev, IPW_REG_RESET_REG,
2348                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349         j = 5;
2350         do {
2351                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2353
2354                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355                         break;
2356         } while (j--);
2357
2358         match = ipw2100_match_buf(priv, (u8 *) status,
2359                                   sizeof(struct ipw2100_status),
2360                                   SEARCH_SNAPSHOT);
2361         if (match < SEARCH_SUCCESS)
2362                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363                                "offset 0x%06X, length %d:\n",
2364                                priv->net_dev->name, match,
2365                                sizeof(struct ipw2100_status));
2366         else
2367                 IPW_DEBUG_INFO("%s: No DMA status match in "
2368                                "Firmware.\n", priv->net_dev->name);
2369
2370         printk_buf((u8 *) priv->status_queue.drv,
2371                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2373
2374         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375         priv->ieee->stats.rx_errors++;
2376         schedule_reset(priv);
2377 }
2378
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380                           struct ieee80211_rx_stats *stats)
2381 {
2382         struct ipw2100_status *status = &priv->status_queue.drv[i];
2383         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2384
2385         IPW_DEBUG_RX("Handler...\n");
2386
2387         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389                                "  Dropping.\n",
2390                                priv->net_dev->name,
2391                                status->frame_size, skb_tailroom(packet->skb));
2392                 priv->ieee->stats.rx_errors++;
2393                 return;
2394         }
2395
2396         if (unlikely(!netif_running(priv->net_dev))) {
2397                 priv->ieee->stats.rx_errors++;
2398                 priv->wstats.discard.misc++;
2399                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400                 return;
2401         }
2402
2403         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404                      !(priv->status & STATUS_ASSOCIATED))) {
2405                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406                 priv->wstats.discard.misc++;
2407                 return;
2408         }
2409
2410         pci_unmap_single(priv->pci_dev,
2411                          packet->dma_addr,
2412                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414         skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef IPW2100_RX_DEBUG
2417         /* Make a copy of the frame so we can dump it to the logs if
2418          * ieee80211_rx fails */
2419         memcpy(packet_data, packet->skb->data,
2420                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2422
2423         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef IPW2100_RX_DEBUG
2425                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426                                priv->net_dev->name);
2427                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429                 priv->ieee->stats.rx_errors++;
2430
2431                 /* ieee80211_rx failed, so it didn't free the SKB */
2432                 dev_kfree_skb_any(packet->skb);
2433                 packet->skb = NULL;
2434         }
2435
2436         /* We need to allocate a new SKB and attach it to the RDB. */
2437         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438                 printk(KERN_WARNING DRV_NAME ": "
2439                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2440                        "adapter.\n", priv->net_dev->name);
2441                 /* TODO: schedule adapter shutdown */
2442                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2443         }
2444
2445         /* Update the RDB entry */
2446         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2447 }
2448
2449 #ifdef CONFIG_IPW2100_MONITOR
2450
2451 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2452                    struct ieee80211_rx_stats *stats)
2453 {
2454         struct ipw2100_status *status = &priv->status_queue.drv[i];
2455         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2456
2457         /* Magic struct that slots into the radiotap header -- no reason
2458          * to build this manually element by element, we can write it much
2459          * more efficiently than we can parse it. ORDER MATTERS HERE */
2460         struct ipw_rt_hdr {
2461                 struct ieee80211_radiotap_header rt_hdr;
2462                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2463         } *ipw_rt;
2464
2465         IPW_DEBUG_RX("Handler...\n");
2466
2467         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2468                                 sizeof(struct ipw_rt_hdr))) {
2469                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2470                                "  Dropping.\n",
2471                                priv->net_dev->name,
2472                                status->frame_size,
2473                                skb_tailroom(packet->skb));
2474                 priv->ieee->stats.rx_errors++;
2475                 return;
2476         }
2477
2478         if (unlikely(!netif_running(priv->net_dev))) {
2479                 priv->ieee->stats.rx_errors++;
2480                 priv->wstats.discard.misc++;
2481                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2482                 return;
2483         }
2484
2485         if (unlikely(priv->config & CFG_CRC_CHECK &&
2486                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2487                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2488                 priv->ieee->stats.rx_errors++;
2489                 return;
2490         }
2491
2492         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2493                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2494         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2495                 packet->skb->data, status->frame_size);
2496
2497         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2498
2499         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2500         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2501         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2502
2503         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2504
2505         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2506
2507         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2508
2509         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2510                 priv->ieee->stats.rx_errors++;
2511
2512                 /* ieee80211_rx failed, so it didn't free the SKB */
2513                 dev_kfree_skb_any(packet->skb);
2514                 packet->skb = NULL;
2515         }
2516
2517         /* We need to allocate a new SKB and attach it to the RDB. */
2518         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2519                 IPW_DEBUG_WARNING(
2520                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2521                         "adapter.\n", priv->net_dev->name);
2522                 /* TODO: schedule adapter shutdown */
2523                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2524         }
2525
2526         /* Update the RDB entry */
2527         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2528 }
2529
2530 #endif
2531
2532 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2533 {
2534         struct ipw2100_status *status = &priv->status_queue.drv[i];
2535         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2536         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2537
2538         switch (frame_type) {
2539         case COMMAND_STATUS_VAL:
2540                 return (status->frame_size != sizeof(u->rx_data.command));
2541         case STATUS_CHANGE_VAL:
2542                 return (status->frame_size != sizeof(u->rx_data.status));
2543         case HOST_NOTIFICATION_VAL:
2544                 return (status->frame_size < sizeof(u->rx_data.notification));
2545         case P80211_DATA_VAL:
2546         case P8023_DATA_VAL:
2547 #ifdef CONFIG_IPW2100_MONITOR
2548                 return 0;
2549 #else
2550                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2551                 case IEEE80211_FTYPE_MGMT:
2552                 case IEEE80211_FTYPE_CTL:
2553                         return 0;
2554                 case IEEE80211_FTYPE_DATA:
2555                         return (status->frame_size >
2556                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2557                 }
2558 #endif
2559         }
2560
2561         return 1;
2562 }
2563
2564 /*
2565  * ipw2100 interrupts are disabled at this point, and the ISR
2566  * is the only code that calls this method.  So, we do not need
2567  * to play with any locks.
2568  *
2569  * RX Queue works as follows:
2570  *
2571  * Read index - firmware places packet in entry identified by the
2572  *              Read index and advances Read index.  In this manner,
2573  *              Read index will always point to the next packet to
2574  *              be filled--but not yet valid.
2575  *
2576  * Write index - driver fills this entry with an unused RBD entry.
2577  *               This entry has not filled by the firmware yet.
2578  *
2579  * In between the W and R indexes are the RBDs that have been received
2580  * but not yet processed.
2581  *
2582  * The process of handling packets will start at WRITE + 1 and advance
2583  * until it reaches the READ index.
2584  *
2585  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2586  *
2587  */
2588 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2589 {
2590         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2591         struct ipw2100_status_queue *sq = &priv->status_queue;
2592         struct ipw2100_rx_packet *packet;
2593         u16 frame_type;
2594         u32 r, w, i, s;
2595         struct ipw2100_rx *u;
2596         struct ieee80211_rx_stats stats = {
2597                 .mac_time = jiffies,
2598         };
2599
2600         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2601         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2602
2603         if (r >= rxq->entries) {
2604                 IPW_DEBUG_RX("exit - bad read index\n");
2605                 return;
2606         }
2607
2608         i = (rxq->next + 1) % rxq->entries;
2609         s = i;
2610         while (i != r) {
2611                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2612                    r, rxq->next, i); */
2613
2614                 packet = &priv->rx_buffers[i];
2615
2616                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2617                  * the correct values */
2618                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2619                                             sq->nic +
2620                                             sizeof(struct ipw2100_status) * i,
2621                                             sizeof(struct ipw2100_status),
2622                                             PCI_DMA_FROMDEVICE);
2623
2624                 /* Sync the DMA for the RX buffer so CPU is sure to get
2625                  * the correct values */
2626                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2627                                             sizeof(struct ipw2100_rx),
2628                                             PCI_DMA_FROMDEVICE);
2629
2630                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2631                         ipw2100_corruption_detected(priv, i);
2632                         goto increment;
2633                 }
2634
2635                 u = packet->rxp;
2636                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2637                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2638                 stats.len = sq->drv[i].frame_size;
2639
2640                 stats.mask = 0;
2641                 if (stats.rssi != 0)
2642                         stats.mask |= IEEE80211_STATMASK_RSSI;
2643                 stats.freq = IEEE80211_24GHZ_BAND;
2644
2645                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2646                              priv->net_dev->name, frame_types[frame_type],
2647                              stats.len);
2648
2649                 switch (frame_type) {
2650                 case COMMAND_STATUS_VAL:
2651                         /* Reset Rx watchdog */
2652                         isr_rx_complete_command(priv, &u->rx_data.command);
2653                         break;
2654
2655                 case STATUS_CHANGE_VAL:
2656                         isr_status_change(priv, u->rx_data.status);
2657                         break;
2658
2659                 case P80211_DATA_VAL:
2660                 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2663                                 isr_rx_monitor(priv, i, &stats);
2664                                 break;
2665                         }
2666 #endif
2667                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2668                                 break;
2669                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2670                         case IEEE80211_FTYPE_MGMT:
2671                                 ieee80211_rx_mgt(priv->ieee,
2672                                                  &u->rx_data.header, &stats);
2673                                 break;
2674
2675                         case IEEE80211_FTYPE_CTL:
2676                                 break;
2677
2678                         case IEEE80211_FTYPE_DATA:
2679                                 isr_rx(priv, i, &stats);
2680                                 break;
2681
2682                         }
2683                         break;
2684                 }
2685
2686               increment:
2687                 /* clear status field associated with this RBD */
2688                 rxq->drv[i].status.info.field = 0;
2689
2690                 i = (i + 1) % rxq->entries;
2691         }
2692
2693         if (i != s) {
2694                 /* backtrack one entry, wrapping to end if at 0 */
2695                 rxq->next = (i ? i : rxq->entries) - 1;
2696
2697                 write_register(priv->net_dev,
2698                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2699         }
2700 }
2701
2702 /*
2703  * __ipw2100_tx_process
2704  *
2705  * This routine will determine whether the next packet on
2706  * the fw_pend_list has been processed by the firmware yet.
2707  *
2708  * If not, then it does nothing and returns.
2709  *
2710  * If so, then it removes the item from the fw_pend_list, frees
2711  * any associated storage, and places the item back on the
2712  * free list of its source (either msg_free_list or tx_free_list)
2713  *
2714  * TX Queue works as follows:
2715  *
2716  * Read index - points to the next TBD that the firmware will
2717  *              process.  The firmware will read the data, and once
2718  *              done processing, it will advance the Read index.
2719  *
2720  * Write index - driver fills this entry with an constructed TBD
2721  *               entry.  The Write index is not advanced until the
2722  *               packet has been configured.
2723  *
2724  * In between the W and R indexes are the TBDs that have NOT been
2725  * processed.  Lagging behind the R index are packets that have
2726  * been processed but have not been freed by the driver.
2727  *
2728  * In order to free old storage, an internal index will be maintained
2729  * that points to the next packet to be freed.  When all used
2730  * packets have been freed, the oldest index will be the same as the
2731  * firmware's read index.
2732  *
2733  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2734  *
2735  * Because the TBD structure can not contain arbitrary data, the
2736  * driver must keep an internal queue of cached allocations such that
2737  * it can put that data back into the tx_free_list and msg_free_list
2738  * for use by future command and data packets.
2739  *
2740  */
2741 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2742 {
2743         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2744         struct ipw2100_bd *tbd;
2745         struct list_head *element;
2746         struct ipw2100_tx_packet *packet;
2747         int descriptors_used;
2748         int e, i;
2749         u32 r, w, frag_num = 0;
2750
2751         if (list_empty(&priv->fw_pend_list))
2752                 return 0;
2753
2754         element = priv->fw_pend_list.next;
2755
2756         packet = list_entry(element, struct ipw2100_tx_packet, list);
2757         tbd = &txq->drv[packet->index];
2758
2759         /* Determine how many TBD entries must be finished... */
2760         switch (packet->type) {
2761         case COMMAND:
2762                 /* COMMAND uses only one slot; don't advance */
2763                 descriptors_used = 1;
2764                 e = txq->oldest;
2765                 break;
2766
2767         case DATA:
2768                 /* DATA uses two slots; advance and loop position. */
2769                 descriptors_used = tbd->num_fragments;
2770                 frag_num = tbd->num_fragments - 1;
2771                 e = txq->oldest + frag_num;
2772                 e %= txq->entries;
2773                 break;
2774
2775         default:
2776                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2777                        priv->net_dev->name);
2778                 return 0;
2779         }
2780
2781         /* if the last TBD is not done by NIC yet, then packet is
2782          * not ready to be released.
2783          *
2784          */
2785         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2786                       &r);
2787         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2788                       &w);
2789         if (w != txq->next)
2790                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2791                        priv->net_dev->name);
2792
2793         /*
2794          * txq->next is the index of the last packet written txq->oldest is
2795          * the index of the r is the index of the next packet to be read by
2796          * firmware
2797          */
2798
2799         /*
2800          * Quick graphic to help you visualize the following
2801          * if / else statement
2802          *
2803          * ===>|                     s---->|===============
2804          *                               e>|
2805          * | a | b | c | d | e | f | g | h | i | j | k | l
2806          *       r---->|
2807          *               w
2808          *
2809          * w - updated by driver
2810          * r - updated by firmware
2811          * s - start of oldest BD entry (txq->oldest)
2812          * e - end of oldest BD entry
2813          *
2814          */
2815         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2816                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2817                 return 0;
2818         }
2819
2820         list_del(element);
2821         DEC_STAT(&priv->fw_pend_stat);
2822
2823 #ifdef CONFIG_IPW2100_DEBUG
2824         {
2825                 int i = txq->oldest;
2826                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2827                              &txq->drv[i],
2828                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2829                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2830
2831                 if (packet->type == DATA) {
2832                         i = (i + 1) % txq->entries;
2833
2834                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2835                                      &txq->drv[i],
2836                                      (u32) (txq->nic + i *
2837                                             sizeof(struct ipw2100_bd)),
2838                                      (u32) txq->drv[i].host_addr,
2839                                      txq->drv[i].buf_length);
2840                 }
2841         }
2842 #endif
2843
2844         switch (packet->type) {
2845         case DATA:
2846                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2847                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2848                                "Expecting DATA TBD but pulled "
2849                                "something else: ids %d=%d.\n",
2850                                priv->net_dev->name, txq->oldest, packet->index);
2851
2852                 /* DATA packet; we have to unmap and free the SKB */
2853                 for (i = 0; i < frag_num; i++) {
2854                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2855
2856                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2857                                      (packet->index + 1 + i) % txq->entries,
2858                                      tbd->host_addr, tbd->buf_length);
2859
2860                         pci_unmap_single(priv->pci_dev,
2861                                          tbd->host_addr,
2862                                          tbd->buf_length, PCI_DMA_TODEVICE);
2863                 }
2864
2865                 ieee80211_txb_free(packet->info.d_struct.txb);
2866                 packet->info.d_struct.txb = NULL;
2867
2868                 list_add_tail(element, &priv->tx_free_list);
2869                 INC_STAT(&priv->tx_free_stat);
2870
2871                 /* We have a free slot in the Tx queue, so wake up the
2872                  * transmit layer if it is stopped. */
2873                 if (priv->status & STATUS_ASSOCIATED)
2874                         netif_wake_queue(priv->net_dev);
2875
2876                 /* A packet was processed by the hardware, so update the
2877                  * watchdog */
2878                 priv->net_dev->trans_start = jiffies;
2879
2880                 break;
2881
2882         case COMMAND:
2883                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2884                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2885                                "Expecting COMMAND TBD but pulled "
2886                                "something else: ids %d=%d.\n",
2887                                priv->net_dev->name, txq->oldest, packet->index);
2888
2889 #ifdef CONFIG_IPW2100_DEBUG
2890                 if (packet->info.c_struct.cmd->host_command_reg <
2891                     ARRAY_SIZE(command_types))
2892                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2893                                      command_types[packet->info.c_struct.cmd->
2894                                                    host_command_reg],
2895                                      packet->info.c_struct.cmd->
2896                                      host_command_reg,
2897                                      packet->info.c_struct.cmd->cmd_status_reg);
2898 #endif
2899
2900                 list_add_tail(element, &priv->msg_free_list);
2901                 INC_STAT(&priv->msg_free_stat);
2902                 break;
2903         }
2904
2905         /* advance oldest used TBD pointer to start of next entry */
2906         txq->oldest = (e + 1) % txq->entries;
2907         /* increase available TBDs number */
2908         txq->available += descriptors_used;
2909         SET_STAT(&priv->txq_stat, txq->available);
2910
2911         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2912                      jiffies - packet->jiffy_start);
2913
2914         return (!list_empty(&priv->fw_pend_list));
2915 }
2916
2917 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2918 {
2919         int i = 0;
2920
2921         while (__ipw2100_tx_process(priv) && i < 200)
2922                 i++;
2923
2924         if (i == 200) {
2925                 printk(KERN_WARNING DRV_NAME ": "
2926                        "%s: Driver is running slow (%d iters).\n",
2927                        priv->net_dev->name, i);
2928         }
2929 }
2930
2931 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2932 {
2933         struct list_head *element;
2934         struct ipw2100_tx_packet *packet;
2935         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2936         struct ipw2100_bd *tbd;
2937         int next = txq->next;
2938
2939         while (!list_empty(&priv->msg_pend_list)) {
2940                 /* if there isn't enough space in TBD queue, then
2941                  * don't stuff a new one in.
2942                  * NOTE: 3 are needed as a command will take one,
2943                  *       and there is a minimum of 2 that must be
2944                  *       maintained between the r and w indexes
2945                  */
2946                 if (txq->available <= 3) {
2947                         IPW_DEBUG_TX("no room in tx_queue\n");
2948                         break;
2949                 }
2950
2951                 element = priv->msg_pend_list.next;
2952                 list_del(element);
2953                 DEC_STAT(&priv->msg_pend_stat);
2954
2955                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2956
2957                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2958                              &txq->drv[txq->next],
2959                              (void *)(txq->nic + txq->next *
2960                                       sizeof(struct ipw2100_bd)));
2961
2962                 packet->index = txq->next;
2963
2964                 tbd = &txq->drv[txq->next];
2965
2966                 /* initialize TBD */
2967                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2969                 /* not marking number of fragments causes problems
2970                  * with f/w debug version */
2971                 tbd->num_fragments = 1;
2972                 tbd->status.info.field =
2973                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2974                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2975
2976                 /* update TBD queue counters */
2977                 txq->next++;
2978                 txq->next %= txq->entries;
2979                 txq->available--;
2980                 DEC_STAT(&priv->txq_stat);
2981
2982                 list_add_tail(element, &priv->fw_pend_list);
2983                 INC_STAT(&priv->fw_pend_stat);
2984         }
2985
2986         if (txq->next != next) {
2987                 /* kick off the DMA by notifying firmware the
2988                  * write index has moved; make sure TBD stores are sync'd */
2989                 wmb();
2990                 write_register(priv->net_dev,
2991                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2992                                txq->next);
2993         }
2994 }
2995
2996 /*
2997  * ipw2100_tx_send_data
2998  *
2999  */
3000 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3001 {
3002         struct list_head *element;
3003         struct ipw2100_tx_packet *packet;
3004         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3005         struct ipw2100_bd *tbd;
3006         int next = txq->next;
3007         int i = 0;
3008         struct ipw2100_data_header *ipw_hdr;
3009         struct ieee80211_hdr_3addr *hdr;
3010
3011         while (!list_empty(&priv->tx_pend_list)) {
3012                 /* if there isn't enough space in TBD queue, then
3013                  * don't stuff a new one in.
3014                  * NOTE: 4 are needed as a data will take two,
3015                  *       and there is a minimum of 2 that must be
3016                  *       maintained between the r and w indexes
3017                  */
3018                 element = priv->tx_pend_list.next;
3019                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3020
3021                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3022                              IPW_MAX_BDS)) {
3023                         /* TODO: Support merging buffers if more than
3024                          * IPW_MAX_BDS are used */
3025                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3026                                        "Increase fragmentation level.\n",
3027                                        priv->net_dev->name);
3028                 }
3029
3030                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3031                         IPW_DEBUG_TX("no room in tx_queue\n");
3032                         break;
3033                 }
3034
3035                 list_del(element);
3036                 DEC_STAT(&priv->tx_pend_stat);
3037
3038                 tbd = &txq->drv[txq->next];
3039
3040                 packet->index = txq->next;
3041
3042                 ipw_hdr = packet->info.d_struct.data;
3043                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3044                     fragments[0]->data;
3045
3046                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3047                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3048                            Addr3 = DA */
3049                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3050                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3051                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3052                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3053                            Addr3 = BSSID */
3054                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3056                 }
3057
3058                 ipw_hdr->host_command_reg = SEND;
3059                 ipw_hdr->host_command_reg1 = 0;
3060
3061                 /* For now we only support host based encryption */
3062                 ipw_hdr->needs_encryption = 0;
3063                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3064                 if (packet->info.d_struct.txb->nr_frags > 1)
3065                         ipw_hdr->fragment_size =
3066                             packet->info.d_struct.txb->frag_size -
3067                             IEEE80211_3ADDR_LEN;
3068                 else
3069                         ipw_hdr->fragment_size = 0;
3070
3071                 tbd->host_addr = packet->info.d_struct.data_phys;
3072                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3073                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3074                 tbd->status.info.field =
3075                     IPW_BD_STATUS_TX_FRAME_802_3 |
3076                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3077                 txq->next++;
3078                 txq->next %= txq->entries;
3079
3080                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3081                              packet->index, tbd->host_addr, tbd->buf_length);
3082 #ifdef CONFIG_IPW2100_DEBUG
3083                 if (packet->info.d_struct.txb->nr_frags > 1)
3084                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3085                                        packet->info.d_struct.txb->nr_frags);
3086 #endif
3087
3088                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3089                         tbd = &txq->drv[txq->next];
3090                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3091                                 tbd->status.info.field =
3092                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3093                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3094                         else
3095                                 tbd->status.info.field =
3096                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3097                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3098
3099                         tbd->buf_length = packet->info.d_struct.txb->
3100                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3101
3102                         tbd->host_addr = pci_map_single(priv->pci_dev,
3103                                                         packet->info.d_struct.
