Merge branch 'topic/oss' into for-linus
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "ath9k.h"
18
19 static void ath9k_hw_analog_shift_rmw(struct ath_hw *ah,
20                                       u32 reg, u32 mask,
21                                       u32 shift, u32 val)
22 {
23         u32 regVal;
24
25         regVal = REG_READ(ah, reg) & ~mask;
26         regVal |= (val << shift) & mask;
27
28         REG_WRITE(ah, reg, regVal);
29
30         if (ah->config.analog_shiftreg)
31                 udelay(100);
32
33         return;
34 }
35
36 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
37 {
38
39         if (fbin == AR5416_BCHAN_UNUSED)
40                 return fbin;
41
42         return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
43 }
44
45 static inline int16_t ath9k_hw_interpolate(u16 target,
46                                            u16 srcLeft, u16 srcRight,
47                                            int16_t targetLeft,
48                                            int16_t targetRight)
49 {
50         int16_t rv;
51
52         if (srcRight == srcLeft) {
53                 rv = targetLeft;
54         } else {
55                 rv = (int16_t) (((target - srcLeft) * targetRight +
56                                  (srcRight - target) * targetLeft) /
57                                 (srcRight - srcLeft));
58         }
59         return rv;
60 }
61
62 static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
63                                                   u16 listSize, u16 *indexL,
64                                                   u16 *indexR)
65 {
66         u16 i;
67
68         if (target <= pList[0]) {
69                 *indexL = *indexR = 0;
70                 return true;
71         }
72         if (target >= pList[listSize - 1]) {
73                 *indexL = *indexR = (u16) (listSize - 1);
74                 return true;
75         }
76
77         for (i = 0; i < listSize - 1; i++) {
78                 if (pList[i] == target) {
79                         *indexL = *indexR = i;
80                         return true;
81                 }
82                 if (target < pList[i + 1]) {
83                         *indexL = i;
84                         *indexR = (u16) (i + 1);
85                         return false;
86                 }
87         }
88         return false;
89 }
90
91 static inline bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
92 {
93         struct ath_softc *sc = ah->ah_sc;
94
95         return sc->bus_ops->eeprom_read(ah, off, data);
96 }
97
98 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
99                                            u8 *pVpdList, u16 numIntercepts,
100                                            u8 *pRetVpdList)
101 {
102         u16 i, k;
103         u8 currPwr = pwrMin;
104         u16 idxL = 0, idxR = 0;
105
106         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
107                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
108                                                numIntercepts, &(idxL),
109                                                &(idxR));
110                 if (idxR < 1)
111                         idxR = 1;
112                 if (idxL == numIntercepts - 1)
113                         idxL = (u16) (numIntercepts - 2);
114                 if (pPwrList[idxL] == pPwrList[idxR])
115                         k = pVpdList[idxL];
116                 else
117                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
118                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
119                                   (pPwrList[idxR] - pPwrList[idxL]));
120                 pRetVpdList[i] = (u8) k;
121                 currPwr += 2;
122         }
123
124         return true;
125 }
126
127 static void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
128                                       struct ath9k_channel *chan,
129                                       struct cal_target_power_leg *powInfo,
130                                       u16 numChannels,
131                                       struct cal_target_power_leg *pNewPower,
132                                       u16 numRates, bool isExtTarget)
133 {
134         struct chan_centers centers;
135         u16 clo, chi;
136         int i;
137         int matchIndex = -1, lowIndex = -1;
138         u16 freq;
139
140         ath9k_hw_get_channel_centers(ah, chan, &centers);
141         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
142
143         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
144                                        IS_CHAN_2GHZ(chan))) {
145                 matchIndex = 0;
146         } else {
147                 for (i = 0; (i < numChannels) &&
148                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
149                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
150                                                        IS_CHAN_2GHZ(chan))) {
151                                 matchIndex = i;
152                                 break;
153                         } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
154                                                       IS_CHAN_2GHZ(chan))) &&
155                                    (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
156                                                       IS_CHAN_2GHZ(chan)))) {
157                                 lowIndex = i - 1;
158                                 break;
159                         }
160                 }
161                 if ((matchIndex == -1) && (lowIndex == -1))
162                         matchIndex = i - 1;
163         }
164
165         if (matchIndex != -1) {
166                 *pNewPower = powInfo[matchIndex];
167         } else {
168                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
169                                          IS_CHAN_2GHZ(chan));
170                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
171                                          IS_CHAN_2GHZ(chan));
172
173                 for (i = 0; i < numRates; i++) {
174                         pNewPower->tPow2x[i] =
175                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
176                                                 powInfo[lowIndex].tPow2x[i],
177                                                 powInfo[lowIndex + 1].tPow2x[i]);
178                 }
179         }
180 }
181
182 static void ath9k_get_txgain_index(struct ath_hw *ah,
183                 struct ath9k_channel *chan,
184                 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
185                 u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
186 {
187         u8 pcdac, i = 0;
188         u16 idxL = 0, idxR = 0, numPiers;
189         bool match;
190         struct chan_centers centers;
191
192         ath9k_hw_get_channel_centers(ah, chan, &centers);
193
194         for (numPiers = 0; numPiers < availPiers; numPiers++)
195                 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
196                         break;
197
198         match = ath9k_hw_get_lower_upper_index(
199                         (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
200                         calChans, numPiers, &idxL, &idxR);
201         if (match) {
202                 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
203                 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
204         } else {
205                 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
206                 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
207                                 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
208         }
209
210         while (pcdac > ah->originalGain[i] &&
211                         i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
212                 i++;
213
214         *pcdacIdx = i;
215         return;
216 }
217
218 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
219                                 u32 initTxGain,
220                                 int txPower,
221                                 u8 *pPDADCValues)
222 {
223         u32 i;
224         u32 offset;
225
226         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
227                         AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
228         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
229                         AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
230
231         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
232                         AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
233
234         offset = txPower;
235         for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
236                 if (i < offset)
237                         pPDADCValues[i] = 0x0;
238                 else
239                         pPDADCValues[i] = 0xFF;
240 }
241
242
243
244
245 static void ath9k_hw_get_target_powers(struct ath_hw *ah,
246                                        struct ath9k_channel *chan,
247                                        struct cal_target_power_ht *powInfo,
248                                        u16 numChannels,
249                                        struct cal_target_power_ht *pNewPower,
250                                        u16 numRates, bool isHt40Target)
251 {
252         struct chan_centers centers;
253         u16 clo, chi;
254         int i;
255         int matchIndex = -1, lowIndex = -1;
256         u16 freq;
257
258         ath9k_hw_get_channel_centers(ah, chan, &centers);
259         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
260
261         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
262                 matchIndex = 0;
263         } else {
264                 for (i = 0; (i < numChannels) &&
265                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
266                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
267                                                        IS_CHAN_2GHZ(chan))) {
268                                 matchIndex = i;
269                                 break;
270                         } else
271                                 if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
272                                                        IS_CHAN_2GHZ(chan))) &&
273                                     (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
274                                                        IS_CHAN_2GHZ(chan)))) {
275                                         lowIndex = i - 1;
276                                         break;
277                                 }
278                 }
279                 if ((matchIndex == -1) && (lowIndex == -1))
280                         matchIndex = i - 1;
281         }
282
283         if (matchIndex != -1) {
284                 *pNewPower = powInfo[matchIndex];
285         } else {
286                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
287                                          IS_CHAN_2GHZ(chan));
288                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
289                                          IS_CHAN_2GHZ(chan));
290
291                 for (i = 0; i < numRates; i++) {
292                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
293                                                 clo, chi,
294                                                 powInfo[lowIndex].tPow2x[i],
295                                                 powInfo[lowIndex + 1].tPow2x[i]);
296                 }
297         }
298 }
299
300 static u16 ath9k_hw_get_max_edge_power(u16 freq,
301                                        struct cal_ctl_edges *pRdEdgesPower,
302                                        bool is2GHz, int num_band_edges)
303 {
304         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
305         int i;
306
307         for (i = 0; (i < num_band_edges) &&
308                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
309                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
310                         twiceMaxEdgePower = pRdEdgesPower[i].tPower;
311                         break;
312                 } else if ((i > 0) &&
313                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
314                                                       is2GHz))) {
315                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
316                                                is2GHz) < freq &&
317                             pRdEdgesPower[i - 1].flag) {
318                                 twiceMaxEdgePower =
319                                         pRdEdgesPower[i - 1].tPower;
320                         }
321                         break;
322                 }
323         }
324
325         return twiceMaxEdgePower;
326 }
327
328 /****************************************/
329 /* EEPROM Operations for 4K sized cards */
330 /****************************************/
331
332 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
333 {
334         return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
335 }
336
337 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
338 {
339         return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
340 }
341
342 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
343 {
344 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
345         u16 *eep_data = (u16 *)&ah->eeprom.map4k;
346         int addr, eep_start_loc = 0;
347
348         eep_start_loc = 64;
349
350         if (!ath9k_hw_use_flash(ah)) {
351                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
352                         "Reading from EEPROM, not flash\n");
353         }
354
355         for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
356                 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
357                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
358                                "Unable to read eeprom region \n");
359                         return false;
360                 }
361                 eep_data++;
362         }
363
364         return true;
365 #undef SIZE_EEPROM_4K
366 }
367
368 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
369 {
370 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
371         struct ar5416_eeprom_4k *eep =
372                 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
373         u16 *eepdata, temp, magic, magic2;
374         u32 sum = 0, el;
375         bool need_swap = false;
376         int i, addr;
377
378
379         if (!ath9k_hw_use_flash(ah)) {
380                 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
381                                          &magic)) {
382                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
383                                 "Reading Magic # failed\n");
384                         return false;
385                 }
386
387                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
388                         "Read Magic = 0x%04X\n", magic);
389
390                 if (magic != AR5416_EEPROM_MAGIC) {
391                         magic2 = swab16(magic);
392
393                         if (magic2 == AR5416_EEPROM_MAGIC) {
394                                 need_swap = true;
395                                 eepdata = (u16 *) (&ah->eeprom);
396
397                                 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
398                                         temp = swab16(*eepdata);
399                                         *eepdata = temp;
400                                         eepdata++;
401                                 }
402                         } else {
403                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
404                                         "Invalid EEPROM Magic. "
405                                         "endianness mismatch.\n");
406                                 return -EINVAL;
407                         }
408                 }
409         }
410
411         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
412                 need_swap ? "True" : "False");
413
414         if (need_swap)
415                 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
416         else
417                 el = ah->eeprom.map4k.baseEepHeader.length;
418
419         if (el > sizeof(struct ar5416_eeprom_4k))
420                 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
421         else
422                 el = el / sizeof(u16);
423
