ath9k: Group Key fix for VAPs
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19 #include "btcoex.h"
20
21 static void ath_cache_conf_rate(struct ath_softc *sc,
22                                 struct ieee80211_conf *conf)
23 {
24         switch (conf->channel->band) {
25         case IEEE80211_BAND_2GHZ:
26                 if (conf_is_ht20(conf))
27                         sc->cur_rate_mode = ATH9K_MODE_11NG_HT20;
28                 else if (conf_is_ht40_minus(conf))
29                         sc->cur_rate_mode = ATH9K_MODE_11NG_HT40MINUS;
30                 else if (conf_is_ht40_plus(conf))
31                         sc->cur_rate_mode = ATH9K_MODE_11NG_HT40PLUS;
32                 else
33                         sc->cur_rate_mode = ATH9K_MODE_11G;
34                 break;
35         case IEEE80211_BAND_5GHZ:
36                 if (conf_is_ht20(conf))
37                         sc->cur_rate_mode = ATH9K_MODE_11NA_HT20;
38                 else if (conf_is_ht40_minus(conf))
39                         sc->cur_rate_mode = ATH9K_MODE_11NA_HT40MINUS;
40                 else if (conf_is_ht40_plus(conf))
41                         sc->cur_rate_mode = ATH9K_MODE_11NA_HT40PLUS;
42                 else
43                         sc->cur_rate_mode = ATH9K_MODE_11A;
44                 break;
45         default:
46                 BUG_ON(1);
47                 break;
48         }
49 }
50
51 static void ath_update_txpow(struct ath_softc *sc)
52 {
53         struct ath_hw *ah = sc->sc_ah;
54         u32 txpow;
55
56         if (sc->curtxpow != sc->config.txpowlimit) {
57                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
58                 /* read back in case value is clamped */
59                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
60                 sc->curtxpow = txpow;
61         }
62 }
63
64 static u8 parse_mpdudensity(u8 mpdudensity)
65 {
66         /*
67          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
68          *   0 for no restriction
69          *   1 for 1/4 us
70          *   2 for 1/2 us
71          *   3 for 1 us
72          *   4 for 2 us
73          *   5 for 4 us
74          *   6 for 8 us
75          *   7 for 16 us
76          */
77         switch (mpdudensity) {
78         case 0:
79                 return 0;
80         case 1:
81         case 2:
82         case 3:
83                 /* Our lower layer calculations limit our precision to
84                    1 microsecond */
85                 return 1;
86         case 4:
87                 return 2;
88         case 5:
89                 return 4;
90         case 6:
91                 return 8;
92         case 7:
93                 return 16;
94         default:
95                 return 0;
96         }
97 }
98
99 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
100                                                 struct ieee80211_hw *hw)
101 {
102         struct ieee80211_channel *curchan = hw->conf.channel;
103         struct ath9k_channel *channel;
104         u8 chan_idx;
105
106         chan_idx = curchan->hw_value;
107         channel = &sc->sc_ah->channels[chan_idx];
108         ath9k_update_ichannel(sc, hw, channel);
109         return channel;
110 }
111
112 bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode)
113 {
114         unsigned long flags;
115         bool ret;
116
117         spin_lock_irqsave(&sc->sc_pm_lock, flags);
118         ret = ath9k_hw_setpower(sc->sc_ah, mode);
119         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
120
121         return ret;
122 }
123
124 void ath9k_ps_wakeup(struct ath_softc *sc)
125 {
126         unsigned long flags;
127
128         spin_lock_irqsave(&sc->sc_pm_lock, flags);
129         if (++sc->ps_usecount != 1)
130                 goto unlock;
131
132         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
133
134  unlock:
135         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
136 }
137
138 void ath9k_ps_restore(struct ath_softc *sc)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&sc->sc_pm_lock, flags);
143         if (--sc->ps_usecount != 0)
144                 goto unlock;
145
146         if (sc->ps_idle)
147                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
148         else if (sc->ps_enabled &&
149                  !(sc->ps_flags & (PS_WAIT_FOR_BEACON |
150                               PS_WAIT_FOR_CAB |
151                               PS_WAIT_FOR_PSPOLL_DATA |
152                               PS_WAIT_FOR_TX_ACK)))
153                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
154
155  unlock:
156         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
157 }
158
159 /*
160  * Set/change channels.  If the channel is really being changed, it's done
161  * by reseting the chip.  To accomplish this we must first cleanup any pending
162  * DMA, then restart stuff.
163 */
164 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
165                     struct ath9k_channel *hchan)
166 {
167         struct ath_hw *ah = sc->sc_ah;
168         struct ath_common *common = ath9k_hw_common(ah);
169         struct ieee80211_conf *conf = &common->hw->conf;
170         bool fastcc = true, stopped;
171         struct ieee80211_channel *channel = hw->conf.channel;
172         int r;
173
174         if (sc->sc_flags & SC_OP_INVALID)
175                 return -EIO;
176
177         ath9k_ps_wakeup(sc);
178
179         /*
180          * This is only performed if the channel settings have
181          * actually changed.
182          *
183          * To switch channels clear any pending DMA operations;
184          * wait long enough for the RX fifo to drain, reset the
185          * hardware at the new frequency, and then re-enable
186          * the relevant bits of the h/w.
187          */
188         ath9k_hw_set_interrupts(ah, 0);
189         ath_drain_all_txq(sc, false);
190         stopped = ath_stoprecv(sc);
191
192         /* XXX: do not flush receive queue here. We don't want
193          * to flush data frames already in queue because of
194          * changing channel. */
195
196         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
197                 fastcc = false;
198
199         ath_print(common, ATH_DBG_CONFIG,
200                   "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n",
201                   sc->sc_ah->curchan->channel,
202                   channel->center_freq, conf_is_ht40(conf));
203
204         spin_lock_bh(&sc->sc_resetlock);
205
206         r = ath9k_hw_reset(ah, hchan, fastcc);
207         if (r) {
208                 ath_print(common, ATH_DBG_FATAL,
209                           "Unable to reset channel (%u MHz), "
210                           "reset status %d\n",
211                           channel->center_freq, r);
212                 spin_unlock_bh(&sc->sc_resetlock);
213                 goto ps_restore;
214         }
215         spin_unlock_bh(&sc->sc_resetlock);
216
217         sc->sc_flags &= ~SC_OP_FULL_RESET;
218
219         if (ath_startrecv(sc) != 0) {
220                 ath_print(common, ATH_DBG_FATAL,
221                           "Unable to restart recv logic\n");
222                 r = -EIO;
223                 goto ps_restore;
224         }
225
226         ath_cache_conf_rate(sc, &hw->conf);
227         ath_update_txpow(sc);
228         ath9k_hw_set_interrupts(ah, ah->imask);
229
230  ps_restore:
231         ath9k_ps_restore(sc);
232         return r;
233 }
234
235 /*
236  *  This routine performs the periodic noise floor calibration function
237  *  that is used to adjust and optimize the chip performance.  This
238  *  takes environmental changes (location, temperature) into account.
239  *  When the task is complete, it reschedules itself depending on the
240  *  appropriate interval that was calculated.
241  */
242 void ath_ani_calibrate(unsigned long data)
243 {
244         struct ath_softc *sc = (struct ath_softc *)data;
245         struct ath_hw *ah = sc->sc_ah;
246         struct ath_common *common = ath9k_hw_common(ah);
247         bool longcal = false;
248         bool shortcal = false;
249         bool aniflag = false;
250         unsigned int timestamp = jiffies_to_msecs(jiffies);
251         u32 cal_interval, short_cal_interval;
252
253         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
254                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
255
256         /* Only calibrate if awake */
257         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
258                 goto set_timer;
259
260         ath9k_ps_wakeup(sc);
261
262         /* Long calibration runs independently of short calibration. */
263         if ((timestamp - common->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
264                 longcal = true;
265                 ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
266                 common->ani.longcal_timer = timestamp;
267         }
268
269         /* Short calibration applies only while caldone is false */
270         if (!common->ani.caldone) {
271                 if ((timestamp - common->ani.shortcal_timer) >= short_cal_interval) {
272                         shortcal = true;
273                         ath_print(common, ATH_DBG_ANI,
274                                   "shortcal @%lu\n", jiffies);
275                         common->ani.shortcal_timer = timestamp;
276                         common->ani.resetcal_timer = timestamp;
277                 }
278         } else {
279                 if ((timestamp - common->ani.resetcal_timer) >=
280                     ATH_RESTART_CALINTERVAL) {
281                         common->ani.caldone = ath9k_hw_reset_calvalid(ah);
282                         if (common->ani.caldone)
283                                 common->ani.resetcal_timer = timestamp;
284                 }
285         }
286
287         /* Verify whether we must check ANI */
288         if ((timestamp - common->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
289                 aniflag = true;
290                 common->ani.checkani_timer = timestamp;
291         }
292
293         /* Skip all processing if there's nothing to do. */
294         if (longcal || shortcal || aniflag) {
295                 /* Call ANI routine if necessary */
296                 if (aniflag)
297                         ath9k_hw_ani_monitor(ah, ah->curchan);
298
299                 /* Perform calibration if necessary */
300                 if (longcal || shortcal) {
301                         common->ani.caldone =
302                                 ath9k_hw_calibrate(ah,
303                                                    ah->curchan,
304                                                    common->rx_chainmask,
305                                                    longcal);
306
307                         if (longcal)
308                                 common->ani.noise_floor = ath9k_hw_getchan_noise(ah,
309                                                                      ah->curchan);
310
311                         ath_print(common, ATH_DBG_ANI,
312                                   " calibrate chan %u/%x nf: %d\n",
313                                   ah->curchan->channel,
314                                   ah->curchan->channelFlags,
315                                   common->ani.noise_floor);
316                 }
317         }
318
319         ath9k_ps_restore(sc);
320
321 set_timer:
322         /*
323         * Set timer interval based on previous results.
