[netdrvr] hp100: encapsulate all non-module code
[pandora-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #define __KERNEL_SYSCALLS__
154 #include <linux/fs.h>
155 #include <linux/mm.h>
156 #include <linux/slab.h>
157 #include <linux/unistd.h>
158 #include <linux/stringify.h>
159 #include <linux/tcp.h>
160 #include <linux/types.h>
161 #include <linux/version.h>
162 #include <linux/time.h>
163 #include <linux/firmware.h>
164 #include <linux/acpi.h>
165 #include <linux/ctype.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_work(priv->workqueue, &priv->reset_work);
683
684                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685                         priv->reset_backoff++;
686
687                 wake_up_interruptible(&priv->wait_command_queue);
688         } else
689                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690                                priv->net_dev->name);
691
692 }
693
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696                                    struct host_command *cmd)
697 {
698         struct list_head *element;
699         struct ipw2100_tx_packet *packet;
700         unsigned long flags;
701         int err = 0;
702
703         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704                      command_types[cmd->host_command], cmd->host_command,
705                      cmd->host_command_length);
706         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707                    cmd->host_command_length);
708
709         spin_lock_irqsave(&priv->low_lock, flags);
710
711         if (priv->fatal_error) {
712                 IPW_DEBUG_INFO
713                     ("Attempt to send command while hardware in fatal error condition.\n");
714                 err = -EIO;
715                 goto fail_unlock;
716         }
717
718         if (!(priv->status & STATUS_RUNNING)) {
719                 IPW_DEBUG_INFO
720                     ("Attempt to send command while hardware is not running.\n");
721                 err = -EIO;
722                 goto fail_unlock;
723         }
724
725         if (priv->status & STATUS_CMD_ACTIVE) {
726                 IPW_DEBUG_INFO
727                     ("Attempt to send command while another command is pending.\n");
728                 err = -EBUSY;
729                 goto fail_unlock;
730         }
731
732         if (list_empty(&priv->msg_free_list)) {
733                 IPW_DEBUG_INFO("no available msg buffers\n");
734                 goto fail_unlock;
735         }
736
737         priv->status |= STATUS_CMD_ACTIVE;
738         priv->messages_sent++;
739
740         element = priv->msg_free_list.next;
741
742         packet = list_entry(element, struct ipw2100_tx_packet, list);
743         packet->jiffy_start = jiffies;
744
745         /* initialize the firmware command packet */
746         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748         packet->info.c_struct.cmd->host_command_len_reg =
749             cmd->host_command_length;
750         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
751
752         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753                cmd->host_command_parameters,
754                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
755
756         list_del(element);
757         DEC_STAT(&priv->msg_free_stat);
758
759         list_add_tail(element, &priv->msg_pend_list);
760         INC_STAT(&priv->msg_pend_stat);
761
762         ipw2100_tx_send_commands(priv);
763         ipw2100_tx_send_data(priv);
764
765         spin_unlock_irqrestore(&priv->low_lock, flags);
766
767         /*
768          * We must wait for this command to complete before another
769          * command can be sent...  but if we wait more than 3 seconds
770          * then there is a problem.
771          */
772
773         err =
774             wait_event_interruptible_timeout(priv->wait_command_queue,
775                                              !(priv->
776                                                status & STATUS_CMD_ACTIVE),
777                                              HOST_COMPLETE_TIMEOUT);
778
779         if (err == 0) {
780                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783                 priv->status &= ~STATUS_CMD_ACTIVE;
784                 schedule_reset(priv);
785                 return -EIO;
786         }
787
788         if (priv->fatal_error) {
789                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790                        priv->net_dev->name);
791                 return -EIO;
792         }
793
794         /* !!!!! HACK TEST !!!!!
795          * When lots of debug trace statements are enabled, the driver
796          * doesn't seem to have as many firmware restart cycles...
797          *
798          * As a test, we're sticking in a 1/100s delay here */
799         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
800
801         return 0;
802
803       fail_unlock:
804         spin_unlock_irqrestore(&priv->low_lock, flags);
805
806         return err;
807 }
808
809 /*
810  * Verify the values and data access of the hardware
811  * No locks needed or used.  No functions called.
812  */
813 static int ipw2100_verify(struct ipw2100_priv *priv)
814 {
815         u32 data1, data2;
816         u32 address;
817
818         u32 val1 = 0x76543210;
819         u32 val2 = 0xFEDCBA98;
820
821         /* Domain 0 check - all values should be DOA_DEBUG */
822         for (address = IPW_REG_DOA_DEBUG_AREA_START;
823              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824                 read_register(priv->net_dev, address, &data1);
825                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826                         return -EIO;
827         }
828
829         /* Domain 1 check - use arbitrary read/write compare  */
830         for (address = 0; address < 5; address++) {
831                 /* The memory area is not used now */
832                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833                                val1);
834                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835                                val2);
836                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837                               &data1);
838                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839                               &data2);
840                 if (val1 == data1 && val2 == data2)
841                         return 0;
842         }
843
844         return -EIO;
845 }
846
847 /*
848  *
849  * Loop until the CARD_DISABLED bit is the same value as the
850  * supplied parameter
851  *
852  * TODO: See if it would be more efficient to do a wait/wake
853  *       cycle and have the completion event trigger the wakeup
854  *
855  */
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
858 {
859         int i;
860         u32 card_state;
861         u32 len = sizeof(card_state);
862         int err;
863
864         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866                                           &card_state, &len);
867                 if (err) {
868                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869                                        "failed.\n");
870                         return 0;
871                 }
872
873                 /* We'll break out if either the HW state says it is
874                  * in the state we want, or if HOST_COMPLETE command
875                  * finishes */
876                 if ((card_state == state) ||
877                     ((priv->status & STATUS_ENABLED) ?
878                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879                         if (state == IPW_HW_STATE_ENABLED)
880                                 priv->status |= STATUS_ENABLED;
881                         else
882                                 priv->status &= ~STATUS_ENABLED;
883
884                         return 0;
885                 }
886
887                 udelay(50);
888         }
889
890         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891                        state ? "DISABLED" : "ENABLED");
892         return -EIO;
893 }
894
895 /*********************************************************************
896     Procedure   :   sw_reset_and_clock
897     Purpose     :   Asserts s/w reset, asserts clock initialization
898                     and waits for clock stabilization
899  ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
901 {
902         int i;
903         u32 r;
904
905         // assert s/w reset
906         write_register(priv->net_dev, IPW_REG_RESET_REG,
907                        IPW_AUX_HOST_RESET_REG_SW_RESET);
908
909         // wait for clock stabilization
910         for (i = 0; i < 1000; i++) {
911                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
912
913                 // check clock ready bit
914                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916                         break;
917         }
918
919         if (i == 1000)
920                 return -EIO;    // TODO: better error value
921
922         /* set "initialization complete" bit to move adapter to
923          * D0 state */
924         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
926
927         /* wait for clock stabilization */
928         for (i = 0; i < 10000; i++) {
929                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
930
931                 /* check clock ready bit */
932                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934                         break;
935         }
936
937         if (i == 10000)
938                 return -EIO;    /* TODO: better error value */
939
940         /* set D0 standby bit */
941         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
944
945         return 0;
946 }
947
948 /*********************************************************************
949     Procedure   :   ipw2100_download_firmware
950     Purpose     :   Initiaze adapter after power on.
951                     The sequence is:
952                     1. assert s/w reset first!
953                     2. awake clocks & wait for clock stabilization
954                     3. hold ARC (don't ask me why...)
955                     4. load Dino ucode and reset/clock init again
956                     5. zero-out shared mem
957                     6. download f/w
958  *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
960 {
961         u32 address;
962         int err;
963
964 #ifndef CONFIG_PM
965         /* Fetch the firmware and microcode */
966         struct ipw2100_fw ipw2100_firmware;
967 #endif
968
969         if (priv->fatal_error) {
970                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971                                 "fatal error %d.  Interface must be brought down.\n",
972                                 priv->net_dev->name, priv->fatal_error);
973                 return -EINVAL;
974         }
975 #ifdef CONFIG_PM
976         if (!ipw2100_firmware.version) {
977                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978                 if (err) {
979                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980                                         priv->net_dev->name, err);
981                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
982                         goto fail;
983                 }
984         }
985 #else
986         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987         if (err) {
988                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989                                 priv->net_dev->name, err);
990                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991                 goto fail;
992         }
993 #endif
994         priv->firmware_version = ipw2100_firmware.version;
995
996         /* s/w reset and clock stabilization */
997         err = sw_reset_and_clock(priv);
998         if (err) {
999                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000                                 priv->net_dev->name, err);
1001                 goto fail;
1002         }
1003
1004         err = ipw2100_verify(priv);
1005         if (err) {
1006                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007                                 priv->net_dev->name, err);
1008                 goto fail;
1009         }
1010
1011         /* Hold ARC */
1012         write_nic_dword(priv->net_dev,
1013                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1014
1015         /* allow ARC to run */
1016         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1017
1018         /* load microcode */
1019         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020         if (err) {
1021                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022                        priv->net_dev->name, err);
1023                 goto fail;
1024         }
1025
1026         /* release ARC */
1027         write_nic_dword(priv->net_dev,
1028                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1029
1030         /* s/w reset and clock stabilization (again!!!) */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 printk(KERN_ERR DRV_NAME
1034                        ": %s: sw_reset_and_clock failed: %d\n",
1035                        priv->net_dev->name, err);
1036                 goto fail;
1037         }
1038
1039         /* load f/w */
1040         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041         if (err) {
1042                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043                                 priv->net_dev->name, err);
1044                 goto fail;
1045         }
1046 #ifndef CONFIG_PM
1047         /*
1048          * When the .resume method of the driver is called, the other
1049          * part of the system, i.e. the ide driver could still stay in
1050          * the suspend stage. This prevents us from loading the firmware
1051          * from the disk.  --YZ
1052          */
1053
1054         /* free any storage allocated for firmware image */
1055         ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1057
1058         /* zero out Domain 1 area indirectly (Si requirement) */
1059         for (address = IPW_HOST_FW_SHARED_AREA0;
1060              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061                 write_nic_dword(priv->net_dev, address, 0);
1062         for (address = IPW_HOST_FW_SHARED_AREA1;
1063              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064                 write_nic_dword(priv->net_dev, address, 0);
1065         for (address = IPW_HOST_FW_SHARED_AREA2;
1066              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067                 write_nic_dword(priv->net_dev, address, 0);
1068         for (address = IPW_HOST_FW_SHARED_AREA3;
1069              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070                 write_nic_dword(priv->net_dev, address, 0);
1071         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073                 write_nic_dword(priv->net_dev, address, 0);
1074
1075         return 0;
1076
1077       fail:
1078         ipw2100_release_firmware(priv, &ipw2100_firmware);
1079         return err;
1080 }
1081
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1083 {
1084         if (priv->status & STATUS_INT_ENABLED)
1085                 return;
1086         priv->status |= STATUS_INT_ENABLED;
1087         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1088 }
1089
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1091 {
1092         if (!(priv->status & STATUS_INT_ENABLED))
1093                 return;
1094         priv->status &= ~STATUS_INT_ENABLED;
1095         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1096 }
1097
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1099 {
1100         struct ipw2100_ordinals *ord = &priv->ordinals;
1101
1102         IPW_DEBUG_INFO("enter\n");
1103
1104         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105                       &ord->table1_addr);
1106
1107         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108                       &ord->table2_addr);
1109
1110         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1112
1113         ord->table2_size &= 0x0000FFFF;
1114
1115         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117         IPW_DEBUG_INFO("exit\n");
1118 }
1119
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1121 {
1122         u32 reg = 0;
1123         /*
1124          * Set GPIO 3 writable by FW; GPIO 1 writable
1125          * by driver and enable clock
1126          */
1127         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128                IPW_BIT_GPIO_LED_OFF);
1129         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1130 }
1131
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1133 {
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1136
1137         unsigned short value = 0;
1138         u32 reg = 0;
1139         int i;
1140
1141         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142                 priv->status &= ~STATUS_RF_KILL_HW;
1143                 return 0;
1144         }
1145
1146         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147                 udelay(RF_KILL_CHECK_DELAY);
1148                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1150         }
1151
1152         if (value == 0)
1153                 priv->status |= STATUS_RF_KILL_HW;
1154         else
1155                 priv->status &= ~STATUS_RF_KILL_HW;
1156
1157         return (value == 0);
1158 }
1159
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1161 {
1162         u32 addr, len;
1163         u32 val;
1164
1165         /*
1166          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1167          */
1168         len = sizeof(addr);
1169         if (ipw2100_get_ordinal
1170             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172                                __LINE__);
1173                 return -EIO;
1174         }
1175
1176         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1177
1178         /*
1179          * EEPROM version is the byte at offset 0xfd in firmware
1180          * We read 4 bytes, then shift out the byte we actually want */
1181         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182         priv->eeprom_version = (val >> 24) & 0xFF;
1183         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1184
1185         /*
1186          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1187          *
1188          *  notice that the EEPROM bit is reverse polarity, i.e.
1189          *     bit = 0  signifies HW RF kill switch is supported
1190          *     bit = 1  signifies HW RF kill switch is NOT supported
1191          */
1192         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193         if (!((val >> 24) & 0x01))
1194                 priv->hw_features |= HW_FEATURE_RFKILL;
1195
1196         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1198
1199         return 0;
1200 }
1201
1202 /*
1203  * Start firmware execution after power on and intialization
1204  * The sequence is:
1205  *  1. Release ARC
1206  *  2. Wait for f/w initialization completes;
1207  */
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1209 {
1210         int i;
1211         u32 inta, inta_mask, gpio;
1212
1213         IPW_DEBUG_INFO("enter\n");
1214
1215         if (priv->status & STATUS_RUNNING)
1216                 return 0;
1217
1218         /*
1219          * Initialize the hw - drive adapter to DO state by setting
1220          * init_done bit. Wait for clk_ready bit and Download
1221          * fw & dino ucode
1222          */
1223         if (ipw2100_download_firmware(priv)) {
1224                 printk(KERN_ERR DRV_NAME
1225                        ": %s: Failed to power on the adapter.\n",
1226                        priv->net_dev->name);
1227                 return -EIO;
1228         }
1229
1230         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231          * in the firmware RBD and TBD ring queue */
1232         ipw2100_queues_initialize(priv);
1233
1234         ipw2100_hw_set_gpio(priv);
1235
1236         /* TODO -- Look at disabling interrupts here to make sure none
1237          * get fired during FW initialization */
1238
1239         /* Release ARC - clear reset bit */
1240         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1241
1242         /* wait for f/w intialization complete */
1243         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244         i = 5000;
1245         do {
1246                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247                 /* Todo... wait for sync command ... */
1248
1249                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1250
1251                 /* check "init done" bit */
1252                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253                         /* reset "init done" bit */
1254                         write_register(priv->net_dev, IPW_REG_INTA,
1255                                        IPW2100_INTA_FW_INIT_DONE);
1256                         break;
1257                 }
1258
1259                 /* check error conditions : we check these after the firmware
1260                  * check so that if there is an error, the interrupt handler
1261                  * will see it and the adapter will be reset */
1262                 if (inta &
1263                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264                         /* clear error conditions */
1265                         write_register(priv->net_dev, IPW_REG_INTA,
1266                                        IPW2100_INTA_FATAL_ERROR |
1267                                        IPW2100_INTA_PARITY_ERROR);
1268                 }
1269         } while (i--);
1270
1271         /* Clear out any pending INTAs since we aren't supposed to have
1272          * interrupts enabled at this point... */
1273         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275         inta &= IPW_INTERRUPT_MASK;
1276         /* Clear out any pending interrupts */
1277         if (inta & inta_mask)
1278                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1279
1280         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281                      i ? "SUCCESS" : "FAILED");
1282
1283         if (!i) {
1284                 printk(KERN_WARNING DRV_NAME
1285                        ": %s: Firmware did not initialize.\n",
1286                        priv->net_dev->name);
1287                 return -EIO;
1288         }
1289
1290         /* allow firmware to write to GPIO1 & GPIO3 */
1291         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1292
1293         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1294
1295         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1296
1297         /* Ready to receive commands */
1298         priv->status |= STATUS_RUNNING;
1299
1300         /* The adapter has been reset; we are not associated */
1301         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1302
1303         IPW_DEBUG_INFO("exit\n");
1304
1305         return 0;
1306 }
1307
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1309 {
1310         if (!priv->fatal_error)
1311                 return;
1312
1313         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315         priv->fatal_error = 0;
1316 }
1317
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1320 {
1321         u32 reg;
1322         int i;
1323
1324         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1325
1326         ipw2100_hw_set_gpio(priv);
1327
1328         /* Step 1. Stop Master Assert */
1329         write_register(priv->net_dev, IPW_REG_RESET_REG,
1330                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1331
1332         /* Step 2. Wait for stop Master Assert
1333          *         (not more then 50us, otherwise ret error */
1334         i = 5;
1335         do {
1336                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1338
1339                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340                         break;
1341         } while (i--);
1342
1343         priv->status &= ~STATUS_RESET_PENDING;
1344
1345         if (!i) {
1346                 IPW_DEBUG_INFO
1347                     ("exit - waited too long for master assert stop\n");
1348                 return -EIO;
1349         }
1350
1351         write_register(priv->net_dev, IPW_REG_RESET_REG,
1352                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1353
1354         /* Reset any fatal_error conditions */
1355         ipw2100_reset_fatalerror(priv);
1356
1357         /* At this point, the adapter is now stopped and disabled */
1358         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359                           STATUS_ASSOCIATED | STATUS_ENABLED);
1360
1361         return 0;
1362 }
1363
1364 /*
1365  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1366  *
1367  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1368  *
1369  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370  * if STATUS_ASSN_LOST is sent.
1371  */
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1373 {
1374
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1376
1377         struct host_command cmd = {
1378                 .host_command = CARD_DISABLE_PHY_OFF,
1379                 .host_command_sequence = 0,
1380                 .host_command_length = 0,
1381         };
1382         int err, i;
1383         u32 val1, val2;
1384
1385         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1386
1387         /* Turn off the radio */
1388         err = ipw2100_hw_send_command(priv, &cmd);
1389         if (err)
1390                 return err;
1391
1392         for (i = 0; i < 2500; i++) {
1393                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1395
1396                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397                     (val2 & IPW2100_COMMAND_PHY_OFF))
1398                         return 0;
1399
1400                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1401         }
1402
1403         return -EIO;
1404 }
1405
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1407 {
1408         struct host_command cmd = {
1409                 .host_command = HOST_COMPLETE,
1410                 .host_command_sequence = 0,
1411                 .host_command_length = 0
1412         };
1413         int err = 0;
1414
1415         IPW_DEBUG_HC("HOST_COMPLETE\n");
1416
1417         if (priv->status & STATUS_ENABLED)
1418                 return 0;
1419
1420         mutex_lock(&priv->adapter_mutex);
1421
1422         if (rf_kill_active(priv)) {
1423                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424                 goto fail_up;
1425         }
1426
1427         err = ipw2100_hw_send_command(priv, &cmd);
1428         if (err) {
1429                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430                 goto fail_up;
1431         }
1432
1433         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434         if (err) {
1435                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436                                priv->net_dev->name);
1437                 goto fail_up;
1438         }
1439
1440         if (priv->stop_hang_check) {
1441                 priv->stop_hang_check = 0;
1442                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1443         }
1444
1445       fail_up:
1446         mutex_unlock(&priv->adapter_mutex);
1447         return err;
1448 }
1449
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1451 {
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1453
1454         struct host_command cmd = {
1455                 .host_command = HOST_PRE_POWER_DOWN,
1456                 .host_command_sequence = 0,
1457                 .host_command_length = 0,
1458         };
1459         int err, i;
1460         u32 reg;
1461
1462         if (!(priv->status & STATUS_RUNNING))
1463                 return 0;
1464
1465         priv->status |= STATUS_STOPPING;
1466
1467         /* We can only shut down the card if the firmware is operational.  So,
1468          * if we haven't reset since a fatal_error, then we can not send the
1469          * shutdown commands. */
1470         if (!priv->fatal_error) {
1471                 /* First, make sure the adapter is enabled so that the PHY_OFF
1472                  * command can shut it down */
1473                 ipw2100_enable_adapter(priv);
1474
1475                 err = ipw2100_hw_phy_off(priv);
1476                 if (err)
1477                         printk(KERN_WARNING DRV_NAME
1478                                ": Error disabling radio %d\n", err);
1479
1480                 /*
1481                  * If in D0-standby mode going directly to D3 may cause a
1482                  * PCI bus violation.  Therefore we must change out of the D0
1483                  * state.
1484                  *
1485                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486                  * hardware from going into standby mode and will transition
1487                  * out of D0-standby if it is already in that state.
1488                  *
1489                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490                  * driver upon completion.  Once received, the driver can
1491                  * proceed to the D3 state.
1492                  *
1493                  * Prepare for power down command to fw.  This command would
1494                  * take HW out of D0-standby and prepare it for D3 state.
1495                  *
1496                  * Currently FW does not support event notification for this
1497                  * event. Therefore, skip waiting for it.  Just wait a fixed
1498                  * 100ms
1499                  */
1500                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1501
1502                 err = ipw2100_hw_send_command(priv, &cmd);
1503                 if (err)
1504                         printk(KERN_WARNING DRV_NAME ": "
1505                                "%s: Power down command failed: Error %d\n",
1506                                priv->net_dev->name, err);
1507                 else
1508                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1509         }
1510
1511         priv->status &= ~STATUS_ENABLED;
1512
1513         /*
1514          * Set GPIO 3 writable by FW; GPIO 1 writable
1515          * by driver and enable clock
1516          */
1517         ipw2100_hw_set_gpio(priv);
1518
1519         /*
1520          * Power down adapter.  Sequence:
1521          * 1. Stop master assert (RESET_REG[9]=1)
1522          * 2. Wait for stop master (RESET_REG[8]==1)
1523          * 3. S/w reset assert (RESET_REG[7] = 1)
1524          */
1525
1526         /* Stop master assert */
1527         write_register(priv->net_dev, IPW_REG_RESET_REG,
1528                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1529
1530         /* wait stop master not more than 50 usec.
1531          * Otherwise return error. */
1532         for (i = 5; i > 0; i--) {
1533                 udelay(10);
1534
1535                 /* Check master stop bit */
1536                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1537
1538                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539                         break;
1540         }
1541
1542         if (i == 0)
1543                 printk(KERN_WARNING DRV_NAME
1544                        ": %s: Could now power down adapter.\n",
1545                        priv->net_dev->name);
1546
1547         /* assert s/w reset */
1548         write_register(priv->net_dev, IPW_REG_RESET_REG,
1549                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1550
1551         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1552
1553         return 0;
1554 }
1555
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1557 {
1558         struct host_command cmd = {
1559                 .host_command = CARD_DISABLE,
1560                 .host_command_sequence = 0,
1561                 .host_command_length = 0
1562         };
1563         int err = 0;
1564
1565         IPW_DEBUG_HC("CARD_DISABLE\n");
1566
1567         if (!(priv->status & STATUS_ENABLED))
1568                 return 0;
1569
1570         /* Make sure we clear the associated state */
1571         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1572
1573         if (!priv->stop_hang_check) {
1574                 priv->stop_hang_check = 1;
1575                 cancel_delayed_work(&priv->hang_check);
1576         }
1577
1578         mutex_lock(&priv->adapter_mutex);
1579
1580         err = ipw2100_hw_send_command(priv, &cmd);
1581         if (err) {
1582                 printk(KERN_WARNING DRV_NAME
1583                        ": exit - failed to send CARD_DISABLE command\n");
1584                 goto fail_up;
1585         }
1586
1587         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588         if (err) {
1589                 printk(KERN_WARNING DRV_NAME
1590                        ": exit - card failed to change to DISABLED\n");
1591                 goto fail_up;
1592         }
1593
1594         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1595
1596       fail_up:
1597         mutex_unlock(&priv->adapter_mutex);
1598         return err;
1599 }
1600
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1602 {
1603         struct host_command cmd = {
1604                 .host_command = SET_SCAN_OPTIONS,
1605                 .host_command_sequence = 0,
1606                 .host_command_length = 8
1607         };
1608         int err;
1609
1610         IPW_DEBUG_INFO("enter\n");
1611
1612         IPW_DEBUG_SCAN("setting scan options\n");
1613
1614         cmd.host_command_parameters[0] = 0;
1615
1616         if (!(priv->config & CFG_ASSOCIATE))
1617                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620         if (priv->config & CFG_PASSIVE_SCAN)
1621                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1622
1623         cmd.host_command_parameters[1] = priv->channel_mask;
1624
1625         err = ipw2100_hw_send_command(priv, &cmd);
1626
1627         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628                      cmd.host_command_parameters[0]);
1629
1630         return err;
1631 }
1632
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1634 {
1635         struct host_command cmd = {
1636                 .host_command = BROADCAST_SCAN,
1637                 .host_command_sequence = 0,
1638                 .host_command_length = 4
1639         };
1640         int err;
1641
1642         IPW_DEBUG_HC("START_SCAN\n");
1643
1644         cmd.host_command_parameters[0] = 0;
1645
1646         /* No scanning if in monitor mode */
1647         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648                 return 1;
1649
1650         if (priv->status & STATUS_SCANNING) {
1651                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652                 return 0;
1653         }
1654
1655         IPW_DEBUG_INFO("enter\n");
1656
1657         /* Not clearing here; doing so makes iwlist always return nothing...
1658          *
1659          * We should modify the table logic to use aging tables vs. clearing
1660          * the table on each scan start.