424         eepdata = (u16 *)(&ah->eeprom);
425
426         for (i = 0; i < el; i++)
427                 sum ^= *eepdata++;
428
429         if (need_swap) {
430                 u32 integer;
431                 u16 word;
432
433                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
434                         "EEPROM Endianness is not native.. Changing\n");
435
436                 word = swab16(eep->baseEepHeader.length);
437                 eep->baseEepHeader.length = word;
438
439                 word = swab16(eep->baseEepHeader.checksum);
440                 eep->baseEepHeader.checksum = word;
441
442                 word = swab16(eep->baseEepHeader.version);
443                 eep->baseEepHeader.version = word;
444
445                 word = swab16(eep->baseEepHeader.regDmn[0]);
446                 eep->baseEepHeader.regDmn[0] = word;
447
448                 word = swab16(eep->baseEepHeader.regDmn[1]);
449                 eep->baseEepHeader.regDmn[1] = word;
450
451                 word = swab16(eep->baseEepHeader.rfSilent);
452                 eep->baseEepHeader.rfSilent = word;
453
454                 word = swab16(eep->baseEepHeader.blueToothOptions);
455                 eep->baseEepHeader.blueToothOptions = word;
456
457                 word = swab16(eep->baseEepHeader.deviceCap);
458                 eep->baseEepHeader.deviceCap = word;
459
460                 integer = swab32(eep->modalHeader.antCtrlCommon);
461                 eep->modalHeader.antCtrlCommon = integer;
462
463                 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
464                         integer = swab32(eep->modalHeader.antCtrlChain[i]);
465                         eep->modalHeader.antCtrlChain[i] = integer;
466                 }
467
468                 for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
469                         word = swab16(eep->modalHeader.spurChans[i].spurChan);
470                         eep->modalHeader.spurChans[i].spurChan = word;
471                 }
472         }
473
474         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
475             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
476                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
477                         "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
478                         sum, ah->eep_ops->get_eeprom_ver(ah));
479                 return -EINVAL;
480         }
481
482         return 0;
483 #undef EEPROM_4K_SIZE
484 }
485
486 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
487                                   enum eeprom_param param)
488 {
489         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
490         struct modal_eep_4k_header *pModal = &eep->modalHeader;
491         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
492
493         switch (param) {
494         case EEP_NFTHRESH_2:
495                 return pModal->noiseFloorThreshCh[0];
496         case AR_EEPROM_MAC(0):
497                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
498         case AR_EEPROM_MAC(1):
499                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
500         case AR_EEPROM_MAC(2):
501                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
502         case EEP_REG_0:
503                 return pBase->regDmn[0];
504         case EEP_REG_1:
505                 return pBase->regDmn[1];
506         case EEP_OP_CAP:
507                 return pBase->deviceCap;
508         case EEP_OP_MODE:
509                 return pBase->opCapFlags;
510         case EEP_RF_SILENT:
511                 return pBase->rfSilent;
512         case EEP_OB_2:
513                 return pModal->ob_01;
514         case EEP_DB_2:
515                 return pModal->db1_01;
516         case EEP_MINOR_REV:
517                 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
518         case EEP_TX_MASK:
519                 return pBase->txMask;
520         case EEP_RX_MASK:
521                 return pBase->rxMask;
522         case EEP_FRAC_N_5G:
523                 return 0;
524         default:
525                 return 0;
526         }
527 }
528
529 static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
530                                 struct ath9k_channel *chan,
531                                 struct cal_data_per_freq_4k *pRawDataSet,
532                                 u8 *bChans, u16 availPiers,
533                                 u16 tPdGainOverlap, int16_t *pMinCalPower,
534                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
535                                 u16 numXpdGains)
536 {
537 #define TMP_VAL_VPD_TABLE \
538         ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
539         int i, j, k;
540         int16_t ss;
541         u16 idxL = 0, idxR = 0, numPiers;
542         static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
543                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
544         static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
545                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
546         static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
547                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
548
549         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
550         u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
551         u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
552         int16_t vpdStep;
553         int16_t tmpVal;
554         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
555         bool match;
556         int16_t minDelta = 0;
557         struct chan_centers centers;
558 #define PD_GAIN_BOUNDARY_DEFAULT 58;
559
560         ath9k_hw_get_channel_centers(ah, chan, &centers);
561
562         for (numPiers = 0; numPiers < availPiers; numPiers++) {
563                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
564                         break;
565         }
566
567         match = ath9k_hw_get_lower_upper_index(
568                                         (u8)FREQ2FBIN(centers.synth_center,
569                                         IS_CHAN_2GHZ(chan)), bChans, numPiers,
570                                         &idxL, &idxR);
571
572         if (match) {
573                 for (i = 0; i < numXpdGains; i++) {
574                         minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
575                         maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
576                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
577                                         pRawDataSet[idxL].pwrPdg[i],
578                                         pRawDataSet[idxL].vpdPdg[i],
579                                         AR5416_EEP4K_PD_GAIN_ICEPTS,
580                                         vpdTableI[i]);
581                 }
582         } else {
583                 for (i = 0; i < numXpdGains; i++) {
584                         pVpdL = pRawDataSet[idxL].vpdPdg[i];
585                         pPwrL = pRawDataSet[idxL].pwrPdg[i];
586                         pVpdR = pRawDataSet[idxR].vpdPdg[i];
587                         pPwrR = pRawDataSet[idxR].pwrPdg[i];
588
589                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
590
591                         maxPwrT4[i] =
592                                 min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
593                                     pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
594
595
596                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
597                                                 pPwrL, pVpdL,
598                                                 AR5416_EEP4K_PD_GAIN_ICEPTS,
599                                                 vpdTableL[i]);
600                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
601                                                 pPwrR, pVpdR,
602                                                 AR5416_EEP4K_PD_GAIN_ICEPTS,
603                                                 vpdTableR[i]);
604
605                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
606                                 vpdTableI[i][j] =
607                                         (u8)(ath9k_hw_interpolate((u16)
608                                              FREQ2FBIN(centers.
609                                                        synth_center,
610                                                        IS_CHAN_2GHZ
611                                                        (chan)),
612                                              bChans[idxL], bChans[idxR],
613                                              vpdTableL[i][j], vpdTableR[i][j]));
614                         }
615                 }
616         }
617
618         *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
619
620         k = 0;
621
622         for (i = 0; i < numXpdGains; i++) {
623                 if (i == (numXpdGains - 1))
624                         pPdGainBoundaries[i] =
625                                 (u16)(maxPwrT4[i] / 2);
626                 else
627                         pPdGainBoundaries[i] =
628                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
629
630                 pPdGainBoundaries[i] =
631                         min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
632
633                 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
634                         minDelta = pPdGainBoundaries[0] - 23;
635                         pPdGainBoundaries[0] = 23;
636                 } else {
637                         minDelta = 0;
638                 }
639
640                 if (i == 0) {
641                         if (AR_SREV_9280_10_OR_LATER(ah))
642                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
643                         else
644                                 ss = 0;
645                 } else {
646                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
647                                         (minPwrT4[i] / 2)) -
648                                        tPdGainOverlap + 1 + minDelta);
649                 }
650                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
651                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
652
653                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
654                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
655                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
656                         ss++;
657                 }
658
659                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
660                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
661                                 (minPwrT4[i] / 2));
662                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
663                         tgtIndex : sizeCurrVpdTable;
664
665                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
666                         pPDADCValues[k++] = vpdTableI[i][ss++];
667
668                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
669                                     vpdTableI[i][sizeCurrVpdTable - 2]);
670                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
671
672                 if (tgtIndex >= maxIndex) {
673                         while ((ss <= tgtIndex) &&
674                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
675                                 tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
676                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
677                                                          255 : tmpVal);
678                                 ss++;
679                         }
680                 }
681         }
682
683         while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
684                 pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
685                 i++;
686         }
687
688         while (k < AR5416_NUM_PDADC_VALUES) {
689                 pPDADCValues[k] = pPDADCValues[k - 1];
690                 k++;
691         }
692
693         return;
694 #undef TMP_VAL_VPD_TABLE
695 }
696
697 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
698                                   struct ath9k_channel *chan,
699                                   int16_t *pTxPowerIndexOffset)
700 {
701         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
702         struct cal_data_per_freq_4k *pRawDataset;
703         u8 *pCalBChans = NULL;
704         u16 pdGainOverlap_t2;
705         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
706         u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
707         u16 numPiers, i, j;
708         int16_t tMinCalPower;
709         u16 numXpdGain, xpdMask;
710         u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
711         u32 reg32, regOffset, regChainOffset;
712
713         xpdMask = pEepData->modalHeader.xpdGain;
714
715         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
716             AR5416_EEP_MINOR_VER_2) {
717                 pdGainOverlap_t2 =
718                         pEepData->modalHeader.pdGainOverlap;
719         } else {
720                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
721                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
722         }
723
724         pCalBChans = pEepData->calFreqPier2G;
725         numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
726
727         numXpdGain = 0;
728
729         for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
730                 if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
731                         if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
732                                 break;
733                         xpdGainValues[numXpdGain] =
734                                 (u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
735                         numXpdGain++;
736                 }
737         }
738
739         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
740                       (numXpdGain - 1) & 0x3);
741         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
742                       xpdGainValues[0]);
743         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
744                       xpdGainValues[1]);
745         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
746
747         for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
748                 if (AR_SREV_5416_20_OR_LATER(ah) &&
749                     (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
750                     (i != 0)) {
751                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
752                 } else
753                         regChainOffset = i * 0x1000;
754
755                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
756                         pRawDataset = pEepData->calPierData2G[i];
757
758                         ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
759                                             pRawDataset, pCalBChans,
760                                             numPiers, pdGainOverlap_t2,
761                                             &tMinCalPower, gainBoundaries,
762                                             pdadcValues, numXpdGain);
763
764                         if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
765                                 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
766                                           SM(pdGainOverlap_t2,
767                                              AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
768                                           | SM(gainBoundaries[0],
769                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
770                                           | SM(gainBoundaries[1],
771                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
772                                           | SM(gainBoundaries[2],
773                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
774                                           | SM(gainBoundaries[3],
775                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
776                         }
777
778                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
779                         for (j = 0; j < 32; j++) {
780                                 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
781                                         ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
