ath9k: Add support for AR9287 based chipsets.
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 /*
88  * Read and write, they both share the same lock. We do this to serialize
89  * reads and writes on Atheros 802.11n PCI devices only. This is required
90  * as the FIFO on these devices can only accept sanely 2 requests. After
91  * that the device goes bananas. Serializing the reads/writes prevents this
92  * from happening.
93  */
94
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98                 unsigned long flags;
99                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100                 iowrite32(val, ah->ah_sc->mem + reg_offset);
101                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102         } else
103                 iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108         u32 val;
109         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110                 unsigned long flags;
111                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112                 val = ioread32(ah->ah_sc->mem + reg_offset);
113                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114         } else
115                 val = ioread32(ah->ah_sc->mem + reg_offset);
116         return val;
117 }
118
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121         int i;
122
123         BUG_ON(timeout < AH_TIME_QUANTUM);
124
125         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126                 if ((REG_READ(ah, reg) & mask) == val)
127                         return true;
128
129                 udelay(AH_TIME_QUANTUM);
130         }
131
132         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134                 timeout, reg, REG_READ(ah, reg), mask, val);
135
136         return false;
137 }
138
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141         u32 retval;
142         int i;
143
144         for (i = 0, retval = 0; i < n; i++) {
145                 retval = (retval << 1) | (val & 1);
146                 val >>= 1;
147         }
148         return retval;
149 }
150
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152                              u16 flags, u16 *low,
153                              u16 *high)
154 {
155         struct ath9k_hw_capabilities *pCap = &ah->caps;
156
157         if (flags & CHANNEL_5GHZ) {
158                 *low = pCap->low_5ghz_chan;
159                 *high = pCap->high_5ghz_chan;
160                 return true;
161         }
162         if ((flags & CHANNEL_2GHZ)) {
163                 *low = pCap->low_2ghz_chan;
164                 *high = pCap->high_2ghz_chan;
165                 return true;
166         }
167         return false;
168 }
169
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171                            const struct ath_rate_table *rates,
172                            u32 frameLen, u16 rateix,
173                            bool shortPreamble)
174 {
175         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176         u32 kbps;
177
178         kbps = rates->info[rateix].ratekbps;
179
180         if (kbps == 0)
181                 return 0;
182
183         switch (rates->info[rateix].phy) {
184         case WLAN_RC_PHY_CCK:
185                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186                 if (shortPreamble && rates->info[rateix].short_preamble)
187                         phyTime >>= 1;
188                 numBits = frameLen << 3;
189                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190                 break;
191         case WLAN_RC_PHY_OFDM:
192                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
195                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196                         txTime = OFDM_SIFS_TIME_QUARTER
197                                 + OFDM_PREAMBLE_TIME_QUARTER
198                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199                 } else if (ah->curchan &&
200                            IS_CHAN_HALF_RATE(ah->curchan)) {
201                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
203                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204                         txTime = OFDM_SIFS_TIME_HALF +
205                                 OFDM_PREAMBLE_TIME_HALF
206                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207                 } else {
208                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
210                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212                                 + (numSymbols * OFDM_SYMBOL_TIME);
213                 }
214                 break;
215         default:
216                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217                         "Unknown phy %u (rate ix %u)\n",
218                         rates->info[rateix].phy, rateix);
219                 txTime = 0;
220                 break;
221         }
222
223         return txTime;
224 }
225
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227                                   struct ath9k_channel *chan,
228                                   struct chan_centers *centers)
229 {
230         int8_t extoff;
231
232         if (!IS_CHAN_HT40(chan)) {
233                 centers->ctl_center = centers->ext_center =
234                         centers->synth_center = chan->channel;
235                 return;
236         }
237
238         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240                 centers->synth_center =
241                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242                 extoff = 1;
243         } else {
244                 centers->synth_center =
245                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246                 extoff = -1;
247         }
248
249         centers->ctl_center =
250                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251         centers->ext_center =
252                 centers->synth_center + (extoff *
253                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254                           HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256
257 /******************/
258 /* Chip Revisions */
259 /******************/
260
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263         u32 val;
264
265         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266
267         if (val == 0xFF) {
268                 val = REG_READ(ah, AR_SREV);
269                 ah->hw_version.macVersion =
270                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273         } else {
274                 if (!AR_SREV_9100(ah))
275                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276
277                 ah->hw_version.macRev = val & AR_SREV_REVISION;
278
279                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280                         ah->is_pciexpress = true;
281         }
282 }
283
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286         u32 val;
287         int i;
288
289         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290
291         for (i = 0; i < 8; i++)
292                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295
296         return ath9k_hw_reverse_bits(val, 8);
297 }
298
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305         if (AR_SREV_9100(ah))
306                 return;
307
308         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324         u32 regHold[2];
325         u32 patternData[4] = { 0x55555555,
326                                0xaaaaaaaa,
327                                0x66666666,
328                                0x99999999 };
329         int i, j;
330
331         for (i = 0; i < 2; i++) {
332                 u32 addr = regAddr[i];
333                 u32 wrData, rdData;
334
335                 regHold[i] = REG_READ(ah, addr);
336                 for (j = 0; j < 0x100; j++) {
337                         wrData = (j << 16) | j;
338                         REG_WRITE(ah, addr, wrData);
339                         rdData = REG_READ(ah, addr);
340                         if (rdData != wrData) {
341                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342                                         "address test failed "
343                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344                                         addr, wrData, rdData);
345                                 return false;
346                         }
347                 }
348                 for (j = 0; j < 4; j++) {
349                         wrData = patternData[j];
350                         REG_WRITE(ah, addr, wrData);
351                         rdData = REG_READ(ah, addr);
352                         if (wrData != rdData) {
353                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354                                         "address test failed "
355                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356                                         addr, wrData, rdData);
357                                 return false;
358                         }
359                 }
360                 REG_WRITE(ah, regAddr[i], regHold[i]);
361         }
362         udelay(100);
363
364         return true;
365 }
366
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369         switch (devid) {
370         case AR5416_DEVID_PCI:
371                 return "Atheros 5416";
372         case AR5416_DEVID_PCIE:
373                 return "Atheros 5418";
374         case AR9160_DEVID_PCI:
375                 return "Atheros 9160";
376         case AR5416_AR9100_DEVID:
377                 return "Atheros 9100";
378         case AR9280_DEVID_PCI:
379         case AR9280_DEVID_PCIE:
380                 return "Atheros 9280";
381         case AR9285_DEVID_PCIE:
382                 return "Atheros 9285";
383         case AR5416_DEVID_AR9287_PCI:
384         case AR5416_DEVID_AR9287_PCIE:
385                 return "Atheros 9287";
386         }
387
388         return NULL;
389 }
390
391 static void ath9k_hw_set_defaults(struct ath_hw *ah)
392 {
393         int i;
394
395         ah->config.dma_beacon_response_time = 2;
396         ah->config.sw_beacon_response_time = 10;
397         ah->config.additional_swba_backoff = 0;
398         ah->config.ack_6mb = 0x0;
399         ah->config.cwm_ignore_extcca = 0;
400         ah->config.pcie_powersave_enable = 0;
401         ah->config.pcie_clock_req = 0;
402         ah->config.pcie_waen = 0;
403         ah->config.analog_shiftreg = 1;
404         ah->config.ht_enable = 1;
405         ah->config.ofdm_trig_low = 200;
406         ah->config.ofdm_trig_high = 500;
407         ah->config.cck_trig_high = 200;
408         ah->config.cck_trig_low = 100;
409         ah->config.enable_ani = 1;
410         ah->config.diversity_control = 0;
411         ah->config.antenna_switch_swap = 0;
412
413         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
414                 ah->config.spurchans[i][0] = AR_NO_SPUR;
415                 ah->config.spurchans[i][1] = AR_NO_SPUR;
416         }
417
418         ah->config.intr_mitigation = true;
419
420         /*
421          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
422          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
423          * This means we use it for all AR5416 devices, and the few
424          * minor PCI AR9280 devices out there.
425          *
426          * Serialization is required because these devices do not handle
427          * well the case of two concurrent reads/writes due to the latency
428          * involved. During one read/write another read/write can be issued
429          * on another CPU while the previous read/write may still be working
430          * on our hardware, if we hit this case the hardware poops in a loop.
431          * We prevent this by serializing reads and writes.
432          *
433          * This issue is not present on PCI-Express devices or pre-AR5416
434          * devices (legacy, 802.11abg).
435          */
436         if (num_possible_cpus() > 1)
437                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
438 }
439
440 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
441                                         int *status)
442 {
443         struct ath_hw *ah;
444
445         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
446         if (ah == NULL) {
447                 DPRINTF(sc, ATH_DBG_FATAL,
448                         "Cannot allocate memory for state block\n");
449                 *status = -ENOMEM;
450                 return NULL;
451         }
452
453         ah->ah_sc = sc;
454         ah->hw_version.magic = AR5416_MAGIC;
455         ah->regulatory.country_code = CTRY_DEFAULT;
456         ah->hw_version.devid = devid;
457         ah->hw_version.subvendorid = 0;
458
459         ah->ah_flags = 0;
460         if ((devid == AR5416_AR9100_DEVID))
461                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
462         if (!AR_SREV_9100(ah))
463                 ah->ah_flags = AH_USE_EEPROM;
464
465         ah->regulatory.power_limit = MAX_RATE_POWER;
466         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
467         ah->atim_window = 0;
468         ah->diversity_control = ah->config.diversity_control;
469         ah->antenna_switch_swap =
470                 ah->config.antenna_switch_swap;
471         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
472         ah->beacon_interval = 100;
473         ah->enable_32kHz_clock = DONT_USE_32KHZ;
474         ah->slottime = (u32) -1;
475         ah->acktimeout = (u32) -1;
476         ah->ctstimeout = (u32) -1;
477         ah->globaltxtimeout = (u32) -1;
478
479         ah->gbeacon_rate = 0;
480
481         return ah;
482 }
483
484 static int ath9k_hw_rfattach(struct ath_hw *ah)
485 {
486         bool rfStatus = false;
487         int ecode = 0;
488
489         rfStatus = ath9k_hw_init_rf(ah, &ecode);
490         if (!rfStatus) {
491                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
492                         "RF setup failed, status: %u\n", ecode);
493                 return ecode;
494         }
495
496         return 0;
497 }
498
499 static int ath9k_hw_rf_claim(struct ath_hw *ah)
500 {
501         u32 val;
502
503         REG_WRITE(ah, AR_PHY(0), 0x00000007);
504
505         val = ath9k_hw_get_radiorev(ah);
506         switch (val & AR_RADIO_SREV_MAJOR) {
507         case 0:
508                 val = AR_RAD5133_SREV_MAJOR;
509                 break;
510         case AR_RAD5133_SREV_MAJOR:
511         case AR_RAD5122_SREV_MAJOR:
512         case AR_RAD2133_SREV_MAJOR:
513         case AR_RAD2122_SREV_MAJOR:
514                 break;
515         default:
516                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
517                         "Radio Chip Rev 0x%02X not supported\n",
518                         val & AR_RADIO_SREV_MAJOR);
519                 return -EOPNOTSUPP;
520         }
521
522         ah->hw_version.analog5GhzRev = val;
523
524         return 0;
525 }
526
527 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
528 {
529         u32 sum;
530         int i;
531         u16 eeval;
532
533         sum = 0;
534         for (i = 0; i < 3; i++) {
535                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
536                 sum += eeval;
537                 ah->macaddr[2 * i] = eeval >> 8;
538                 ah->macaddr[2 * i + 1] = eeval & 0xff;
539         }
540         if (sum == 0 || sum == 0xffff * 3)
541                 return -EADDRNOTAVAIL;
542
543         return 0;
544 }
545
546 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
547 {
548         u32 rxgain_type;
549
550         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
551                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
552
553                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
554                         INIT_INI_ARRAY(&ah->iniModesRxGain,
555                         ar9280Modes_backoff_13db_rxgain_9280_2,
556                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
557                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
558                         INIT_INI_ARRAY(&ah->iniModesRxGain,
559                         ar9280Modes_backoff_23db_rxgain_9280_2,
560                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
561                 else
562                         INIT_INI_ARRAY(&ah->iniModesRxGain,
563                         ar9280Modes_original_rxgain_9280_2,
564                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
565         } else {
566                 INIT_INI_ARRAY(&ah->iniModesRxGain,
567                         ar9280Modes_original_rxgain_9280_2,
568                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
569         }
570 }
571
572 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
573 {
574         u32 txgain_type;
575
576         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
577                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
578
579                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
580                         INIT_INI_ARRAY(&ah->iniModesTxGain,
581                         ar9280Modes_high_power_tx_gain_9280_2,
582                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
583                 else
584                         INIT_INI_ARRAY(&ah->iniModesTxGain,
585                         ar9280Modes_original_tx_gain_9280_2,
586                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
587         } else {
588                 INIT_INI_ARRAY(&ah->iniModesTxGain,
589                 ar9280Modes_original_tx_gain_9280_2,
590                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
591         }
592 }
593
594 static int ath9k_hw_post_attach(struct ath_hw *ah)
595 {
596         int ecode;
597
598         if (!ath9k_hw_chip_test(ah))
599                 return -ENODEV;
600
601         ecode = ath9k_hw_rf_claim(ah);
602         if (ecode != 0)
603                 return ecode;
604
605         ecode = ath9k_hw_eeprom_attach(ah);
606         if (ecode != 0)
607                 return ecode;
608
609         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
610                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
611
612         ecode = ath9k_hw_rfattach(ah);
613         if (ecode != 0)
614                 return ecode;
615
616         if (!AR_SREV_9100(ah)) {
617                 ath9k_hw_ani_setup(ah);
618                 ath9k_hw_ani_attach(ah);
619         }
620
621         return 0;
622 }
623
624 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
625                                          int *status)
626 {
627         struct ath_hw *ah;
628         int ecode;
629         u32 i, j;
630
631         ah = ath9k_hw_newstate(devid, sc, status);
632         if (ah == NULL)
633                 return NULL;
634
635         ath9k_hw_set_defaults(ah);
636
637         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
638                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
639                 ecode = -EIO;
640                 goto bad;
641         }
642
643         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
644                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
645                 ecode = -EIO;
646                 goto bad;
647         }
648
649         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
650                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
651                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
652                         ah->config.serialize_regmode =
653                                 SER_REG_MODE_ON;
654                 } else {
655                         ah->config.serialize_regmode =
656                                 SER_REG_MODE_OFF;
657                 }
658         }
659
660         DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
661                 ah->config.serialize_regmode);
662
663         if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
664             (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
665             (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
666             (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) &&
667             (!AR_SREV_9285(ah)) && (!AR_SREV_9287(ah))) {
668                 DPRINTF(sc, ATH_DBG_FATAL,
669                         "Mac Chip Rev 0x%02x.%x is not supported by "
670                         "this driver\n", ah->hw_version.macVersion,
671                         ah->hw_version.macRev);
672                 ecode = -EOPNOTSUPP;
673                 goto bad;
674         }
675
676         if (AR_SREV_9100(ah)) {
677                 ah->iq_caldata.calData = &iq_cal_multi_sample;
678                 ah->supp_cals = IQ_MISMATCH_CAL;
679                 ah->is_pciexpress = false;
680         }
681         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
682
683         if (AR_SREV_9160_10_OR_LATER(ah)) {
684                 if (AR_SREV_9280_10_OR_LATER(ah)) {
685                         ah->iq_caldata.calData = &iq_cal_single_sample;
686                         ah->adcgain_caldata.calData =
687                                 &adc_gain_cal_single_sample;
688                         ah->adcdc_caldata.calData =
689                                 &adc_dc_cal_single_sample;
690                         ah->adcdc_calinitdata.calData =
691                                 &adc_init_dc_cal;
692                 } else {
693                         ah->iq_caldata.calData = &iq_cal_multi_sample;
694                         ah->adcgain_caldata.calData =
695                                 &adc_gain_cal_multi_sample;
696                         ah->adcdc_caldata.calData =
697                                 &adc_dc_cal_multi_sample;
698                         ah->adcdc_calinitdata.calData =
699                                 &adc_init_dc_cal;
700                 }
701                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
702         }
703
704         ah->ani_function = ATH9K_ANI_ALL;
705         if (AR_SREV_9280_10_OR_LATER(ah))
706                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
707         if (AR_SREV_9287_11_OR_LATER(ah)) {
708                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
709                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
710                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
711                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
712                 if (ah->config.pcie_clock_req)