3104                                                         txb->fragments[i]->
3105                                                         data +
3106                                                         IEEE80211_3ADDR_LEN,
3107                                                         tbd->buf_length,
3108                                                         PCI_DMA_TODEVICE);
3109
3110                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3111                                      txq->next, tbd->host_addr,
3112                                      tbd->buf_length);
3113
3114                         pci_dma_sync_single_for_device(priv->pci_dev,
3115                                                        tbd->host_addr,
3116                                                        tbd->buf_length,
3117                                                        PCI_DMA_TODEVICE);
3118
3119                         txq->next++;
3120                         txq->next %= txq->entries;
3121                 }
3122
3123                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3124                 SET_STAT(&priv->txq_stat, txq->available);
3125
3126                 list_add_tail(element, &priv->fw_pend_list);
3127                 INC_STAT(&priv->fw_pend_stat);
3128         }
3129
3130         if (txq->next != next) {
3131                 /* kick off the DMA by notifying firmware the
3132                  * write index has moved; make sure TBD stores are sync'd */
3133                 write_register(priv->net_dev,
3134                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3135                                txq->next);
3136         }
3137         return;
3138 }
3139
3140 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3141 {
3142         struct net_device *dev = priv->net_dev;
3143         unsigned long flags;
3144         u32 inta, tmp;
3145
3146         spin_lock_irqsave(&priv->low_lock, flags);
3147         ipw2100_disable_interrupts(priv);
3148
3149         read_register(dev, IPW_REG_INTA, &inta);
3150
3151         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3152                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3153
3154         priv->in_isr++;
3155         priv->interrupts++;
3156
3157         /* We do not loop and keep polling for more interrupts as this
3158          * is frowned upon and doesn't play nicely with other potentially
3159          * chained IRQs */
3160         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3161                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3162
3163         if (inta & IPW2100_INTA_FATAL_ERROR) {
3164                 printk(KERN_WARNING DRV_NAME
3165                        ": Fatal interrupt. Scheduling firmware restart.\n");
3166                 priv->inta_other++;
3167                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3168
3169                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3170                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3171                                priv->net_dev->name, priv->fatal_error);
3172
3173                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3174                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3175                                priv->net_dev->name, tmp);
3176
3177                 /* Wake up any sleeping jobs */
3178                 schedule_reset(priv);
3179         }
3180
3181         if (inta & IPW2100_INTA_PARITY_ERROR) {
3182                 printk(KERN_ERR DRV_NAME
3183                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3184                 priv->inta_other++;
3185                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3186         }
3187
3188         if (inta & IPW2100_INTA_RX_TRANSFER) {
3189                 IPW_DEBUG_ISR("RX interrupt\n");
3190
3191                 priv->rx_interrupts++;
3192
3193                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3194
3195                 __ipw2100_rx_process(priv);
3196                 __ipw2100_tx_complete(priv);
3197         }
3198
3199         if (inta & IPW2100_INTA_TX_TRANSFER) {
3200                 IPW_DEBUG_ISR("TX interrupt\n");
3201
3202                 priv->tx_interrupts++;
3203
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3205
3206                 __ipw2100_tx_complete(priv);
3207                 ipw2100_tx_send_commands(priv);
3208                 ipw2100_tx_send_data(priv);
3209         }
3210
3211         if (inta & IPW2100_INTA_TX_COMPLETE) {
3212                 IPW_DEBUG_ISR("TX complete\n");
3213                 priv->inta_other++;
3214                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3215
3216                 __ipw2100_tx_complete(priv);
3217         }
3218
3219         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3220                 /* ipw2100_handle_event(dev); */
3221                 priv->inta_other++;
3222                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3223         }
3224
3225         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3226                 IPW_DEBUG_ISR("FW init done interrupt\n");
3227                 priv->inta_other++;
3228
3229                 read_register(dev, IPW_REG_INTA, &tmp);
3230                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3231                            IPW2100_INTA_PARITY_ERROR)) {
3232                         write_register(dev, IPW_REG_INTA,
3233                                        IPW2100_INTA_FATAL_ERROR |
3234                                        IPW2100_INTA_PARITY_ERROR);
3235                 }
3236
3237                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3238         }
3239
3240         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3241                 IPW_DEBUG_ISR("Status change interrupt\n");
3242                 priv->inta_other++;
3243                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3244         }
3245
3246         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3247                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3248                 priv->inta_other++;
3249                 write_register(dev, IPW_REG_INTA,
3250                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3251         }
3252
3253         priv->in_isr--;
3254         ipw2100_enable_interrupts(priv);
3255
3256         spin_unlock_irqrestore(&priv->low_lock, flags);
3257
3258         IPW_DEBUG_ISR("exit\n");
3259 }
3260
3261 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3262 {
3263         struct ipw2100_priv *priv = data;
3264         u32 inta, inta_mask;
3265
3266         if (!data)
3267                 return IRQ_NONE;
3268
3269         spin_lock(&priv->low_lock);
3270
3271         /* We check to see if we should be ignoring interrupts before
3272          * we touch the hardware.  During ucode load if we try and handle
3273          * an interrupt we can cause keyboard problems as well as cause
3274          * the ucode to fail to initialize */
3275         if (!(priv->status & STATUS_INT_ENABLED)) {
3276                 /* Shared IRQ */
3277                 goto none;
3278         }
3279
3280         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3281         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3282
3283         if (inta == 0xFFFFFFFF) {
3284                 /* Hardware disappeared */
3285                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3286                 goto none;
3287         }
3288
3289         inta &= IPW_INTERRUPT_MASK;
3290
3291         if (!(inta & inta_mask)) {
3292                 /* Shared interrupt */
3293                 goto none;
3294         }
3295
3296         /* We disable the hardware interrupt here just to prevent unneeded
3297          * calls to be made.  We disable this again within the actual
3298          * work tasklet, so if another part of the code re-enables the
3299          * interrupt, that is fine */
3300         ipw2100_disable_interrupts(priv);
3301
3302         tasklet_schedule(&priv->irq_tasklet);
3303         spin_unlock(&priv->low_lock);
3304
3305         return IRQ_HANDLED;
3306       none:
3307         spin_unlock(&priv->low_lock);
3308         return IRQ_NONE;
3309 }
3310
3311 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3312                       int pri)
3313 {
3314         struct ipw2100_priv *priv = ieee80211_priv(dev);
3315         struct list_head *element;
3316         struct ipw2100_tx_packet *packet;
3317         unsigned long flags;
3318
3319         spin_lock_irqsave(&priv->low_lock, flags);
3320
3321         if (!(priv->status & STATUS_ASSOCIATED)) {
3322                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3323                 priv->ieee->stats.tx_carrier_errors++;
3324                 netif_stop_queue(dev);
3325                 goto fail_unlock;
3326         }
3327
3328         if (list_empty(&priv->tx_free_list))
3329                 goto fail_unlock;
3330
3331         element = priv->tx_free_list.next;
3332         packet = list_entry(element, struct ipw2100_tx_packet, list);
3333
3334         packet->info.d_struct.txb = txb;
3335
3336         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3337         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3338
3339         packet->jiffy_start = jiffies;
3340
3341         list_del(element);
3342         DEC_STAT(&priv->tx_free_stat);
3343
3344         list_add_tail(element, &priv->tx_pend_list);
3345         INC_STAT(&priv->tx_pend_stat);
3346
3347         ipw2100_tx_send_data(priv);
3348
3349         spin_unlock_irqrestore(&priv->low_lock, flags);
3350         return 0;
3351
3352       fail_unlock:
3353         netif_stop_queue(dev);
3354         spin_unlock_irqrestore(&priv->low_lock, flags);
3355         return 1;
3356 }
3357
3358 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3359 {
3360         int i, j, err = -EINVAL;
3361         void *v;
3362         dma_addr_t p;
3363
3364         priv->msg_buffers =
3365             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3366                                                 sizeof(struct
3367                                                        ipw2100_tx_packet),
3368                                                 GFP_KERNEL);
3369         if (!priv->msg_buffers) {
3370                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3371                        "buffers.\n", priv->net_dev->name);
3372                 return -ENOMEM;
3373         }
3374
3375         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3376                 v = pci_alloc_consistent(priv->pci_dev,
3377                                          sizeof(struct ipw2100_cmd_header), &p);
3378                 if (!v) {
3379                         printk(KERN_ERR DRV_NAME ": "
3380                                "%s: PCI alloc failed for msg "
3381                                "buffers.\n", priv->net_dev->name);
3382                         err = -ENOMEM;
3383                         break;
3384                 }
3385
3386                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3387
3388                 priv->msg_buffers[i].type = COMMAND;
3389                 priv->msg_buffers[i].info.c_struct.cmd =
3390                     (struct ipw2100_cmd_header *)v;
3391                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3392         }
3393
3394         if (i == IPW_COMMAND_POOL_SIZE)
3395                 return 0;
3396
3397         for (j = 0; j < i; j++) {
3398                 pci_free_consistent(priv->pci_dev,
3399                                     sizeof(struct ipw2100_cmd_header),
3400                                     priv->msg_buffers[j].info.c_struct.cmd,
3401                                     priv->msg_buffers[j].info.c_struct.
3402                                     cmd_phys);
3403         }
3404
3405         kfree(priv->msg_buffers);
3406         priv->msg_buffers = NULL;
3407
3408         return err;
3409 }
3410
3411 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3412 {
3413         int i;
3414
3415         INIT_LIST_HEAD(&priv->msg_free_list);
3416         INIT_LIST_HEAD(&priv->msg_pend_list);
3417
3418         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3419                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3420         SET_STAT(&priv->msg_free_stat, i);
3421
3422         return 0;
3423 }
3424
3425 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3426 {
3427         int i;
3428
3429         if (!priv->msg_buffers)
3430                 return;
3431
3432         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3433                 pci_free_consistent(priv->pci_dev,
3434                                     sizeof(struct ipw2100_cmd_header),
3435                                     priv->msg_buffers[i].info.c_struct.cmd,
3436                                     priv->msg_buffers[i].info.c_struct.
3437                                     cmd_phys);
3438         }
3439
3440         kfree(priv->msg_buffers);
3441         priv->msg_buffers = NULL;
3442 }
3443
3444 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3445                         char *buf)
3446 {
3447         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3448         char *out = buf;
3449         int i, j;
3450         u32 val;
3451
3452         for (i = 0; i < 16; i++) {
3453                 out += sprintf(out, "[%08X] ", i * 16);
3454                 for (j = 0; j < 16; j += 4) {
3455                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3456                         out += sprintf(out, "%08X ", val);
3457                 }
3458                 out += sprintf(out, "\n");
3459         }
3460
3461         return out - buf;
3462 }
3463
3464 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3465
3466 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3467                         char *buf)
3468 {
3469         struct ipw2100_priv *p = d->driver_data;
3470         return sprintf(buf, "0x%08x\n", (int)p->config);
3471 }
3472
3473 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3474
3475 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3476                            char *buf)
3477 {
3478         struct ipw2100_priv *p = d->driver_data;
3479         return sprintf(buf, "0x%08x\n", (int)p->status);
3480 }
3481
3482 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3483
3484 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3485                                char *buf)
3486 {
3487         struct ipw2100_priv *p = d->driver_data;
3488         return sprintf(buf, "0x%08x\n", (int)p->capability);
3489 }
3490
3491 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3492
3493 #define IPW2100_REG(x) { IPW_ ##x, #x }
3494 static const struct {
3495         u32 addr;
3496         const char *name;
3497 } hw_data[] = {
3498 IPW2100_REG(REG_GP_CNTRL),
3499             IPW2100_REG(REG_GPIO),
3500             IPW2100_REG(REG_INTA),
3501             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3502 #define IPW2100_NIC(x, s) { x, #x, s }
3503 static const struct {
3504         u32 addr;
3505         const char *name;
3506         size_t size;
3507 } nic_data[] = {
3508 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3509             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3510 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3511 static const struct {
3512         u8 index;
3513         const char *name;
3514         const char *desc;
3515 } ord_data[] = {
3516 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3517             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3518                                 "successful Host Tx's (MSDU)"),
3519             IPW2100_ORD(STAT_TX_DIR_DATA,
3520                                 "successful Directed Tx's (MSDU)"),
3521             IPW2100_ORD(STAT_TX_DIR_DATA1,
3522                                 "successful Directed Tx's (MSDU) @ 1MB"),
3523             IPW2100_ORD(STAT_TX_DIR_DATA2,
3524                                 "successful Directed Tx's (MSDU) @ 2MB"),
3525             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3526                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3527             IPW2100_ORD(STAT_TX_DIR_DATA11,
3528                                 "successful Directed Tx's (MSDU) @ 11MB"),
3529             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3530                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3531             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3532                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3533             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3534                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3535             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3536                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3537             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3538             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3539             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3540             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3541             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3542             IPW2100_ORD(STAT_TX_ASSN_RESP,
3543                                 "successful Association response Tx's"),
3544             IPW2100_ORD(STAT_TX_REASSN,
3545                                 "successful Reassociation Tx's"),
3546             IPW2100_ORD(STAT_TX_REASSN_RESP,
3547                                 "successful Reassociation response Tx's"),
3548             IPW2100_ORD(STAT_TX_PROBE,
3549                                 "probes successfully transmitted"),
3550             IPW2100_ORD(STAT_TX_PROBE_RESP,
3551                                 "probe responses successfully transmitted"),
3552             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3553             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3554             IPW2100_ORD(STAT_TX_DISASSN,
3555                                 "successful Disassociation TX"),
3556             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3557             IPW2100_ORD(STAT_TX_DEAUTH,
3558                                 "successful Deauthentication TX"),
3559             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3560                                 "Total successful Tx data bytes"),
3561             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3562             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3563             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3564             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3565             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3566             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3567             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3568                                 "times max tries in a hop failed"),
3569             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3570                                 "times disassociation failed"),
3571             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3572             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3573             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3574             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3575             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3576             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3577             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3578                                 "directed packets at 5.5MB"),
3579             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3580             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3581             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3582                                 "nondirected packets at 1MB"),
3583             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3584                                 "nondirected packets at 2MB"),
3585             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3586                                 "nondirected packets at 5.5MB"),
3587             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3588                                 "nondirected packets at 11MB"),
3589             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3590             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3591                                                                     "Rx CTS"),
3592             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3593             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3594             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3595             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3596             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3597             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3598             IPW2100_ORD(STAT_RX_REASSN_RESP,
3599                                 "Reassociation response Rx's"),
3600             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3601             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3602             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3603             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3604             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3605             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3606             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3607             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3608                                 "Total rx data bytes received"),
3609             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3610             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3611             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3612             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3613             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3614             IPW2100_ORD(STAT_RX_DUPLICATE1,
3615                                 "duplicate rx packets at 1MB"),
3616             IPW2100_ORD(STAT_RX_DUPLICATE2,
3617                                 "duplicate rx packets at 2MB"),
3618             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3619                                 "duplicate rx packets at 5.5MB"),
3620             IPW2100_ORD(STAT_RX_DUPLICATE11,
3621                                 "duplicate rx packets at 11MB"),
3622             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3623             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3624             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3625             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3626             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3627                                 "rx frames with invalid protocol"),
3628             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3629             IPW2100_ORD(STAT_RX_NO_BUFFER,
3630                                 "rx frames rejected due to no buffer"),
3631             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3632                                 "rx frames dropped due to missing fragment"),
3633             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3634                                 "rx frames dropped due to non-sequential fragment"),
3635             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3636                                 "rx frames dropped due to unmatched 1st frame"),
3637             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3638                                 "rx frames dropped due to uncompleted frame"),
3639             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3640                                 "ICV errors during decryption"),
3641             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3642             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3643             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3644                                 "poll response timeouts"),
3645             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3646                                 "timeouts waiting for last {broad,multi}cast pkt"),
3647             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3648             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3649             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3650             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3651             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3652                                 "current calculation of % missed beacons"),
3653             IPW2100_ORD(STAT_PERCENT_RETRIES,
3654                                 "current calculation of % missed tx retries"),
3655             IPW2100_ORD(ASSOCIATED_AP_PTR,
3656                                 "0 if not associated, else pointer to AP table entry"),
3657             IPW2100_ORD(AVAILABLE_AP_CNT,
3658                                 "AP's decsribed in the AP table"),
3659             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3660             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3661             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3662             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3663                                 "failures due to response fail"),
3664             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3665             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3666             IPW2100_ORD(STAT_ROAM_INHIBIT,
3667                                 "times roaming was inhibited due to activity"),
3668             IPW2100_ORD(RSSI_AT_ASSN,
3669                                 "RSSI of associated AP at time of association"),
3670             IPW2100_ORD(STAT_ASSN_CAUSE1,
3671                                 "reassociation: no probe response or TX on hop"),
3672             IPW2100_ORD(STAT_ASSN_CAUSE2,
3673                                 "reassociation: poor tx/rx quality"),
3674             IPW2100_ORD(STAT_ASSN_CAUSE3,
3675                                 "reassociation: tx/rx quality (excessive AP load"),
3676             IPW2100_ORD(STAT_ASSN_CAUSE4,
3677                                 "reassociation: AP RSSI level"),
3678             IPW2100_ORD(STAT_ASSN_CAUSE5,
3679                                 "reassociations due to load leveling"),
3680             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3681             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3682                                 "times authentication response failed"),
3683             IPW2100_ORD(STATION_TABLE_CNT,
3684                                 "entries in association table"),
3685             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3686             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3687             IPW2100_ORD(COUNTRY_CODE,
3688                                 "IEEE country code as recv'd from beacon"),
3689             IPW2100_ORD(COUNTRY_CHANNELS,
3690                                 "channels suported by country"),
3691             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3692             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3693             IPW2100_ORD(ANTENNA_DIVERSITY,
3694                                 "TRUE if antenna diversity is disabled"),
3695             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3696             IPW2100_ORD(OUR_FREQ,
3697                                 "current radio freq lower digits - channel ID"),
3698             IPW2100_ORD(RTC_TIME, "current RTC time"),
3699             IPW2100_ORD(PORT_TYPE, "operating mode"),
3700             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3701             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3702             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3703             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3704             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3705             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3706             IPW2100_ORD(CAPABILITIES,
3707                                 "Management frame capability field"),
3708             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3709             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3710             IPW2100_ORD(RTS_THRESHOLD,
3711                                 "Min packet length for RTS handshaking"),
3712             IPW2100_ORD(INT_MODE, "International mode"),
3713             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3714                                 "protocol frag threshold"),
3715             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3716                                 "EEPROM offset in SRAM"),
3717             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3718                                 "EEPROM size in SRAM"),
3719             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3720             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3721                                 "EEPROM IBSS 11b channel set"),
3722             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3723             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3724             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3725             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3726             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3727