324         * The interval must be the shortest necessary to satisfy ANI,
325         * short calibration and long calibration.
326         */
327         cal_interval = ATH_LONG_CALINTERVAL;
328         if (sc->sc_ah->config.enable_ani)
329                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
330         if (!common->ani.caldone)
331                 cal_interval = min(cal_interval, (u32)short_cal_interval);
332
333         mod_timer(&common->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
334 }
335
336 static void ath_start_ani(struct ath_common *common)
337 {
338         unsigned long timestamp = jiffies_to_msecs(jiffies);
339
340         common->ani.longcal_timer = timestamp;
341         common->ani.shortcal_timer = timestamp;
342         common->ani.checkani_timer = timestamp;
343
344         mod_timer(&common->ani.timer,
345                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
346 }
347
348 /*
349  * Update tx/rx chainmask. For legacy association,
350  * hard code chainmask to 1x1, for 11n association, use
351  * the chainmask configuration, for bt coexistence, use
352  * the chainmask configuration even in legacy mode.
353  */
354 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
355 {
356         struct ath_hw *ah = sc->sc_ah;
357         struct ath_common *common = ath9k_hw_common(ah);
358
359         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
360             (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) {
361                 common->tx_chainmask = ah->caps.tx_chainmask;
362                 common->rx_chainmask = ah->caps.rx_chainmask;
363         } else {
364                 common->tx_chainmask = 1;
365                 common->rx_chainmask = 1;
366         }
367
368         ath_print(common, ATH_DBG_CONFIG,
369                   "tx chmask: %d, rx chmask: %d\n",
370                   common->tx_chainmask,
371                   common->rx_chainmask);
372 }
373
374 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
375 {
376         struct ath_node *an;
377
378         an = (struct ath_node *)sta->drv_priv;
379
380         if (sc->sc_flags & SC_OP_TXAGGR) {
381                 ath_tx_node_init(sc, an);
382                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
383                                      sta->ht_cap.ampdu_factor);
384                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
385                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
386         }
387 }
388
389 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
390 {
391         struct ath_node *an = (struct ath_node *)sta->drv_priv;
392
393         if (sc->sc_flags & SC_OP_TXAGGR)
394                 ath_tx_node_cleanup(sc, an);
395 }
396
397 void ath9k_tasklet(unsigned long data)
398 {
399         struct ath_softc *sc = (struct ath_softc *)data;
400         struct ath_hw *ah = sc->sc_ah;
401         struct ath_common *common = ath9k_hw_common(ah);
402
403         u32 status = sc->intrstatus;
404         u32 rxmask;
405
406         ath9k_ps_wakeup(sc);
407
408         if (status & ATH9K_INT_FATAL) {
409                 ath_reset(sc, false);
410                 ath9k_ps_restore(sc);
411                 return;
412         }
413
414         if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
415                 rxmask = (ATH9K_INT_RXHP | ATH9K_INT_RXLP | ATH9K_INT_RXEOL |
416                           ATH9K_INT_RXORN);
417         else
418                 rxmask = (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
419
420         if (status & rxmask) {
421                 spin_lock_bh(&sc->rx.rxflushlock);
422
423                 /* Check for high priority Rx first */
424                 if ((ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
425                     (status & ATH9K_INT_RXHP))
426                         ath_rx_tasklet(sc, 0, true);
427
428                 ath_rx_tasklet(sc, 0, false);
429                 spin_unlock_bh(&sc->rx.rxflushlock);
430         }
431
432         if (status & ATH9K_INT_TX) {
433                 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
434                         ath_tx_edma_tasklet(sc);
435                 else
436                         ath_tx_tasklet(sc);
437         }
438
439         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
440                 /*
441                  * TSF sync does not look correct; remain awake to sync with
442                  * the next Beacon.
443                  */
444                 ath_print(common, ATH_DBG_PS,
445                           "TSFOOR - Sync with next Beacon\n");
446                 sc->ps_flags |= PS_WAIT_FOR_BEACON | PS_BEACON_SYNC;
447         }
448
449         if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
450                 if (status & ATH9K_INT_GENTIMER)
451                         ath_gen_timer_isr(sc->sc_ah);
452
453         /* re-enable hardware interrupt */
454         ath9k_hw_set_interrupts(ah, ah->imask);
455         ath9k_ps_restore(sc);
456 }
457
458 irqreturn_t ath_isr(int irq, void *dev)
459 {
460 #define SCHED_INTR (                            \
461                 ATH9K_INT_FATAL |               \
462                 ATH9K_INT_RXORN |               \
463                 ATH9K_INT_RXEOL |               \
464                 ATH9K_INT_RX |                  \
465                 ATH9K_INT_RXLP |                \
466                 ATH9K_INT_RXHP |                \
467                 ATH9K_INT_TX |                  \
468                 ATH9K_INT_BMISS |               \
469                 ATH9K_INT_CST |                 \
470                 ATH9K_INT_TSFOOR |              \
471                 ATH9K_INT_GENTIMER)
472
473         struct ath_softc *sc = dev;
474         struct ath_hw *ah = sc->sc_ah;
475         enum ath9k_int status;
476         bool sched = false;
477
478         /*
479          * The hardware is not ready/present, don't
480          * touch anything. Note this can happen early
481          * on if the IRQ is shared.
482          */
483         if (sc->sc_flags & SC_OP_INVALID)
484                 return IRQ_NONE;
485
486
487         /* shared irq, not for us */
488
489         if (!ath9k_hw_intrpend(ah))
490                 return IRQ_NONE;
491
492         /*
493          * Figure out the reason(s) for the interrupt.  Note
494          * that the hal returns a pseudo-ISR that may include
495          * bits we haven't explicitly enabled so we mask the
496          * value to insure we only process bits we requested.
497          */
498         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
499         status &= ah->imask;    /* discard unasked-for bits */
500
501         /*
502          * If there are no status bits set, then this interrupt was not
503          * for me (should have been caught above).
504          */
505         if (!status)
506                 return IRQ_NONE;
507
508         /* Cache the status */
509         sc->intrstatus = status;
510
511         if (status & SCHED_INTR)
512                 sched = true;
513
514         /*
515          * If a FATAL or RXORN interrupt is received, we have to reset the
516          * chip immediately.
517          */
518         if ((status & ATH9K_INT_FATAL) || ((status & ATH9K_INT_RXORN) &&
519             !(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)))
520                 goto chip_reset;
521
522         if (status & ATH9K_INT_SWBA)
523                 tasklet_schedule(&sc->bcon_tasklet);
524
525         if (status & ATH9K_INT_TXURN)
526                 ath9k_hw_updatetxtriglevel(ah, true);
527
528         if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
529                 if (status & ATH9K_INT_RXEOL) {
530                         ah->imask &= ~(ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
531                         ath9k_hw_set_interrupts(ah, ah->imask);
532                 }
533         }
534
535         if (status & ATH9K_INT_MIB) {
536                 /*
537                  * Disable interrupts until we service the MIB
538                  * interrupt; otherwise it will continue to
539                  * fire.
540                  */
541                 ath9k_hw_set_interrupts(ah, 0);
542                 /*
543                  * Let the hal handle the event. We assume
544                  * it will clear whatever condition caused
545                  * the interrupt.
