Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31
32 /*
33  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34  */
35 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36                                         const struct ath5k_rf_reg *rf_regs,
37                                         u32 val, u8 reg_id, bool set)
38 {
39         const struct ath5k_rf_reg *rfreg = NULL;
40         u8 offset, bank, num_bits, col, position;
41         u16 entry;
42         u32 mask, data, last_bit, bits_shifted, first_bit;
43         u32 *rfb;
44         s32 bits_left;
45         int i;
46
47         data = 0;
48         rfb = ah->ah_rf_banks;
49
50         for (i = 0; i < ah->ah_rf_regs_count; i++) {
51                 if (rf_regs[i].index == reg_id) {
52                         rfreg = &rf_regs[i];
53                         break;
54                 }
55         }
56
57         if (rfb == NULL || rfreg == NULL) {
58                 ATH5K_PRINTF("Rf register not found!\n");
59                 /* should not happen */
60                 return 0;
61         }
62
63         bank = rfreg->bank;
64         num_bits = rfreg->field.len;
65         first_bit = rfreg->field.pos;
66         col = rfreg->field.col;
67
68         /* first_bit is an offset from bank's
69          * start. Since we have all banks on
70          * the same array, we use this offset
71          * to mark each bank's start */
72         offset = ah->ah_offset[bank];
73
74         /* Boundary check */
75         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
77                 return 0;
78         }
79
80         entry = ((first_bit - 1) / 8) + offset;
81         position = (first_bit - 1) % 8;
82
83         if (set)
84                 data = ath5k_hw_bitswap(val, num_bits);
85
86         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87         position = 0, entry++) {
88
89                 last_bit = (position + bits_left > 8) ? 8 :
90                                         position + bits_left;
91
92                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93                                                                 (col * 8);
94
95                 if (set) {
96                         rfb[entry] &= ~mask;
97                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
98                         data >>= (8 - position);
99                 } else {
100                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101                                 << bits_shifted;
102                         bits_shifted += last_bit - position;
103                 }
104
105                 bits_left -= 8 - position;
106         }
107
108         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109
110         return data;
111 }
112
113 /**********************\
114 * RF Gain optimization *
115 \**********************/
116
117 /*
118  * This code is used to optimize RF gain on different environments
119  * (temperature mostly) based on feedback from a power detector.
120  *
121  * It's only used on RF5111 and RF5112, later RF chips seem to have
122  * auto adjustment on hw -notice they have a much smaller BANK 7 and
123  * no gain optimization ladder-.
124  *
125  * For more infos check out this patent doc
126  * http://www.freepatentsonline.com/7400691.html
127  *
128  * This paper describes power drops as seen on the receiver due to
129  * probe packets
130  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131  * %20of%20Power%20Control.pdf
132  *
133  * And this is the MadWiFi bug entry related to the above
134  * http://madwifi-project.org/ticket/1659
135  * with various measurements and diagrams
136  *
137  * TODO: Deal with power drops due to probes by setting an apropriate
138  * tx power on the probe packets ! Make this part of the calibration process.
139  */
140
141 /* Initialize ah_gain durring attach */
142 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143 {
144         /* Initialize the gain optimization values */
145         switch (ah->ah_radio) {
146         case AR5K_RF5111:
147                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148                 ah->ah_gain.g_low = 20;
149                 ah->ah_gain.g_high = 35;
150                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151                 break;
152         case AR5K_RF5112:
153                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154                 ah->ah_gain.g_low = 20;
155                 ah->ah_gain.g_high = 85;
156                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157                 break;
158         default:
159                 return -EINVAL;
160         }
161
162         return 0;
163 }
164
165 /* Schedule a gain probe check on the next transmited packet.
166  * That means our next packet is going to be sent with lower
167  * tx power and a Peak to Average Power Detector (PAPD) will try
168  * to measure the gain.
169  *
170  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171  * just after we enable the probe so that we don't mess with
172  * standard traffic ? Maybe it's time to use sw interrupts and
173  * a probe tasklet !!!