1661          */
1662         IPW_DEBUG_SCAN("starting scan\n");
1663
1664         priv->status |= STATUS_SCANNING;
1665         err = ipw2100_hw_send_command(priv, &cmd);
1666         if (err)
1667                 priv->status &= ~STATUS_SCANNING;
1668
1669         IPW_DEBUG_INFO("exit\n");
1670
1671         return err;
1672 }
1673
1674 static const struct ieee80211_geo ipw_geos[] = {
1675         {                       /* Restricted */
1676          "---",
1677          .bg_channels = 14,
1678          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679                 {2427, 4}, {2432, 5}, {2437, 6},
1680                 {2442, 7}, {2447, 8}, {2452, 9},
1681                 {2457, 10}, {2462, 11}, {2467, 12},
1682                 {2472, 13}, {2484, 14}},
1683          },
1684 };
1685
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1687 {
1688         unsigned long flags;
1689         int rc = 0;
1690         u32 lock;
1691         u32 ord_len = sizeof(lock);
1692
1693         /* Quite if manually disabled. */
1694         if (priv->status & STATUS_RF_KILL_SW) {
1695                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696                                "switch\n", priv->net_dev->name);
1697                 return 0;
1698         }
1699
1700         /* If the interrupt is enabled, turn it off... */
1701         spin_lock_irqsave(&priv->low_lock, flags);
1702         ipw2100_disable_interrupts(priv);
1703
1704         /* Reset any fatal_error conditions */
1705         ipw2100_reset_fatalerror(priv);
1706         spin_unlock_irqrestore(&priv->low_lock, flags);
1707
1708         if (priv->status & STATUS_POWERED ||
1709             (priv->status & STATUS_RESET_PENDING)) {
1710                 /* Power cycle the card ... */
1711                 if (ipw2100_power_cycle_adapter(priv)) {
1712                         printk(KERN_WARNING DRV_NAME
1713                                ": %s: Could not cycle adapter.\n",
1714                                priv->net_dev->name);
1715                         rc = 1;
1716                         goto exit;
1717                 }
1718         } else
1719                 priv->status |= STATUS_POWERED;
1720
1721         /* Load the firmware, start the clocks, etc. */
1722         if (ipw2100_start_adapter(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to start the firmware.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         ipw2100_initialize_ordinals(priv);
1731
1732         /* Determine capabilities of this particular HW configuration */
1733         if (ipw2100_get_hw_features(priv)) {
1734                 printk(KERN_ERR DRV_NAME
1735                        ": %s: Failed to determine HW features.\n",
1736                        priv->net_dev->name);
1737                 rc = 1;
1738                 goto exit;
1739         }
1740
1741         /* Initialize the geo */
1742         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1743                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1744                 return 0;
1745         }
1746         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1747
1748         lock = LOCK_NONE;
1749         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1750                 printk(KERN_ERR DRV_NAME
1751                        ": %s: Failed to clear ordinal lock.\n",
1752                        priv->net_dev->name);
1753                 rc = 1;
1754                 goto exit;
1755         }
1756
1757         priv->status &= ~STATUS_SCANNING;
1758
1759         if (rf_kill_active(priv)) {
1760                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1761                        priv->net_dev->name);
1762
1763                 if (priv->stop_rf_kill) {
1764                         priv->stop_rf_kill = 0;
1765                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1766                 }
1767
1768                 deferred = 1;
1769         }
1770
1771         /* Turn on the interrupt so that commands can be processed */
1772         ipw2100_enable_interrupts(priv);
1773
1774         /* Send all of the commands that must be sent prior to
1775          * HOST_COMPLETE */
1776         if (ipw2100_adapter_setup(priv)) {
1777                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1778                        priv->net_dev->name);
1779                 rc = 1;
1780                 goto exit;
1781         }
1782
1783         if (!deferred) {
1784                 /* Enable the adapter - sends HOST_COMPLETE */
1785                 if (ipw2100_enable_adapter(priv)) {
1786                         printk(KERN_ERR DRV_NAME ": "
1787                                "%s: failed in call to enable adapter.\n",
1788                                priv->net_dev->name);
1789                         ipw2100_hw_stop_adapter(priv);
1790                         rc = 1;
1791                         goto exit;
1792                 }
1793
1794                 /* Start a scan . . . */
1795                 ipw2100_set_scan_options(priv);
1796                 ipw2100_start_scan(priv);
1797         }
1798
1799       exit:
1800         return rc;
1801 }
1802
1803 /* Called by register_netdev() */
1804 static int ipw2100_net_init(struct net_device *dev)
1805 {
1806         struct ipw2100_priv *priv = ieee80211_priv(dev);
1807         return ipw2100_up(priv, 1);
1808 }
1809
1810 static void ipw2100_down(struct ipw2100_priv *priv)
1811 {
1812         unsigned long flags;
1813         union iwreq_data wrqu = {
1814                 .ap_addr = {
1815                             .sa_family = ARPHRD_ETHER}
1816         };
1817         int associated = priv->status & STATUS_ASSOCIATED;
1818
1819         /* Kill the RF switch timer */
1820         if (!priv->stop_rf_kill) {
1821                 priv->stop_rf_kill = 1;
1822                 cancel_delayed_work(&priv->rf_kill);
1823         }
1824
1825         /* Kill the firmare hang check timer */
1826         if (!priv->stop_hang_check) {
1827                 priv->stop_hang_check = 1;
1828                 cancel_delayed_work(&priv->hang_check);
1829         }
1830
1831         /* Kill any pending resets */
1832         if (priv->status & STATUS_RESET_PENDING)
1833                 cancel_delayed_work(&priv->reset_work);
1834
1835         /* Make sure the interrupt is on so that FW commands will be
1836          * processed correctly */
1837         spin_lock_irqsave(&priv->low_lock, flags);
1838         ipw2100_enable_interrupts(priv);
1839         spin_unlock_irqrestore(&priv->low_lock, flags);
1840
1841         if (ipw2100_hw_stop_adapter(priv))
1842                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1843                        priv->net_dev->name);
1844
1845         /* Do not disable the interrupt until _after_ we disable
1846          * the adaptor.  Otherwise the CARD_DISABLE command will never
1847          * be ack'd by the firmware */
1848         spin_lock_irqsave(&priv->low_lock, flags);
1849         ipw2100_disable_interrupts(priv);
1850         spin_unlock_irqrestore(&priv->low_lock, flags);
1851
1852 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1853         if (priv->config & CFG_C3_DISABLED) {
1854                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1855                 acpi_set_cstate_limit(priv->cstate_limit);
1856                 priv->config &= ~CFG_C3_DISABLED;
1857         }
1858 #endif
1859
1860         /* We have to signal any supplicant if we are disassociating */
1861         if (associated)
1862                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1863
1864         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1865         netif_carrier_off(priv->net_dev);
1866         netif_stop_queue(priv->net_dev);
1867 }
1868
1869 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1870 {
1871         unsigned long flags;
1872         union iwreq_data wrqu = {
1873                 .ap_addr = {
1874                             .sa_family = ARPHRD_ETHER}
1875         };
1876         int associated = priv->status & STATUS_ASSOCIATED;
1877
1878         spin_lock_irqsave(&priv->low_lock, flags);
1879         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1880         priv->resets++;
1881         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1882         priv->status |= STATUS_SECURITY_UPDATED;
1883
1884         /* Force a power cycle even if interface hasn't been opened
1885          * yet */
1886         cancel_delayed_work(&priv->reset_work);
1887         priv->status |= STATUS_RESET_PENDING;
1888         spin_unlock_irqrestore(&priv->low_lock, flags);
1889
1890         mutex_lock(&priv->action_mutex);
1891         /* stop timed checks so that they don't interfere with reset */
1892         priv->stop_hang_check = 1;
1893         cancel_delayed_work(&priv->hang_check);
1894
1895         /* We have to signal any supplicant if we are disassociating */
1896         if (associated)
1897                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1898
1899         ipw2100_up(priv, 0);
1900         mutex_unlock(&priv->action_mutex);
1901
1902 }
1903
1904 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1905 {
1906
1907 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1908         int ret, len, essid_len;
1909         char essid[IW_ESSID_MAX_SIZE];
1910         u32 txrate;
1911         u32 chan;
1912         char *txratename;
1913         u8 bssid[ETH_ALEN];
1914
1915         /*
1916          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1917          *      an actual MAC of the AP. Seems like FW sets this
1918          *      address too late. Read it later and expose through
1919          *      /proc or schedule a later task to query and update
1920          */
1921
1922         essid_len = IW_ESSID_MAX_SIZE;
1923         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1924                                   essid, &essid_len);
1925         if (ret) {
1926                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1927                                __LINE__);
1928                 return;
1929         }
1930
1931         len = sizeof(u32);
1932         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1933         if (ret) {
1934                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1935                                __LINE__);
1936                 return;
1937         }
1938
1939         len = sizeof(u32);
1940         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1941         if (ret) {
1942                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1943                                __LINE__);
1944                 return;
1945         }
1946         len = ETH_ALEN;
1947         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1948         if (ret) {
1949                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1950                                __LINE__);
1951                 return;
1952         }
1953         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1954
1955         switch (txrate) {
1956         case TX_RATE_1_MBIT:
1957                 txratename = "1Mbps";
1958                 break;
1959         case TX_RATE_2_MBIT:
1960                 txratename = "2Mbsp";
1961                 break;
1962         case TX_RATE_5_5_MBIT:
1963                 txratename = "5.5Mbps";
1964                 break;
1965         case TX_RATE_11_MBIT:
1966                 txratename = "11Mbps";
1967                 break;
1968         default:
1969                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1970                 txratename = "unknown rate";
1971                 break;
1972         }
1973
1974         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1975                        MAC_FMT ")\n",
1976                        priv->net_dev->name, escape_essid(essid, essid_len),
1977                        txratename, chan, MAC_ARG(bssid));
1978
1979         /* now we copy read ssid into dev */
1980         if (!(priv->config & CFG_STATIC_ESSID)) {
1981                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1982                 memcpy(priv->essid, essid, priv->essid_len);
1983         }
1984         priv->channel = chan;
1985         memcpy(priv->bssid, bssid, ETH_ALEN);
1986
1987         priv->status |= STATUS_ASSOCIATING;
1988         priv->connect_start = get_seconds();
1989
1990         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1991 }
1992
1993 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1994                              int length, int batch_mode)
1995 {
1996         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1997         struct host_command cmd = {
1998                 .host_command = SSID,
1999                 .host_command_sequence = 0,
2000                 .host_command_length = ssid_len
2001         };
2002         int err;
2003
2004         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2005
2006         if (ssid_len)
2007                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2008
2009         if (!batch_mode) {
2010                 err = ipw2100_disable_adapter(priv);
2011                 if (err)
2012                         return err;
2013         }
2014
2015         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2016          * disable auto association -- so we cheat by setting a bogus SSID */
2017         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2018                 int i;
2019                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2020                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2021                         bogus[i] = 0x18 + i;
2022                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2023         }
2024
2025         /* NOTE:  We always send the SSID command even if the provided ESSID is
2026          * the same as what we currently think is set. */
2027
2028         err = ipw2100_hw_send_command(priv, &cmd);
2029         if (!err) {
2030                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2031                 memcpy(priv->essid, essid, ssid_len);
2032                 priv->essid_len = ssid_len;
2033         }
2034
2035         if (!batch_mode) {
2036                 if (ipw2100_enable_adapter(priv))
2037                         err = -EIO;
2038         }
2039
2040         return err;
2041 }
2042
2043 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2044 {
2045         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2046                   "disassociated: '%s' " MAC_FMT " \n",
2047                   escape_essid(priv->essid, priv->essid_len),
2048                   MAC_ARG(priv->bssid));
2049
2050         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2051
2052         if (priv->status & STATUS_STOPPING) {
2053                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2054                 return;
2055         }
2056
2057         memset(priv->bssid, 0, ETH_ALEN);
2058         memset(priv->ieee->bssid, 0, ETH_ALEN);
2059
2060         netif_carrier_off(priv->net_dev);
2061         netif_stop_queue(priv->net_dev);
2062
2063         if (!(priv->status & STATUS_RUNNING))
2064                 return;
2065
2066         if (priv->status & STATUS_SECURITY_UPDATED)
2067                 queue_work(priv->workqueue, &priv->security_work);
2068
2069         queue_work(priv->workqueue, &priv->wx_event_work);
2070 }
2071
2072 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2073 {
2074         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2075                        priv->net_dev->name);
2076
2077         /* RF_KILL is now enabled (else we wouldn't be here) */
2078         priv->status |= STATUS_RF_KILL_HW;
2079
2080 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2081         if (priv->config & CFG_C3_DISABLED) {
2082                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2083                 acpi_set_cstate_limit(priv->cstate_limit);
2084                 priv->config &= ~CFG_C3_DISABLED;
2085         }
2086 #endif
2087
2088         /* Make sure the RF Kill check timer is running */
2089         priv->stop_rf_kill = 0;
2090         cancel_delayed_work(&priv->rf_kill);
2091         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2092 }
2093
2094 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2095 {
2096         IPW_DEBUG_SCAN("scan complete\n");
2097         /* Age the scan results... */
2098         priv->ieee->scans++;
2099         priv->status &= ~STATUS_SCANNING;
2100 }
2101
2102 #ifdef CONFIG_IPW2100_DEBUG
2103 #define IPW2100_HANDLER(v, f) { v, f, # v }
2104 struct ipw2100_status_indicator {
2105         int status;
2106         void (*cb) (struct ipw2100_priv * priv, u32 status);
2107         char *name;
2108 };
2109 #else
2110 #define IPW2100_HANDLER(v, f) { v, f }
2111 struct ipw2100_status_indicator {
2112         int status;
2113         void (*cb) (struct ipw2100_priv * priv, u32 status);
2114 };
2115 #endif                          /* CONFIG_IPW2100_DEBUG */
2116
2117 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2118 {
2119         IPW_DEBUG_SCAN("Scanning...\n");
2120         priv->status |= STATUS_SCANNING;
2121 }
2122
2123 static const struct ipw2100_status_indicator status_handlers[] = {
2124         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2125         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2126         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2127         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2128         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2129         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2130         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2131         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2132         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2133         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2134         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2135         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2136         IPW2100_HANDLER(-1, NULL)
2137 };
2138
2139 static void isr_status_change(struct ipw2100_priv *priv, int status)
2140 {
2141         int i;
2142
2143         if (status == IPW_STATE_SCANNING &&
2144             priv->status & STATUS_ASSOCIATED &&
2145             !(priv->status & STATUS_SCANNING)) {
2146                 IPW_DEBUG_INFO("Scan detected while associated, with "
2147                                "no scan request.  Restarting firmware.\n");
2148
2149                 /* Wake up any sleeping jobs */
2150                 schedule_reset(priv);
2151         }
2152
2153         for (i = 0; status_handlers[i].status != -1; i++) {
2154                 if (status == status_handlers[i].status) {
2155                         IPW_DEBUG_NOTIF("Status change: %s\n",
2156                                         status_handlers[i].name);
2157                         if (status_handlers[i].cb)
2158                                 status_handlers[i].cb(priv, status);
2159                         priv->wstats.status = status;
2160                         return;
2161                 }
2162         }
2163
2164         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2165 }
2166
2167 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2168                                     struct ipw2100_cmd_header *cmd)
2169 {
2170 #ifdef CONFIG_IPW2100_DEBUG
2171         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2172                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2173                              command_types[cmd->host_command_reg],
2174                              cmd->host_command_reg);
2175         }
2176 #endif
2177         if (cmd->host_command_reg == HOST_COMPLETE)
2178                 priv->status |= STATUS_ENABLED;
2179
2180         if (cmd->host_command_reg == CARD_DISABLE)
2181                 priv->status &= ~STATUS_ENABLED;
2182
2183         priv->status &= ~STATUS_CMD_ACTIVE;
2184
2185         wake_up_interruptible(&priv->wait_command_queue);
2186 }
2187
2188 #ifdef CONFIG_IPW2100_DEBUG
2189 static const char *frame_types[] = {
2190         "COMMAND_STATUS_VAL",
2191         "STATUS_CHANGE_VAL",
2192         "P80211_DATA_VAL",
2193         "P8023_DATA_VAL",
2194         "HOST_NOTIFICATION_VAL"
2195 };
2196 #endif
2197
2198 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2199                                     struct ipw2100_rx_packet *packet)
2200 {
2201         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2202         if (!packet->skb)
2203                 return -ENOMEM;
2204
2205         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2206         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2207                                           sizeof(struct ipw2100_rx),
2208                                           PCI_DMA_FROMDEVICE);
2209         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2210          *       dma_addr */
2211
2212         return 0;
2213 }
2214
2215 #define SEARCH_ERROR   0xffffffff
2216 #define SEARCH_FAIL    0xfffffffe
2217 #define SEARCH_SUCCESS 0xfffffff0
2218 #define SEARCH_DISCARD 0
2219 #define SEARCH_SNAPSHOT 1
2220
2221 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2222 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2223 {
2224         int i;
2225         if (!priv->snapshot[0])
2226                 return;
2227         for (i = 0; i < 0x30; i++)
2228                 kfree(priv->snapshot[i]);
2229         priv->snapshot[0] = NULL;
2230 }
2231
2232 #ifdef CONFIG_IPW2100_DEBUG_C3
2233 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2234 {
2235         int i;
2236         if (priv->snapshot[0])
2237                 return 1;
2238         for (i = 0; i < 0x30; i++) {
2239                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2240                 if (!priv->snapshot[i]) {
2241                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2242                                        "buffer %d\n", priv->net_dev->name, i);
2243                         while (i > 0)
2244                                 kfree(priv->snapshot[--i]);
2245                         priv->snapshot[0] = NULL;
2246                         return 0;
2247                 }
2248         }
2249
2250         return 1;
2251 }
2252
2253 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2254                                     size_t len, int mode)
2255 {
2256         u32 i, j;
2257         u32 tmp;
2258         u8 *s, *d;
2259         u32 ret;
2260
2261         s = in_buf;
2262         if (mode == SEARCH_SNAPSHOT) {
2263                 if (!ipw2100_snapshot_alloc(priv))
2264                         mode = SEARCH_DISCARD;
2265         }
2266
2267         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2268                 read_nic_dword(priv->net_dev, i, &tmp);
2269                 if (mode == SEARCH_SNAPSHOT)
2270                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2271                 if (ret == SEARCH_FAIL) {
2272                         d = (u8 *) & tmp;
2273                         for (j = 0; j < 4; j++) {
2274                                 if (*s != *d) {
2275                                         s = in_buf;
2276                                         continue;
2277                                 }
2278
2279                                 s++;
2280                                 d++;
2281
2282                                 if ((s - in_buf) == len)
2283                                         ret = (i + j) - len + 1;
2284                         }
2285                 } else if (mode == SEARCH_DISCARD)
2286                         return ret;
2287         }
2288
2289         return ret;
2290 }
2291 #endif
2292
2293 /*
2294  *
2295  * 0) Disconnect the SKB from the firmware (just unmap)
2296  * 1) Pack the ETH header into the SKB
2297  * 2) Pass the SKB to the network stack
2298  *
2299  * When packet is provided by the firmware, it contains the following:
2300  *
2301  * .  ieee80211_hdr
2302  * .  ieee80211_snap_hdr
2303  *
2304  * The size of the constructed ethernet
2305  *
2306  */
2307 #ifdef CONFIG_IPW2100_RX_DEBUG
2308 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2309 #endif
2310
2311 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2312 {
2313 #ifdef CONFIG_IPW2100_DEBUG_C3
2314         struct ipw2100_status *status = &priv->status_queue.drv[i];
2315         u32 match, reg;
2316         int j;
2317 #endif
2318 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2319         int limit;
2320 #endif
2321
2322         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2323                        i * sizeof(struct ipw2100_status));
2324
2325 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2326         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2327         limit = acpi_get_cstate_limit();
2328         if (limit > 2) {
2329                 priv->cstate_limit = limit;
2330                 acpi_set_cstate_limit(2);
2331                 priv->config |= CFG_C3_DISABLED;
2332         }
2333 #endif
2334
2335 #ifdef CONFIG_IPW2100_DEBUG_C3
2336         /* Halt the fimrware so we can get a good image */
2337         write_register(priv->net_dev, IPW_REG_RESET_REG,
2338                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2339         j = 5;
2340         do {
2341                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2342                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2343
2344                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2345                         break;
2346         } while (j--);
2347
2348         match = ipw2100_match_buf(priv, (u8 *) status,
2349                                   sizeof(struct ipw2100_status),
2350                                   SEARCH_SNAPSHOT);
2351         if (match < SEARCH_SUCCESS)
2352                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2353                                "offset 0x%06X, length %d:\n",
2354                                priv->net_dev->name, match,
2355                                sizeof(struct ipw2100_status));
2356         else
2357                 IPW_DEBUG_INFO("%s: No DMA status match in "
2358                                "Firmware.\n", priv->net_dev->name);
2359
2360         printk_buf((u8 *) priv->status_queue.drv,
2361                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2362 #endif
2363
2364         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2365         priv->ieee->stats.rx_errors++;
2366         schedule_reset(priv);
2367 }
2368
2369 static void isr_rx(struct ipw2100_priv *priv, int i,
2370                           struct ieee80211_rx_stats *stats)
2371 {
2372         struct ipw2100_status *status = &priv->status_queue.drv[i];
2373         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2374
2375         IPW_DEBUG_RX("Handler...\n");
2376
2377         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2378                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2379                                "  Dropping.\n",
2380                                priv->net_dev->name,
2381                                status->frame_size, skb_tailroom(packet->skb));
2382                 priv->ieee->stats.rx_errors++;
2383                 return;
2384         }
2385
2386         if (unlikely(!netif_running(priv->net_dev))) {
2387                 priv->ieee->stats.rx_errors++;
2388                 priv->wstats.discard.misc++;
2389                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2390                 return;
2391         }
2392
2393         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2394                      !(priv->status & STATUS_ASSOCIATED))) {
2395                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2396                 priv->wstats.discard.misc++;
2397                 return;
2398         }
2399
2400         pci_unmap_single(priv->pci_dev,
2401                          packet->dma_addr,
2402                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2403
2404         skb_put(packet->skb, status->frame_size);
2405
2406 #ifdef CONFIG_IPW2100_RX_DEBUG
2407         /* Make a copy of the frame so we can dump it to the logs if
2408          * ieee80211_rx fails */
2409         memcpy(packet_data, packet->skb->data,
2410                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2411 #endif
2412
2413         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2414 #ifdef CONFIG_IPW2100_RX_DEBUG
2415                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2416                                priv->net_dev->name);
2417                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2418 #endif
2419                 priv->ieee->stats.rx_errors++;
2420
2421                 /* ieee80211_rx failed, so it didn't free the SKB */
2422                 dev_kfree_skb_any(packet->skb);
2423                 packet->skb = NULL;
2424         }
2425
2426         /* We need to allocate a new SKB and attach it to the RDB. */
2427         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2428                 printk(KERN_WARNING DRV_NAME ": "
2429                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2430                        "adapter.\n", priv->net_dev->name);
2431                 /* TODO: schedule adapter shutdown */
2432                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2433         }
2434
2435         /* Update the RDB entry */
2436         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2437 }
2438
2439 #ifdef CONFIG_IPW2100_MONITOR
2440
2441 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2442                    struct ieee80211_rx_stats *stats)
2443 {
2444         struct ipw2100_status *status = &priv->status_queue.drv[i];
2445         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2446
2447         /* Magic struct that slots into the radiotap header -- no reason
2448          * to build this manually element by element, we can write it much
2449          * more efficiently than we can parse it. ORDER MATTERS HERE */
2450         struct ipw_rt_hdr {
2451                 struct ieee80211_radiotap_header rt_hdr;
2452                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2453         } *ipw_rt;
2454
2455         IPW_DEBUG_RX("Handler...\n");
2456
2457         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2458                                 sizeof(struct ipw_rt_hdr))) {
2459                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2460                                "  Dropping.\n",
2461                                priv->net_dev->name,
2462                                status->frame_size,
2463                                skb_tailroom(packet->skb));
2464                 priv->ieee->stats.rx_errors++;
2465                 return;
2466         }
2467
2468         if (unlikely(!netif_running(priv->net_dev))) {
2469                 priv->ieee->stats.rx_errors++;
2470                 priv->wstats.discard.misc++;
2471                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2472                 return;
2473         }
2474
2475         if (unlikely(priv->config & CFG_CRC_CHECK &&
2476                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2477                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2478                 priv->ieee->stats.rx_errors++;
2479                 return;
2480         }
2481
2482         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2483                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2484         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2485                 packet->skb->data, status->frame_size);
2486
2487         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2488
2489         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2490         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2491         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2492
2493         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2494
2495         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2496
2497         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2498
2499         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2500                 priv->ieee->stats.rx_errors++;
2501
2502                 /* ieee80211_rx failed, so it didn't free the SKB */
2503                 dev_kfree_skb_any(packet->skb);
2504                 packet->skb = NULL;
2505         }
2506
2507         /* We need to allocate a new SKB and attach it to the RDB. */
2508         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2509                 IPW_DEBUG_WARNING(
2510                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2511                         "adapter.\n", priv->net_dev->name);
2512                 /* TODO: schedule adapter shutdown */
2513                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2514         }
2515
2516         /* Update the RDB entry */
2517         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2518 }
2519
2520 #endif
2521
2522 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2523 {
2524         struct ipw2100_status *status = &priv->status_queue.drv[i];
2525         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2526         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2527
2528         switch (frame_type) {
2529         case COMMAND_STATUS_VAL:
2530                 return (status->frame_size != sizeof(u->rx_data.command));
2531         case STATUS_CHANGE_VAL:
2532                 return (status->frame_size != sizeof(u->rx_data.status));
2533         case HOST_NOTIFICATION_VAL:
2534                 return (status->frame_size < sizeof(u->rx_data.notification));
2535         case P80211_DATA_VAL:
2536         case P8023_DATA_VAL:
2537 #ifdef CONFIG_IPW2100_MONITOR
2538                 return 0;
2539 #else
2540                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2541                 case IEEE80211_FTYPE_MGMT:
2542                 case IEEE80211_FTYPE_CTL:
2543                         return 0;
2544                 case IEEE80211_FTYPE_DATA:
2545                         return (status->frame_size >
2546                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2547                 }
2548 #endif
2549         }
2550
2551         return 1;
2552 }
2553
2554 /*
2555  * ipw2100 interrupts are disabled at this point, and the ISR
2556  * is the only code that calls this method.  So, we do not need
2557  * to play with any locks.
2558  *
2559  * RX Queue works as follows:
2560  *
2561  * Read index - firmware places packet in entry identified by the
2562  *              Read index and advances Read index.  In this manner,
2563  *              Read index will always point to the next packet to
2564  *              be filled--but not yet valid.
2565  *
2566  * Write index - driver fills this entry with an unused RBD entry.
2567  *               This entry has not filled by the firmware yet.
2568  *
2569  * In between the W and R indexes are the RBDs that have been received
2570  * but not yet processed.
2571  *
2572  * The process of handling packets will start at WRITE + 1 and advance
2573  * until it reaches the READ index.
2574  *
2575  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2576  *
2577  */
2578 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2579 {
2580         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2581         struct ipw2100_status_queue *sq = &priv->status_queue;
2582         struct ipw2100_rx_packet *packet;
2583         u16 frame_type;
2584         u32 r, w, i, s;
2585         struct ipw2100_rx *u;
2586         struct ieee80211_rx_stats stats = {
2587                 .mac_time = jiffies,
2588         };
2589
2590         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2591         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2592
2593         if (r >= rxq->entries) {
2594                 IPW_DEBUG_RX("exit - bad read index\n");
2595                 return;
2596         }
2597
2598         i = (rxq->next + 1) % rxq->entries;
2599         s = i;
2600         while (i != r) {
2601                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2602                    r, rxq->next, i); */
2603
2604                 packet = &priv->rx_buffers[i];
2605
2606                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2607                  * the correct values */
2608                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2609                                             sq->nic +
2610                                             sizeof(struct ipw2100_status) * i,
2611                                             sizeof(struct ipw2100_status),
2612                                             PCI_DMA_FROMDEVICE);
2613
2614                 /* Sync the DMA for the RX buffer so CPU is sure to get
2615                  * the correct values */
2616                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2617                                             sizeof(struct ipw2100_rx),
2618                                             PCI_DMA_FROMDEVICE);
2619
2620                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2621                         ipw2100_corruption_detected(priv, i);
2622                         goto increment;
2623                 }
2624
2625                 u = packet->rxp;
2626                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2627                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2628                 stats.len = sq->drv[i].frame_size;
2629
2630                 stats.mask = 0;
2631                 if (stats.rssi != 0)
2632                         stats.mask |= IEEE80211_STATMASK_RSSI;
2633                 stats.freq = IEEE80211_24GHZ_BAND;
2634
2635                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2636                              priv->net_dev->name, frame_types[frame_type],
2637                              stats.len);
2638
2639                 switch (frame_type) {
2640                 case COMMAND_STATUS_VAL:
2641                         /* Reset Rx watchdog */
2642                         isr_rx_complete_command(priv, &u->rx_data.command);
2643                         break;
2644
2645                 case STATUS_CHANGE_VAL:
2646                         isr_status_change(priv, u->rx_data.status);
2647                         break;
2648
2649                 case P80211_DATA_VAL:
2650                 case P8023_DATA_VAL:
2651 #ifdef CONFIG_IPW2100_MONITOR
2652                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2653                                 isr_rx_monitor(priv, i, &stats);
2654                                 break;
2655                         }
2656 #endif
2657                         if (stats.len < sizeof(u->rx_data.header))
2658                                 break;
2659                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2660                         case IEEE80211_FTYPE_MGMT:
2661                                 ieee80211_rx_mgt(priv->ieee,
2662                                                  &u->rx_data.header, &stats);
2663                                 break;
2664
2665                         case IEEE80211_FTYPE_CTL:
2666                                 break;
2667
2668                         case IEEE80211_FTYPE_DATA:
2669                                 isr_rx(priv, i, &stats);
2670                                 break;
2671
2672                         }
2673                         break;
2674                 }
2675
2676               increment:
2677                 /* clear status field associated with this RBD */
2678                 rxq->drv[i].status.info.field = 0;
2679
2680                 i = (i + 1) % rxq->entries;
2681         }
2682
2683         if (i != s) {
2684                 /* backtrack one entry, wrapping to end if at 0 */
2685                 rxq->next = (i ? i : rxq->entries) - 1;
2686
2687                 write_register(priv->net_dev,
2688                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2689         }
2690 }
2691
2692 /*
2693  * __ipw2100_tx_process
2694  *
2695  * This routine will determine whether the next packet on
2696  * the fw_pend_list has been processed by the firmware yet.
2697  *
2698  * If not, then it does nothing and returns.
2699  *
2700  * If so, then it removes the item from the fw_pend_list, frees
2701  * any associated storage, and places the item back on the
2702  * free list of its source (either msg_free_list or tx_free_list)
2703  *
2704  * TX Queue works as follows:
2705  *
2706  * Read index - points to the next TBD that the firmware will
2707  *              process.  The firmware will read the data, and once
2708  *              done processing, it will advance the Read index.
2709  *
2710  * Write index - driver fills this entry with an constructed TBD
2711  *               entry.  The Write index is not advanced until the
2712  *               packet has been configured.
2713  *
2714  * In between the W and R indexes are the TBDs that have NOT been
2715  * processed.  Lagging behind the R index are packets that have
2716  * been processed but have not been freed by the driver.
2717  *
2718  * In order to free old storage, an internal index will be maintained
2719  * that points to the next packet to be freed.  When all used
2720  * packets have been freed, the oldest index will be the same as the
2721  * firmware's read index.
2722  *
2723  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2724  *
2725  * Because the TBD structure can not contain arbitrary data, the
2726  * driver must keep an internal queue of cached allocations such that
2727  * it can put that data back into the tx_free_list and msg_free_list
2728  * for use by future command and data packets.