546                  */
547                 ath9k_hw_procmibevent(ah);
548                 ath9k_hw_set_interrupts(ah, ah->imask);
549         }
550
551         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
552                 if (status & ATH9K_INT_TIM_TIMER) {
553                         /* Clear RxAbort bit so that we can
554                          * receive frames */
555                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
556                         ath9k_hw_setrxabort(sc->sc_ah, 0);
557                         sc->ps_flags |= PS_WAIT_FOR_BEACON;
558                 }
559
560 chip_reset:
561
562         ath_debug_stat_interrupt(sc, status);
563
564         if (sched) {
565                 /* turn off every interrupt except SWBA */
566                 ath9k_hw_set_interrupts(ah, (ah->imask & ATH9K_INT_SWBA));
567                 tasklet_schedule(&sc->intr_tq);
568         }
569
570         return IRQ_HANDLED;
571
572 #undef SCHED_INTR
573 }
574
575 static u32 ath_get_extchanmode(struct ath_softc *sc,
576                                struct ieee80211_channel *chan,
577                                enum nl80211_channel_type channel_type)
578 {
579         u32 chanmode = 0;
580
581         switch (chan->band) {
582         case IEEE80211_BAND_2GHZ:
583                 switch(channel_type) {
584                 case NL80211_CHAN_NO_HT:
585                 case NL80211_CHAN_HT20:
586                         chanmode = CHANNEL_G_HT20;
587                         break;
588                 case NL80211_CHAN_HT40PLUS:
589                         chanmode = CHANNEL_G_HT40PLUS;
590                         break;
591                 case NL80211_CHAN_HT40MINUS:
592                         chanmode = CHANNEL_G_HT40MINUS;
593                         break;
594                 }
595                 break;
596         case IEEE80211_BAND_5GHZ:
597                 switch(channel_type) {
598                 case NL80211_CHAN_NO_HT:
599                 case NL80211_CHAN_HT20:
600                         chanmode = CHANNEL_A_HT20;
601                         break;
602                 case NL80211_CHAN_HT40PLUS:
603                         chanmode = CHANNEL_A_HT40PLUS;
604                         break;
605                 case NL80211_CHAN_HT40MINUS:
606                         chanmode = CHANNEL_A_HT40MINUS;
607                         break;
608                 }
609                 break;
610         default:
611                 break;
612         }
613
614         return chanmode;
615 }
616
617 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
618                            struct ath9k_keyval *hk, const u8 *addr,
619                            bool authenticator)
620 {
621         struct ath_hw *ah = common->ah;
622         const u8 *key_rxmic;
623         const u8 *key_txmic;
624
625         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
626         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
627
628         if (addr == NULL) {
629                 /*
630                  * Group key installation - only two key cache entries are used
631                  * regardless of splitmic capability since group key is only
632                  * used either for TX or RX.
633                  */
634                 if (authenticator) {
635                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
636                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
637                 } else {
638                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
639                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
640                 }
641                 return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
642         }
643         if (!common->splitmic) {
644                 /* TX and RX keys share the same key cache entry. */
645                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
646                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
647                 return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr);
648         }
649
650         /* Separate key cache entries for TX and RX */
651
652         /* TX key goes at first index, RX key at +32. */
653         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
654         if (!ath9k_hw_set_keycache_entry(ah, keyix, hk, NULL)) {
655                 /* TX MIC entry failed. No need to proceed further */
656                 ath_print(common, ATH_DBG_FATAL,
657                           "Setting TX MIC Key Failed\n");
658                 return 0;
659         }
660
661         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
662         /* XXX delete tx key on failure? */
663         return ath9k_hw_set_keycache_entry(ah, keyix + 32, hk, addr);
664 }
665
666 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
667 {
668         int i;
669
670         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
671                 if (test_bit(i, common->keymap) ||
672                     test_bit(i + 64, common->keymap))
673                         continue; /* At least one part of TKIP key allocated */
674                 if (common->splitmic &&
675                     (test_bit(i + 32, common->keymap) ||
676                      test_bit(i + 64 + 32, common->keymap)))
677                         continue; /* At least one part of TKIP key allocated */
678
679                 /* Found a free slot for a TKIP key */
680                 return i;
681         }
682         return -1;
683 }
684
685 static int ath_reserve_key_cache_slot(struct ath_common *common)
686 {
687         int i;
688
689         /* First, try to find slots that would not be available for TKIP. */
690         if (common->splitmic) {
691                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
692                         if (!test_bit(i, common->keymap) &&
693                             (test_bit(i + 32, common->keymap) ||
694                              test_bit(i + 64, common->keymap) ||
695                              test_bit(i + 64 + 32, common->keymap)))
696                                 return i;
697                         if (!test_bit(i + 32, common->keymap) &&
698                             (test_bit(i, common->keymap) ||
699                              test_bit(i + 64, common->keymap) ||
700                              test_bit(i + 64 + 32, common->keymap)))
701                                 return i + 32;
702                         if (!test_bit(i + 64, common->keymap) &&
703                             (test_bit(i , common->keymap) ||
704                              test_bit(i + 32, common->keymap) ||
705                              test_bit(i + 64 + 32, common->keymap)))
706                                 return i + 64;
707                         if (!test_bit(i + 64 + 32, common->keymap) &&
708                             (test_bit(i, common->keymap) ||
709                              test_bit(i + 32, common->keymap) ||
710                              test_bit(i + 64, common->keymap)))
711                                 return i + 64 + 32;
712                 }
713         } else {
714                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
715                         if (!test_bit(i, common->keymap) &&
716                             test_bit(i + 64, common->keymap))
717                                 return i;
718                         if (test_bit(i, common->keymap) &&
719                             !test_bit(i + 64, common->keymap))
720                                 return i + 64;
721                 }
722         }
723
724         /* No partially used TKIP slots, pick any available slot */
725         for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
726                 /* Do not allow slots that could be needed for TKIP group keys
727                  * to be used. This limitation could be removed if we know that
728                  * TKIP will not be used. */
729                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
730                         continue;
731                 if (common->splitmic) {
732                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
733                                 continue;
734                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
735                                 continue;
736                 }
737
738                 if (!test_bit(i, common->keymap))
739                         return i; /* Found a free slot for a key */
740         }
741
742         /* No free slot found */
743         return -1;
744 }
745
746 static int ath_key_config(struct ath_common *common,
747                           struct ieee80211_vif *vif,
748                           struct ieee80211_sta *sta,
749                           struct ieee80211_key_conf *key)
750 {
751         struct ath_hw *ah = common->ah;
752         struct ath9k_keyval hk;
753         const u8 *mac = NULL;
754         u8 gmac[ETH_ALEN];
755         int ret = 0;
756         int idx;
757
758         memset(&hk, 0, sizeof(hk));
759
760         switch (key->alg) {
761         case ALG_WEP:
762                 hk.kv_type = ATH9K_CIPHER_WEP;
763                 break;
764         case ALG_TKIP:
765                 hk.kv_type = ATH9K_CIPHER_TKIP;
766                 break;
767         case ALG_CCMP:
768                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
769                 break;
770         default:
771                 return -EOPNOTSUPP;
772         }
773
774         hk.kv_len = key->keylen;
775         memcpy(hk.kv_val, key->key, key->keylen);
776
777         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
778
779                 if (key->ap_addr) {
780                         /*
781                          * Group keys on hardware that supports multicast frame
782                          * key search use a mac that is the sender's address with
783                          * the high bit set instead of the app-specified address.
784                          */
785                         memcpy(gmac, key->ap_addr, ETH_ALEN);
786                         gmac[0] |= 0x80;
787                         mac = gmac;
788
789                         if (key->alg == ALG_TKIP)
790                                 idx = ath_reserve_key_cache_slot_tkip(common);
791                         else
792                                 idx = ath_reserve_key_cache_slot(common);
793                         if (idx < 0)
794                                 mac = NULL; /* no free key cache entries */
795                 }
796
797                 if (!mac) {
798                         /* For now, use the default keys for broadcast keys. This may
799                          * need to change with virtual interfaces. */
800                         idx = key->keyidx;
801                 }
802         } else if (key->keyidx) {
803                 if (WARN_ON(!sta))
804                         return -EOPNOTSUPP;
805                 mac = sta->addr;
806
807                 if (vif->type != NL80211_IFTYPE_AP) {
808                         /* Only keyidx 0 should be used with unicast key, but
809                          * allow this for client mode for now. */
810                         idx = key->keyidx;
811                 } else
812                         return -EIO;
813         } else {
814                 if (WARN_ON(!sta))
815                         return -EOPNOTSUPP;
816                 mac = sta->addr;
817
818                 if (key->alg == ALG_TKIP)
819                         idx = ath_reserve_key_cache_slot_tkip(common);
820                 else
821                         idx = ath_reserve_key_cache_slot(common);
822                 if (idx < 0)
823                         return -ENOSPC; /* no free key cache entries */
824         }
825
826         if (key->alg == ALG_TKIP)
827                 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
828                                       vif->type == NL80211_IFTYPE_AP);
829         else
830                 ret = ath9k_hw_set_keycache_entry(ah, idx, &hk, mac);
831
832         if (!ret)
833                 return -EIO;
834
835         set_bit(idx, common->keymap);
836         if (key->alg == ALG_TKIP) {
837                 set_bit(idx + 64, common->keymap);
838                 if (common->splitmic) {
839                         set_bit(idx + 32, common->keymap);
840                         set_bit(idx + 64 + 32, common->keymap);
841                 }
842         }
843
844         return idx;
845 }
846
847 static void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
848 {
849         struct ath_hw *ah = common->ah;
850
851         ath9k_hw_keyreset(ah, key->hw_key_idx);
852         if (key->hw_key_idx < IEEE80211_WEP_NKID)
853                 return;
854
855         clear_bit(key->hw_key_idx, common->keymap);
856         if (key->alg != ALG_TKIP)
857                 return;
858
859         clear_bit(key->hw_key_idx + 64, common->keymap);
860         if (common->splitmic) {
861                 ath9k_hw_keyreset(ah, key->hw_key_idx + 32);
862                 clear_bit(key->hw_key_idx + 32, common->keymap);
863                 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
864         }
865 }
866
867 static void ath9k_bss_assoc_info(struct ath_softc *sc,
868                                  struct ieee80211_vif *vif,
869                                  struct ieee80211_bss_conf *bss_conf)
870 {
871         struct ath_hw *ah = sc->sc_ah;
872         struct ath_common *common = ath9k_hw_common(ah);
873
874         if (bss_conf->assoc) {
875                 ath_print(common, ATH_DBG_CONFIG,
876                           "Bss Info ASSOC %d, bssid: %pM\n",
877                            bss_conf->aid, common->curbssid);
878
879                 /* New association, store aid */
880                 common->curaid = bss_conf->aid;
881                 ath9k_hw_write_associd(ah);
882
883                 /*
884                  * Request a re-configuration of Beacon related timers
885                  * on the receipt of the first Beacon frame (i.e.,
886                  * after time sync with the AP).