713                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
714                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
715                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
716                 else
717                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
718                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
719                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
720                                         2);
721         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
722                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
723                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
724                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
725                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
726
727                 if (ah->config.pcie_clock_req)
728                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
729                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
730                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
731                 else
732                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
733                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
734                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
735                                   2);
736         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
737
738
739                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
740                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
741                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
742                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
743
744                 if (ah->config.pcie_clock_req) {
745                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
746                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
747                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
748                 } else {
749                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
750                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
751                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
752                                   2);
753                 }
754         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
755                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
756                                ARRAY_SIZE(ar9285Modes_9285), 6);
757                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
758                                ARRAY_SIZE(ar9285Common_9285), 2);
759
760                 if (ah->config.pcie_clock_req) {
761                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
762                         ar9285PciePhy_clkreq_off_L1_9285,
763                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
764                 } else {
765                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
766                         ar9285PciePhy_clkreq_always_on_L1_9285,
767                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
768                 }
769         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
770                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
771                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
772                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
773                                ARRAY_SIZE(ar9280Common_9280_2), 2);
774
775                 if (ah->config.pcie_clock_req) {
776                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
777                                ar9280PciePhy_clkreq_off_L1_9280,
778                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
779                 } else {
780                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
781                                ar9280PciePhy_clkreq_always_on_L1_9280,
782                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
783                 }
784                 INIT_INI_ARRAY(&ah->iniModesAdditional,
785                                ar9280Modes_fast_clock_9280_2,
786                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
787         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
788                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
789                                ARRAY_SIZE(ar9280Modes_9280), 6);
790                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
791                                ARRAY_SIZE(ar9280Common_9280), 2);
792         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
793                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
794                                ARRAY_SIZE(ar5416Modes_9160), 6);
795                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
796                                ARRAY_SIZE(ar5416Common_9160), 2);
797                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
798                                ARRAY_SIZE(ar5416Bank0_9160), 2);
799                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
800                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
801                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
802                                ARRAY_SIZE(ar5416Bank1_9160), 2);
803                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
804                                ARRAY_SIZE(ar5416Bank2_9160), 2);
805                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
806                                ARRAY_SIZE(ar5416Bank3_9160), 3);
807                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
808                                ARRAY_SIZE(ar5416Bank6_9160), 3);
809                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
810                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
811                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
812                                ARRAY_SIZE(ar5416Bank7_9160), 2);
813                 if (AR_SREV_9160_11(ah)) {
814                         INIT_INI_ARRAY(&ah->iniAddac,
815                                        ar5416Addac_91601_1,
816                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
817                 } else {
818                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
819                                        ARRAY_SIZE(ar5416Addac_9160), 2);
820                 }
821         } else if (AR_SREV_9100_OR_LATER(ah)) {
822                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
823                                ARRAY_SIZE(ar5416Modes_9100), 6);
824                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
825                                ARRAY_SIZE(ar5416Common_9100), 2);
826                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
827                                ARRAY_SIZE(ar5416Bank0_9100), 2);
828                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
829                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
830                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
831                                ARRAY_SIZE(ar5416Bank1_9100), 2);
832                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
833                                ARRAY_SIZE(ar5416Bank2_9100), 2);
834                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
835                                ARRAY_SIZE(ar5416Bank3_9100), 3);
836                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
837                                ARRAY_SIZE(ar5416Bank6_9100), 3);
838                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
839                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
840                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
841                                ARRAY_SIZE(ar5416Bank7_9100), 2);
842                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
843                                ARRAY_SIZE(ar5416Addac_9100), 2);
844         } else {
845                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
846                                ARRAY_SIZE(ar5416Modes), 6);
847                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
848                                ARRAY_SIZE(ar5416Common), 2);
849                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
850                                ARRAY_SIZE(ar5416Bank0), 2);
851                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
852                                ARRAY_SIZE(ar5416BB_RfGain), 3);
853                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
854                                ARRAY_SIZE(ar5416Bank1), 2);
855                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
856                                ARRAY_SIZE(ar5416Bank2), 2);
857                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
858                                ARRAY_SIZE(ar5416Bank3), 3);
859                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
860                                ARRAY_SIZE(ar5416Bank6), 3);
861                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
862                                ARRAY_SIZE(ar5416Bank6TPC), 3);
863                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
864                                ARRAY_SIZE(ar5416Bank7), 2);
865                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
866                                ARRAY_SIZE(ar5416Addac), 2);
867         }
868
869         if (ah->is_pciexpress)
870                 ath9k_hw_configpcipowersave(ah, 0);
871         else
872                 ath9k_hw_disablepcie(ah);
873
874         ecode = ath9k_hw_post_attach(ah);
875         if (ecode != 0)
876                 goto bad;
877
878         if (AR_SREV_9287_11(ah))
879                 INIT_INI_ARRAY(&ah->iniModesRxGain,
880                 ar9287Modes_rx_gain_9287_1_1,
881                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
882         else if (AR_SREV_9287_10(ah))
883                 INIT_INI_ARRAY(&ah->iniModesRxGain,
884                 ar9287Modes_rx_gain_9287_1_0,
885                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
886         else if (AR_SREV_9280_20(ah))
887                 ath9k_hw_init_rxgain_ini(ah);
888
889         if (AR_SREV_9287_11(ah)) {
890                 INIT_INI_ARRAY(&ah->iniModesTxGain,
891                 ar9287Modes_tx_gain_9287_1_1,
892                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
893         } else if (AR_SREV_9287_10(ah)) {
894                 INIT_INI_ARRAY(&ah->iniModesTxGain,
895                 ar9287Modes_tx_gain_9287_1_0,
896                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
897         } else if (AR_SREV_9280_20(ah)) {
898                 ath9k_hw_init_txgain_ini(ah);
899         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
900                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
901
902                 /* txgain table */
903                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
904                         INIT_INI_ARRAY(&ah->iniModesTxGain,
905                         ar9285Modes_high_power_tx_gain_9285_1_2,
906                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
907                 } else {
908                         INIT_INI_ARRAY(&ah->iniModesTxGain,
909                         ar9285Modes_original_tx_gain_9285_1_2,
910                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
911                 }
912
913         }
914
915         ath9k_hw_fill_cap_info(ah);
916
917         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
918             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
919
920                 /* EEPROM Fixup */
921                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
922                         u32 reg = INI_RA(&ah->iniModes, i, 0);
923
924                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
925                                 u32 val = INI_RA(&ah->iniModes, i, j);
926
927                                 INI_RA(&ah->iniModes, i, j) =
928                                         ath9k_hw_ini_fixup(ah,
929                                                            &ah->eeprom.def,
930                                                            reg, val);
931                         }
932                 }
933         }
934
935         ecode = ath9k_hw_init_macaddr(ah);
936         if (ecode != 0) {
937                 DPRINTF(sc, ATH_DBG_FATAL,
938                         "Failed to initialize MAC address\n");
939                 goto bad;
940         }
941
942         if (AR_SREV_9285(ah))
943                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
944         else
945                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
946
947         ath9k_init_nfcal_hist_buffer(ah);
948
949         return ah;
950 bad:
951         if (ah)
952                 ath9k_hw_detach(ah);
953         if (status)
954                 *status = ecode;
955
956         return NULL;
957 }
958
959 static void ath9k_hw_init_bb(struct ath_hw *ah,
960                              struct ath9k_channel *chan)
961 {
962         u32 synthDelay;
963
964         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
965         if (IS_CHAN_B(chan))
966                 synthDelay = (4 * synthDelay) / 22;
967         else
968                 synthDelay /= 10;
969
970         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
971
972         udelay(synthDelay + BASE_ACTIVATE_DELAY);
973 }
974
975 static void ath9k_hw_init_qos(struct ath_hw *ah)
976 {
977         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
978         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
979
980         REG_WRITE(ah, AR_QOS_NO_ACK,
981                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
982                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
983                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
984
985         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
986         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
987         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
988         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
989         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
990 }
991
992 static void ath9k_hw_init_pll(struct ath_hw *ah,
993                               struct ath9k_channel *chan)
994 {
995         u32 pll;
996
997         if (AR_SREV_9100(ah)) {
998                 if (chan && IS_CHAN_5GHZ(chan))
999                         pll = 0x1450;
1000                 else
1001                         pll = 0x1458;
1002         } else {
1003                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1004                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1005
1006                         if (chan && IS_CHAN_HALF_RATE(chan))
1007                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1008                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1009                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1010
1011                         if (chan && IS_CHAN_5GHZ(chan)) {
1012                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1013
1014
1015                                 if (AR_SREV_9280_20(ah)) {
1016                                         if (((chan->channel % 20) == 0)
1017                                             || ((chan->channel % 10) == 0))
1018                                                 pll = 0x2850;
1019                                         else
1020                                                 pll = 0x142c;
1021                                 }
1022                         } else {
1023                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1024                         }
1025
1026                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1027
1028                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1029
1030                         if (chan && IS_CHAN_HALF_RATE(chan))
1031                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1032                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1033                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1034
1035                         if (chan && IS_CHAN_5GHZ(chan))
1036                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1037                         else
1038                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1039                 } else {
1040                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1041
1042                         if (chan && IS_CHAN_HALF_RATE(chan))
1043                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1044                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1045                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1046
1047                         if (chan && IS_CHAN_5GHZ(chan))
1048                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1049                         else
1050                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1051                 }
1052         }
1053         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1054
1055         udelay(RTC_PLL_SETTLE_DELAY);
1056
1057         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1058 }
1059
1060 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1061 {
1062         int rx_chainmask, tx_chainmask;
1063
1064         rx_chainmask = ah->rxchainmask;
1065         tx_chainmask = ah->txchainmask;
1066
1067         switch (rx_chainmask) {
1068         case 0x5:
1069                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1070                             AR_PHY_SWAP_ALT_CHAIN);
1071         case 0x3:
1072                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1073                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1074                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1075                         break;
1076                 }
1077         case 0x1:
1078         case 0x2:
1079         case 0x7:
1080                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1081                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1082                 break;
1083         default:
1084                 break;
1085         }
1086
1087         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1088         if (tx_chainmask == 0x5) {
1089                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1090                             AR_PHY_SWAP_ALT_CHAIN);
1091         }
1092         if (AR_SREV_9100(ah))
1093                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1094                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1095 }
1096
1097 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1098                                           enum nl80211_iftype opmode)
1099 {
1100         ah->mask_reg = AR_IMR_TXERR |
1101                 AR_IMR_TXURN |
1102                 AR_IMR_RXERR |
1103                 AR_IMR_RXORN |
1104                 AR_IMR_BCNMISC;
1105
1106         if (ah->config.intr_mitigation)
1107                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1108         else
1109                 ah->mask_reg |= AR_IMR_RXOK;
1110
1111         ah->mask_reg |= AR_IMR_TXOK;
1112
1113         if (opmode == NL80211_IFTYPE_AP)
1114                 ah->mask_reg |= AR_IMR_MIB;
1115
1116         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1117         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1118
1119         if (!AR_SREV_9100(ah)) {
1120                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1121                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1122                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1123         }
1124 }
1125
1126 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1127 {
1128         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1129                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1130                 ah->acktimeout = (u32) -1;
1131                 return false;
1132         } else {
1133                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1134                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1135                 ah->acktimeout = us;
1136                 return true;
1137         }
1138 }
1139
1140 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1141 {
1142         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1143                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1144                 ah->ctstimeout = (u32) -1;
1145                 return false;
1146         } else {
1147                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1148                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1149                 ah->ctstimeout = us;
1150                 return true;
1151         }
1152 }
1153
1154 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1155 {
1156         if (tu > 0xFFFF) {
1157                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1158                         "bad global tx timeout %u\n", tu);
1159                 ah->globaltxtimeout = (u32) -1;
1160                 return false;
1161         } else {
1162                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1163                 ah->globaltxtimeout = tu;
1164                 return true;
1165         }
1166 }
1167
1168 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1169 {
1170         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1171                 ah->misc_mode);
1172
1173         if (ah->misc_mode != 0)
1174                 REG_WRITE(ah, AR_PCU_MISC,
1175                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1176         if (ah->slottime != (u32) -1)
1177                 ath9k_hw_setslottime(ah, ah->slottime);
1178         if (ah->acktimeout != (u32) -1)
1179                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1180         if (ah->ctstimeout != (u32) -1)
1181                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1182         if (ah->globaltxtimeout != (u32) -1)
1183                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1184 }
1185
1186 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1187 {
1188         return vendorid == ATHEROS_VENDOR_ID ?