2729  *
2730  */
2731 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2732 {
2733         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2734         struct ipw2100_bd *tbd;
2735         struct list_head *element;
2736         struct ipw2100_tx_packet *packet;
2737         int descriptors_used;
2738         int e, i;
2739         u32 r, w, frag_num = 0;
2740
2741         if (list_empty(&priv->fw_pend_list))
2742                 return 0;
2743
2744         element = priv->fw_pend_list.next;
2745
2746         packet = list_entry(element, struct ipw2100_tx_packet, list);
2747         tbd = &txq->drv[packet->index];
2748
2749         /* Determine how many TBD entries must be finished... */
2750         switch (packet->type) {
2751         case COMMAND:
2752                 /* COMMAND uses only one slot; don't advance */
2753                 descriptors_used = 1;
2754                 e = txq->oldest;
2755                 break;
2756
2757         case DATA:
2758                 /* DATA uses two slots; advance and loop position. */
2759                 descriptors_used = tbd->num_fragments;
2760                 frag_num = tbd->num_fragments - 1;
2761                 e = txq->oldest + frag_num;
2762                 e %= txq->entries;
2763                 break;
2764
2765         default:
2766                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2767                        priv->net_dev->name);
2768                 return 0;
2769         }
2770
2771         /* if the last TBD is not done by NIC yet, then packet is
2772          * not ready to be released.
2773          *
2774          */
2775         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2776                       &r);
2777         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2778                       &w);
2779         if (w != txq->next)
2780                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2781                        priv->net_dev->name);
2782
2783         /*
2784          * txq->next is the index of the last packet written txq->oldest is
2785          * the index of the r is the index of the next packet to be read by
2786          * firmware
2787          */
2788
2789         /*
2790          * Quick graphic to help you visualize the following
2791          * if / else statement
2792          *
2793          * ===>|                     s---->|===============
2794          *                               e>|
2795          * | a | b | c | d | e | f | g | h | i | j | k | l
2796          *       r---->|
2797          *               w
2798          *
2799          * w - updated by driver
2800          * r - updated by firmware
2801          * s - start of oldest BD entry (txq->oldest)
2802          * e - end of oldest BD entry
2803          *
2804          */
2805         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2806                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2807                 return 0;
2808         }
2809
2810         list_del(element);
2811         DEC_STAT(&priv->fw_pend_stat);
2812
2813 #ifdef CONFIG_IPW2100_DEBUG
2814         {
2815                 int i = txq->oldest;
2816                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2817                              &txq->drv[i],
2818                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2819                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2820
2821                 if (packet->type == DATA) {
2822                         i = (i + 1) % txq->entries;
2823
2824                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2825                                      &txq->drv[i],
2826                                      (u32) (txq->nic + i *
2827                                             sizeof(struct ipw2100_bd)),
2828                                      (u32) txq->drv[i].host_addr,
2829                                      txq->drv[i].buf_length);
2830                 }
2831         }
2832 #endif
2833
2834         switch (packet->type) {
2835         case DATA:
2836                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2837                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2838                                "Expecting DATA TBD but pulled "
2839                                "something else: ids %d=%d.\n",
2840                                priv->net_dev->name, txq->oldest, packet->index);
2841
2842                 /* DATA packet; we have to unmap and free the SKB */
2843                 for (i = 0; i < frag_num; i++) {
2844                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2845
2846                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2847                                      (packet->index + 1 + i) % txq->entries,
2848                                      tbd->host_addr, tbd->buf_length);
2849
2850                         pci_unmap_single(priv->pci_dev,
2851                                          tbd->host_addr,
2852                                          tbd->buf_length, PCI_DMA_TODEVICE);
2853                 }
2854
2855                 ieee80211_txb_free(packet->info.d_struct.txb);
2856                 packet->info.d_struct.txb = NULL;
2857
2858                 list_add_tail(element, &priv->tx_free_list);
2859                 INC_STAT(&priv->tx_free_stat);
2860
2861                 /* We have a free slot in the Tx queue, so wake up the
2862                  * transmit layer if it is stopped. */
2863                 if (priv->status & STATUS_ASSOCIATED)
2864                         netif_wake_queue(priv->net_dev);
2865
2866                 /* A packet was processed by the hardware, so update the
2867                  * watchdog */
2868                 priv->net_dev->trans_start = jiffies;
2869
2870                 break;
2871
2872         case COMMAND:
2873                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2874                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2875                                "Expecting COMMAND TBD but pulled "
2876                                "something else: ids %d=%d.\n",
2877                                priv->net_dev->name, txq->oldest, packet->index);
2878
2879 #ifdef CONFIG_IPW2100_DEBUG
2880                 if (packet->info.c_struct.cmd->host_command_reg <
2881                     sizeof(command_types) / sizeof(*command_types))
2882                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2883                                      command_types[packet->info.c_struct.cmd->
2884                                                    host_command_reg],
2885                                      packet->info.c_struct.cmd->
2886                                      host_command_reg,
2887                                      packet->info.c_struct.cmd->cmd_status_reg);
2888 #endif
2889
2890                 list_add_tail(element, &priv->msg_free_list);
2891                 INC_STAT(&priv->msg_free_stat);
2892                 break;
2893         }
2894
2895         /* advance oldest used TBD pointer to start of next entry */
2896         txq->oldest = (e + 1) % txq->entries;
2897         /* increase available TBDs number */
2898         txq->available += descriptors_used;
2899         SET_STAT(&priv->txq_stat, txq->available);
2900
2901         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2902                      jiffies - packet->jiffy_start);
2903
2904         return (!list_empty(&priv->fw_pend_list));
2905 }
2906
2907 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2908 {
2909         int i = 0;
2910
2911         while (__ipw2100_tx_process(priv) && i < 200)
2912                 i++;
2913
2914         if (i == 200) {
2915                 printk(KERN_WARNING DRV_NAME ": "
2916                        "%s: Driver is running slow (%d iters).\n",
2917                        priv->net_dev->name, i);
2918         }
2919 }
2920
2921 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2922 {
2923         struct list_head *element;
2924         struct ipw2100_tx_packet *packet;
2925         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2926         struct ipw2100_bd *tbd;
2927         int next = txq->next;
2928
2929         while (!list_empty(&priv->msg_pend_list)) {
2930                 /* if there isn't enough space in TBD queue, then
2931                  * don't stuff a new one in.
2932                  * NOTE: 3 are needed as a command will take one,
2933                  *       and there is a minimum of 2 that must be
2934                  *       maintained between the r and w indexes
2935                  */
2936                 if (txq->available <= 3) {
2937                         IPW_DEBUG_TX("no room in tx_queue\n");
2938                         break;
2939                 }
2940
2941                 element = priv->msg_pend_list.next;
2942                 list_del(element);
2943                 DEC_STAT(&priv->msg_pend_stat);
2944
2945                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2946
2947                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2948                              &txq->drv[txq->next],
2949                              (void *)(txq->nic + txq->next *
2950                                       sizeof(struct ipw2100_bd)));
2951
2952                 packet->index = txq->next;
2953
2954                 tbd = &txq->drv[txq->next];
2955
2956                 /* initialize TBD */
2957                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2958                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2959                 /* not marking number of fragments causes problems
2960                  * with f/w debug version */
2961                 tbd->num_fragments = 1;
2962                 tbd->status.info.field =
2963                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2964                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2965
2966                 /* update TBD queue counters */
2967                 txq->next++;
2968                 txq->next %= txq->entries;
2969                 txq->available--;
2970                 DEC_STAT(&priv->txq_stat);
2971
2972                 list_add_tail(element, &priv->fw_pend_list);
2973                 INC_STAT(&priv->fw_pend_stat);
2974         }
2975
2976         if (txq->next != next) {
2977                 /* kick off the DMA by notifying firmware the
2978                  * write index has moved; make sure TBD stores are sync'd */
2979                 wmb();
2980                 write_register(priv->net_dev,
2981                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2982                                txq->next);
2983         }
2984 }
2985
2986 /*
2987  * ipw2100_tx_send_data
2988  *
2989  */
2990 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2991 {
2992         struct list_head *element;
2993         struct ipw2100_tx_packet *packet;
2994         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2995         struct ipw2100_bd *tbd;
2996         int next = txq->next;
2997         int i = 0;
2998         struct ipw2100_data_header *ipw_hdr;
2999         struct ieee80211_hdr_3addr *hdr;
3000
3001         while (!list_empty(&priv->tx_pend_list)) {
3002                 /* if there isn't enough space in TBD queue, then
3003                  * don't stuff a new one in.
3004                  * NOTE: 4 are needed as a data will take two,
3005                  *       and there is a minimum of 2 that must be
3006                  *       maintained between the r and w indexes
3007                  */
3008                 element = priv->tx_pend_list.next;
3009                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3010
3011                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3012                              IPW_MAX_BDS)) {
3013                         /* TODO: Support merging buffers if more than
3014                          * IPW_MAX_BDS are used */
3015                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3016                                        "Increase fragmentation level.\n",
3017                                        priv->net_dev->name);
3018                 }
3019
3020                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3021                         IPW_DEBUG_TX("no room in tx_queue\n");
3022                         break;
3023                 }
3024
3025                 list_del(element);
3026                 DEC_STAT(&priv->tx_pend_stat);
3027
3028                 tbd = &txq->drv[txq->next];
3029
3030                 packet->index = txq->next;
3031
3032                 ipw_hdr = packet->info.d_struct.data;
3033                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3034                     fragments[0]->data;
3035
3036                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3037                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3038                            Addr3 = DA */
3039                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3040                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3041                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3042                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3043                            Addr3 = BSSID */
3044                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3045                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3046                 }
3047
3048                 ipw_hdr->host_command_reg = SEND;
3049                 ipw_hdr->host_command_reg1 = 0;
3050
3051                 /* For now we only support host based encryption */
3052                 ipw_hdr->needs_encryption = 0;
3053                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3054                 if (packet->info.d_struct.txb->nr_frags > 1)
3055                         ipw_hdr->fragment_size =
3056                             packet->info.d_struct.txb->frag_size -
3057                             IEEE80211_3ADDR_LEN;
3058                 else
3059                         ipw_hdr->fragment_size = 0;
3060
3061                 tbd->host_addr = packet->info.d_struct.data_phys;
3062                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3063                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3064                 tbd->status.info.field =
3065                     IPW_BD_STATUS_TX_FRAME_802_3 |
3066                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3067                 txq->next++;
3068                 txq->next %= txq->entries;
3069
3070                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3071                              packet->index, tbd->host_addr, tbd->buf_length);
3072 #ifdef CONFIG_IPW2100_DEBUG
3073                 if (packet->info.d_struct.txb->nr_frags > 1)
3074                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3075                                        packet->info.d_struct.txb->nr_frags);
3076 #endif
3077
3078                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3079                         tbd = &txq->drv[txq->next];
3080                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3081                                 tbd->status.info.field =
3082                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3083                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3084                         else
3085                                 tbd->status.info.field =
3086                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3087                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088
3089                         tbd->buf_length = packet->info.d_struct.txb->
3090                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3091
3092                         tbd->host_addr = pci_map_single(priv->pci_dev,
3093                                                         packet->info.d_struct.
3094                                                         txb->fragments[i]->
3095                                                         data +
3096                                                         IEEE80211_3ADDR_LEN,
3097                                                         tbd->buf_length,
3098                                                         PCI_DMA_TODEVICE);
3099
3100                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3101                                      txq->next, tbd->host_addr,
3102                                      tbd->buf_length);
3103
3104                         pci_dma_sync_single_for_device(priv->pci_dev,
3105                                                        tbd->host_addr,
3106                                                        tbd->buf_length,
3107                                                        PCI_DMA_TODEVICE);
3108
3109                         txq->next++;
3110                         txq->next %= txq->entries;
3111                 }
3112
3113                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3114                 SET_STAT(&priv->txq_stat, txq->available);
3115
3116                 list_add_tail(element, &priv->fw_pend_list);
3117                 INC_STAT(&priv->fw_pend_stat);
3118         }
3119
3120         if (txq->next != next) {
3121                 /* kick off the DMA by notifying firmware the
3122                  * write index has moved; make sure TBD stores are sync'd */
3123                 write_register(priv->net_dev,
3124                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3125                                txq->next);
3126         }
3127         return;
3128 }
3129
3130 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3131 {
3132         struct net_device *dev = priv->net_dev;
3133         unsigned long flags;
3134         u32 inta, tmp;
3135
3136         spin_lock_irqsave(&priv->low_lock, flags);
3137         ipw2100_disable_interrupts(priv);
3138
3139         read_register(dev, IPW_REG_INTA, &inta);
3140
3141         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3142                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3143
3144         priv->in_isr++;
3145         priv->interrupts++;
3146
3147         /* We do not loop and keep polling for more interrupts as this
3148          * is frowned upon and doesn't play nicely with other potentially
3149          * chained IRQs */
3150         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3151                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3152
3153         if (inta & IPW2100_INTA_FATAL_ERROR) {
3154                 printk(KERN_WARNING DRV_NAME
3155                        ": Fatal interrupt. Scheduling firmware restart.\n");
3156                 priv->inta_other++;
3157                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3158
3159                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3160                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3161                                priv->net_dev->name, priv->fatal_error);
3162
3163                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3164                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3165                                priv->net_dev->name, tmp);
3166
3167                 /* Wake up any sleeping jobs */
3168                 schedule_reset(priv);
3169         }
3170
3171         if (inta & IPW2100_INTA_PARITY_ERROR) {
3172                 printk(KERN_ERR DRV_NAME
3173                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3174                 priv->inta_other++;
3175                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3176         }
3177
3178         if (inta & IPW2100_INTA_RX_TRANSFER) {
3179                 IPW_DEBUG_ISR("RX interrupt\n");
3180
3181                 priv->rx_interrupts++;
3182
3183                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3184
3185                 __ipw2100_rx_process(priv);
3186                 __ipw2100_tx_complete(priv);
3187         }
3188
3189         if (inta & IPW2100_INTA_TX_TRANSFER) {
3190                 IPW_DEBUG_ISR("TX interrupt\n");
3191
3192                 priv->tx_interrupts++;
3193
3194                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3195
3196                 __ipw2100_tx_complete(priv);
3197                 ipw2100_tx_send_commands(priv);
3198                 ipw2100_tx_send_data(priv);
3199         }
3200
3201         if (inta & IPW2100_INTA_TX_COMPLETE) {
3202                 IPW_DEBUG_ISR("TX complete\n");
3203                 priv->inta_other++;
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3205
3206                 __ipw2100_tx_complete(priv);
3207         }
3208
3209         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3210                 /* ipw2100_handle_event(dev); */
3211                 priv->inta_other++;
3212                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3213         }
3214
3215         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3216                 IPW_DEBUG_ISR("FW init done interrupt\n");
3217                 priv->inta_other++;
3218
3219                 read_register(dev, IPW_REG_INTA, &tmp);
3220                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3221                            IPW2100_INTA_PARITY_ERROR)) {
3222                         write_register(dev, IPW_REG_INTA,
3223                                        IPW2100_INTA_FATAL_ERROR |
3224                                        IPW2100_INTA_PARITY_ERROR);
3225                 }
3226
3227                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3228         }
3229
3230         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3231                 IPW_DEBUG_ISR("Status change interrupt\n");
3232                 priv->inta_other++;
3233                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3234         }
3235
3236         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3237                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3238                 priv->inta_other++;
3239                 write_register(dev, IPW_REG_INTA,
3240                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3241         }
3242
3243         priv->in_isr--;
3244         ipw2100_enable_interrupts(priv);
3245
3246         spin_unlock_irqrestore(&priv->low_lock, flags);
3247
3248         IPW_DEBUG_ISR("exit\n");
3249 }
3250
3251 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3252 {
3253         struct ipw2100_priv *priv = data;
3254         u32 inta, inta_mask;
3255
3256         if (!data)
3257                 return IRQ_NONE;
3258
3259         spin_lock(&priv->low_lock);
3260
3261         /* We check to see if we should be ignoring interrupts before
3262          * we touch the hardware.  During ucode load if we try and handle
3263          * an interrupt we can cause keyboard problems as well as cause
3264          * the ucode to fail to initialize */
3265         if (!(priv->status & STATUS_INT_ENABLED)) {
3266                 /* Shared IRQ */
3267                 goto none;
3268         }
3269
3270         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3271         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3272
3273         if (inta == 0xFFFFFFFF) {
3274                 /* Hardware disappeared */
3275                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3276                 goto none;
3277         }
3278
3279         inta &= IPW_INTERRUPT_MASK;
3280
3281         if (!(inta & inta_mask)) {
3282                 /* Shared interrupt */
3283                 goto none;
3284         }
3285
3286         /* We disable the hardware interrupt here just to prevent unneeded
3287          * calls to be made.  We disable this again within the actual
3288          * work tasklet, so if another part of the code re-enables the
3289          * interrupt, that is fine */
3290         ipw2100_disable_interrupts(priv);
3291
3292         tasklet_schedule(&priv->irq_tasklet);
3293         spin_unlock(&priv->low_lock);
3294
3295         return IRQ_HANDLED;
3296       none:
3297         spin_unlock(&priv->low_lock);
3298         return IRQ_NONE;
3299 }
3300
3301 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3302                       int pri)
3303 {
3304         struct ipw2100_priv *priv = ieee80211_priv(dev);
3305         struct list_head *element;
3306         struct ipw2100_tx_packet *packet;
3307         unsigned long flags;
3308
3309         spin_lock_irqsave(&priv->low_lock, flags);
3310
3311         if (!(priv->status & STATUS_ASSOCIATED)) {
3312                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3313                 priv->ieee->stats.tx_carrier_errors++;
3314                 netif_stop_queue(dev);
3315                 goto fail_unlock;
3316         }
3317
3318         if (list_empty(&priv->tx_free_list))
3319                 goto fail_unlock;
3320
3321         element = priv->tx_free_list.next;
3322         packet = list_entry(element, struct ipw2100_tx_packet, list);
3323
3324         packet->info.d_struct.txb = txb;
3325
3326         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3327         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3328
3329         packet->jiffy_start = jiffies;
3330
3331         list_del(element);
3332         DEC_STAT(&priv->tx_free_stat);
3333
3334         list_add_tail(element, &priv->tx_pend_list);
3335         INC_STAT(&priv->tx_pend_stat);
3336
3337         ipw2100_tx_send_data(priv);
3338
3339         spin_unlock_irqrestore(&priv->low_lock, flags);
3340         return 0;
3341
3342       fail_unlock:
3343         netif_stop_queue(dev);
3344         spin_unlock_irqrestore(&priv->low_lock, flags);
3345         return 1;
3346 }
3347
3348 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3349 {
3350         int i, j, err = -EINVAL;
3351         void *v;
3352         dma_addr_t p;
3353
3354         priv->msg_buffers =
3355             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3356                                                 sizeof(struct
3357                                                        ipw2100_tx_packet),
3358                                                 GFP_KERNEL);
3359         if (!priv->msg_buffers) {
3360                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3361                        "buffers.\n", priv->net_dev->name);
3362                 return -ENOMEM;
3363         }
3364
3365         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3366                 v = pci_alloc_consistent(priv->pci_dev,
3367                                          sizeof(struct ipw2100_cmd_header), &p);
3368                 if (!v) {
3369                         printk(KERN_ERR DRV_NAME ": "
3370                                "%s: PCI alloc failed for msg "
3371                                "buffers.\n", priv->net_dev->name);
3372                         err = -ENOMEM;
3373                         break;
3374                 }
3375
3376                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3377
3378                 priv->msg_buffers[i].type = COMMAND;
3379                 priv->msg_buffers[i].info.c_struct.cmd =
3380                     (struct ipw2100_cmd_header *)v;
3381                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3382         }
3383
3384         if (i == IPW_COMMAND_POOL_SIZE)
3385                 return 0;
3386
3387         for (j = 0; j < i; j++) {
3388                 pci_free_consistent(priv->pci_dev,
3389                                     sizeof(struct ipw2100_cmd_header),
3390                                     priv->msg_buffers[j].info.c_struct.cmd,
3391                                     priv->msg_buffers[j].info.c_struct.
3392                                     cmd_phys);
3393         }
3394
3395         kfree(priv->msg_buffers);
3396         priv->msg_buffers = NULL;
3397
3398         return err;
3399 }
3400
3401 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3402 {
3403         int i;
3404
3405         INIT_LIST_HEAD(&priv->msg_free_list);
3406         INIT_LIST_HEAD(&priv->msg_pend_list);
3407
3408         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3409                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3410         SET_STAT(&priv->msg_free_stat, i);
3411
3412         return 0;
3413 }
3414
3415 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3416 {
3417         int i;
3418
3419         if (!priv->msg_buffers)
3420                 return;
3421
3422         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3423                 pci_free_consistent(priv->pci_dev,
3424                                     sizeof(struct ipw2100_cmd_header),
3425                                     priv->msg_buffers[i].info.c_struct.cmd,
3426                                     priv->msg_buffers[i].info.c_struct.