174  */
175 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176 {
177
178         /* Skip if gain calibration is inactive or
179          * we already handle a probe request */
180         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181                 return;
182
183         /* Send the packet with 2dB below max power as
184          * patent doc suggest */
185         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
187                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191 }
192
193 /* Calculate gain_F measurement correction
194  * based on the current step for RF5112 rev. 2 */
195 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196 {
197         u32 mix, step;
198         u32 *rf;
199         const struct ath5k_gain_opt *go;
200         const struct ath5k_gain_opt_step *g_step;
201         const struct ath5k_rf_reg *rf_regs;
202
203         /* Only RF5112 Rev. 2 supports it */
204         if ((ah->ah_radio != AR5K_RF5112) ||
205         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206                 return 0;
207
208         go = &rfgain_opt_5112;
209         rf_regs = rf_regs_5112a;
210         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211
212         g_step = &go->go_step[ah->ah_gain.g_step_idx];
213
214         if (ah->ah_rf_banks == NULL)
215                 return 0;
216
217         rf = ah->ah_rf_banks;
218         ah->ah_gain.g_f_corr = 0;
219
220         /* No VGA (Variable Gain Amplifier) override, skip */
221         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222                 return 0;
223
224         /* Mix gain stepping */
225         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226
227         /* Mix gain override */
228         mix = g_step->gos_param[0];
229
230         switch (mix) {
231         case 3:
232                 ah->ah_gain.g_f_corr = step * 2;
233                 break;
234         case 2:
235                 ah->ah_gain.g_f_corr = (step - 5) * 2;
236                 break;
237         case 1:
238                 ah->ah_gain.g_f_corr = step;
239                 break;
240         default:
241                 ah->ah_gain.g_f_corr = 0;
242                 break;
243         }
244
245         return ah->ah_gain.g_f_corr;
246 }
247
248 /* Check if current gain_F measurement is in the range of our
249  * power detector windows. If we get a measurement outside range
250  * we know it's not accurate (detectors can't measure anything outside
251  * their detection window) so we must ignore it */
252 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253 {
254         const struct ath5k_rf_reg *rf_regs;
255         u32 step, mix_ovr, level[4];
256         u32 *rf;
257
258         if (ah->ah_rf_banks == NULL)
259                 return false;
260
261         rf = ah->ah_rf_banks;
262
263         if (ah->ah_radio == AR5K_RF5111) {
264
265                 rf_regs = rf_regs_5111;
266                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269                         false);
270
271                 level[0] = 0;
272                 level[1] = (step == 63) ? 50 : step + 4;
273                 level[2] = (step != 63) ? 64 : level[0];
274                 level[3] = level[2] + 50 ;
275
276                 ah->ah_gain.g_high = level[3] -
277                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278                 ah->ah_gain.g_low = level[0] +
279                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280         } else {
281
282                 rf_regs = rf_regs_5112;
283                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286                         false);
287
288                 level[0] = level[2] = 0;
289
290                 if (mix_ovr == 1) {
291                         level[1] = level[3] = 83;
292                 } else {
293                         level[1] = level[3] = 107;
294                         ah->ah_gain.g_high = 55;
295                 }
296         }
297
298         return (ah->ah_gain.g_current >= level[0] &&
299                         ah->ah_gain.g_current <= level[1]) ||
300                 (ah->ah_gain.g_current >= level[2] &&
301                         ah->ah_gain.g_current <= level[3]);
302 }
303
304 /* Perform gain_F adjustment by choosing the right set
305  * of parameters from RF gain optimization ladder */
306 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307 {
308         const struct ath5k_gain_opt *go;
309         const struct ath5k_gain_opt_step *g_step;
310         int ret = 0;
311
312         switch (ah->ah_radio) {
313         case AR5K_RF5111:
314                 go = &rfgain_opt_5111;
315                 break;
316         case AR5K_RF5112:
317                 go = &rfgain_opt_5112;
318                 break;
319         default:
320                 return 0;
321         }
322
323         g_step = &go->go_step[ah->ah_gain.g_step_idx];
324
325         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326
327                 /* Reached maximum */
328                 if (ah->ah_gain.g_step_idx == 0)
329                         return -1;
330
331                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333                                 ah->ah_gain.g_step_idx > 0;
334                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
335                         ah->ah_gain.g_target -= 2 *
336                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337                             g_step->gos_gain);
338
339                 ret = 1;
340                 goto done;
341         }
342
343         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344
345                 /* Reached minimum */
346                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347                         return -2;
348
349                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
352                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
353                         ah->ah_gain.g_target -= 2 *
354                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355                             g_step->gos_gain);
356
357                 ret = 2;
358                 goto done;
359         }
360
361 done:
362         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363                 "ret %d, gain step %u, current gain %u, target gain %u\n",
364                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365                 ah->ah_gain.g_target);
366
367         return ret;
368 }
369
370 /* Main callback for thermal RF gain calibration engine
371  * Check for a new gain reading and schedule an adjustment
372  * if needed.