1189                 ath9k_hw_devname(devid) : NULL;
1190 }
1191
1192 void ath9k_hw_detach(struct ath_hw *ah)
1193 {
1194         if (!AR_SREV_9100(ah))
1195                 ath9k_hw_ani_detach(ah);
1196
1197         ath9k_hw_rfdetach(ah);
1198         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1199         kfree(ah);
1200 }
1201
1202 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1203 {
1204         struct ath_hw *ah = NULL;
1205
1206         switch (devid) {
1207         case AR5416_DEVID_PCI:
1208         case AR5416_DEVID_PCIE:
1209         case AR5416_AR9100_DEVID:
1210         case AR9160_DEVID_PCI:
1211         case AR9280_DEVID_PCI:
1212         case AR9280_DEVID_PCIE:
1213         case AR9285_DEVID_PCIE:
1214         case AR5416_DEVID_AR9287_PCI:
1215         case AR5416_DEVID_AR9287_PCIE:
1216                 ah = ath9k_hw_do_attach(devid, sc, error);
1217                 break;
1218         default:
1219                 *error = -ENXIO;
1220                 break;
1221         }
1222
1223         return ah;
1224 }
1225
1226 /*******/
1227 /* INI */
1228 /*******/
1229
1230 static void ath9k_hw_override_ini(struct ath_hw *ah,
1231                                   struct ath9k_channel *chan)
1232 {
1233         /*
1234          * Set the RX_ABORT and RX_DIS and clear if off only after
1235          * RXE is set for MAC. This prevents frames with corrupted
1236          * descriptor status.
1237          */
1238         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1239
1240
1241         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1242             AR_SREV_9280_10_OR_LATER(ah))
1243                 return;
1244
1245         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1246 }
1247
1248 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1249                               struct ar5416_eeprom_def *pEepData,
1250                               u32 reg, u32 value)
1251 {
1252         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1253
1254         switch (ah->hw_version.devid) {
1255         case AR9280_DEVID_PCI:
1256                 if (reg == 0x7894) {
1257                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1258                                 "ini VAL: %x  EEPROM: %x\n", value,
1259                                 (pBase->version & 0xff));
1260
1261                         if ((pBase->version & 0xff) > 0x0a) {
1262                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1263                                         "PWDCLKIND: %d\n",
1264                                         pBase->pwdclkind);
1265                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1266                                 value |= AR_AN_TOP2_PWDCLKIND &
1267                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1268                         } else {
1269                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1270                                         "PWDCLKIND Earlier Rev\n");
1271                         }
1272
1273                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1274                                 "final ini VAL: %x\n", value);
1275                 }
1276                 break;
1277         }
1278
1279         return value;
1280 }
1281
1282 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1283                               struct ar5416_eeprom_def *pEepData,
1284                               u32 reg, u32 value)
1285 {
1286         if (ah->eep_map == EEP_MAP_4KBITS)
1287                 return value;
1288         else
1289                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1290 }
1291
1292 static void ath9k_olc_init(struct ath_hw *ah)
1293 {
1294         u32 i;
1295
1296         for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1297                 ah->originalGain[i] =
1298                         MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1299                                         AR_PHY_TX_GAIN);
1300         ah->PDADCdelta = 0;
1301 }
1302
1303 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1304                               struct ath9k_channel *chan)
1305 {
1306         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1307
1308         if (IS_CHAN_B(chan))
1309                 ctl |= CTL_11B;
1310         else if (IS_CHAN_G(chan))
1311                 ctl |= CTL_11G;
1312         else
1313                 ctl |= CTL_11A;
1314
1315         return ctl;
1316 }
1317
1318 static int ath9k_hw_process_ini(struct ath_hw *ah,
1319                                 struct ath9k_channel *chan,
1320                                 enum ath9k_ht_macmode macmode)
1321 {
1322         int i, regWrites = 0;
1323         struct ieee80211_channel *channel = chan->chan;
1324         u32 modesIndex, freqIndex;
1325
1326         switch (chan->chanmode) {
1327         case CHANNEL_A:
1328         case CHANNEL_A_HT20:
1329                 modesIndex = 1;
1330                 freqIndex = 1;
1331                 break;
1332         case CHANNEL_A_HT40PLUS:
1333         case CHANNEL_A_HT40MINUS:
1334                 modesIndex = 2;
1335                 freqIndex = 1;
1336                 break;
1337         case CHANNEL_G:
1338         case CHANNEL_G_HT20:
1339         case CHANNEL_B:
1340                 modesIndex = 4;
1341                 freqIndex = 2;
1342                 break;
1343         case CHANNEL_G_HT40PLUS:
1344         case CHANNEL_G_HT40MINUS:
1345                 modesIndex = 3;
1346                 freqIndex = 2;
1347                 break;
1348
1349         default:
1350                 return -EINVAL;
1351         }
1352
1353         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1354         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1355         ah->eep_ops->set_addac(ah, chan);
1356
1357         if (AR_SREV_5416_22_OR_LATER(ah)) {
1358                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1359         } else {
1360                 struct ar5416IniArray temp;
1361                 u32 addacSize =
1362                         sizeof(u32) * ah->iniAddac.ia_rows *
1363                         ah->iniAddac.ia_columns;
1364
1365                 memcpy(ah->addac5416_21,
1366                        ah->iniAddac.ia_array, addacSize);
1367
1368                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1369
1370                 temp.ia_array = ah->addac5416_21;
1371                 temp.ia_columns = ah->iniAddac.ia_columns;
1372                 temp.ia_rows = ah->iniAddac.ia_rows;
1373                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1374         }
1375
1376         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1377
1378         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1379                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1380                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1381
1382                 REG_WRITE(ah, reg, val);
1383
1384                 if (reg >= 0x7800 && reg < 0x78a0
1385                     && ah->config.analog_shiftreg) {
1386                         udelay(100);
1387                 }
1388
1389                 DO_DELAY(regWrites);
1390         }
1391
1392         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1393                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1394
1395         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1396             AR_SREV_9287_10_OR_LATER(ah))
1397                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1398
1399         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1400                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1401                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1402
1403                 REG_WRITE(ah, reg, val);
1404
1405                 if (reg >= 0x7800 && reg < 0x78a0
1406                     && ah->config.analog_shiftreg) {
1407                         udelay(100);
1408                 }
1409
1410                 DO_DELAY(regWrites);
1411         }
1412
1413         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1414
1415         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1416                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1417                                 regWrites);
1418         }
1419
1420         ath9k_hw_override_ini(ah, chan);
1421         ath9k_hw_set_regs(ah, chan, macmode);
1422         ath9k_hw_init_chain_masks(ah);
1423
1424         if (OLC_FOR_AR9280_20_LATER)
1425                 ath9k_olc_init(ah);
1426
1427         ah->eep_ops->set_txpower(ah, chan,
1428                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
1429                                  channel->max_antenna_gain * 2,
1430                                  channel->max_power * 2,
1431                                  min((u32) MAX_RATE_POWER,
1432                                  (u32) ah->regulatory.power_limit));
1433
1434         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1435                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1436                         "ar5416SetRfRegs failed\n");
1437                 return -EIO;
1438         }
1439
1440         return 0;
1441 }
1442
1443 /****************************************/
1444 /* Reset and Channel Switching Routines */
1445 /****************************************/
1446
1447 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1448 {
1449         u32 rfMode = 0;
1450
1451         if (chan == NULL)
1452                 return;
1453
1454         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1455                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1456
1457         if (!AR_SREV_9280_10_OR_LATER(ah))
1458                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1459                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1460
1461         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1462                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1463
1464         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1465 }
1466
1467 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1468 {
1469         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1470 }
1471
1472 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1473 {
1474         u32 regval;
1475
1476         regval = REG_READ(ah, AR_AHB_MODE);
1477         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1478
1479         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1480         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1481
1482         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1483
1484         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1485         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1486
1487         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1488
1489         if (AR_SREV_9285(ah)) {
1490                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1491                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1492         } else {
1493                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1494                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1495         }
1496 }
1497
1498 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1499 {
1500         u32 val;
1501
1502         val = REG_READ(ah, AR_STA_ID1);
1503         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1504         switch (opmode) {
1505         case NL80211_IFTYPE_AP:
1506                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1507                           | AR_STA_ID1_KSRCH_MODE);
1508                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1509                 break;
1510         case NL80211_IFTYPE_ADHOC:
1511         case NL80211_IFTYPE_MESH_POINT:
1512                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1513                           | AR_STA_ID1_KSRCH_MODE);
1514                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1515                 break;
1516         case NL80211_IFTYPE_STATION:
1517         case NL80211_IFTYPE_MONITOR:
1518                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1519                 break;
1520         }
1521 }
1522
1523 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1524                                                  u32 coef_scaled,
1525                                                  u32 *coef_mantissa,
1526                                                  u32 *coef_exponent)
1527 {
1528         u32 coef_exp, coef_man;
1529
1530         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1531                 if ((coef_scaled >> coef_exp) & 0x1)
1532                         break;
1533
1534         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1535
1536         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1537
1538         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1539         *coef_exponent = coef_exp - 16;
1540 }
1541
1542 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1543                                      struct ath9k_channel *chan)
1544 {
1545         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1546         u32 clockMhzScaled = 0x64000000;
1547         struct chan_centers centers;
1548
1549         if (IS_CHAN_HALF_RATE(chan))
1550                 clockMhzScaled = clockMhzScaled >> 1;
1551         else if (IS_CHAN_QUARTER_RATE(chan))
1552                 clockMhzScaled = clockMhzScaled >> 2;
1553
1554         ath9k_hw_get_channel_centers(ah, chan, &centers);
1555         coef_scaled = clockMhzScaled / centers.synth_center;
1556
1557         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1558                                       &ds_coef_exp);
1559
1560         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1561                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1562         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1563                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1564
1565         coef_scaled = (9 * coef_scaled) / 10;
1566
1567         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1568                                       &ds_coef_exp);
1569
1570         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1571                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1572         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1573                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1574 }
1575
1576 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1577 {
1578         u32 rst_flags;
1579         u32 tmpReg;
1580
1581         if (AR_SREV_9100(ah)) {
1582                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1583                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1584                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1585                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1586                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1587         }
1588
1589         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1590                   AR_RTC_FORCE_WAKE_ON_INT);
1591
1592         if (AR_SREV_9100(ah)) {
1593                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1594                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1595         } else {
1596                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1597                 if (tmpReg &
1598                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1599                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1600                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1601                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1602                 } else {
1603                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1604                 }
1605
1606                 rst_flags = AR_RTC_RC_MAC_WARM;
1607                 if (type == ATH9K_RESET_COLD)
1608                         rst_flags |= AR_RTC_RC_MAC_COLD;
1609         }
1610
1611         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1612         udelay(50);
1613
1614         REG_WRITE(ah, AR_RTC_RC, 0);
1615         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1616                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1617                         "RTC stuck in MAC reset\n");
1618                 return false;
1619         }
1620
1621         if (!AR_SREV_9100(ah))
1622                 REG_WRITE(ah, AR_RC, 0);
1623
1624         ath9k_hw_init_pll(ah, NULL);
1625
1626         if (AR_SREV_9100(ah))
1627                 udelay(50);
1628
1629         return true;
1630 }
1631
1632 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1633 {
1634         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1635                   AR_RTC_FORCE_WAKE_ON_INT);
1636
1637         REG_WRITE(ah, AR_RTC_RESET, 0);
1638         udelay(2);
1639         REG_WRITE(ah, AR_RTC_RESET, 1);
1640
1641         if (!ath9k_hw_wait(ah,
1642                            AR_RTC_STATUS,
1643                            AR_RTC_STATUS_M,
1644                            AR_RTC_STATUS_ON,
1645                            AH_WAIT_TIMEOUT)) {
1646                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1647                 return false;
1648         }
1649
1650         ath9k_hw_read_revisions(ah);
1651
1652         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1653 }
1654
1655 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1656 {
1657         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1658                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1659
1660         switch (type) {
1661         case ATH9K_RESET_POWER_ON:
1662                 return ath9k_hw_set_reset_power_on(ah);
1663         case ATH9K_RESET_WARM:
1664         case ATH9K_RESET_COLD:
1665                 return ath9k_hw_set_reset(ah, type);
1666         default:
1667                 return false;
1668         }
1669 }
1670
1671 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1672                               enum ath9k_ht_macmode macmode)
1673 {
1674         u32 phymode;
1675         u32 enableDacFifo = 0;
1676
1677         if (AR_SREV_9285_10_OR_LATER(ah))
1678                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1679                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1680
1681         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1682                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1683
1684         if (IS_CHAN_HT40(chan)) {
1685                 phymode |= AR_PHY_FC_DYN2040_EN;
1686
1687                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1688                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1689                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1690
1691                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1692                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1693         }
1694         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1695
1696         ath9k_hw_set11nmac2040(ah, macmode);
1697
1698         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1699         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1700 }
1701
1702 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1703                                 struct ath9k_channel *chan)
1704 {
1705         if (OLC_FOR_AR9280_20_LATER) {
1706                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1707                         return false;
1708         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1709                 return false;
1710
1711         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1712                 return false;
1713
1714         ah->chip_fullsleep = false;
1715         ath9k_hw_init_pll(ah, chan);
1716         ath9k_hw_set_rfmode(ah, chan);
1717
1718         return true;
1719 }
1720
1721 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1722                                     struct ath9k_channel *chan,