782                                         ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
783                                         ((pdadcValues[4 * j + 3] & 0xFF) << 24);
784                                 REG_WRITE(ah, regOffset, reg32);
785
786                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
787                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
788                                         i, regChainOffset, regOffset,
789                                         reg32);
790                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
791                                         "PDADC: Chain %d | "
792                                         "PDADC %3d Value %3d | "
793                                         "PDADC %3d Value %3d | "
794                                         "PDADC %3d Value %3d | "
795                                         "PDADC %3d Value %3d |\n",
796                                         i, 4 * j, pdadcValues[4 * j],
797                                         4 * j + 1, pdadcValues[4 * j + 1],
798                                         4 * j + 2, pdadcValues[4 * j + 2],
799                                         4 * j + 3,
800                                         pdadcValues[4 * j + 3]);
801
802                                 regOffset += 4;
803                         }
804                 }
805         }
806
807         *pTxPowerIndexOffset = 0;
808 }
809
810 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
811                                                  struct ath9k_channel *chan,
812                                                  int16_t *ratesArray,
813                                                  u16 cfgCtl,
814                                                  u16 AntennaReduction,
815                                                  u16 twiceMaxRegulatoryPower,
816                                                  u16 powerLimit)
817 {
818         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
819         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
820         static const u16 tpScaleReductionTable[5] =
821                 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
822
823         int i;
824         int16_t twiceLargestAntenna;
825         struct cal_ctl_data_4k *rep;
826         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
827                 0, { 0, 0, 0, 0}
828         };
829         struct cal_target_power_leg targetPowerOfdmExt = {
830                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
831                 0, { 0, 0, 0, 0 }
832         };
833         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
834                 0, {0, 0, 0, 0}
835         };
836         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
837         u16 ctlModesFor11g[] =
838                 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
839                   CTL_2GHT40
840                 };
841         u16 numCtlModes, *pCtlMode, ctlMode, freq;
842         struct chan_centers centers;
843         int tx_chainmask;
844         u16 twiceMinEdgePower;
845
846         tx_chainmask = ah->txchainmask;
847
848         ath9k_hw_get_channel_centers(ah, chan, &centers);
849
850         twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
851
852         twiceLargestAntenna = (int16_t)min(AntennaReduction -
853                                            twiceLargestAntenna, 0);
854
855         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
856
857         if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
858                 maxRegAllowedPower -=
859                         (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
860         }
861
862         scaledPower = min(powerLimit, maxRegAllowedPower);
863         scaledPower = max((u16)0, scaledPower);
864
865         numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
866         pCtlMode = ctlModesFor11g;
867
868         ath9k_hw_get_legacy_target_powers(ah, chan,
869                         pEepData->calTargetPowerCck,
870                         AR5416_NUM_2G_CCK_TARGET_POWERS,
871                         &targetPowerCck, 4, false);
872         ath9k_hw_get_legacy_target_powers(ah, chan,
873                         pEepData->calTargetPower2G,
874                         AR5416_NUM_2G_20_TARGET_POWERS,
875                         &targetPowerOfdm, 4, false);
876         ath9k_hw_get_target_powers(ah, chan,
877                         pEepData->calTargetPower2GHT20,
878                         AR5416_NUM_2G_20_TARGET_POWERS,
879                         &targetPowerHt20, 8, false);
880
881         if (IS_CHAN_HT40(chan)) {
882                 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
883                 ath9k_hw_get_target_powers(ah, chan,
884                                 pEepData->calTargetPower2GHT40,
885                                 AR5416_NUM_2G_40_TARGET_POWERS,
886                                 &targetPowerHt40, 8, true);
887                 ath9k_hw_get_legacy_target_powers(ah, chan,
888                                 pEepData->calTargetPowerCck,
889                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
890                                 &targetPowerCckExt, 4, true);
891                 ath9k_hw_get_legacy_target_powers(ah, chan,
892                                 pEepData->calTargetPower2G,
893                                 AR5416_NUM_2G_20_TARGET_POWERS,
894                                 &targetPowerOfdmExt, 4, true);
895         }
896
897         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
898                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
899                         (pCtlMode[ctlMode] == CTL_2GHT40);
900                 if (isHt40CtlMode)
901                         freq = centers.synth_center;
902                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
903                         freq = centers.ext_center;
904                 else
905                         freq = centers.ctl_center;
906
907                 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
908                     ah->eep_ops->get_eeprom_rev(ah) <= 2)
909                         twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
910
911                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
912                         "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
913                         "EXT_ADDITIVE %d\n",
914                         ctlMode, numCtlModes, isHt40CtlMode,
915                         (pCtlMode[ctlMode] & EXT_ADDITIVE));
916
917                 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
918                                 pEepData->ctlIndex[i]; i++) {
919                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
920                                 "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
921                                 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
922                                 "chan %d\n",
923                                 i, cfgCtl, pCtlMode[ctlMode],
924                                 pEepData->ctlIndex[i], chan->channel);
925
926                         if ((((cfgCtl & ~CTL_MODE_M) |
927                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
928                              pEepData->ctlIndex[i]) ||
929                             (((cfgCtl & ~CTL_MODE_M) |
930                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
931                              ((pEepData->ctlIndex[i] & CTL_MODE_M) |
932                               SD_NO_CTL))) {
933                                 rep = &(pEepData->ctlData[i]);
934
935                                 twiceMinEdgePower =
936                                         ath9k_hw_get_max_edge_power(freq,
937                                 rep->ctlEdges[ar5416_get_ntxchains
938                                                 (tx_chainmask) - 1],
939                                 IS_CHAN_2GHZ(chan),
940                                 AR5416_EEP4K_NUM_BAND_EDGES);
941
942                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
943                                         "    MATCH-EE_IDX %d: ch %d is2 %d "
944                                         "2xMinEdge %d chainmask %d chains %d\n",
945                                         i, freq, IS_CHAN_2GHZ(chan),
946                                         twiceMinEdgePower, tx_chainmask,
947                                         ar5416_get_ntxchains
948                                         (tx_chainmask));
949                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
950                                         twiceMaxEdgePower =
951                                                 min(twiceMaxEdgePower,
952                                                     twiceMinEdgePower);
953                                 } else {
954                                         twiceMaxEdgePower = twiceMinEdgePower;
955                                         break;
956                                 }
957                         }
958                 }
959
960                 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
961
962                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
963                         "    SEL-Min ctlMode %d pCtlMode %d "
964                         "2xMaxEdge %d sP %d minCtlPwr %d\n",
965                         ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
966                         scaledPower, minCtlPower);
967
968                 switch (pCtlMode[ctlMode]) {
969                 case CTL_11B:
970                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
971                                         i++) {
972                                 targetPowerCck.tPow2x[i] =
973                                         min((u16)targetPowerCck.tPow2x[i],
974                                             minCtlPower);
975                         }
976                         break;
977                 case CTL_11G:
978                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
979                                         i++) {
980                                 targetPowerOfdm.tPow2x[i] =
981                                         min((u16)targetPowerOfdm.tPow2x[i],
982                                             minCtlPower);
983                         }
984                         break;
985                 case CTL_2GHT20:
986                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
987                                         i++) {
988                                 targetPowerHt20.tPow2x[i] =
989                                         min((u16)targetPowerHt20.tPow2x[i],
990                                             minCtlPower);
991                         }
992                         break;
993                 case CTL_11B_EXT:
994                         targetPowerCckExt.tPow2x[0] = min((u16)
995                                         targetPowerCckExt.tPow2x[0],
996                                         minCtlPower);
997                         break;
998                 case CTL_11G_EXT:
999                         targetPowerOfdmExt.tPow2x[0] = min((u16)
1000                                         targetPowerOfdmExt.tPow2x[0],
1001                                         minCtlPower);
1002                         break;
1003                 case CTL_2GHT40:
1004                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
1005                                         i++) {
1006                                 targetPowerHt40.tPow2x[i] =
1007                                         min((u16)targetPowerHt40.tPow2x[i],
1008                                             minCtlPower);
1009                         }
1010                         break;
1011                 default:
1012                         break;
1013                 }
1014         }
1015
1016         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1017                 ratesArray[rate18mb] = ratesArray[rate24mb] =
1018                 targetPowerOfdm.tPow2x[0];
1019         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1020         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1021         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1022         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1023
1024         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1025                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1026
1027         ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1028         ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
1029         ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
1030         ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
1031
1032         if (IS_CHAN_HT40(chan)) {
1033                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1034                         ratesArray[rateHt40_0 + i] =
1035                                 targetPowerHt40.tPow2x[i];
1036                 }
1037                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1038                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1039                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1040                 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
1041         }
1042 }
1043
1044 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
1045                                    struct ath9k_channel *chan,
1046                                    u16 cfgCtl,
1047                                    u8 twiceAntennaReduction,
1048                                    u8 twiceMaxRegulatoryPower,
1049                                    u8 powerLimit)
1050 {
1051         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
1052         struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
1053         int16_t ratesArray[Ar5416RateSize];
1054         int16_t txPowerIndexOffset = 0;
1055         u8 ht40PowerIncForPdadc = 2;
1056         int i;
1057
1058         memset(ratesArray, 0, sizeof(ratesArray));
1059
1060         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1061             AR5416_EEP_MINOR_VER_2) {
1062                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1063         }
1064
1065         ath9k_hw_set_4k_power_per_rate_table(ah, chan,
1066                                                &ratesArray[0], cfgCtl,
1067                                                twiceAntennaReduction,
1068                                                twiceMaxRegulatoryPower,
1069                                                powerLimit);
1070
1071         ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
1072
1073         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1074                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1075                 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1076                         ratesArray[i] = AR5416_MAX_RATE_POWER;
1077         }
1078
1079         if (AR_SREV_9280_10_OR_LATER(ah)) {
1080                 for (i = 0; i < Ar5416RateSize; i++)
1081                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1082         }
1083
1084         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1085                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
1086                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1087                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1088                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1089         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1090                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
1091                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1092                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1093                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1094
1095         if (IS_CHAN_2GHZ(chan)) {
1096                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1097                           ATH9K_POW_SM(ratesArray[rate2s], 24)
1098                           | ATH9K_POW_SM(ratesArray[rate2l], 16)
1099                           | ATH9K_POW_SM(ratesArray[rateXr], 8)
1100                           | ATH9K_POW_SM(ratesArray[rate1l], 0));
1101                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1102                           ATH9K_POW_SM(ratesArray[rate11s], 24)
1103                           | ATH9K_POW_SM(ratesArray[rate11l], 16)