373  *
374  * TODO: Use sw interrupt to schedule reset if gain_F needs
375  * adjustment */
376 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377 {
378         u32 data, type;
379         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381         if (ah->ah_rf_banks == NULL ||
382         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
383                 return AR5K_RFGAIN_INACTIVE;
384
385         /* No check requested, either engine is inactive
386          * or an adjustment is already requested */
387         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
388                 goto done;
389
390         /* Read the PAPD (Peak to Average Power Detector)
391          * register */
392         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
393
394         /* No probe is scheduled, read gain_F measurement */
395         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
396                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
397                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
398
399                 /* If tx packet is CCK correct the gain_F measurement
400                  * by cck ofdm gain delta */
401                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
402                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
403                                 ah->ah_gain.g_current +=
404                                         ee->ee_cck_ofdm_gain_delta;
405                         else
406                                 ah->ah_gain.g_current +=
407                                         AR5K_GAIN_CCK_PROBE_CORR;
408                 }
409
410                 /* Further correct gain_F measurement for
411                  * RF5112A radios */
412                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
413                         ath5k_hw_rf_gainf_corr(ah);
414                         ah->ah_gain.g_current =
415                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
416                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
417                                 0;
418                 }
419
420                 /* Check if measurement is ok and if we need
421                  * to adjust gain, schedule a gain adjustment,
422                  * else switch back to the acive state */
423                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
424                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
425                 ath5k_hw_rf_gainf_adjust(ah)) {
426                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
427                 } else {
428                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429                 }
430         }
431
432 done:
433         return ah->ah_gain.g_state;
434 }
435
436 /* Write initial RF gain table to set the RF sensitivity
437  * this one works on all RF chips and has nothing to do
438  * with gain_F calibration */
439 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
440 {
441         const struct ath5k_ini_rfgain *ath5k_rfg;
442         unsigned int i, size;
443
444         switch (ah->ah_radio) {
445         case AR5K_RF5111:
446                 ath5k_rfg = rfgain_5111;
447                 size = ARRAY_SIZE(rfgain_5111);
448                 break;
449         case AR5K_RF5112:
450                 ath5k_rfg = rfgain_5112;
451                 size = ARRAY_SIZE(rfgain_5112);
452                 break;
453         case AR5K_RF2413:
454                 ath5k_rfg = rfgain_2413;
455                 size = ARRAY_SIZE(rfgain_2413);
456                 break;
457         case AR5K_RF2316:
458                 ath5k_rfg = rfgain_2316;
459                 size = ARRAY_SIZE(rfgain_2316);
460                 break;
461         case AR5K_RF5413:
462                 ath5k_rfg = rfgain_5413;
463                 size = ARRAY_SIZE(rfgain_5413);
464                 break;
465         case AR5K_RF2317:
466         case AR5K_RF2425:
467                 ath5k_rfg = rfgain_2425;
468                 size = ARRAY_SIZE(rfgain_2425);
469                 break;
470         default:
471                 return -EINVAL;
472         }
473
474         switch (freq) {
475         case AR5K_INI_RFGAIN_2GHZ:
476         case AR5K_INI_RFGAIN_5GHZ:
477                 break;
478         default:
479                 return -EINVAL;
480         }
481
482         for (i = 0; i < size; i++) {
483                 AR5K_REG_WAIT(i);
484                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
485                         (u32)ath5k_rfg[i].rfg_register);
486         }
487
488         return 0;
489 }
490
491
492
493 /********************\
494 * RF Registers setup *
495 \********************/
496
497
498 /*
499  * Setup RF registers by writing RF buffer on hw
500  */
501 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
502                 unsigned int mode)
503 {
504         const struct ath5k_rf_reg *rf_regs;
505         const struct ath5k_ini_rfbuffer *ini_rfb;
506         const struct ath5k_gain_opt *go = NULL;
507         const struct ath5k_gain_opt_step *g_step;
508         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
509         u8 ee_mode = 0;
510         u32 *rfb;
511         int i, obdb = -1, bank = -1;
512
513         switch (ah->ah_radio) {
514         case AR5K_RF5111:
515                 rf_regs = rf_regs_5111;
516                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
517                 ini_rfb = rfb_5111;
518                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
519                 go = &rfgain_opt_5111;
520                 break;
521         case AR5K_RF5112:
522                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
523                         rf_regs = rf_regs_5112a;
524                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
525                         ini_rfb = rfb_5112a;
526                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
527                 } else {