3427                                     cmd_phys);
3428         }
3429
3430         kfree(priv->msg_buffers);
3431         priv->msg_buffers = NULL;
3432 }
3433
3434 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3435                         char *buf)
3436 {
3437         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3438         char *out = buf;
3439         int i, j;
3440         u32 val;
3441
3442         for (i = 0; i < 16; i++) {
3443                 out += sprintf(out, "[%08X] ", i * 16);
3444                 for (j = 0; j < 16; j += 4) {
3445                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3446                         out += sprintf(out, "%08X ", val);
3447                 }
3448                 out += sprintf(out, "\n");
3449         }
3450
3451         return out - buf;
3452 }
3453
3454 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3455
3456 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3457                         char *buf)
3458 {
3459         struct ipw2100_priv *p = d->driver_data;
3460         return sprintf(buf, "0x%08x\n", (int)p->config);
3461 }
3462
3463 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3464
3465 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3466                            char *buf)
3467 {
3468         struct ipw2100_priv *p = d->driver_data;
3469         return sprintf(buf, "0x%08x\n", (int)p->status);
3470 }
3471
3472 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3473
3474 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3475                                char *buf)
3476 {
3477         struct ipw2100_priv *p = d->driver_data;
3478         return sprintf(buf, "0x%08x\n", (int)p->capability);
3479 }
3480
3481 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3482
3483 #define IPW2100_REG(x) { IPW_ ##x, #x }
3484 static const struct {
3485         u32 addr;
3486         const char *name;
3487 } hw_data[] = {
3488 IPW2100_REG(REG_GP_CNTRL),
3489             IPW2100_REG(REG_GPIO),
3490             IPW2100_REG(REG_INTA),
3491             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3492 #define IPW2100_NIC(x, s) { x, #x, s }
3493 static const struct {
3494         u32 addr;
3495         const char *name;
3496         size_t size;
3497 } nic_data[] = {
3498 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3499             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3500 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3501 static const struct {
3502         u8 index;
3503         const char *name;
3504         const char *desc;
3505 } ord_data[] = {
3506 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3507             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3508                                 "successful Host Tx's (MSDU)"),
3509             IPW2100_ORD(STAT_TX_DIR_DATA,
3510                                 "successful Directed Tx's (MSDU)"),
3511             IPW2100_ORD(STAT_TX_DIR_DATA1,
3512                                 "successful Directed Tx's (MSDU) @ 1MB"),
3513             IPW2100_ORD(STAT_TX_DIR_DATA2,
3514                                 "successful Directed Tx's (MSDU) @ 2MB"),
3515             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3516                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3517             IPW2100_ORD(STAT_TX_DIR_DATA11,
3518                                 "successful Directed Tx's (MSDU) @ 11MB"),
3519             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3520                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3521             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3522                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3523             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3524                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3525             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3526                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3527             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3528             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3529             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3530             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3531             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3532             IPW2100_ORD(STAT_TX_ASSN_RESP,
3533                                 "successful Association response Tx's"),
3534             IPW2100_ORD(STAT_TX_REASSN,
3535                                 "successful Reassociation Tx's"),
3536             IPW2100_ORD(STAT_TX_REASSN_RESP,
3537                                 "successful Reassociation response Tx's"),
3538             IPW2100_ORD(STAT_TX_PROBE,
3539                                 "probes successfully transmitted"),
3540             IPW2100_ORD(STAT_TX_PROBE_RESP,
3541                                 "probe responses successfully transmitted"),
3542             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3543             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3544             IPW2100_ORD(STAT_TX_DISASSN,
3545                                 "successful Disassociation TX"),
3546             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3547             IPW2100_ORD(STAT_TX_DEAUTH,
3548                                 "successful Deauthentication TX"),
3549             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3550                                 "Total successful Tx data bytes"),
3551             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3552             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3553             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3554             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3555             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3556             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3557             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3558                                 "times max tries in a hop failed"),
3559             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3560                                 "times disassociation failed"),
3561             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3562             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3563             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3564             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3565             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3566             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3567             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3568                                 "directed packets at 5.5MB"),
3569             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3570             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3571             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3572                                 "nondirected packets at 1MB"),
3573             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3574                                 "nondirected packets at 2MB"),
3575             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3576                                 "nondirected packets at 5.5MB"),
3577             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3578                                 "nondirected packets at 11MB"),
3579             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3580             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3581                                                                     "Rx CTS"),
3582             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3583             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3584             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3585             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3586             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3587             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3588             IPW2100_ORD(STAT_RX_REASSN_RESP,
3589                                 "Reassociation response Rx's"),
3590             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3591             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3592             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3593             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3594             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3595             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3596             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3597             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3598                                 "Total rx data bytes received"),
3599             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3600             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3601             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3602             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3603             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3604             IPW2100_ORD(STAT_RX_DUPLICATE1,
3605                                 "duplicate rx packets at 1MB"),
3606             IPW2100_ORD(STAT_RX_DUPLICATE2,
3607                                 "duplicate rx packets at 2MB"),
3608             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3609                                 "duplicate rx packets at 5.5MB"),
3610             IPW2100_ORD(STAT_RX_DUPLICATE11,
3611                                 "duplicate rx packets at 11MB"),
3612             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3613             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3614             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3615             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3616             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3617                                 "rx frames with invalid protocol"),
3618             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3619             IPW2100_ORD(STAT_RX_NO_BUFFER,
3620                                 "rx frames rejected due to no buffer"),
3621             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3622                                 "rx frames dropped due to missing fragment"),
3623             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3624                                 "rx frames dropped due to non-sequential fragment"),
3625             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3626                                 "rx frames dropped due to unmatched 1st frame"),
3627             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3628                                 "rx frames dropped due to uncompleted frame"),
3629             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3630                                 "ICV errors during decryption"),
3631             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3632             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3633             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3634                                 "poll response timeouts"),
3635             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3636                                 "timeouts waiting for last {broad,multi}cast pkt"),
3637             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3638             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3639             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3640             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3641             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3642                                 "current calculation of % missed beacons"),
3643             IPW2100_ORD(STAT_PERCENT_RETRIES,
3644                                 "current calculation of % missed tx retries"),
3645             IPW2100_ORD(ASSOCIATED_AP_PTR,
3646                                 "0 if not associated, else pointer to AP table entry"),
3647             IPW2100_ORD(AVAILABLE_AP_CNT,
3648                                 "AP's decsribed in the AP table"),
3649             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3650             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3651             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3652             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3653                                 "failures due to response fail"),
3654             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3655             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3656             IPW2100_ORD(STAT_ROAM_INHIBIT,
3657                                 "times roaming was inhibited due to activity"),
3658             IPW2100_ORD(RSSI_AT_ASSN,
3659                                 "RSSI of associated AP at time of association"),
3660             IPW2100_ORD(STAT_ASSN_CAUSE1,
3661                                 "reassociation: no probe response or TX on hop"),
3662             IPW2100_ORD(STAT_ASSN_CAUSE2,
3663                                 "reassociation: poor tx/rx quality"),
3664             IPW2100_ORD(STAT_ASSN_CAUSE3,
3665                                 "reassociation: tx/rx quality (excessive AP load"),
3666             IPW2100_ORD(STAT_ASSN_CAUSE4,
3667                                 "reassociation: AP RSSI level"),
3668             IPW2100_ORD(STAT_ASSN_CAUSE5,
3669                                 "reassociations due to load leveling"),
3670             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3671             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3672                                 "times authentication response failed"),
3673             IPW2100_ORD(STATION_TABLE_CNT,
3674                                 "entries in association table"),
3675             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3676             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3677             IPW2100_ORD(COUNTRY_CODE,
3678                                 "IEEE country code as recv'd from beacon"),
3679             IPW2100_ORD(COUNTRY_CHANNELS,
3680                                 "channels suported by country"),
3681             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3682             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3683             IPW2100_ORD(ANTENNA_DIVERSITY,
3684                                 "TRUE if antenna diversity is disabled"),
3685             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3686             IPW2100_ORD(OUR_FREQ,
3687                                 "current radio freq lower digits - channel ID"),
3688             IPW2100_ORD(RTC_TIME, "current RTC time"),
3689             IPW2100_ORD(PORT_TYPE, "operating mode"),
3690             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3691             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3692             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3693             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3694             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3695             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3696             IPW2100_ORD(CAPABILITIES,
3697                                 "Management frame capability field"),
3698             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3699             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3700             IPW2100_ORD(RTS_THRESHOLD,
3701                                 "Min packet length for RTS handshaking"),
3702             IPW2100_ORD(INT_MODE, "International mode"),
3703             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3704                                 "protocol frag threshold"),
3705             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3706                                 "EEPROM offset in SRAM"),
3707             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3708                                 "EEPROM size in SRAM"),
3709             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3710             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3711                                 "EEPROM IBSS 11b channel set"),
3712             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3713             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3714             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3715             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3716             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3717
3718 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3719                               char *buf)
3720 {
3721         int i;
3722         struct ipw2100_priv *priv = dev_get_drvdata(d);
3723         struct net_device *dev = priv->net_dev;
3724         char *out = buf;
3725         u32 val = 0;
3726
3727         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3728
3729         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3730                 read_register(dev, hw_data[i].addr, &val);
3731                 out += sprintf(out, "%30s [%08X] : %08X\n",
3732                                hw_data[i].name, hw_data[i].addr, val);
3733         }
3734
3735         return out - buf;
3736 }
3737
3738 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3739
3740 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3741                              char *buf)
3742 {
3743         struct ipw2100_priv *priv = dev_get_drvdata(d);
3744         struct net_device *dev = priv->net_dev;
3745         char *out = buf;
3746         int i;
3747
3748         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3749
3750         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3751                 u8 tmp8;
3752                 u16 tmp16;
3753                 u32 tmp32;
3754
3755                 switch (nic_data[i].size) {
3756                 case 1:
3757                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3758                         out += sprintf(out, "%30s [%08X] : %02X\n",
3759                                        nic_data[i].name, nic_data[i].addr,
3760                                        tmp8);
3761                         break;
3762                 case 2:
3763                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3764                         out += sprintf(out, "%30s [%08X] : %04X\n",
3765                                        nic_data[i].name, nic_data[i].addr,
3766                                        tmp16);
3767                         break;
3768                 case 4:
3769                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3770                         out += sprintf(out, "%30s [%08X] : %08X\n",
3771                                        nic_data[i].name, nic_data[i].addr,
3772                                        tmp32);
3773                         break;
3774                 }
3775         }
3776         return out - buf;
3777 }
3778
3779 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3780
3781 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3782                            char *buf)
3783 {
3784         struct ipw2100_priv *priv = dev_get_drvdata(d);
3785         struct net_device *dev = priv->net_dev;
3786         static unsigned long loop = 0;
3787         int len = 0;
3788         u32 buffer[4];
3789         int i;
3790         char line[81];
3791
3792         if (loop >= 0x30000)
3793                 loop = 0;
3794
3795         /* sysfs provides us PAGE_SIZE buffer */
3796         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3797
3798                 if (priv->snapshot[0])
3799                         for (i = 0; i < 4; i++)
3800                                 buffer[i] =
3801                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3802                 else
3803                         for (i = 0; i < 4; i++)
3804                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3805
3806                 if (priv->dump_raw)
3807                         len += sprintf(buf + len,
3808                                        "%c%c%c%c"
3809                                        "%c%c%c%c"
3810                                        "%c%c%c%c"
3811                                        "%c%c%c%c",
3812                                        ((u8 *) buffer)[0x0],
3813                                        ((u8 *) buffer)[0x1],
3814                                        ((u8 *) buffer)[0x2],
3815                                        ((u8 *) buffer)[0x3],
3816                                        ((u8 *) buffer)[0x4],
3817                                        ((u8 *) buffer)[0x5],
3818                                        ((u8 *) buffer)[0x6],
3819                                        ((u8 *) buffer)[0x7],
3820                                        ((u8 *) buffer)[0x8],
3821                                        ((u8 *) buffer)[0x9],
3822                                        ((u8 *) buffer)[0xa],
3823                                        ((u8 *) buffer)[0xb],
3824                                        ((u8 *) buffer)[0xc],
3825                                        ((u8 *) buffer)[0xd],
3826                                        ((u8 *) buffer)[0xe],
3827                                        ((u8 *) buffer)[0xf]);
3828                 else
3829                         len += sprintf(buf + len, "%s\n",
3830                                        snprint_line(line, sizeof(line),
3831                                                     (u8 *) buffer, 16, loop));
3832                 loop += 16;
3833         }
3834
3835         return len;
3836 }
3837
3838 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3839                             const char *buf, size_t count)
3840 {
3841         struct ipw2100_priv *priv = dev_get_drvdata(d);
3842         struct net_device *dev = priv->net_dev;
3843         const char *p = buf;
3844
3845         (void)dev;              /* kill unused-var warning for debug-only code */
3846
3847         if (count < 1)
3848                 return count;
3849
3850         if (p[0] == '1' ||
3851             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3852                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3853                                dev->name);
3854                 priv->dump_raw = 1;
3855
3856         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3857                                    tolower(p[1]) == 'f')) {
3858                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3859                                dev->name);
3860                 priv->dump_raw = 0;
3861
3862         } else if (tolower(p[0]) == 'r') {
3863                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3864                 ipw2100_snapshot_free(priv);
3865
3866         } else
3867                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3868                                "reset = clear memory snapshot\n", dev->name);
3869
3870         return count;
3871 }
3872
3873 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3874
3875 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3876                              char *buf)
3877 {
3878         struct ipw2100_priv *priv = dev_get_drvdata(d);
3879         u32 val = 0;
3880         int len = 0;
3881         u32 val_len;
3882         static int loop = 0;
3883
3884         if (priv->status & STATUS_RF_KILL_MASK)
3885                 return 0;
3886
3887         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3888                 loop = 0;
3889
3890         /* sysfs provides us PAGE_SIZE buffer */
3891         while (len < PAGE_SIZE - 128 &&
3892                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3893
3894                 val_len = sizeof(u32);
3895
3896                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3897                                         &val_len))
3898                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3899                                        ord_data[loop].index,
3900                                        ord_data[loop].desc);
3901                 else
3902                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3903                                        ord_data[loop].index, val,
3904                                        ord_data[loop].desc);
3905                 loop++;
3906         }
3907
3908         return len;
3909 }
3910
3911 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3912
3913 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3914                           char *buf)
3915 {
3916         struct ipw2100_priv *priv = dev_get_drvdata(d);
3917         char *out = buf;
3918
3919         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3920                        priv->interrupts, priv->tx_interrupts,
3921                        priv->rx_interrupts, priv->inta_other);
3922         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3923         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3924 #ifdef CONFIG_IPW2100_DEBUG
3925         out += sprintf(out, "packet mismatch image: %s\n",
3926                        priv->snapshot[0] ? "YES" : "NO");
3927 #endif
3928
3929         return out - buf;
3930 }
3931
3932 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3933
3934 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3935 {
3936         int err;
3937
3938         if (mode == priv->ieee->iw_mode)
3939                 return 0;
3940
3941         err = ipw2100_disable_adapter(priv);
3942         if (err) {
3943                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3944                        priv->net_dev->name, err);
3945                 return err;
3946         }
3947
3948         switch (mode) {
3949         case IW_MODE_INFRA:
3950                 priv->net_dev->type = ARPHRD_ETHER;
3951                 break;
3952         case IW_MODE_ADHOC:
3953                 priv->net_dev->type = ARPHRD_ETHER;
3954                 break;
3955 #ifdef CONFIG_IPW2100_MONITOR
3956         case IW_MODE_MONITOR:
3957                 priv->last_mode = priv->ieee->iw_mode;
3958                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3959                 break;
3960 #endif                          /* CONFIG_IPW2100_MONITOR */
3961         }
3962
3963         priv->ieee->iw_mode = mode;
3964
3965 #ifdef CONFIG_PM
3966         /* Indicate ipw2100_download_firmware download firmware
3967          * from disk instead of memory. */
3968         ipw2100_firmware.version = 0;
3969 #endif
3970
3971         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3972         priv->reset_backoff = 0;
3973         schedule_reset(priv);
3974
3975         return 0;
3976 }
3977
3978 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3979                               char *buf)
3980 {
3981         struct ipw2100_priv *priv = dev_get_drvdata(d);
3982         int len = 0;
3983
3984 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3985
3986         if (priv->status & STATUS_ASSOCIATED)
3987                 len += sprintf(buf + len, "connected: %lu\n",
3988                                get_seconds() - priv->connect_start);
3989         else
3990                 len += sprintf(buf + len, "not connected\n");
3991
3992         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3993         DUMP_VAR(status, "08lx");
3994         DUMP_VAR(config, "08lx");
3995         DUMP_VAR(capability, "08lx");
3996
3997         len +=
3998             sprintf(buf + len, "last_rtc: %lu\n",
3999                     (unsigned long)priv->last_rtc);
4000
4001         DUMP_VAR(fatal_error, "d");
4002         DUMP_VAR(stop_hang_check, "d");
4003         DUMP_VAR(stop_rf_kill, "d");
4004         DUMP_VAR(messages_sent, "d");
4005
4006         DUMP_VAR(tx_pend_stat.value, "d");
4007         DUMP_VAR(tx_pend_stat.hi, "d");
4008
4009         DUMP_VAR(tx_free_stat.value, "d");
4010         DUMP_VAR(tx_free_stat.lo, "d");
4011
4012         DUMP_VAR(msg_free_stat.value, "d");
4013         DUMP_VAR(msg_free_stat.lo, "d");
4014
4015         DUMP_VAR(msg_pend_stat.value, "d");
4016         DUMP_VAR(msg_pend_stat.hi, "d");
4017
4018         DUMP_VAR(fw_pend_stat.value, "d");
4019         DUMP_VAR(fw_pend_stat.hi, "d");
4020
4021         DUMP_VAR(txq_stat.value, "d");
4022         DUMP_VAR(txq_stat.lo, "d");
4023
4024         DUMP_VAR(ieee->scans, "d");
4025         DUMP_VAR(reset_backoff, "d");
4026
4027         return len;
4028 }
4029
4030 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4031
4032 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4033                             char *buf)
4034 {
4035         struct ipw2100_priv *priv = dev_get_drvdata(d);
4036         char essid[IW_ESSID_MAX_SIZE + 1];
4037         u8 bssid[ETH_ALEN];
4038         u32 chan = 0;
4039         char *out = buf;
4040         int length;
4041         int ret;
4042
4043         if (priv->status & STATUS_RF_KILL_MASK)
4044                 return 0;
4045
4046         memset(essid, 0, sizeof(essid));
4047         memset(bssid, 0, sizeof(bssid));
4048
4049         length = IW_ESSID_MAX_SIZE;
4050         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4051         if (ret)
4052                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4053                                __LINE__);
4054
4055         length = sizeof(bssid);
4056         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4057                                   bssid, &length);
4058         if (ret)
4059                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4060                                __LINE__);
4061
4062         length = sizeof(u32);
4063         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4064         if (ret)
4065                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4066                                __LINE__);
4067
4068         out += sprintf(out, "ESSID: %s\n", essid);
4069         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4070                        bssid[0], bssid[1], bssid[2],
4071                        bssid[3], bssid[4], bssid[5]);
4072         out += sprintf(out, "Channel: %d\n", chan);
4073
4074         return out - buf;
4075 }
4076
4077 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4078
4079 #ifdef CONFIG_IPW2100_DEBUG
4080 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4081 {
4082         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4083 }
4084
4085 static ssize_t store_debug_level(struct device_driver *d,
4086                                  const char *buf, size_t count)
4087 {
4088         char *p = (char *)buf;
4089         u32 val;
4090
4091         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4092                 p++;
4093                 if (p[0] == 'x' || p[0] == 'X')
4094                         p++;
4095                 val = simple_strtoul(p, &p, 16);
4096         } else
4097                 val = simple_strtoul(p, &p, 10);
4098         if (p == buf)
4099                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4100         else
4101                 ipw2100_debug_level = val;
4102
4103         return strnlen(buf, count);
4104 }
4105
4106 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4107                    store_debug_level);
4108 #endif                          /* CONFIG_IPW2100_DEBUG */
4109
4110 static ssize_t show_fatal_error(struct device *d,
4111                                 struct device_attribute *attr, char *buf)
4112 {
4113         struct ipw2100_priv *priv = dev_get_drvdata(d);
4114         char *out = buf;
4115         int i;
4116
4117         if (priv->fatal_error)
4118                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4119         else
4120                 out += sprintf(out, "0\n");
4121
4122         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4123                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4124                                         IPW2100_ERROR_QUEUE])
4125                         continue;
4126
4127                 out += sprintf(out, "%d. 0x%08X\n", i,
4128                                priv->fatal_errors[(priv->fatal_index - i) %
4129                                                   IPW2100_ERROR_QUEUE]);
4130         }
4131
4132         return out - buf;
4133 }
4134
4135 static ssize_t store_fatal_error(struct device *d,
4136                                  struct device_attribute *attr, const char *buf,
4137                                  size_t count)
4138 {
4139         struct ipw2100_priv *priv = dev_get_drvdata(d);
4140         schedule_reset(priv);
4141         return count;
4142 }
4143
4144 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4145                    store_fatal_error);
4146
4147 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4148                              char *buf)
4149 {
4150         struct ipw2100_priv *priv = dev_get_drvdata(d);
4151         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4152 }
4153
4154 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4155                               const char *buf, size_t count)
4156 {
4157         struct ipw2100_priv *priv = dev_get_drvdata(d);
4158         struct net_device *dev = priv->net_dev;
4159         char buffer[] = "00000000";
4160         unsigned long len =
4161             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4162         unsigned long val;
4163         char *p = buffer;
4164
4165         (void)dev;              /* kill unused-var warning for debug-only code */
4166
4167         IPW_DEBUG_INFO("enter\n");
4168
4169         strncpy(buffer, buf, len);
4170         buffer[len] = 0;
4171
4172         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4173                 p++;
4174                 if (p[0] == 'x' || p[0] == 'X')
4175                         p++;
4176                 val = simple_strtoul(p, &p, 16);
4177         } else
4178                 val = simple_strtoul(p, &p, 10);
4179         if (p == buffer) {
4180                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4181         } else {
4182                 priv->ieee->scan_age = val;
4183                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4184         }
4185
4186         IPW_DEBUG_INFO("exit\n");
4187         return len;
4188 }
4189
4190 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4191
4192 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4193                             char *buf)
4194 {
4195         /* 0 - RF kill not enabled
4196            1 - SW based RF kill active (sysfs)
4197            2 - HW based RF kill active
4198            3 - Both HW and SW baed RF kill active */
4199         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4200         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4201             (rf_kill_active(priv) ? 0x2 : 0x0);
4202         return sprintf(buf, "%i\n", val);
4203 }
4204
4205 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4206 {
4207         if ((disable_radio ? 1 : 0) ==
4208             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4209                 return 0;
4210
4211         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4212                           disable_radio ? "OFF" : "ON");
4213
4214         mutex_lock(&priv->action_mutex);
4215
4216         if (disable_radio) {
4217                 priv->status |= STATUS_RF_KILL_SW;
4218                 ipw2100_down(priv);
4219         } else {
4220                 priv->status &= ~STATUS_RF_KILL_SW;
4221                 if (rf_kill_active(priv)) {
4222                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4223                                           "disabled by HW switch\n");
4224                         /* Make sure the RF_KILL check timer is running */
4225                         priv->stop_rf_kill = 0;
4226                         cancel_delayed_work(&priv->rf_kill);
4227                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4228                 } else
4229                         schedule_reset(priv);
4230         }
4231
4232         mutex_unlock(&priv->action_mutex);
4233         return 1;
4234 }
4235
4236 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4237                              const char *buf, size_t count)
4238 {
4239         struct ipw2100_priv *priv = dev_get_drvdata(d);
4240         ipw_radio_kill_sw(priv, buf[0] == '1');
4241         return count;
4242 }
4243
4244 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4245
4246 static struct attribute *ipw2100_sysfs_entries[] = {
4247         &dev_attr_hardware.attr,
4248         &dev_attr_registers.attr,
4249         &dev_attr_ordinals.attr,
4250         &dev_attr_pci.attr,
4251         &dev_attr_stats.attr,
4252         &dev_attr_internals.attr,
4253         &dev_attr_bssinfo.attr,
4254         &dev_attr_memory.attr,
4255         &dev_attr_scan_age.attr,
4256         &dev_attr_fatal_error.attr,
4257         &dev_attr_rf_kill.attr,
4258         &dev_attr_cfg.attr,
4259         &dev_attr_status.attr,
4260         &dev_attr_capability.attr,
4261         NULL,
4262 };
4263
4264 static struct attribute_group ipw2100_attribute_group = {
4265         .attrs = ipw2100_sysfs_entries,
4266 };
4267
4268 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4269 {
4270         struct ipw2100_status_queue *q = &priv->status_queue;
4271
4272         IPW_DEBUG_INFO("enter\n");
4273
4274         q->size = entries * sizeof(struct ipw2100_status);
4275         q->drv =
4276             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4277                                                           q->size, &q->nic);
4278         if (!q->drv) {
4279                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4280                 return -ENOMEM;
4281         }
4282
4283         memset(q->drv, 0, q->size);
4284
4285         IPW_DEBUG_INFO("exit\n");
4286
4287         return 0;
4288 }
4289
4290 static void status_queue_free(struct ipw2100_priv *priv)
4291 {
4292         IPW_DEBUG_INFO("enter\n");
4293
4294         if (priv->status_queue.drv) {
4295                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4296                                     priv->status_queue.drv,
4297                                     priv->status_queue.nic);
4298                 priv->status_queue.drv = NULL;
4299         }
4300
4301         IPW_DEBUG_INFO("exit\n");
4302 }
4303
4304 static int bd_queue_allocate(struct ipw2100_priv *priv,
4305                              struct ipw2100_bd_queue *q, int entries)
4306 {
4307         IPW_DEBUG_INFO("enter\n");
4308
4309         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4310
4311         q->entries = entries;
4312         q->size = entries * sizeof(struct ipw2100_bd);
4313         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4314         if (!q->drv) {
4315                 IPW_DEBUG_INFO
4316                     ("can't allocate shared memory for buffer descriptors\n");
4317                 return -ENOMEM;
4318         }
4319         memset(q->drv, 0, q->size);
4320
4321         IPW_DEBUG_INFO("exit\n");
4322
4323         return 0;
4324 }
4325
4326 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4327 {
4328         IPW_DEBUG_INFO("enter\n");
4329
4330         if (!q)
4331                 return;
4332
4333         if (q->drv) {
4334                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4335                 q->drv = NULL;
4336         }
4337
4338         IPW_DEBUG_INFO("exit\n");
4339 }
4340
4341 static void bd_queue_initialize(struct ipw2100_priv *priv,
4342                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4343                                 u32 r, u32 w)
4344 {
4345         IPW_DEBUG_INFO("enter\n");
4346
4347         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4348                        (u32) q->nic);
4349
4350         write_register(priv->net_dev, base, q->nic);
4351         write_register(priv->net_dev, size, q->entries);
4352         write_register(priv->net_dev, r, q->oldest);
4353         write_register(priv->net_dev, w, q->next);
4354
4355         IPW_DEBUG_INFO("exit\n");
4356 }
4357
4358 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4359 {
4360         if (priv->workqueue) {
4361                 priv->stop_rf_kill = 1;
4362                 priv->stop_hang_check = 1;
4363                 cancel_delayed_work(&priv->reset_work);
4364                 cancel_delayed_work(&priv->security_work);
4365                 cancel_delayed_work(&priv->wx_event_work);
4366                 cancel_delayed_work(&priv->hang_check);
4367                 cancel_delayed_work(&priv->rf_kill);
4368                 destroy_workqueue(priv->workqueue);
4369                 priv->workqueue = NULL;
4370         }
4371 }
4372
4373 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4374 {
4375         int i, j, err = -EINVAL;
4376         void *v;
4377         dma_addr_t p;
4378
4379         IPW_DEBUG_INFO("enter\n");
4380
4381         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4382         if (err) {
4383                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4384                                 priv->net_dev->name);
4385                 return err;
4386         }
4387
4388         priv->tx_buffers =
4389             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4390                                                 sizeof(struct
4391                                                        ipw2100_tx_packet),
4392                                                 GFP_ATOMIC);
4393         if (!priv->tx_buffers) {
4394                 printk(KERN_ERR DRV_NAME
4395                        ": %s: alloc failed form tx buffers.\n",
4396                        priv->net_dev->name);
4397                 bd_queue_free(priv, &priv->tx_queue);
4398                 return -ENOMEM;
4399         }
4400
4401         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4402                 v = pci_alloc_consistent(priv->pci_dev,
4403                                          sizeof(struct ipw2100_data_header),
4404                                          &p);
4405                 if (!v) {
4406                         printk(KERN_ERR DRV_NAME
4407                                ": %s: PCI alloc failed for tx " "buffers.\n",
4408                                priv->net_dev->name);
4409                         err = -ENOMEM;
4410                         break;
4411                 }
4412
4413                 priv->tx_buffers[i].type = DATA;
4414                 priv->tx_buffers[i].info.d_struct.data =
4415                     (struct ipw2100_data_header *)v;
4416                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4417                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4418         }
4419
4420         if (i == TX_PENDED_QUEUE_LENGTH)
4421                 return 0;
4422
4423         for (j = 0; j < i; j++) {
4424                 pci_free_consistent(priv->pci_dev,
4425                                     sizeof(struct ipw2100_data_header),
4426                                     priv->tx_buffers[j].info.d_struct.data,
4427                                     priv->tx_buffers[j].info.d_struct.
4428                                     data_phys);
4429         }
4430
4431         kfree(priv->tx_buffers);
4432         priv->tx_buffers = NULL;
4433
4434         return err;
4435 }
4436
4437 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4438 {
4439         int i;
4440
4441         IPW_DEBUG_INFO("enter\n");
4442
4443         /*
4444          * reinitialize packet info lists
4445          */
4446         INIT_LIST_HEAD(&priv->fw_pend_list);
4447         INIT_STAT(&priv->fw_pend_stat);
4448
4449         /*
4450          * reinitialize lists
4451          */
4452         INIT_LIST_HEAD(&priv->tx_pend_list);
4453         INIT_LIST_HEAD(&priv->tx_free_list);
4454         INIT_STAT(&priv->tx_pend_stat);
4455         INIT_STAT(&priv->tx_free_stat);
4456
4457         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458                 /* We simply drop any SKBs that have been queued for
4459                  * transmit */
4460                 if (priv->tx_buffers[i].info.d_struct.txb) {
4461                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4462                                            txb);
4463                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4464                 }
4465
4466                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4467         }
4468
4469         SET_STAT(&priv->tx_free_stat, i);
4470
4471         priv->tx_queue.oldest = 0;
4472         priv->tx_queue.available = priv->tx_queue.entries;
4473         priv->tx_queue.next = 0;
4474         INIT_STAT(&priv->txq_stat);
4475         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4476
4477         bd_queue_initialize(priv, &priv->tx_queue,
4478                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4479                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4480                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4481                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4482
4483         IPW_DEBUG_INFO("exit\n");
4484
4485 }
4486
4487 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4488 {
4489         int i;
4490
4491         IPW_DEBUG_INFO("enter\n");
4492
4493         bd_queue_free(priv, &priv->tx_queue);
4494
4495         if (!priv->tx_buffers)
4496                 return;
4497
4498         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4499                 if (priv->tx_buffers[i].info.d_struct.txb) {
4500                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4501                                            txb);
4502                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4503                 }
4504                 if (priv->tx_buffers[i].info.d_struct.data)
4505                         pci_free_consistent(priv->pci_dev,
4506                                             sizeof(struct ipw2100_data_header),
4507                                             priv->tx_buffers[i].info.d_struct.
4508                                             data,
4509                                             priv->tx_buffers[i].info.d_struct.