887                  */
888                 sc->ps_flags |= PS_BEACON_SYNC;
889
890                 /* Configure the beacon */
891                 ath_beacon_config(sc, vif);
892
893                 /* Reset rssi stats */
894                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
895
896                 ath_start_ani(common);
897         } else {
898                 ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
899                 common->curaid = 0;
900                 /* Stop ANI */
901                 del_timer_sync(&common->ani.timer);
902         }
903 }
904
905 void ath_radio_enable(struct ath_softc *sc, struct ieee80211_hw *hw)
906 {
907         struct ath_hw *ah = sc->sc_ah;
908         struct ath_common *common = ath9k_hw_common(ah);
909         struct ieee80211_channel *channel = hw->conf.channel;
910         int r;
911
912         ath9k_ps_wakeup(sc);
913         ath9k_hw_configpcipowersave(ah, 0, 0);
914
915         if (!ah->curchan)
916                 ah->curchan = ath_get_curchannel(sc, sc->hw);
917
918         spin_lock_bh(&sc->sc_resetlock);
919         r = ath9k_hw_reset(ah, ah->curchan, false);
920         if (r) {
921                 ath_print(common, ATH_DBG_FATAL,
922                           "Unable to reset channel (%u MHz), "
923                           "reset status %d\n",
924                           channel->center_freq, r);
925         }
926         spin_unlock_bh(&sc->sc_resetlock);
927
928         ath_update_txpow(sc);
929         if (ath_startrecv(sc) != 0) {
930                 ath_print(common, ATH_DBG_FATAL,
931                           "Unable to restart recv logic\n");
932                 return;
933         }
934
935         if (sc->sc_flags & SC_OP_BEACONS)
936                 ath_beacon_config(sc, NULL);    /* restart beacons */
937
938         /* Re-Enable  interrupts */
939         ath9k_hw_set_interrupts(ah, ah->imask);
940
941         /* Enable LED */
942         ath9k_hw_cfg_output(ah, ah->led_pin,
943                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
944         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
945
946         ieee80211_wake_queues(hw);
947         ath9k_ps_restore(sc);
948 }
949
950 void ath_radio_disable(struct ath_softc *sc, struct ieee80211_hw *hw)
951 {
952         struct ath_hw *ah = sc->sc_ah;
953         struct ieee80211_channel *channel = hw->conf.channel;
954         int r;
955
956         ath9k_ps_wakeup(sc);
957         ieee80211_stop_queues(hw);
958
959         /* Disable LED */
960         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
961         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
962
963         /* Disable interrupts */
964         ath9k_hw_set_interrupts(ah, 0);
965
966         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
967         ath_stoprecv(sc);               /* turn off frame recv */
968         ath_flushrecv(sc);              /* flush recv queue */
969
970         if (!ah->curchan)
971                 ah->curchan = ath_get_curchannel(sc, hw);
972
973         spin_lock_bh(&sc->sc_resetlock);
974         r = ath9k_hw_reset(ah, ah->curchan, false);
975         if (r) {
976                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
977                           "Unable to reset channel (%u MHz), "
978                           "reset status %d\n",
979                           channel->center_freq, r);
980         }
981         spin_unlock_bh(&sc->sc_resetlock);
982
983         ath9k_hw_phy_disable(ah);
984         ath9k_hw_configpcipowersave(ah, 1, 1);
985         ath9k_ps_restore(sc);
986         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
987 }
988
989 int ath_reset(struct ath_softc *sc, bool retry_tx)
990 {
991         struct ath_hw *ah = sc->sc_ah;
992         struct ath_common *common = ath9k_hw_common(ah);
993         struct ieee80211_hw *hw = sc->hw;
994         int r;
995
996         /* Stop ANI */
997         del_timer_sync(&common->ani.timer);
998
999         ieee80211_stop_queues(hw);
1000
1001         ath9k_hw_set_interrupts(ah, 0);
1002         ath_drain_all_txq(sc, retry_tx);
1003         ath_stoprecv(sc);
1004         ath_flushrecv(sc);
1005
1006         spin_lock_bh(&sc->sc_resetlock);
1007         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1008         if (r)
1009                 ath_print(common, ATH_DBG_FATAL,
1010                           "Unable to reset hardware; reset status %d\n", r);
1011         spin_unlock_bh(&sc->sc_resetlock);
1012
1013         if (ath_startrecv(sc) != 0)
1014                 ath_print(common, ATH_DBG_FATAL,
1015                           "Unable to start recv logic\n");
1016
1017         /*
1018          * We may be doing a reset in response to a request
1019          * that changes the channel so update any state that
1020          * might change as a result.
1021          */
1022         ath_cache_conf_rate(sc, &hw->conf);
1023
1024         ath_update_txpow(sc);
1025
1026         if (sc->sc_flags & SC_OP_BEACONS)
1027                 ath_beacon_config(sc, NULL);    /* restart beacons */
1028
1029         ath9k_hw_set_interrupts(ah, ah->imask);
1030
1031         if (retry_tx) {
1032                 int i;
1033                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1034                         if (ATH_TXQ_SETUP(sc, i)) {
1035                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1036                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1037                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1038                         }
1039                 }
1040         }
1041
1042         ieee80211_wake_queues(hw);
1043
1044         /* Start ANI */
1045         ath_start_ani(common);
1046
1047         return r;
1048 }
1049
1050 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1051 {
1052         int qnum;
1053
1054         switch (queue) {
1055         case 0:
1056                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1057                 break;
1058         case 1:
1059                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1060                 break;
1061         case 2:
1062                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1063                 break;
1064         case 3:
1065                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1066                 break;
1067         default:
1068                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1069                 break;
1070         }
1071
1072         return qnum;
1073 }
1074
1075 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1076 {
1077         int qnum;
1078
1079         switch (queue) {
1080         case ATH9K_WME_AC_VO:
1081                 qnum = 0;
1082                 break;
1083         case ATH9K_WME_AC_VI:
1084                 qnum = 1;
1085                 break;
1086         case ATH9K_WME_AC_BE:
1087                 qnum = 2;
1088                 break;
1089         case ATH9K_WME_AC_BK:
1090                 qnum = 3;
1091                 break;
1092         default:
1093                 qnum = -1;
1094                 break;
1095         }
1096
1097         return qnum;
1098 }
1099
1100 /* XXX: Remove me once we don't depend on ath9k_channel for all
1101  * this redundant data */
1102 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1103                            struct ath9k_channel *ichan)
1104 {
1105         struct ieee80211_channel *chan = hw->conf.channel;
1106         struct ieee80211_conf *conf = &hw->conf;
1107
1108         ichan->channel = chan->center_freq;
1109         ichan->chan = chan;
1110
1111         if (chan->band == IEEE80211_BAND_2GHZ) {
1112                 ichan->chanmode = CHANNEL_G;
1113                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
1114         } else {
1115                 ichan->chanmode = CHANNEL_A;
1116                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1117         }
1118
1119         if (conf_is_ht(conf))
1120                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1121                                             conf->channel_type);
1122 }
1123
1124 /**********************/
1125 /* mac80211 callbacks */
1126 /**********************/
1127
1128 static int ath9k_start(struct ieee80211_hw *hw)
1129 {
1130         struct ath_wiphy *aphy = hw->priv;
1131         struct ath_softc *sc = aphy->sc;
1132         struct ath_hw *ah = sc->sc_ah;
1133         struct ath_common *common = ath9k_hw_common(ah);
1134         struct ieee80211_channel *curchan = hw->conf.channel;
1135         struct ath9k_channel *init_channel;
1136         int r;
1137
1138         ath_print(common, ATH_DBG_CONFIG,
1139                   "Starting driver with initial channel: %d MHz\n",
1140                   curchan->center_freq);
1141
1142         mutex_lock(&sc->mutex);
1143
1144         if (ath9k_wiphy_started(sc)) {
1145                 if (sc->chan_idx == curchan->hw_value) {
1146                         /*
1147                          * Already on the operational channel, the new wiphy
1148                          * can be marked active.