3728 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3729                               char *buf)
3730 {
3731         int i;
3732         struct ipw2100_priv *priv = dev_get_drvdata(d);
3733         struct net_device *dev = priv->net_dev;
3734         char *out = buf;
3735         u32 val = 0;
3736
3737         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3738
3739         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3740                 read_register(dev, hw_data[i].addr, &val);
3741                 out += sprintf(out, "%30s [%08X] : %08X\n",
3742                                hw_data[i].name, hw_data[i].addr, val);
3743         }
3744
3745         return out - buf;
3746 }
3747
3748 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3749
3750 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3751                              char *buf)
3752 {
3753         struct ipw2100_priv *priv = dev_get_drvdata(d);
3754         struct net_device *dev = priv->net_dev;
3755         char *out = buf;
3756         int i;
3757
3758         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3759
3760         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3761                 u8 tmp8;
3762                 u16 tmp16;
3763                 u32 tmp32;
3764
3765                 switch (nic_data[i].size) {
3766                 case 1:
3767                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3768                         out += sprintf(out, "%30s [%08X] : %02X\n",
3769                                        nic_data[i].name, nic_data[i].addr,
3770                                        tmp8);
3771                         break;
3772                 case 2:
3773                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3774                         out += sprintf(out, "%30s [%08X] : %04X\n",
3775                                        nic_data[i].name, nic_data[i].addr,
3776                                        tmp16);
3777                         break;
3778                 case 4:
3779                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3780                         out += sprintf(out, "%30s [%08X] : %08X\n",
3781                                        nic_data[i].name, nic_data[i].addr,
3782                                        tmp32);
3783                         break;
3784                 }
3785         }
3786         return out - buf;
3787 }
3788
3789 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3790
3791 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3792                            char *buf)
3793 {
3794         struct ipw2100_priv *priv = dev_get_drvdata(d);
3795         struct net_device *dev = priv->net_dev;
3796         static unsigned long loop = 0;
3797         int len = 0;
3798         u32 buffer[4];
3799         int i;
3800         char line[81];
3801
3802         if (loop >= 0x30000)
3803                 loop = 0;
3804
3805         /* sysfs provides us PAGE_SIZE buffer */
3806         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3807
3808                 if (priv->snapshot[0])
3809                         for (i = 0; i < 4; i++)
3810                                 buffer[i] =
3811                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3812                 else
3813                         for (i = 0; i < 4; i++)
3814                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3815
3816                 if (priv->dump_raw)
3817                         len += sprintf(buf + len,
3818                                        "%c%c%c%c"
3819                                        "%c%c%c%c"
3820                                        "%c%c%c%c"
3821                                        "%c%c%c%c",
3822                                        ((u8 *) buffer)[0x0],
3823                                        ((u8 *) buffer)[0x1],
3824                                        ((u8 *) buffer)[0x2],
3825                                        ((u8 *) buffer)[0x3],
3826                                        ((u8 *) buffer)[0x4],
3827                                        ((u8 *) buffer)[0x5],
3828                                        ((u8 *) buffer)[0x6],
3829                                        ((u8 *) buffer)[0x7],
3830                                        ((u8 *) buffer)[0x8],
3831                                        ((u8 *) buffer)[0x9],
3832                                        ((u8 *) buffer)[0xa],
3833                                        ((u8 *) buffer)[0xb],
3834                                        ((u8 *) buffer)[0xc],
3835                                        ((u8 *) buffer)[0xd],
3836                                        ((u8 *) buffer)[0xe],
3837                                        ((u8 *) buffer)[0xf]);
3838                 else
3839                         len += sprintf(buf + len, "%s\n",
3840                                        snprint_line(line, sizeof(line),
3841                                                     (u8 *) buffer, 16, loop));
3842                 loop += 16;
3843         }
3844
3845         return len;
3846 }
3847
3848 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3849                             const char *buf, size_t count)
3850 {
3851         struct ipw2100_priv *priv = dev_get_drvdata(d);
3852         struct net_device *dev = priv->net_dev;
3853         const char *p = buf;
3854
3855         (void)dev;              /* kill unused-var warning for debug-only code */
3856
3857         if (count < 1)
3858                 return count;
3859
3860         if (p[0] == '1' ||
3861             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3862                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3863                                dev->name);
3864                 priv->dump_raw = 1;
3865
3866         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3867                                    tolower(p[1]) == 'f')) {
3868                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3869                                dev->name);
3870                 priv->dump_raw = 0;
3871
3872         } else if (tolower(p[0]) == 'r') {
3873                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3874                 ipw2100_snapshot_free(priv);
3875
3876         } else
3877                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3878                                "reset = clear memory snapshot\n", dev->name);
3879
3880         return count;
3881 }
3882
3883 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3884
3885 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3886                              char *buf)
3887 {
3888         struct ipw2100_priv *priv = dev_get_drvdata(d);
3889         u32 val = 0;
3890         int len = 0;
3891         u32 val_len;
3892         static int loop = 0;
3893
3894         if (priv->status & STATUS_RF_KILL_MASK)
3895                 return 0;
3896
3897         if (loop >= ARRAY_SIZE(ord_data))
3898                 loop = 0;
3899
3900         /* sysfs provides us PAGE_SIZE buffer */
3901         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3902                 val_len = sizeof(u32);
3903
3904                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3905                                         &val_len))
3906                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3907                                        ord_data[loop].index,
3908                                        ord_data[loop].desc);
3909                 else
3910                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3911                                        ord_data[loop].index, val,
3912                                        ord_data[loop].desc);
3913                 loop++;
3914         }
3915
3916         return len;
3917 }
3918
3919 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3920
3921 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3922                           char *buf)
3923 {
3924         struct ipw2100_priv *priv = dev_get_drvdata(d);
3925         char *out = buf;
3926
3927         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3928                        priv->interrupts, priv->tx_interrupts,
3929                        priv->rx_interrupts, priv->inta_other);
3930         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3931         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3932 #ifdef CONFIG_IPW2100_DEBUG
3933         out += sprintf(out, "packet mismatch image: %s\n",
3934                        priv->snapshot[0] ? "YES" : "NO");
3935 #endif
3936
3937         return out - buf;
3938 }
3939
3940 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3941
3942 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3943 {
3944         int err;
3945
3946         if (mode == priv->ieee->iw_mode)
3947                 return 0;
3948
3949         err = ipw2100_disable_adapter(priv);
3950         if (err) {
3951                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3952                        priv->net_dev->name, err);
3953                 return err;
3954         }
3955
3956         switch (mode) {
3957         case IW_MODE_INFRA:
3958                 priv->net_dev->type = ARPHRD_ETHER;
3959                 break;
3960         case IW_MODE_ADHOC:
3961                 priv->net_dev->type = ARPHRD_ETHER;
3962                 break;
3963 #ifdef CONFIG_IPW2100_MONITOR
3964         case IW_MODE_MONITOR:
3965                 priv->last_mode = priv->ieee->iw_mode;
3966                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3967                 break;
3968 #endif                          /* CONFIG_IPW2100_MONITOR */
3969         }
3970
3971         priv->ieee->iw_mode = mode;
3972
3973 #ifdef CONFIG_PM
3974         /* Indicate ipw2100_download_firmware download firmware
3975          * from disk instead of memory. */
3976         ipw2100_firmware.version = 0;
3977 #endif
3978
3979         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3980         priv->reset_backoff = 0;
3981         schedule_reset(priv);
3982
3983         return 0;
3984 }
3985
3986 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3987                               char *buf)
3988 {
3989         struct ipw2100_priv *priv = dev_get_drvdata(d);
3990         int len = 0;
3991
3992 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3993
3994         if (priv->status & STATUS_ASSOCIATED)
3995                 len += sprintf(buf + len, "connected: %lu\n",
3996                                get_seconds() - priv->connect_start);
3997         else
3998                 len += sprintf(buf + len, "not connected\n");
3999
4000         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4001         DUMP_VAR(status, "08lx");
4002         DUMP_VAR(config, "08lx");
4003         DUMP_VAR(capability, "08lx");
4004
4005         len +=
4006             sprintf(buf + len, "last_rtc: %lu\n",
4007                     (unsigned long)priv->last_rtc);
4008
4009         DUMP_VAR(fatal_error, "d");
4010         DUMP_VAR(stop_hang_check, "d");
4011         DUMP_VAR(stop_rf_kill, "d");
4012         DUMP_VAR(messages_sent, "d");
4013
4014         DUMP_VAR(tx_pend_stat.value, "d");
4015         DUMP_VAR(tx_pend_stat.hi, "d");
4016
4017         DUMP_VAR(tx_free_stat.value, "d");
4018         DUMP_VAR(tx_free_stat.lo, "d");
4019
4020         DUMP_VAR(msg_free_stat.value, "d");
4021         DUMP_VAR(msg_free_stat.lo, "d");
4022
4023         DUMP_VAR(msg_pend_stat.value, "d");
4024         DUMP_VAR(msg_pend_stat.hi, "d");
4025
4026         DUMP_VAR(fw_pend_stat.value, "d");
4027         DUMP_VAR(fw_pend_stat.hi, "d");
4028
4029         DUMP_VAR(txq_stat.value, "d");
4030         DUMP_VAR(txq_stat.lo, "d");
4031
4032         DUMP_VAR(ieee->scans, "d");
4033         DUMP_VAR(reset_backoff, "d");
4034
4035         return len;
4036 }
4037
4038 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4039
4040 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4041                             char *buf)
4042 {
4043         struct ipw2100_priv *priv = dev_get_drvdata(d);
4044         char essid[IW_ESSID_MAX_SIZE + 1];
4045         u8 bssid[ETH_ALEN];
4046         u32 chan = 0;
4047         char *out = buf;
4048         int length;
4049         int ret;
4050
4051         if (priv->status & STATUS_RF_KILL_MASK)
4052                 return 0;
4053
4054         memset(essid, 0, sizeof(essid));
4055         memset(bssid, 0, sizeof(bssid));
4056
4057         length = IW_ESSID_MAX_SIZE;
4058         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4059         if (ret)
4060                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4061                                __LINE__);
4062
4063         length = sizeof(bssid);
4064         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4065                                   bssid, &length);
4066         if (ret)
4067                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4068                                __LINE__);
4069
4070         length = sizeof(u32);
4071         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4072         if (ret)
4073                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4074                                __LINE__);
4075
4076         out += sprintf(out, "ESSID: %s\n", essid);
4077         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4078                        bssid[0], bssid[1], bssid[2],
4079                        bssid[3], bssid[4], bssid[5]);
4080         out += sprintf(out, "Channel: %d\n", chan);
4081
4082         return out - buf;
4083 }
4084
4085 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4086
4087 #ifdef CONFIG_IPW2100_DEBUG
4088 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4089 {
4090         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4091 }
4092
4093 static ssize_t store_debug_level(struct device_driver *d,
4094                                  const char *buf, size_t count)
4095 {
4096         char *p = (char *)buf;
4097         u32 val;
4098
4099         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4100                 p++;
4101                 if (p[0] == 'x' || p[0] == 'X')
4102                         p++;
4103                 val = simple_strtoul(p, &p, 16);
4104         } else
4105                 val = simple_strtoul(p, &p, 10);
4106         if (p == buf)
4107                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4108         else
4109                 ipw2100_debug_level = val;
4110
4111         return strnlen(buf, count);
4112 }
4113
4114 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4115                    store_debug_level);
4116 #endif                          /* CONFIG_IPW2100_DEBUG */
4117
4118 static ssize_t show_fatal_error(struct device *d,
4119                                 struct device_attribute *attr, char *buf)
4120 {
4121         struct ipw2100_priv *priv = dev_get_drvdata(d);
4122         char *out = buf;
4123         int i;
4124
4125         if (priv->fatal_error)
4126                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4127         else
4128                 out += sprintf(out, "0\n");
4129
4130         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4131                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4132                                         IPW2100_ERROR_QUEUE])
4133                         continue;
4134
4135                 out += sprintf(out, "%d. 0x%08X\n", i,
4136                                priv->fatal_errors[(priv->fatal_index - i) %
4137                                                   IPW2100_ERROR_QUEUE]);
4138         }
4139
4140         return out - buf;
4141 }
4142
4143 static ssize_t store_fatal_error(struct device *d,
4144                                  struct device_attribute *attr, const char *buf,
4145                                  size_t count)
4146 {
4147         struct ipw2100_priv *priv = dev_get_drvdata(d);
4148         schedule_reset(priv);
4149         return count;
4150 }
4151
4152 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4153                    store_fatal_error);
4154
4155 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4156                              char *buf)
4157 {
4158         struct ipw2100_priv *priv = dev_get_drvdata(d);
4159         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4160 }
4161
4162 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4163                               const char *buf, size_t count)
4164 {
4165         struct ipw2100_priv *priv = dev_get_drvdata(d);
4166         struct net_device *dev = priv->net_dev;
4167         char buffer[] = "00000000";
4168         unsigned long len =
4169             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4170         unsigned long val;
4171         char *p = buffer;
4172
4173         (void)dev;              /* kill unused-var warning for debug-only code */
4174
4175         IPW_DEBUG_INFO("enter\n");
4176
4177         strncpy(buffer, buf, len);
4178         buffer[len] = 0;
4179
4180         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4181                 p++;
4182                 if (p[0] == 'x' || p[0] == 'X')
4183                         p++;
4184                 val = simple_strtoul(p, &p, 16);
4185         } else
4186                 val = simple_strtoul(p, &p, 10);
4187         if (p == buffer) {
4188                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4189         } else {
4190                 priv->ieee->scan_age = val;
4191                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4192         }
4193
4194         IPW_DEBUG_INFO("exit\n");
4195         return len;
4196 }
4197
4198 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4199
4200 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4201                             char *buf)
4202 {
4203         /* 0 - RF kill not enabled
4204            1 - SW based RF kill active (sysfs)
4205            2 - HW based RF kill active
4206            3 - Both HW and SW baed RF kill active */
4207         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4208         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4209             (rf_kill_active(priv) ? 0x2 : 0x0);
4210         return sprintf(buf, "%i\n", val);
4211 }
4212
4213 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4214 {
4215         if ((disable_radio ? 1 : 0) ==
4216             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4217                 return 0;
4218
4219         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4220                           disable_radio ? "OFF" : "ON");
4221
4222         mutex_lock(&priv->action_mutex);
4223
4224         if (disable_radio) {
4225                 priv->status |= STATUS_RF_KILL_SW;
4226                 ipw2100_down(priv);
4227         } else {
4228                 priv->status &= ~STATUS_RF_KILL_SW;
4229                 if (rf_kill_active(priv)) {
4230                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4231                                           "disabled by HW switch\n");
4232                         /* Make sure the RF_KILL check timer is running */
4233                         priv->stop_rf_kill = 0;
4234                         cancel_delayed_work(&priv->rf_kill);
4235                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4236                 } else
4237                         schedule_reset(priv);
4238         }
4239
4240         mutex_unlock(&priv->action_mutex);
4241         return 1;
4242 }
4243
4244 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4245                              const char *buf, size_t count)
4246 {
4247         struct ipw2100_priv *priv = dev_get_drvdata(d);
4248         ipw_radio_kill_sw(priv, buf[0] == '1');
4249         return count;
4250 }
4251
4252 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4253
4254 static struct attribute *ipw2100_sysfs_entries[] = {
4255         &dev_attr_hardware.attr,
4256         &dev_attr_registers.attr,
4257         &dev_attr_ordinals.attr,
4258         &dev_attr_pci.attr,
4259         &dev_attr_stats.attr,
4260         &dev_attr_internals.attr,
4261         &dev_attr_bssinfo.attr,
4262         &dev_attr_memory.attr,
4263         &dev_attr_scan_age.attr,
4264         &dev_attr_fatal_error.attr,
4265         &dev_attr_rf_kill.attr,
4266         &dev_attr_cfg.attr,
4267         &dev_attr_status.attr,
4268         &dev_attr_capability.attr,
4269         NULL,
4270 };
4271
4272 static struct attribute_group ipw2100_attribute_group = {
4273         .attrs = ipw2100_sysfs_entries,
4274 };
4275
4276 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4277 {
4278         struct ipw2100_status_queue *q = &priv->status_queue;
4279
4280         IPW_DEBUG_INFO("enter\n");
4281
4282         q->size = entries * sizeof(struct ipw2100_status);
4283         q->drv =
4284             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4285                                                           q->size, &q->nic);
4286         if (!q->drv) {
4287                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4288                 return -ENOMEM;
4289         }
4290
4291         memset(q->drv, 0, q->size);
4292
4293         IPW_DEBUG_INFO("exit\n");
4294
4295         return 0;
4296 }
4297
4298 static void status_queue_free(struct ipw2100_priv *priv)
4299 {
4300         IPW_DEBUG_INFO("enter\n");
4301
4302         if (priv->status_queue.drv) {
4303                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4304                                     priv->status_queue.drv,
4305                                     priv->status_queue.nic);
4306                 priv->status_queue.drv = NULL;
4307         }
4308
4309         IPW_DEBUG_INFO("exit\n");
4310 }
4311
4312 static int bd_queue_allocate(struct ipw2100_priv *priv,
4313                              struct ipw2100_bd_queue *q, int entries)
4314 {
4315         IPW_DEBUG_INFO("enter\n");
4316
4317         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4318
4319         q->entries = entries;
4320         q->size = entries * sizeof(struct ipw2100_bd);
4321         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4322         if (!q->drv) {
4323                 IPW_DEBUG_INFO
4324                     ("can't allocate shared memory for buffer descriptors\n");
4325                 return -ENOMEM;
4326         }
4327         memset(q->drv, 0, q->size);
4328
4329         IPW_DEBUG_INFO("exit\n");
4330
4331         return 0;
4332 }
4333
4334 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4335 {
4336         IPW_DEBUG_INFO("enter\n");
4337
4338         if (!q)
4339                 return;
4340
4341         if (q->drv) {
4342                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4343                 q->drv = NULL;
4344         }
4345
4346         IPW_DEBUG_INFO("exit\n");
4347 }
4348
4349 static void bd_queue_initialize(struct ipw2100_priv *priv,
4350                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4351                                 u32 r, u32 w)
4352 {
4353         IPW_DEBUG_INFO("enter\n");
4354
4355         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4356                        (u32) q->nic);
4357
4358         write_register(priv->net_dev, base, q->nic);
4359         write_register(priv->net_dev, size, q->entries);
4360         write_register(priv->net_dev, r, q->oldest);
4361         write_register(priv->net_dev, w, q->next);
4362
4363         IPW_DEBUG_INFO("exit\n");
4364 }
4365
4366 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4367 {
4368         if (priv->workqueue) {
4369                 priv->stop_rf_kill = 1;
4370                 priv->stop_hang_check = 1;
4371                 cancel_delayed_work(&priv->reset_work);
4372                 cancel_delayed_work(&priv->security_work);
4373                 cancel_delayed_work(&priv->wx_event_work);
4374                 cancel_delayed_work(&priv->hang_check);
4375                 cancel_delayed_work(&priv->rf_kill);
4376                 destroy_workqueue(priv->workqueue);
4377                 priv->workqueue = NULL;
4378         }
4379 }
4380
4381 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4382 {
4383         int i, j, err = -EINVAL;
4384         void *v;
4385         dma_addr_t p;
4386
4387         IPW_DEBUG_INFO("enter\n");
4388
4389         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4390         if (err) {
4391                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4392                                 priv->net_dev->name);
4393                 return err;
4394         }
4395
4396         priv->tx_buffers =
4397             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4398                                                 sizeof(struct
4399                                                        ipw2100_tx_packet),
4400                                                 GFP_ATOMIC);
4401         if (!priv->tx_buffers) {
4402                 printk(KERN_ERR DRV_NAME
4403                        ": %s: alloc failed form tx buffers.\n",
4404                        priv->net_dev->name);
4405                 bd_queue_free(priv, &priv->tx_queue);
4406                 return -ENOMEM;
4407         }
4408
4409         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4410                 v = pci_alloc_consistent(priv->pci_dev,
4411                                          sizeof(struct ipw2100_data_header),
4412                                          &p);
4413                 if (!v) {
4414                         printk(KERN_ERR DRV_NAME
4415                                ": %s: PCI alloc failed for tx " "buffers.\n",
4416                                priv->net_dev->name);
4417                         err = -ENOMEM;
4418                         break;
4419                 }
4420
4421                 priv->tx_buffers[i].type = DATA;
4422                 priv->tx_buffers[i].info.d_struct.data =
4423                     (struct ipw2100_data_header *)v;
4424                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4425                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4426         }
4427
4428         if (i == TX_PENDED_QUEUE_LENGTH)
4429                 return 0;
4430
4431         for (j = 0; j < i; j++) {
4432                 pci_free_consistent(priv->pci_dev,
4433                                     sizeof(struct ipw2100_data_header),
4434                                     priv->tx_buffers[j].info.d_struct.data,
4435                                     priv->tx_buffers[j].info.d_struct.
4436                                     data_phys);
4437         }
4438
4439         kfree(priv->tx_buffers);
4440         priv->tx_buffers = NULL;
4441
4442         return err;
4443 }
4444
4445 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4446 {
4447         int i;
4448
4449         IPW_DEBUG_INFO("enter\n");
4450
4451         /*
4452          * reinitialize packet info lists
4453          */
4454         INIT_LIST_HEAD(&priv->fw_pend_list);
4455         INIT_STAT(&priv->fw_pend_stat);
4456
4457         /*
4458          * reinitialize lists
4459          */
4460         INIT_LIST_HEAD(&priv->tx_pend_list);
4461         INIT_LIST_HEAD(&priv->tx_free_list);
4462         INIT_STAT(&priv->tx_pend_stat);
4463         INIT_STAT(&priv->tx_free_stat);
4464
4465         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4466                 /* We simply drop any SKBs that have been queued for
4467                  * transmit */
4468                 if (priv->tx_buffers[i].info.d_struct.txb) {
4469                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4470                                            txb);
4471                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4472                 }
4473
4474                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4475         }
4476
4477         SET_STAT(&priv->tx_free_stat, i);
4478
4479         priv->tx_queue.oldest = 0;
4480         priv->tx_queue.available = priv->tx_queue.entries;
4481         priv->tx_queue.next = 0;
4482         INIT_STAT(&priv->txq_stat);
4483         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4484
4485         bd_queue_initialize(priv, &priv->tx_queue,
4486                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4487                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4488                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4489                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4490
4491         IPW_DEBUG_INFO("exit\n");
4492
4493 }
4494
4495 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4496 {
4497         int i;
4498
4499         IPW_DEBUG_INFO("enter\n");
4500
4501         bd_queue_free(priv, &priv->tx_queue);
4502
4503         if (!priv->tx_buffers)
4504                 return;
4505
4506         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4507                 if (priv->tx_buffers[i].info.d_struct.txb) {
4508                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4509                                            txb);
4510                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4511                 }
4512                 if (priv->tx_buffers[i].info.d_struct.data)
4513                         pci_free_consistent(priv->pci_dev,
4514                                             sizeof(struct ipw2100_data_header),
4515                                             priv->tx_buffers[i].info.d_struct.
4516                                             data,
4517                                             priv->tx_buffers[i].info.d_struct.