1723                                     enum ath9k_ht_macmode macmode)
1724 {
1725         struct ieee80211_channel *channel = chan->chan;
1726         u32 synthDelay, qnum;
1727
1728         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1729                 if (ath9k_hw_numtxpending(ah, qnum)) {
1730                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1731                                 "Transmit frames pending on queue %d\n", qnum);
1732                         return false;
1733                 }
1734         }
1735
1736         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1737         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1738                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1739                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1740                         "Could not kill baseband RX\n");
1741                 return false;
1742         }
1743
1744         ath9k_hw_set_regs(ah, chan, macmode);
1745
1746         if (AR_SREV_9280_10_OR_LATER(ah)) {
1747                 ath9k_hw_ar9280_set_channel(ah, chan);
1748         } else {
1749                 if (!(ath9k_hw_set_channel(ah, chan))) {
1750                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1751                                 "Failed to set channel\n");
1752                         return false;
1753                 }
1754         }
1755
1756         ah->eep_ops->set_txpower(ah, chan,
1757                              ath9k_regd_get_ctl(&ah->regulatory, chan),
1758                              channel->max_antenna_gain * 2,
1759                              channel->max_power * 2,
1760                              min((u32) MAX_RATE_POWER,
1761                              (u32) ah->regulatory.power_limit));
1762
1763         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1764         if (IS_CHAN_B(chan))
1765                 synthDelay = (4 * synthDelay) / 22;
1766         else
1767                 synthDelay /= 10;
1768
1769         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1770
1771         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1772
1773         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1774                 ath9k_hw_set_delta_slope(ah, chan);
1775
1776         if (AR_SREV_9280_10_OR_LATER(ah))
1777                 ath9k_hw_9280_spur_mitigate(ah, chan);
1778         else
1779                 ath9k_hw_spur_mitigate(ah, chan);
1780
1781         if (!chan->oneTimeCalsDone)
1782                 chan->oneTimeCalsDone = true;
1783
1784         return true;
1785 }
1786
1787 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1788 {
1789         int bb_spur = AR_NO_SPUR;
1790         int freq;
1791         int bin, cur_bin;
1792         int bb_spur_off, spur_subchannel_sd;
1793         int spur_freq_sd;
1794         int spur_delta_phase;
1795         int denominator;
1796         int upper, lower, cur_vit_mask;
1797         int tmp, newVal;
1798         int i;
1799         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1800                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1801         };
1802         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1803                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1804         };
1805         int inc[4] = { 0, 100, 0, 0 };
1806         struct chan_centers centers;
1807
1808         int8_t mask_m[123];
1809         int8_t mask_p[123];
1810         int8_t mask_amt;
1811         int tmp_mask;
1812         int cur_bb_spur;
1813         bool is2GHz = IS_CHAN_2GHZ(chan);
1814
1815         memset(&mask_m, 0, sizeof(int8_t) * 123);
1816         memset(&mask_p, 0, sizeof(int8_t) * 123);
1817
1818         ath9k_hw_get_channel_centers(ah, chan, &centers);
1819         freq = centers.synth_center;
1820
1821         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1822         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1823                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1824
1825                 if (is2GHz)
1826                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1827                 else
1828                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1829
1830                 if (AR_NO_SPUR == cur_bb_spur)
1831                         break;
1832                 cur_bb_spur = cur_bb_spur - freq;
1833
1834                 if (IS_CHAN_HT40(chan)) {
1835                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1836                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1837                                 bb_spur = cur_bb_spur;
1838                                 break;
1839                         }
1840                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1841                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1842                         bb_spur = cur_bb_spur;
1843                         break;
1844                 }
1845         }
1846
1847         if (AR_NO_SPUR == bb_spur) {
1848                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1849                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1850                 return;
1851         } else {
1852                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1853                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1854         }
1855
1856         bin = bb_spur * 320;
1857
1858         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1859
1860         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1861                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1862                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1863                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1864         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1865
1866         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1867                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1868                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1869                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1870                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1871         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1872
1873         if (IS_CHAN_HT40(chan)) {
1874                 if (bb_spur < 0) {
1875                         spur_subchannel_sd = 1;
1876                         bb_spur_off = bb_spur + 10;
1877                 } else {
1878                         spur_subchannel_sd = 0;
1879                         bb_spur_off = bb_spur - 10;
1880                 }
1881         } else {
1882                 spur_subchannel_sd = 0;
1883                 bb_spur_off = bb_spur;
1884         }
1885
1886         if (IS_CHAN_HT40(chan))
1887                 spur_delta_phase =
1888                         ((bb_spur * 262144) /
1889                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1890         else
1891                 spur_delta_phase =
1892                         ((bb_spur * 524288) /
1893                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1894
1895         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1896         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1897
1898         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1899                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1900                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1901         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1902
1903         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1904         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1905
1906         cur_bin = -6000;
1907         upper = bin + 100;
1908         lower = bin - 100;
1909
1910         for (i = 0; i < 4; i++) {
1911                 int pilot_mask = 0;
1912                 int chan_mask = 0;
1913                 int bp = 0;
1914                 for (bp = 0; bp < 30; bp++) {
1915                         if ((cur_bin > lower) && (cur_bin < upper)) {
1916                                 pilot_mask = pilot_mask | 0x1 << bp;
1917                                 chan_mask = chan_mask | 0x1 << bp;
1918                         }
1919                         cur_bin += 100;
1920                 }
1921                 cur_bin += inc[i];
1922                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1923                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1924         }
1925
1926         cur_vit_mask = 6100;
1927         upper = bin + 120;
1928         lower = bin - 120;
1929
1930         for (i = 0; i < 123; i++) {
1931                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1932
1933                         /* workaround for gcc bug #37014 */
1934                         volatile int tmp_v = abs(cur_vit_mask - bin);
1935
1936                         if (tmp_v < 75)
1937                                 mask_amt = 1;
1938                         else
1939                                 mask_amt = 0;
1940                         if (cur_vit_mask < 0)
1941                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1942                         else
1943                                 mask_p[cur_vit_mask / 100] = mask_amt;
1944                 }
1945                 cur_vit_mask -= 100;
1946         }
1947
1948         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1949                 | (mask_m[48] << 26) | (mask_m[49] << 24)
1950                 | (mask_m[50] << 22) | (mask_m[51] << 20)
1951                 | (mask_m[52] << 18) | (mask_m[53] << 16)
1952                 | (mask_m[54] << 14) | (mask_m[55] << 12)
1953                 | (mask_m[56] << 10) | (mask_m[57] << 8)
1954                 | (mask_m[58] << 6) | (mask_m[59] << 4)
1955                 | (mask_m[60] << 2) | (mask_m[61] << 0);
1956         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1957         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1958
1959         tmp_mask = (mask_m[31] << 28)
1960                 | (mask_m[32] << 26) | (mask_m[33] << 24)
1961                 | (mask_m[34] << 22) | (mask_m[35] << 20)
1962                 | (mask_m[36] << 18) | (mask_m[37] << 16)
1963                 | (mask_m[48] << 14) | (mask_m[39] << 12)
1964                 | (mask_m[40] << 10) | (mask_m[41] << 8)
1965                 | (mask_m[42] << 6) | (mask_m[43] << 4)
1966                 | (mask_m[44] << 2) | (mask_m[45] << 0);
1967         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1968         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1969
1970         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1971                 | (mask_m[18] << 26) | (mask_m[18] << 24)
1972                 | (mask_m[20] << 22) | (mask_m[20] << 20)
1973                 | (mask_m[22] << 18) | (mask_m[22] << 16)
1974                 | (mask_m[24] << 14) | (mask_m[24] << 12)
1975                 | (mask_m[25] << 10) | (mask_m[26] << 8)
1976                 | (mask_m[27] << 6) | (mask_m[28] << 4)
1977                 | (mask_m[29] << 2) | (mask_m[30] << 0);
1978         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1979         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1980
1981         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1982                 | (mask_m[2] << 26) | (mask_m[3] << 24)
1983                 | (mask_m[4] << 22) | (mask_m[5] << 20)
1984                 | (mask_m[6] << 18) | (mask_m[7] << 16)
1985                 | (mask_m[8] << 14) | (mask_m[9] << 12)
1986                 | (mask_m[10] << 10) | (mask_m[11] << 8)
1987                 | (mask_m[12] << 6) | (mask_m[13] << 4)
1988                 | (mask_m[14] << 2) | (mask_m[15] << 0);
1989         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1990         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1991
1992         tmp_mask = (mask_p[15] << 28)
1993                 | (mask_p[14] << 26) | (mask_p[13] << 24)
1994                 | (mask_p[12] << 22) | (mask_p[11] << 20)
1995                 | (mask_p[10] << 18) | (mask_p[9] << 16)
1996                 | (mask_p[8] << 14) | (mask_p[7] << 12)
1997                 | (mask_p[6] << 10) | (mask_p[5] << 8)
1998                 | (mask_p[4] << 6) | (mask_p[3] << 4)
1999                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2000         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2001         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2002
2003         tmp_mask = (mask_p[30] << 28)
2004                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2005                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2006                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2007                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2008                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2009                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2010                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2011         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2012         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2013
2014         tmp_mask = (mask_p[45] << 28)
2015                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2016                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2017                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2018                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2019                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2020                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2021                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2022         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2023         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2024
2025         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2026                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2027                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2028                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2029                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2030                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2031                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2032                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2033         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2034         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2035 }
2036
2037 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2038 {
2039         int bb_spur = AR_NO_SPUR;
2040         int bin, cur_bin;
2041         int spur_freq_sd;
2042         int spur_delta_phase;
2043         int denominator;
2044         int upper, lower, cur_vit_mask;
2045         int tmp, new;
2046         int i;
2047         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2048                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2049         };
2050         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2051                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2052         };
2053         int inc[4] = { 0, 100, 0, 0 };
2054
2055         int8_t mask_m[123];
2056         int8_t mask_p[123];
2057         int8_t mask_amt;
2058         int tmp_mask;
2059         int cur_bb_spur;
2060         bool is2GHz = IS_CHAN_2GHZ(chan);
2061
2062         memset(&mask_m, 0, sizeof(int8_t) * 123);
2063         memset(&mask_p, 0, sizeof(int8_t) * 123);
2064
2065         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2066                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2067                 if (AR_NO_SPUR == cur_bb_spur)
2068                         break;
2069                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2070                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2071                         bb_spur = cur_bb_spur;
2072                         break;
2073                 }
2074         }
2075
2076         if (AR_NO_SPUR == bb_spur)
2077                 return;
2078
2079         bin = bb_spur * 32;
2080
2081         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2082         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2083                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2084                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2085                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2086
2087         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2088
2089         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2090                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2091                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2092                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2093                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2094         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2095
2096         spur_delta_phase = ((bb_spur * 524288) / 100) &
2097                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2098
2099         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2100         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2101
2102         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2103                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2104                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2105         REG_WRITE(ah, AR_PHY_TIMING11, new);
2106
2107         cur_bin = -6000;
2108         upper = bin + 100;
2109         lower = bin - 100;
2110
2111         for (i = 0; i < 4; i++) {
2112                 int pilot_mask = 0;
2113                 int chan_mask = 0;
2114                 int bp = 0;
2115                 for (bp = 0; bp < 30; bp++) {
2116                         if ((cur_bin > lower) && (cur_bin < upper)) {
2117                                 pilot_mask = pilot_mask | 0x1 << bp;
2118                                 chan_mask = chan_mask | 0x1 << bp;
2119                         }
2120                         cur_bin += 100;
2121                 }
2122                 cur_bin += inc[i];
2123                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2124                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2125         }
2126
2127         cur_vit_mask = 6100;
2128         upper = bin + 120;
2129         lower = bin - 120;
2130
2131         for (i = 0; i < 123; i++) {
2132                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2133
2134                         /* workaround for gcc bug #37014 */
2135                         volatile int tmp_v = abs(cur_vit_mask - bin);
2136
2137                         if (tmp_v < 75)
2138                                 mask_amt = 1;
2139                         else
2140                                 mask_amt = 0;
2141                         if (cur_vit_mask < 0)
2142                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2143                         else
2144                                 mask_p[cur_vit_mask / 100] = mask_amt;
2145                 }
2146                 cur_vit_mask -= 100;
2147         }
2148
2149         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2150                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2151                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2152                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2153                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2154                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2155                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2156                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2157         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2158         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2159
2160         tmp_mask = (mask_m[31] << 28)