1104                           | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1105                           | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1106         }
1107
1108         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1109                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1110                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1111                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1112                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1113         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1114                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1115                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1116                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1117                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1118
1119         if (IS_CHAN_HT40(chan)) {
1120                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1121                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
1122                                        ht40PowerIncForPdadc, 24)
1123                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1124                                          ht40PowerIncForPdadc, 16)
1125                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1126                                          ht40PowerIncForPdadc, 8)
1127                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1128                                          ht40PowerIncForPdadc, 0));
1129                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1130                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
1131                                        ht40PowerIncForPdadc, 24)
1132                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1133                                          ht40PowerIncForPdadc, 16)
1134                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1135                                          ht40PowerIncForPdadc, 8)
1136                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1137                                          ht40PowerIncForPdadc, 0));
1138
1139                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1140                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1141                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1142                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1143                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1144         }
1145
1146         i = rate6mb;
1147
1148         if (IS_CHAN_HT40(chan))
1149                 i = rateHt40_0;
1150         else if (IS_CHAN_HT20(chan))
1151                 i = rateHt20_0;
1152
1153         if (AR_SREV_9280_10_OR_LATER(ah))
1154                 ah->regulatory.max_power_level =
1155                         ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1156         else
1157                 ah->regulatory.max_power_level = ratesArray[i];
1158
1159 }
1160
1161 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
1162                                   struct ath9k_channel *chan)
1163 {
1164         struct modal_eep_4k_header *pModal;
1165         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1166         u8 biaslevel;
1167
1168         if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
1169                 return;
1170
1171         if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
1172                 return;
1173
1174         pModal = &eep->modalHeader;
1175
1176         if (pModal->xpaBiasLvl != 0xff) {
1177                 biaslevel = pModal->xpaBiasLvl;
1178                 INI_RA(&ah->iniAddac, 7, 1) =
1179                   (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
1180         }
1181 }
1182
1183 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
1184                                  struct modal_eep_4k_header *pModal,
1185                                  struct ar5416_eeprom_4k *eep,
1186                                  u8 txRxAttenLocal, int regChainOffset)
1187 {
1188         REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1189                   pModal->antCtrlChain[0]);
1190
1191         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1192                   (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
1193                    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1194                      AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1195                   SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1196                   SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1197
1198         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1199             AR5416_EEP_MINOR_VER_3) {
1200                 txRxAttenLocal = pModal->txRxAttenCh[0];
1201
1202                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1203                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
1204                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1205                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
1206                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1207                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1208                               pModal->xatten2Margin[0]);
1209                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1210                               AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
1211         }
1212
1213         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1214                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1215         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
1216                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
1217
1218         if (AR_SREV_9285_11(ah))
1219                 REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
1220 }
1221
1222 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
1223                                          struct ath9k_channel *chan)
1224 {
1225         struct modal_eep_4k_header *pModal;
1226         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1227         u8 txRxAttenLocal;
1228         u8 ob[5], db1[5], db2[5];
1229         u8 ant_div_control1, ant_div_control2;
1230         u32 regVal;
1231
1232         pModal = &eep->modalHeader;
1233         txRxAttenLocal = 23;
1234
1235         REG_WRITE(ah, AR_PHY_SWITCH_COM,
1236                   ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1237
1238         /* Single chain for 4K EEPROM*/
1239         ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal, 0);
1240
1241         /* Initialize Ant Diversity settings from EEPROM */
1242         if (pModal->version == 3) {
1243                 ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
1244                 ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
1245                 regVal = REG_READ(ah, 0x99ac);
1246                 regVal &= (~(0x7f000000));
1247                 regVal |= ((ant_div_control1 & 0x1) << 24);
1248                 regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
1249                 regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
1250                 regVal |= ((ant_div_control2 & 0x3) << 25);
1251                 regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
1252                 REG_WRITE(ah, 0x99ac, regVal);
1253                 regVal = REG_READ(ah, 0x99ac);
1254                 regVal = REG_READ(ah, 0xa208);
1255                 regVal &= (~(0x1 << 13));
1256                 regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
1257                 REG_WRITE(ah, 0xa208, regVal);
1258                 regVal = REG_READ(ah, 0xa208);
1259         }
1260
1261         if (pModal->version >= 2) {
1262                 ob[0] = (pModal->ob_01 & 0xf);
1263                 ob[1] = (pModal->ob_01 >> 4) & 0xf;
1264                 ob[2] = (pModal->ob_234 & 0xf);
1265                 ob[3] = ((pModal->ob_234 >> 4) & 0xf);
1266                 ob[4] = ((pModal->ob_234 >> 8) & 0xf);
1267
1268                 db1[0] = (pModal->db1_01 & 0xf);
1269                 db1[1] = ((pModal->db1_01 >> 4) & 0xf);
1270                 db1[2] = (pModal->db1_234 & 0xf);
1271                 db1[3] = ((pModal->db1_234 >> 4) & 0xf);
1272                 db1[4] = ((pModal->db1_234 >> 8) & 0xf);
1273
1274                 db2[0] = (pModal->db2_01 & 0xf);
1275                 db2[1] = ((pModal->db2_01 >> 4) & 0xf);
1276                 db2[2] = (pModal->db2_234 & 0xf);
1277                 db2[3] = ((pModal->db2_234 >> 4) & 0xf);
1278                 db2[4] = ((pModal->db2_234 >> 8) & 0xf);
1279
1280         } else if (pModal->version == 1) {
1281                 ob[0] = (pModal->ob_01 & 0xf);
1282                 ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
1283                 db1[0] = (pModal->db1_01 & 0xf);
1284                 db1[1] = db1[2] = db1[3] =
1285                         db1[4] = ((pModal->db1_01 >> 4) & 0xf);
1286                 db2[0] = (pModal->db2_01 & 0xf);
1287                 db2[1] = db2[2] = db2[3] =
1288                         db2[4] = ((pModal->db2_01 >> 4) & 0xf);
1289         } else {
1290                 int i;
1291                 for (i = 0; i < 5; i++) {
1292                         ob[i] = pModal->ob_01;
1293                         db1[i] = pModal->db1_01;
1294                         db2[i] = pModal->db1_01;
1295                 }
1296         }
1297
1298         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1299                         AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
1300         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1301                         AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
1302         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1303                         AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
1304         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1305                         AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
1306         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1307                         AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
1308
1309         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1310                         AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
1311         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1312                         AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
1313         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
1314                         AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
1315         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1316                         AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
1317         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1318                         AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1319
1320         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1321                         AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
1322         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1323                         AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
1324         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1325                         AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
1326         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1327                         AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
1328         ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
1329                         AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
1330
1331
1332         if (AR_SREV_9285_11(ah))
1333                 REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
1334
1335         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1336                       pModal->switchSettling);
1337         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1338                       pModal->adcDesiredSize);
1339
1340         REG_WRITE(ah, AR_PHY_RF_CTL4,
1341                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1342                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1343                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1344                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1345
1346         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1347                       pModal->txEndToRxOn);
1348         REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1349                       pModal->thresh62);
1350         REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1351                       pModal->thresh62);
1352
1353         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1354                                                 AR5416_EEP_MINOR_VER_2) {
1355                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1356                               pModal->txFrameToDataStart);
1357                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1358                               pModal->txFrameToPaOn);
1359         }
1360
1361         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1362                                                 AR5416_EEP_MINOR_VER_3) {
1363                 if (IS_CHAN_HT40(chan))
1364                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1365                                       AR_PHY_SETTLING_SWITCH,
1366                                       pModal->swSettleHt40);
1367         }
1368 }
1369
1370 static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
1371                                               struct ath9k_channel *chan)
1372 {
1373         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
1374         struct modal_eep_4k_header *pModal = &eep->modalHeader;
1375
1376         return pModal->antCtrlCommon & 0xFFFF;
1377 }
1378
1379 static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
1380                                          enum ieee80211_band freq_band)
1381 {
1382         return 1;
1383 }
1384
1385 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1386 {
1387 #define EEP_MAP4K_SPURCHAN \
1388         (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1389
1390         u16 spur_val = AR_NO_SPUR;
1391
1392         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1393                 "Getting spur idx %d is2Ghz. %d val %x\n",
1394                 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1395
1396         switch (ah->config.spurmode) {
1397         case SPUR_DISABLE:
1398                 break;
1399         case SPUR_ENABLE_IOCTL:
1400                 spur_val = ah->config.spurchans[i][is2GHz];
1401                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1402                         "Getting spur val from new loc. %d\n", spur_val);
1403                 break;
1404         case SPUR_ENABLE_EEPROM:
1405                 spur_val = EEP_MAP4K_SPURCHAN;
1406                 break;
1407         }
1408
1409         return spur_val;
1410
1411 #undef EEP_MAP4K_SPURCHAN
1412 }
1413
1414 static struct eeprom_ops eep_4k_ops = {
1415         .check_eeprom           = ath9k_hw_4k_check_eeprom,
1416         .get_eeprom             = ath9k_hw_4k_get_eeprom,
1417         .fill_eeprom            = ath9k_hw_4k_fill_eeprom,
1418         .get_eeprom_ver         = ath9k_hw_4k_get_eeprom_ver,
1419         .get_eeprom_rev         = ath9k_hw_4k_get_eeprom_rev,
1420         .get_num_ant_config     = ath9k_hw_4k_get_num_ant_config,
1421         .get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
1422         .set_board_values       = ath9k_hw_4k_set_board_values,
1423         .set_addac              = ath9k_hw_4k_set_addac,
1424         .set_txpower            = ath9k_hw_4k_set_txpower,
1425         .get_spur_channel       = ath9k_hw_4k_get_spur_channel
1426 };
1427
1428 /************************************************/
1429 /* EEPROM Operations for non-4K (Default) cards */
1430 /************************************************/
1431
1432 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
1433 {
1434         return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
1435 }
1436
1437 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
1438 {
1439         return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
1440 }
1441
1442 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
1443 {
1444 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