1149                          */
1150                         aphy->state = ATH_WIPHY_ACTIVE;
1151                         ieee80211_wake_queues(hw);
1152                 } else {
1153                         /*
1154                          * Another wiphy is on another channel, start the new
1155                          * wiphy in paused state.
1156                          */
1157                         aphy->state = ATH_WIPHY_PAUSED;
1158                         ieee80211_stop_queues(hw);
1159                 }
1160                 mutex_unlock(&sc->mutex);
1161                 return 0;
1162         }
1163         aphy->state = ATH_WIPHY_ACTIVE;
1164
1165         /* setup initial channel */
1166
1167         sc->chan_idx = curchan->hw_value;
1168
1169         init_channel = ath_get_curchannel(sc, hw);
1170
1171         /* Reset SERDES registers */
1172         ath9k_hw_configpcipowersave(ah, 0, 0);
1173
1174         /*
1175          * The basic interface to setting the hardware in a good
1176          * state is ``reset''.  On return the hardware is known to
1177          * be powered up and with interrupts disabled.  This must
1178          * be followed by initialization of the appropriate bits
1179          * and then setup of the interrupt mask.
1180          */
1181         spin_lock_bh(&sc->sc_resetlock);
1182         r = ath9k_hw_reset(ah, init_channel, false);
1183         if (r) {
1184                 ath_print(common, ATH_DBG_FATAL,
1185                           "Unable to reset hardware; reset status %d "
1186                           "(freq %u MHz)\n", r,
1187                           curchan->center_freq);
1188                 spin_unlock_bh(&sc->sc_resetlock);
1189                 goto mutex_unlock;
1190         }
1191         spin_unlock_bh(&sc->sc_resetlock);
1192
1193         /*
1194          * This is needed only to setup initial state
1195          * but it's best done after a reset.
1196          */
1197         ath_update_txpow(sc);
1198
1199         /*
1200          * Setup the hardware after reset:
1201          * The receive engine is set going.
1202          * Frame transmit is handled entirely
1203          * in the frame output path; there's nothing to do
1204          * here except setup the interrupt mask.
1205          */
1206         if (ath_startrecv(sc) != 0) {
1207                 ath_print(common, ATH_DBG_FATAL,
1208                           "Unable to start recv logic\n");
1209                 r = -EIO;
1210                 goto mutex_unlock;
1211         }
1212
1213         /* Setup our intr mask. */
1214         ah->imask = ATH9K_INT_TX | ATH9K_INT_RXEOL |
1215                     ATH9K_INT_RXORN | ATH9K_INT_FATAL |
1216                     ATH9K_INT_GLOBAL;
1217
1218         if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
1219                 ah->imask |= ATH9K_INT_RXHP | ATH9K_INT_RXLP;
1220         else
1221                 ah->imask |= ATH9K_INT_RX;
1222
1223         if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1224                 ah->imask |= ATH9K_INT_GTT;
1225
1226         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1227                 ah->imask |= ATH9K_INT_CST;
1228
1229         ath_cache_conf_rate(sc, &hw->conf);
1230
1231         sc->sc_flags &= ~SC_OP_INVALID;
1232
1233         /* Disable BMISS interrupt when we're not associated */
1234         ah->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1235         ath9k_hw_set_interrupts(ah, ah->imask);
1236
1237         ieee80211_wake_queues(hw);
1238
1239         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
1240
1241         if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) &&
1242             !ah->btcoex_hw.enabled) {
1243                 ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT,
1244                                            AR_STOMP_LOW_WLAN_WGHT);
1245                 ath9k_hw_btcoex_enable(ah);
1246
1247                 if (common->bus_ops->bt_coex_prep)
1248                         common->bus_ops->bt_coex_prep(common);
1249                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1250                         ath9k_btcoex_timer_resume(sc);
1251         }
1252
1253 mutex_unlock:
1254         mutex_unlock(&sc->mutex);
1255
1256         return r;
1257 }
1258
1259 static int ath9k_tx(struct ieee80211_hw *hw,
1260                     struct sk_buff *skb)
1261 {
1262         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1263         struct ath_wiphy *aphy = hw->priv;
1264         struct ath_softc *sc = aphy->sc;
1265         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1266         struct ath_tx_control txctl;
1267         int padpos, padsize;
1268         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1269
1270         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
1271                 ath_print(common, ATH_DBG_XMIT,
1272                           "ath9k: %s: TX in unexpected wiphy state "
1273                           "%d\n", wiphy_name(hw->wiphy), aphy->state);
1274                 goto exit;
1275         }
1276
1277         if (sc->ps_enabled) {
1278                 /*
1279                  * mac80211 does not set PM field for normal data frames, so we
1280                  * need to update that based on the current PS mode.
1281                  */
1282                 if (ieee80211_is_data(hdr->frame_control) &&
1283                     !ieee80211_is_nullfunc(hdr->frame_control) &&
1284                     !ieee80211_has_pm(hdr->frame_control)) {
1285                         ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame "
1286                                   "while in PS mode\n");
1287                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
1288                 }
1289         }
1290
1291         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
1292                 /*
1293                  * We are using PS-Poll and mac80211 can request TX while in
1294                  * power save mode. Need to wake up hardware for the TX to be
1295                  * completed and if needed, also for RX of buffered frames.
1296                  */
1297                 ath9k_ps_wakeup(sc);
1298                 ath9k_hw_setrxabort(sc->sc_ah, 0);
1299                 if (ieee80211_is_pspoll(hdr->frame_control)) {
1300                         ath_print(common, ATH_DBG_PS,
1301                                   "Sending PS-Poll to pick a buffered frame\n");
1302                         sc->ps_flags |= PS_WAIT_FOR_PSPOLL_DATA;
1303                 } else {
1304                         ath_print(common, ATH_DBG_PS,
1305                                   "Wake up to complete TX\n");
1306                         sc->ps_flags |= PS_WAIT_FOR_TX_ACK;
1307                 }
1308                 /*
1309                  * The actual restore operation will happen only after
1310                  * the sc_flags bit is cleared. We are just dropping
1311                  * the ps_usecount here.
1312                  */
1313                 ath9k_ps_restore(sc);
1314         }
1315
1316         memset(&txctl, 0, sizeof(struct ath_tx_control));
1317
1318         /*
1319          * As a temporary workaround, assign seq# here; this will likely need
1320          * to be cleaned up to work better with Beacon transmission and virtual
1321          * BSSes.