2161                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2162                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2163                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2164                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2165                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2166                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2167                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2168         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2169         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2170
2171         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2172                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2173                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2174                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2175                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2176                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2177                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2178                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2179         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2180         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2181
2182         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2183                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2184                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2185                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2186                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2187                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2188                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2189                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2190         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2191         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2192
2193         tmp_mask = (mask_p[15] << 28)
2194                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2195                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2196                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2197                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2198                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2199                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2200                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2201         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2202         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2203
2204         tmp_mask = (mask_p[30] << 28)
2205                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2206                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2207                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2208                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2209                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2210                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2211                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2212         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2213         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2214
2215         tmp_mask = (mask_p[45] << 28)
2216                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2217                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2218                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2219                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2220                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2221                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2222                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2223         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2224         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2225
2226         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2227                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2228                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2229                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2230                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2231                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2232                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2233                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2234         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2235         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2236 }
2237
2238 static void ath9k_enable_rfkill(struct ath_hw *ah)
2239 {
2240         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2241                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2242
2243         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2244                     AR_GPIO_INPUT_MUX2_RFSILENT);
2245
2246         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2247         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2248 }
2249
2250 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2251                     bool bChannelChange)
2252 {
2253         u32 saveLedState;
2254         struct ath_softc *sc = ah->ah_sc;
2255         struct ath9k_channel *curchan = ah->curchan;
2256         u32 saveDefAntenna;
2257         u32 macStaId1;
2258         int i, rx_chainmask, r;
2259
2260         ah->extprotspacing = sc->ht_extprotspacing;
2261         ah->txchainmask = sc->tx_chainmask;
2262         ah->rxchainmask = sc->rx_chainmask;
2263
2264         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2265                 return -EIO;
2266
2267         if (curchan)
2268                 ath9k_hw_getnf(ah, curchan);
2269
2270         if (bChannelChange &&
2271             (ah->chip_fullsleep != true) &&
2272             (ah->curchan != NULL) &&
2273             (chan->channel != ah->curchan->channel) &&
2274             ((chan->channelFlags & CHANNEL_ALL) ==
2275              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2276             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2277                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2278
2279                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2280                         ath9k_hw_loadnf(ah, ah->curchan);
2281                         ath9k_hw_start_nfcal(ah);
2282                         return 0;
2283                 }
2284         }
2285
2286         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2287         if (saveDefAntenna == 0)
2288                 saveDefAntenna = 1;
2289
2290         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2291
2292         saveLedState = REG_READ(ah, AR_CFG_LED) &
2293                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2294                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2295
2296         ath9k_hw_mark_phy_inactive(ah);
2297
2298         if (!ath9k_hw_chip_reset(ah, chan)) {
2299                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2300                 return -EINVAL;
2301         }
2302
2303         if (AR_SREV_9280_10_OR_LATER(ah))
2304                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2305
2306         if (AR_SREV_9287_10_OR_LATER(ah)) {
2307                 /* Enable ASYNC FIFO */
2308                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2309                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2310                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2311                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2312                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2313                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2314                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2315         }
2316         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2317         if (r)
2318                 return r;
2319
2320         /* Setup MFP options for CCMP */
2321         if (AR_SREV_9280_20_OR_LATER(ah)) {
2322                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2323                  * frames when constructing CCMP AAD. */
2324                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2325                               0xc7ff);
2326                 ah->sw_mgmt_crypto = false;
2327         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2328                 /* Disable hardware crypto for management frames */
2329                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2330                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2331                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2332                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2333                 ah->sw_mgmt_crypto = true;
2334         } else
2335                 ah->sw_mgmt_crypto = true;
2336
2337         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2338                 ath9k_hw_set_delta_slope(ah, chan);
2339
2340         if (AR_SREV_9280_10_OR_LATER(ah))
2341                 ath9k_hw_9280_spur_mitigate(ah, chan);
2342         else
2343                 ath9k_hw_spur_mitigate(ah, chan);
2344
2345         ah->eep_ops->set_board_values(ah, chan);
2346
2347         ath9k_hw_decrease_chain_power(ah, chan);
2348
2349         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2350         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2351                   | macStaId1
2352                   | AR_STA_ID1_RTS_USE_DEF
2353                   | (ah->config.
2354                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2355                   | ah->sta_id1_defaults);
2356         ath9k_hw_set_operating_mode(ah, ah->opmode);
2357
2358         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2359         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2360
2361         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2362
2363         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2364         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2365                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2366
2367         REG_WRITE(ah, AR_ISR, ~0);
2368
2369         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2370
2371         if (AR_SREV_9280_10_OR_LATER(ah))
2372                 ath9k_hw_ar9280_set_channel(ah, chan);
2373         else
2374                 if (!(ath9k_hw_set_channel(ah, chan)))
2375                         return -EIO;
2376
2377         for (i = 0; i < AR_NUM_DCU; i++)
2378                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2379
2380         ah->intr_txqs = 0;
2381         for (i = 0; i < ah->caps.total_queues; i++)
2382                 ath9k_hw_resettxqueue(ah, i);
2383
2384         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2385         ath9k_hw_init_qos(ah);
2386
2387         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2388                 ath9k_enable_rfkill(ah);
2389
2390         ath9k_hw_init_user_settings(ah);
2391
2392         if (AR_SREV_9287_10_OR_LATER(ah)) {
2393                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2394                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2395                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2396                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2397                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2398                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2399
2400                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2401                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2402
2403                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2404                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2405                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2406                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2407         }
2408         if (AR_SREV_9287_10_OR_LATER(ah)) {
2409                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2410                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2411         }
2412
2413         REG_WRITE(ah, AR_STA_ID1,
2414                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2415
2416         ath9k_hw_set_dma(ah);
2417
2418         REG_WRITE(ah, AR_OBS, 8);
2419
2420         if (ah->config.intr_mitigation) {
2421                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2422                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2423         }
2424
2425         ath9k_hw_init_bb(ah, chan);
2426
2427         if (!ath9k_hw_init_cal(ah, chan))
2428                 return -EIO;
2429
2430         rx_chainmask = ah->rxchainmask;
2431         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2432                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2433                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2434         }
2435
2436         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2437
2438         if (AR_SREV_9100(ah)) {
2439                 u32 mask;
2440                 mask = REG_READ(ah, AR_CFG);
2441                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2442                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2443                                 "CFG Byte Swap Set 0x%x\n", mask);
2444                 } else {
2445                         mask =
2446                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2447                         REG_WRITE(ah, AR_CFG, mask);
2448                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2449                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2450                 }
2451         } else {
2452 #ifdef __BIG_ENDIAN
2453                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2454 #endif
2455         }
2456
2457         return 0;
2458 }
2459
2460 /************************/
2461 /* Key Cache Management */
2462 /************************/
2463
2464 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2465 {
2466         u32 keyType;
2467
2468         if (entry >= ah->caps.keycache_size) {
2469                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2470                         "keychache entry %u out of range\n", entry);
2471                 return false;
2472         }
2473
2474         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2475
2476         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2477         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2478         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2479         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2480         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2481         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2482         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2483         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2484
2485         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2486                 u16 micentry = entry + 64;
2487
2488                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2489                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2490                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2491                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2492
2493         }
2494
2495         if (ah->curchan == NULL)
2496                 return true;
2497
2498         return true;
2499 }
2500
2501 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2502 {
2503         u32 macHi, macLo;
2504
2505         if (entry >= ah->caps.keycache_size) {
2506                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2507                         "keychache entry %u out of range\n", entry);
2508                 return false;
2509         }
2510
2511         if (mac != NULL) {
2512                 macHi = (mac[5] << 8) | mac[4];
2513                 macLo = (mac[3] << 24) |
2514                         (mac[2] << 16) |
2515                         (mac[1] << 8) |
2516                         mac[0];
2517                 macLo >>= 1;
2518                 macLo |= (macHi & 1) << 31;
2519                 macHi >>= 1;
2520         } else {
2521                 macLo = macHi = 0;
2522         }
2523         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2524         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2525
2526         return true;
2527 }
2528
2529 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2530                                  const struct ath9k_keyval *k,
2531                                  const u8 *mac)
2532 {
2533         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2534         u32 key0, key1, key2, key3, key4;
2535         u32 keyType;
2536
2537         if (entry >= pCap->keycache_size) {
2538                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2539                         "keycache entry %u out of range\n", entry);
2540                 return false;
2541         }
2542
2543         switch (k->kv_type) {
2544         case ATH9K_CIPHER_AES_OCB:
2545                 keyType = AR_KEYTABLE_TYPE_AES;
2546                 break;
2547         case ATH9K_CIPHER_AES_CCM:
2548                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2549                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2550                                 "AES-CCM not supported by mac rev 0x%x\n",
2551                                 ah->hw_version.macRev);
2552                         return false;
2553                 }
2554                 keyType = AR_KEYTABLE_TYPE_CCM;
2555                 break;
2556         case ATH9K_CIPHER_TKIP:
2557                 keyType = AR_KEYTABLE_TYPE_TKIP;
2558                 if (ATH9K_IS_MIC_ENABLED(ah)
2559                     && entry + 64 >= pCap->keycache_size) {
2560                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2561                                 "entry %u inappropriate for TKIP\n", entry);
2562                         return false;
2563                 }
2564                 break;
2565         case ATH9K_CIPHER_WEP:
2566                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2567                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2568                                 "WEP key length %u too small\n", k->kv_len);
2569                         return false;
2570                 }
2571                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2572                         keyType = AR_KEYTABLE_TYPE_40;
2573                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2574                         keyType = AR_KEYTABLE_TYPE_104;
2575                 else
2576                         keyType = AR_KEYTABLE_TYPE_128;
2577                 break;
2578         case ATH9K_CIPHER_CLR:
2579                 keyType = AR_KEYTABLE_TYPE_CLR;
2580                 break;
2581         default:
2582                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2583                         "cipher %u not supported\n", k->kv_type);
2584                 return false;
2585         }
2586
2587         key0 = get_unaligned_le32(k->kv_val + 0);
2588         key1 = get_unaligned_le16(k->kv_val + 4);
2589         key2 = get_unaligned_le32(k->kv_val + 6);
2590         key3 = get_unaligned_le16(k->kv_val + 10);
2591         key4 = get_unaligned_le32(k->kv_val + 12);
2592         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2593                 key4 &= 0xff;
2594
2595         /*
2596          * Note: Key cache registers access special memory area that requires
2597          * two 32-bit writes to actually update the values in the internal
2598          * memory. Consequently, the exact order and pairs used here must be
2599          * maintained.