528                         rf_regs = rf_regs_5112;
529                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
530                         ini_rfb = rfb_5112;
531                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
532                 }
533                 go = &rfgain_opt_5112;
534                 break;
535         case AR5K_RF2413:
536                 rf_regs = rf_regs_2413;
537                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
538                 ini_rfb = rfb_2413;
539                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
540                 break;
541         case AR5K_RF2316:
542                 rf_regs = rf_regs_2316;
543                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
544                 ini_rfb = rfb_2316;
545                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
546                 break;
547         case AR5K_RF5413:
548                 rf_regs = rf_regs_5413;
549                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
550                 ini_rfb = rfb_5413;
551                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
552                 break;
553         case AR5K_RF2317:
554                 rf_regs = rf_regs_2425;
555                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
556                 ini_rfb = rfb_2317;
557                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
558                 break;
559         case AR5K_RF2425:
560                 rf_regs = rf_regs_2425;
561                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
563                         ini_rfb = rfb_2425;
564                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
565                 } else {
566                         ini_rfb = rfb_2417;
567                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
568                 }
569                 break;
570         default:
571                 return -EINVAL;
572         }
573
574         /* If it's the first time we set RF buffer, allocate
575          * ah->ah_rf_banks based on ah->ah_rf_banks_size
576          * we set above */
577         if (ah->ah_rf_banks == NULL) {
578                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
579                                                                 GFP_KERNEL);
580                 if (ah->ah_rf_banks == NULL) {
581                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
582                         return -ENOMEM;
583                 }
584         }
585
586         /* Copy values to modify them */
587         rfb = ah->ah_rf_banks;
588
589         for (i = 0; i < ah->ah_rf_banks_size; i++) {
590                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
591                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
592                         return -EINVAL;
593                 }
594
595                 /* Bank changed, write down the offset */
596                 if (bank != ini_rfb[i].rfb_bank) {
597                         bank = ini_rfb[i].rfb_bank;
598                         ah->ah_offset[bank] = i;
599                 }
600
601                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
602         }
603
604         /* Set Output and Driver bias current (OB/DB) */
605         if (channel->hw_value & CHANNEL_2GHZ) {
606
607                 if (channel->hw_value & CHANNEL_CCK)
608                         ee_mode = AR5K_EEPROM_MODE_11B;
609                 else
610                         ee_mode = AR5K_EEPROM_MODE_11G;
611
612                 /* For RF511X/RF211X combination we
613                  * use b_OB and b_DB parameters stored
614                  * in eeprom on ee->ee_ob[ee_mode][0]
615                  *
616                  * For all other chips we use OB/DB for 2Ghz
617                  * stored in the b/g modal section just like
618                  * 802.11a on ee->ee_ob[ee_mode][1] */
619                 if ((ah->ah_radio == AR5K_RF5111) ||
620                 (ah->ah_radio == AR5K_RF5112))
621                         obdb = 0;
622                 else
623                         obdb = 1;
624
625                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
626                                                 AR5K_RF_OB_2GHZ, true);
627
628                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
629                                                 AR5K_RF_DB_2GHZ, true);
630
631         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
632         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
633                         (ah->ah_radio == AR5K_RF5111)) {
634
635                 /* For 11a, Turbo and XR we need to choose
636                  * OB/DB based on frequency range */
637                 ee_mode = AR5K_EEPROM_MODE_11A;
638                 obdb =   channel->center_freq >= 5725 ? 3 :
639                         (channel->center_freq >= 5500 ? 2 :
640                         (channel->center_freq >= 5260 ? 1 :
641                          (channel->center_freq > 4000 ? 0 : -1)));
642
643                 if (obdb < 0)
644                         return -EINVAL;
645
646                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
647                                                 AR5K_RF_OB_5GHZ, true);
648
649                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
650                                                 AR5K_RF_DB_5GHZ, true);
651         }
652
653         g_step = &go->go_step[ah->ah_gain.g_step_idx];
654
655         /* Bank Modifications (chip-specific) */
656         if (ah->ah_radio == AR5K_RF5111) {
657
658                 /* Set gain_F settings according to current step */
659                 if (channel->hw_value & CHANNEL_OFDM) {
660
661                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
662                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
663                                         g_step->gos_param[0]);
664