4518                                             data_phys);
4519         }
4520
4521         kfree(priv->tx_buffers);
4522         priv->tx_buffers = NULL;
4523
4524         IPW_DEBUG_INFO("exit\n");
4525 }
4526
4527 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4528 {
4529         int i, j, err = -EINVAL;
4530
4531         IPW_DEBUG_INFO("enter\n");
4532
4533         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4534         if (err) {
4535                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4536                 return err;
4537         }
4538
4539         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4540         if (err) {
4541                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4542                 bd_queue_free(priv, &priv->rx_queue);
4543                 return err;
4544         }
4545
4546         /*
4547          * allocate packets
4548          */
4549         priv->rx_buffers = (struct ipw2100_rx_packet *)
4550             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4551                     GFP_KERNEL);
4552         if (!priv->rx_buffers) {
4553                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4554
4555                 bd_queue_free(priv, &priv->rx_queue);
4556
4557                 status_queue_free(priv);
4558
4559                 return -ENOMEM;
4560         }
4561
4562         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4563                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4564
4565                 err = ipw2100_alloc_skb(priv, packet);
4566                 if (unlikely(err)) {
4567                         err = -ENOMEM;
4568                         break;
4569                 }
4570
4571                 /* The BD holds the cache aligned address */
4572                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4573                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4574                 priv->status_queue.drv[i].status_fields = 0;
4575         }
4576
4577         if (i == RX_QUEUE_LENGTH)
4578                 return 0;
4579
4580         for (j = 0; j < i; j++) {
4581                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4582                                  sizeof(struct ipw2100_rx_packet),
4583                                  PCI_DMA_FROMDEVICE);
4584                 dev_kfree_skb(priv->rx_buffers[j].skb);
4585         }
4586
4587         kfree(priv->rx_buffers);
4588         priv->rx_buffers = NULL;
4589
4590         bd_queue_free(priv, &priv->rx_queue);
4591
4592         status_queue_free(priv);
4593
4594         return err;
4595 }
4596
4597 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4598 {
4599         IPW_DEBUG_INFO("enter\n");
4600
4601         priv->rx_queue.oldest = 0;
4602         priv->rx_queue.available = priv->rx_queue.entries - 1;
4603         priv->rx_queue.next = priv->rx_queue.entries - 1;
4604
4605         INIT_STAT(&priv->rxq_stat);
4606         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4607
4608         bd_queue_initialize(priv, &priv->rx_queue,
4609                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4610                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4611                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4612                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4613
4614         /* set up the status queue */
4615         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4616                        priv->status_queue.nic);
4617
4618         IPW_DEBUG_INFO("exit\n");
4619 }
4620
4621 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4622 {
4623         int i;
4624
4625         IPW_DEBUG_INFO("enter\n");
4626
4627         bd_queue_free(priv, &priv->rx_queue);
4628         status_queue_free(priv);
4629
4630         if (!priv->rx_buffers)
4631                 return;
4632
4633         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4634                 if (priv->rx_buffers[i].rxp) {
4635                         pci_unmap_single(priv->pci_dev,
4636                                          priv->rx_buffers[i].dma_addr,
4637                                          sizeof(struct ipw2100_rx),
4638                                          PCI_DMA_FROMDEVICE);
4639                         dev_kfree_skb(priv->rx_buffers[i].skb);
4640                 }
4641         }
4642
4643         kfree(priv->rx_buffers);
4644         priv->rx_buffers = NULL;
4645
4646         IPW_DEBUG_INFO("exit\n");
4647 }
4648
4649 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4650 {
4651         u32 length = ETH_ALEN;
4652         u8 mac[ETH_ALEN];
4653
4654         int err;
4655
4656         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4657         if (err) {
4658                 IPW_DEBUG_INFO("MAC address read failed\n");
4659                 return -EIO;
4660         }
4661         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4662                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4663
4664         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4665
4666         return 0;
4667 }
4668
4669 /********************************************************************
4670  *
4671  * Firmware Commands
4672  *
4673  ********************************************************************/
4674
4675 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4676 {
4677         struct host_command cmd = {
4678                 .host_command = ADAPTER_ADDRESS,
4679                 .host_command_sequence = 0,
4680                 .host_command_length = ETH_ALEN
4681         };
4682         int err;
4683
4684         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4685
4686         IPW_DEBUG_INFO("enter\n");
4687
4688         if (priv->config & CFG_CUSTOM_MAC) {
4689                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4690                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4691         } else
4692                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4693                        ETH_ALEN);
4694
4695         err = ipw2100_hw_send_command(priv, &cmd);
4696
4697         IPW_DEBUG_INFO("exit\n");
4698         return err;
4699 }
4700
4701 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4702                                  int batch_mode)
4703 {
4704         struct host_command cmd = {
4705                 .host_command = PORT_TYPE,
4706                 .host_command_sequence = 0,
4707                 .host_command_length = sizeof(u32)
4708         };
4709         int err;
4710
4711         switch (port_type) {
4712         case IW_MODE_INFRA:
4713                 cmd.host_command_parameters[0] = IPW_BSS;
4714                 break;
4715         case IW_MODE_ADHOC:
4716                 cmd.host_command_parameters[0] = IPW_IBSS;
4717                 break;
4718         }
4719
4720         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4721                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4722
4723         if (!batch_mode) {
4724                 err = ipw2100_disable_adapter(priv);
4725                 if (err) {
4726                         printk(KERN_ERR DRV_NAME
4727                                ": %s: Could not disable adapter %d\n",
4728                                priv->net_dev->name, err);
4729                         return err;
4730                 }
4731         }
4732
4733         /* send cmd to firmware */
4734         err = ipw2100_hw_send_command(priv, &cmd);
4735
4736         if (!batch_mode)
4737                 ipw2100_enable_adapter(priv);
4738
4739         return err;
4740 }
4741
4742 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4743                                int batch_mode)
4744 {
4745         struct host_command cmd = {
4746                 .host_command = CHANNEL,
4747                 .host_command_sequence = 0,
4748                 .host_command_length = sizeof(u32)
4749         };
4750         int err;
4751
4752         cmd.host_command_parameters[0] = channel;
4753
4754         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4755
4756         /* If BSS then we don't support channel selection */
4757         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4758                 return 0;
4759
4760         if ((channel != 0) &&
4761             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4762                 return -EINVAL;
4763
4764         if (!batch_mode) {
4765                 err = ipw2100_disable_adapter(priv);
4766                 if (err)
4767                         return err;
4768         }
4769
4770         err = ipw2100_hw_send_command(priv, &cmd);
4771         if (err) {
4772                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4773                 return err;
4774         }
4775
4776         if (channel)
4777                 priv->config |= CFG_STATIC_CHANNEL;
4778         else
4779                 priv->config &= ~CFG_STATIC_CHANNEL;
4780
4781         priv->channel = channel;
4782
4783         if (!batch_mode) {
4784                 err = ipw2100_enable_adapter(priv);
4785                 if (err)
4786                         return err;
4787         }
4788
4789         return 0;
4790 }
4791
4792 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4793 {
4794         struct host_command cmd = {
4795                 .host_command = SYSTEM_CONFIG,
4796                 .host_command_sequence = 0,
4797                 .host_command_length = 12,
4798         };
4799         u32 ibss_mask, len = sizeof(u32);
4800         int err;
4801
4802         /* Set system configuration */
4803
4804         if (!batch_mode) {
4805                 err = ipw2100_disable_adapter(priv);
4806                 if (err)
4807                         return err;
4808         }
4809
4810         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4811                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4812
4813         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4814             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4815
4816         if (!(priv->config & CFG_LONG_PREAMBLE))
4817                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4818
4819         err = ipw2100_get_ordinal(priv,
4820                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4821                                   &ibss_mask, &len);
4822         if (err)
4823                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4824
4825         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4826         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4827
4828         /* 11b only */
4829         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4830
4831         err = ipw2100_hw_send_command(priv, &cmd);
4832         if (err)
4833                 return err;
4834
4835 /* If IPv6 is configured in the kernel then we don't want to filter out all
4836  * of the multicast packets as IPv6 needs some. */
4837 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4838         cmd.host_command = ADD_MULTICAST;
4839         cmd.host_command_sequence = 0;
4840         cmd.host_command_length = 0;
4841
4842         ipw2100_hw_send_command(priv, &cmd);
4843 #endif
4844         if (!batch_mode) {
4845                 err = ipw2100_enable_adapter(priv);
4846                 if (err)
4847                         return err;
4848         }
4849
4850         return 0;
4851 }
4852
4853 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4854                                 int batch_mode)
4855 {
4856         struct host_command cmd = {
4857                 .host_command = BASIC_TX_RATES,
4858                 .host_command_sequence = 0,
4859                 .host_command_length = 4
4860         };
4861         int err;
4862
4863         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4864
4865         if (!batch_mode) {
4866                 err = ipw2100_disable_adapter(priv);
4867                 if (err)
4868                         return err;
4869         }
4870
4871         /* Set BASIC TX Rate first */
4872         ipw2100_hw_send_command(priv, &cmd);
4873
4874         /* Set TX Rate */
4875         cmd.host_command = TX_RATES;
4876         ipw2100_hw_send_command(priv, &cmd);
4877
4878         /* Set MSDU TX Rate */
4879         cmd.host_command = MSDU_TX_RATES;
4880         ipw2100_hw_send_command(priv, &cmd);
4881
4882         if (!batch_mode) {
4883                 err = ipw2100_enable_adapter(priv);
4884                 if (err)
4885                         return err;
4886         }
4887
4888         priv->tx_rates = rate;
4889
4890         return 0;
4891 }
4892
4893 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4894 {
4895         struct host_command cmd = {
4896                 .host_command = POWER_MODE,
4897                 .host_command_sequence = 0,
4898                 .host_command_length = 4
4899         };
4900         int err;
4901
4902         cmd.host_command_parameters[0] = power_level;
4903
4904         err = ipw2100_hw_send_command(priv, &cmd);
4905         if (err)
4906                 return err;
4907
4908         if (power_level == IPW_POWER_MODE_CAM)
4909                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4910         else
4911                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4912
4913 #ifdef IPW2100_TX_POWER
4914         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4915                 /* Set beacon interval */
4916                 cmd.host_command = TX_POWER_INDEX;
4917                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4918
4919                 err = ipw2100_hw_send_command(priv, &cmd);
4920                 if (err)
4921                         return err;
4922         }
4923 #endif
4924
4925         return 0;
4926 }
4927
4928 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4929 {
4930         struct host_command cmd = {
4931                 .host_command = RTS_THRESHOLD,
4932                 .host_command_sequence = 0,
4933                 .host_command_length = 4
4934         };
4935         int err;
4936
4937         if (threshold & RTS_DISABLED)
4938                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4939         else
4940                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4941
4942         err = ipw2100_hw_send_command(priv, &cmd);
4943         if (err)
4944                 return err;
4945
4946         priv->rts_threshold = threshold;
4947
4948         return 0;
4949 }
4950
4951 #if 0
4952 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4953                                         u32 threshold, int batch_mode)
4954 {
4955         struct host_command cmd = {
4956                 .host_command = FRAG_THRESHOLD,
4957                 .host_command_sequence = 0,
4958                 .host_command_length = 4,
4959                 .host_command_parameters[0] = 0,
4960         };
4961         int err;
4962
4963         if (!batch_mode) {
4964                 err = ipw2100_disable_adapter(priv);
4965                 if (err)
4966                         return err;
4967         }
4968
4969         if (threshold == 0)
4970                 threshold = DEFAULT_FRAG_THRESHOLD;
4971         else {
4972                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4973                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4974         }
4975
4976         cmd.host_command_parameters[0] = threshold;
4977
4978         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4979
4980         err = ipw2100_hw_send_command(priv, &cmd);
4981
4982         if (!batch_mode)
4983                 ipw2100_enable_adapter(priv);
4984
4985         if (!err)
4986                 priv->frag_threshold = threshold;
4987
4988         return err;
4989 }
4990 #endif
4991
4992 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4993 {
4994         struct host_command cmd = {
4995                 .host_command = SHORT_RETRY_LIMIT,
4996                 .host_command_sequence = 0,
4997                 .host_command_length = 4
4998         };
4999         int err;
5000
5001         cmd.host_command_parameters[0] = retry;
5002
5003         err = ipw2100_hw_send_command(priv, &cmd);
5004         if (err)
5005                 return err;
5006
5007         priv->short_retry_limit = retry;
5008
5009         return 0;
5010 }
5011
5012 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5013 {
5014         struct host_command cmd = {
5015                 .host_command = LONG_RETRY_LIMIT,
5016                 .host_command_sequence = 0,
5017                 .host_command_length = 4
5018         };
5019         int err;
5020
5021         cmd.host_command_parameters[0] = retry;
5022
5023         err = ipw2100_hw_send_command(priv, &cmd);
5024         if (err)
5025                 return err;
5026
5027         priv->long_retry_limit = retry;
5028
5029         return 0;
5030 }
5031
5032 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5033                                        int batch_mode)
5034 {
5035         struct host_command cmd = {
5036                 .host_command = MANDATORY_BSSID,
5037                 .host_command_sequence = 0,
5038                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5039         };
5040         int err;
5041
5042 #ifdef CONFIG_IPW2100_DEBUG
5043         if (bssid != NULL)
5044                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5045                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5046                              bssid[5]);
5047         else
5048                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5049 #endif
5050         /* if BSSID is empty then we disable mandatory bssid mode */
5051         if (bssid != NULL)
5052                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5053
5054         if (!batch_mode) {
5055                 err = ipw2100_disable_adapter(priv);
5056                 if (err)
5057                         return err;
5058         }
5059
5060         err = ipw2100_hw_send_command(priv, &cmd);
5061
5062         if (!batch_mode)
5063                 ipw2100_enable_adapter(priv);
5064
5065         return err;
5066 }
5067
5068 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5069 {
5070         struct host_command cmd = {
5071                 .host_command = DISASSOCIATION_BSSID,
5072                 .host_command_sequence = 0,
5073                 .host_command_length = ETH_ALEN
5074         };
5075         int err;
5076         int len;
5077
5078         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5079
5080         len = ETH_ALEN;
5081         /* The Firmware currently ignores the BSSID and just disassociates from
5082          * the currently associated AP -- but in the off chance that a future
5083          * firmware does use the BSSID provided here, we go ahead and try and
5084          * set it to the currently associated AP's BSSID */
5085         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5086
5087         err = ipw2100_hw_send_command(priv, &cmd);
5088
5089         return err;
5090 }
5091
5092 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5093                               struct ipw2100_wpa_assoc_frame *, int)
5094     __attribute__ ((unused));
5095
5096 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5097                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5098                               int batch_mode)
5099 {
5100         struct host_command cmd = {
5101                 .host_command = SET_WPA_IE,
5102                 .host_command_sequence = 0,
5103                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5104         };
5105         int err;
5106
5107         IPW_DEBUG_HC("SET_WPA_IE\n");
5108
5109         if (!batch_mode) {
5110                 err = ipw2100_disable_adapter(priv);
5111                 if (err)
5112                         return err;
5113         }
5114
5115         memcpy(cmd.host_command_parameters, wpa_frame,
5116                sizeof(struct ipw2100_wpa_assoc_frame));
5117
5118         err = ipw2100_hw_send_command(priv, &cmd);
5119
5120         if (!batch_mode) {
5121                 if (ipw2100_enable_adapter(priv))
5122                         err = -EIO;
5123         }
5124
5125         return err;
5126 }
5127
5128 struct security_info_params {
5129         u32 allowed_ciphers;
5130         u16 version;
5131         u8 auth_mode;
5132         u8 replay_counters_number;
5133         u8 unicast_using_group;
5134 } __attribute__ ((packed));
5135
5136 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5137                                             int auth_mode,
5138                                             int security_level,
5139                                             int unicast_using_group,
5140                                             int batch_mode)
5141 {
5142         struct host_command cmd = {
5143                 .host_command = SET_SECURITY_INFORMATION,
5144                 .host_command_sequence = 0,
5145                 .host_command_length = sizeof(struct security_info_params)
5146         };
5147         struct security_info_params *security =
5148             (struct security_info_params *)&cmd.host_command_parameters;
5149         int err;
5150         memset(security, 0, sizeof(*security));
5151
5152         /* If shared key AP authentication is turned on, then we need to
5153          * configure the firmware to try and use it.
5154          *
5155          * Actual data encryption/decryption is handled by the host. */
5156         security->auth_mode = auth_mode;
5157         security->unicast_using_group = unicast_using_group;
5158
5159         switch (security_level) {
5160         default:
5161         case SEC_LEVEL_0:
5162                 security->allowed_ciphers = IPW_NONE_CIPHER;
5163                 break;
5164         case SEC_LEVEL_1:
5165                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166                     IPW_WEP104_CIPHER;
5167                 break;
5168         case SEC_LEVEL_2:
5169                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5171                 break;
5172         case SEC_LEVEL_2_CKIP:
5173                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5174                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5175                 break;
5176         case SEC_LEVEL_3:
5177                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5178                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5179                 break;
5180         }
5181
5182         IPW_DEBUG_HC
5183             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5184              security->auth_mode, security->allowed_ciphers, security_level);
5185
5186         security->replay_counters_number = 0;
5187
5188         if (!batch_mode) {
5189                 err = ipw2100_disable_adapter(priv);
5190                 if (err)
5191                         return err;
5192         }
5193
5194         err = ipw2100_hw_send_command(priv, &cmd);
5195
5196         if (!batch_mode)
5197                 ipw2100_enable_adapter(priv);
5198
5199         return err;
5200 }
5201
5202 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5203 {
5204         struct host_command cmd = {
5205                 .host_command = TX_POWER_INDEX,
5206                 .host_command_sequence = 0,
5207                 .host_command_length = 4
5208         };
5209         int err = 0;
5210         u32 tmp = tx_power;
5211
5212         if (tx_power != IPW_TX_POWER_DEFAULT)
5213                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5214                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5215
5216         cmd.host_command_parameters[0] = tmp;
5217
5218         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5219                 err = ipw2100_hw_send_command(priv, &cmd);
5220         if (!err)
5221                 priv->tx_power = tx_power;
5222
5223         return 0;
5224 }
5225
5226 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5227                                             u32 interval, int batch_mode)
5228 {
5229         struct host_command cmd = {
5230                 .host_command = BEACON_INTERVAL,
5231                 .host_command_sequence = 0,
5232                 .host_command_length = 4
5233         };
5234         int err;
5235
5236         cmd.host_command_parameters[0] = interval;
5237
5238         IPW_DEBUG_INFO("enter\n");
5239
5240         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5241                 if (!batch_mode) {
5242                         err = ipw2100_disable_adapter(priv);
5243                         if (err)
5244                                 return err;
5245                 }
5246
5247                 ipw2100_hw_send_command(priv, &cmd);
5248
5249                 if (!batch_mode) {
5250                         err = ipw2100_enable_adapter(priv);
5251                         if (err)
5252                                 return err;
5253                 }
5254         }
5255
5256         IPW_DEBUG_INFO("exit\n");
5257
5258         return 0;
5259 }
5260
5261 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5262 {
5263         ipw2100_tx_initialize(priv);
5264         ipw2100_rx_initialize(priv);
5265         ipw2100_msg_initialize(priv);
5266 }
5267
5268 void ipw2100_queues_free(struct ipw2100_priv *priv)
5269 {
5270         ipw2100_tx_free(priv);
5271         ipw2100_rx_free(priv);
5272         ipw2100_msg_free(priv);
5273 }
5274
5275 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5276 {
5277         if (ipw2100_tx_allocate(priv) ||
5278             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5279                 goto fail;
5280
5281         return 0;
5282
5283       fail:
5284         ipw2100_tx_free(priv);
5285         ipw2100_rx_free(priv);
5286         ipw2100_msg_free(priv);
5287         return -ENOMEM;
5288 }
5289
5290 #define IPW_PRIVACY_CAPABLE 0x0008
5291
5292 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5293                                  int batch_mode)
5294 {
5295         struct host_command cmd = {
5296                 .host_command = WEP_FLAGS,
5297                 .host_command_sequence = 0,
5298                 .host_command_length = 4
5299         };
5300         int err;
5301
5302         cmd.host_command_parameters[0] = flags;
5303
5304         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5305
5306         if (!batch_mode) {
5307                 err = ipw2100_disable_adapter(priv);
5308                 if (err) {
5309                         printk(KERN_ERR DRV_NAME
5310                                ": %s: Could not disable adapter %d\n",
5311                                priv->net_dev->name, err);
5312                         return err;
5313                 }
5314         }
5315
5316         /* send cmd to firmware */
5317         err = ipw2100_hw_send_command(priv, &cmd);
5318
5319         if (!batch_mode)
5320                 ipw2100_enable_adapter(priv);
5321
5322         return err;
5323 }
5324
5325 struct ipw2100_wep_key {
5326         u8 idx;
5327         u8 len;
5328         u8 key[13];
5329 };
5330
5331 /* Macros to ease up priting WEP keys */
5332 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5333 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5334 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5335 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5336
5337 /**
5338  * Set a the wep key
5339  *
5340  * @priv: struct to work on
5341  * @idx: index of the key we want to set
5342  * @key: ptr to the key data to set
5343  * @len: length of the buffer at @key
5344  * @batch_mode: FIXME perform the operation in batch mode, not
5345  *              disabling the device.
5346  *
5347  * @returns 0 if OK, < 0 errno code on error.
5348  *
5349  * Fill out a command structure with the new wep key, length an
5350  * index and send it down the wire.
5351  */
5352 static int ipw2100_set_key(struct ipw2100_priv *priv,
5353                            int idx, char *key, int len, int batch_mode)
5354 {
5355         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5356         struct host_command cmd = {
5357                 .host_command = WEP_KEY_INFO,
5358                 .host_command_sequence = 0,
5359                 .host_command_length = sizeof(struct ipw2100_wep_key),
5360         };
5361         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5362         int err;
5363
5364         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5365                      idx, keylen, len);
5366
5367         /* NOTE: We don't check cached values in case the firmware was reset
5368          * or some other problem is occurring.  If the user is setting the key,
5369          * then we push the change */
5370
5371         wep_key->idx = idx;
5372         wep_key->len = keylen;
5373
5374         if (keylen) {
5375                 memcpy(wep_key->key, key, len);
5376                 memset(wep_key->key + len, 0, keylen - len);
5377         }
5378
5379         /* Will be optimized out on debug not being configured in */
5380         if (keylen == 0)
5381                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5382                               priv->net_dev->name, wep_key->idx);
5383         else if (keylen == 5)
5384                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5385                               priv->net_dev->name, wep_key->idx, wep_key->len,
5386                               WEP_STR_64(wep_key->key));
5387         else
5388                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5389                               "\n",
5390                               priv->net_dev->name, wep_key->idx, wep_key->len,
5391                               WEP_STR_128(wep_key->key));
5392
5393         if (!batch_mode) {
5394                 err = ipw2100_disable_adapter(priv);
5395                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5396                 if (err) {
5397                         printk(KERN_ERR DRV_NAME
5398                                ": %s: Could not disable adapter %d\n",
5399                                priv->net_dev->name, err);
5400                         return err;
5401                 }
5402         }
5403
5404         /* send cmd to firmware */
5405         err = ipw2100_hw_send_command(priv, &cmd);
5406
5407         if (!batch_mode) {
5408                 int err2 = ipw2100_enable_adapter(priv);
5409                 if (err == 0)
5410                         err = err2;
5411         }
5412         return err;
5413 }
5414
5415 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5416                                  int idx, int batch_mode)
5417 {
5418         struct host_command cmd = {
5419                 .host_command = WEP_KEY_INDEX,
5420                 .host_command_sequence = 0,
5421                 .host_command_length = 4,
5422                 .host_command_parameters = {idx},
5423         };
5424         int err;
5425
5426         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5427
5428         if (idx < 0 || idx > 3)
5429                 return -EINVAL;
5430
5431         if (!batch_mode) {
5432                 err = ipw2100_disable_adapter(priv);
5433                 if (err) {
5434                         printk(KERN_ERR DRV_NAME
5435                                ": %s: Could not disable adapter %d\n",
5436                                priv->net_dev->name, err);
5437                         return err;
5438                 }
5439         }
5440
5441         /* send cmd to firmware */
5442         err = ipw2100_hw_send_command(priv, &cmd);
5443
5444         if (!batch_mode)
5445                 ipw2100_enable_adapter(priv);
5446
5447         return err;
5448 }
5449
5450 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5451 {
5452         int i, err, auth_mode, sec_level, use_group;
5453
5454         if (!(priv->status & STATUS_RUNNING))
5455                 return 0;
5456
5457         if (!batch_mode) {
5458                 err = ipw2100_disable_adapter(priv);
5459                 if (err)
5460                         return err;
5461         }
5462
5463         if (!priv->ieee->sec.enabled) {
5464                 err =
5465                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5466                                                      SEC_LEVEL_0, 0, 1);
5467         } else {
5468                 auth_mode = IPW_AUTH_OPEN;
5469                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5470                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5471                                 auth_mode = IPW_AUTH_SHARED;
5472                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5473                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5474                 }
5475
5476                 sec_level = SEC_LEVEL_0;
5477                 if (priv->ieee->sec.flags & SEC_LEVEL)
5478                         sec_level = priv->ieee->sec.level;
5479
5480                 use_group = 0;
5481                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5482                         use_group = priv->ieee->sec.unicast_uses_group;
5483
5484                 err =
5485                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5486                                                      use_group, 1);
5487         }
5488
5489         if (err)
5490                 goto exit;
5491
5492         if (priv->ieee->sec.enabled) {
5493                 for (i = 0; i < 4; i++) {
5494                         if (!(priv->ieee->sec.flags & (1 << i))) {
5495                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5496                                 priv->ieee->sec.key_sizes[i] = 0;
5497                         } else {
5498                                 err = ipw2100_set_key(priv, i,
5499                                                       priv->ieee->sec.keys[i],
5500                                                       priv->ieee->sec.
5501                                                       key_sizes[i], 1);
5502                                 if (err)
5503                                         goto exit;
5504                         }
5505                 }
5506
5507                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5508         }
5509
5510         /* Always enable privacy so the Host can filter WEP packets if
5511          * encrypted data is sent up */
5512         err =
5513             ipw2100_set_wep_flags(priv,
5514                                   priv->ieee->sec.
5515                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5516         if (err)
5517                 goto exit;
5518
5519         priv->status &= ~STATUS_SECURITY_UPDATED;
5520
5521       exit:
5522         if (!batch_mode)
5523                 ipw2100_enable_adapter(priv);
5524
5525         return err;
5526 }
5527
5528 static void ipw2100_security_work(struct work_struct *work)
5529 {
5530         struct ipw2100_priv *priv =
5531                 container_of(work, struct ipw2100_priv, security_work.work);
5532
5533         /* If we happen to have reconnected before we get a chance to
5534          * process this, then update the security settings--which causes
5535          * a disassociation to occur */
5536         if (!(priv->status & STATUS_ASSOCIATED) &&
5537             priv->status & STATUS_SECURITY_UPDATED)
5538                 ipw2100_configure_security(priv, 0);
5539 }
5540
5541 static void shim__set_security(struct net_device *dev,
5542                                struct ieee80211_security *sec)
5543 {
5544         struct ipw2100_priv *priv = ieee80211_priv(dev);
5545         int i, force_update = 0;
5546
5547         mutex_lock(&priv->action_mutex);
5548         if (!(priv->status & STATUS_INITIALIZED))
5549                 goto done;
5550
5551         for (i = 0; i < 4; i++) {
5552                 if (sec->flags & (1 << i)) {
5553                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5554                         if (sec->key_sizes[i] == 0)
5555                                 priv->ieee->sec.flags &= ~(1 << i);
5556                         else
5557                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5558                                        sec->key_sizes[i]);
5559                         if (sec->level == SEC_LEVEL_1) {
5560                                 priv->ieee->sec.flags |= (1 << i);
5561                                 priv->status |= STATUS_SECURITY_UPDATED;
5562                         } else
5563                                 priv->ieee->sec.flags &= ~(1 << i);
5564                 }
5565         }
5566
5567         if ((sec->flags & SEC_ACTIVE_KEY) &&
5568             priv->ieee->sec.active_key != sec->active_key) {
5569                 if (sec->active_key <= 3) {
5570                         priv->ieee->sec.active_key = sec->active_key;
5571                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5572                 } else
5573                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5574
5575                 priv->status |= STATUS_SECURITY_UPDATED;
5576         }
5577
5578         if ((sec->flags & SEC_AUTH_MODE) &&
5579             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5580                 priv->ieee->sec.auth_mode = sec->auth_mode;
5581                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5582                 priv->status |= STATUS_SECURITY_UPDATED;
5583         }
5584
5585         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5586                 priv->ieee->sec.flags |= SEC_ENABLED;
5587                 priv->ieee->sec.enabled = sec->enabled;
5588                 priv->status |= STATUS_SECURITY_UPDATED;
5589                 force_update = 1;
5590         }
5591
5592         if (sec->flags & SEC_ENCRYPT)
5593                 priv->ieee->sec.encrypt = sec->encrypt;
5594
5595         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5596                 priv->ieee->sec.level = sec->level;
5597                 priv->ieee->sec.flags |= SEC_LEVEL;
5598                 priv->status |= STATUS_SECURITY_UPDATED;
5599         }
5600
5601         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5602                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5603                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5604                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5605                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5606                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5607                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5608                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5609                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5610                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5611
5612 /* As a temporary work around to enable WPA until we figure out why
5613  * wpa_supplicant toggles the security capability of the driver, which
5614  * forces a disassocation with force_update...