2600          */
2601
2602         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2603                 u16 micentry = entry + 64;
2604
2605                 /*
2606                  * Write inverted key[47:0] first to avoid Michael MIC errors
2607                  * on frames that could be sent or received at the same time.
2608                  * The correct key will be written in the end once everything
2609                  * else is ready.
2610                  */
2611                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2612                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2613
2614                 /* Write key[95:48] */
2615                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2616                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2617
2618                 /* Write key[127:96] and key type */
2619                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2620                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2621
2622                 /* Write MAC address for the entry */
2623                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2624
2625                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2626                         /*
2627                          * TKIP uses two key cache entries:
2628                          * Michael MIC TX/RX keys in the same key cache entry
2629                          * (idx = main index + 64):
2630                          * key0 [31:0] = RX key [31:0]
2631                          * key1 [15:0] = TX key [31:16]
2632                          * key1 [31:16] = reserved
2633                          * key2 [31:0] = RX key [63:32]
2634                          * key3 [15:0] = TX key [15:0]
2635                          * key3 [31:16] = reserved
2636                          * key4 [31:0] = TX key [63:32]
2637                          */
2638                         u32 mic0, mic1, mic2, mic3, mic4;
2639
2640                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2641                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2642                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2643                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2644                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2645
2646                         /* Write RX[31:0] and TX[31:16] */
2647                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2648                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2649
2650                         /* Write RX[63:32] and TX[15:0] */
2651                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2652                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2653
2654                         /* Write TX[63:32] and keyType(reserved) */
2655                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2656                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2657                                   AR_KEYTABLE_TYPE_CLR);
2658
2659                 } else {
2660                         /*
2661                          * TKIP uses four key cache entries (two for group
2662                          * keys):
2663                          * Michael MIC TX/RX keys are in different key cache
2664                          * entries (idx = main index + 64 for TX and
2665                          * main index + 32 + 96 for RX):
2666                          * key0 [31:0] = TX/RX MIC key [31:0]
2667                          * key1 [31:0] = reserved
2668                          * key2 [31:0] = TX/RX MIC key [63:32]
2669                          * key3 [31:0] = reserved
2670                          * key4 [31:0] = reserved
2671                          *
2672                          * Upper layer code will call this function separately
2673                          * for TX and RX keys when these registers offsets are
2674                          * used.
2675                          */
2676                         u32 mic0, mic2;
2677
2678                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2679                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2680
2681                         /* Write MIC key[31:0] */
2682                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2683                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2684
2685                         /* Write MIC key[63:32] */
2686                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2687                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2688
2689                         /* Write TX[63:32] and keyType(reserved) */
2690                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2691                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2692                                   AR_KEYTABLE_TYPE_CLR);
2693                 }
2694
2695                 /* MAC address registers are reserved for the MIC entry */
2696                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2697                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2698
2699                 /*
2700                  * Write the correct (un-inverted) key[47:0] last to enable
2701                  * TKIP now that all other registers are set with correct
2702                  * values.
2703                  */
2704                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2705                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2706         } else {
2707                 /* Write key[47:0] */
2708                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2709                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2710
2711                 /* Write key[95:48] */
2712                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2713                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2714
2715                 /* Write key[127:96] and key type */
2716                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2717                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2718
2719                 /* Write MAC address for the entry */
2720                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2721         }
2722
2723         return true;
2724 }
2725
2726 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2727 {
2728         if (entry < ah->caps.keycache_size) {
2729                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2730                 if (val & AR_KEYTABLE_VALID)
2731                         return true;
2732         }
2733         return false;
2734 }
2735
2736 /******************************/
2737 /* Power Management (Chipset) */
2738 /******************************/
2739
2740 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2741 {
2742         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2743         if (setChip) {
2744                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2745                             AR_RTC_FORCE_WAKE_EN);
2746                 if (!AR_SREV_9100(ah))
2747                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2748
2749                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2750                             AR_RTC_RESET_EN);
2751         }
2752 }
2753
2754 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2755 {
2756         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2757         if (setChip) {
2758                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2759
2760                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2761                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2762                                   AR_RTC_FORCE_WAKE_ON_INT);
2763                 } else {
2764                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2765                                     AR_RTC_FORCE_WAKE_EN);
2766                 }
2767         }
2768 }
2769
2770 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2771 {
2772         u32 val;
2773         int i;
2774
2775         if (setChip) {
2776                 if ((REG_READ(ah, AR_RTC_STATUS) &
2777                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2778                         if (ath9k_hw_set_reset_reg(ah,
2779                                            ATH9K_RESET_POWER_ON) != true) {
2780                                 return false;
2781                         }
2782                 }
2783                 if (AR_SREV_9100(ah))
2784                         REG_SET_BIT(ah, AR_RTC_RESET,
2785                                     AR_RTC_RESET_EN);
2786
2787                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2788                             AR_RTC_FORCE_WAKE_EN);
2789                 udelay(50);
2790
2791                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2792                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2793                         if (val == AR_RTC_STATUS_ON)
2794                                 break;
2795                         udelay(50);
2796                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2797                                     AR_RTC_FORCE_WAKE_EN);
2798                 }
2799                 if (i == 0) {
2800                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2801                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2802                         return false;
2803                 }
2804         }
2805
2806         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2807
2808         return true;
2809 }
2810
2811 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2812                                      enum ath9k_power_mode mode)
2813 {
2814         int status = true, setChip = true;
2815         static const char *modes[] = {
2816                 "AWAKE",
2817                 "FULL-SLEEP",
2818                 "NETWORK SLEEP",
2819                 "UNDEFINED"
2820         };
2821
2822         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2823                 modes[ah->power_mode], modes[mode]);
2824
2825         switch (mode) {
2826         case ATH9K_PM_AWAKE:
2827                 status = ath9k_hw_set_power_awake(ah, setChip);
2828                 break;
2829         case ATH9K_PM_FULL_SLEEP:
2830                 ath9k_set_power_sleep(ah, setChip);
2831                 ah->chip_fullsleep = true;
2832                 break;
2833         case ATH9K_PM_NETWORK_SLEEP:
2834                 ath9k_set_power_network_sleep(ah, setChip);
2835                 break;
2836         default:
2837                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2838                         "Unknown power mode %u\n", mode);
2839                 return false;
2840         }
2841         ah->power_mode = mode;
2842
2843         return status;
2844 }
2845
2846 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2847 {
2848         unsigned long flags;
2849         bool ret;
2850
2851         spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2852         ret = ath9k_hw_setpower_nolock(ah, mode);
2853         spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2854
2855         return ret;
2856 }
2857
2858 void ath9k_ps_wakeup(struct ath_softc *sc)
2859 {
2860         unsigned long flags;
2861
2862         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2863         if (++sc->ps_usecount != 1)
2864                 goto unlock;
2865
2866         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE) {
2867                 sc->sc_ah->restore_mode = sc->sc_ah->power_mode;
2868                 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2869         }
2870
2871  unlock:
2872         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2873 }
2874
2875 void ath9k_ps_restore(struct ath_softc *sc)
2876 {
2877         unsigned long flags;
2878
2879         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2880         if (--sc->ps_usecount != 0)
2881                 goto unlock;
2882
2883         if ((sc->hw->conf.flags & IEEE80211_CONF_PS) &&
2884                 !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
2885                                 SC_OP_WAIT_FOR_CAB |
2886                                 SC_OP_WAIT_FOR_PSPOLL_DATA |
2887                                 SC_OP_WAIT_FOR_TX_ACK)))
2888                 ath9k_hw_setpower_nolock(sc->sc_ah,
2889                                       sc->sc_ah->restore_mode);
2890
2891  unlock:
2892         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2893 }
2894
2895 /*
2896  * Helper for ASPM support.
2897  *
2898  * Disable PLL when in L0s as well as receiver clock when in L1.
2899  * This power saving option must be enabled through the SerDes.
2900  *
2901  * Programming the SerDes must go through the same 288 bit serial shift
2902  * register as the other analog registers.  Hence the 9 writes.
2903  */
2904 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2905 {
2906         u8 i;
2907
2908         if (ah->is_pciexpress != true)
2909                 return;
2910
2911         /* Do not touch SerDes registers */
2912         if (ah->config.pcie_powersave_enable == 2)
2913                 return;
2914
2915         /* Nothing to do on restore for 11N */
2916         if (restore)
2917                 return;
2918
2919         if (AR_SREV_9280_20_OR_LATER(ah)) {
2920                 /*
2921                  * AR9280 2.0 or later chips use SerDes values from the
2922                  * initvals.h initialized depending on chipset during
2923                  * ath9k_hw_do_attach()
2924                  */
2925                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2926                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2927                                   INI_RA(&ah->iniPcieSerdes, i, 1));
2928                 }
2929         } else if (AR_SREV_9280(ah) &&
2930                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2931                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2932                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2933
2934                 /* RX shut off when elecidle is asserted */
2935                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2936                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2937                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2938
2939                 /* Shut off CLKREQ active in L1 */
2940                 if (ah->config.pcie_clock_req)
2941                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2942                 else
2943                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2944
2945                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2946                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2947                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2948
2949                 /* Load the new settings */
2950                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2951
2952         } else {
2953                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2954                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2955
2956                 /* RX shut off when elecidle is asserted */
2957                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2958                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2959                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2960
2961                 /*
2962                  * Ignore ah->ah_config.pcie_clock_req setting for
2963                  * pre-AR9280 11n
2964                  */
2965                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2966
2967                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2968                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2969                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2970
2971                 /* Load the new settings */
2972                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2973         }
2974
2975         udelay(1000);
2976
2977         /* set bit 19 to allow forcing of pcie core into L1 state */
2978         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2979
2980         /* Several PCIe massages to ensure proper behaviour */
2981         if (ah->config.pcie_waen) {
2982                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2983         } else {
2984                 if (AR_SREV_9285(ah))
2985                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2986                 /*
2987                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
2988                  * otherwise card may disappear.