665                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
666                                                         AR5K_RF_PWD_90, true);
667
668                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
669                                                         AR5K_RF_PWD_84, true);
670
671                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
672                                                 AR5K_RF_RFGAIN_SEL, true);
673
674                         /* We programmed gain_F parameters, switch back
675                          * to active state */
676                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
677
678                 }
679
680                 /* Bank 6/7 setup */
681
682                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
683                                                 AR5K_RF_PWD_XPD, true);
684
685                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
686                                                 AR5K_RF_XPD_GAIN, true);
687
688                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
689                                                 AR5K_RF_GAIN_I, true);
690
691                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
692                                                 AR5K_RF_PLO_SEL, true);
693
694                 /* TODO: Half/quarter channel support */
695         }
696
697         if (ah->ah_radio == AR5K_RF5112) {
698
699                 /* Set gain_F settings according to current step */
700                 if (channel->hw_value & CHANNEL_OFDM) {
701
702                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
703                                                 AR5K_RF_MIXGAIN_OVR, true);
704
705                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
706                                                 AR5K_RF_PWD_138, true);
707
708                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
709                                                 AR5K_RF_PWD_137, true);
710
711                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
712                                                 AR5K_RF_PWD_136, true);
713
714                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
715                                                 AR5K_RF_PWD_132, true);
716
717                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
718                                                 AR5K_RF_PWD_131, true);
719
720                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
721                                                 AR5K_RF_PWD_130, true);
722
723                         /* We programmed gain_F parameters, switch back
724                          * to active state */
725                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
726                 }
727
728                 /* Bank 6/7 setup */
729
730                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
731                                                 AR5K_RF_XPD_SEL, true);
732
733                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
734                         /* Rev. 1 supports only one xpd */
735                         ath5k_hw_rfb_op(ah, rf_regs,
736                                                 ee->ee_x_gain[ee_mode],
737                                                 AR5K_RF_XPD_GAIN, true);
738
739                 } else {
740                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
741                         if (ee->ee_pd_gains[ee_mode] > 1) {
742                                 ath5k_hw_rfb_op(ah, rf_regs,
743                                                 pdg_curve_to_idx[0],
744                                                 AR5K_RF_PD_GAIN_LO, true);
745                                 ath5k_hw_rfb_op(ah, rf_regs,
746                                                 pdg_curve_to_idx[1],
747                                                 AR5K_RF_PD_GAIN_HI, true);
748                         } else {
749                                 ath5k_hw_rfb_op(ah, rf_regs,
750                                                 pdg_curve_to_idx[0],
751                                                 AR5K_RF_PD_GAIN_LO, true);
752                                 ath5k_hw_rfb_op(ah, rf_regs,
753                                                 pdg_curve_to_idx[0],
754                                                 AR5K_RF_PD_GAIN_HI, true);
755                         }
756
757                         /* Lower synth voltage on Rev 2 */
758                         ath5k_hw_rfb_op(ah, rf_regs, 2,
759                                         AR5K_RF_HIGH_VC_CP, true);
760
761                         ath5k_hw_rfb_op(ah, rf_regs, 2,
762                                         AR5K_RF_MID_VC_CP, true);
763
764                         ath5k_hw_rfb_op(ah, rf_regs, 2,
765                                         AR5K_RF_LOW_VC_CP, true);
766
767                         ath5k_hw_rfb_op(ah, rf_regs, 2,
768                                         AR5K_RF_PUSH_UP, true);
769
770                         /* Decrease power consumption on 5213+ BaseBand */
771                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
772                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
773                                                 AR5K_RF_PAD2GND, true);
774
775                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
776                                                 AR5K_RF_XB2_LVL, true);
777
778                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
779                                                 AR5K_RF_XB5_LVL, true);
780
781                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
782                                                 AR5K_RF_PWD_167, true);
783
784                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
785                                                 AR5K_RF_PWD_166, true);