1445         u16 *eep_data = (u16 *)&ah->eeprom.def;
1446         int addr, ar5416_eep_start_loc = 0x100;
1447
1448         for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
1449                 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
1450                                          eep_data)) {
1451                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1452                                 "Unable to read eeprom region\n");
1453                         return false;
1454                 }
1455                 eep_data++;
1456         }
1457         return true;
1458 #undef SIZE_EEPROM_DEF
1459 }
1460
1461 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
1462 {
1463         struct ar5416_eeprom_def *eep =
1464                 (struct ar5416_eeprom_def *) &ah->eeprom.def;
1465         u16 *eepdata, temp, magic, magic2;
1466         u32 sum = 0, el;
1467         bool need_swap = false;
1468         int i, addr, size;
1469
1470         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
1471                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Reading Magic # failed\n");
1472                 return false;
1473         }
1474
1475         if (!ath9k_hw_use_flash(ah)) {
1476                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1477                         "Read Magic = 0x%04X\n", magic);
1478
1479                 if (magic != AR5416_EEPROM_MAGIC) {
1480                         magic2 = swab16(magic);
1481
1482                         if (magic2 == AR5416_EEPROM_MAGIC) {
1483                                 size = sizeof(struct ar5416_eeprom_def);
1484                                 need_swap = true;
1485                                 eepdata = (u16 *) (&ah->eeprom);
1486
1487                                 for (addr = 0; addr < size / sizeof(u16); addr++) {
1488                                         temp = swab16(*eepdata);
1489                                         *eepdata = temp;
1490                                         eepdata++;
1491                                 }
1492                         } else {
1493                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1494                                         "Invalid EEPROM Magic. "
1495                                         "Endianness mismatch.\n");
1496                                 return -EINVAL;
1497                         }
1498                 }
1499         }
1500
1501         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
1502                 need_swap ? "True" : "False");
1503
1504         if (need_swap)
1505                 el = swab16(ah->eeprom.def.baseEepHeader.length);
1506         else
1507                 el = ah->eeprom.def.baseEepHeader.length;
1508
1509         if (el > sizeof(struct ar5416_eeprom_def))
1510                 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
1511         else
1512                 el = el / sizeof(u16);
1513
1514         eepdata = (u16 *)(&ah->eeprom);
1515
1516         for (i = 0; i < el; i++)
1517                 sum ^= *eepdata++;
1518
1519         if (need_swap) {
1520                 u32 integer, j;
1521                 u16 word;
1522
1523                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1524                         "EEPROM Endianness is not native.. Changing.\n");
1525
1526                 word = swab16(eep->baseEepHeader.length);
1527                 eep->baseEepHeader.length = word;
1528
1529                 word = swab16(eep->baseEepHeader.checksum);
1530                 eep->baseEepHeader.checksum = word;
1531
1532                 word = swab16(eep->baseEepHeader.version);
1533                 eep->baseEepHeader.version = word;
1534
1535                 word = swab16(eep->baseEepHeader.regDmn[0]);
1536                 eep->baseEepHeader.regDmn[0] = word;
1537
1538                 word = swab16(eep->baseEepHeader.regDmn[1]);
1539                 eep->baseEepHeader.regDmn[1] = word;
1540
1541                 word = swab16(eep->baseEepHeader.rfSilent);
1542                 eep->baseEepHeader.rfSilent = word;
1543
1544                 word = swab16(eep->baseEepHeader.blueToothOptions);
1545                 eep->baseEepHeader.blueToothOptions = word;
1546
1547                 word = swab16(eep->baseEepHeader.deviceCap);
1548                 eep->baseEepHeader.deviceCap = word;
1549
1550                 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
1551                         struct modal_eep_header *pModal =
1552                                 &eep->modalHeader[j];
1553                         integer = swab32(pModal->antCtrlCommon);
1554                         pModal->antCtrlCommon = integer;
1555
1556                         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1557                                 integer = swab32(pModal->antCtrlChain[i]);
1558                                 pModal->antCtrlChain[i] = integer;
1559                         }
1560
1561                         for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
1562                                 word = swab16(pModal->spurChans[i].spurChan);
1563                                 pModal->spurChans[i].spurChan = word;
1564                         }
1565                 }
1566         }
1567
1568         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
1569             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
1570                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1571                         "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
1572                         sum, ah->eep_ops->get_eeprom_ver(ah));
1573                 return -EINVAL;
1574         }
1575
1576         return 0;
1577 }
1578
1579 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
1580                                    enum eeprom_param param)
1581 {
1582         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1583         struct modal_eep_header *pModal = eep->modalHeader;
1584         struct base_eep_header *pBase = &eep->baseEepHeader;
1585
1586         switch (param) {
1587         case EEP_NFTHRESH_5:
1588                 return pModal[0].noiseFloorThreshCh[0];
1589         case EEP_NFTHRESH_2:
1590                 return pModal[1].noiseFloorThreshCh[0];
1591         case AR_EEPROM_MAC(0):
1592                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
1593         case AR_EEPROM_MAC(1):
1594                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
1595         case AR_EEPROM_MAC(2):
1596                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
1597         case EEP_REG_0:
1598                 return pBase->regDmn[0];
1599         case EEP_REG_1:
1600                 return pBase->regDmn[1];
1601         case EEP_OP_CAP:
1602                 return pBase->deviceCap;
1603         case EEP_OP_MODE:
1604                 return pBase->opCapFlags;
1605         case EEP_RF_SILENT:
1606                 return pBase->rfSilent;
1607         case EEP_OB_5:
1608                 return pModal[0].ob;
1609         case EEP_DB_5:
1610                 return pModal[0].db;
1611         case EEP_OB_2:
1612                 return pModal[1].ob;
1613         case EEP_DB_2:
1614                 return pModal[1].db;
1615         case EEP_MINOR_REV:
1616                 return AR5416_VER_MASK;
1617         case EEP_TX_MASK:
1618                 return pBase->txMask;
1619         case EEP_RX_MASK:
1620                 return pBase->rxMask;
1621         case EEP_RXGAIN_TYPE:
1622                 return pBase->rxGainType;
1623         case EEP_TXGAIN_TYPE:
1624                 return pBase->txGainType;
1625         case EEP_OL_PWRCTRL:
1626                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
1627                         return pBase->openLoopPwrCntl ? true : false;
1628                 else
1629                         return false;
1630         case EEP_RC_CHAIN_MASK:
1631                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
1632                         return pBase->rcChainMask;
1633                 else
1634                         return 0;
1635         case EEP_DAC_HPWR_5G:
1636                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
1637                         return pBase->dacHiPwrMode_5G;
1638                 else
1639                         return 0;
1640         case EEP_FRAC_N_5G:
1641                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
1642                         return pBase->frac_n_5g;
1643                 else
1644                         return 0;
1645         default:
1646                 return 0;
1647         }
1648 }
1649
1650 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
1651                                   struct modal_eep_header *pModal,
1652                                   struct ar5416_eeprom_def *eep,
1653                                   u8 txRxAttenLocal, int regChainOffset, int i)
1654 {
1655         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
1656                 txRxAttenLocal = pModal->txRxAttenCh[i];
1657
1658                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1659                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1660                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1661                               pModal->bswMargin[i]);
1662                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1663                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1664                               pModal->bswAtten[i]);
1665                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1666                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1667                               pModal->xatten2Margin[i]);
1668                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1669                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1670                               pModal->xatten2Db[i]);
1671                 } else {
1672                         REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1673                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
1674                            ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
1675                           | SM(pModal-> bswMargin[i],
1676                                AR_PHY_GAIN_2GHZ_BSW_MARGIN));
1677                         REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1678                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
1679                            ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
1680                           | SM(pModal->bswAtten[i],
1681                                AR_PHY_GAIN_2GHZ_BSW_ATTEN));
1682                 }
1683         }
1684
1685         if (AR_SREV_9280_10_OR_LATER(ah)) {
1686                 REG_RMW_FIELD(ah,
1687                       AR_PHY_RXGAIN + regChainOffset,
1688                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1689                 REG_RMW_FIELD(ah,
1690                       AR_PHY_RXGAIN + regChainOffset,
1691                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1692         } else {
1693                 REG_WRITE(ah,
1694                           AR_PHY_RXGAIN + regChainOffset,
1695                           (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
1696                            ~AR_PHY_RXGAIN_TXRX_ATTEN)
1697                           | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
1698                 REG_WRITE(ah,
1699                           AR_PHY_GAIN_2GHZ + regChainOffset,
1700                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
1701                            ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
1702                           SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
1703         }
1704 }
1705
1706 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
1707                                           struct ath9k_channel *chan)
1708 {
1709         struct modal_eep_header *pModal;
1710         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1711         int i, regChainOffset;
1712         u8 txRxAttenLocal;
1713
1714         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1715         txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
1716
1717         REG_WRITE(ah, AR_PHY_SWITCH_COM,
1718                   ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
1719
1720         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1721                 if (AR_SREV_9280(ah)) {
1722                         if (i >= 2)
1723                                 break;
1724                 }
1725
1726                 if (AR_SREV_5416_20_OR_LATER(ah) &&
1727                     (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
1728                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1729                 else
1730                         regChainOffset = i * 0x1000;
1731
1732                 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
1733                           pModal->antCtrlChain[i]);
1734
1735                 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
1736                           (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
1737                            ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
1738                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1739                           SM(pModal->iqCalICh[i],
1740                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1741                           SM(pModal->iqCalQCh[i],
1742                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1743
1744                 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
1745                         ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
1746                                               regChainOffset, i);
1747         }
1748
1749         if (AR_SREV_9280_10_OR_LATER(ah)) {
1750                 if (IS_CHAN_2GHZ(chan)) {
1751                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1752                                                   AR_AN_RF2G1_CH0_OB,
1753                                                   AR_AN_RF2G1_CH0_OB_S,
1754                                                   pModal->ob);
1755                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
1756                                                   AR_AN_RF2G1_CH0_DB,
1757                                                   AR_AN_RF2G1_CH0_DB_S,
1758                                                   pModal->db);
1759                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1760                                                   AR_AN_RF2G1_CH1_OB,
1761                                                   AR_AN_RF2G1_CH1_OB_S,
1762                                                   pModal->ob_ch1);
1763                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
1764                                                   AR_AN_RF2G1_CH1_DB,
1765                                                   AR_AN_RF2G1_CH1_DB_S,
1766                                                   pModal->db_ch1);
1767                 } else {
1768                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1769                                                   AR_AN_RF5G1_CH0_OB5,
1770                                                   AR_AN_RF5G1_CH0_OB5_S,
1771                                                   pModal->ob);
1772                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
1773                                                   AR_AN_RF5G1_CH0_DB5,
1774                                                   AR_AN_RF5G1_CH0_DB5_S,
1775                                                   pModal->db);
1776                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1777                                                   AR_AN_RF5G1_CH1_OB5,
1778                                                   AR_AN_RF5G1_CH1_OB5_S,
1779                                                   pModal->ob_ch1);
1780                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
1781                                                   AR_AN_RF5G1_CH1_DB5,
1782                                                   AR_AN_RF5G1_CH1_DB5_S,
1783                                                   pModal->db_ch1);
1784                 }
1785                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1786                                           AR_AN_TOP2_XPABIAS_LVL,
1787                                           AR_AN_TOP2_XPABIAS_LVL_S,