2989                  */
2990                 else if (AR_SREV_9280(ah))
2991                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2992                 else
2993                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2994         }
2995 }
2996
2997 /**********************/
2998 /* Interrupt Handling */
2999 /**********************/
3000
3001 bool ath9k_hw_intrpend(struct ath_hw *ah)
3002 {
3003         u32 host_isr;
3004
3005         if (AR_SREV_9100(ah))
3006                 return true;
3007
3008         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3009         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3010                 return true;
3011
3012         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3013         if ((host_isr & AR_INTR_SYNC_DEFAULT)
3014             && (host_isr != AR_INTR_SPURIOUS))
3015                 return true;
3016
3017         return false;
3018 }
3019
3020 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3021 {
3022         u32 isr = 0;
3023         u32 mask2 = 0;
3024         struct ath9k_hw_capabilities *pCap = &ah->caps;
3025         u32 sync_cause = 0;
3026         bool fatal_int = false;
3027
3028         if (!AR_SREV_9100(ah)) {
3029                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3030                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3031                             == AR_RTC_STATUS_ON) {
3032                                 isr = REG_READ(ah, AR_ISR);
3033                         }
3034                 }
3035
3036                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3037                         AR_INTR_SYNC_DEFAULT;
3038
3039                 *masked = 0;
3040
3041                 if (!isr && !sync_cause)
3042                         return false;
3043         } else {
3044                 *masked = 0;
3045                 isr = REG_READ(ah, AR_ISR);
3046         }
3047
3048         if (isr) {
3049                 if (isr & AR_ISR_BCNMISC) {
3050                         u32 isr2;
3051                         isr2 = REG_READ(ah, AR_ISR_S2);
3052                         if (isr2 & AR_ISR_S2_TIM)
3053                                 mask2 |= ATH9K_INT_TIM;
3054                         if (isr2 & AR_ISR_S2_DTIM)
3055                                 mask2 |= ATH9K_INT_DTIM;
3056                         if (isr2 & AR_ISR_S2_DTIMSYNC)
3057                                 mask2 |= ATH9K_INT_DTIMSYNC;
3058                         if (isr2 & (AR_ISR_S2_CABEND))
3059                                 mask2 |= ATH9K_INT_CABEND;
3060                         if (isr2 & AR_ISR_S2_GTT)
3061                                 mask2 |= ATH9K_INT_GTT;
3062                         if (isr2 & AR_ISR_S2_CST)
3063                                 mask2 |= ATH9K_INT_CST;
3064                         if (isr2 & AR_ISR_S2_TSFOOR)
3065                                 mask2 |= ATH9K_INT_TSFOOR;
3066                 }
3067
3068                 isr = REG_READ(ah, AR_ISR_RAC);
3069                 if (isr == 0xffffffff) {
3070                         *masked = 0;
3071                         return false;
3072                 }
3073
3074                 *masked = isr & ATH9K_INT_COMMON;
3075
3076                 if (ah->config.intr_mitigation) {
3077                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3078                                 *masked |= ATH9K_INT_RX;
3079                 }
3080
3081                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3082                         *masked |= ATH9K_INT_RX;
3083                 if (isr &
3084                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3085                      AR_ISR_TXEOL)) {
3086                         u32 s0_s, s1_s;
3087
3088                         *masked |= ATH9K_INT_TX;
3089
3090                         s0_s = REG_READ(ah, AR_ISR_S0_S);
3091                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3092                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3093
3094                         s1_s = REG_READ(ah, AR_ISR_S1_S);
3095                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3096                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3097                 }
3098
3099                 if (isr & AR_ISR_RXORN) {
3100                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3101                                 "receive FIFO overrun interrupt\n");
3102                 }
3103
3104                 if (!AR_SREV_9100(ah)) {
3105                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3106                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3107                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
3108                                         *masked |= ATH9K_INT_TIM_TIMER;
3109                         }
3110                 }
3111
3112                 *masked |= mask2;
3113         }
3114
3115         if (AR_SREV_9100(ah))
3116                 return true;
3117
3118         if (sync_cause) {
3119                 fatal_int =
3120                         (sync_cause &
3121                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3122                         ? true : false;
3123
3124                 if (fatal_int) {
3125                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3126                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3127                                         "received PCI FATAL interrupt\n");
3128                         }
3129                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3130                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3131                                         "received PCI PERR interrupt\n");
3132                         }
3133                         *masked |= ATH9K_INT_FATAL;
3134                 }
3135                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3136                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3137                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3138                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3139                         REG_WRITE(ah, AR_RC, 0);
3140                         *masked |= ATH9K_INT_FATAL;
3141                 }
3142                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3143                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3144                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3145                 }
3146
3147                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3148                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3149         }
3150
3151         return true;
3152 }
3153
3154 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3155 {
3156         return ah->mask_reg;
3157 }
3158
3159 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3160 {
3161         u32 omask = ah->mask_reg;
3162         u32 mask, mask2;
3163         struct ath9k_hw_capabilities *pCap = &ah->caps;
3164
3165         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3166
3167         if (omask & ATH9K_INT_GLOBAL) {
3168                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3169                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3170                 (void) REG_READ(ah, AR_IER);
3171                 if (!AR_SREV_9100(ah)) {
3172                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3173                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3174
3175                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3176                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3177                 }
3178         }
3179
3180         mask = ints & ATH9K_INT_COMMON;
3181         mask2 = 0;
3182
3183         if (ints & ATH9K_INT_TX) {
3184                 if (ah->txok_interrupt_mask)
3185                         mask |= AR_IMR_TXOK;
3186                 if (ah->txdesc_interrupt_mask)
3187                         mask |= AR_IMR_TXDESC;
3188                 if (ah->txerr_interrupt_mask)
3189                         mask |= AR_IMR_TXERR;
3190                 if (ah->txeol_interrupt_mask)
3191                         mask |= AR_IMR_TXEOL;
3192         }
3193         if (ints & ATH9K_INT_RX) {
3194                 mask |= AR_IMR_RXERR;
3195                 if (ah->config.intr_mitigation)
3196                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3197                 else
3198                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3199                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3200                         mask |= AR_IMR_GENTMR;
3201         }
3202
3203         if (ints & (ATH9K_INT_BMISC)) {
3204                 mask |= AR_IMR_BCNMISC;
3205                 if (ints & ATH9K_INT_TIM)
3206                         mask2 |= AR_IMR_S2_TIM;
3207                 if (ints & ATH9K_INT_DTIM)
3208                         mask2 |= AR_IMR_S2_DTIM;
3209                 if (ints & ATH9K_INT_DTIMSYNC)
3210                         mask2 |= AR_IMR_S2_DTIMSYNC;
3211                 if (ints & ATH9K_INT_CABEND)
3212                         mask2 |= AR_IMR_S2_CABEND;
3213                 if (ints & ATH9K_INT_TSFOOR)
3214                         mask2 |= AR_IMR_S2_TSFOOR;
3215         }
3216
3217         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3218                 mask |= AR_IMR_BCNMISC;
3219                 if (ints & ATH9K_INT_GTT)
3220                         mask2 |= AR_IMR_S2_GTT;
3221                 if (ints & ATH9K_INT_CST)
3222                         mask2 |= AR_IMR_S2_CST;
3223         }
3224
3225         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3226         REG_WRITE(ah, AR_IMR, mask);
3227         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3228                                            AR_IMR_S2_DTIM |
3229                                            AR_IMR_S2_DTIMSYNC |
3230                                            AR_IMR_S2_CABEND |
3231                                            AR_IMR_S2_CABTO |
3232                                            AR_IMR_S2_TSFOOR |
3233                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3234         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3235         ah->mask_reg = ints;
3236
3237         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3238                 if (ints & ATH9K_INT_TIM_TIMER)
3239                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3240                 else
3241                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3242         }
3243
3244         if (ints & ATH9K_INT_GLOBAL) {
3245                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3246                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3247                 if (!AR_SREV_9100(ah)) {
3248                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3249                                   AR_INTR_MAC_IRQ);
3250                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3251
3252
3253                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3254                                   AR_INTR_SYNC_DEFAULT);
3255                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3256                                   AR_INTR_SYNC_DEFAULT);
3257                 }
3258                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3259                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3260         }
3261
3262         return omask;
3263 }
3264
3265 /*******************/
3266 /* Beacon Handling */
3267 /*******************/
3268
3269 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3270 {
3271         int flags = 0;
3272
3273         ah->beacon_interval = beacon_period;
3274
3275         switch (ah->opmode) {
3276         case NL80211_IFTYPE_STATION:
3277         case NL80211_IFTYPE_MONITOR:
3278                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3279                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3280                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3281                 flags |= AR_TBTT_TIMER_EN;
3282                 break;
3283         case NL80211_IFTYPE_ADHOC:
3284         case NL80211_IFTYPE_MESH_POINT:
3285                 REG_SET_BIT(ah, AR_TXCFG,
3286                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3287                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3288                           TU_TO_USEC(next_beacon +
3289                                      (ah->atim_window ? ah->
3290                                       atim_window : 1)));
3291                 flags |= AR_NDP_TIMER_EN;
3292         case NL80211_IFTYPE_AP:
3293                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3294                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3295                           TU_TO_USEC(next_beacon -
3296                                      ah->config.
3297                                      dma_beacon_response_time));
3298                 REG_WRITE(ah, AR_NEXT_SWBA,
3299                           TU_TO_USEC(next_beacon -
3300                                      ah->config.
3301                                      sw_beacon_response_time));
3302                 flags |=
3303                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3304                 break;
3305         default:
3306                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3307                         "%s: unsupported opmode: %d\n",
3308                         __func__, ah->opmode);
3309                 return;
3310                 break;
3311         }
3312
3313         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3314         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3315         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3316         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3317
3318         beacon_period &= ~ATH9K_BEACON_ENA;
3319         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3320                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3321                 ath9k_hw_reset_tsf(ah);
3322         }
3323
3324         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3325 }
3326
3327 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3328                                     const struct ath9k_beacon_state *bs)
3329 {
3330         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3331         struct ath9k_hw_capabilities *pCap = &ah->caps;
3332
3333         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3334
3335         REG_WRITE(ah, AR_BEACON_PERIOD,
3336                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3337         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3338                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3339
3340         REG_RMW_FIELD(ah, AR_RSSI_THR,
3341                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3342
3343         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3344
3345         if (bs->bs_sleepduration > beaconintval)
3346                 beaconintval = bs->bs_sleepduration;
3347
3348         dtimperiod = bs->bs_dtimperiod;
3349         if (bs->bs_sleepduration > dtimperiod)
3350                 dtimperiod = bs->bs_sleepduration;
3351
3352         if (beaconintval == dtimperiod)
3353                 nextTbtt = bs->bs_nextdtim;
3354         else
3355                 nextTbtt = bs->bs_nexttbtt;
3356
3357         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3358         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3359         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3360         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3361
3362         REG_WRITE(ah, AR_NEXT_DTIM,
3363                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3364         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3365
3366         REG_WRITE(ah, AR_SLEEP1,
3367                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3368                   | AR_SLEEP1_ASSUME_DTIM);
3369
3370         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3371                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3372         else
3373                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3374
3375         REG_WRITE(ah, AR_SLEEP2,
3376                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3377
3378         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3379         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3380
3381         REG_SET_BIT(ah, AR_TIMER_MODE,
3382                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3383                     AR_DTIM_TIMER_EN);
3384
3385         /* TSF Out of Range Threshold */
3386         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3387 }
3388
3389 /*******************/
3390 /* HW Capabilities */
3391 /*******************/
3392
3393 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3394 {
3395         struct ath9k_hw_capabilities *pCap = &ah->caps;
3396         u16 capField = 0, eeval;
3397
3398         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3399         ah->regulatory.current_rd = eeval;
3400
3401         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3402         if (AR_SREV_9285_10_OR_LATER(ah))
3403                 eeval |= AR9285_RDEXT_DEFAULT;
3404         ah->regulatory.current_rd_ext = eeval;
3405
3406         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3407
3408         if (ah->opmode != NL80211_IFTYPE_AP &&
3409             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3410                 if (ah->regulatory.current_rd == 0x64 ||
3411                     ah->regulatory.current_rd == 0x65)
3412                         ah->regulatory.current_rd += 5;
3413                 else if (ah->regulatory.current_rd == 0x41)
3414                         ah->regulatory.current_rd = 0x43;
3415                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3416                         "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3417         }
3418
3419         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3420         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3421
3422         if (eeval & AR5416_OPFLAGS_11A) {
3423                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3424                 if (ah->config.ht_enable) {
3425                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3426                                 set_bit(ATH9K_MODE_11NA_HT20,
3427                                         pCap->wireless_modes);
3428                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3429                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3430                                         pCap->wireless_modes);
3431                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3432                                         pCap->wireless_modes);
3433                         }
3434                 }
3435         }
3436
3437         if (eeval & AR5416_OPFLAGS_11G) {
3438                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3439                 if (ah->config.ht_enable) {
3440                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3441                                 set_bit(ATH9K_MODE_11NG_HT20,
3442                                         pCap->wireless_modes);
3443                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3444                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3445                                         pCap->wireless_modes);
3446                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3447                                         pCap->wireless_modes);
3448                         }
3449                 }
3450         }
3451
3452         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3453         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3454             !(eeval & AR5416_OPFLAGS_11A))
3455                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3456         else
3457                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3458
3459         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3460                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3461
3462         pCap->low_2ghz_chan = 2312;
3463         pCap->high_2ghz_chan = 2732;
3464
3465         pCap->low_5ghz_chan = 4920;
3466         pCap->high_5ghz_chan = 6100;
3467