4510                                             data_phys);
4511         }
4512
4513         kfree(priv->tx_buffers);
4514         priv->tx_buffers = NULL;
4515
4516         IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4520 {
4521         int i, j, err = -EINVAL;
4522
4523         IPW_DEBUG_INFO("enter\n");
4524
4525         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4526         if (err) {
4527                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4528                 return err;
4529         }
4530
4531         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4532         if (err) {
4533                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4534                 bd_queue_free(priv, &priv->rx_queue);
4535                 return err;
4536         }
4537
4538         /*
4539          * allocate packets
4540          */
4541         priv->rx_buffers = (struct ipw2100_rx_packet *)
4542             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4543                     GFP_KERNEL);
4544         if (!priv->rx_buffers) {
4545                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4546
4547                 bd_queue_free(priv, &priv->rx_queue);
4548
4549                 status_queue_free(priv);
4550
4551                 return -ENOMEM;
4552         }
4553
4554         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4555                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4556
4557                 err = ipw2100_alloc_skb(priv, packet);
4558                 if (unlikely(err)) {
4559                         err = -ENOMEM;
4560                         break;
4561                 }
4562
4563                 /* The BD holds the cache aligned address */
4564                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4565                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4566                 priv->status_queue.drv[i].status_fields = 0;
4567         }
4568
4569         if (i == RX_QUEUE_LENGTH)
4570                 return 0;
4571
4572         for (j = 0; j < i; j++) {
4573                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4574                                  sizeof(struct ipw2100_rx_packet),
4575                                  PCI_DMA_FROMDEVICE);
4576                 dev_kfree_skb(priv->rx_buffers[j].skb);
4577         }
4578
4579         kfree(priv->rx_buffers);
4580         priv->rx_buffers = NULL;
4581
4582         bd_queue_free(priv, &priv->rx_queue);
4583
4584         status_queue_free(priv);
4585
4586         return err;
4587 }
4588
4589 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4590 {
4591         IPW_DEBUG_INFO("enter\n");
4592
4593         priv->rx_queue.oldest = 0;
4594         priv->rx_queue.available = priv->rx_queue.entries - 1;
4595         priv->rx_queue.next = priv->rx_queue.entries - 1;
4596
4597         INIT_STAT(&priv->rxq_stat);
4598         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4599
4600         bd_queue_initialize(priv, &priv->rx_queue,
4601                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4602                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4603                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4604                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4605
4606         /* set up the status queue */
4607         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4608                        priv->status_queue.nic);
4609
4610         IPW_DEBUG_INFO("exit\n");
4611 }
4612
4613 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4614 {
4615         int i;
4616
4617         IPW_DEBUG_INFO("enter\n");
4618
4619         bd_queue_free(priv, &priv->rx_queue);
4620         status_queue_free(priv);
4621
4622         if (!priv->rx_buffers)
4623                 return;
4624
4625         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4626                 if (priv->rx_buffers[i].rxp) {
4627                         pci_unmap_single(priv->pci_dev,
4628                                          priv->rx_buffers[i].dma_addr,
4629                                          sizeof(struct ipw2100_rx),
4630                                          PCI_DMA_FROMDEVICE);
4631                         dev_kfree_skb(priv->rx_buffers[i].skb);
4632                 }
4633         }
4634
4635         kfree(priv->rx_buffers);
4636         priv->rx_buffers = NULL;
4637
4638         IPW_DEBUG_INFO("exit\n");
4639 }
4640
4641 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4642 {
4643         u32 length = ETH_ALEN;
4644         u8 mac[ETH_ALEN];
4645
4646         int err;
4647
4648         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4649         if (err) {
4650                 IPW_DEBUG_INFO("MAC address read failed\n");
4651                 return -EIO;
4652         }
4653         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4654                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4655
4656         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4657
4658         return 0;
4659 }
4660
4661 /********************************************************************
4662  *
4663  * Firmware Commands
4664  *
4665  ********************************************************************/
4666
4667 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4668 {
4669         struct host_command cmd = {
4670                 .host_command = ADAPTER_ADDRESS,
4671                 .host_command_sequence = 0,
4672                 .host_command_length = ETH_ALEN
4673         };
4674         int err;
4675
4676         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4677
4678         IPW_DEBUG_INFO("enter\n");
4679
4680         if (priv->config & CFG_CUSTOM_MAC) {
4681                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4682                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4683         } else
4684                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4685                        ETH_ALEN);
4686
4687         err = ipw2100_hw_send_command(priv, &cmd);
4688
4689         IPW_DEBUG_INFO("exit\n");
4690         return err;
4691 }
4692
4693 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4694                                  int batch_mode)
4695 {
4696         struct host_command cmd = {
4697                 .host_command = PORT_TYPE,
4698                 .host_command_sequence = 0,
4699                 .host_command_length = sizeof(u32)
4700         };
4701         int err;
4702
4703         switch (port_type) {
4704         case IW_MODE_INFRA:
4705                 cmd.host_command_parameters[0] = IPW_BSS;
4706                 break;
4707         case IW_MODE_ADHOC:
4708                 cmd.host_command_parameters[0] = IPW_IBSS;
4709                 break;
4710         }
4711
4712         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4713                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4714
4715         if (!batch_mode) {
4716                 err = ipw2100_disable_adapter(priv);
4717                 if (err) {
4718                         printk(KERN_ERR DRV_NAME
4719                                ": %s: Could not disable adapter %d\n",
4720                                priv->net_dev->name, err);
4721                         return err;
4722                 }
4723         }
4724
4725         /* send cmd to firmware */
4726         err = ipw2100_hw_send_command(priv, &cmd);
4727
4728         if (!batch_mode)
4729                 ipw2100_enable_adapter(priv);
4730
4731         return err;
4732 }
4733
4734 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4735                                int batch_mode)
4736 {
4737         struct host_command cmd = {
4738                 .host_command = CHANNEL,
4739                 .host_command_sequence = 0,
4740                 .host_command_length = sizeof(u32)
4741         };
4742         int err;
4743
4744         cmd.host_command_parameters[0] = channel;
4745
4746         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4747
4748         /* If BSS then we don't support channel selection */
4749         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4750                 return 0;
4751
4752         if ((channel != 0) &&
4753             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4754                 return -EINVAL;
4755
4756         if (!batch_mode) {
4757                 err = ipw2100_disable_adapter(priv);
4758                 if (err)
4759                         return err;
4760         }
4761
4762         err = ipw2100_hw_send_command(priv, &cmd);
4763         if (err) {
4764                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4765                 return err;
4766         }
4767
4768         if (channel)
4769                 priv->config |= CFG_STATIC_CHANNEL;
4770         else
4771                 priv->config &= ~CFG_STATIC_CHANNEL;
4772
4773         priv->channel = channel;
4774
4775         if (!batch_mode) {
4776                 err = ipw2100_enable_adapter(priv);
4777                 if (err)
4778                         return err;
4779         }
4780
4781         return 0;
4782 }
4783
4784 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4785 {
4786         struct host_command cmd = {
4787                 .host_command = SYSTEM_CONFIG,
4788                 .host_command_sequence = 0,
4789                 .host_command_length = 12,
4790         };
4791         u32 ibss_mask, len = sizeof(u32);
4792         int err;
4793
4794         /* Set system configuration */
4795
4796         if (!batch_mode) {
4797                 err = ipw2100_disable_adapter(priv);
4798                 if (err)
4799                         return err;
4800         }
4801
4802         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4803                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4804
4805         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4806             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4807
4808         if (!(priv->config & CFG_LONG_PREAMBLE))
4809                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4810
4811         err = ipw2100_get_ordinal(priv,
4812                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4813                                   &ibss_mask, &len);
4814         if (err)
4815                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4816
4817         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4818         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4819
4820         /* 11b only */
4821         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4822
4823         err = ipw2100_hw_send_command(priv, &cmd);
4824         if (err)
4825                 return err;
4826
4827 /* If IPv6 is configured in the kernel then we don't want to filter out all
4828  * of the multicast packets as IPv6 needs some. */
4829 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4830         cmd.host_command = ADD_MULTICAST;
4831         cmd.host_command_sequence = 0;
4832         cmd.host_command_length = 0;
4833
4834         ipw2100_hw_send_command(priv, &cmd);
4835 #endif
4836         if (!batch_mode) {
4837                 err = ipw2100_enable_adapter(priv);
4838                 if (err)
4839                         return err;
4840         }
4841
4842         return 0;
4843 }
4844
4845 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4846                                 int batch_mode)
4847 {
4848         struct host_command cmd = {
4849                 .host_command = BASIC_TX_RATES,
4850                 .host_command_sequence = 0,
4851                 .host_command_length = 4
4852         };
4853         int err;
4854
4855         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4856
4857         if (!batch_mode) {
4858                 err = ipw2100_disable_adapter(priv);
4859                 if (err)
4860                         return err;
4861         }
4862
4863         /* Set BASIC TX Rate first */
4864         ipw2100_hw_send_command(priv, &cmd);
4865
4866         /* Set TX Rate */
4867         cmd.host_command = TX_RATES;
4868         ipw2100_hw_send_command(priv, &cmd);
4869
4870         /* Set MSDU TX Rate */
4871         cmd.host_command = MSDU_TX_RATES;
4872         ipw2100_hw_send_command(priv, &cmd);
4873
4874         if (!batch_mode) {
4875                 err = ipw2100_enable_adapter(priv);
4876                 if (err)
4877                         return err;
4878         }
4879
4880         priv->tx_rates = rate;
4881
4882         return 0;
4883 }
4884
4885 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4886 {
4887         struct host_command cmd = {
4888                 .host_command = POWER_MODE,
4889                 .host_command_sequence = 0,
4890                 .host_command_length = 4
4891         };
4892         int err;
4893
4894         cmd.host_command_parameters[0] = power_level;
4895
4896         err = ipw2100_hw_send_command(priv, &cmd);
4897         if (err)
4898                 return err;
4899
4900         if (power_level == IPW_POWER_MODE_CAM)
4901                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4902         else
4903                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4904
4905 #ifdef CONFIG_IPW2100_TX_POWER
4906         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4907                 /* Set beacon interval */
4908                 cmd.host_command = TX_POWER_INDEX;
4909                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4910
4911                 err = ipw2100_hw_send_command(priv, &cmd);
4912                 if (err)
4913                         return err;
4914         }
4915 #endif
4916
4917         return 0;
4918 }
4919
4920 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4921 {
4922         struct host_command cmd = {
4923                 .host_command = RTS_THRESHOLD,
4924                 .host_command_sequence = 0,
4925                 .host_command_length = 4
4926         };
4927         int err;
4928
4929         if (threshold & RTS_DISABLED)
4930                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4931         else
4932                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4933
4934         err = ipw2100_hw_send_command(priv, &cmd);
4935         if (err)
4936                 return err;
4937
4938         priv->rts_threshold = threshold;
4939
4940         return 0;
4941 }
4942
4943 #if 0
4944 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4945                                         u32 threshold, int batch_mode)
4946 {
4947         struct host_command cmd = {
4948                 .host_command = FRAG_THRESHOLD,
4949                 .host_command_sequence = 0,
4950                 .host_command_length = 4,
4951                 .host_command_parameters[0] = 0,
4952         };
4953         int err;
4954
4955         if (!batch_mode) {
4956                 err = ipw2100_disable_adapter(priv);
4957                 if (err)
4958                         return err;
4959         }
4960
4961         if (threshold == 0)
4962                 threshold = DEFAULT_FRAG_THRESHOLD;
4963         else {
4964                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4965                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4966         }
4967
4968         cmd.host_command_parameters[0] = threshold;
4969
4970         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4971
4972         err = ipw2100_hw_send_command(priv, &cmd);
4973
4974         if (!batch_mode)
4975                 ipw2100_enable_adapter(priv);
4976
4977         if (!err)
4978                 priv->frag_threshold = threshold;
4979
4980         return err;
4981 }
4982 #endif
4983
4984 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4985 {
4986         struct host_command cmd = {
4987                 .host_command = SHORT_RETRY_LIMIT,
4988                 .host_command_sequence = 0,
4989                 .host_command_length = 4
4990         };
4991         int err;
4992
4993         cmd.host_command_parameters[0] = retry;
4994
4995         err = ipw2100_hw_send_command(priv, &cmd);
4996         if (err)
4997                 return err;
4998
4999         priv->short_retry_limit = retry;
5000
5001         return 0;
5002 }
5003
5004 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5005 {
5006         struct host_command cmd = {
5007                 .host_command = LONG_RETRY_LIMIT,
5008                 .host_command_sequence = 0,
5009                 .host_command_length = 4
5010         };
5011         int err;
5012
5013         cmd.host_command_parameters[0] = retry;
5014
5015         err = ipw2100_hw_send_command(priv, &cmd);
5016         if (err)
5017                 return err;
5018
5019         priv->long_retry_limit = retry;
5020
5021         return 0;
5022 }
5023
5024 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5025                                        int batch_mode)
5026 {
5027         struct host_command cmd = {
5028                 .host_command = MANDATORY_BSSID,
5029                 .host_command_sequence = 0,
5030                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5031         };
5032         int err;
5033
5034 #ifdef CONFIG_IPW2100_DEBUG
5035         if (bssid != NULL)
5036                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5037                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5038                              bssid[5]);
5039         else
5040                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5041 #endif
5042         /* if BSSID is empty then we disable mandatory bssid mode */
5043         if (bssid != NULL)
5044                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5045
5046         if (!batch_mode) {
5047                 err = ipw2100_disable_adapter(priv);
5048                 if (err)
5049                         return err;
5050         }
5051
5052         err = ipw2100_hw_send_command(priv, &cmd);
5053
5054         if (!batch_mode)
5055                 ipw2100_enable_adapter(priv);
5056
5057         return err;
5058 }
5059
5060 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5061 {
5062         struct host_command cmd = {
5063                 .host_command = DISASSOCIATION_BSSID,
5064                 .host_command_sequence = 0,
5065                 .host_command_length = ETH_ALEN
5066         };
5067         int err;
5068         int len;
5069
5070         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5071
5072         len = ETH_ALEN;
5073         /* The Firmware currently ignores the BSSID and just disassociates from
5074          * the currently associated AP -- but in the off chance that a future
5075          * firmware does use the BSSID provided here, we go ahead and try and
5076          * set it to the currently associated AP's BSSID */
5077         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5078
5079         err = ipw2100_hw_send_command(priv, &cmd);
5080
5081         return err;
5082 }
5083
5084 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5085                               struct ipw2100_wpa_assoc_frame *, int)
5086     __attribute__ ((unused));
5087
5088 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5089                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5090                               int batch_mode)
5091 {
5092         struct host_command cmd = {
5093                 .host_command = SET_WPA_IE,
5094                 .host_command_sequence = 0,
5095                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5096         };
5097         int err;
5098
5099         IPW_DEBUG_HC("SET_WPA_IE\n");
5100
5101         if (!batch_mode) {
5102                 err = ipw2100_disable_adapter(priv);
5103                 if (err)
5104                         return err;
5105         }
5106
5107         memcpy(cmd.host_command_parameters, wpa_frame,
5108                sizeof(struct ipw2100_wpa_assoc_frame));
5109
5110         err = ipw2100_hw_send_command(priv, &cmd);
5111
5112         if (!batch_mode) {
5113                 if (ipw2100_enable_adapter(priv))
5114                         err = -EIO;
5115         }
5116
5117         return err;
5118 }
5119
5120 struct security_info_params {
5121         u32 allowed_ciphers;
5122         u16 version;
5123         u8 auth_mode;
5124         u8 replay_counters_number;
5125         u8 unicast_using_group;
5126 } __attribute__ ((packed));
5127
5128 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5129                                             int auth_mode,
5130                                             int security_level,
5131                                             int unicast_using_group,
5132                                             int batch_mode)
5133 {
5134         struct host_command cmd = {
5135                 .host_command = SET_SECURITY_INFORMATION,
5136                 .host_command_sequence = 0,
5137                 .host_command_length = sizeof(struct security_info_params)
5138         };
5139         struct security_info_params *security =
5140             (struct security_info_params *)&cmd.host_command_parameters;
5141         int err;
5142         memset(security, 0, sizeof(*security));
5143
5144         /* If shared key AP authentication is turned on, then we need to
5145          * configure the firmware to try and use it.
5146          *
5147          * Actual data encryption/decryption is handled by the host. */
5148         security->auth_mode = auth_mode;
5149         security->unicast_using_group = unicast_using_group;
5150
5151         switch (security_level) {
5152         default:
5153         case SEC_LEVEL_0:
5154                 security->allowed_ciphers = IPW_NONE_CIPHER;
5155                 break;
5156         case SEC_LEVEL_1:
5157                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5158                     IPW_WEP104_CIPHER;
5159                 break;
5160         case SEC_LEVEL_2:
5161                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5162                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5163                 break;
5164         case SEC_LEVEL_2_CKIP:
5165                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5166                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5167                 break;
5168         case SEC_LEVEL_3:
5169                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5170                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5171                 break;
5172         }
5173
5174         IPW_DEBUG_HC
5175             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5176              security->auth_mode, security->allowed_ciphers, security_level);
5177
5178         security->replay_counters_number = 0;
5179
5180         if (!batch_mode) {
5181                 err = ipw2100_disable_adapter(priv);
5182                 if (err)
5183                         return err;
5184         }
5185
5186         err = ipw2100_hw_send_command(priv, &cmd);
5187
5188         if (!batch_mode)
5189                 ipw2100_enable_adapter(priv);
5190
5191         return err;
5192 }
5193
5194 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5195 {
5196         struct host_command cmd = {
5197                 .host_command = TX_POWER_INDEX,
5198                 .host_command_sequence = 0,
5199                 .host_command_length = 4
5200         };
5201         int err = 0;
5202         u32 tmp = tx_power;
5203
5204         if (tx_power != IPW_TX_POWER_DEFAULT)
5205                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5206                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5207
5208         cmd.host_command_parameters[0] = tmp;
5209
5210         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5211                 err = ipw2100_hw_send_command(priv, &cmd);
5212         if (!err)
5213                 priv->tx_power = tx_power;
5214
5215         return 0;
5216 }
5217
5218 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5219                                             u32 interval, int batch_mode)
5220 {
5221         struct host_command cmd = {
5222                 .host_command = BEACON_INTERVAL,
5223                 .host_command_sequence = 0,
5224                 .host_command_length = 4
5225         };
5226         int err;
5227
5228         cmd.host_command_parameters[0] = interval;
5229
5230         IPW_DEBUG_INFO("enter\n");
5231
5232         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5233                 if (!batch_mode) {
5234                         err = ipw2100_disable_adapter(priv);
5235                         if (err)
5236                                 return err;
5237                 }
5238
5239                 ipw2100_hw_send_command(priv, &cmd);
5240
5241                 if (!batch_mode) {
5242                         err = ipw2100_enable_adapter(priv);
5243                         if (err)
5244                                 return err;
5245                 }
5246         }
5247
5248         IPW_DEBUG_INFO("exit\n");
5249
5250         return 0;
5251 }
5252
5253 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5254 {
5255         ipw2100_tx_initialize(priv);
5256         ipw2100_rx_initialize(priv);
5257         ipw2100_msg_initialize(priv);
5258 }
5259
5260 void ipw2100_queues_free(struct ipw2100_priv *priv)
5261 {
5262         ipw2100_tx_free(priv);
5263         ipw2100_rx_free(priv);
5264         ipw2100_msg_free(priv);
5265 }
5266
5267 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5268 {
5269         if (ipw2100_tx_allocate(priv) ||
5270             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5271                 goto fail;
5272
5273         return 0;
5274
5275       fail:
5276         ipw2100_tx_free(priv);
5277         ipw2100_rx_free(priv);
5278         ipw2100_msg_free(priv);
5279         return -ENOMEM;
5280 }
5281
5282 #define IPW_PRIVACY_CAPABLE 0x0008
5283
5284 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5285                                  int batch_mode)
5286 {
5287         struct host_command cmd = {
5288                 .host_command = WEP_FLAGS,
5289                 .host_command_sequence = 0,
5290                 .host_command_length = 4
5291         };
5292         int err;
5293
5294         cmd.host_command_parameters[0] = flags;
5295
5296         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5297
5298         if (!batch_mode) {
5299                 err = ipw2100_disable_adapter(priv);
5300                 if (err) {
5301                         printk(KERN_ERR DRV_NAME
5302                                ": %s: Could not disable adapter %d\n",
5303                                priv->net_dev->name, err);
5304                         return err;
5305                 }
5306         }
5307
5308         /* send cmd to firmware */
5309         err = ipw2100_hw_send_command(priv, &cmd);
5310
5311         if (!batch_mode)
5312                 ipw2100_enable_adapter(priv);
5313
5314         return err;
5315 }
5316
5317 struct ipw2100_wep_key {
5318         u8 idx;
5319         u8 len;
5320         u8 key[13];
5321 };
5322
5323 /* Macros to ease up priting WEP keys */
5324 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5325 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5326 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5327 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5328
5329 /**
5330  * Set a the wep key
5331  *
5332  * @priv: struct to work on
5333  * @idx: index of the key we want to set
5334  * @key: ptr to the key data to set
5335  * @len: length of the buffer at @key
5336  * @batch_mode: FIXME perform the operation in batch mode, not
5337  *              disabling the device.
5338  *
5339  * @returns 0 if OK, < 0 errno code on error.
5340  *
5341  * Fill out a command structure with the new wep key, length an
5342  * index and send it down the wire.
5343  */
5344 static int ipw2100_set_key(struct ipw2100_priv *priv,
5345                            int idx, char *key, int len, int batch_mode)
5346 {
5347         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5348         struct host_command cmd = {
5349                 .host_command = WEP_KEY_INFO,
5350                 .host_command_sequence = 0,
5351                 .host_command_length = sizeof(struct ipw2100_wep_key),
5352         };
5353         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5354         int err;
5355
5356         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5357                      idx, keylen, len);
5358
5359         /* NOTE: We don't check cached values in case the firmware was reset
5360          * or some other problem is occurring.  If the user is setting the key,
5361          * then we push the change */
5362
5363         wep_key->idx = idx;
5364         wep_key->len = keylen;
5365
5366         if (keylen) {
5367                 memcpy(wep_key->key, key, len);
5368                 memset(wep_key->key + len, 0, keylen - len);
5369         }
5370
5371         /* Will be optimized out on debug not being configured in */
5372         if (keylen == 0)
5373                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5374                               priv->net_dev->name, wep_key->idx);
5375         else if (keylen == 5)
5376                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5377                               priv->net_dev->name, wep_key->idx, wep_key->len,
5378                               WEP_STR_64(wep_key->key));
5379         else
5380                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5381                               "\n",
5382                               priv->net_dev->name, wep_key->idx, wep_key->len,
5383                               WEP_STR_128(wep_key->key));
5384
5385         if (!batch_mode) {
5386                 err = ipw2100_disable_adapter(priv);
5387                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5388                 if (err) {
5389                         printk(KERN_ERR DRV_NAME
5390                                ": %s: Could not disable adapter %d\n",
5391                                priv->net_dev->name, err);
5392                         return err;
5393                 }
5394         }
5395
5396         /* send cmd to firmware */
5397         err = ipw2100_hw_send_command(priv, &cmd);
5398
5399         if (!batch_mode) {
5400                 int err2 = ipw2100_enable_adapter(priv);
5401                 if (err == 0)
5402                         err = err2;
5403         }
5404         return err;
5405 }
5406
5407 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5408                                  int idx, int batch_mode)
5409 {
5410         struct host_command cmd = {
5411                 .host_command = WEP_KEY_INDEX,
5412                 .host_command_sequence = 0,
5413                 .host_command_length = 4,
5414                 .host_command_parameters = {idx},
5415         };
5416         int err;
5417
5418         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5419
5420         if (idx < 0 || idx > 3)
5421                 return -EINVAL;
5422
5423         if (!batch_mode) {
5424                 err = ipw2100_disable_adapter(priv);
5425                 if (err) {
5426                         printk(KERN_ERR DRV_NAME
5427                                ": %s: Could not disable adapter %d\n",
5428                                priv->net_dev->name, err);
5429                         return err;
5430                 }
5431         }
5432
5433         /* send cmd to firmware */
5434         err = ipw2100_hw_send_command(priv, &cmd);
5435
5436         if (!batch_mode)
5437                 ipw2100_enable_adapter(priv);
5438
5439         return err;
5440 }
5441
5442 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5443 {
5444         int i, err, auth_mode, sec_level, use_group;
5445
5446         if (!(priv->status & STATUS_RUNNING))
5447                 return 0;
5448
5449         if (!batch_mode) {
5450                 err = ipw2100_disable_adapter(priv);
5451                 if (err)
5452                         return err;
5453         }
5454
5455         if (!priv->ieee->sec.enabled) {
5456                 err =
5457                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5458                                                      SEC_LEVEL_0, 0, 1);
5459         } else {
5460                 auth_mode = IPW_AUTH_OPEN;
5461                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5462                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5463                                 auth_mode = IPW_AUTH_SHARED;
5464                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5465                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5466                 }
5467
5468                 sec_level = SEC_LEVEL_0;
5469                 if (priv->ieee->sec.flags & SEC_LEVEL)
5470                         sec_level = priv->ieee->sec.level;
5471
5472                 use_group = 0;
5473                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5474                         use_group = priv->ieee->sec.unicast_uses_group;
5475
5476                 err =
5477                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5478                                                      use_group, 1);
5479         }
5480
5481         if (err)
5482                 goto exit;
5483
5484         if (priv->ieee->sec.enabled) {
5485                 for (i = 0; i < 4; i++) {
5486                         if (!(priv->ieee->sec.flags & (1 << i))) {
5487                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5488                                 priv->ieee->sec.key_sizes[i] = 0;
5489                         } else {
5490                                 err = ipw2100_set_key(priv, i,
5491                                                       priv->ieee->sec.keys[i],
5492                                                       priv->ieee->sec.
5493                                                       key_sizes[i], 1);
5494                                 if (err)
5495                                         goto exit;
5496                         }
5497                 }
5498
5499                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5500         }
5501
5502         /* Always enable privacy so the Host can filter WEP packets if
5503          * encrypted data is sent up */
5504         err =
5505             ipw2100_set_wep_flags(priv,
5506                                   priv->ieee->sec.
5507                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5508         if (err)
5509                 goto exit;
5510
5511         priv->status &= ~STATUS_SECURITY_UPDATED;
5512
5513       exit:
5514         if (!batch_mode)
5515                 ipw2100_enable_adapter(priv);
5516
5517         return err;
5518 }
5519
5520 static void ipw2100_security_work(struct ipw2100_priv *priv)
5521 {
5522         /* If we happen to have reconnected before we get a chance to
5523          * process this, then update the security settings--which causes
5524          * a disassociation to occur */
5525         if (!(priv->status & STATUS_ASSOCIATED) &&
5526             priv->status & STATUS_SECURITY_UPDATED)
5527                 ipw2100_configure_security(priv, 0);
5528 }
5529
5530 static void shim__set_security(struct net_device *dev,
5531                                struct ieee80211_security *sec)
5532 {
5533         struct ipw2100_priv *priv = ieee80211_priv(dev);
5534         int i, force_update = 0;
5535
5536         mutex_lock(&priv->action_mutex);
5537         if (!(priv->status & STATUS_INITIALIZED))
5538                 goto done;
5539
5540         for (i = 0; i < 4; i++) {
5541                 if (sec->flags & (1 << i)) {
5542                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5543                         if (sec->key_sizes[i] == 0)
5544                                 priv->ieee->sec.flags &= ~(1 << i);
5545                         else
5546                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5547                                        sec->key_sizes[i]);
5548                         if (sec->level == SEC_LEVEL_1) {
5549                                 priv->ieee->sec.flags |= (1 << i);
5550                                 priv->status |= STATUS_SECURITY_UPDATED;
5551                         } else
5552                                 priv->ieee->sec.flags &= ~(1 << i);
5553                 }
5554         }
5555
5556         if ((sec->flags & SEC_ACTIVE_KEY) &&
5557             priv->ieee->sec.active_key != sec->active_key) {
5558                 if (sec->active_key <= 3) {
5559                         priv->ieee->sec.active_key = sec->active_key;
5560                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5561                 } else
5562                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5563
5564                 priv->status |= STATUS_SECURITY_UPDATED;
5565         }
5566
5567         if ((sec->flags & SEC_AUTH_MODE) &&
5568             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5569                 priv->ieee->sec.auth_mode = sec->auth_mode;
5570                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5571                 priv->status |= STATUS_SECURITY_UPDATED;
5572         }
5573
5574         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5575                 priv->ieee->sec.flags |= SEC_ENABLED;
5576                 priv->ieee->sec.enabled = sec->enabled;
5577                 priv->status |= STATUS_SECURITY_UPDATED;
5578                 force_update = 1;
5579         }
5580
5581         if (sec->flags & SEC_ENCRYPT)
5582                 priv->ieee->sec.encrypt = sec->encrypt;
5583
5584         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5585                 priv->ieee->sec.level = sec->level;
5586                 priv->ieee->sec.flags |= SEC_LEVEL;
5587                 priv->status |= STATUS_SECURITY_UPDATED;
5588         }
5589
5590         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5591                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5592                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5593                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5594                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5595                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5596                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5597                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5598                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5599                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5600
5601 /* As a temporary work around to enable WPA until we figure out why
5602  * wpa_supplicant toggles the security capability of the driver, which
5603  * forces a disassocation with force_update...