786                         }
787                 }
788
789                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
790                                                 AR5K_RF_GAIN_I, true);
791
792                 /* TODO: Half/quarter channel support */
793
794         }
795
796         if (ah->ah_radio == AR5K_RF5413 &&
797         channel->hw_value & CHANNEL_2GHZ) {
798
799                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
800                                                                         true);
801
802                 /* Set optimum value for early revisions (on pci-e chips) */
803                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
804                 ah->ah_mac_srev < AR5K_SREV_AR5413)
805                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
806                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
807
808         }
809
810         /* Write RF banks on hw */
811         for (i = 0; i < ah->ah_rf_banks_size; i++) {
812                 AR5K_REG_WAIT(i);
813                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
814         }
815
816         return 0;
817 }
818
819
820 /**************************\
821   PHY/RF channel functions
822 \**************************/
823
824 /*
825  * Check if a channel is supported
826  */
827 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
828 {
829         /* Check if the channel is in our supported range */
830         if (flags & CHANNEL_2GHZ) {
831                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
832                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
833                         return true;
834         } else if (flags & CHANNEL_5GHZ)
835                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
836                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
837                         return true;
838
839         return false;
840 }
841
842 /*
843  * Convertion needed for RF5110
844  */
845 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
846 {
847         u32 athchan;
848
849         /*
850          * Convert IEEE channel/MHz to an internal channel value used
851          * by the AR5210 chipset. This has not been verified with
852          * newer chipsets like the AR5212A who have a completely
853          * different RF/PHY part.
854          */
855         athchan = (ath5k_hw_bitswap(
856                         (ieee80211_frequency_to_channel(
857                                 channel->center_freq) - 24) / 2, 5)
858                                 << 1) | (1 << 6) | 0x1;
859         return athchan;
860 }
861
862 /*
863  * Set channel on RF5110
864  */
865 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
866                 struct ieee80211_channel *channel)
867 {
868         u32 data;
869
870         /*
871          * Set the channel and wait
872          */
873         data = ath5k_hw_rf5110_chan2athchan(channel);
874         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
875         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
876         mdelay(1);
877
878         return 0;
879 }
880
881 /*
882  * Convertion needed for 5111
883  */
884 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
885                 struct ath5k_athchan_2ghz *athchan)
886 {
887         int channel;
888
889         /* Cast this value to catch negative channel numbers (>= -19) */
890         channel = (int)ieee;
891
892         /*
893          * Map 2GHz IEEE channel to 5GHz Atheros channel
894          */
895         if (channel <= 13) {
896                 athchan->a2_athchan = 115 + channel;
897                 athchan->a2_flags = 0x46;
898         } else if (channel == 14) {
899                 athchan->a2_athchan = 124;
900                 athchan->a2_flags = 0x44;
901         } else if (channel >= 15 && channel <= 26) {
902                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
903                 athchan->a2_flags = 0x46;
904         } else
905                 return -EINVAL;
906
907         return 0;
908 }
909
910 /*
911  * Set channel on 5111
912  */
913 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
914                 struct ieee80211_channel *channel)
915 {
916         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
917         unsigned int ath5k_channel =
918                 ieee80211_frequency_to_channel(channel->center_freq);
919         u32 data0, data1, clock;
920         int ret;
921
922         /*
923          * Set the channel on the RF5111 radio
924          */
925         data0 = data1 = 0;
926
927         if (channel->hw_value & CHANNEL_2GHZ) {
928                 /* Map 2GHz channel to 5GHz Atheros channel ID */
929                 ret = ath5k_hw_rf5111_chan2athchan(
930                         ieee80211_frequency_to_channel(channel->center_freq),
931                         &ath5k_channel_2ghz);
932                 if (ret)
933                         return ret;
934
935                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937                     << 5) | (1 << 4);
938         }
939
940         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941                 clock = 1;
942                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943                         (clock << 1) | (1 << 10) | 1;
944         } else {
945                 clock = 0;
946                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947                         << 2) | (clock << 1) | (1 << 10) | 1;
948         }
949
950         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
951                         AR5K_RF_BUFFER);
952         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
953                         AR5K_RF_BUFFER_CONTROL_3);
954
955         return 0;
956 }
957
958 /*
959  * Set channel on 5112 and newer
960  */
961 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
962                 struct ieee80211_channel *channel)
963 {