1322          */
1323         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1324                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1325                         sc->tx.seq_no += 0x10;
1326                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1327                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1328         }
1329
1330         /* Add the padding after the header if this is not already done */
1331         padpos = ath9k_cmn_padpos(hdr->frame_control);
1332         padsize = padpos & 3;
1333         if (padsize && skb->len>padpos) {
1334                 if (skb_headroom(skb) < padsize)
1335                         return -1;
1336                 skb_push(skb, padsize);
1337                 memmove(skb->data, skb->data + padsize, padpos);
1338         }
1339
1340         /* Check if a tx queue is available */
1341
1342         txctl.txq = ath_test_get_txq(sc, skb);
1343         if (!txctl.txq)
1344                 goto exit;
1345
1346         ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1347
1348         if (ath_tx_start(hw, skb, &txctl) != 0) {
1349                 ath_print(common, ATH_DBG_XMIT, "TX failed\n");
1350                 goto exit;
1351         }
1352
1353         return 0;
1354 exit:
1355         dev_kfree_skb_any(skb);
1356         return 0;
1357 }
1358
1359 static void ath9k_stop(struct ieee80211_hw *hw)
1360 {
1361         struct ath_wiphy *aphy = hw->priv;
1362         struct ath_softc *sc = aphy->sc;
1363         struct ath_hw *ah = sc->sc_ah;
1364         struct ath_common *common = ath9k_hw_common(ah);
1365
1366         mutex_lock(&sc->mutex);
1367
1368         aphy->state = ATH_WIPHY_INACTIVE;
1369
1370         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1371         cancel_delayed_work_sync(&sc->tx_complete_work);
1372
1373         if (!sc->num_sec_wiphy) {
1374                 cancel_delayed_work_sync(&sc->wiphy_work);
1375                 cancel_work_sync(&sc->chan_work);
1376         }
1377
1378         if (sc->sc_flags & SC_OP_INVALID) {
1379                 ath_print(common, ATH_DBG_ANY, "Device not present\n");
1380                 mutex_unlock(&sc->mutex);
1381                 return;
1382         }
1383
1384         if (ath9k_wiphy_started(sc)) {
1385                 mutex_unlock(&sc->mutex);
1386                 return; /* another wiphy still in use */
1387         }
1388
1389         /* Ensure HW is awake when we try to shut it down. */
1390         ath9k_ps_wakeup(sc);
1391
1392         if (ah->btcoex_hw.enabled) {
1393                 ath9k_hw_btcoex_disable(ah);
1394                 if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE)
1395                         ath9k_btcoex_timer_pause(sc);
1396         }
1397
1398         /* make sure h/w will not generate any interrupt
1399          * before setting the invalid flag. */
1400         ath9k_hw_set_interrupts(ah, 0);
1401
1402         if (!(sc->sc_flags & SC_OP_INVALID)) {
1403                 ath_drain_all_txq(sc, false);
1404                 ath_stoprecv(sc);
1405                 ath9k_hw_phy_disable(ah);
1406         } else
1407                 sc->rx.rxlink = NULL;
1408
1409         /* disable HAL and put h/w to sleep */
1410         ath9k_hw_disable(ah);
1411         ath9k_hw_configpcipowersave(ah, 1, 1);
1412         ath9k_ps_restore(sc);
1413
1414         /* Finally, put the chip in FULL SLEEP mode */
1415         ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP);
1416
1417         sc->sc_flags |= SC_OP_INVALID;
1418
1419         mutex_unlock(&sc->mutex);
1420
1421         ath_print(common, ATH_DBG_CONFIG, "Driver halt\n");
1422 }
1423
1424 static int ath9k_add_interface(struct ieee80211_hw *hw,
1425                                struct ieee80211_vif *vif)
1426 {
1427         struct ath_wiphy *aphy = hw->priv;
1428         struct ath_softc *sc = aphy->sc;
1429         struct ath_hw *ah = sc->sc_ah;
1430         struct ath_common *common = ath9k_hw_common(ah);
1431         struct ath_vif *avp = (void *)vif->drv_priv;
1432         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
1433         int ret = 0;
1434
1435         mutex_lock(&sc->mutex);
1436
1437         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
1438             sc->nvifs > 0) {
1439                 ret = -ENOBUFS;
1440                 goto out;
1441         }
1442
1443         switch (vif->type) {
1444         case NL80211_IFTYPE_STATION:
1445                 ic_opmode = NL80211_IFTYPE_STATION;
1446                 break;
1447         case NL80211_IFTYPE_ADHOC:
1448         case NL80211_IFTYPE_AP:
1449         case NL80211_IFTYPE_MESH_POINT:
1450                 if (sc->nbcnvifs >= ATH_BCBUF) {
1451                         ret = -ENOBUFS;
1452                         goto out;
1453                 }
1454                 ic_opmode = vif->type;
1455                 break;
1456         default:
1457                 ath_print(common, ATH_DBG_FATAL,
1458                         "Interface type %d not yet supported\n", vif->type);
1459                 ret = -EOPNOTSUPP;
1460                 goto out;
1461         }
1462
1463         ath_print(common, ATH_DBG_CONFIG,
1464                   "Attach a VIF of type: %d\n", ic_opmode);
1465
1466         /* Set the VIF opmode */
1467         avp->av_opmode = ic_opmode;
1468         avp->av_bslot = -1;
1469
1470         sc->nvifs++;
1471
1472         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1473                 ath9k_set_bssid_mask(hw);
1474
1475         if (sc->nvifs > 1)
1476                 goto out; /* skip global settings for secondary vif */
1477
1478         if (ic_opmode == NL80211_IFTYPE_AP) {
1479                 ath9k_hw_set_tsfadjust(ah, 1);
1480                 sc->sc_flags |= SC_OP_TSF_RESET;
1481         }
1482
1483         /* Set the device opmode */
1484         ah->opmode = ic_opmode;
1485
1486         /*
1487          * Enable MIB interrupts when there are hardware phy counters.
1488          * Note we only do this (at the moment) for station mode.
1489          */
1490         if ((vif->type == NL80211_IFTYPE_STATION) ||
1491             (vif->type == NL80211_IFTYPE_ADHOC) ||
1492             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
1493                 if (ah->config.enable_ani)
1494                         ah->imask |= ATH9K_INT_MIB;
1495                 ah->imask |= ATH9K_INT_TSFOOR;
1496         }
1497
1498         ath9k_hw_set_interrupts(ah, ah->imask);
1499
1500         if (vif->type == NL80211_IFTYPE_AP    ||
1501             vif->type == NL80211_IFTYPE_ADHOC ||
1502             vif->type == NL80211_IFTYPE_MONITOR)
1503                 ath_start_ani(common);
1504
1505 out:
1506         mutex_unlock(&sc->mutex);
1507         return ret;
1508 }
1509
1510 static void ath9k_remove_interface(struct ieee80211_hw *hw,
1511                                    struct ieee80211_vif *vif)
1512 {
1513         struct ath_wiphy *aphy = hw->priv;
1514         struct ath_softc *sc = aphy->sc;
1515         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1516         struct ath_vif *avp = (void *)vif->drv_priv;
1517         int i;
1518
1519         ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n");
1520
1521         mutex_lock(&sc->mutex);
1522
1523         /* Stop ANI */
1524         del_timer_sync(&common->ani.timer);
1525
1526         /* Reclaim beacon resources */
1527         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
1528             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
1529             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
1530                 ath9k_ps_wakeup(sc);
1531                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1532                 ath9k_ps_restore(sc);
1533         }
1534
1535         ath_beacon_return(sc, avp);
1536         sc->sc_flags &= ~SC_OP_BEACONS;
1537
1538         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1539                 if (sc->beacon.bslot[i] == vif) {
1540                         printk(KERN_DEBUG "%s: vif had allocated beacon "
1541                                "slot\n", __func__);
1542                         sc->beacon.bslot[i] = NULL;
1543                         sc->beacon.bslot_aphy[i] = NULL;
1544                 }
1545         }
1546
1547         sc->nvifs--;
1548
1549         mutex_unlock(&sc->mutex);
1550 }
1551
1552 void ath9k_enable_ps(struct ath_softc *sc)
1553 {
1554         struct ath_hw *ah = sc->sc_ah;
1555
1556         sc->ps_enabled = true;
1557         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1558                 if ((ah->imask & ATH9K_INT_TIM_TIMER) == 0) {
1559                         ah->imask |= ATH9K_INT_TIM_TIMER;
1560                         ath9k_hw_set_interrupts(ah, ah->imask);
1561                 }
1562         }
1563         ath9k_hw_setrxabort(ah, 1);
1564 }
1565
1566 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
1567 {
1568         struct ath_wiphy *aphy = hw->priv;
1569         struct ath_softc *sc = aphy->sc;
1570         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1571         struct ieee80211_conf *conf = &hw->conf;
1572         struct ath_hw *ah = sc->sc_ah;
1573         bool disable_radio;
1574
1575         mutex_lock(&sc->mutex);
1576
1577         /*
1578          * Leave this as the first check because we need to turn on the
1579          * radio if it was disabled before prior to processing the rest
1580          * of the changes. Likewise we must only disable the radio towards
1581          * the end.
1582          */
1583         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
1584                 bool enable_radio;
1585                 bool all_wiphys_idle;
1586                 bool idle = !!(conf->flags & IEEE80211_CONF_IDLE);
1587
1588                 spin_lock_bh(&sc->wiphy_lock);
1589                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
1590                 ath9k_set_wiphy_idle(aphy, idle);
1591
1592                 enable_radio = (!idle && all_wiphys_idle);
1593
1594                 /*
1595                  * After we unlock here its possible another wiphy
1596                  * can be re-renabled so to account for that we will
1597                  * only disable the radio toward the end of this routine
1598                  * if by then all wiphys are still idle.
1599                  */
1600                 spin_unlock_bh(&sc->wiphy_lock);
1601
1602                 if (enable_radio) {
1603                         sc->ps_idle = false;
1604                         ath_radio_enable(sc, hw);
1605                         ath_print(common, ATH_DBG_CONFIG,
1606                                   "not-idle: enabling radio\n");
1607                 }
1608         }
1609
1610         /*
1611          * We just prepare to enable PS. We have to wait until our AP has
1612          * ACK'd our null data frame to disable RX otherwise we'll ignore
1613          * those ACKs and end up retransmitting the same null data frames.
1614          * IEEE80211_CONF_CHANGE_PS is only passed by mac80211 for STA mode.
1615          */
1616         if (changed & IEEE80211_CONF_CHANGE_PS) {
1617                 if (conf->flags & IEEE80211_CONF_PS) {
1618                         sc->ps_flags |= PS_ENABLED;
1619                         /*
1620                          * At this point we know hardware has received an ACK
1621                          * of a previously sent null data frame.