5615  *
5616  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5617         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5618                 ipw2100_configure_security(priv, 0);
5619       done:
5620         mutex_unlock(&priv->action_mutex);
5621 }
5622
5623 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5624 {
5625         int err;
5626         int batch_mode = 1;
5627         u8 *bssid;
5628
5629         IPW_DEBUG_INFO("enter\n");
5630
5631         err = ipw2100_disable_adapter(priv);
5632         if (err)
5633                 return err;
5634 #ifdef CONFIG_IPW2100_MONITOR
5635         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5636                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5637                 if (err)
5638                         return err;
5639
5640                 IPW_DEBUG_INFO("exit\n");
5641
5642                 return 0;
5643         }
5644 #endif                          /* CONFIG_IPW2100_MONITOR */
5645
5646         err = ipw2100_read_mac_address(priv);
5647         if (err)
5648                 return -EIO;
5649
5650         err = ipw2100_set_mac_address(priv, batch_mode);
5651         if (err)
5652                 return err;
5653
5654         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5655         if (err)
5656                 return err;
5657
5658         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5659                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5660                 if (err)
5661                         return err;
5662         }
5663
5664         err = ipw2100_system_config(priv, batch_mode);
5665         if (err)
5666                 return err;
5667
5668         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5669         if (err)
5670                 return err;
5671
5672         /* Default to power mode OFF */
5673         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5674         if (err)
5675                 return err;
5676
5677         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5678         if (err)
5679                 return err;
5680
5681         if (priv->config & CFG_STATIC_BSSID)
5682                 bssid = priv->bssid;
5683         else
5684                 bssid = NULL;
5685         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5686         if (err)
5687                 return err;
5688
5689         if (priv->config & CFG_STATIC_ESSID)
5690                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5691                                         batch_mode);
5692         else
5693                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5694         if (err)
5695                 return err;
5696
5697         err = ipw2100_configure_security(priv, batch_mode);
5698         if (err)
5699                 return err;
5700
5701         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5702                 err =
5703                     ipw2100_set_ibss_beacon_interval(priv,
5704                                                      priv->beacon_interval,
5705                                                      batch_mode);
5706                 if (err)
5707                         return err;
5708
5709                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5710                 if (err)
5711                         return err;
5712         }
5713
5714         /*
5715            err = ipw2100_set_fragmentation_threshold(
5716            priv, priv->frag_threshold, batch_mode);
5717            if (err)
5718            return err;
5719          */
5720
5721         IPW_DEBUG_INFO("exit\n");
5722
5723         return 0;
5724 }
5725
5726 /*************************************************************************
5727  *
5728  * EXTERNALLY CALLED METHODS
5729  *
5730  *************************************************************************/
5731
5732 /* This method is called by the network layer -- not to be confused with
5733  * ipw2100_set_mac_address() declared above called by this driver (and this
5734  * method as well) to talk to the firmware */
5735 static int ipw2100_set_address(struct net_device *dev, void *p)
5736 {
5737         struct ipw2100_priv *priv = ieee80211_priv(dev);
5738         struct sockaddr *addr = p;
5739         int err = 0;
5740
5741         if (!is_valid_ether_addr(addr->sa_data))
5742                 return -EADDRNOTAVAIL;
5743
5744         mutex_lock(&priv->action_mutex);
5745
5746         priv->config |= CFG_CUSTOM_MAC;
5747         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5748
5749         err = ipw2100_set_mac_address(priv, 0);
5750         if (err)
5751                 goto done;
5752
5753         priv->reset_backoff = 0;
5754         mutex_unlock(&priv->action_mutex);
5755         ipw2100_reset_adapter(&priv->reset_work.work);
5756         return 0;
5757
5758       done:
5759         mutex_unlock(&priv->action_mutex);
5760         return err;
5761 }
5762
5763 static int ipw2100_open(struct net_device *dev)
5764 {
5765         struct ipw2100_priv *priv = ieee80211_priv(dev);
5766         unsigned long flags;
5767         IPW_DEBUG_INFO("dev->open\n");
5768
5769         spin_lock_irqsave(&priv->low_lock, flags);
5770         if (priv->status & STATUS_ASSOCIATED) {
5771                 netif_carrier_on(dev);
5772                 netif_start_queue(dev);
5773         }
5774         spin_unlock_irqrestore(&priv->low_lock, flags);
5775
5776         return 0;
5777 }
5778
5779 static int ipw2100_close(struct net_device *dev)
5780 {
5781         struct ipw2100_priv *priv = ieee80211_priv(dev);
5782         unsigned long flags;
5783         struct list_head *element;
5784         struct ipw2100_tx_packet *packet;
5785
5786         IPW_DEBUG_INFO("enter\n");
5787
5788         spin_lock_irqsave(&priv->low_lock, flags);
5789
5790         if (priv->status & STATUS_ASSOCIATED)
5791                 netif_carrier_off(dev);
5792         netif_stop_queue(dev);
5793
5794         /* Flush the TX queue ... */
5795         while (!list_empty(&priv->tx_pend_list)) {
5796                 element = priv->tx_pend_list.next;
5797                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5798
5799                 list_del(element);
5800                 DEC_STAT(&priv->tx_pend_stat);
5801
5802                 ieee80211_txb_free(packet->info.d_struct.txb);
5803                 packet->info.d_struct.txb = NULL;
5804
5805                 list_add_tail(element, &priv->tx_free_list);
5806                 INC_STAT(&priv->tx_free_stat);
5807         }
5808         spin_unlock_irqrestore(&priv->low_lock, flags);
5809
5810         IPW_DEBUG_INFO("exit\n");
5811
5812         return 0;
5813 }
5814
5815 /*
5816  * TODO:  Fix this function... its just wrong
5817  */
5818 static void ipw2100_tx_timeout(struct net_device *dev)
5819 {
5820         struct ipw2100_priv *priv = ieee80211_priv(dev);
5821
5822         priv->ieee->stats.tx_errors++;
5823
5824 #ifdef CONFIG_IPW2100_MONITOR
5825         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5826                 return;
5827 #endif
5828
5829         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5830                        dev->name);
5831         schedule_reset(priv);
5832 }
5833
5834 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5835 {
5836         /* This is called when wpa_supplicant loads and closes the driver
5837          * interface. */
5838         priv->ieee->wpa_enabled = value;
5839         return 0;
5840 }
5841
5842 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5843 {
5844
5845         struct ieee80211_device *ieee = priv->ieee;
5846         struct ieee80211_security sec = {
5847                 .flags = SEC_AUTH_MODE,
5848         };
5849         int ret = 0;
5850
5851         if (value & IW_AUTH_ALG_SHARED_KEY) {
5852                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5853                 ieee->open_wep = 0;
5854         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5855                 sec.auth_mode = WLAN_AUTH_OPEN;
5856                 ieee->open_wep = 1;
5857         } else if (value & IW_AUTH_ALG_LEAP) {
5858                 sec.auth_mode = WLAN_AUTH_LEAP;
5859                 ieee->open_wep = 1;
5860         } else
5861                 return -EINVAL;
5862
5863         if (ieee->set_security)
5864                 ieee->set_security(ieee->dev, &sec);
5865         else
5866                 ret = -EOPNOTSUPP;
5867
5868         return ret;
5869 }
5870
5871 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5872                                     char *wpa_ie, int wpa_ie_len)
5873 {
5874
5875         struct ipw2100_wpa_assoc_frame frame;
5876
5877         frame.fixed_ie_mask = 0;
5878
5879         /* copy WPA IE */
5880         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5881         frame.var_ie_len = wpa_ie_len;
5882
5883         /* make sure WPA is enabled */
5884         ipw2100_wpa_enable(priv, 1);
5885         ipw2100_set_wpa_ie(priv, &frame, 0);
5886 }
5887
5888 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5889                                     struct ethtool_drvinfo *info)
5890 {
5891         struct ipw2100_priv *priv = ieee80211_priv(dev);
5892         char fw_ver[64], ucode_ver[64];
5893
5894         strcpy(info->driver, DRV_NAME);
5895         strcpy(info->version, DRV_VERSION);
5896
5897         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5898         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5899
5900         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5901                  fw_ver, priv->eeprom_version, ucode_ver);
5902
5903         strcpy(info->bus_info, pci_name(priv->pci_dev));
5904 }
5905
5906 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5907 {
5908         struct ipw2100_priv *priv = ieee80211_priv(dev);
5909         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5910 }
5911
5912 static const struct ethtool_ops ipw2100_ethtool_ops = {
5913         .get_link = ipw2100_ethtool_get_link,
5914         .get_drvinfo = ipw_ethtool_get_drvinfo,
5915 };
5916
5917 static void ipw2100_hang_check(struct work_struct *work)
5918 {
5919         struct ipw2100_priv *priv =
5920                 container_of(work, struct ipw2100_priv, hang_check.work);
5921         unsigned long flags;
5922         u32 rtc = 0xa5a5a5a5;
5923         u32 len = sizeof(rtc);
5924         int restart = 0;
5925
5926         spin_lock_irqsave(&priv->low_lock, flags);
5927
5928         if (priv->fatal_error != 0) {
5929                 /* If fatal_error is set then we need to restart */
5930                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5931                                priv->net_dev->name);
5932
5933                 restart = 1;
5934         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5935                    (rtc == priv->last_rtc)) {
5936                 /* Check if firmware is hung */
5937                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5938                                priv->net_dev->name);
5939
5940                 restart = 1;
5941         }
5942
5943         if (restart) {
5944                 /* Kill timer */
5945                 priv->stop_hang_check = 1;
5946                 priv->hangs++;
5947
5948                 /* Restart the NIC */
5949                 schedule_reset(priv);
5950         }
5951
5952         priv->last_rtc = rtc;
5953
5954         if (!priv->stop_hang_check)
5955                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5956
5957         spin_unlock_irqrestore(&priv->low_lock, flags);
5958 }
5959
5960 static void ipw2100_rf_kill(struct work_struct *work)
5961 {
5962         struct ipw2100_priv *priv =
5963                 container_of(work, struct ipw2100_priv, rf_kill.work);
5964         unsigned long flags;
5965
5966         spin_lock_irqsave(&priv->low_lock, flags);
5967
5968         if (rf_kill_active(priv)) {
5969                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5970                 if (!priv->stop_rf_kill)
5971                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5972                 goto exit_unlock;
5973         }
5974
5975         /* RF Kill is now disabled, so bring the device back up */
5976
5977         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5978                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5979                                   "device\n");
5980                 schedule_reset(priv);
5981         } else
5982                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5983                                   "enabled\n");
5984
5985       exit_unlock:
5986         spin_unlock_irqrestore(&priv->low_lock, flags);
5987 }
5988
5989 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5990
5991 /* Look into using netdev destructor to shutdown ieee80211? */
5992
5993 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5994                                                void __iomem * base_addr,
5995                                                unsigned long mem_start,
5996                                                unsigned long mem_len)
5997 {
5998         struct ipw2100_priv *priv;
5999         struct net_device *dev;
6000
6001         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6002         if (!dev)
6003                 return NULL;
6004         priv = ieee80211_priv(dev);
6005         priv->ieee = netdev_priv(dev);
6006         priv->pci_dev = pci_dev;
6007         priv->net_dev = dev;
6008
6009         priv->ieee->hard_start_xmit = ipw2100_tx;
6010         priv->ieee->set_security = shim__set_security;
6011
6012         priv->ieee->perfect_rssi = -20;
6013         priv->ieee->worst_rssi = -85;
6014
6015         dev->open = ipw2100_open;
6016         dev->stop = ipw2100_close;
6017         dev->init = ipw2100_net_init;
6018         dev->ethtool_ops = &ipw2100_ethtool_ops;
6019         dev->tx_timeout = ipw2100_tx_timeout;
6020         dev->wireless_handlers = &ipw2100_wx_handler_def;
6021         priv->wireless_data.ieee80211 = priv->ieee;
6022         dev->wireless_data = &priv->wireless_data;
6023         dev->set_mac_address = ipw2100_set_address;
6024         dev->watchdog_timeo = 3 * HZ;
6025         dev->irq = 0;
6026
6027         dev->base_addr = (unsigned long)base_addr;
6028         dev->mem_start = mem_start;
6029         dev->mem_end = dev->mem_start + mem_len - 1;
6030
6031         /* NOTE: We don't use the wireless_handlers hook
6032          * in dev as the system will start throwing WX requests
6033          * to us before we're actually initialized and it just
6034          * ends up causing problems.  So, we just handle
6035          * the WX extensions through the ipw2100_ioctl interface */
6036
6037         /* memset() puts everything to 0, so we only have explicitely set
6038          * those values that need to be something else */
6039
6040         /* If power management is turned on, default to AUTO mode */
6041         priv->power_mode = IPW_POWER_AUTO;
6042
6043 #ifdef CONFIG_IPW2100_MONITOR
6044         priv->config |= CFG_CRC_CHECK;
6045 #endif
6046         priv->ieee->wpa_enabled = 0;
6047         priv->ieee->drop_unencrypted = 0;
6048         priv->ieee->privacy_invoked = 0;
6049         priv->ieee->ieee802_1x = 1;
6050
6051         /* Set module parameters */
6052         switch (mode) {
6053         case 1:
6054                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6055                 break;
6056 #ifdef CONFIG_IPW2100_MONITOR
6057         case 2:
6058                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6059                 break;
6060 #endif
6061         default:
6062         case 0:
6063                 priv->ieee->iw_mode = IW_MODE_INFRA;
6064                 break;
6065         }
6066
6067         if (disable == 1)
6068                 priv->status |= STATUS_RF_KILL_SW;
6069
6070         if (channel != 0 &&
6071             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6072                 priv->config |= CFG_STATIC_CHANNEL;
6073                 priv->channel = channel;
6074         }
6075
6076         if (associate)
6077                 priv->config |= CFG_ASSOCIATE;
6078
6079         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6080         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6081         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6082         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6083         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6084         priv->tx_power = IPW_TX_POWER_DEFAULT;
6085         priv->tx_rates = DEFAULT_TX_RATES;
6086
6087         strcpy(priv->nick, "ipw2100");
6088
6089         spin_lock_init(&priv->low_lock);
6090         mutex_init(&priv->action_mutex);
6091         mutex_init(&priv->adapter_mutex);
6092
6093         init_waitqueue_head(&priv->wait_command_queue);
6094
6095         netif_carrier_off(dev);
6096
6097         INIT_LIST_HEAD(&priv->msg_free_list);
6098         INIT_LIST_HEAD(&priv->msg_pend_list);
6099         INIT_STAT(&priv->msg_free_stat);
6100         INIT_STAT(&priv->msg_pend_stat);
6101
6102         INIT_LIST_HEAD(&priv->tx_free_list);
6103         INIT_LIST_HEAD(&priv->tx_pend_list);
6104         INIT_STAT(&priv->tx_free_stat);
6105         INIT_STAT(&priv->tx_pend_stat);
6106
6107         INIT_LIST_HEAD(&priv->fw_pend_list);
6108         INIT_STAT(&priv->fw_pend_stat);
6109
6110         priv->workqueue = create_workqueue(DRV_NAME);
6111
6112         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6113         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6114         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6115         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6116         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6117
6118         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6119                      ipw2100_irq_tasklet, (unsigned long)priv);
6120
6121         /* NOTE:  We do not start the deferred work for status checks yet */
6122         priv->stop_rf_kill = 1;
6123         priv->stop_hang_check = 1;
6124
6125         return dev;
6126 }
6127
6128 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6129                                 const struct pci_device_id *ent)
6130 {
6131         unsigned long mem_start, mem_len, mem_flags;
6132         void __iomem *base_addr = NULL;
6133         struct net_device *dev = NULL;
6134         struct ipw2100_priv *priv = NULL;
6135         int err = 0;
6136         int registered = 0;
6137         u32 val;
6138
6139         IPW_DEBUG_INFO("enter\n");
6140
6141         mem_start = pci_resource_start(pci_dev, 0);
6142         mem_len = pci_resource_len(pci_dev, 0);
6143         mem_flags = pci_resource_flags(pci_dev, 0);
6144
6145         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6146                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6147                 err = -ENODEV;
6148                 goto fail;
6149         }
6150
6151         base_addr = ioremap_nocache(mem_start, mem_len);
6152         if (!base_addr) {
6153                 printk(KERN_WARNING DRV_NAME
6154                        "Error calling ioremap_nocache.\n");
6155                 err = -EIO;
6156                 goto fail;
6157         }
6158
6159         /* allocate and initialize our net_device */
6160         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6161         if (!dev) {
6162                 printk(KERN_WARNING DRV_NAME
6163                        "Error calling ipw2100_alloc_device.\n");
6164                 err = -ENOMEM;
6165                 goto fail;
6166         }
6167
6168         /* set up PCI mappings for device */
6169         err = pci_enable_device(pci_dev);
6170         if (err) {
6171                 printk(KERN_WARNING DRV_NAME
6172                        "Error calling pci_enable_device.\n");
6173                 return err;
6174         }
6175
6176         priv = ieee80211_priv(dev);
6177
6178         pci_set_master(pci_dev);
6179         pci_set_drvdata(pci_dev, priv);
6180
6181         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6182         if (err) {
6183                 printk(KERN_WARNING DRV_NAME
6184                        "Error calling pci_set_dma_mask.\n");
6185                 pci_disable_device(pci_dev);
6186                 return err;
6187         }
6188
6189         err = pci_request_regions(pci_dev, DRV_NAME);
6190         if (err) {
6191                 printk(KERN_WARNING DRV_NAME
6192                        "Error calling pci_request_regions.\n");
6193                 pci_disable_device(pci_dev);
6194                 return err;
6195         }
6196
6197         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6198          * PCI Tx retries from interfering with C3 CPU state */
6199         pci_read_config_dword(pci_dev, 0x40, &val);
6200         if ((val & 0x0000ff00) != 0)
6201                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6202
6203         pci_set_power_state(pci_dev, PCI_D0);
6204
6205         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6206                 printk(KERN_WARNING DRV_NAME
6207                        "Device not found via register read.\n");
6208                 err = -ENODEV;
6209                 goto fail;
6210         }
6211
6212         SET_NETDEV_DEV(dev, &pci_dev->dev);
6213
6214         /* Force interrupts to be shut off on the device */
6215         priv->status |= STATUS_INT_ENABLED;
6216         ipw2100_disable_interrupts(priv);
6217
6218         /* Allocate and initialize the Tx/Rx queues and lists */
6219         if (ipw2100_queues_allocate(priv)) {
6220                 printk(KERN_WARNING DRV_NAME
6221                        "Error calling ipw2100_queues_allocate.\n");
6222                 err = -ENOMEM;
6223                 goto fail;
6224         }
6225         ipw2100_queues_initialize(priv);
6226
6227         err = request_irq(pci_dev->irq,
6228                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6229         if (err) {
6230                 printk(KERN_WARNING DRV_NAME
6231                        "Error calling request_irq: %d.\n", pci_dev->irq);
6232                 goto fail;
6233         }
6234         dev->irq = pci_dev->irq;
6235
6236         IPW_DEBUG_INFO("Attempting to register device...\n");
6237
6238         SET_MODULE_OWNER(dev);
6239
6240         printk(KERN_INFO DRV_NAME
6241                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6242
6243         /* Bring up the interface.  Pre 0.46, after we registered the
6244          * network device we would call ipw2100_up.  This introduced a race
6245          * condition with newer hotplug configurations (network was coming
6246          * up and making calls before the device was initialized).
6247          *
6248          * If we called ipw2100_up before we registered the device, then the
6249          * device name wasn't registered.  So, we instead use the net_dev->init
6250          * member to call a function that then just turns and calls ipw2100_up.