5604  *
5605  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5606         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5607                 ipw2100_configure_security(priv, 0);
5608       done:
5609         mutex_unlock(&priv->action_mutex);
5610 }
5611
5612 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5613 {
5614         int err;
5615         int batch_mode = 1;
5616         u8 *bssid;
5617
5618         IPW_DEBUG_INFO("enter\n");
5619
5620         err = ipw2100_disable_adapter(priv);
5621         if (err)
5622                 return err;
5623 #ifdef CONFIG_IPW2100_MONITOR
5624         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5625                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5626                 if (err)
5627                         return err;
5628
5629                 IPW_DEBUG_INFO("exit\n");
5630
5631                 return 0;
5632         }
5633 #endif                          /* CONFIG_IPW2100_MONITOR */
5634
5635         err = ipw2100_read_mac_address(priv);
5636         if (err)
5637                 return -EIO;
5638
5639         err = ipw2100_set_mac_address(priv, batch_mode);
5640         if (err)
5641                 return err;
5642
5643         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5644         if (err)
5645                 return err;
5646
5647         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5648                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5649                 if (err)
5650                         return err;
5651         }
5652
5653         err = ipw2100_system_config(priv, batch_mode);
5654         if (err)
5655                 return err;
5656
5657         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5658         if (err)
5659                 return err;
5660
5661         /* Default to power mode OFF */
5662         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5663         if (err)
5664                 return err;
5665
5666         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5667         if (err)
5668                 return err;
5669
5670         if (priv->config & CFG_STATIC_BSSID)
5671                 bssid = priv->bssid;
5672         else
5673                 bssid = NULL;
5674         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5675         if (err)
5676                 return err;
5677
5678         if (priv->config & CFG_STATIC_ESSID)
5679                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5680                                         batch_mode);
5681         else
5682                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5683         if (err)
5684                 return err;
5685
5686         err = ipw2100_configure_security(priv, batch_mode);
5687         if (err)
5688                 return err;
5689
5690         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5691                 err =
5692                     ipw2100_set_ibss_beacon_interval(priv,
5693                                                      priv->beacon_interval,
5694                                                      batch_mode);
5695                 if (err)
5696                         return err;
5697
5698                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5699                 if (err)
5700                         return err;
5701         }
5702
5703         /*
5704            err = ipw2100_set_fragmentation_threshold(
5705            priv, priv->frag_threshold, batch_mode);
5706            if (err)
5707            return err;
5708          */
5709
5710         IPW_DEBUG_INFO("exit\n");
5711
5712         return 0;
5713 }
5714
5715 /*************************************************************************
5716  *
5717  * EXTERNALLY CALLED METHODS
5718  *
5719  *************************************************************************/
5720
5721 /* This method is called by the network layer -- not to be confused with
5722  * ipw2100_set_mac_address() declared above called by this driver (and this
5723  * method as well) to talk to the firmware */
5724 static int ipw2100_set_address(struct net_device *dev, void *p)
5725 {
5726         struct ipw2100_priv *priv = ieee80211_priv(dev);
5727         struct sockaddr *addr = p;
5728         int err = 0;
5729
5730         if (!is_valid_ether_addr(addr->sa_data))
5731                 return -EADDRNOTAVAIL;
5732
5733         mutex_lock(&priv->action_mutex);
5734
5735         priv->config |= CFG_CUSTOM_MAC;
5736         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5737
5738         err = ipw2100_set_mac_address(priv, 0);
5739         if (err)
5740                 goto done;
5741
5742         priv->reset_backoff = 0;
5743         mutex_unlock(&priv->action_mutex);
5744         ipw2100_reset_adapter(priv);
5745         return 0;
5746
5747       done:
5748         mutex_unlock(&priv->action_mutex);
5749         return err;
5750 }
5751
5752 static int ipw2100_open(struct net_device *dev)
5753 {
5754         struct ipw2100_priv *priv = ieee80211_priv(dev);
5755         unsigned long flags;
5756         IPW_DEBUG_INFO("dev->open\n");
5757
5758         spin_lock_irqsave(&priv->low_lock, flags);
5759         if (priv->status & STATUS_ASSOCIATED) {
5760                 netif_carrier_on(dev);
5761                 netif_start_queue(dev);
5762         }
5763         spin_unlock_irqrestore(&priv->low_lock, flags);
5764
5765         return 0;
5766 }
5767
5768 static int ipw2100_close(struct net_device *dev)
5769 {
5770         struct ipw2100_priv *priv = ieee80211_priv(dev);
5771         unsigned long flags;
5772         struct list_head *element;
5773         struct ipw2100_tx_packet *packet;
5774
5775         IPW_DEBUG_INFO("enter\n");
5776
5777         spin_lock_irqsave(&priv->low_lock, flags);
5778
5779         if (priv->status & STATUS_ASSOCIATED)
5780                 netif_carrier_off(dev);
5781         netif_stop_queue(dev);
5782
5783         /* Flush the TX queue ... */
5784         while (!list_empty(&priv->tx_pend_list)) {
5785                 element = priv->tx_pend_list.next;
5786                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5787
5788                 list_del(element);
5789                 DEC_STAT(&priv->tx_pend_stat);
5790
5791                 ieee80211_txb_free(packet->info.d_struct.txb);
5792                 packet->info.d_struct.txb = NULL;
5793
5794                 list_add_tail(element, &priv->tx_free_list);
5795                 INC_STAT(&priv->tx_free_stat);
5796         }
5797         spin_unlock_irqrestore(&priv->low_lock, flags);
5798
5799         IPW_DEBUG_INFO("exit\n");
5800
5801         return 0;
5802 }
5803
5804 /*
5805  * TODO:  Fix this function... its just wrong
5806  */
5807 static void ipw2100_tx_timeout(struct net_device *dev)
5808 {
5809         struct ipw2100_priv *priv = ieee80211_priv(dev);
5810
5811         priv->ieee->stats.tx_errors++;
5812
5813 #ifdef CONFIG_IPW2100_MONITOR
5814         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5815                 return;
5816 #endif
5817
5818         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5819                        dev->name);
5820         schedule_reset(priv);
5821 }
5822
5823 /*
5824  * TODO: reimplement it so that it reads statistics
5825  *       from the adapter using ordinal tables
5826  *       instead of/in addition to collecting them
5827  *       in the driver
5828  */
5829 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5830 {
5831         struct ipw2100_priv *priv = ieee80211_priv(dev);
5832
5833         return &priv->ieee->stats;
5834 }
5835
5836 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5837 {
5838         /* This is called when wpa_supplicant loads and closes the driver
5839          * interface. */
5840         priv->ieee->wpa_enabled = value;
5841         return 0;
5842 }
5843
5844 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5845 {
5846
5847         struct ieee80211_device *ieee = priv->ieee;
5848         struct ieee80211_security sec = {
5849                 .flags = SEC_AUTH_MODE,
5850         };
5851         int ret = 0;
5852
5853         if (value & IW_AUTH_ALG_SHARED_KEY) {
5854                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855                 ieee->open_wep = 0;
5856         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5857                 sec.auth_mode = WLAN_AUTH_OPEN;
5858                 ieee->open_wep = 1;
5859         } else if (value & IW_AUTH_ALG_LEAP) {
5860                 sec.auth_mode = WLAN_AUTH_LEAP;
5861                 ieee->open_wep = 1;
5862         } else
5863                 return -EINVAL;
5864
5865         if (ieee->set_security)
5866                 ieee->set_security(ieee->dev, &sec);
5867         else
5868                 ret = -EOPNOTSUPP;
5869
5870         return ret;
5871 }
5872
5873 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5874                                     char *wpa_ie, int wpa_ie_len)
5875 {
5876
5877         struct ipw2100_wpa_assoc_frame frame;
5878
5879         frame.fixed_ie_mask = 0;
5880
5881         /* copy WPA IE */
5882         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5883         frame.var_ie_len = wpa_ie_len;
5884
5885         /* make sure WPA is enabled */
5886         ipw2100_wpa_enable(priv, 1);
5887         ipw2100_set_wpa_ie(priv, &frame, 0);
5888 }
5889
5890 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5891                                     struct ethtool_drvinfo *info)
5892 {
5893         struct ipw2100_priv *priv = ieee80211_priv(dev);
5894         char fw_ver[64], ucode_ver[64];
5895
5896         strcpy(info->driver, DRV_NAME);
5897         strcpy(info->version, DRV_VERSION);
5898
5899         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5900         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5901
5902         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5903                  fw_ver, priv->eeprom_version, ucode_ver);
5904
5905         strcpy(info->bus_info, pci_name(priv->pci_dev));
5906 }
5907
5908 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5909 {
5910         struct ipw2100_priv *priv = ieee80211_priv(dev);
5911         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5912 }
5913
5914 static const struct ethtool_ops ipw2100_ethtool_ops = {
5915         .get_link = ipw2100_ethtool_get_link,
5916         .get_drvinfo = ipw_ethtool_get_drvinfo,
5917 };
5918
5919 static void ipw2100_hang_check(void *adapter)
5920 {
5921         struct ipw2100_priv *priv = adapter;
5922         unsigned long flags;
5923         u32 rtc = 0xa5a5a5a5;
5924         u32 len = sizeof(rtc);
5925         int restart = 0;
5926
5927         spin_lock_irqsave(&priv->low_lock, flags);
5928
5929         if (priv->fatal_error != 0) {
5930                 /* If fatal_error is set then we need to restart */
5931                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932                                priv->net_dev->name);
5933
5934                 restart = 1;
5935         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936                    (rtc == priv->last_rtc)) {
5937                 /* Check if firmware is hung */
5938                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939                                priv->net_dev->name);
5940
5941                 restart = 1;
5942         }
5943
5944         if (restart) {
5945                 /* Kill timer */
5946                 priv->stop_hang_check = 1;
5947                 priv->hangs++;
5948
5949                 /* Restart the NIC */
5950                 schedule_reset(priv);
5951         }
5952
5953         priv->last_rtc = rtc;
5954
5955         if (!priv->stop_hang_check)
5956                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957
5958         spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
5961 static void ipw2100_rf_kill(void *adapter)
5962 {
5963         struct ipw2100_priv *priv = adapter;
5964         unsigned long flags;
5965
5966         spin_lock_irqsave(&priv->low_lock, flags);
5967
5968         if (rf_kill_active(priv)) {
5969                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5970                 if (!priv->stop_rf_kill)
5971                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5972                 goto exit_unlock;
5973         }
5974
5975         /* RF Kill is now disabled, so bring the device back up */
5976
5977         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5978                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5979                                   "device\n");
5980                 schedule_reset(priv);
5981         } else
5982                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5983                                   "enabled\n");
5984
5985       exit_unlock:
5986         spin_unlock_irqrestore(&priv->low_lock, flags);
5987 }
5988
5989 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5990
5991 /* Look into using netdev destructor to shutdown ieee80211? */
5992
5993 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5994                                                void __iomem * base_addr,
5995                                                unsigned long mem_start,
5996                                                unsigned long mem_len)
5997 {
5998         struct ipw2100_priv *priv;
5999         struct net_device *dev;
6000
6001         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6002         if (!dev)
6003                 return NULL;
6004         priv = ieee80211_priv(dev);
6005         priv->ieee = netdev_priv(dev);
6006         priv->pci_dev = pci_dev;
6007         priv->net_dev = dev;
6008
6009         priv->ieee->hard_start_xmit = ipw2100_tx;
6010         priv->ieee->set_security = shim__set_security;
6011
6012         priv->ieee->perfect_rssi = -20;
6013         priv->ieee->worst_rssi = -85;
6014
6015         dev->open = ipw2100_open;
6016         dev->stop = ipw2100_close;
6017         dev->init = ipw2100_net_init;
6018         dev->get_stats = ipw2100_stats;
6019         dev->ethtool_ops = &ipw2100_ethtool_ops;
6020         dev->tx_timeout = ipw2100_tx_timeout;
6021         dev->wireless_handlers = &ipw2100_wx_handler_def;
6022         priv->wireless_data.ieee80211 = priv->ieee;
6023         dev->wireless_data = &priv->wireless_data;
6024         dev->set_mac_address = ipw2100_set_address;
6025         dev->watchdog_timeo = 3 * HZ;
6026         dev->irq = 0;
6027
6028         dev->base_addr = (unsigned long)base_addr;
6029         dev->mem_start = mem_start;
6030         dev->mem_end = dev->mem_start + mem_len - 1;
6031
6032         /* NOTE: We don't use the wireless_handlers hook
6033          * in dev as the system will start throwing WX requests
6034          * to us before we're actually initialized and it just
6035          * ends up causing problems.  So, we just handle
6036          * the WX extensions through the ipw2100_ioctl interface */
6037
6038         /* memset() puts everything to 0, so we only have explicitely set
6039          * those values that need to be something else */
6040
6041         /* If power management is turned on, default to AUTO mode */
6042         priv->power_mode = IPW_POWER_AUTO;
6043
6044 #ifdef CONFIG_IPW2100_MONITOR
6045         priv->config |= CFG_CRC_CHECK;
6046 #endif
6047         priv->ieee->wpa_enabled = 0;
6048         priv->ieee->drop_unencrypted = 0;
6049         priv->ieee->privacy_invoked = 0;
6050         priv->ieee->ieee802_1x = 1;
6051
6052         /* Set module parameters */
6053         switch (mode) {
6054         case 1:
6055                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6056                 break;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058         case 2:
6059                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6060                 break;
6061 #endif
6062         default:
6063         case 0:
6064                 priv->ieee->iw_mode = IW_MODE_INFRA;
6065                 break;
6066         }
6067
6068         if (disable == 1)
6069                 priv->status |= STATUS_RF_KILL_SW;
6070
6071         if (channel != 0 &&
6072             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073                 priv->config |= CFG_STATIC_CHANNEL;
6074                 priv->channel = channel;
6075         }
6076
6077         if (associate)
6078                 priv->config |= CFG_ASSOCIATE;
6079
6080         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085         priv->tx_power = IPW_TX_POWER_DEFAULT;
6086         priv->tx_rates = DEFAULT_TX_RATES;
6087
6088         strcpy(priv->nick, "ipw2100");
6089
6090         spin_lock_init(&priv->low_lock);
6091         mutex_init(&priv->action_mutex);
6092         mutex_init(&priv->adapter_mutex);
6093
6094         init_waitqueue_head(&priv->wait_command_queue);
6095
6096         netif_carrier_off(dev);
6097
6098         INIT_LIST_HEAD(&priv->msg_free_list);
6099         INIT_LIST_HEAD(&priv->msg_pend_list);
6100         INIT_STAT(&priv->msg_free_stat);
6101         INIT_STAT(&priv->msg_pend_stat);
6102
6103         INIT_LIST_HEAD(&priv->tx_free_list);
6104         INIT_LIST_HEAD(&priv->tx_pend_list);
6105         INIT_STAT(&priv->tx_free_stat);
6106         INIT_STAT(&priv->tx_pend_stat);
6107
6108         INIT_LIST_HEAD(&priv->fw_pend_list);
6109         INIT_STAT(&priv->fw_pend_stat);
6110
6111         priv->workqueue = create_workqueue(DRV_NAME);
6112
6113         INIT_WORK(&priv->reset_work,
6114                   (void (*)(void *))ipw2100_reset_adapter, priv);
6115         INIT_WORK(&priv->security_work,
6116                   (void (*)(void *))ipw2100_security_work, priv);
6117         INIT_WORK(&priv->wx_event_work,
6118                   (void (*)(void *))ipw2100_wx_event_work, priv);
6119         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6120         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6121
6122         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6123                      ipw2100_irq_tasklet, (unsigned long)priv);
6124
6125         /* NOTE:  We do not start the deferred work for status checks yet */
6126         priv->stop_rf_kill = 1;
6127         priv->stop_hang_check = 1;
6128
6129         return dev;
6130 }
6131
6132 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6133                                 const struct pci_device_id *ent)
6134 {
6135         unsigned long mem_start, mem_len, mem_flags;
6136         void __iomem *base_addr = NULL;
6137         struct net_device *dev = NULL;
6138         struct ipw2100_priv *priv = NULL;
6139         int err = 0;
6140         int registered = 0;
6141         u32 val;
6142
6143         IPW_DEBUG_INFO("enter\n");
6144
6145         mem_start = pci_resource_start(pci_dev, 0);
6146         mem_len = pci_resource_len(pci_dev, 0);
6147         mem_flags = pci_resource_flags(pci_dev, 0);
6148
6149         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6150                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6151                 err = -ENODEV;
6152                 goto fail;
6153         }
6154
6155         base_addr = ioremap_nocache(mem_start, mem_len);
6156         if (!base_addr) {
6157                 printk(KERN_WARNING DRV_NAME
6158                        "Error calling ioremap_nocache.\n");
6159                 err = -EIO;
6160                 goto fail;
6161         }
6162
6163         /* allocate and initialize our net_device */
6164         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6165         if (!dev) {
6166                 printk(KERN_WARNING DRV_NAME
6167                        "Error calling ipw2100_alloc_device.\n");
6168                 err = -ENOMEM;
6169                 goto fail;
6170         }
6171
6172         /* set up PCI mappings for device */
6173         err = pci_enable_device(pci_dev);
6174         if (err) {
6175                 printk(KERN_WARNING DRV_NAME
6176                        "Error calling pci_enable_device.\n");
6177                 return err;
6178         }
6179
6180         priv = ieee80211_priv(dev);
6181
6182         pci_set_master(pci_dev);
6183         pci_set_drvdata(pci_dev, priv);
6184
6185         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling pci_set_dma_mask.\n");
6189                 pci_disable_device(pci_dev);
6190                 return err;
6191         }
6192
6193         err = pci_request_regions(pci_dev, DRV_NAME);
6194         if (err) {
6195                 printk(KERN_WARNING DRV_NAME
6196                        "Error calling pci_request_regions.\n");
6197                 pci_disable_device(pci_dev);
6198                 return err;
6199         }
6200
6201         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6202          * PCI Tx retries from interfering with C3 CPU state */
6203         pci_read_config_dword(pci_dev, 0x40, &val);
6204         if ((val & 0x0000ff00) != 0)
6205                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6206
6207         pci_set_power_state(pci_dev, PCI_D0);
6208
6209         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6210                 printk(KERN_WARNING DRV_NAME
6211                        "Device not found via register read.\n");
6212                 err = -ENODEV;
6213                 goto fail;
6214         }
6215
6216         SET_NETDEV_DEV(dev, &pci_dev->dev);
6217
6218         /* Force interrupts to be shut off on the device */
6219         priv->status |= STATUS_INT_ENABLED;
6220         ipw2100_disable_interrupts(priv);
6221
6222         /* Allocate and initialize the Tx/Rx queues and lists */
6223         if (ipw2100_queues_allocate(priv)) {
6224                 printk(KERN_WARNING DRV_NAME
6225                        "Error calilng ipw2100_queues_allocate.\n");
6226                 err = -ENOMEM;
6227                 goto fail;
6228         }
6229         ipw2100_queues_initialize(priv);
6230
6231         err = request_irq(pci_dev->irq,
6232                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6233         if (err) {
6234                 printk(KERN_WARNING DRV_NAME
6235                        "Error calling request_irq: %d.\n", pci_dev->irq);
6236                 goto fail;
6237         }
6238         dev->irq = pci_dev->irq;
6239
6240         IPW_DEBUG_INFO("Attempting to register device...\n");
6241
6242         SET_MODULE_OWNER(dev);
6243
6244         printk(KERN_INFO DRV_NAME
6245                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6246
6247         /* Bring up the interface.  Pre 0.46, after we registered the
6248          * network device we would call ipw2100_up.  This introduced a race
6249          * condition with newer hotplug configurations (network was coming
6250          * up and making calls before the device was initialized).
6251          *
6252          * If we called ipw2100_up before we registered the device, then the
6253          * device name wasn't registered.  So, we instead use the net_dev->init
6254          * member to call a function that then just turns and calls ipw2100_up.
6255          * net_dev->init is called after name allocation but before the
6256          * notifier chain is called */
6257         err = register_netdev(dev);
6258         if (err) {
6259                 printk(KERN_WARNING DRV_NAME
6260                        "Error calling register_netdev.\n");
6261                 goto fail;
6262         }
6263
6264         mutex_lock(&priv->action_mutex);
6265         registered = 1;
6266
6267         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6268
6269         /* perform this after register_netdev so that dev->name is set */
6270         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6271         if (err)
6272                 goto fail_unlock;
6273
6274         /* If the RF Kill switch is disabled, go ahead and complete the
6275          * startup sequence */
6276         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6277                 /* Enable the adapter - sends HOST_COMPLETE */
6278                 if (ipw2100_enable_adapter(priv)) {
6279                         printk(KERN_WARNING DRV_NAME
6280                                ": %s: failed in call to enable adapter.\n",
6281                                priv->net_dev->name);
6282                         ipw2100_hw_stop_adapter(priv);
6283                         err = -EIO;
6284                         goto fail_unlock;
6285                 }
6286
6287                 /* Start a scan . . . */
6288                 ipw2100_set_scan_options(priv);
6289                 ipw2100_start_scan(priv);
6290         }
6291
6292         IPW_DEBUG_INFO("exit\n");
6293
6294         priv->status |= STATUS_INITIALIZED;
6295
6296         mutex_unlock(&priv->action_mutex);
6297
6298         return 0;
6299
6300       fail_unlock:
6301         mutex_unlock(&priv->action_mutex);
6302
6303       fail:
6304         if (dev) {
6305                 if (registered)
6306                         unregister_netdev(dev);
6307
6308                 ipw2100_hw_stop_adapter(priv);
6309
6310                 ipw2100_disable_interrupts(priv);
6311
6312                 if (dev->irq)
6313                         free_irq(dev->irq, priv);
6314
6315                 ipw2100_kill_workqueue(priv);
6316
6317                 /* These are safe to call even if they weren't allocated */
6318                 ipw2100_queues_free(priv);
6319                 sysfs_remove_group(&pci_dev->dev.kobj,
6320                                    &ipw2100_attribute_group);
6321
6322                 free_ieee80211(dev);
6323                 pci_set_drvdata(pci_dev, NULL);
6324         }
6325
6326         if (base_addr)
6327                 iounmap(base_addr);
6328
6329         pci_release_regions(pci_dev);
6330         pci_disable_device(pci_dev);
6331
6332         return err;
6333 }
6334
6335 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6336 {
6337         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6338         struct net_device *dev;
6339
6340         if (priv) {
6341                 mutex_lock(&priv->action_mutex);
6342
6343                 priv->status &= ~STATUS_INITIALIZED;
6344
6345                 dev = priv->net_dev;
6346                 sysfs_remove_group(&pci_dev->dev.kobj,
6347                                    &ipw2100_attribute_group);
6348
6349 #ifdef CONFIG_PM
6350                 if (ipw2100_firmware.version)
6351                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6352 #endif
6353                 /* Take down the hardware */
6354                 ipw2100_down(priv);
6355
6356                 /* Release the mutex so that the network subsystem can
6357                  * complete any needed calls into the driver... */
6358                 mutex_unlock(&priv->action_mutex);
6359
6360                 /* Unregister the device first - this results in close()
6361                  * being called if the device is open.  If we free storage
6362                  * first, then close() will crash. */
6363                 unregister_netdev(dev);
6364
6365                 /* ipw2100_down will ensure that there is no more pending work
6366                  * in the workqueue's, so we can safely remove them now. */
6367                 ipw2100_kill_workqueue(priv);
6368
6369                 ipw2100_queues_free(priv);
6370
6371                 /* Free potential debugging firmware snapshot */
6372                 ipw2100_snapshot_free(priv);
6373
6374                 if (dev->irq)
6375                         free_irq(dev->irq, priv);
6376
6377                 if (dev->base_addr)
6378                         iounmap((void __iomem *)dev->base_addr);
6379
6380                 free_ieee80211(dev);
6381         }
6382
6383         pci_release_regions(pci_dev);
6384         pci_disable_device(pci_dev);
6385
6386         IPW_DEBUG_INFO("exit\n");
6387 }
6388
6389 #ifdef CONFIG_PM
6390 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6391 {
6392         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6393         struct net_device *dev = priv->net_dev;
6394
6395         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6396
6397         mutex_lock(&priv->action_mutex);
6398         if (priv->status & STATUS_INITIALIZED) {
6399                 /* Take down the device; powers it off, etc. */
6400                 ipw2100_down(priv);
6401         }
6402
6403         /* Remove the PRESENT state of the device */
6404         netif_device_detach(dev);
6405
6406         pci_save_state(pci_dev);
6407         pci_disable_device(pci_dev);
6408         pci_set_power_state(pci_dev, PCI_D3hot);
6409
6410         mutex_unlock(&priv->action_mutex);
6411
6412         return 0;
6413 }
6414
6415 static int ipw2100_resume(struct pci_dev *pci_dev)
6416 {
6417         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418         struct net_device *dev = priv->net_dev;
6419         u32 val;
6420
6421         if (IPW2100_PM_DISABLED)
6422                 return 0;
6423
6424         mutex_lock(&priv->action_mutex);
6425
6426         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6427
6428         pci_set_power_state(pci_dev, PCI_D0);
6429         pci_enable_device(pci_dev);
6430         pci_restore_state(pci_dev);
6431
6432         /*
6433          * Suspend/Resume resets the PCI configuration space, so we have to
6434          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6435          * from interfering with C3 CPU state. pci_restore_state won't help
6436          * here since it only restores the first 64 bytes pci config header.
6437          */
6438         pci_read_config_dword(pci_dev, 0x40, &val);
6439         if ((val & 0x0000ff00) != 0)
6440                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6441
6442         /* Set the device back into the PRESENT state; this will also wake
6443          * the queue of needed */
6444         netif_device_attach(dev);
6445
6446         /* Bring the device back up */
6447         if (!(priv->status & STATUS_RF_KILL_SW))
6448                 ipw2100_up(priv, 0);
6449
6450         mutex_unlock(&priv->action_mutex);
6451
6452         return 0;
6453 }
6454 #endif
6455
6456 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6457
6458 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6459         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6460         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6461         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6462         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6463         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6464         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6465         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6466         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6467         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6468         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6469         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6470         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6471         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6472
6473         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6474         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6475         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6476         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6477         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6478
6479         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6480         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6481         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6482         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6483         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6484         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6485         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6486
6487         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6488
6489         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6490         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6491         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6492         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6493         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6494         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6495         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6496
6497         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6498         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6499         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6500         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6501         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6502         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6503
6504         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6505         {0,},
6506 };
6507
6508 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6509
6510 static struct pci_driver ipw2100_pci_driver = {
6511         .name = DRV_NAME,
6512         .id_table = ipw2100_pci_id_table,
6513         .probe = ipw2100_pci_init_one,
6514         .remove = __devexit_p(ipw2100_pci_remove_one),
6515 #ifdef CONFIG_PM
6516         .suspend = ipw2100_suspend,
6517         .resume = ipw2100_resume,
6518 #endif
6519 };
6520
6521 /**
6522  * Initialize the ipw2100 driver/module
6523  *
6524  * @returns 0 if ok, < 0 errno node con error.
6525  *
6526  * Note: we cannot init the /proc stuff until the PCI driver is there,
6527  * or we risk an unlikely race condition on someone accessing
6528  * uninitialized data in the PCI dev struct through /proc.
6529  */
6530 static int __init ipw2100_init(void)
6531 {
6532         int ret;
6533
6534         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6535         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6536
6537         ret = pci_register_driver(&ipw2100_pci_driver);
6538         if (ret)
6539                 goto out;
6540
6541 #ifdef CONFIG_IPW2100_DEBUG
6542         ipw2100_debug_level = debug;
6543         ret = driver_create_file(&ipw2100_pci_driver.driver,
6544                                  &driver_attr_debug_level);
6545 #endif
6546
6547 out:
6548         return ret;
6549 }
6550
6551 /**
6552  * Cleanup ipw2100 driver registration
6553  */
6554 static void __exit ipw2100_exit(void)
6555 {
6556         /* FIXME: IPG: check that we have no instances of the devices open */
6557 #ifdef CONFIG_IPW2100_DEBUG
6558         driver_remove_file(&ipw2100_pci_driver.driver,
6559                            &driver_attr_debug_level);
6560 #endif
6561         pci_unregister_driver(&ipw2100_pci_driver);
6562 }
6563
6564 module_init(ipw2100_init);
6565 module_exit(ipw2100_exit);
6566
6567 #define WEXT_USECHANNELS 1
6568
6569 static const long ipw2100_frequencies[] = {
6570         2412, 2417, 2422, 2427,
6571         2432, 2437, 2442, 2447,
6572         2452, 2457, 2462, 2467,
6573         2472, 2484
6574 };
6575
6576 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6577                     sizeof(ipw2100_frequencies[0]))
6578
6579 static const long ipw2100_rates_11b[] = {
6580         1000000,
6581         2000000,
6582         5500000,
6583         11000000
6584 };
6585
6586 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6587
6588 static int ipw2100_wx_get_name(struct net_device *dev,
6589                                struct iw_request_info *info,
6590                                union iwreq_data *wrqu, char *extra)
6591 {
6592         /*
6593          * This can be called at any time.  No action lock required
6594          */
6595
6596         struct ipw2100_priv *priv = ieee80211_priv(dev);
6597         if (!(priv->status & STATUS_ASSOCIATED))
6598                 strcpy(wrqu->name, "unassociated");
6599         else
6600                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6601
6602         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6603         return 0;
6604 }
6605
6606 static int ipw2100_wx_set_freq(struct net_device *dev,
6607                                struct iw_request_info *info,
6608                                union iwreq_data *wrqu, char *extra)
6609 {
6610         struct ipw2100_priv *priv = ieee80211_priv(dev);
6611         struct iw_freq *fwrq = &wrqu->freq;
6612         int err = 0;
6613
6614         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6615                 return -EOPNOTSUPP;
6616
6617         mutex_lock(&priv->action_mutex);
6618         if (!(priv->status & STATUS_INITIALIZED)) {
6619                 err = -EIO;
6620                 goto done;
6621         }
6622
6623         /* if setting by freq convert to channel */
6624         if (fwrq->e == 1) {
6625                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6626                         int f = fwrq->m / 100000;
6627                         int c = 0;
6628
6629                         while ((c < REG_MAX_CHANNEL) &&
6630                                (f != ipw2100_frequencies[c]))
6631                                 c++;
6632
6633                         /* hack to fall through */
6634                         fwrq->e = 0;
6635                         fwrq->m = c + 1;
6636                 }
6637         }
6638
6639         if (fwrq->e > 0 || fwrq->m > 1000) {
6640                 err = -EOPNOTSUPP;
6641                 goto done;
6642         } else {                /* Set the channel */
6643                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6644                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6645         }
6646
6647       done:
6648         mutex_unlock(&priv->action_mutex);
6649         return err;
6650 }
6651
6652 static int ipw2100_wx_get_freq(struct net_device *dev,
6653                                struct iw_request_info *info,
6654                                union iwreq_data *wrqu, char *extra)
6655 {
6656         /*
6657          * This can be called at any time.  No action lock required
6658          */
6659
6660         struct ipw2100_priv *priv = ieee80211_priv(dev);
6661
6662         wrqu->freq.e = 0;
6663
6664         /* If we are associated, trying to associate, or have a statically
6665          * configured CHANNEL then return that; otherwise return ANY */
6666         if (priv->config & CFG_STATIC_CHANNEL ||
6667             priv->status & STATUS_ASSOCIATED)
6668                 wrqu->freq.m = priv->channel;
6669         else
6670                 wrqu->freq.m = 0;
6671
6672         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6673         return 0;
6674
6675 }
6676
6677 static int ipw2100_wx_set_mode(struct net_device *dev,
6678                                struct iw_request_info *info,
6679                                union iwreq_data *wrqu, char *extra)
6680 {
6681         struct ipw2100_priv *priv = ieee80211_priv(dev);
6682         int err = 0;
6683
6684         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6685
6686         if (wrqu->mode == priv->ieee->iw_mode)
6687                 return 0;
6688
6689         mutex_lock(&priv->action_mutex);
6690         if (!(priv->status & STATUS_INITIALIZED)) {
6691                 err = -EIO;
6692                 goto done;
6693         }
6694
6695         switch (wrqu->mode) {
6696 #ifdef CONFIG_IPW2100_MONITOR
6697         case IW_MODE_MONITOR:
6698                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6699                 break;
6700 #endif                          /* CONFIG_IPW2100_MONITOR */
6701         case IW_MODE_ADHOC:
6702                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6703                 break;
6704         case IW_MODE_INFRA:
6705         case IW_MODE_AUTO:
6706         default:
6707                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6708                 break;
6709         }
6710
6711       done:
6712         mutex_unlock(&priv->action_mutex);
6713         return err;
6714 }
6715
6716 static int ipw2100_wx_get_mode(struct net_device *dev,
6717                                struct iw_request_info *info,
6718                                union iwreq_data *wrqu, char *extra)
6719 {
6720         /*
6721          * This can be called at any time.  No action lock required
6722          */
6723
6724         struct ipw2100_priv *priv = ieee80211_priv(dev);
6725
6726         wrqu->mode = priv->ieee->iw_mode;
6727         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6728
6729         return 0;
6730 }
6731
6732 #define POWER_MODES 5
6733
6734 /* Values are in microsecond */
6735 static const s32 timeout_duration[POWER_MODES] = {
6736         350000,
6737         250000,
6738         75000,
6739         37000,
6740         25000,
6741 };
6742
6743 static const s32 period_duration[POWER_MODES] = {
6744         400000,
6745         700000,
6746         1000000,
6747         1000000,
6748         1000000
6749 };
6750
6751 static int ipw2100_wx_get_range(struct net_device *dev,
6752                                 struct iw_request_info *info,
6753                                 union iwreq_data *wrqu, char *extra)
6754 {
6755         /*
6756          * This can be called at any time.  No action lock required
6757          */
6758
6759         struct ipw2100_priv *priv = ieee80211_priv(dev);
6760         struct iw_range *range = (struct iw_range *)extra;
6761         u16 val;
6762         int i, level;
6763
6764         wrqu->data.length = sizeof(*range);
6765         memset(range, 0, sizeof(*range));
6766
6767         /* Let's try to keep this struct in the same order as in
6768          * linux/include/wireless.h
6769          */
6770
6771         /* TODO: See what values we can set, and remove the ones we can't
6772          * set, or fill them with some default data.