1788                                           pModal->xpaBiasLvl);
1789                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
1790                                           AR_AN_TOP2_LOCALBIAS,
1791                                           AR_AN_TOP2_LOCALBIAS_S,
1792                                           pModal->local_bias);
1793                 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1794                               pModal->force_xpaon);
1795         }
1796
1797         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1798                       pModal->switchSettling);
1799         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1800                       pModal->adcDesiredSize);
1801
1802         if (!AR_SREV_9280_10_OR_LATER(ah))
1803                 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1804                               AR_PHY_DESIRED_SZ_PGA,
1805                               pModal->pgaDesiredSize);
1806
1807         REG_WRITE(ah, AR_PHY_RF_CTL4,
1808                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1809                   | SM(pModal->txEndToXpaOff,
1810                        AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1811                   | SM(pModal->txFrameToXpaOn,
1812                        AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1813                   | SM(pModal->txFrameToXpaOn,
1814                        AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1815
1816         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1817                       pModal->txEndToRxOn);
1818
1819         if (AR_SREV_9280_10_OR_LATER(ah)) {
1820                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1821                               pModal->thresh62);
1822                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
1823                               AR_PHY_EXT_CCA0_THRESH62,
1824                               pModal->thresh62);
1825         } else {
1826                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1827                               pModal->thresh62);
1828                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1829                               AR_PHY_EXT_CCA_THRESH62,
1830                               pModal->thresh62);
1831         }
1832
1833         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
1834                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1835                               AR_PHY_TX_END_DATA_START,
1836                               pModal->txFrameToDataStart);
1837                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1838                               pModal->txFrameToPaOn);
1839         }
1840
1841         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
1842                 if (IS_CHAN_HT40(chan))
1843                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1844                                       AR_PHY_SETTLING_SWITCH,
1845                                       pModal->swSettleHt40);
1846         }
1847
1848         if (AR_SREV_9280_20_OR_LATER(ah) &&
1849             AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
1850                 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
1851                               AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
1852                               pModal->miscBits);
1853
1854
1855         if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
1856                 if (IS_CHAN_2GHZ(chan))
1857                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1858                                         eep->baseEepHeader.dacLpMode);
1859                 else if (eep->baseEepHeader.dacHiPwrMode_5G)
1860                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1861                 else
1862                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1863                                       eep->baseEepHeader.dacLpMode);
1864
1865                 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1866                               pModal->miscBits >> 2);
1867
1868                 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
1869                               AR_PHY_TX_DESIRED_SCALE_CCK,
1870                               eep->baseEepHeader.desiredScaleCCK);
1871         }
1872 }
1873
1874 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
1875                                    struct ath9k_channel *chan)
1876 {
1877 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
1878         struct modal_eep_header *pModal;
1879         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1880         u8 biaslevel;
1881
1882         if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
1883                 return;
1884
1885         if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
1886                 return;
1887
1888         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1889
1890         if (pModal->xpaBiasLvl != 0xff) {
1891                 biaslevel = pModal->xpaBiasLvl;
1892         } else {
1893                 u16 resetFreqBin, freqBin, freqCount = 0;
1894                 struct chan_centers centers;
1895
1896                 ath9k_hw_get_channel_centers(ah, chan, &centers);
1897
1898                 resetFreqBin = FREQ2FBIN(centers.synth_center,
1899                                          IS_CHAN_2GHZ(chan));
1900                 freqBin = XPA_LVL_FREQ(0) & 0xff;
1901                 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
1902
1903                 freqCount++;
1904
1905                 while (freqCount < 3) {
1906                         if (XPA_LVL_FREQ(freqCount) == 0x0)
1907                                 break;
1908
1909                         freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
1910                         if (resetFreqBin >= freqBin)
1911                                 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
1912                         else
1913                                 break;
1914                         freqCount++;
1915                 }
1916         }
1917
1918         if (IS_CHAN_2GHZ(chan)) {
1919                 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
1920                                         7, 1) & (~0x18)) | biaslevel << 3;
1921         } else {
1922                 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
1923                                         6, 1) & (~0xc0)) | biaslevel << 6;
1924         }
1925 #undef XPA_LVL_FREQ
1926 }
1927
1928 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
1929                                 struct ath9k_channel *chan,
1930                                 struct cal_data_per_freq *pRawDataSet,
1931                                 u8 *bChans, u16 availPiers,
1932                                 u16 tPdGainOverlap, int16_t *pMinCalPower,
1933                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
1934                                 u16 numXpdGains)
1935 {
1936         int i, j, k;
1937         int16_t ss;
1938         u16 idxL = 0, idxR = 0, numPiers;
1939         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
1940                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1941         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
1942                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1943         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
1944                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
1945
1946         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
1947         u8 minPwrT4[AR5416_NUM_PD_GAINS];
1948         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
1949         int16_t vpdStep;
1950         int16_t tmpVal;
1951         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
1952         bool match;
1953         int16_t minDelta = 0;
1954         struct chan_centers centers;
1955
1956         ath9k_hw_get_channel_centers(ah, chan, &centers);
1957
1958         for (numPiers = 0; numPiers < availPiers; numPiers++) {
1959                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
1960                         break;
1961         }
1962
1963         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
1964                                                              IS_CHAN_2GHZ(chan)),
1965                                                bChans, numPiers, &idxL, &idxR);
1966
1967         if (match) {
1968                 for (i = 0; i < numXpdGains; i++) {
1969                         minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
1970                         maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
1971                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
1972                                         pRawDataSet[idxL].pwrPdg[i],
1973                                         pRawDataSet[idxL].vpdPdg[i],
1974                                         AR5416_PD_GAIN_ICEPTS,
1975                                         vpdTableI[i]);
1976                 }
1977         } else {
1978                 for (i = 0; i < numXpdGains; i++) {
1979                         pVpdL = pRawDataSet[idxL].vpdPdg[i];
1980                         pPwrL = pRawDataSet[idxL].pwrPdg[i];
1981                         pVpdR = pRawDataSet[idxR].vpdPdg[i];
1982                         pPwrR = pRawDataSet[idxR].pwrPdg[i];
1983
1984                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
1985
1986                         maxPwrT4[i] =
1987                                 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
1988                                     pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
1989
1990
1991                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
1992                                                 pPwrL, pVpdL,
1993                                                 AR5416_PD_GAIN_ICEPTS,
1994                                                 vpdTableL[i]);
1995                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
1996                                                 pPwrR, pVpdR,
1997                                                 AR5416_PD_GAIN_ICEPTS,
1998                                                 vpdTableR[i]);
1999
2000                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2001                                 vpdTableI[i][j] =
2002                                         (u8)(ath9k_hw_interpolate((u16)
2003                                              FREQ2FBIN(centers.
2004                                                        synth_center,
2005                                                        IS_CHAN_2GHZ
2006                                                        (chan)),
2007                                              bChans[idxL], bChans[idxR],
2008                                              vpdTableL[i][j], vpdTableR[i][j]));
2009                         }
2010                 }
2011         }
2012
2013         *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2014
2015         k = 0;
2016
2017         for (i = 0; i < numXpdGains; i++) {
2018                 if (i == (numXpdGains - 1))
2019                         pPdGainBoundaries[i] =
2020                                 (u16)(maxPwrT4[i] / 2);
2021                 else
2022                         pPdGainBoundaries[i] =
2023                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
2024
2025                 pPdGainBoundaries[i] =
2026                         min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2027
2028                 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
2029                         minDelta = pPdGainBoundaries[0] - 23;
2030                         pPdGainBoundaries[0] = 23;
2031                 } else {
2032                         minDelta = 0;
2033                 }
2034
2035                 if (i == 0) {
2036                         if (AR_SREV_9280_10_OR_LATER(ah))
2037                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
2038                         else
2039                                 ss = 0;
2040                 } else {
2041                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
2042                                         (minPwrT4[i] / 2)) -
2043                                        tPdGainOverlap + 1 + minDelta);
2044                 }
2045                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2046                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2047
2048                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2049                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2050                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
2051                         ss++;
2052                 }
2053
2054                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
2055                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
2056                                 (minPwrT4[i] / 2));
2057                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
2058                         tgtIndex : sizeCurrVpdTable;
2059
2060                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2061                         pPDADCValues[k++] = vpdTableI[i][ss++];
2062                 }
2063
2064                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
2065                                     vpdTableI[i][sizeCurrVpdTable - 2]);
2066                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2067
2068                 if (tgtIndex > maxIndex) {
2069                         while ((ss <= tgtIndex) &&
2070                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2071                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2072                                                     (ss - maxIndex + 1) * vpdStep));
2073                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
2074                                                          255 : tmpVal);
2075                                 ss++;
2076                         }
2077                 }
2078         }
2079
2080         while (i < AR5416_PD_GAINS_IN_MASK) {
2081                 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
2082                 i++;
2083         }
2084
2085         while (k < AR5416_NUM_PDADC_VALUES) {
2086                 pPDADCValues[k] = pPDADCValues[k - 1];
2087                 k++;
2088         }
2089
2090         return;
2091 }
2092
2093 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
2094                                   struct ath9k_channel *chan,
2095                                   int16_t *pTxPowerIndexOffset)
2096 {
2097 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
2098 #define SM_PDGAIN_B(x, y) \
2099                 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
2100
2101         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
2102         struct cal_data_per_freq *pRawDataset;
2103         u8 *pCalBChans = NULL;
2104         u16 pdGainOverlap_t2;
2105         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
2106         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2107         u16 numPiers, i, j;
2108         int16_t tMinCalPower;
2109         u16 numXpdGain, xpdMask;
2110         u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
2111         u32 reg32, regOffset, regChainOffset;
2112         int16_t modalIdx;
2113
2114         modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
2115         xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
2116
2117         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2118             AR5416_EEP_MINOR_VER_2) {
2119                 pdGainOverlap_t2 =
2120                         pEepData->modalHeader[modalIdx].pdGainOverlap;
2121         } else {
2122                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
2123                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2124         }
2125
2126         if (IS_CHAN_2GHZ(chan)) {
2127                 pCalBChans = pEepData->calFreqPier2G;
2128                 numPiers = AR5416_NUM_2G_CAL_PIERS;
2129         } else {
2130                 pCalBChans = pEepData->calFreqPier5G;
2131                 numPiers = AR5416_NUM_5G_CAL_PIERS;
2132         }
2133
2134         if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
2135                 pRawDataset = pEepData->calPierData2G[0];
2136                 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
2137                                  pRawDataset)->vpdPdg[0][0];