6251          * net_dev->init is called after name allocation but before the
6252          * notifier chain is called */
6253         err = register_netdev(dev);
6254         if (err) {
6255                 printk(KERN_WARNING DRV_NAME
6256                        "Error calling register_netdev.\n");
6257                 goto fail;
6258         }
6259
6260         mutex_lock(&priv->action_mutex);
6261         registered = 1;
6262
6263         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6264
6265         /* perform this after register_netdev so that dev->name is set */
6266         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6267         if (err)
6268                 goto fail_unlock;
6269
6270         /* If the RF Kill switch is disabled, go ahead and complete the
6271          * startup sequence */
6272         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6273                 /* Enable the adapter - sends HOST_COMPLETE */
6274                 if (ipw2100_enable_adapter(priv)) {
6275                         printk(KERN_WARNING DRV_NAME
6276                                ": %s: failed in call to enable adapter.\n",
6277                                priv->net_dev->name);
6278                         ipw2100_hw_stop_adapter(priv);
6279                         err = -EIO;
6280                         goto fail_unlock;
6281                 }
6282
6283                 /* Start a scan . . . */
6284                 ipw2100_set_scan_options(priv);
6285                 ipw2100_start_scan(priv);
6286         }
6287
6288         IPW_DEBUG_INFO("exit\n");
6289
6290         priv->status |= STATUS_INITIALIZED;
6291
6292         mutex_unlock(&priv->action_mutex);
6293
6294         return 0;
6295
6296       fail_unlock:
6297         mutex_unlock(&priv->action_mutex);
6298
6299       fail:
6300         if (dev) {
6301                 if (registered)
6302                         unregister_netdev(dev);
6303
6304                 ipw2100_hw_stop_adapter(priv);
6305
6306                 ipw2100_disable_interrupts(priv);
6307
6308                 if (dev->irq)
6309                         free_irq(dev->irq, priv);
6310
6311                 ipw2100_kill_workqueue(priv);
6312
6313                 /* These are safe to call even if they weren't allocated */
6314                 ipw2100_queues_free(priv);
6315                 sysfs_remove_group(&pci_dev->dev.kobj,
6316                                    &ipw2100_attribute_group);
6317
6318                 free_ieee80211(dev);
6319                 pci_set_drvdata(pci_dev, NULL);
6320         }
6321
6322         if (base_addr)
6323                 iounmap(base_addr);
6324
6325         pci_release_regions(pci_dev);
6326         pci_disable_device(pci_dev);
6327
6328         return err;
6329 }
6330
6331 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6332 {
6333         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6334         struct net_device *dev;
6335
6336         if (priv) {
6337                 mutex_lock(&priv->action_mutex);
6338
6339                 priv->status &= ~STATUS_INITIALIZED;
6340
6341                 dev = priv->net_dev;
6342                 sysfs_remove_group(&pci_dev->dev.kobj,
6343                                    &ipw2100_attribute_group);
6344
6345 #ifdef CONFIG_PM
6346                 if (ipw2100_firmware.version)
6347                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6348 #endif
6349                 /* Take down the hardware */
6350                 ipw2100_down(priv);
6351
6352                 /* Release the mutex so that the network subsystem can
6353                  * complete any needed calls into the driver... */
6354                 mutex_unlock(&priv->action_mutex);
6355
6356                 /* Unregister the device first - this results in close()
6357                  * being called if the device is open.  If we free storage
6358                  * first, then close() will crash. */
6359                 unregister_netdev(dev);
6360
6361                 /* ipw2100_down will ensure that there is no more pending work
6362                  * in the workqueue's, so we can safely remove them now. */
6363                 ipw2100_kill_workqueue(priv);
6364
6365                 ipw2100_queues_free(priv);
6366
6367                 /* Free potential debugging firmware snapshot */
6368                 ipw2100_snapshot_free(priv);
6369
6370                 if (dev->irq)
6371                         free_irq(dev->irq, priv);
6372
6373                 if (dev->base_addr)
6374                         iounmap((void __iomem *)dev->base_addr);
6375
6376                 free_ieee80211(dev);
6377         }
6378
6379         pci_release_regions(pci_dev);
6380         pci_disable_device(pci_dev);
6381
6382         IPW_DEBUG_INFO("exit\n");
6383 }
6384
6385 #ifdef CONFIG_PM
6386 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6387 {
6388         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6389         struct net_device *dev = priv->net_dev;
6390
6391         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6392
6393         mutex_lock(&priv->action_mutex);
6394         if (priv->status & STATUS_INITIALIZED) {
6395                 /* Take down the device; powers it off, etc. */
6396                 ipw2100_down(priv);
6397         }
6398
6399         /* Remove the PRESENT state of the device */
6400         netif_device_detach(dev);
6401
6402         pci_save_state(pci_dev);
6403         pci_disable_device(pci_dev);
6404         pci_set_power_state(pci_dev, PCI_D3hot);
6405
6406         mutex_unlock(&priv->action_mutex);
6407
6408         return 0;
6409 }
6410
6411 static int ipw2100_resume(struct pci_dev *pci_dev)
6412 {
6413         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6414         struct net_device *dev = priv->net_dev;
6415         int err;
6416         u32 val;
6417
6418         if (IPW2100_PM_DISABLED)
6419                 return 0;
6420
6421         mutex_lock(&priv->action_mutex);
6422
6423         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6424
6425         pci_set_power_state(pci_dev, PCI_D0);
6426         err = pci_enable_device(pci_dev);
6427         if (err) {
6428                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6429                        dev->name);
6430                 return err;
6431         }
6432         pci_restore_state(pci_dev);
6433
6434         /*
6435          * Suspend/Resume resets the PCI configuration space, so we have to
6436          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6437          * from interfering with C3 CPU state. pci_restore_state won't help
6438          * here since it only restores the first 64 bytes pci config header.
6439          */
6440         pci_read_config_dword(pci_dev, 0x40, &val);
6441         if ((val & 0x0000ff00) != 0)
6442                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6443
6444         /* Set the device back into the PRESENT state; this will also wake
6445          * the queue of needed */
6446         netif_device_attach(dev);
6447
6448         /* Bring the device back up */
6449         if (!(priv->status & STATUS_RF_KILL_SW))
6450                 ipw2100_up(priv, 0);
6451
6452         mutex_unlock(&priv->action_mutex);
6453
6454         return 0;
6455 }
6456 #endif
6457
6458 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6459
6460 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6461         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6462         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6463         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6464         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6465         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6466         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6467         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6468         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6469         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6470         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6471         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6472         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6473         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6474
6475         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6476         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6477         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6478         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6479         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6480
6481         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6482         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6483         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6484         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6485         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6486         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6487         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6488
6489         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6490
6491         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6492         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6493         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6494         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6495         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6496         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6497         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6498
6499         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6500         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6501         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6502         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6503         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6504         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6505
6506         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6507         {0,},
6508 };
6509
6510 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6511
6512 static struct pci_driver ipw2100_pci_driver = {
6513         .name = DRV_NAME,
6514         .id_table = ipw2100_pci_id_table,
6515         .probe = ipw2100_pci_init_one,
6516         .remove = __devexit_p(ipw2100_pci_remove_one),
6517 #ifdef CONFIG_PM
6518         .suspend = ipw2100_suspend,
6519         .resume = ipw2100_resume,
6520 #endif
6521 };
6522
6523 /**
6524  * Initialize the ipw2100 driver/module
6525  *
6526  * @returns 0 if ok, < 0 errno node con error.
6527  *
6528  * Note: we cannot init the /proc stuff until the PCI driver is there,
6529  * or we risk an unlikely race condition on someone accessing
6530  * uninitialized data in the PCI dev struct through /proc.
6531  */
6532 static int __init ipw2100_init(void)
6533 {
6534         int ret;
6535
6536         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6537         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6538
6539         ret = pci_register_driver(&ipw2100_pci_driver);
6540         if (ret)
6541                 goto out;
6542
6543         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6544 #ifdef CONFIG_IPW2100_DEBUG
6545         ipw2100_debug_level = debug;
6546         ret = driver_create_file(&ipw2100_pci_driver.driver,
6547                                  &driver_attr_debug_level);
6548 #endif
6549
6550 out:
6551         return ret;
6552 }
6553
6554 /**
6555  * Cleanup ipw2100 driver registration
6556  */
6557 static void __exit ipw2100_exit(void)
6558 {
6559         /* FIXME: IPG: check that we have no instances of the devices open */
6560 #ifdef CONFIG_IPW2100_DEBUG
6561         driver_remove_file(&ipw2100_pci_driver.driver,
6562                            &driver_attr_debug_level);
6563 #endif
6564         pci_unregister_driver(&ipw2100_pci_driver);
6565         remove_acceptable_latency("ipw2100");
6566 }
6567
6568 module_init(ipw2100_init);
6569 module_exit(ipw2100_exit);
6570
6571 #define WEXT_USECHANNELS 1
6572
6573 static const long ipw2100_frequencies[] = {
6574         2412, 2417, 2422, 2427,
6575         2432, 2437, 2442, 2447,
6576         2452, 2457, 2462, 2467,
6577         2472, 2484
6578 };
6579
6580 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6581                     sizeof(ipw2100_frequencies[0]))
6582
6583 static const long ipw2100_rates_11b[] = {
6584         1000000,
6585         2000000,
6586         5500000,
6587         11000000
6588 };
6589
6590 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6591
6592 static int ipw2100_wx_get_name(struct net_device *dev,
6593                                struct iw_request_info *info,
6594                                union iwreq_data *wrqu, char *extra)
6595 {
6596         /*
6597          * This can be called at any time.  No action lock required
6598          */
6599
6600         struct ipw2100_priv *priv = ieee80211_priv(dev);
6601         if (!(priv->status & STATUS_ASSOCIATED))
6602                 strcpy(wrqu->name, "unassociated");
6603         else
6604                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6605
6606         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6607         return 0;
6608 }
6609
6610 static int ipw2100_wx_set_freq(struct net_device *dev,
6611                                struct iw_request_info *info,
6612                                union iwreq_data *wrqu, char *extra)
6613 {
6614         struct ipw2100_priv *priv = ieee80211_priv(dev);
6615         struct iw_freq *fwrq = &wrqu->freq;
6616         int err = 0;
6617
6618         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6619                 return -EOPNOTSUPP;
6620
6621         mutex_lock(&priv->action_mutex);
6622         if (!(priv->status & STATUS_INITIALIZED)) {
6623                 err = -EIO;
6624                 goto done;
6625         }
6626
6627         /* if setting by freq convert to channel */
6628         if (fwrq->e == 1) {
6629                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6630                         int f = fwrq->m / 100000;
6631                         int c = 0;
6632
6633                         while ((c < REG_MAX_CHANNEL) &&
6634                                (f != ipw2100_frequencies[c]))
6635                                 c++;
6636
6637                         /* hack to fall through */
6638                         fwrq->e = 0;
6639                         fwrq->m = c + 1;
6640                 }
6641         }
6642
6643         if (fwrq->e > 0 || fwrq->m > 1000) {
6644                 err = -EOPNOTSUPP;
6645                 goto done;
6646         } else {                /* Set the channel */
6647                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6648                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6649         }
6650
6651       done:
6652         mutex_unlock(&priv->action_mutex);
6653         return err;
6654 }
6655
6656 static int ipw2100_wx_get_freq(struct net_device *dev,
6657                                struct iw_request_info *info,
6658                                union iwreq_data *wrqu, char *extra)
6659 {
6660         /*
6661          * This can be called at any time.  No action lock required
6662          */
6663
6664         struct ipw2100_priv *priv = ieee80211_priv(dev);
6665
6666         wrqu->freq.e = 0;
6667
6668         /* If we are associated, trying to associate, or have a statically
6669          * configured CHANNEL then return that; otherwise return ANY */
6670         if (priv->config & CFG_STATIC_CHANNEL ||
6671             priv->status & STATUS_ASSOCIATED)
6672                 wrqu->freq.m = priv->channel;
6673         else
6674                 wrqu->freq.m = 0;
6675
6676         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6677         return 0;
6678
6679 }
6680
6681 static int ipw2100_wx_set_mode(struct net_device *dev,
6682                                struct iw_request_info *info,
6683                                union iwreq_data *wrqu, char *extra)
6684 {
6685         struct ipw2100_priv *priv = ieee80211_priv(dev);
6686         int err = 0;
6687
6688         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6689
6690         if (wrqu->mode == priv->ieee->iw_mode)
6691                 return 0;
6692
6693         mutex_lock(&priv->action_mutex);
6694         if (!(priv->status & STATUS_INITIALIZED)) {
6695                 err = -EIO;
6696                 goto done;
6697         }
6698
6699         switch (wrqu->mode) {
6700 #ifdef CONFIG_IPW2100_MONITOR
6701         case IW_MODE_MONITOR:
6702                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6703                 break;
6704 #endif                          /* CONFIG_IPW2100_MONITOR */
6705         case IW_MODE_ADHOC:
6706                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6707                 break;
6708         case IW_MODE_INFRA:
6709         case IW_MODE_AUTO:
6710         default:
6711                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6712                 break;
6713         }
6714
6715       done:
6716         mutex_unlock(&priv->action_mutex);
6717         return err;
6718 }
6719
6720 static int ipw2100_wx_get_mode(struct net_device *dev,
6721                                struct iw_request_info *info,
6722                                union iwreq_data *wrqu, char *extra)
6723 {
6724         /*
6725          * This can be called at any time.  No action lock required
6726          */
6727
6728         struct ipw2100_priv *priv = ieee80211_priv(dev);
6729
6730         wrqu->mode = priv->ieee->iw_mode;
6731         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6732
6733         return 0;
6734 }
6735
6736 #define POWER_MODES 5
6737
6738 /* Values are in microsecond */
6739 static const s32 timeout_duration[POWER_MODES] = {
6740         350000,
6741         250000,
6742         75000,
6743         37000,
6744         25000,
6745 };
6746
6747 static const s32 period_duration[POWER_MODES] = {
6748         400000,
6749         700000,
6750         1000000,
6751         1000000,
6752         1000000
6753 };
6754
6755 static int ipw2100_wx_get_range(struct net_device *dev,
6756                                 struct iw_request_info *info,
6757                                 union iwreq_data *wrqu, char *extra)
6758 {
6759         /*
6760          * This can be called at any time.  No action lock required
6761          */
6762
6763         struct ipw2100_priv *priv = ieee80211_priv(dev);
6764         struct iw_range *range = (struct iw_range *)extra;
6765         u16 val;
6766         int i, level;
6767
6768         wrqu->data.length = sizeof(*range);
6769         memset(range, 0, sizeof(*range));
6770
6771         /* Let's try to keep this struct in the same order as in
6772          * linux/include/wireless.h
6773          */
6774
6775         /* TODO: See what values we can set, and remove the ones we can't
6776          * set, or fill them with some default data.
6777          */
6778
6779         /* ~5 Mb/s real (802.11b) */
6780         range->throughput = 5 * 1000 * 1000;
6781
6782 //      range->sensitivity;     /* signal level threshold range */
6783
6784         range->max_qual.qual = 100;
6785         /* TODO: Find real max RSSI and stick here */
6786         range->max_qual.level = 0;
6787         range->max_qual.noise = 0;
6788         range->max_qual.updated = 7;    /* Updated all three */
6789
6790         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6791         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6792         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6793         range->avg_qual.noise = 0;
6794         range->avg_qual.updated = 7;    /* Updated all three */
6795
6796         range->num_bitrates = RATE_COUNT;
6797
6798         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6799                 range->bitrate[i] = ipw2100_rates_11b[i];
6800         }
6801
6802         range->min_rts = MIN_RTS_THRESHOLD;
6803         range->max_rts = MAX_RTS_THRESHOLD;
6804         range->min_frag = MIN_FRAG_THRESHOLD;
6805         range->max_frag = MAX_FRAG_THRESHOLD;
6806
6807         range->min_pmp = period_duration[0];    /* Minimal PM period */
6808         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6809         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6810         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6811
6812         /* How to decode max/min PM period */
6813         range->pmp_flags = IW_POWER_PERIOD;
6814         /* How to decode max/min PM period */
6815         range->pmt_flags = IW_POWER_TIMEOUT;
6816         /* What PM options are supported */
6817         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6818
6819         range->encoding_size[0] = 5;
6820         range->encoding_size[1] = 13;   /* Different token sizes */
6821         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6822         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6823 //      range->encoding_login_index;            /* token index for login token */
6824
6825         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6826                 range->txpower_capa = IW_TXPOW_DBM;
6827                 range->num_txpower = IW_MAX_TXPOWER;
6828                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6829                      i < IW_MAX_TXPOWER;
6830                      i++, level -=
6831                      ((IPW_TX_POWER_MAX_DBM -
6832                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6833                         range->txpower[i] = level / 16;
6834         } else {
6835                 range->txpower_capa = 0;
6836                 range->num_txpower = 0;
6837         }
6838
6839         /* Set the Wireless Extension versions */
6840         range->we_version_compiled = WIRELESS_EXT;
6841         range->we_version_source = 18;
6842
6843 //      range->retry_capa;      /* What retry options are supported */
6844 //      range->retry_flags;     /* How to decode max/min retry limit */
6845 //      range->r_time_flags;    /* How to decode max/min retry life */
6846 //      range->min_retry;       /* Minimal number of retries */
6847 //      range->max_retry;       /* Maximal number of retries */
6848 //      range->min_r_time;      /* Minimal retry lifetime */
6849 //      range->max_r_time;      /* Maximal retry lifetime */
6850
6851         range->num_channels = FREQ_COUNT;
6852
6853         val = 0;
6854         for (i = 0; i < FREQ_COUNT; i++) {
6855                 // TODO: Include only legal frequencies for some countries
6856 //              if (local->channel_mask & (1 << i)) {
6857                 range->freq[val].i = i + 1;
6858                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6859                 range->freq[val].e = 1;
6860                 val++;
6861 //              }
6862                 if (val == IW_MAX_FREQUENCIES)
6863                         break;
6864         }
6865         range->num_frequency = val;
6866
6867         /* Event capability (kernel + driver) */
6868         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6869                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6870         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6871
6872         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6873                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6874
6875         IPW_DEBUG_WX("GET Range\n");
6876
6877         return 0;
6878 }
6879
6880 static int ipw2100_wx_set_wap(struct net_device *dev,
6881                               struct iw_request_info *info,
6882                               union iwreq_data *wrqu, char *extra)
6883 {
6884         struct ipw2100_priv *priv = ieee80211_priv(dev);
6885         int err = 0;
6886
6887         static const unsigned char any[] = {
6888                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6889         };
6890         static const unsigned char off[] = {
6891                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6892         };
6893
6894         // sanity checks
6895         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6896                 return -EINVAL;
6897
6898         mutex_lock(&priv->action_mutex);
6899         if (!(priv->status & STATUS_INITIALIZED)) {
6900                 err = -EIO;
6901                 goto done;
6902         }
6903
6904         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6905             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6906                 /* we disable mandatory BSSID association */
6907                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6908                 priv->config &= ~CFG_STATIC_BSSID;
6909                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6910                 goto done;
6911         }
6912
6913         priv->config |= CFG_STATIC_BSSID;
6914         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6915
6916         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6917
6918         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6919                      wrqu->ap_addr.sa_data[0] & 0xff,
6920                      wrqu->ap_addr.sa_data[1] & 0xff,
6921                      wrqu->ap_addr.sa_data[2] & 0xff,
6922                      wrqu->ap_addr.sa_data[3] & 0xff,
6923                      wrqu->ap_addr.sa_data[4] & 0xff,
6924                      wrqu->ap_addr.sa_data[5] & 0xff);
6925
6926       done:
6927         mutex_unlock(&priv->action_mutex);
6928         return err;
6929 }
6930
6931 static int ipw2100_wx_get_wap(struct net_device *dev,
6932                               struct iw_request_info *info,
6933                               union iwreq_data *wrqu, char *extra)
6934 {
6935         /*
6936          * This can be called at any time.  No action lock required
6937          */
6938
6939         struct ipw2100_priv *priv = ieee80211_priv(dev);
6940
6941         /* If we are associated, trying to associate, or have a statically
6942          * configured BSSID then return that; otherwise return ANY */
6943         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6944                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6945                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6946         } else