6773          */
6774
6775         /* ~5 Mb/s real (802.11b) */
6776         range->throughput = 5 * 1000 * 1000;
6777
6778 //      range->sensitivity;     /* signal level threshold range */
6779
6780         range->max_qual.qual = 100;
6781         /* TODO: Find real max RSSI and stick here */
6782         range->max_qual.level = 0;
6783         range->max_qual.noise = 0;
6784         range->max_qual.updated = 7;    /* Updated all three */
6785
6786         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6787         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6788         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6789         range->avg_qual.noise = 0;
6790         range->avg_qual.updated = 7;    /* Updated all three */
6791
6792         range->num_bitrates = RATE_COUNT;
6793
6794         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6795                 range->bitrate[i] = ipw2100_rates_11b[i];
6796         }
6797
6798         range->min_rts = MIN_RTS_THRESHOLD;
6799         range->max_rts = MAX_RTS_THRESHOLD;
6800         range->min_frag = MIN_FRAG_THRESHOLD;
6801         range->max_frag = MAX_FRAG_THRESHOLD;
6802
6803         range->min_pmp = period_duration[0];    /* Minimal PM period */
6804         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6805         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6806         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6807
6808         /* How to decode max/min PM period */
6809         range->pmp_flags = IW_POWER_PERIOD;
6810         /* How to decode max/min PM period */
6811         range->pmt_flags = IW_POWER_TIMEOUT;
6812         /* What PM options are supported */
6813         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6814
6815         range->encoding_size[0] = 5;
6816         range->encoding_size[1] = 13;   /* Different token sizes */
6817         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6818         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6819 //      range->encoding_login_index;            /* token index for login token */
6820
6821         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6822                 range->txpower_capa = IW_TXPOW_DBM;
6823                 range->num_txpower = IW_MAX_TXPOWER;
6824                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6825                      i < IW_MAX_TXPOWER;
6826                      i++, level -=
6827                      ((IPW_TX_POWER_MAX_DBM -
6828                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6829                         range->txpower[i] = level / 16;
6830         } else {
6831                 range->txpower_capa = 0;
6832                 range->num_txpower = 0;
6833         }
6834
6835         /* Set the Wireless Extension versions */
6836         range->we_version_compiled = WIRELESS_EXT;
6837         range->we_version_source = 18;
6838
6839 //      range->retry_capa;      /* What retry options are supported */
6840 //      range->retry_flags;     /* How to decode max/min retry limit */
6841 //      range->r_time_flags;    /* How to decode max/min retry life */
6842 //      range->min_retry;       /* Minimal number of retries */
6843 //      range->max_retry;       /* Maximal number of retries */
6844 //      range->min_r_time;      /* Minimal retry lifetime */
6845 //      range->max_r_time;      /* Maximal retry lifetime */
6846
6847         range->num_channels = FREQ_COUNT;
6848
6849         val = 0;
6850         for (i = 0; i < FREQ_COUNT; i++) {
6851                 // TODO: Include only legal frequencies for some countries
6852 //              if (local->channel_mask & (1 << i)) {
6853                 range->freq[val].i = i + 1;
6854                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6855                 range->freq[val].e = 1;
6856                 val++;
6857 //              }
6858                 if (val == IW_MAX_FREQUENCIES)
6859                         break;
6860         }
6861         range->num_frequency = val;
6862
6863         /* Event capability (kernel + driver) */
6864         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6865                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6866         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6867
6868         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6869                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6870
6871         IPW_DEBUG_WX("GET Range\n");
6872
6873         return 0;
6874 }
6875
6876 static int ipw2100_wx_set_wap(struct net_device *dev,
6877                               struct iw_request_info *info,
6878                               union iwreq_data *wrqu, char *extra)
6879 {
6880         struct ipw2100_priv *priv = ieee80211_priv(dev);
6881         int err = 0;
6882
6883         static const unsigned char any[] = {
6884                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6885         };
6886         static const unsigned char off[] = {
6887                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6888         };
6889
6890         // sanity checks
6891         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6892                 return -EINVAL;
6893
6894         mutex_lock(&priv->action_mutex);
6895         if (!(priv->status & STATUS_INITIALIZED)) {
6896                 err = -EIO;
6897                 goto done;
6898         }
6899
6900         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6901             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6902                 /* we disable mandatory BSSID association */
6903                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6904                 priv->config &= ~CFG_STATIC_BSSID;
6905                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6906                 goto done;
6907         }
6908
6909         priv->config |= CFG_STATIC_BSSID;
6910         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6911
6912         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6913
6914         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6915                      wrqu->ap_addr.sa_data[0] & 0xff,
6916                      wrqu->ap_addr.sa_data[1] & 0xff,
6917                      wrqu->ap_addr.sa_data[2] & 0xff,
6918                      wrqu->ap_addr.sa_data[3] & 0xff,
6919                      wrqu->ap_addr.sa_data[4] & 0xff,
6920                      wrqu->ap_addr.sa_data[5] & 0xff);
6921
6922       done:
6923         mutex_unlock(&priv->action_mutex);
6924         return err;
6925 }
6926
6927 static int ipw2100_wx_get_wap(struct net_device *dev,
6928                               struct iw_request_info *info,
6929                               union iwreq_data *wrqu, char *extra)
6930 {
6931         /*
6932          * This can be called at any time.  No action lock required
6933          */
6934
6935         struct ipw2100_priv *priv = ieee80211_priv(dev);
6936
6937         /* If we are associated, trying to associate, or have a statically
6938          * configured BSSID then return that; otherwise return ANY */
6939         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6940                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6941                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6942         } else
6943                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6944
6945         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6946                      MAC_ARG(wrqu->ap_addr.sa_data));
6947         return 0;
6948 }
6949
6950 static int ipw2100_wx_set_essid(struct net_device *dev,
6951                                 struct iw_request_info *info,
6952                                 union iwreq_data *wrqu, char *extra)
6953 {
6954         struct ipw2100_priv *priv = ieee80211_priv(dev);
6955         char *essid = "";       /* ANY */
6956         int length = 0;
6957         int err = 0;
6958
6959         mutex_lock(&priv->action_mutex);
6960         if (!(priv->status & STATUS_INITIALIZED)) {
6961                 err = -EIO;
6962                 goto done;
6963         }
6964
6965         if (wrqu->essid.flags && wrqu->essid.length) {
6966                 length = wrqu->essid.length;
6967                 essid = extra;
6968         }
6969
6970         if (length == 0) {
6971                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6972                 priv->config &= ~CFG_STATIC_ESSID;
6973                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6974                 goto done;
6975         }
6976
6977         length = min(length, IW_ESSID_MAX_SIZE);
6978
6979         priv->config |= CFG_STATIC_ESSID;
6980
6981         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6982                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6983                 err = 0;
6984                 goto done;
6985         }
6986
6987         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6988                      length);
6989
6990         priv->essid_len = length;
6991         memcpy(priv->essid, essid, priv->essid_len);
6992
6993         err = ipw2100_set_essid(priv, essid, length, 0);
6994
6995       done:
6996         mutex_unlock(&priv->action_mutex);
6997         return err;
6998 }
6999
7000 static int ipw2100_wx_get_essid(struct net_device *dev,
7001                                 struct iw_request_info *info,
7002                                 union iwreq_data *wrqu, char *extra)
7003 {
7004         /*
7005          * This can be called at any time.  No action lock required
7006          */
7007
7008         struct ipw2100_priv *priv = ieee80211_priv(dev);
7009
7010         /* If we are associated, trying to associate, or have a statically
7011          * configured ESSID then return that; otherwise return ANY */
7012         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7013                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7014                              escape_essid(priv->essid, priv->essid_len));
7015                 memcpy(extra, priv->essid, priv->essid_len);
7016                 wrqu->essid.length = priv->essid_len;
7017                 wrqu->essid.flags = 1;  /* active */
7018         } else {
7019                 IPW_DEBUG_WX("Getting essid: ANY\n");
7020                 wrqu->essid.length = 0;
7021                 wrqu->essid.flags = 0;  /* active */
7022         }
7023
7024         return 0;
7025 }
7026
7027 static int ipw2100_wx_set_nick(struct net_device *dev,
7028                                struct iw_request_info *info,
7029                                union iwreq_data *wrqu, char *extra)
7030 {
7031         /*
7032          * This can be called at any time.  No action lock required
7033          */
7034
7035         struct ipw2100_priv *priv = ieee80211_priv(dev);
7036
7037         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7038                 return -E2BIG;
7039
7040         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7041         memset(priv->nick, 0, sizeof(priv->nick));
7042         memcpy(priv->nick, extra, wrqu->data.length);
7043
7044         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7045
7046         return 0;
7047 }
7048
7049 static int ipw2100_wx_get_nick(struct net_device *dev,
7050                                struct iw_request_info *info,
7051                                union iwreq_data *wrqu, char *extra)
7052 {
7053         /*
7054          * This can be called at any time.  No action lock required
7055          */
7056
7057         struct ipw2100_priv *priv = ieee80211_priv(dev);
7058
7059         wrqu->data.length = strlen(priv->nick);
7060         memcpy(extra, priv->nick, wrqu->data.length);
7061         wrqu->data.flags = 1;   /* active */
7062
7063         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7064
7065         return 0;
7066 }
7067
7068 static int ipw2100_wx_set_rate(struct net_device *dev,
7069                                struct iw_request_info *info,
7070                                union iwreq_data *wrqu, char *extra)
7071 {
7072         struct ipw2100_priv *priv = ieee80211_priv(dev);
7073         u32 target_rate = wrqu->bitrate.value;
7074         u32 rate;
7075         int err = 0;
7076
7077         mutex_lock(&priv->action_mutex);
7078         if (!(priv->status & STATUS_INITIALIZED)) {
7079                 err = -EIO;
7080                 goto done;
7081         }
7082
7083         rate = 0;
7084
7085         if (target_rate == 1000000 ||
7086             (!wrqu->bitrate.fixed && target_rate > 1000000))
7087                 rate |= TX_RATE_1_MBIT;
7088         if (target_rate == 2000000 ||
7089             (!wrqu->bitrate.fixed && target_rate > 2000000))
7090                 rate |= TX_RATE_2_MBIT;
7091         if (target_rate == 5500000 ||
7092             (!wrqu->bitrate.fixed && target_rate > 5500000))
7093                 rate |= TX_RATE_5_5_MBIT;
7094         if (target_rate == 11000000 ||
7095             (!wrqu->bitrate.fixed && target_rate > 11000000))
7096                 rate |= TX_RATE_11_MBIT;
7097         if (rate == 0)
7098                 rate = DEFAULT_TX_RATES;
7099
7100         err = ipw2100_set_tx_rates(priv, rate, 0);
7101
7102         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7103       done:
7104         mutex_unlock(&priv->action_mutex);
7105         return err;
7106 }
7107
7108 static int ipw2100_wx_get_rate(struct net_device *dev,
7109                                struct iw_request_info *info,
7110                                union iwreq_data *wrqu, char *extra)
7111 {
7112         struct ipw2100_priv *priv = ieee80211_priv(dev);
7113         int val;
7114         int len = sizeof(val);
7115         int err = 0;
7116
7117         if (!(priv->status & STATUS_ENABLED) ||
7118             priv->status & STATUS_RF_KILL_MASK ||
7119             !(priv->status & STATUS_ASSOCIATED)) {
7120                 wrqu->bitrate.value = 0;
7121                 return 0;
7122         }
7123
7124         mutex_lock(&priv->action_mutex);
7125         if (!(priv->status & STATUS_INITIALIZED)) {
7126                 err = -EIO;
7127                 goto done;
7128         }
7129
7130         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7131         if (err) {
7132                 IPW_DEBUG_WX("failed querying ordinals.\n");
7133                 return err;
7134         }
7135
7136         switch (val & TX_RATE_MASK) {
7137         case TX_RATE_1_MBIT:
7138                 wrqu->bitrate.value = 1000000;
7139                 break;
7140         case TX_RATE_2_MBIT:
7141                 wrqu->bitrate.value = 2000000;
7142                 break;
7143         case TX_RATE_5_5_MBIT:
7144                 wrqu->bitrate.value = 5500000;
7145                 break;
7146         case TX_RATE_11_MBIT:
7147                 wrqu->bitrate.value = 11000000;
7148                 break;
7149         default:
7150                 wrqu->bitrate.value = 0;
7151         }
7152
7153         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7154
7155       done:
7156         mutex_unlock(&priv->action_mutex);
7157         return err;
7158 }
7159
7160 static int ipw2100_wx_set_rts(struct net_device *dev,
7161                               struct iw_request_info *info,
7162                               union iwreq_data *wrqu, char *extra)
7163 {
7164         struct ipw2100_priv *priv = ieee80211_priv(dev);
7165         int value, err;
7166
7167         /* Auto RTS not yet supported */
7168         if (wrqu->rts.fixed == 0)
7169                 return -EINVAL;
7170
7171         mutex_lock(&priv->action_mutex);
7172         if (!(priv->status & STATUS_INITIALIZED)) {
7173                 err = -EIO;
7174                 goto done;
7175         }
7176
7177         if (wrqu->rts.disabled)
7178                 value = priv->rts_threshold | RTS_DISABLED;
7179         else {
7180                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7181                         err = -EINVAL;
7182                         goto done;
7183                 }
7184                 value = wrqu->rts.value;
7185         }
7186
7187         err = ipw2100_set_rts_threshold(priv, value);
7188
7189         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7190       done:
7191         mutex_unlock(&priv->action_mutex);
7192         return err;
7193 }
7194
7195 static int ipw2100_wx_get_rts(struct net_device *dev,
7196                               struct iw_request_info *info,
7197                               union iwreq_data *wrqu, char *extra)
7198 {
7199         /*
7200          * This can be called at any time.  No action lock required
7201          */
7202
7203         struct ipw2100_priv *priv = ieee80211_priv(dev);
7204
7205         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7206         wrqu->rts.fixed = 1;    /* no auto select */
7207
7208         /* If RTS is set to the default value, then it is disabled */
7209         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7210
7211         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7212
7213         return 0;
7214 }
7215
7216 static int ipw2100_wx_set_txpow(struct net_device *dev,
7217                                 struct iw_request_info *info,
7218                                 union iwreq_data *wrqu, char *extra)
7219 {
7220         struct ipw2100_priv *priv = ieee80211_priv(dev);
7221         int err = 0, value;
7222         
7223         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7224                 return -EINPROGRESS;
7225
7226         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7227                 return 0;
7228
7229         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7230                 return -EINVAL;
7231
7232         if (wrqu->txpower.fixed == 0)
7233                 value = IPW_TX_POWER_DEFAULT;
7234         else {
7235                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7236                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7237                         return -EINVAL;
7238
7239                 value = wrqu->txpower.value;
7240         }
7241
7242         mutex_lock(&priv->action_mutex);
7243         if (!(priv->status & STATUS_INITIALIZED)) {
7244                 err = -EIO;
7245                 goto done;
7246         }
7247
7248         err = ipw2100_set_tx_power(priv, value);
7249
7250         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7251
7252       done:
7253         mutex_unlock(&priv->action_mutex);
7254         return err;
7255 }
7256
7257 static int ipw2100_wx_get_txpow(struct net_device *dev,
7258                                 struct iw_request_info *info,
7259                                 union iwreq_data *wrqu, char *extra)
7260 {
7261         /*
7262          * This can be called at any time.  No action lock required
7263          */
7264
7265         struct ipw2100_priv *priv = ieee80211_priv(dev);
7266
7267         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7268
7269         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7270                 wrqu->txpower.fixed = 0;
7271                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7272         } else {
7273                 wrqu->txpower.fixed = 1;
7274                 wrqu->txpower.value = priv->tx_power;
7275         }
7276
7277         wrqu->txpower.flags = IW_TXPOW_DBM;
7278
7279         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7280
7281         return 0;
7282 }
7283
7284 static int ipw2100_wx_set_frag(struct net_device *dev,
7285                                struct iw_request_info *info,
7286                                union iwreq_data *wrqu, char *extra)
7287 {
7288         /*
7289          * This can be called at any time.  No action lock required
7290          */
7291
7292         struct ipw2100_priv *priv = ieee80211_priv(dev);
7293
7294         if (!wrqu->frag.fixed)
7295                 return -EINVAL;
7296
7297         if (wrqu->frag.disabled) {
7298                 priv->frag_threshold |= FRAG_DISABLED;
7299                 priv->ieee->fts = DEFAULT_FTS;
7300         } else {
7301                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7302                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7303                         return -EINVAL;
7304
7305                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7306                 priv->frag_threshold = priv->ieee->fts;
7307         }
7308
7309         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7310
7311         return 0;
7312 }
7313
7314 static int ipw2100_wx_get_frag(struct net_device *dev,
7315                                struct iw_request_info *info,
7316                                union iwreq_data *wrqu, char *extra)
7317 {
7318         /*
7319          * This can be called at any time.  No action lock required
7320          */
7321
7322         struct ipw2100_priv *priv = ieee80211_priv(dev);
7323         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7324         wrqu->frag.fixed = 0;   /* no auto select */
7325         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7326
7327         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7328
7329         return 0;
7330 }
7331
7332 static int ipw2100_wx_set_retry(struct net_device *dev,
7333                                 struct iw_request_info *info,
7334                                 union iwreq_data *wrqu, char *extra)
7335 {
7336         struct ipw2100_priv *priv = ieee80211_priv(dev);
7337         int err = 0;
7338
7339         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7340                 return -EINVAL;
7341
7342         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7343                 return 0;
7344
7345         mutex_lock(&priv->action_mutex);
7346         if (!(priv->status & STATUS_INITIALIZED)) {
7347                 err = -EIO;
7348                 goto done;
7349         }
7350
7351         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7352                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7353                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7354                              wrqu->retry.value);
7355                 goto done;
7356         }
7357
7358         if (wrqu->retry.flags & IW_RETRY_LONG) {
7359                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7360                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7361                              wrqu->retry.value);
7362                 goto done;
7363         }
7364
7365         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7366         if (!err)
7367                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7368
7369         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7370
7371       done:
7372         mutex_unlock(&priv->action_mutex);
7373         return err;
7374 }
7375
7376 static int ipw2100_wx_get_retry(struct net_device *dev,
7377                                 struct iw_request_info *info,
7378                                 union iwreq_data *wrqu, char *extra)
7379 {
7380         /*
7381          * This can be called at any time.  No action lock required
7382          */
7383
7384         struct ipw2100_priv *priv = ieee80211_priv(dev);
7385
7386         wrqu->retry.disabled = 0;       /* can't be disabled */
7387
7388         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7389                 return -EINVAL;
7390
7391         if (wrqu->retry.flags & IW_RETRY_LONG) {
7392                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7393                 wrqu->retry.value = priv->long_retry_limit;
7394         } else {
7395                 wrqu->retry.flags =
7396                     (priv->short_retry_limit !=
7397                      priv->long_retry_limit) ?
7398                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7399
7400                 wrqu->retry.value = priv->short_retry_limit;
7401         }
7402
7403         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7404
7405         return 0;
7406 }
7407
7408 static int ipw2100_wx_set_scan(struct net_device *dev,
7409                                struct iw_request_info *info,
7410                                union iwreq_data *wrqu, char *extra)
7411 {
7412         struct ipw2100_priv *priv = ieee80211_priv(dev);
7413         int err = 0;
7414
7415         mutex_lock(&priv->action_mutex);
7416         if (!(priv->status & STATUS_INITIALIZED)) {
7417                 err = -EIO;
7418                 goto done;
7419         }
7420
7421         IPW_DEBUG_WX("Initiating scan...\n");
7422         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7423                 IPW_DEBUG_WX("Start scan failed.\n");
7424
7425                 /* TODO: Mark a scan as pending so when hardware initialized
7426                  *       a scan starts */
7427         }
7428
7429       done:
7430         mutex_unlock(&priv->action_mutex);
7431         return err;
7432 }
7433
7434 static int ipw2100_wx_get_scan(struct net_device *dev,
7435                                struct iw_request_info *info,
7436                                union iwreq_data *wrqu, char *extra)
7437 {
7438         /*
7439          * This can be called at any time.  No action lock required
7440          */
7441
7442         struct ipw2100_priv *priv = ieee80211_priv(dev);
7443         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7444 }
7445
7446 /*
7447  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7448  */
7449 static int ipw2100_wx_set_encode(struct net_device *dev,
7450                                  struct iw_request_info *info,
7451                                  union iwreq_data *wrqu, char *key)
7452 {
7453         /*
7454          * No check of STATUS_INITIALIZED required
7455          */
7456
7457         struct ipw2100_priv *priv = ieee80211_priv(dev);
7458         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7459 }
7460
7461 static int ipw2100_wx_get_encode(struct net_device *dev,
7462                                  struct iw_request_info *info,
7463                                  union iwreq_data *wrqu, char *key)
7464 {
7465         /*
7466          * This can be called at any time.  No action lock required
7467          */
7468
7469         struct ipw2100_priv *priv = ieee80211_priv(dev);
7470         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7471 }
7472
7473 static int ipw2100_wx_set_power(struct net_device *dev,
7474                                 struct iw_request_info *info,
7475                                 union iwreq_data *wrqu, char *extra)
7476 {
7477         struct ipw2100_priv *priv = ieee80211_priv(dev);
7478         int err = 0;
7479
7480         mutex_lock(&priv->action_mutex);
7481         if (!(priv->status & STATUS_INITIALIZED)) {
7482                 err = -EIO;
7483                 goto done;
7484         }
7485
7486         if (wrqu->power.disabled) {
7487                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7488                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7489                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7490                 goto done;
7491         }
7492
7493         switch (wrqu->power.flags & IW_POWER_MODE) {
7494         case IW_POWER_ON:       /* If not specified */
7495         case IW_POWER_MODE:     /* If set all mask */
7496         case IW_POWER_ALL_R:    /* If explicitely state all */
7497                 break;
7498         default:                /* Otherwise we don't support it */
7499                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7500                              wrqu->power.flags);
7501                 err = -EOPNOTSUPP;
7502                 goto done;
7503         }
7504
7505         /* If the user hasn't specified a power management mode yet, default
7506          * to BATTERY */
7507         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7508         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7509
7510         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7511
7512       done:
7513         mutex_unlock(&priv->action_mutex);
7514         return err;
7515
7516 }
7517
7518 static int ipw2100_wx_get_power(struct net_device *dev,
7519                                 struct iw_request_info *info,
7520                                 union iwreq_data *wrqu, char *extra)
7521 {
7522         /*
7523          * This can be called at any time.  No action lock required
7524          */
7525
7526         struct ipw2100_priv *priv = ieee80211_priv(dev);
7527
7528         if (!(priv->power_mode & IPW_POWER_ENABLED))
7529                 wrqu->power.disabled = 1;
7530         else {
7531                 wrqu->power.disabled = 0;
7532                 wrqu->power.flags = 0;
7533         }
7534
7535         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7536
7537         return 0;
7538 }
7539
7540 /*
7541  * WE-18 WPA support
7542  */
7543
7544 /* SIOCSIWGENIE */
7545 static int ipw2100_wx_set_genie(struct net_device *dev,
7546                                 struct iw_request_info *info,
7547                                 union iwreq_data *wrqu, char *extra)
7548 {
7549
7550         struct ipw2100_priv *priv = ieee80211_priv(dev);
7551         struct ieee80211_device *ieee = priv->ieee;
7552         u8 *buf;
7553
7554         if (!ieee->wpa_enabled)
7555                 return -EOPNOTSUPP;
7556
7557         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7558             (wrqu->data.length && extra == NULL))
7559                 return -EINVAL;
7560
7561         if (wrqu->data.length) {
7562                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7563                 if (buf == NULL)
7564                         return -ENOMEM;
7565
7566                 memcpy(buf, extra, wrqu->data.length);
7567                 kfree(ieee->wpa_ie);
7568                 ieee->wpa_ie = buf;
7569                 ieee->wpa_ie_len = wrqu->data.length;
7570         } else {
7571                 kfree(ieee->wpa_ie);
7572                 ieee->wpa_ie = NULL;
7573                 ieee->wpa_ie_len = 0;
7574         }
7575
7576         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7577
7578         return 0;
7579 }
7580
7581 /* SIOCGIWGENIE */
7582 static int ipw2100_wx_get_genie(struct net_device *dev,
7583                                 struct iw_request_info *info,
7584                                 union iwreq_data *wrqu, char *extra)
7585 {
7586         struct ipw2100_priv *priv = ieee80211_priv(dev);
7587         struct ieee80211_device *ieee = priv->ieee;
7588
7589         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7590                 wrqu->data.length = 0;
7591                 return 0;
7592         }
7593
7594         if (wrqu->data.length < ieee->wpa_ie_len)
7595                 return -E2BIG;
7596
7597         wrqu->data.length = ieee->wpa_ie_len;
7598         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7599
7600         return 0;
7601 }
7602
7603 /* SIOCSIWAUTH */
7604 static int ipw2100_wx_set_auth(struct net_device *dev,
7605                                struct iw_request_info *info,
7606                                union iwreq_data *wrqu, char *extra)
7607 {
7608         struct ipw2100_priv *priv = ieee80211_priv(dev);
7609         struct ieee80211_device *ieee = priv->ieee;
7610         struct iw_param *param = &wrqu->param;
7611         struct ieee80211_crypt_data *crypt;
7612         unsigned long flags;
7613         int ret = 0;
7614
7615         switch (param->flags & IW_AUTH_INDEX) {
7616         case IW_AUTH_WPA_VERSION:
7617         case IW_AUTH_CIPHER_PAIRWISE:
7618         case IW_AUTH_CIPHER_GROUP:
7619         case IW_AUTH_KEY_MGMT:
7620                 /*
7621                  * ipw2200 does not use these parameters
7622                  */
7623                 break;
7624
7625         case IW_AUTH_TKIP_COUNTERMEASURES:
7626                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7627                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7628                         break;
7629
7630                 flags = crypt->ops->get_flags(crypt->priv);
7631
7632                 if (param->value)
7633                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7634                 else
7635                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7636
7637                 crypt->ops->set_flags(flags, crypt->priv);
7638
7639                 break;
7640
7641         case IW_AUTH_DROP_UNENCRYPTED:{
7642                         /* HACK:
7643                          *
7644                          * wpa_supplicant calls set_wpa_enabled when the driver
7645                          * is loaded and unloaded, regardless of if WPA is being
7646                          * used.  No other calls are made which can be used to
7647                          * determine if encryption will be used or not prior to
7648                          * association being expected.  If encryption is not being
7649                          * used, drop_unencrypted is set to false, else true -- we
7650                          * can use this to determine if the CAP_PRIVACY_ON bit should
7651                          * be set.
7652                          */
7653                         struct ieee80211_security sec = {
7654                                 .flags = SEC_ENABLED,
7655                                 .enabled = param->value,
7656                         };
7657                         priv->ieee->drop_unencrypted = param->value;
7658                         /* We only change SEC_LEVEL for open mode. Others
7659                          * are set by ipw_wpa_set_encryption.