3468         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3469         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3470         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3471
3472         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3473         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3474         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3475
3476         if (ah->config.ht_enable)
3477                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3478         else
3479                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3480
3481         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3482         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3483         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3484         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3485
3486         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3487                 pCap->total_queues =
3488                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3489         else
3490                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3491
3492         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3493                 pCap->keycache_size =
3494                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3495         else
3496                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3497
3498         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3499         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3500
3501         if (AR_SREV_9285_10_OR_LATER(ah))
3502                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3503         else if (AR_SREV_9280_10_OR_LATER(ah))
3504                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3505         else
3506                 pCap->num_gpio_pins = AR_NUM_GPIO;
3507
3508         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3509                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3510                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3511         } else {
3512                 pCap->rts_aggr_limit = (8 * 1024);
3513         }
3514
3515         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3516
3517 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3518         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3519         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3520                 ah->rfkill_gpio =
3521                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3522                 ah->rfkill_polarity =
3523                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3524
3525                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3526         }
3527 #endif
3528
3529         if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3530             (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3531             (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3532             (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3533             (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3534             (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3535                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3536         else
3537                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3538
3539         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3540                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3541         else
3542                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3543
3544         if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3545                 pCap->reg_cap =
3546                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3547                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3548                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3549                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3550         } else {
3551                 pCap->reg_cap =
3552                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3553                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3554         }
3555
3556         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3557
3558         pCap->num_antcfg_5ghz =
3559                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3560         pCap->num_antcfg_2ghz =
3561                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3562
3563         if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3564                 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3565                 ah->btactive_gpio = 6;
3566                 ah->wlanactive_gpio = 5;
3567         }
3568 }
3569
3570 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3571                             u32 capability, u32 *result)
3572 {
3573         switch (type) {
3574         case ATH9K_CAP_CIPHER:
3575                 switch (capability) {
3576                 case ATH9K_CIPHER_AES_CCM:
3577                 case ATH9K_CIPHER_AES_OCB:
3578                 case ATH9K_CIPHER_TKIP:
3579                 case ATH9K_CIPHER_WEP:
3580                 case ATH9K_CIPHER_MIC:
3581                 case ATH9K_CIPHER_CLR:
3582                         return true;
3583                 default:
3584                         return false;
3585                 }
3586         case ATH9K_CAP_TKIP_MIC:
3587                 switch (capability) {
3588                 case 0:
3589                         return true;
3590                 case 1:
3591                         return (ah->sta_id1_defaults &
3592                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3593                         false;
3594                 }
3595         case ATH9K_CAP_TKIP_SPLIT:
3596                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3597                         false : true;
3598         case ATH9K_CAP_DIVERSITY:
3599                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3600                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3601                         true : false;
3602         case ATH9K_CAP_MCAST_KEYSRCH:
3603                 switch (capability) {
3604                 case 0:
3605                         return true;
3606                 case 1:
3607                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3608                                 return false;
3609                         } else {
3610                                 return (ah->sta_id1_defaults &
3611                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3612                                         false;
3613                         }
3614                 }
3615                 return false;
3616         case ATH9K_CAP_TXPOW:
3617                 switch (capability) {
3618                 case 0:
3619                         return 0;
3620                 case 1:
3621                         *result = ah->regulatory.power_limit;
3622                         return 0;
3623                 case 2:
3624                         *result = ah->regulatory.max_power_level;
3625                         return 0;
3626                 case 3:
3627                         *result = ah->regulatory.tp_scale;
3628                         return 0;
3629                 }
3630                 return false;
3631         case ATH9K_CAP_DS:
3632                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3633                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3634                         ? false : true;
3635         default:
3636                 return false;
3637         }
3638 }
3639
3640 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3641                             u32 capability, u32 setting, int *status)
3642 {
3643         u32 v;
3644
3645         switch (type) {
3646         case ATH9K_CAP_TKIP_MIC:
3647                 if (setting)
3648                         ah->sta_id1_defaults |=
3649                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3650                 else
3651                         ah->sta_id1_defaults &=
3652                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3653                 return true;
3654         case ATH9K_CAP_DIVERSITY:
3655                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3656                 if (setting)
3657                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3658                 else
3659                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3660                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3661                 return true;
3662         case ATH9K_CAP_MCAST_KEYSRCH:
3663                 if (setting)
3664                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3665                 else
3666                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3667                 return true;
3668         default:
3669                 return false;
3670         }
3671 }
3672
3673 /****************************/
3674 /* GPIO / RFKILL / Antennae */
3675 /****************************/
3676
3677 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3678                                          u32 gpio, u32 type)
3679 {
3680         int addr;
3681         u32 gpio_shift, tmp;
3682
3683         if (gpio > 11)
3684                 addr = AR_GPIO_OUTPUT_MUX3;
3685         else if (gpio > 5)
3686                 addr = AR_GPIO_OUTPUT_MUX2;
3687         else
3688                 addr = AR_GPIO_OUTPUT_MUX1;
3689
3690         gpio_shift = (gpio % 6) * 5;
3691
3692         if (AR_SREV_9280_20_OR_LATER(ah)
3693             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3694                 REG_RMW(ah, addr, (type << gpio_shift),
3695                         (0x1f << gpio_shift));
3696         } else {
3697                 tmp = REG_READ(ah, addr);
3698                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3699                 tmp &= ~(0x1f << gpio_shift);
3700                 tmp |= (type << gpio_shift);
3701                 REG_WRITE(ah, addr, tmp);
3702         }
3703 }
3704
3705 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3706 {
3707         u32 gpio_shift;
3708
3709         ASSERT(gpio < ah->caps.num_gpio_pins);
3710
3711         gpio_shift = gpio << 1;
3712
3713         REG_RMW(ah,
3714                 AR_GPIO_OE_OUT,
3715                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3716                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3717 }
3718
3719 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3720 {
3721 #define MS_REG_READ(x, y) \
3722         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3723
3724         if (gpio >= ah->caps.num_gpio_pins)
3725                 return 0xffffffff;
3726
3727         if (AR_SREV_9287_10_OR_LATER(ah))
3728                 return MS_REG_READ(AR9287, gpio) != 0;
3729         else if (AR_SREV_9285_10_OR_LATER(ah))
3730                 return MS_REG_READ(AR9285, gpio) != 0;
3731         else if (AR_SREV_9280_10_OR_LATER(ah))
3732                 return MS_REG_READ(AR928X, gpio) != 0;
3733         else
3734                 return MS_REG_READ(AR, gpio) != 0;
3735 }
3736
3737 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3738                          u32 ah_signal_type)
3739 {
3740         u32 gpio_shift;
3741
3742         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3743
3744         gpio_shift = 2 * gpio;
3745
3746         REG_RMW(ah,
3747                 AR_GPIO_OE_OUT,
3748                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3749                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3750 }
3751
3752 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3753 {
3754         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3755                 AR_GPIO_BIT(gpio));
3756 }
3757
3758 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3759 {
3760         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3761 }
3762
3763 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3764 {
3765         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3766 }
3767
3768 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3769                                enum ath9k_ant_setting settings,
3770                                struct ath9k_channel *chan,
3771                                u8 *tx_chainmask,
3772                                u8 *rx_chainmask,
3773                                u8 *antenna_cfgd)
3774 {
3775         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3776
3777         if (AR_SREV_9280(ah)) {
3778                 if (!tx_chainmask_cfg) {
3779
3780                         tx_chainmask_cfg = *tx_chainmask;
3781                         rx_chainmask_cfg = *rx_chainmask;
3782                 }
3783
3784                 switch (settings) {
3785                 case ATH9K_ANT_FIXED_A:
3786                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3787                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3788                         *antenna_cfgd = true;
3789                         break;
3790                 case ATH9K_ANT_FIXED_B:
3791                         if (ah->caps.tx_chainmask >
3792                             ATH9K_ANTENNA1_CHAINMASK) {
3793                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3794                         }
3795                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3796                         *antenna_cfgd = true;
3797                         break;
3798                 case ATH9K_ANT_VARIABLE:
3799                         *tx_chainmask = tx_chainmask_cfg;
3800                         *rx_chainmask = rx_chainmask_cfg;
3801                         *antenna_cfgd = true;
3802                         break;
3803                 default:
3804                         break;
3805                 }
3806         } else {
3807                 ah->diversity_control = settings;
3808         }
3809
3810         return true;
3811 }
3812
3813 /*********************/
3814 /* General Operation */
3815 /*********************/
3816
3817 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3818 {
3819         u32 bits = REG_READ(ah, AR_RX_FILTER);
3820         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3821
3822         if (phybits & AR_PHY_ERR_RADAR)
3823                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3824         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3825                 bits |= ATH9K_RX_FILTER_PHYERR;
3826
3827         return bits;
3828 }
3829
3830 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3831 {
3832         u32 phybits;
3833
3834         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3835         phybits = 0;
3836         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3837                 phybits |= AR_PHY_ERR_RADAR;
3838         if (bits & ATH9K_RX_FILTER_PHYERR)
3839                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3840         REG_WRITE(ah, AR_PHY_ERR, phybits);
3841
3842         if (phybits)
3843                 REG_WRITE(ah, AR_RXCFG,
3844                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3845         else
3846                 REG_WRITE(ah, AR_RXCFG,
3847                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3848 }
3849
3850 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3851 {
3852         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3853 }
3854
3855 bool ath9k_hw_disable(struct ath_hw *ah)
3856 {
3857         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3858                 return false;
3859
3860         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3861 }
3862
3863 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3864 {
3865         struct ath9k_channel *chan = ah->curchan;
3866         struct ieee80211_channel *channel = chan->chan;
3867
3868         ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3869
3870         ah->eep_ops->set_txpower(ah, chan,
3871                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
3872                                  channel->max_antenna_gain * 2,
3873                                  channel->max_power * 2,
3874                                  min((u32) MAX_RATE_POWER,
3875                                  (u32) ah->regulatory.power_limit));
3876 }
3877
3878 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3879 {
3880         memcpy(ah->macaddr, mac, ETH_ALEN);
3881 }
3882
3883 void ath9k_hw_setopmode(struct ath_hw *ah)
3884 {
3885         ath9k_hw_set_operating_mode(ah, ah->opmode);
3886 }
3887
3888 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3889 {
3890         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3891         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3892 }
3893
3894 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3895 {
3896         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3897         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3898 }
3899
3900 void ath9k_hw_write_associd(struct ath_softc *sc)
3901 {
3902         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3903         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3904                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3905 }
3906
3907 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3908 {
3909         u64 tsf;
3910
3911         tsf = REG_READ(ah, AR_TSF_U32);
3912         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3913
3914         return tsf;
3915 }
3916
3917 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3918 {
3919         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3920         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3921 }
3922
3923 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3924 {
3925         ath9k_ps_wakeup(ah->ah_sc);
3926         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3927                            AH_TSF_WRITE_TIMEOUT))
3928                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3929                         "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3930
3931         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3932         ath9k_ps_restore(ah->ah_sc);
3933 }
3934
3935 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3936 {
3937         if (setting)
3938                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3939         else
3940                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3941
3942         return true;
3943 }
3944
3945 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3946 {
3947         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3948                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3949                 ah->slottime = (u32) -1;
3950                 return false;
3951         } else {
3952                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3953                 ah->slottime = us;
3954                 return true;
3955         }
3956 }
3957
3958 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3959 {
3960         u32 macmode;
3961
3962         if (mode == ATH9K_HT_MACMODE_2040 &&
3963             !ah->config.cwm_ignore_extcca)
3964                 macmode = AR_2040_JOINED_RX_CLEAR;
3965         else
3966                 macmode = 0;
3967
3968         REG_WRITE(ah, AR_2040_MODE, macmode);
3969 }
3970
3971 /***************************/
3972 /*  Bluetooth Coexistence  */
3973 /***************************/
3974
3975 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3976 {
3977         /* connect bt_active to baseband */
3978         REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3979                         (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3980                          AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3981
3982         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3983                         AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3984
3985         /* Set input mux for bt_active to gpio pin */
3986         REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3987                         AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3988                         ah->btactive_gpio);
3989
3990         /* Configure the desired gpio port for input */
3991         ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3992
3993         /* Configure the desired GPIO port for TX_FRAME output */
3994         ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3995                             AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3996 }