2138         }
2139
2140         numXpdGain = 0;
2141
2142         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2143                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2144                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
2145                                 break;
2146                         xpdGainValues[numXpdGain] =
2147                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
2148                         numXpdGain++;
2149                 }
2150         }
2151
2152         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
2153                       (numXpdGain - 1) & 0x3);
2154         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
2155                       xpdGainValues[0]);
2156         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
2157                       xpdGainValues[1]);
2158         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
2159                       xpdGainValues[2]);
2160
2161         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2162                 if (AR_SREV_5416_20_OR_LATER(ah) &&
2163                     (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
2164                     (i != 0)) {
2165                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
2166                 } else
2167                         regChainOffset = i * 0x1000;
2168
2169                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2170                         if (IS_CHAN_2GHZ(chan))
2171                                 pRawDataset = pEepData->calPierData2G[i];
2172                         else
2173                                 pRawDataset = pEepData->calPierData5G[i];
2174
2175
2176                         if (OLC_FOR_AR9280_20_LATER) {
2177                                 u8 pcdacIdx;
2178                                 u8 txPower;
2179
2180                                 ath9k_get_txgain_index(ah, chan,
2181                                 (struct calDataPerFreqOpLoop *)pRawDataset,
2182                                 pCalBChans, numPiers, &txPower, &pcdacIdx);
2183                                 ath9k_olc_get_pdadcs(ah, pcdacIdx,
2184                                                      txPower/2, pdadcValues);
2185                         } else {
2186                                 ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
2187                                                         chan, pRawDataset,
2188                                                         pCalBChans, numPiers,
2189                                                         pdGainOverlap_t2,
2190                                                         &tMinCalPower,
2191                                                         gainBoundaries,
2192                                                         pdadcValues,
2193                                                         numXpdGain);
2194                         }
2195
2196                         if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
2197                                 if (OLC_FOR_AR9280_20_LATER) {
2198                                         REG_WRITE(ah,
2199                                                 AR_PHY_TPCRG5 + regChainOffset,
2200                                                 SM(0x6,
2201                                                 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2202                                                 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
2203                                                 SM_PD_GAIN(3) | SM_PD_GAIN(4));
2204                                 } else {
2205                                         REG_WRITE(ah,
2206                                                 AR_PHY_TPCRG5 + regChainOffset,
2207                                                 SM(pdGainOverlap_t2,
2208                                                 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
2209                                                 SM_PDGAIN_B(0, 1) |
2210                                                 SM_PDGAIN_B(1, 2) |
2211                                                 SM_PDGAIN_B(2, 3) |
2212                                                 SM_PDGAIN_B(3, 4));
2213                                 }
2214                         }
2215
2216                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2217                         for (j = 0; j < 32; j++) {
2218                                 reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
2219                                         ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
2220                                         ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
2221                                         ((pdadcValues[4 * j + 3] & 0xFF) << 24);
2222                                 REG_WRITE(ah, regOffset, reg32);
2223
2224                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2225                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
2226                                         i, regChainOffset, regOffset,
2227                                         reg32);
2228                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2229                                         "PDADC: Chain %d | PDADC %3d "
2230                                         "Value %3d | PDADC %3d Value %3d | "
2231                                         "PDADC %3d Value %3d | PDADC %3d "
2232                                         "Value %3d |\n",
2233                                         i, 4 * j, pdadcValues[4 * j],
2234                                         4 * j + 1, pdadcValues[4 * j + 1],
2235                                         4 * j + 2, pdadcValues[4 * j + 2],
2236                                         4 * j + 3,
2237                                         pdadcValues[4 * j + 3]);
2238
2239                                 regOffset += 4;
2240                         }
2241                 }
2242         }
2243
2244         *pTxPowerIndexOffset = 0;
2245 #undef SM_PD_GAIN
2246 #undef SM_PDGAIN_B
2247 }
2248
2249 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
2250                                                   struct ath9k_channel *chan,
2251                                                   int16_t *ratesArray,
2252                                                   u16 cfgCtl,
2253                                                   u16 AntennaReduction,
2254                                                   u16 twiceMaxRegulatoryPower,
2255                                                   u16 powerLimit)
2256 {
2257 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2258 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
2259
2260         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
2261         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2262         static const u16 tpScaleReductionTable[5] =
2263                 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
2264
2265         int i;
2266         int16_t twiceLargestAntenna;
2267         struct cal_ctl_data *rep;
2268         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
2269                 0, { 0, 0, 0, 0}
2270         };
2271         struct cal_target_power_leg targetPowerOfdmExt = {
2272                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
2273                 0, { 0, 0, 0, 0 }
2274         };
2275         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
2276                 0, {0, 0, 0, 0}
2277         };
2278         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
2279         u16 ctlModesFor11a[] =
2280                 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
2281         u16 ctlModesFor11g[] =
2282                 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
2283                   CTL_2GHT40
2284                 };
2285         u16 numCtlModes, *pCtlMode, ctlMode, freq;
2286         struct chan_centers centers;
2287         int tx_chainmask;
2288         u16 twiceMinEdgePower;
2289
2290         tx_chainmask = ah->txchainmask;
2291
2292         ath9k_hw_get_channel_centers(ah, chan, &centers);
2293
2294         twiceLargestAntenna = max(
2295                 pEepData->modalHeader
2296                         [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
2297                 pEepData->modalHeader
2298                         [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
2299
2300         twiceLargestAntenna = max((u8)twiceLargestAntenna,
2301                                   pEepData->modalHeader
2302                                   [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
2303
2304         twiceLargestAntenna = (int16_t)min(AntennaReduction -
2305                                            twiceLargestAntenna, 0);
2306
2307         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
2308
2309         if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
2310                 maxRegAllowedPower -=
2311                         (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
2312         }
2313
2314         scaledPower = min(powerLimit, maxRegAllowedPower);
2315
2316         switch (ar5416_get_ntxchains(tx_chainmask)) {
2317         case 1:
2318                 break;
2319         case 2:
2320                 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
2321                 break;
2322         case 3:
2323                 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
2324                 break;
2325         }
2326
2327         scaledPower = max((u16)0, scaledPower);
2328
2329         if (IS_CHAN_2GHZ(chan)) {
2330                 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
2331                         SUB_NUM_CTL_MODES_AT_2G_40;
2332                 pCtlMode = ctlModesFor11g;
2333
2334                 ath9k_hw_get_legacy_target_powers(ah, chan,
2335                         pEepData->calTargetPowerCck,
2336                         AR5416_NUM_2G_CCK_TARGET_POWERS,
2337                         &targetPowerCck, 4, false);
2338                 ath9k_hw_get_legacy_target_powers(ah, chan,
2339                         pEepData->calTargetPower2G,
2340                         AR5416_NUM_2G_20_TARGET_POWERS,
2341                         &targetPowerOfdm, 4, false);
2342                 ath9k_hw_get_target_powers(ah, chan,
2343                         pEepData->calTargetPower2GHT20,
2344                         AR5416_NUM_2G_20_TARGET_POWERS,
2345                         &targetPowerHt20, 8, false);
2346
2347                 if (IS_CHAN_HT40(chan)) {
2348                         numCtlModes = ARRAY_SIZE(ctlModesFor11g);
2349                         ath9k_hw_get_target_powers(ah, chan,
2350                                 pEepData->calTargetPower2GHT40,
2351                                 AR5416_NUM_2G_40_TARGET_POWERS,
2352                                 &targetPowerHt40, 8, true);
2353                         ath9k_hw_get_legacy_target_powers(ah, chan,
2354                                 pEepData->calTargetPowerCck,
2355                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
2356                                 &targetPowerCckExt, 4, true);
2357                         ath9k_hw_get_legacy_target_powers(ah, chan,
2358                                 pEepData->calTargetPower2G,
2359                                 AR5416_NUM_2G_20_TARGET_POWERS,
2360                                 &targetPowerOfdmExt, 4, true);
2361                 }
2362         } else {
2363                 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
2364                         SUB_NUM_CTL_MODES_AT_5G_40;
2365                 pCtlMode = ctlModesFor11a;
2366
2367                 ath9k_hw_get_legacy_target_powers(ah, chan,
2368                         pEepData->calTargetPower5G,
2369                         AR5416_NUM_5G_20_TARGET_POWERS,
2370                         &targetPowerOfdm, 4, false);
2371                 ath9k_hw_get_target_powers(ah, chan,
2372                         pEepData->calTargetPower5GHT20,
2373                         AR5416_NUM_5G_20_TARGET_POWERS,
2374                         &targetPowerHt20, 8, false);
2375
2376                 if (IS_CHAN_HT40(chan)) {
2377                         numCtlModes = ARRAY_SIZE(ctlModesFor11a);
2378                         ath9k_hw_get_target_powers(ah, chan,
2379                                 pEepData->calTargetPower5GHT40,
2380                                 AR5416_NUM_5G_40_TARGET_POWERS,
2381                                 &targetPowerHt40, 8, true);
2382                         ath9k_hw_get_legacy_target_powers(ah, chan,
2383                                 pEepData->calTargetPower5G,
2384                                 AR5416_NUM_5G_20_TARGET_POWERS,
2385                                 &targetPowerOfdmExt, 4, true);
2386                 }
2387         }
2388
2389         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
2390                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
2391                         (pCtlMode[ctlMode] == CTL_2GHT40);
2392                 if (isHt40CtlMode)
2393                         freq = centers.synth_center;
2394                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
2395                         freq = centers.ext_center;
2396                 else
2397                         freq = centers.ctl_center;
2398
2399                 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
2400                     ah->eep_ops->get_eeprom_rev(ah) <= 2)
2401                         twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2402
2403                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2404                         "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
2405                         "EXT_ADDITIVE %d\n",
2406                         ctlMode, numCtlModes, isHt40CtlMode,
2407                         (pCtlMode[ctlMode] & EXT_ADDITIVE));
2408
2409                 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
2410                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2411                                 "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
2412                                 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
2413                                 "chan %d\n",
2414                                 i, cfgCtl, pCtlMode[ctlMode],
2415                                 pEepData->ctlIndex[i], chan->channel);
2416
2417                         if ((((cfgCtl & ~CTL_MODE_M) |
2418                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2419                              pEepData->ctlIndex[i]) ||
2420                             (((cfgCtl & ~CTL_MODE_M) |
2421                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
2422                              ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
2423                                 rep = &(pEepData->ctlData[i]);
2424
2425                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
2426                                 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
2427                                 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
2428
2429                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2430                                         "    MATCH-EE_IDX %d: ch %d is2 %d "
2431                                         "2xMinEdge %d chainmask %d chains %d\n",
2432                                         i, freq, IS_CHAN_2GHZ(chan),
2433                                         twiceMinEdgePower, tx_chainmask,
2434                                         ar5416_get_ntxchains
2435                                         (tx_chainmask));
2436                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2437                                         twiceMaxEdgePower = min(twiceMaxEdgePower,
2438                                                                 twiceMinEdgePower);
2439                                 } else {
2440                                         twiceMaxEdgePower = twiceMinEdgePower;
2441                                         break;
2442                                 }
2443                         }
2444                 }
2445
2446                 minCtlPower = min(twiceMaxEdgePower, scaledPower);
2447
2448                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2449                         "    SEL-Min ctlMode %d pCtlMode %d "
2450                         "2xMaxEdge %d sP %d minCtlPwr %d\n",