1622                          */
1623                         if ((sc->ps_flags & PS_NULLFUNC_COMPLETED)) {
1624                                 sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
1625                                 ath9k_enable_ps(sc);
1626                         }
1627                 } else {
1628                         sc->ps_enabled = false;
1629                         sc->ps_flags &= ~(PS_ENABLED |
1630                                           PS_NULLFUNC_COMPLETED);
1631                         ath9k_setpower(sc, ATH9K_PM_AWAKE);
1632                         if (!(ah->caps.hw_caps &
1633                               ATH9K_HW_CAP_AUTOSLEEP)) {
1634                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
1635                                 sc->ps_flags &= ~(PS_WAIT_FOR_BEACON |
1636                                                   PS_WAIT_FOR_CAB |
1637                                                   PS_WAIT_FOR_PSPOLL_DATA |
1638                                                   PS_WAIT_FOR_TX_ACK);
1639                                 if (ah->imask & ATH9K_INT_TIM_TIMER) {
1640                                         ah->imask &= ~ATH9K_INT_TIM_TIMER;
1641                                         ath9k_hw_set_interrupts(sc->sc_ah,
1642                                                         ah->imask);
1643                                 }
1644                         }
1645                 }
1646         }
1647
1648         if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
1649                 if (conf->flags & IEEE80211_CONF_MONITOR) {
1650                         ath_print(common, ATH_DBG_CONFIG,
1651                                   "HW opmode set to Monitor mode\n");
1652                         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1653                 }
1654         }
1655
1656         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1657                 struct ieee80211_channel *curchan = hw->conf.channel;
1658                 int pos = curchan->hw_value;
1659
1660                 aphy->chan_idx = pos;
1661                 aphy->chan_is_ht = conf_is_ht(conf);
1662
1663                 if (aphy->state == ATH_WIPHY_SCAN ||
1664                     aphy->state == ATH_WIPHY_ACTIVE)
1665                         ath9k_wiphy_pause_all_forced(sc, aphy);
1666                 else {
1667                         /*
1668                          * Do not change operational channel based on a paused
1669                          * wiphy changes.
1670                          */
1671                         goto skip_chan_change;
1672                 }
1673
1674                 ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
1675                           curchan->center_freq);
1676
1677                 /* XXX: remove me eventualy */
1678                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
1679
1680                 ath_update_chainmask(sc, conf_is_ht(conf));
1681
1682                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
1683                         ath_print(common, ATH_DBG_FATAL,
1684                                   "Unable to set channel\n");
1685                         mutex_unlock(&sc->mutex);
1686                         return -EINVAL;
1687                 }
1688         }
1689
1690 skip_chan_change:
1691         if (changed & IEEE80211_CONF_CHANGE_POWER) {
1692                 sc->config.txpowlimit = 2 * conf->power_level;
1693                 ath_update_txpow(sc);
1694         }
1695
1696         spin_lock_bh(&sc->wiphy_lock);
1697         disable_radio = ath9k_all_wiphys_idle(sc);
1698         spin_unlock_bh(&sc->wiphy_lock);
1699
1700         if (disable_radio) {
1701                 ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n");
1702                 sc->ps_idle = true;
1703                 ath_radio_disable(sc, hw);
1704         }
1705
1706         mutex_unlock(&sc->mutex);
1707
1708         return 0;
1709 }
1710
1711 #define SUPPORTED_FILTERS                       \
1712         (FIF_PROMISC_IN_BSS |                   \
1713         FIF_ALLMULTI |                          \
1714         FIF_CONTROL |                           \
1715         FIF_PSPOLL |                            \
1716         FIF_OTHER_BSS |                         \
1717         FIF_BCN_PRBRESP_PROMISC |               \
1718         FIF_FCSFAIL)
1719
1720 /* FIXME: sc->sc_full_reset ? */
1721 static void ath9k_configure_filter(struct ieee80211_hw *hw,
1722                                    unsigned int changed_flags,
1723                                    unsigned int *total_flags,
1724                                    u64 multicast)
1725 {
1726         struct ath_wiphy *aphy = hw->priv;
1727         struct ath_softc *sc = aphy->sc;
1728         u32 rfilt;
1729
1730         changed_flags &= SUPPORTED_FILTERS;
1731         *total_flags &= SUPPORTED_FILTERS;
1732
1733         sc->rx.rxfilter = *total_flags;
1734         ath9k_ps_wakeup(sc);
1735         rfilt = ath_calcrxfilter(sc);
1736         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
1737         ath9k_ps_restore(sc);
1738
1739         ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG,
1740                   "Set HW RX filter: 0x%x\n", rfilt);
1741 }
1742
1743 static int ath9k_sta_add(struct ieee80211_hw *hw,
1744                          struct ieee80211_vif *vif,
1745                          struct ieee80211_sta *sta)
1746 {
1747         struct ath_wiphy *aphy = hw->priv;
1748         struct ath_softc *sc = aphy->sc;
1749
1750         ath_node_attach(sc, sta);
1751
1752         return 0;
1753 }
1754
1755 static int ath9k_sta_remove(struct ieee80211_hw *hw,
1756                             struct ieee80211_vif *vif,
1757                             struct ieee80211_sta *sta)
1758 {
1759         struct ath_wiphy *aphy = hw->priv;
1760         struct ath_softc *sc = aphy->sc;
1761
1762         ath_node_detach(sc, sta);
1763
1764         return 0;
1765 }
1766
1767 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
1768                          const struct ieee80211_tx_queue_params *params)
1769 {
1770         struct ath_wiphy *aphy = hw->priv;
1771         struct ath_softc *sc = aphy->sc;
1772         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1773         struct ath9k_tx_queue_info qi;
1774         int ret = 0, qnum;
1775
1776         if (queue >= WME_NUM_AC)
1777                 return 0;
1778
1779         mutex_lock(&sc->mutex);
1780
1781         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
1782
1783         qi.tqi_aifs = params->aifs;
1784         qi.tqi_cwmin = params->cw_min;
1785         qi.tqi_cwmax = params->cw_max;
1786         qi.tqi_burstTime = params->txop;
1787         qnum = ath_get_hal_qnum(queue, sc);
1788
1789         ath_print(common, ATH_DBG_CONFIG,
1790                   "Configure tx [queue/halq] [%d/%d],  "
1791                   "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
1792                   queue, qnum, params->aifs, params->cw_min,
1793                   params->cw_max, params->txop);
1794
1795         ret = ath_txq_update(sc, qnum, &qi);
1796         if (ret)
1797                 ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n");
1798
1799         if (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)
1800                 if ((qnum == sc->tx.hwq_map[ATH9K_WME_AC_BE]) && !ret)
1801                         ath_beaconq_config(sc);
1802
1803         mutex_unlock(&sc->mutex);
1804
1805         return ret;
1806 }
1807
1808 static int ath9k_set_key(struct ieee80211_hw *hw,
1809                          enum set_key_cmd cmd,
1810                          struct ieee80211_vif *vif,
1811                          struct ieee80211_sta *sta,
1812                          struct ieee80211_key_conf *key)
1813 {
1814         struct ath_wiphy *aphy = hw->priv;
1815         struct ath_softc *sc = aphy->sc;
1816         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1817         int ret = 0;
1818
1819         if (modparam_nohwcrypt)
1820                 return -ENOSPC;
1821
1822         mutex_lock(&sc->mutex);
1823         ath9k_ps_wakeup(sc);
1824         ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n");
1825
1826         switch (cmd) {
1827         case SET_KEY:
1828                 ret = ath_key_config(common, vif, sta, key);
1829                 if (ret >= 0) {
1830                         key->hw_key_idx = ret;
1831                         /* push IV and Michael MIC generation to stack */
1832                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1833                         if (key->alg == ALG_TKIP)
1834                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1835                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
1836                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
1837                         ret = 0;
1838                 }
1839                 break;
1840         case DISABLE_KEY:
1841                 ath_key_delete(common, key);
1842                 break;
1843         default:
1844                 ret = -EINVAL;
1845         }
1846
1847         ath9k_ps_restore(sc);
1848         mutex_unlock(&sc->mutex);
1849
1850         return ret;
1851 }
1852
1853 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
1854                                    struct ieee80211_vif *vif,
1855                                    struct ieee80211_bss_conf *bss_conf,
1856                                    u32 changed)
1857 {
1858         struct ath_wiphy *aphy = hw->priv;
1859         struct ath_softc *sc = aphy->sc;
1860         struct ath_hw *ah = sc->sc_ah;
1861         struct ath_common *common = ath9k_hw_common(ah);
1862         struct ath_vif *avp = (void *)vif->drv_priv;
1863         int slottime;
1864         int error;
1865
1866         mutex_lock(&sc->mutex);
1867
1868         if (changed & BSS_CHANGED_BSSID) {
1869                 /* Set BSSID */
1870                 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1871                 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
1872                 common->curaid = 0;
1873                 ath9k_hw_write_associd(ah);
1874
1875                 /* Set aggregation protection mode parameters */
1876                 sc->config.ath_aggr_prot = 0;
1877
1878                 /* Only legacy IBSS for now */
1879                 if (vif->type == NL80211_IFTYPE_ADHOC)
1880                         ath_update_chainmask(sc, 0);
1881
1882                 ath_print(common, ATH_DBG_CONFIG,
1883                           "BSSID: %pM aid: 0x%x\n",
1884                           common->curbssid, common->curaid);
1885
1886                 /* need to reconfigure the beacon */
1887                 sc->sc_flags &= ~SC_OP_BEACONS ;
1888         }
1889
1890         /* Enable transmission of beacons (AP, IBSS, MESH) */
1891         if ((changed & BSS_CHANGED_BEACON) ||
1892             ((changed & BSS_CHANGED_BEACON_ENABLED) && bss_conf->enable_beacon)) {
1893                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1894                 error = ath_beacon_alloc(aphy, vif);
1895                 if (!error)
1896                         ath_beacon_config(sc, vif);
1897         }
1898
1899         if (changed & BSS_CHANGED_ERP_SLOT) {
1900                 if (bss_conf->use_short_slot)
1901                         slottime = 9;
1902                 else
1903                         slottime = 20;
1904                 if (vif->type == NL80211_IFTYPE_AP) {
1905                         /*
1906                          * Defer update, so that connected stations can adjust
1907                          * their settings at the same time.