6947                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6948
6949         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6950                      MAC_ARG(wrqu->ap_addr.sa_data));
6951         return 0;
6952 }
6953
6954 static int ipw2100_wx_set_essid(struct net_device *dev,
6955                                 struct iw_request_info *info,
6956                                 union iwreq_data *wrqu, char *extra)
6957 {
6958         struct ipw2100_priv *priv = ieee80211_priv(dev);
6959         char *essid = "";       /* ANY */
6960         int length = 0;
6961         int err = 0;
6962
6963         mutex_lock(&priv->action_mutex);
6964         if (!(priv->status & STATUS_INITIALIZED)) {
6965                 err = -EIO;
6966                 goto done;
6967         }
6968
6969         if (wrqu->essid.flags && wrqu->essid.length) {
6970                 length = wrqu->essid.length;
6971                 essid = extra;
6972         }
6973
6974         if (length == 0) {
6975                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6976                 priv->config &= ~CFG_STATIC_ESSID;
6977                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6978                 goto done;
6979         }
6980
6981         length = min(length, IW_ESSID_MAX_SIZE);
6982
6983         priv->config |= CFG_STATIC_ESSID;
6984
6985         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6986                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6987                 err = 0;
6988                 goto done;
6989         }
6990
6991         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6992                      length);
6993
6994         priv->essid_len = length;
6995         memcpy(priv->essid, essid, priv->essid_len);
6996
6997         err = ipw2100_set_essid(priv, essid, length, 0);
6998
6999       done:
7000         mutex_unlock(&priv->action_mutex);
7001         return err;
7002 }
7003
7004 static int ipw2100_wx_get_essid(struct net_device *dev,
7005                                 struct iw_request_info *info,
7006                                 union iwreq_data *wrqu, char *extra)
7007 {
7008         /*
7009          * This can be called at any time.  No action lock required
7010          */
7011
7012         struct ipw2100_priv *priv = ieee80211_priv(dev);
7013
7014         /* If we are associated, trying to associate, or have a statically
7015          * configured ESSID then return that; otherwise return ANY */
7016         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7017                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7018                              escape_essid(priv->essid, priv->essid_len));
7019                 memcpy(extra, priv->essid, priv->essid_len);
7020                 wrqu->essid.length = priv->essid_len;
7021                 wrqu->essid.flags = 1;  /* active */
7022         } else {
7023                 IPW_DEBUG_WX("Getting essid: ANY\n");
7024                 wrqu->essid.length = 0;
7025                 wrqu->essid.flags = 0;  /* active */
7026         }
7027
7028         return 0;
7029 }
7030
7031 static int ipw2100_wx_set_nick(struct net_device *dev,
7032                                struct iw_request_info *info,
7033                                union iwreq_data *wrqu, char *extra)
7034 {
7035         /*
7036          * This can be called at any time.  No action lock required
7037          */
7038
7039         struct ipw2100_priv *priv = ieee80211_priv(dev);
7040
7041         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7042                 return -E2BIG;
7043
7044         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7045         memset(priv->nick, 0, sizeof(priv->nick));
7046         memcpy(priv->nick, extra, wrqu->data.length);
7047
7048         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7049
7050         return 0;
7051 }
7052
7053 static int ipw2100_wx_get_nick(struct net_device *dev,
7054                                struct iw_request_info *info,
7055                                union iwreq_data *wrqu, char *extra)
7056 {
7057         /*
7058          * This can be called at any time.  No action lock required
7059          */
7060
7061         struct ipw2100_priv *priv = ieee80211_priv(dev);
7062
7063         wrqu->data.length = strlen(priv->nick);
7064         memcpy(extra, priv->nick, wrqu->data.length);
7065         wrqu->data.flags = 1;   /* active */
7066
7067         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7068
7069         return 0;
7070 }
7071
7072 static int ipw2100_wx_set_rate(struct net_device *dev,
7073                                struct iw_request_info *info,
7074                                union iwreq_data *wrqu, char *extra)
7075 {
7076         struct ipw2100_priv *priv = ieee80211_priv(dev);
7077         u32 target_rate = wrqu->bitrate.value;
7078         u32 rate;
7079         int err = 0;
7080
7081         mutex_lock(&priv->action_mutex);
7082         if (!(priv->status & STATUS_INITIALIZED)) {
7083                 err = -EIO;
7084                 goto done;
7085         }
7086
7087         rate = 0;
7088
7089         if (target_rate == 1000000 ||
7090             (!wrqu->bitrate.fixed && target_rate > 1000000))
7091                 rate |= TX_RATE_1_MBIT;
7092         if (target_rate == 2000000 ||
7093             (!wrqu->bitrate.fixed && target_rate > 2000000))
7094                 rate |= TX_RATE_2_MBIT;
7095         if (target_rate == 5500000 ||
7096             (!wrqu->bitrate.fixed && target_rate > 5500000))
7097                 rate |= TX_RATE_5_5_MBIT;
7098         if (target_rate == 11000000 ||
7099             (!wrqu->bitrate.fixed && target_rate > 11000000))
7100                 rate |= TX_RATE_11_MBIT;
7101         if (rate == 0)
7102                 rate = DEFAULT_TX_RATES;
7103
7104         err = ipw2100_set_tx_rates(priv, rate, 0);
7105
7106         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7107       done:
7108         mutex_unlock(&priv->action_mutex);
7109         return err;
7110 }
7111
7112 static int ipw2100_wx_get_rate(struct net_device *dev,
7113                                struct iw_request_info *info,
7114                                union iwreq_data *wrqu, char *extra)
7115 {
7116         struct ipw2100_priv *priv = ieee80211_priv(dev);
7117         int val;
7118         int len = sizeof(val);
7119         int err = 0;
7120
7121         if (!(priv->status & STATUS_ENABLED) ||
7122             priv->status & STATUS_RF_KILL_MASK ||
7123             !(priv->status & STATUS_ASSOCIATED)) {
7124                 wrqu->bitrate.value = 0;
7125                 return 0;
7126         }
7127
7128         mutex_lock(&priv->action_mutex);
7129         if (!(priv->status & STATUS_INITIALIZED)) {
7130                 err = -EIO;
7131                 goto done;
7132         }
7133
7134         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7135         if (err) {
7136                 IPW_DEBUG_WX("failed querying ordinals.\n");
7137                 return err;
7138         }
7139
7140         switch (val & TX_RATE_MASK) {
7141         case TX_RATE_1_MBIT:
7142                 wrqu->bitrate.value = 1000000;
7143                 break;
7144         case TX_RATE_2_MBIT:
7145                 wrqu->bitrate.value = 2000000;
7146                 break;
7147         case TX_RATE_5_5_MBIT:
7148                 wrqu->bitrate.value = 5500000;
7149                 break;
7150         case TX_RATE_11_MBIT:
7151                 wrqu->bitrate.value = 11000000;
7152                 break;
7153         default:
7154                 wrqu->bitrate.value = 0;
7155         }
7156
7157         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7158
7159       done:
7160         mutex_unlock(&priv->action_mutex);
7161         return err;
7162 }
7163
7164 static int ipw2100_wx_set_rts(struct net_device *dev,
7165                               struct iw_request_info *info,
7166                               union iwreq_data *wrqu, char *extra)
7167 {
7168         struct ipw2100_priv *priv = ieee80211_priv(dev);
7169         int value, err;
7170
7171         /* Auto RTS not yet supported */
7172         if (wrqu->rts.fixed == 0)
7173                 return -EINVAL;
7174
7175         mutex_lock(&priv->action_mutex);
7176         if (!(priv->status & STATUS_INITIALIZED)) {
7177                 err = -EIO;
7178                 goto done;
7179         }
7180
7181         if (wrqu->rts.disabled)
7182                 value = priv->rts_threshold | RTS_DISABLED;
7183         else {
7184                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7185                         err = -EINVAL;
7186                         goto done;
7187                 }
7188                 value = wrqu->rts.value;
7189         }
7190
7191         err = ipw2100_set_rts_threshold(priv, value);
7192
7193         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7194       done:
7195         mutex_unlock(&priv->action_mutex);
7196         return err;
7197 }
7198
7199 static int ipw2100_wx_get_rts(struct net_device *dev,
7200                               struct iw_request_info *info,
7201                               union iwreq_data *wrqu, char *extra)
7202 {
7203         /*
7204          * This can be called at any time.  No action lock required
7205          */
7206
7207         struct ipw2100_priv *priv = ieee80211_priv(dev);
7208
7209         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7210         wrqu->rts.fixed = 1;    /* no auto select */
7211
7212         /* If RTS is set to the default value, then it is disabled */
7213         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7214
7215         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7216
7217         return 0;
7218 }
7219
7220 static int ipw2100_wx_set_txpow(struct net_device *dev,
7221                                 struct iw_request_info *info,
7222                                 union iwreq_data *wrqu, char *extra)
7223 {
7224         struct ipw2100_priv *priv = ieee80211_priv(dev);
7225         int err = 0, value;
7226         
7227         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7228                 return -EINPROGRESS;
7229
7230         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7231                 return 0;
7232
7233         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7234                 return -EINVAL;
7235
7236         if (wrqu->txpower.fixed == 0)
7237                 value = IPW_TX_POWER_DEFAULT;
7238         else {
7239                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7240                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7241                         return -EINVAL;
7242
7243                 value = wrqu->txpower.value;
7244         }
7245
7246         mutex_lock(&priv->action_mutex);
7247         if (!(priv->status & STATUS_INITIALIZED)) {
7248                 err = -EIO;
7249                 goto done;
7250         }
7251
7252         err = ipw2100_set_tx_power(priv, value);
7253
7254         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7255
7256       done:
7257         mutex_unlock(&priv->action_mutex);
7258         return err;
7259 }
7260
7261 static int ipw2100_wx_get_txpow(struct net_device *dev,
7262                                 struct iw_request_info *info,
7263                                 union iwreq_data *wrqu, char *extra)
7264 {
7265         /*
7266          * This can be called at any time.  No action lock required
7267          */
7268
7269         struct ipw2100_priv *priv = ieee80211_priv(dev);
7270
7271         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7272
7273         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7274                 wrqu->txpower.fixed = 0;
7275                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7276         } else {
7277                 wrqu->txpower.fixed = 1;
7278                 wrqu->txpower.value = priv->tx_power;
7279         }
7280
7281         wrqu->txpower.flags = IW_TXPOW_DBM;
7282
7283         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7284
7285         return 0;
7286 }
7287
7288 static int ipw2100_wx_set_frag(struct net_device *dev,
7289                                struct iw_request_info *info,
7290                                union iwreq_data *wrqu, char *extra)
7291 {
7292         /*
7293          * This can be called at any time.  No action lock required
7294          */
7295
7296         struct ipw2100_priv *priv = ieee80211_priv(dev);
7297
7298         if (!wrqu->frag.fixed)
7299                 return -EINVAL;
7300
7301         if (wrqu->frag.disabled) {
7302                 priv->frag_threshold |= FRAG_DISABLED;
7303                 priv->ieee->fts = DEFAULT_FTS;
7304         } else {
7305                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7306                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7307                         return -EINVAL;
7308
7309                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7310                 priv->frag_threshold = priv->ieee->fts;
7311         }
7312
7313         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7314
7315         return 0;
7316 }
7317
7318 static int ipw2100_wx_get_frag(struct net_device *dev,
7319                                struct iw_request_info *info,
7320                                union iwreq_data *wrqu, char *extra)
7321 {
7322         /*
7323          * This can be called at any time.  No action lock required
7324          */
7325
7326         struct ipw2100_priv *priv = ieee80211_priv(dev);
7327         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7328         wrqu->frag.fixed = 0;   /* no auto select */
7329         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7330
7331         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7332
7333         return 0;
7334 }
7335
7336 static int ipw2100_wx_set_retry(struct net_device *dev,
7337                                 struct iw_request_info *info,
7338                                 union iwreq_data *wrqu, char *extra)
7339 {
7340         struct ipw2100_priv *priv = ieee80211_priv(dev);
7341         int err = 0;
7342
7343         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7344                 return -EINVAL;
7345
7346         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7347                 return 0;
7348
7349         mutex_lock(&priv->action_mutex);
7350         if (!(priv->status & STATUS_INITIALIZED)) {
7351                 err = -EIO;
7352                 goto done;
7353         }
7354
7355         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7356                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7357                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7358                              wrqu->retry.value);
7359                 goto done;
7360         }
7361
7362         if (wrqu->retry.flags & IW_RETRY_LONG) {
7363                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7364                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7365                              wrqu->retry.value);
7366                 goto done;
7367         }
7368
7369         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7370         if (!err)
7371                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7372
7373         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7374
7375       done:
7376         mutex_unlock(&priv->action_mutex);
7377         return err;
7378 }
7379
7380 static int ipw2100_wx_get_retry(struct net_device *dev,
7381                                 struct iw_request_info *info,
7382                                 union iwreq_data *wrqu, char *extra)
7383 {
7384         /*
7385          * This can be called at any time.  No action lock required
7386          */
7387
7388         struct ipw2100_priv *priv = ieee80211_priv(dev);
7389
7390         wrqu->retry.disabled = 0;       /* can't be disabled */
7391
7392         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7393                 return -EINVAL;
7394
7395         if (wrqu->retry.flags & IW_RETRY_LONG) {
7396                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7397                 wrqu->retry.value = priv->long_retry_limit;
7398         } else {
7399                 wrqu->retry.flags =
7400                     (priv->short_retry_limit !=
7401                      priv->long_retry_limit) ?
7402                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7403
7404                 wrqu->retry.value = priv->short_retry_limit;
7405         }
7406
7407         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7408
7409         return 0;
7410 }
7411
7412 static int ipw2100_wx_set_scan(struct net_device *dev,
7413                                struct iw_request_info *info,
7414                                union iwreq_data *wrqu, char *extra)
7415 {
7416         struct ipw2100_priv *priv = ieee80211_priv(dev);
7417         int err = 0;
7418
7419         mutex_lock(&priv->action_mutex);
7420         if (!(priv->status & STATUS_INITIALIZED)) {
7421                 err = -EIO;
7422                 goto done;
7423         }
7424
7425         IPW_DEBUG_WX("Initiating scan...\n");
7426         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7427                 IPW_DEBUG_WX("Start scan failed.\n");
7428
7429                 /* TODO: Mark a scan as pending so when hardware initialized
7430                  *       a scan starts */
7431         }
7432
7433       done:
7434         mutex_unlock(&priv->action_mutex);
7435         return err;
7436 }
7437
7438 static int ipw2100_wx_get_scan(struct net_device *dev,
7439                                struct iw_request_info *info,
7440                                union iwreq_data *wrqu, char *extra)
7441 {
7442         /*
7443          * This can be called at any time.  No action lock required
7444          */
7445
7446         struct ipw2100_priv *priv = ieee80211_priv(dev);
7447         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7448 }
7449
7450 /*
7451  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7452  */
7453 static int ipw2100_wx_set_encode(struct net_device *dev,
7454                                  struct iw_request_info *info,
7455                                  union iwreq_data *wrqu, char *key)
7456 {
7457         /*
7458          * No check of STATUS_INITIALIZED required
7459          */
7460
7461         struct ipw2100_priv *priv = ieee80211_priv(dev);
7462         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7463 }
7464
7465 static int ipw2100_wx_get_encode(struct net_device *dev,
7466                                  struct iw_request_info *info,
7467                                  union iwreq_data *wrqu, char *key)
7468 {
7469         /*
7470          * This can be called at any time.  No action lock required
7471          */
7472
7473         struct ipw2100_priv *priv = ieee80211_priv(dev);
7474         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7475 }
7476
7477 static int ipw2100_wx_set_power(struct net_device *dev,
7478                                 struct iw_request_info *info,
7479                                 union iwreq_data *wrqu, char *extra)
7480 {
7481         struct ipw2100_priv *priv = ieee80211_priv(dev);
7482         int err = 0;
7483
7484         mutex_lock(&priv->action_mutex);
7485         if (!(priv->status & STATUS_INITIALIZED)) {
7486                 err = -EIO;
7487                 goto done;
7488         }
7489
7490         if (wrqu->power.disabled) {
7491                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7492                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7493                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7494                 goto done;
7495         }
7496
7497         switch (wrqu->power.flags & IW_POWER_MODE) {
7498         case IW_POWER_ON:       /* If not specified */
7499         case IW_POWER_MODE:     /* If set all mask */
7500         case IW_POWER_ALL_R:    /* If explicitely state all */
7501                 break;
7502         default:                /* Otherwise we don't support it */
7503                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7504                              wrqu->power.flags);
7505                 err = -EOPNOTSUPP;
7506                 goto done;
7507         }
7508
7509         /* If the user hasn't specified a power management mode yet, default
7510          * to BATTERY */
7511         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7512         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7513
7514         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7515
7516       done:
7517         mutex_unlock(&priv->action_mutex);
7518         return err;
7519
7520 }
7521
7522 static int ipw2100_wx_get_power(struct net_device *dev,
7523                                 struct iw_request_info *info,
7524                                 union iwreq_data *wrqu, char *extra)
7525 {
7526         /*
7527          * This can be called at any time.  No action lock required
7528          */
7529
7530         struct ipw2100_priv *priv = ieee80211_priv(dev);
7531
7532         if (!(priv->power_mode & IPW_POWER_ENABLED))
7533                 wrqu->power.disabled = 1;
7534         else {
7535                 wrqu->power.disabled = 0;
7536                 wrqu->power.flags = 0;
7537         }
7538
7539         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7540
7541         return 0;
7542 }
7543
7544 /*
7545  * WE-18 WPA support
7546  */
7547
7548 /* SIOCSIWGENIE */
7549 static int ipw2100_wx_set_genie(struct net_device *dev,
7550                                 struct iw_request_info *info,
7551                                 union iwreq_data *wrqu, char *extra)
7552 {
7553
7554         struct ipw2100_priv *priv = ieee80211_priv(dev);
7555         struct ieee80211_device *ieee = priv->ieee;
7556         u8 *buf;
7557
7558         if (!ieee->wpa_enabled)
7559                 return -EOPNOTSUPP;
7560
7561         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7562             (wrqu->data.length && extra == NULL))
7563                 return -EINVAL;
7564
7565         if (wrqu->data.length) {
7566                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7567                 if (buf == NULL)
7568                         return -ENOMEM;
7569
7570                 kfree(ieee->wpa_ie);
7571                 ieee->wpa_ie = buf;
7572                 ieee->wpa_ie_len = wrqu->data.length;
7573         } else {
7574                 kfree(ieee->wpa_ie);
7575                 ieee->wpa_ie = NULL;
7576                 ieee->wpa_ie_len = 0;
7577         }
7578
7579         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7580
7581         return 0;
7582 }
7583
7584 /* SIOCGIWGENIE */
7585 static int ipw2100_wx_get_genie(struct net_device *dev,
7586                                 struct iw_request_info *info,
7587                                 union iwreq_data *wrqu, char *extra)
7588 {
7589         struct ipw2100_priv *priv = ieee80211_priv(dev);
7590         struct ieee80211_device *ieee = priv->ieee;
7591
7592         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7593                 wrqu->data.length = 0;
7594                 return 0;
7595         }
7596
7597         if (wrqu->data.length < ieee->wpa_ie_len)
7598                 return -E2BIG;
7599
7600         wrqu->data.length = ieee->wpa_ie_len;
7601         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7602
7603         return 0;
7604 }
7605
7606 /* SIOCSIWAUTH */
7607 static int ipw2100_wx_set_auth(struct net_device *dev,
7608                                struct iw_request_info *info,
7609                                union iwreq_data *wrqu, char *extra)
7610 {
7611         struct ipw2100_priv *priv = ieee80211_priv(dev);
7612         struct ieee80211_device *ieee = priv->ieee;
7613         struct iw_param *param = &wrqu->param;
7614         struct ieee80211_crypt_data *crypt;
7615         unsigned long flags;
7616         int ret = 0;
7617
7618         switch (param->flags & IW_AUTH_INDEX) {
7619         case IW_AUTH_WPA_VERSION:
7620         case IW_AUTH_CIPHER_PAIRWISE:
7621         case IW_AUTH_CIPHER_GROUP:
7622         case IW_AUTH_KEY_MGMT:
7623                 /*
7624                  * ipw2200 does not use these parameters
7625                  */
7626                 break;
7627
7628         case IW_AUTH_TKIP_COUNTERMEASURES:
7629                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7630                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7631                         break;
7632
7633                 flags = crypt->ops->get_flags(crypt->priv);
7634
7635                 if (param->value)
7636                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7637                 else
7638                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7639
7640                 crypt->ops->set_flags(flags, crypt->priv);
7641
7642                 break;
7643
7644         case IW_AUTH_DROP_UNENCRYPTED:{
7645                         /* HACK:
7646                          *
7647                          * wpa_supplicant calls set_wpa_enabled when the driver
7648                          * is loaded and unloaded, regardless of if WPA is being
7649                          * used.  No other calls are made which can be used to
7650                          * determine if encryption will be used or not prior to
7651                          * association being expected.  If encryption is not being
7652                          * used, drop_unencrypted is set to false, else true -- we
7653                          * can use this to determine if the CAP_PRIVACY_ON bit should
7654                          * be set.
7655                          */
7656                         struct ieee80211_security sec = {
7657                                 .flags = SEC_ENABLED,
7658                                 .enabled = param->value,
7659                         };
7660                         priv->ieee->drop_unencrypted = param->value;
7661                         /* We only change SEC_LEVEL for open mode. Others
7662                          * are set by ipw_wpa_set_encryption.