2451                         ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
2452                         scaledPower, minCtlPower);
2453
2454                 switch (pCtlMode[ctlMode]) {
2455                 case CTL_11B:
2456                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
2457                                 targetPowerCck.tPow2x[i] =
2458                                         min((u16)targetPowerCck.tPow2x[i],
2459                                             minCtlPower);
2460                         }
2461                         break;
2462                 case CTL_11A:
2463                 case CTL_11G:
2464                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
2465                                 targetPowerOfdm.tPow2x[i] =
2466                                         min((u16)targetPowerOfdm.tPow2x[i],
2467                                             minCtlPower);
2468                         }
2469                         break;
2470                 case CTL_5GHT20:
2471                 case CTL_2GHT20:
2472                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
2473                                 targetPowerHt20.tPow2x[i] =
2474                                         min((u16)targetPowerHt20.tPow2x[i],
2475                                             minCtlPower);
2476                         }
2477                         break;
2478                 case CTL_11B_EXT:
2479                         targetPowerCckExt.tPow2x[0] = min((u16)
2480                                         targetPowerCckExt.tPow2x[0],
2481                                         minCtlPower);
2482                         break;
2483                 case CTL_11A_EXT:
2484                 case CTL_11G_EXT:
2485                         targetPowerOfdmExt.tPow2x[0] = min((u16)
2486                                         targetPowerOfdmExt.tPow2x[0],
2487                                         minCtlPower);
2488                         break;
2489                 case CTL_5GHT40:
2490                 case CTL_2GHT40:
2491                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
2492                                 targetPowerHt40.tPow2x[i] =
2493                                         min((u16)targetPowerHt40.tPow2x[i],
2494                                             minCtlPower);
2495                         }
2496                         break;
2497                 default:
2498                         break;
2499                 }
2500         }
2501
2502         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
2503                 ratesArray[rate18mb] = ratesArray[rate24mb] =
2504                 targetPowerOfdm.tPow2x[0];
2505         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
2506         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
2507         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
2508         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
2509
2510         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
2511                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
2512
2513         if (IS_CHAN_2GHZ(chan)) {
2514                 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
2515                 ratesArray[rate2s] = ratesArray[rate2l] =
2516                         targetPowerCck.tPow2x[1];
2517                 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
2518                         targetPowerCck.tPow2x[2];
2519                 ;
2520                 ratesArray[rate11s] = ratesArray[rate11l] =
2521                         targetPowerCck.tPow2x[3];
2522                 ;
2523         }
2524         if (IS_CHAN_HT40(chan)) {
2525                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
2526                         ratesArray[rateHt40_0 + i] =
2527                                 targetPowerHt40.tPow2x[i];
2528                 }
2529                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
2530                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
2531                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
2532                 if (IS_CHAN_2GHZ(chan)) {
2533                         ratesArray[rateExtCck] =
2534                                 targetPowerCckExt.tPow2x[0];
2535                 }
2536         }
2537 }
2538
2539 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
2540                                     struct ath9k_channel *chan,
2541                                     u16 cfgCtl,
2542                                     u8 twiceAntennaReduction,
2543                                     u8 twiceMaxRegulatoryPower,
2544                                     u8 powerLimit)
2545 {
2546 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
2547         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
2548         struct modal_eep_header *pModal =
2549                 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
2550         int16_t ratesArray[Ar5416RateSize];
2551         int16_t txPowerIndexOffset = 0;
2552         u8 ht40PowerIncForPdadc = 2;
2553         int i, cck_ofdm_delta = 0;
2554
2555         memset(ratesArray, 0, sizeof(ratesArray));
2556
2557         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
2558             AR5416_EEP_MINOR_VER_2) {
2559                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
2560         }
2561
2562         ath9k_hw_set_def_power_per_rate_table(ah, chan,
2563                                                &ratesArray[0], cfgCtl,
2564                                                twiceAntennaReduction,
2565                                                twiceMaxRegulatoryPower,
2566                                                powerLimit);
2567
2568         ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
2569
2570         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
2571                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
2572                 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
2573                         ratesArray[i] = AR5416_MAX_RATE_POWER;
2574         }
2575
2576         if (AR_SREV_9280_10_OR_LATER(ah)) {
2577                 for (i = 0; i < Ar5416RateSize; i++)
2578                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
2579         }
2580
2581         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
2582                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
2583                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
2584                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
2585                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
2586         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
2587                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
2588                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
2589                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
2590                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
2591
2592         if (IS_CHAN_2GHZ(chan)) {
2593                 if (OLC_FOR_AR9280_20_LATER) {
2594                         cck_ofdm_delta = 2;
2595                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2596                                 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
2597                                 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
2598                                 | ATH9K_POW_SM(ratesArray[rateXr], 8)
2599                                 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
2600                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2601                                 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
2602                                 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
2603                                 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
2604                                 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
2605                 } else {
2606                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
2607                                 ATH9K_POW_SM(ratesArray[rate2s], 24)
2608                                 | ATH9K_POW_SM(ratesArray[rate2l], 16)
2609                                 | ATH9K_POW_SM(ratesArray[rateXr], 8)
2610                                 | ATH9K_POW_SM(ratesArray[rate1l], 0));
2611                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
2612                                 ATH9K_POW_SM(ratesArray[rate11s], 24)
2613                                 | ATH9K_POW_SM(ratesArray[rate11l], 16)
2614                                 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
2615                                 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
2616                 }
2617         }
2618
2619         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
2620                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
2621                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
2622                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
2623                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
2624         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
2625                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
2626                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
2627                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
2628                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
2629
2630         if (IS_CHAN_HT40(chan)) {
2631                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
2632                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
2633                                        ht40PowerIncForPdadc, 24)
2634                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
2635                                          ht40PowerIncForPdadc, 16)
2636                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
2637                                          ht40PowerIncForPdadc, 8)
2638                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
2639                                          ht40PowerIncForPdadc, 0));
2640                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
2641                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
2642                                        ht40PowerIncForPdadc, 24)
2643                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
2644                                          ht40PowerIncForPdadc, 16)
2645                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
2646                                          ht40PowerIncForPdadc, 8)
2647                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
2648                                          ht40PowerIncForPdadc, 0));
2649                 if (OLC_FOR_AR9280_20_LATER) {
2650                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
2651                                 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
2652                                 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
2653                                 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
2654                                 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
2655                 } else {
2656                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
2657                                 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
2658                                 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
2659                                 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
2660                                 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
2661                 }
2662         }
2663
2664         REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2665                   ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
2666                   | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
2667
2668         i = rate6mb;
2669
2670         if (IS_CHAN_HT40(chan))
2671                 i = rateHt40_0;
2672         else if (IS_CHAN_HT20(chan))
2673                 i = rateHt20_0;
2674
2675         if (AR_SREV_9280_10_OR_LATER(ah))
2676                 ah->regulatory.max_power_level =
2677                         ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
2678         else
2679                 ah->regulatory.max_power_level = ratesArray[i];
2680
2681         switch(ar5416_get_ntxchains(ah->txchainmask)) {
2682         case 1:
2683                 break;
2684         case 2:
2685                 ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
2686                 break;
2687         case 3:
2688                 ah->regulatory.max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
2689                 break;
2690         default:
2691                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
2692                         "Invalid chainmask configuration\n");
2693                 break;
2694         }
2695 }
2696
2697 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
2698                                           enum ieee80211_band freq_band)
2699 {
2700         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
2701         struct modal_eep_header *pModal =
2702                 &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
2703         struct base_eep_header *pBase = &eep->baseEepHeader;
2704         u8 num_ant_config;
2705
2706         num_ant_config = 1;
2707
2708         if (pBase->version >= 0x0E0D)
2709                 if (pModal->useAnt1)
2710                         num_ant_config += 1;
2711
2712         return num_ant_config;
2713 }
2714
2715 static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
2716                                                struct ath9k_channel *chan)
2717 {
2718         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
2719         struct modal_eep_header *pModal =
2720                 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
2721
2722         return pModal->antCtrlCommon & 0xFFFF;
2723 }
2724
2725 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
2726 {
2727 #define EEP_DEF_SPURCHAN \
2728         (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
2729
2730         u16 spur_val = AR_NO_SPUR;
2731
2732         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2733                 "Getting spur idx %d is2Ghz. %d val %x\n",
2734                 i, is2GHz, ah->config.spurchans[i][is2GHz]);
2735
2736         switch (ah->config.spurmode) {
2737         case SPUR_DISABLE:
2738                 break;
2739         case SPUR_ENABLE_IOCTL:
2740                 spur_val = ah->config.spurchans[i][is2GHz];
2741                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2742                         "Getting spur val from new loc. %d\n", spur_val);
2743                 break;
2744         case SPUR_ENABLE_EEPROM:
2745                 spur_val = EEP_DEF_SPURCHAN;
2746                 break;
2747         }
2748
2749         return spur_val;
2750
2751 #undef EEP_DEF_SPURCHAN
2752 }
2753
2754 static struct eeprom_ops eep_def_ops = {
2755         .check_eeprom           = ath9k_hw_def_check_eeprom,
2756         .get_eeprom             = ath9k_hw_def_get_eeprom,
2757         .fill_eeprom            = ath9k_hw_def_fill_eeprom,
2758         .get_eeprom_ver         = ath9k_hw_def_get_eeprom_ver,
2759         .get_eeprom_rev         = ath9k_hw_def_get_eeprom_rev,
2760         .get_num_ant_config     = ath9k_hw_def_get_num_ant_config,
2761         .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
2762         .set_board_values       = ath9k_hw_def_set_board_values,
2763         .set_addac              = ath9k_hw_def_set_addac,
2764         .set_txpower            = ath9k_hw_def_set_txpower,
2765         .get_spur_channel       = ath9k_hw_def_get_spur_channel
2766 };
2767
2768 int ath9k_hw_eeprom_attach(struct ath_hw *ah)
2769 {
2770         int status;
2771
2772         if (AR_SREV_9285(ah)) {
2773                 ah->eep_map = EEP_MAP_4KBITS;
2774                 ah->eep_ops = &eep_4k_ops;
2775         } else {
2776                 ah->eep_map = EEP_MAP_DEFAULT;
2777                 ah->eep_ops = &eep_def_ops;
2778         }
2779
2780         if (!ah->eep_ops->fill_eeprom(ah))
2781                 return -EIO;
2782
2783         status = ah->eep_ops->check_eeprom(ah);
2784
2785         return status;
2786 }