1908                          * See beacon.c for more details
1909                          */
1910                         sc->beacon.slottime = slottime;
1911                         sc->beacon.updateslot = UPDATE;
1912                 } else {
1913                         ah->slottime = slottime;
1914                         ath9k_hw_init_global_settings(ah);
1915                 }
1916         }
1917
1918         /* Disable transmission of beacons */
1919         if ((changed & BSS_CHANGED_BEACON_ENABLED) && !bss_conf->enable_beacon)
1920                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1921
1922         if (changed & BSS_CHANGED_BEACON_INT) {
1923                 sc->beacon_interval = bss_conf->beacon_int;
1924                 /*
1925                  * In case of AP mode, the HW TSF has to be reset
1926                  * when the beacon interval changes.
1927                  */
1928                 if (vif->type == NL80211_IFTYPE_AP) {
1929                         sc->sc_flags |= SC_OP_TSF_RESET;
1930                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
1931                         error = ath_beacon_alloc(aphy, vif);
1932                         if (!error)
1933                                 ath_beacon_config(sc, vif);
1934                 } else {
1935                         ath_beacon_config(sc, vif);
1936                 }
1937         }
1938
1939         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1940                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
1941                           bss_conf->use_short_preamble);
1942                 if (bss_conf->use_short_preamble)
1943                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
1944                 else
1945                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
1946         }
1947
1948         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1949                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
1950                           bss_conf->use_cts_prot);
1951                 if (bss_conf->use_cts_prot &&
1952                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
1953                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
1954                 else
1955                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
1956         }
1957
1958         if (changed & BSS_CHANGED_ASSOC) {
1959                 ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
1960                         bss_conf->assoc);
1961                 ath9k_bss_assoc_info(sc, vif, bss_conf);
1962         }
1963
1964         mutex_unlock(&sc->mutex);
1965 }
1966
1967 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
1968 {
1969         u64 tsf;
1970         struct ath_wiphy *aphy = hw->priv;
1971         struct ath_softc *sc = aphy->sc;
1972
1973         mutex_lock(&sc->mutex);
1974         tsf = ath9k_hw_gettsf64(sc->sc_ah);
1975         mutex_unlock(&sc->mutex);
1976
1977         return tsf;
1978 }
1979
1980 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
1981 {
1982         struct ath_wiphy *aphy = hw->priv;
1983         struct ath_softc *sc = aphy->sc;
1984
1985         mutex_lock(&sc->mutex);
1986         ath9k_hw_settsf64(sc->sc_ah, tsf);
1987         mutex_unlock(&sc->mutex);
1988 }
1989
1990 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
1991 {
1992         struct ath_wiphy *aphy = hw->priv;
1993         struct ath_softc *sc = aphy->sc;
1994
1995         mutex_lock(&sc->mutex);
1996
1997         ath9k_ps_wakeup(sc);
1998         ath9k_hw_reset_tsf(sc->sc_ah);
1999         ath9k_ps_restore(sc);
2000
2001         mutex_unlock(&sc->mutex);
2002 }
2003
2004 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2005                               struct ieee80211_vif *vif,
2006                               enum ieee80211_ampdu_mlme_action action,
2007                               struct ieee80211_sta *sta,
2008                               u16 tid, u16 *ssn)
2009 {
2010         struct ath_wiphy *aphy = hw->priv;
2011         struct ath_softc *sc = aphy->sc;
2012         int ret = 0;
2013
2014         switch (action) {
2015         case IEEE80211_AMPDU_RX_START:
2016                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2017                         ret = -ENOTSUPP;
2018                 break;
2019         case IEEE80211_AMPDU_RX_STOP:
2020                 break;
2021         case IEEE80211_AMPDU_TX_START:
2022                 ath9k_ps_wakeup(sc);
2023                 ath_tx_aggr_start(sc, sta, tid, ssn);
2024                 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
2025                 ath9k_ps_restore(sc);
2026                 break;
2027         case IEEE80211_AMPDU_TX_STOP:
2028                 ath9k_ps_wakeup(sc);
2029                 ath_tx_aggr_stop(sc, sta, tid);
2030                 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
2031                 ath9k_ps_restore(sc);
2032                 break;
2033         case IEEE80211_AMPDU_TX_OPERATIONAL:
2034                 ath9k_ps_wakeup(sc);
2035                 ath_tx_aggr_resume(sc, sta, tid);
2036                 ath9k_ps_restore(sc);
2037                 break;
2038         default:
2039                 ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
2040                           "Unknown AMPDU action\n");
2041         }
2042
2043         return ret;
2044 }
2045
2046 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2047 {
2048         struct ath_wiphy *aphy = hw->priv;
2049         struct ath_softc *sc = aphy->sc;
2050         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2051
2052         mutex_lock(&sc->mutex);
2053         if (ath9k_wiphy_scanning(sc)) {
2054                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2055                        "same time\n");
2056                 /*
2057                  * Do not allow the concurrent scanning state for now. This
2058                  * could be improved with scanning control moved into ath9k.
2059                  */
2060                 mutex_unlock(&sc->mutex);
2061                 return;
2062         }
2063
2064         aphy->state = ATH_WIPHY_SCAN;
2065         ath9k_wiphy_pause_all_forced(sc, aphy);
2066         sc->sc_flags |= SC_OP_SCANNING;
2067         del_timer_sync(&common->ani.timer);
2068         cancel_delayed_work_sync(&sc->tx_complete_work);
2069         mutex_unlock(&sc->mutex);
2070 }
2071
2072 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2073 {
2074         struct ath_wiphy *aphy = hw->priv;
2075         struct ath_softc *sc = aphy->sc;
2076         struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2077
2078         mutex_lock(&sc->mutex);
2079         aphy->state = ATH_WIPHY_ACTIVE;
2080         sc->sc_flags &= ~SC_OP_SCANNING;
2081         sc->sc_flags |= SC_OP_FULL_RESET;
2082         ath_start_ani(common);
2083         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2084         ath_beacon_config(sc, NULL);
2085         mutex_unlock(&sc->mutex);
2086 }
2087
2088 static void ath9k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
2089 {
2090         struct ath_wiphy *aphy = hw->priv;
2091         struct ath_softc *sc = aphy->sc;
2092         struct ath_hw *ah = sc->sc_ah;
2093
2094         mutex_lock(&sc->mutex);
2095         ah->coverage_class = coverage_class;
2096         ath9k_hw_init_global_settings(ah);
2097         mutex_unlock(&sc->mutex);
2098 }
2099
2100 struct ieee80211_ops ath9k_ops = {
2101         .tx                 = ath9k_tx,
2102         .start              = ath9k_start,
2103         .stop               = ath9k_stop,
2104         .add_interface      = ath9k_add_interface,
2105         .remove_interface   = ath9k_remove_interface,
2106         .config             = ath9k_config,
2107         .configure_filter   = ath9k_configure_filter,
2108         .sta_add            = ath9k_sta_add,
2109         .sta_remove         = ath9k_sta_remove,
2110         .conf_tx            = ath9k_conf_tx,
2111         .bss_info_changed   = ath9k_bss_info_changed,
2112         .set_key            = ath9k_set_key,
2113         .get_tsf            = ath9k_get_tsf,
2114         .set_tsf            = ath9k_set_tsf,
2115         .reset_tsf          = ath9k_reset_tsf,
2116         .ampdu_action       = ath9k_ampdu_action,
2117         .sw_scan_start      = ath9k_sw_scan_start,
2118         .sw_scan_complete   = ath9k_sw_scan_complete,
2119         .rfkill_poll        = ath9k_rfkill_poll_state,
2120         .set_coverage_class = ath9k_set_coverage_class,
2121 };