7663                          */
7664                         if (!param->value) {
7665                                 sec.flags |= SEC_LEVEL;
7666                                 sec.level = SEC_LEVEL_0;
7667                         } else {
7668                                 sec.flags |= SEC_LEVEL;
7669                                 sec.level = SEC_LEVEL_1;
7670                         }
7671                         if (priv->ieee->set_security)
7672                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7673                         break;
7674                 }
7675
7676         case IW_AUTH_80211_AUTH_ALG:
7677                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7678                 break;
7679
7680         case IW_AUTH_WPA_ENABLED:
7681                 ret = ipw2100_wpa_enable(priv, param->value);
7682                 break;
7683
7684         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7685                 ieee->ieee802_1x = param->value;
7686                 break;
7687
7688                 //case IW_AUTH_ROAMING_CONTROL:
7689         case IW_AUTH_PRIVACY_INVOKED:
7690                 ieee->privacy_invoked = param->value;
7691                 break;
7692
7693         default:
7694                 return -EOPNOTSUPP;
7695         }
7696         return ret;
7697 }
7698
7699 /* SIOCGIWAUTH */
7700 static int ipw2100_wx_get_auth(struct net_device *dev,
7701                                struct iw_request_info *info,
7702                                union iwreq_data *wrqu, char *extra)
7703 {
7704         struct ipw2100_priv *priv = ieee80211_priv(dev);
7705         struct ieee80211_device *ieee = priv->ieee;
7706         struct ieee80211_crypt_data *crypt;
7707         struct iw_param *param = &wrqu->param;
7708         int ret = 0;
7709
7710         switch (param->flags & IW_AUTH_INDEX) {
7711         case IW_AUTH_WPA_VERSION:
7712         case IW_AUTH_CIPHER_PAIRWISE:
7713         case IW_AUTH_CIPHER_GROUP:
7714         case IW_AUTH_KEY_MGMT:
7715                 /*
7716                  * wpa_supplicant will control these internally
7717                  */
7718                 ret = -EOPNOTSUPP;
7719                 break;
7720
7721         case IW_AUTH_TKIP_COUNTERMEASURES:
7722                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7723                 if (!crypt || !crypt->ops->get_flags) {
7724                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7725                                           "crypt not set!\n");
7726                         break;
7727                 }
7728
7729                 param->value = (crypt->ops->get_flags(crypt->priv) &
7730                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7731
7732                 break;
7733
7734         case IW_AUTH_DROP_UNENCRYPTED:
7735                 param->value = ieee->drop_unencrypted;
7736                 break;
7737
7738         case IW_AUTH_80211_AUTH_ALG:
7739                 param->value = priv->ieee->sec.auth_mode;
7740                 break;
7741
7742         case IW_AUTH_WPA_ENABLED:
7743                 param->value = ieee->wpa_enabled;
7744                 break;
7745
7746         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7747                 param->value = ieee->ieee802_1x;
7748                 break;
7749
7750         case IW_AUTH_ROAMING_CONTROL:
7751         case IW_AUTH_PRIVACY_INVOKED:
7752                 param->value = ieee->privacy_invoked;
7753                 break;
7754
7755         default:
7756                 return -EOPNOTSUPP;
7757         }
7758         return 0;
7759 }
7760
7761 /* SIOCSIWENCODEEXT */
7762 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7763                                     struct iw_request_info *info,
7764                                     union iwreq_data *wrqu, char *extra)
7765 {
7766         struct ipw2100_priv *priv = ieee80211_priv(dev);
7767         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7768 }
7769
7770 /* SIOCGIWENCODEEXT */
7771 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7772                                     struct iw_request_info *info,
7773                                     union iwreq_data *wrqu, char *extra)
7774 {
7775         struct ipw2100_priv *priv = ieee80211_priv(dev);
7776         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7777 }
7778
7779 /* SIOCSIWMLME */
7780 static int ipw2100_wx_set_mlme(struct net_device *dev,
7781                                struct iw_request_info *info,
7782                                union iwreq_data *wrqu, char *extra)
7783 {
7784         struct ipw2100_priv *priv = ieee80211_priv(dev);
7785         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7786         u16 reason;
7787
7788         reason = cpu_to_le16(mlme->reason_code);
7789
7790         switch (mlme->cmd) {
7791         case IW_MLME_DEAUTH:
7792                 // silently ignore
7793                 break;
7794
7795         case IW_MLME_DISASSOC:
7796                 ipw2100_disassociate_bssid(priv);
7797                 break;
7798
7799         default:
7800                 return -EOPNOTSUPP;
7801         }
7802         return 0;
7803 }
7804
7805 /*
7806  *
7807  * IWPRIV handlers
7808  *
7809  */
7810 #ifdef CONFIG_IPW2100_MONITOR
7811 static int ipw2100_wx_set_promisc(struct net_device *dev,
7812                                   struct iw_request_info *info,
7813                                   union iwreq_data *wrqu, char *extra)
7814 {
7815         struct ipw2100_priv *priv = ieee80211_priv(dev);
7816         int *parms = (int *)extra;
7817         int enable = (parms[0] > 0);
7818         int err = 0;
7819
7820         mutex_lock(&priv->action_mutex);
7821         if (!(priv->status & STATUS_INITIALIZED)) {
7822                 err = -EIO;
7823                 goto done;
7824         }
7825
7826         if (enable) {
7827                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7828                         err = ipw2100_set_channel(priv, parms[1], 0);
7829                         goto done;
7830                 }
7831                 priv->channel = parms[1];
7832                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7833         } else {
7834                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7835                         err = ipw2100_switch_mode(priv, priv->last_mode);
7836         }
7837       done:
7838         mutex_unlock(&priv->action_mutex);
7839         return err;
7840 }
7841
7842 static int ipw2100_wx_reset(struct net_device *dev,
7843                             struct iw_request_info *info,
7844                             union iwreq_data *wrqu, char *extra)
7845 {
7846         struct ipw2100_priv *priv = ieee80211_priv(dev);
7847         if (priv->status & STATUS_INITIALIZED)
7848                 schedule_reset(priv);
7849         return 0;
7850 }
7851
7852 #endif
7853
7854 static int ipw2100_wx_set_powermode(struct net_device *dev,
7855                                     struct iw_request_info *info,
7856                                     union iwreq_data *wrqu, char *extra)
7857 {
7858         struct ipw2100_priv *priv = ieee80211_priv(dev);
7859         int err = 0, mode = *(int *)extra;
7860
7861         mutex_lock(&priv->action_mutex);
7862         if (!(priv->status & STATUS_INITIALIZED)) {
7863                 err = -EIO;
7864                 goto done;
7865         }
7866
7867         if ((mode < 1) || (mode > POWER_MODES))
7868                 mode = IPW_POWER_AUTO;
7869
7870         if (priv->power_mode != mode)
7871                 err = ipw2100_set_power_mode(priv, mode);
7872       done:
7873         mutex_unlock(&priv->action_mutex);
7874         return err;
7875 }
7876
7877 #define MAX_POWER_STRING 80
7878 static int ipw2100_wx_get_powermode(struct net_device *dev,
7879                                     struct iw_request_info *info,
7880                                     union iwreq_data *wrqu, char *extra)
7881 {
7882         /*
7883          * This can be called at any time.  No action lock required
7884          */
7885
7886         struct ipw2100_priv *priv = ieee80211_priv(dev);
7887         int level = IPW_POWER_LEVEL(priv->power_mode);
7888         s32 timeout, period;
7889
7890         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7891                 snprintf(extra, MAX_POWER_STRING,
7892                          "Power save level: %d (Off)", level);
7893         } else {
7894                 switch (level) {
7895                 case IPW_POWER_MODE_CAM:
7896                         snprintf(extra, MAX_POWER_STRING,
7897                                  "Power save level: %d (None)", level);
7898                         break;
7899                 case IPW_POWER_AUTO:
7900                         snprintf(extra, MAX_POWER_STRING,
7901                                  "Power save level: %d (Auto)", 0);
7902                         break;
7903                 default:
7904                         timeout = timeout_duration[level - 1] / 1000;
7905                         period = period_duration[level - 1] / 1000;
7906                         snprintf(extra, MAX_POWER_STRING,
7907                                  "Power save level: %d "
7908                                  "(Timeout %dms, Period %dms)",
7909                                  level, timeout, period);
7910                 }
7911         }
7912
7913         wrqu->data.length = strlen(extra) + 1;
7914
7915         return 0;
7916 }
7917
7918 static int ipw2100_wx_set_preamble(struct net_device *dev,
7919                                    struct iw_request_info *info,
7920                                    union iwreq_data *wrqu, char *extra)
7921 {
7922         struct ipw2100_priv *priv = ieee80211_priv(dev);
7923         int err, mode = *(int *)extra;
7924
7925         mutex_lock(&priv->action_mutex);
7926         if (!(priv->status & STATUS_INITIALIZED)) {
7927                 err = -EIO;
7928                 goto done;
7929         }
7930
7931         if (mode == 1)
7932                 priv->config |= CFG_LONG_PREAMBLE;
7933         else if (mode == 0)
7934                 priv->config &= ~CFG_LONG_PREAMBLE;
7935         else {
7936                 err = -EINVAL;
7937                 goto done;
7938         }
7939
7940         err = ipw2100_system_config(priv, 0);
7941
7942       done:
7943         mutex_unlock(&priv->action_mutex);
7944         return err;
7945 }
7946
7947 static int ipw2100_wx_get_preamble(struct net_device *dev,
7948                                    struct iw_request_info *info,
7949                                    union iwreq_data *wrqu, char *extra)
7950 {
7951         /*
7952          * This can be called at any time.  No action lock required
7953          */
7954
7955         struct ipw2100_priv *priv = ieee80211_priv(dev);
7956
7957         if (priv->config & CFG_LONG_PREAMBLE)
7958                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7959         else
7960                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7961
7962         return 0;
7963 }
7964
7965 #ifdef CONFIG_IPW2100_MONITOR
7966 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7967                                     struct iw_request_info *info,
7968                                     union iwreq_data *wrqu, char *extra)
7969 {
7970         struct ipw2100_priv *priv = ieee80211_priv(dev);
7971         int err, mode = *(int *)extra;
7972
7973         mutex_lock(&priv->action_mutex);
7974         if (!(priv->status & STATUS_INITIALIZED)) {
7975                 err = -EIO;
7976                 goto done;
7977         }
7978
7979         if (mode == 1)
7980                 priv->config |= CFG_CRC_CHECK;
7981         else if (mode == 0)
7982                 priv->config &= ~CFG_CRC_CHECK;
7983         else {
7984                 err = -EINVAL;
7985                 goto done;
7986         }
7987         err = 0;
7988
7989       done:
7990         mutex_unlock(&priv->action_mutex);
7991         return err;
7992 }
7993
7994 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7995                                     struct iw_request_info *info,
7996                                     union iwreq_data *wrqu, char *extra)
7997 {
7998         /*
7999          * This can be called at any time.  No action lock required
8000          */
8001
8002         struct ipw2100_priv *priv = ieee80211_priv(dev);
8003
8004         if (priv->config & CFG_CRC_CHECK)
8005                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8006         else
8007                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8008
8009         return 0;
8010 }
8011 #endif                          /* CONFIG_IPW2100_MONITOR */
8012
8013 static iw_handler ipw2100_wx_handlers[] = {
8014         NULL,                   /* SIOCSIWCOMMIT */
8015         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8016         NULL,                   /* SIOCSIWNWID */
8017         NULL,                   /* SIOCGIWNWID */
8018         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8019         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8020         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8021         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8022         NULL,                   /* SIOCSIWSENS */
8023         NULL,                   /* SIOCGIWSENS */
8024         NULL,                   /* SIOCSIWRANGE */
8025         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8026         NULL,                   /* SIOCSIWPRIV */
8027         NULL,                   /* SIOCGIWPRIV */
8028         NULL,                   /* SIOCSIWSTATS */
8029         NULL,                   /* SIOCGIWSTATS */
8030         NULL,                   /* SIOCSIWSPY */
8031         NULL,                   /* SIOCGIWSPY */
8032         NULL,                   /* SIOCGIWTHRSPY */
8033         NULL,                   /* SIOCWIWTHRSPY */
8034         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8035         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8036         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8037         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8038         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8039         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8040         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8041         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8042         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8043         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8044         NULL,                   /* -- hole -- */
8045         NULL,                   /* -- hole -- */
8046         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8047         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8048         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8049         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8050         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8051         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8052         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8053         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8054         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8055         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8056         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8057         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8058         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8059         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8060         NULL,                   /* -- hole -- */
8061         NULL,                   /* -- hole -- */
8062         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8063         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8064         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8065         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8066         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8067         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8068         NULL,                   /* SIOCSIWPMKSA */
8069 };
8070
8071 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8072 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8073 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8074 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8075 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8076 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8077 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8078 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8079
8080 static const struct iw_priv_args ipw2100_private_args[] = {
8081
8082 #ifdef CONFIG_IPW2100_MONITOR
8083         {
8084          IPW2100_PRIV_SET_MONITOR,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8086         {
8087          IPW2100_PRIV_RESET,
8088          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8089 #endif                          /* CONFIG_IPW2100_MONITOR */
8090
8091         {
8092          IPW2100_PRIV_SET_POWER,
8093          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8094         {
8095          IPW2100_PRIV_GET_POWER,
8096          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8097          "get_power"},
8098         {
8099          IPW2100_PRIV_SET_LONGPREAMBLE,
8100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8101         {
8102          IPW2100_PRIV_GET_LONGPREAMBLE,
8103          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8104 #ifdef CONFIG_IPW2100_MONITOR
8105         {
8106          IPW2100_PRIV_SET_CRC_CHECK,
8107          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8108         {
8109          IPW2100_PRIV_GET_CRC_CHECK,
8110          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8111 #endif                          /* CONFIG_IPW2100_MONITOR */
8112 };
8113
8114 static iw_handler ipw2100_private_handler[] = {
8115 #ifdef CONFIG_IPW2100_MONITOR
8116         ipw2100_wx_set_promisc,
8117         ipw2100_wx_reset,
8118 #else                           /* CONFIG_IPW2100_MONITOR */
8119         NULL,
8120         NULL,
8121 #endif                          /* CONFIG_IPW2100_MONITOR */
8122         ipw2100_wx_set_powermode,
8123         ipw2100_wx_get_powermode,
8124         ipw2100_wx_set_preamble,
8125         ipw2100_wx_get_preamble,
8126 #ifdef CONFIG_IPW2100_MONITOR
8127         ipw2100_wx_set_crc_check,
8128         ipw2100_wx_get_crc_check,
8129 #else                           /* CONFIG_IPW2100_MONITOR */
8130         NULL,
8131         NULL,
8132 #endif                          /* CONFIG_IPW2100_MONITOR */
8133 };
8134
8135 /*
8136  * Get wireless statistics.
8137  * Called by /proc/net/wireless
8138  * Also called by SIOCGIWSTATS
8139  */
8140 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8141 {
8142         enum {
8143                 POOR = 30,
8144                 FAIR = 60,
8145                 GOOD = 80,
8146                 VERY_GOOD = 90,
8147                 EXCELLENT = 95,
8148                 PERFECT = 100
8149         };
8150         int rssi_qual;
8151         int tx_qual;
8152         int beacon_qual;
8153
8154         struct ipw2100_priv *priv = ieee80211_priv(dev);
8155         struct iw_statistics *wstats;
8156         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8157         u32 ord_len = sizeof(u32);
8158
8159         if (!priv)
8160                 return (struct iw_statistics *)NULL;
8161
8162         wstats = &priv->wstats;
8163
8164         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8165          * ipw2100_wx_wireless_stats seems to be called before fw is
8166          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8167          * and associated; if not associcated, the values are all meaningless
8168          * anyway, so set them all to NULL and INVALID */
8169         if (!(priv->status & STATUS_ASSOCIATED)) {
8170                 wstats->miss.beacon = 0;
8171                 wstats->discard.retries = 0;
8172                 wstats->qual.qual = 0;
8173                 wstats->qual.level = 0;
8174                 wstats->qual.noise = 0;
8175                 wstats->qual.updated = 7;
8176                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8177                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8178                 return wstats;
8179         }
8180
8181         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8182                                 &missed_beacons, &ord_len))
8183                 goto fail_get_ordinal;
8184
8185         /* If we don't have a connection the quality and level is 0 */
8186         if (!(priv->status & STATUS_ASSOCIATED)) {
8187                 wstats->qual.qual = 0;
8188                 wstats->qual.level = 0;
8189         } else {
8190                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8191                                         &rssi, &ord_len))
8192                         goto fail_get_ordinal;
8193                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8194                 if (rssi < 10)
8195                         rssi_qual = rssi * POOR / 10;
8196                 else if (rssi < 15)
8197                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8198                 else if (rssi < 20)
8199                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8200                 else if (rssi < 30)
8201                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8202                             10 + GOOD;
8203                 else
8204                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8205                             10 + VERY_GOOD;
8206
8207                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8208                                         &tx_retries, &ord_len))
8209                         goto fail_get_ordinal;
8210
8211                 if (tx_retries > 75)
8212                         tx_qual = (90 - tx_retries) * POOR / 15;
8213                 else if (tx_retries > 70)
8214                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8215                 else if (tx_retries > 65)
8216                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8217                 else if (tx_retries > 50)
8218                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8219                             15 + GOOD;
8220                 else
8221                         tx_qual = (50 - tx_retries) *
8222                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8223
8224                 if (missed_beacons > 50)
8225                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8226                 else if (missed_beacons > 40)
8227                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8228                             10 + POOR;
8229                 else if (missed_beacons > 32)
8230                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8231                             18 + FAIR;
8232                 else if (missed_beacons > 20)
8233                         beacon_qual = (32 - missed_beacons) *
8234                             (VERY_GOOD - GOOD) / 20 + GOOD;
8235                 else
8236                         beacon_qual = (20 - missed_beacons) *
8237                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8238
8239                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8240
8241 #ifdef CONFIG_IPW2100_DEBUG
8242                 if (beacon_qual == quality)
8243                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8244                 else if (tx_qual == quality)
8245                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8246                 else if (quality != 100)
8247                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8248                 else
8249                         IPW_DEBUG_WX("Quality not clamped.\n");
8250 #endif
8251
8252                 wstats->qual.qual = quality;
8253                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8254         }
8255
8256         wstats->qual.noise = 0;
8257         wstats->qual.updated = 7;
8258         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8259
8260         /* FIXME: this is percent and not a # */
8261         wstats->miss.beacon = missed_beacons;
8262
8263         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8264                                 &tx_failures, &ord_len))
8265                 goto fail_get_ordinal;
8266         wstats->discard.retries = tx_failures;
8267
8268         return wstats;
8269
8270       fail_get_ordinal:
8271         IPW_DEBUG_WX("failed querying ordinals.\n");
8272
8273         return (struct iw_statistics *)NULL;
8274 }
8275
8276 static struct iw_handler_def ipw2100_wx_handler_def = {
8277         .standard = ipw2100_wx_handlers,
8278         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8279         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8280         .num_private_args = sizeof(ipw2100_private_args) /
8281             sizeof(struct iw_priv_args),
8282         .private = (iw_handler *) ipw2100_private_handler,
8283         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8284         .get_wireless_stats = ipw2100_wx_wireless_stats,
8285 };
8286
8287 static void ipw2100_wx_event_work(struct work_struct *work)
8288 {
8289         struct ipw2100_priv *priv =
8290                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8291         union iwreq_data wrqu;
8292         int len = ETH_ALEN;
8293
8294         if (priv->status & STATUS_STOPPING)
8295                 return;
8296
8297         mutex_lock(&priv->action_mutex);
8298
8299         IPW_DEBUG_WX("enter\n");
8300
8301         mutex_unlock(&priv->action_mutex);
8302
8303         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8304
8305         /* Fetch BSSID from the hardware */
8306         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307             priv->status & STATUS_RF_KILL_MASK ||
8308             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309                                 &priv->bssid, &len)) {
8310                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8311         } else {
8312                 /* We now have the BSSID, so can finish setting to the full
8313                  * associated state */
8314                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316                 priv->status &= ~STATUS_ASSOCIATING;
8317                 priv->status |= STATUS_ASSOCIATED;
8318                 netif_carrier_on(priv->net_dev);
8319                 netif_wake_queue(priv->net_dev);
8320         }
8321
8322         if (!(priv->status & STATUS_ASSOCIATED)) {
8323                 IPW_DEBUG_WX("Configuring ESSID\n");
8324                 mutex_lock(&priv->action_mutex);
8325                 /* This is a disassociation event, so kick the firmware to
8326                  * look for another AP */
8327                 if (priv->config & CFG_STATIC_ESSID)
8328                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8329                                           0);
8330                 else
8331                         ipw2100_set_essid(priv, NULL, 0, 0);
8332                 mutex_unlock(&priv->action_mutex);
8333         }
8334
8335         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8336 }
8337
8338 #define IPW2100_FW_MAJOR_VERSION 1
8339 #define IPW2100_FW_MINOR_VERSION 3
8340
8341 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8342 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8343
8344 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8345                              IPW2100_FW_MAJOR_VERSION)
8346
8347 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8348 "." __stringify(IPW2100_FW_MINOR_VERSION)
8349
8350 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8351
8352 /*
8353
8354 BINARY FIRMWARE HEADER FORMAT
8355
8356 offset      length   desc
8357 0           2        version
8358 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8359 4           4        fw_len
8360 8           4        uc_len
8361 C           fw_len   firmware data
8362 12 + fw_len uc_len   microcode data
8363
8364 */
8365
8366 struct ipw2100_fw_header {
8367         short version;
8368         short mode;
8369         unsigned int fw_size;
8370         unsigned int uc_size;
8371 } __attribute__ ((packed));
8372
8373 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8374 {
8375         struct ipw2100_fw_header *h =
8376             (struct ipw2100_fw_header *)fw->fw_entry->data;
8377
8378         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8379                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8380                        "(detected version id of %u). "
8381                        "See Documentation/networking/README.ipw2100\n",
8382                        h->version);
8383                 return 1;
8384         }
8385
8386         fw->version = h->version;
8387         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8388         fw->fw.size = h->fw_size;
8389         fw->uc.data = fw->fw.data + h->fw_size;
8390         fw->uc.size = h->uc_size;
8391
8392         return 0;
8393 }
8394
8395 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8396                                 struct ipw2100_fw *fw)
8397 {
8398         char *fw_name;
8399         int rc;
8400
8401         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8402                        priv->net_dev->name);
8403
8404         switch (priv->ieee->iw_mode) {
8405         case IW_MODE_ADHOC:
8406                 fw_name = IPW2100_FW_NAME("-i");
8407                 break;
8408 #ifdef CONFIG_IPW2100_MONITOR
8409         case IW_MODE_MONITOR:
8410                 fw_name = IPW2100_FW_NAME("-p");
8411                 break;
8412 #endif
8413         case IW_MODE_INFRA:
8414         default:
8415                 fw_name = IPW2100_FW_NAME("");
8416                 break;
8417         }
8418
8419         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8420
8421         if (rc < 0) {
8422                 printk(KERN_ERR DRV_NAME ": "
8423                        "%s: Firmware '%s' not available or load failed.\n",
8424                        priv->net_dev->name, fw_name);
8425                 return rc;
8426         }
8427         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8428                        fw->fw_entry->size);
8429
8430         ipw2100_mod_firmware_load(fw);
8431
8432         return 0;
8433 }
8434
8435 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8436                                      struct ipw2100_fw *fw)
8437 {
8438         fw->version = 0;
8439         if (fw->fw_entry)
8440                 release_firmware(fw->fw_entry);
8441         fw->fw_entry = NULL;
8442 }
8443
8444 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8445                                  size_t max)
8446 {
8447         char ver[MAX_FW_VERSION_LEN];
8448         u32 len = MAX_FW_VERSION_LEN;
8449         u32 tmp;
8450         int i;
8451         /* firmware version is an ascii string (max len of 14) */
8452         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8453                 return -EIO;
8454         tmp = max;
8455         if (len >= max)
8456                 len = max - 1;
8457         for (i = 0; i < len; i++)
8458                 buf[i] = ver[i];
8459         buf[i] = '\0';
8460         return tmp;
8461 }
8462
8463 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8464                                     size_t max)
8465 {
8466         u32 ver;
8467         u32 len = sizeof(ver);
8468         /* microcode version is a 32 bit integer */
8469         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8470                 return -EIO;
8471         return snprintf(buf, max, "%08X", ver);
8472 }
8473
8474 /*
8475  * On exit, the firmware will have been freed from the fw list
8476  */
8477 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8478 {
8479         /* firmware is constructed of N contiguous entries, each entry is
8480          * structured as:
8481          *
8482          * offset    sie         desc
8483          * 0         4           address to write to
8484          * 4         2           length of data run
8485          * 6         length      data
8486          */
8487         unsigned int addr;
8488         unsigned short len;
8489
8490         const unsigned char *firmware_data = fw->fw.data;
8491         unsigned int firmware_data_left = fw->fw.size;
8492
8493         while (firmware_data_left > 0) {
8494                 addr = *(u32 *) (firmware_data);
8495                 firmware_data += 4;
8496                 firmware_data_left -= 4;
8497
8498                 len = *(u16 *) (firmware_data);
8499                 firmware_data += 2;
8500                 firmware_data_left -= 2;
8501
8502                 if (len > 32) {
8503                         printk(KERN_ERR DRV_NAME ": "
8504                                "Invalid firmware run-length of %d bytes\n",
8505                                len);
8506                         return -EINVAL;
8507                 }
8508
8509                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8510                 firmware_data += len;
8511                 firmware_data_left -= len;
8512         }
8513
8514         return 0;
8515 }
8516
8517 struct symbol_alive_response {
8518         u8 cmd_id;
8519         u8 seq_num;
8520         u8 ucode_rev;
8521         u8 eeprom_valid;
8522         u16 valid_flags;
8523         u8 IEEE_addr[6];
8524         u16 flags;
8525         u16 pcb_rev;
8526         u16 clock_settle_time;  // 1us LSB
8527         u16 powerup_settle_time;        // 1us LSB
8528         u16 hop_settle_time;    // 1us LSB
8529         u8 date[3];             // month, day, year
8530         u8 time[2];             // hours, minutes
8531         u8 ucode_valid;
8532 };
8533
8534 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8535                                   struct ipw2100_fw *fw)
8536 {
8537         struct net_device *dev = priv->net_dev;
8538         const unsigned char *microcode_data = fw->uc.data;
8539         unsigned int microcode_data_left = fw->uc.size;
8540         void __iomem *reg = (void __iomem *)dev->base_addr;
8541
8542         struct symbol_alive_response response;
8543         int i, j;
8544         u8 data;
8545
8546         /* Symbol control */
8547         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8548         readl(reg);
8549         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8550         readl(reg);
8551
8552         /* HW config */
8553         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8554         readl(reg);
8555         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8556         readl(reg);
8557
8558         /* EN_CS_ACCESS bit to reset control store pointer */
8559         write_nic_byte(dev, 0x210000, 0x40);
8560         readl(reg);
8561         write_nic_byte(dev, 0x210000, 0x0);
8562         readl(reg);
8563         write_nic_byte(dev, 0x210000, 0x40);
8564         readl(reg);
8565
8566         /* copy microcode from buffer into Symbol */
8567
8568         while (microcode_data_left > 0) {
8569                 write_nic_byte(dev, 0x210010, *microcode_data++);
8570                 write_nic_byte(dev, 0x210010, *microcode_data++);
8571                 microcode_data_left -= 2;
8572         }
8573
8574         /* EN_CS_ACCESS bit to reset the control store pointer */
8575         write_nic_byte(dev, 0x210000, 0x0);
8576         readl(reg);
8577
8578         /* Enable System (Reg 0)
8579          * first enable causes garbage in RX FIFO */
8580         write_nic_byte(dev, 0x210000, 0x0);
8581         readl(reg);
8582         write_nic_byte(dev, 0x210000, 0x80);
8583         readl(reg);
8584
8585         /* Reset External Baseband Reg */
8586         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8587         readl(reg);
8588         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8589         readl(reg);
8590
8591         /* HW Config (Reg 5) */
8592         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8593         readl(reg);
8594         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8595         readl(reg);
8596
8597         /* Enable System (Reg 0)
8598          * second enable should be OK */
8599         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8600         readl(reg);
8601         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8602
8603         /* check Symbol is enabled - upped this from 5 as it wasn't always
8604          * catching the update */
8605         for (i = 0; i < 10; i++) {
8606                 udelay(10);
8607
8608                 /* check Dino is enabled bit */
8609                 read_nic_byte(dev, 0x210000, &data);
8610                 if (data & 0x1)
8611                         break;
8612         }
8613
8614         if (i == 10) {
8615                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8616                        dev->name);
8617                 return -EIO;
8618         }
8619
8620         /* Get Symbol alive response */
8621         for (i = 0; i < 30; i++) {
8622                 /* Read alive response structure */
8623                 for (j = 0;
8624                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8625                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8626
8627                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8628                         break;
8629                 udelay(10);
8630         }
8631
8632         if (i == 30) {
8633                 printk(KERN_ERR DRV_NAME
8634                        ": %s: No response from Symbol - hw not alive\n",
8635                        dev->name);
8636                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8637                 return -EIO;
8638         }
8639
8640         return 0;
8641 }