7660                          */
7661                         if (!param->value) {
7662                                 sec.flags |= SEC_LEVEL;
7663                                 sec.level = SEC_LEVEL_0;
7664                         } else {
7665                                 sec.flags |= SEC_LEVEL;
7666                                 sec.level = SEC_LEVEL_1;
7667                         }
7668                         if (priv->ieee->set_security)
7669                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7670                         break;
7671                 }
7672
7673         case IW_AUTH_80211_AUTH_ALG:
7674                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7675                 break;
7676
7677         case IW_AUTH_WPA_ENABLED:
7678                 ret = ipw2100_wpa_enable(priv, param->value);
7679                 break;
7680
7681         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7682                 ieee->ieee802_1x = param->value;
7683                 break;
7684
7685                 //case IW_AUTH_ROAMING_CONTROL:
7686         case IW_AUTH_PRIVACY_INVOKED:
7687                 ieee->privacy_invoked = param->value;
7688                 break;
7689
7690         default:
7691                 return -EOPNOTSUPP;
7692         }
7693         return ret;
7694 }
7695
7696 /* SIOCGIWAUTH */
7697 static int ipw2100_wx_get_auth(struct net_device *dev,
7698                                struct iw_request_info *info,
7699                                union iwreq_data *wrqu, char *extra)
7700 {
7701         struct ipw2100_priv *priv = ieee80211_priv(dev);
7702         struct ieee80211_device *ieee = priv->ieee;
7703         struct ieee80211_crypt_data *crypt;
7704         struct iw_param *param = &wrqu->param;
7705         int ret = 0;
7706
7707         switch (param->flags & IW_AUTH_INDEX) {
7708         case IW_AUTH_WPA_VERSION:
7709         case IW_AUTH_CIPHER_PAIRWISE:
7710         case IW_AUTH_CIPHER_GROUP:
7711         case IW_AUTH_KEY_MGMT:
7712                 /*
7713                  * wpa_supplicant will control these internally
7714                  */
7715                 ret = -EOPNOTSUPP;
7716                 break;
7717
7718         case IW_AUTH_TKIP_COUNTERMEASURES:
7719                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7720                 if (!crypt || !crypt->ops->get_flags) {
7721                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7722                                           "crypt not set!\n");
7723                         break;
7724                 }
7725
7726                 param->value = (crypt->ops->get_flags(crypt->priv) &
7727                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7728
7729                 break;
7730
7731         case IW_AUTH_DROP_UNENCRYPTED:
7732                 param->value = ieee->drop_unencrypted;
7733                 break;
7734
7735         case IW_AUTH_80211_AUTH_ALG:
7736                 param->value = priv->ieee->sec.auth_mode;
7737                 break;
7738
7739         case IW_AUTH_WPA_ENABLED:
7740                 param->value = ieee->wpa_enabled;
7741                 break;
7742
7743         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7744                 param->value = ieee->ieee802_1x;
7745                 break;
7746
7747         case IW_AUTH_ROAMING_CONTROL:
7748         case IW_AUTH_PRIVACY_INVOKED:
7749                 param->value = ieee->privacy_invoked;
7750                 break;
7751
7752         default:
7753                 return -EOPNOTSUPP;
7754         }
7755         return 0;
7756 }
7757
7758 /* SIOCSIWENCODEEXT */
7759 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7760                                     struct iw_request_info *info,
7761                                     union iwreq_data *wrqu, char *extra)
7762 {
7763         struct ipw2100_priv *priv = ieee80211_priv(dev);
7764         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7765 }
7766
7767 /* SIOCGIWENCODEEXT */
7768 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7769                                     struct iw_request_info *info,
7770                                     union iwreq_data *wrqu, char *extra)
7771 {
7772         struct ipw2100_priv *priv = ieee80211_priv(dev);
7773         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7774 }
7775
7776 /* SIOCSIWMLME */
7777 static int ipw2100_wx_set_mlme(struct net_device *dev,
7778                                struct iw_request_info *info,
7779                                union iwreq_data *wrqu, char *extra)
7780 {
7781         struct ipw2100_priv *priv = ieee80211_priv(dev);
7782         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7783         u16 reason;
7784
7785         reason = cpu_to_le16(mlme->reason_code);
7786
7787         switch (mlme->cmd) {
7788         case IW_MLME_DEAUTH:
7789                 // silently ignore
7790                 break;
7791
7792         case IW_MLME_DISASSOC:
7793                 ipw2100_disassociate_bssid(priv);
7794                 break;
7795
7796         default:
7797                 return -EOPNOTSUPP;
7798         }
7799         return 0;
7800 }
7801
7802 /*
7803  *
7804  * IWPRIV handlers
7805  *
7806  */
7807 #ifdef CONFIG_IPW2100_MONITOR
7808 static int ipw2100_wx_set_promisc(struct net_device *dev,
7809                                   struct iw_request_info *info,
7810                                   union iwreq_data *wrqu, char *extra)
7811 {
7812         struct ipw2100_priv *priv = ieee80211_priv(dev);
7813         int *parms = (int *)extra;
7814         int enable = (parms[0] > 0);
7815         int err = 0;
7816
7817         mutex_lock(&priv->action_mutex);
7818         if (!(priv->status & STATUS_INITIALIZED)) {
7819                 err = -EIO;
7820                 goto done;
7821         }
7822
7823         if (enable) {
7824                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7825                         err = ipw2100_set_channel(priv, parms[1], 0);
7826                         goto done;
7827                 }
7828                 priv->channel = parms[1];
7829                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7830         } else {
7831                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7832                         err = ipw2100_switch_mode(priv, priv->last_mode);
7833         }
7834       done:
7835         mutex_unlock(&priv->action_mutex);
7836         return err;
7837 }
7838
7839 static int ipw2100_wx_reset(struct net_device *dev,
7840                             struct iw_request_info *info,
7841                             union iwreq_data *wrqu, char *extra)
7842 {
7843         struct ipw2100_priv *priv = ieee80211_priv(dev);
7844         if (priv->status & STATUS_INITIALIZED)
7845                 schedule_reset(priv);
7846         return 0;
7847 }
7848
7849 #endif
7850
7851 static int ipw2100_wx_set_powermode(struct net_device *dev,
7852                                     struct iw_request_info *info,
7853                                     union iwreq_data *wrqu, char *extra)
7854 {
7855         struct ipw2100_priv *priv = ieee80211_priv(dev);
7856         int err = 0, mode = *(int *)extra;
7857
7858         mutex_lock(&priv->action_mutex);
7859         if (!(priv->status & STATUS_INITIALIZED)) {
7860                 err = -EIO;
7861                 goto done;
7862         }
7863
7864         if ((mode < 1) || (mode > POWER_MODES))
7865                 mode = IPW_POWER_AUTO;
7866
7867         if (priv->power_mode != mode)
7868                 err = ipw2100_set_power_mode(priv, mode);
7869       done:
7870         mutex_unlock(&priv->action_mutex);
7871         return err;
7872 }
7873
7874 #define MAX_POWER_STRING 80
7875 static int ipw2100_wx_get_powermode(struct net_device *dev,
7876                                     struct iw_request_info *info,
7877                                     union iwreq_data *wrqu, char *extra)
7878 {
7879         /*
7880          * This can be called at any time.  No action lock required
7881          */
7882
7883         struct ipw2100_priv *priv = ieee80211_priv(dev);
7884         int level = IPW_POWER_LEVEL(priv->power_mode);
7885         s32 timeout, period;
7886
7887         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7888                 snprintf(extra, MAX_POWER_STRING,
7889                          "Power save level: %d (Off)", level);
7890         } else {
7891                 switch (level) {
7892                 case IPW_POWER_MODE_CAM:
7893                         snprintf(extra, MAX_POWER_STRING,
7894                                  "Power save level: %d (None)", level);
7895                         break;
7896                 case IPW_POWER_AUTO:
7897                         snprintf(extra, MAX_POWER_STRING,
7898                                  "Power save level: %d (Auto)", 0);
7899                         break;
7900                 default:
7901                         timeout = timeout_duration[level - 1] / 1000;
7902                         period = period_duration[level - 1] / 1000;
7903                         snprintf(extra, MAX_POWER_STRING,
7904                                  "Power save level: %d "
7905                                  "(Timeout %dms, Period %dms)",
7906                                  level, timeout, period);
7907                 }
7908         }
7909
7910         wrqu->data.length = strlen(extra) + 1;
7911
7912         return 0;
7913 }
7914
7915 static int ipw2100_wx_set_preamble(struct net_device *dev,
7916                                    struct iw_request_info *info,
7917                                    union iwreq_data *wrqu, char *extra)
7918 {
7919         struct ipw2100_priv *priv = ieee80211_priv(dev);
7920         int err, mode = *(int *)extra;
7921
7922         mutex_lock(&priv->action_mutex);
7923         if (!(priv->status & STATUS_INITIALIZED)) {
7924                 err = -EIO;
7925                 goto done;
7926         }
7927
7928         if (mode == 1)
7929                 priv->config |= CFG_LONG_PREAMBLE;
7930         else if (mode == 0)
7931                 priv->config &= ~CFG_LONG_PREAMBLE;
7932         else {
7933                 err = -EINVAL;
7934                 goto done;
7935         }
7936
7937         err = ipw2100_system_config(priv, 0);
7938
7939       done:
7940         mutex_unlock(&priv->action_mutex);
7941         return err;
7942 }
7943
7944 static int ipw2100_wx_get_preamble(struct net_device *dev,
7945                                    struct iw_request_info *info,
7946                                    union iwreq_data *wrqu, char *extra)
7947 {
7948         /*
7949          * This can be called at any time.  No action lock required
7950          */
7951
7952         struct ipw2100_priv *priv = ieee80211_priv(dev);
7953
7954         if (priv->config & CFG_LONG_PREAMBLE)
7955                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7956         else
7957                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7958
7959         return 0;
7960 }
7961
7962 #ifdef CONFIG_IPW2100_MONITOR
7963 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7964                                     struct iw_request_info *info,
7965                                     union iwreq_data *wrqu, char *extra)
7966 {
7967         struct ipw2100_priv *priv = ieee80211_priv(dev);
7968         int err, mode = *(int *)extra;
7969
7970         mutex_lock(&priv->action_mutex);
7971         if (!(priv->status & STATUS_INITIALIZED)) {
7972                 err = -EIO;
7973                 goto done;
7974         }
7975
7976         if (mode == 1)
7977                 priv->config |= CFG_CRC_CHECK;
7978         else if (mode == 0)
7979                 priv->config &= ~CFG_CRC_CHECK;
7980         else {
7981                 err = -EINVAL;
7982                 goto done;
7983         }
7984         err = 0;
7985
7986       done:
7987         mutex_unlock(&priv->action_mutex);
7988         return err;
7989 }
7990
7991 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7992                                     struct iw_request_info *info,
7993                                     union iwreq_data *wrqu, char *extra)
7994 {
7995         /*
7996          * This can be called at any time.  No action lock required
7997          */
7998
7999         struct ipw2100_priv *priv = ieee80211_priv(dev);
8000
8001         if (priv->config & CFG_CRC_CHECK)
8002                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8003         else
8004                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8005
8006         return 0;
8007 }
8008 #endif                          /* CONFIG_IPW2100_MONITOR */
8009
8010 static iw_handler ipw2100_wx_handlers[] = {
8011         NULL,                   /* SIOCSIWCOMMIT */
8012         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8013         NULL,                   /* SIOCSIWNWID */
8014         NULL,                   /* SIOCGIWNWID */
8015         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8016         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8017         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8018         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8019         NULL,                   /* SIOCSIWSENS */
8020         NULL,                   /* SIOCGIWSENS */
8021         NULL,                   /* SIOCSIWRANGE */
8022         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8023         NULL,                   /* SIOCSIWPRIV */
8024         NULL,                   /* SIOCGIWPRIV */
8025         NULL,                   /* SIOCSIWSTATS */
8026         NULL,                   /* SIOCGIWSTATS */
8027         NULL,                   /* SIOCSIWSPY */
8028         NULL,                   /* SIOCGIWSPY */
8029         NULL,                   /* SIOCGIWTHRSPY */
8030         NULL,                   /* SIOCWIWTHRSPY */
8031         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8032         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8033         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8034         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8035         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8036         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8037         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8038         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8039         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8040         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8041         NULL,                   /* -- hole -- */
8042         NULL,                   /* -- hole -- */
8043         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8044         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8045         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8046         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8047         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8048         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8049         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8050         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8051         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8052         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8053         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8054         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8055         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8056         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8057         NULL,                   /* -- hole -- */
8058         NULL,                   /* -- hole -- */
8059         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8060         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8061         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8062         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8063         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8064         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8065         NULL,                   /* SIOCSIWPMKSA */
8066 };
8067
8068 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8069 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8070 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8071 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8072 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8073 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8074 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8075 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8076
8077 static const struct iw_priv_args ipw2100_private_args[] = {
8078
8079 #ifdef CONFIG_IPW2100_MONITOR
8080         {
8081          IPW2100_PRIV_SET_MONITOR,
8082          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8083         {
8084          IPW2100_PRIV_RESET,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8086 #endif                          /* CONFIG_IPW2100_MONITOR */
8087
8088         {
8089          IPW2100_PRIV_SET_POWER,
8090          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8091         {
8092          IPW2100_PRIV_GET_POWER,
8093          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8094          "get_power"},
8095         {
8096          IPW2100_PRIV_SET_LONGPREAMBLE,
8097          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8098         {
8099          IPW2100_PRIV_GET_LONGPREAMBLE,
8100          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8101 #ifdef CONFIG_IPW2100_MONITOR
8102         {
8103          IPW2100_PRIV_SET_CRC_CHECK,
8104          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8105         {
8106          IPW2100_PRIV_GET_CRC_CHECK,
8107          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8108 #endif                          /* CONFIG_IPW2100_MONITOR */
8109 };
8110
8111 static iw_handler ipw2100_private_handler[] = {
8112 #ifdef CONFIG_IPW2100_MONITOR
8113         ipw2100_wx_set_promisc,
8114         ipw2100_wx_reset,
8115 #else                           /* CONFIG_IPW2100_MONITOR */
8116         NULL,
8117         NULL,
8118 #endif                          /* CONFIG_IPW2100_MONITOR */
8119         ipw2100_wx_set_powermode,
8120         ipw2100_wx_get_powermode,
8121         ipw2100_wx_set_preamble,
8122         ipw2100_wx_get_preamble,
8123 #ifdef CONFIG_IPW2100_MONITOR
8124         ipw2100_wx_set_crc_check,
8125         ipw2100_wx_get_crc_check,
8126 #else                           /* CONFIG_IPW2100_MONITOR */
8127         NULL,
8128         NULL,
8129 #endif                          /* CONFIG_IPW2100_MONITOR */
8130 };
8131
8132 /*
8133  * Get wireless statistics.
8134  * Called by /proc/net/wireless
8135  * Also called by SIOCGIWSTATS
8136  */
8137 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8138 {
8139         enum {
8140                 POOR = 30,
8141                 FAIR = 60,
8142                 GOOD = 80,
8143                 VERY_GOOD = 90,
8144                 EXCELLENT = 95,
8145                 PERFECT = 100
8146         };
8147         int rssi_qual;
8148         int tx_qual;
8149         int beacon_qual;
8150
8151         struct ipw2100_priv *priv = ieee80211_priv(dev);
8152         struct iw_statistics *wstats;
8153         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8154         u32 ord_len = sizeof(u32);
8155
8156         if (!priv)
8157                 return (struct iw_statistics *)NULL;
8158
8159         wstats = &priv->wstats;
8160
8161         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8162          * ipw2100_wx_wireless_stats seems to be called before fw is
8163          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8164          * and associated; if not associcated, the values are all meaningless
8165          * anyway, so set them all to NULL and INVALID */
8166         if (!(priv->status & STATUS_ASSOCIATED)) {
8167                 wstats->miss.beacon = 0;
8168                 wstats->discard.retries = 0;
8169                 wstats->qual.qual = 0;
8170                 wstats->qual.level = 0;
8171                 wstats->qual.noise = 0;
8172                 wstats->qual.updated = 7;
8173                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8174                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8175                 return wstats;
8176         }
8177
8178         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8179                                 &missed_beacons, &ord_len))
8180                 goto fail_get_ordinal;
8181
8182         /* If we don't have a connection the quality and level is 0 */
8183         if (!(priv->status & STATUS_ASSOCIATED)) {
8184                 wstats->qual.qual = 0;
8185                 wstats->qual.level = 0;
8186         } else {
8187                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8188                                         &rssi, &ord_len))
8189                         goto fail_get_ordinal;
8190                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8191                 if (rssi < 10)
8192                         rssi_qual = rssi * POOR / 10;
8193                 else if (rssi < 15)
8194                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8195                 else if (rssi < 20)
8196                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8197                 else if (rssi < 30)
8198                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8199                             10 + GOOD;
8200                 else
8201                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8202                             10 + VERY_GOOD;
8203
8204                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8205                                         &tx_retries, &ord_len))
8206                         goto fail_get_ordinal;
8207
8208                 if (tx_retries > 75)
8209                         tx_qual = (90 - tx_retries) * POOR / 15;
8210                 else if (tx_retries > 70)
8211                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8212                 else if (tx_retries > 65)
8213                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8214                 else if (tx_retries > 50)
8215                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8216                             15 + GOOD;
8217                 else
8218                         tx_qual = (50 - tx_retries) *
8219                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8220
8221                 if (missed_beacons > 50)
8222                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8223                 else if (missed_beacons > 40)
8224                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8225                             10 + POOR;
8226                 else if (missed_beacons > 32)
8227                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8228                             18 + FAIR;
8229                 else if (missed_beacons > 20)
8230                         beacon_qual = (32 - missed_beacons) *
8231                             (VERY_GOOD - GOOD) / 20 + GOOD;
8232                 else
8233                         beacon_qual = (20 - missed_beacons) *
8234                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8235
8236                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8237
8238 #ifdef CONFIG_IPW2100_DEBUG
8239                 if (beacon_qual == quality)
8240                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8241                 else if (tx_qual == quality)
8242                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8243                 else if (quality != 100)
8244                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8245                 else
8246                         IPW_DEBUG_WX("Quality not clamped.\n");
8247 #endif
8248
8249                 wstats->qual.qual = quality;
8250                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8251         }
8252
8253         wstats->qual.noise = 0;
8254         wstats->qual.updated = 7;
8255         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8256
8257         /* FIXME: this is percent and not a # */
8258         wstats->miss.beacon = missed_beacons;
8259
8260         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8261                                 &tx_failures, &ord_len))
8262                 goto fail_get_ordinal;
8263         wstats->discard.retries = tx_failures;
8264
8265         return wstats;
8266
8267       fail_get_ordinal:
8268         IPW_DEBUG_WX("failed querying ordinals.\n");
8269
8270         return (struct iw_statistics *)NULL;
8271 }
8272
8273 static struct iw_handler_def ipw2100_wx_handler_def = {
8274         .standard = ipw2100_wx_handlers,
8275         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8276         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8277         .num_private_args = sizeof(ipw2100_private_args) /
8278             sizeof(struct iw_priv_args),
8279         .private = (iw_handler *) ipw2100_private_handler,
8280         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8281         .get_wireless_stats = ipw2100_wx_wireless_stats,
8282 };
8283
8284 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8285 {
8286         union iwreq_data wrqu;
8287         int len = ETH_ALEN;
8288
8289         if (priv->status & STATUS_STOPPING)
8290                 return;
8291
8292         mutex_lock(&priv->action_mutex);
8293
8294         IPW_DEBUG_WX("enter\n");
8295
8296         mutex_unlock(&priv->action_mutex);
8297
8298         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8299
8300         /* Fetch BSSID from the hardware */
8301         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8302             priv->status & STATUS_RF_KILL_MASK ||
8303             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8304                                 &priv->bssid, &len)) {
8305                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8306         } else {
8307                 /* We now have the BSSID, so can finish setting to the full
8308                  * associated state */
8309                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8310                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8311                 priv->status &= ~STATUS_ASSOCIATING;
8312                 priv->status |= STATUS_ASSOCIATED;
8313                 netif_carrier_on(priv->net_dev);
8314                 netif_wake_queue(priv->net_dev);
8315         }
8316
8317         if (!(priv->status & STATUS_ASSOCIATED)) {
8318                 IPW_DEBUG_WX("Configuring ESSID\n");
8319                 mutex_lock(&priv->action_mutex);
8320                 /* This is a disassociation event, so kick the firmware to
8321                  * look for another AP */
8322                 if (priv->config & CFG_STATIC_ESSID)
8323                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8324                                           0);
8325                 else
8326                         ipw2100_set_essid(priv, NULL, 0, 0);
8327                 mutex_unlock(&priv->action_mutex);
8328         }
8329
8330         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8331 }
8332
8333 #define IPW2100_FW_MAJOR_VERSION 1
8334 #define IPW2100_FW_MINOR_VERSION 3
8335
8336 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8337 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8338
8339 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8340                              IPW2100_FW_MAJOR_VERSION)
8341
8342 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8343 "." __stringify(IPW2100_FW_MINOR_VERSION)
8344
8345 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8346
8347 /*
8348
8349 BINARY FIRMWARE HEADER FORMAT
8350
8351 offset      length   desc
8352 0           2        version
8353 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8354 4           4        fw_len
8355 8           4        uc_len
8356 C           fw_len   firmware data
8357 12 + fw_len uc_len   microcode data
8358
8359 */
8360
8361 struct ipw2100_fw_header {
8362         short version;
8363         short mode;
8364         unsigned int fw_size;
8365         unsigned int uc_size;
8366 } __attribute__ ((packed));
8367
8368 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8369 {
8370         struct ipw2100_fw_header *h =
8371             (struct ipw2100_fw_header *)fw->fw_entry->data;
8372
8373         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8374                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8375                        "(detected version id of %u). "
8376                        "See Documentation/networking/README.ipw2100\n",
8377                        h->version);
8378                 return 1;
8379         }
8380
8381         fw->version = h->version;
8382         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8383         fw->fw.size = h->fw_size;
8384         fw->uc.data = fw->fw.data + h->fw_size;
8385         fw->uc.size = h->uc_size;
8386
8387         return 0;
8388 }
8389
8390 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8391                                 struct ipw2100_fw *fw)
8392 {
8393         char *fw_name;
8394         int rc;
8395
8396         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8397                        priv->net_dev->name);
8398
8399         switch (priv->ieee->iw_mode) {
8400         case IW_MODE_ADHOC:
8401                 fw_name = IPW2100_FW_NAME("-i");
8402                 break;
8403 #ifdef CONFIG_IPW2100_MONITOR
8404         case IW_MODE_MONITOR:
8405                 fw_name = IPW2100_FW_NAME("-p");
8406                 break;
8407 #endif
8408         case IW_MODE_INFRA:
8409         default:
8410                 fw_name = IPW2100_FW_NAME("");
8411                 break;
8412         }
8413
8414         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8415
8416         if (rc < 0) {
8417                 printk(KERN_ERR DRV_NAME ": "
8418                        "%s: Firmware '%s' not available or load failed.\n",
8419                        priv->net_dev->name, fw_name);
8420                 return rc;
8421         }
8422         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8423                        fw->fw_entry->size);
8424
8425         ipw2100_mod_firmware_load(fw);
8426
8427         return 0;
8428 }
8429
8430 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8431                                      struct ipw2100_fw *fw)
8432 {
8433         fw->version = 0;
8434         if (fw->fw_entry)
8435                 release_firmware(fw->fw_entry);
8436         fw->fw_entry = NULL;
8437 }
8438
8439 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8440                                  size_t max)
8441 {
8442         char ver[MAX_FW_VERSION_LEN];
8443         u32 len = MAX_FW_VERSION_LEN;
8444         u32 tmp;
8445         int i;
8446         /* firmware version is an ascii string (max len of 14) */
8447         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8448                 return -EIO;
8449         tmp = max;
8450         if (len >= max)
8451                 len = max - 1;
8452         for (i = 0; i < len; i++)
8453                 buf[i] = ver[i];
8454         buf[i] = '\0';
8455         return tmp;
8456 }
8457
8458 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8459                                     size_t max)
8460 {
8461         u32 ver;
8462         u32 len = sizeof(ver);
8463         /* microcode version is a 32 bit integer */
8464         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8465                 return -EIO;
8466         return snprintf(buf, max, "%08X", ver);
8467 }
8468
8469 /*
8470  * On exit, the firmware will have been freed from the fw list
8471  */
8472 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8473 {
8474         /* firmware is constructed of N contiguous entries, each entry is
8475          * structured as:
8476          *
8477          * offset    sie         desc
8478          * 0         4           address to write to
8479          * 4         2           length of data run
8480          * 6         length      data
8481          */
8482         unsigned int addr;
8483         unsigned short len;
8484
8485         const unsigned char *firmware_data = fw->fw.data;
8486         unsigned int firmware_data_left = fw->fw.size;
8487
8488         while (firmware_data_left > 0) {
8489                 addr = *(u32 *) (firmware_data);
8490                 firmware_data += 4;
8491                 firmware_data_left -= 4;
8492
8493                 len = *(u16 *) (firmware_data);
8494                 firmware_data += 2;
8495                 firmware_data_left -= 2;
8496
8497                 if (len > 32) {
8498                         printk(KERN_ERR DRV_NAME ": "
8499                                "Invalid firmware run-length of %d bytes\n",
8500                                len);
8501                         return -EINVAL;
8502                 }
8503
8504                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8505                 firmware_data += len;
8506                 firmware_data_left -= len;
8507         }
8508
8509         return 0;
8510 }
8511
8512 struct symbol_alive_response {
8513         u8 cmd_id;
8514         u8 seq_num;
8515         u8 ucode_rev;
8516         u8 eeprom_valid;
8517         u16 valid_flags;
8518         u8 IEEE_addr[6];
8519         u16 flags;
8520         u16 pcb_rev;
8521         u16 clock_settle_time;  // 1us LSB
8522         u16 powerup_settle_time;        // 1us LSB
8523         u16 hop_settle_time;    // 1us LSB
8524         u8 date[3];             // month, day, year
8525         u8 time[2];             // hours, minutes
8526         u8 ucode_valid;
8527 };
8528
8529 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8530                                   struct ipw2100_fw *fw)
8531 {
8532         struct net_device *dev = priv->net_dev;
8533         const unsigned char *microcode_data = fw->uc.data;
8534         unsigned int microcode_data_left = fw->uc.size;
8535         void __iomem *reg = (void __iomem *)dev->base_addr;
8536
8537         struct symbol_alive_response response;
8538         int i, j;
8539         u8 data;
8540
8541         /* Symbol control */
8542         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8543         readl(reg);
8544         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8545         readl(reg);
8546
8547         /* HW config */
8548         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8549         readl(reg);
8550         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8551         readl(reg);
8552
8553         /* EN_CS_ACCESS bit to reset control store pointer */
8554         write_nic_byte(dev, 0x210000, 0x40);
8555         readl(reg);
8556         write_nic_byte(dev, 0x210000, 0x0);
8557         readl(reg);
8558         write_nic_byte(dev, 0x210000, 0x40);
8559         readl(reg);
8560
8561         /* copy microcode from buffer into Symbol */
8562
8563         while (microcode_data_left > 0) {
8564                 write_nic_byte(dev, 0x210010, *microcode_data++);
8565                 write_nic_byte(dev, 0x210010, *microcode_data++);
8566                 microcode_data_left -= 2;
8567         }
8568
8569         /* EN_CS_ACCESS bit to reset the control store pointer */
8570         write_nic_byte(dev, 0x210000, 0x0);
8571         readl(reg);
8572
8573         /* Enable System (Reg 0)
8574          * first enable causes garbage in RX FIFO */
8575         write_nic_byte(dev, 0x210000, 0x0);
8576         readl(reg);
8577         write_nic_byte(dev, 0x210000, 0x80);
8578         readl(reg);
8579
8580         /* Reset External Baseband Reg */
8581         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8582         readl(reg);
8583         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8584         readl(reg);
8585
8586         /* HW Config (Reg 5) */
8587         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8588         readl(reg);
8589         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8590         readl(reg);
8591
8592         /* Enable System (Reg 0)
8593          * second enable should be OK */
8594         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8595         readl(reg);
8596         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8597
8598         /* check Symbol is enabled - upped this from 5 as it wasn't always
8599          * catching the update */
8600         for (i = 0; i < 10; i++) {
8601                 udelay(10);
8602
8603                 /* check Dino is enabled bit */
8604                 read_nic_byte(dev, 0x210000, &data);
8605                 if (data & 0x1)
8606                         break;
8607         }
8608
8609         if (i == 10) {
8610                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8611                        dev->name);
8612                 return -EIO;
8613         }
8614
8615         /* Get Symbol alive response */
8616         for (i = 0; i < 30; i++) {
8617                 /* Read alive response structure */
8618                 for (j = 0;
8619                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8620                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8621
8622                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8623                         break;
8624                 udelay(10);
8625         }
8626
8627         if (i == 30) {
8628                 printk(KERN_ERR DRV_NAME
8629                        ": %s: No response from Symbol - hw not alive\n",
8630                        dev->name);
8631                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8632                 return -EIO;
8633         }
8634
8635         return 0;
8636 }