964         u32 data, data0, data1, data2;
965         u16 c;
966
967         data = data0 = data1 = data2 = 0;
968         c = channel->center_freq;
969
970         if (c < 4800) {
971                 if (!((c - 2224) % 5)) {
972                         data0 = ((2 * (c - 704)) - 3040) / 10;
973                         data1 = 1;
974                 } else if (!((c - 2192) % 5)) {
975                         data0 = ((2 * (c - 672)) - 3040) / 10;
976                         data1 = 0;
977                 } else
978                         return -EINVAL;
979
980                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
981         } else if ((c % 5) != 2 || c > 5435) {
982                 if (!(c % 20) && c >= 5120) {
983                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984                         data2 = ath5k_hw_bitswap(3, 2);
985                 } else if (!(c % 10)) {
986                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987                         data2 = ath5k_hw_bitswap(2, 2);
988                 } else if (!(c % 5)) {
989                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990                         data2 = ath5k_hw_bitswap(1, 2);
991                 } else
992                         return -EINVAL;
993         } else {
994                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
995                 data2 = ath5k_hw_bitswap(0, 2);
996         }
997
998         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999
1000         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1001         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1002
1003         return 0;
1004 }
1005
1006 /*
1007  * Set the channel on the RF2425
1008  */
1009 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1010                 struct ieee80211_channel *channel)
1011 {
1012         u32 data, data0, data2;
1013         u16 c;
1014
1015         data = data0 = data2 = 0;
1016         c = channel->center_freq;
1017
1018         if (c < 4800) {
1019                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1020                 data2 = 0;
1021         /* ? 5GHz ? */
1022         } else if ((c % 5) != 2 || c > 5435) {
1023                 if (!(c % 20) && c < 5120)
1024                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025                 else if (!(c % 10))
1026                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027                 else if (!(c % 5))
1028                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029                 else
1030                         return -EINVAL;
1031                 data2 = ath5k_hw_bitswap(1, 2);
1032         } else {
1033                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1034                 data2 = ath5k_hw_bitswap(0, 2);
1035         }
1036
1037         data = (data0 << 4) | data2 << 2 | 0x1001;
1038
1039         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1040         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1041
1042         return 0;
1043 }
1044
1045 /*
1046  * Set a channel on the radio chip
1047  */
1048 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1049 {
1050         int ret;
1051         /*
1052          * Check bounds supported by the PHY (we don't care about regultory
1053          * restrictions at this point). Note: hw_value already has the band
1054          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055          * of the band by that */
1056         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1057                 ATH5K_ERR(ah->ah_sc,
1058                         "channel frequency (%u MHz) out of supported "
1059                         "band range\n",
1060                         channel->center_freq);
1061                         return -EINVAL;
1062         }
1063
1064         /*
1065          * Set the channel and wait
1066          */
1067         switch (ah->ah_radio) {
1068         case AR5K_RF5110:
1069                 ret = ath5k_hw_rf5110_channel(ah, channel);
1070                 break;
1071         case AR5K_RF5111:
1072                 ret = ath5k_hw_rf5111_channel(ah, channel);
1073                 break;
1074         case AR5K_RF2425:
1075                 ret = ath5k_hw_rf2425_channel(ah, channel);
1076                 break;
1077         default:
1078                 ret = ath5k_hw_rf5112_channel(ah, channel);
1079                 break;
1080         }
1081
1082         if (ret)
1083                 return ret;
1084
1085         /* Set JAPAN setting for channel 14 */
1086         if (channel->center_freq == 2484) {
1087                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088                                 AR5K_PHY_CCKTXCTL_JAPAN);
1089         } else {
1090                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091                                 AR5K_PHY_CCKTXCTL_WORLD);
1092         }
1093
1094         ah->ah_current_channel = channel;
1095         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1096         ath5k_hw_set_clockrate(ah);
1097
1098         return 0;
1099 }
1100
1101 /*****************\
1102   PHY calibration
1103 \*****************/
1104
1105 static int sign_extend(int val, const int nbits)
1106 {
1107         int order = BIT(nbits-1);
1108         return (val ^ order) - order;
1109 }
1110
1111 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1112 {
1113         s32 val;
1114
1115         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1116         return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1117 }
1118
1119 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1120 {
1121         int i;
1122
1123         ah->ah_nfcal_hist.index = 0;
1124         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1125                 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1126 }
1127
1128 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1129 {
1130         struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1131         hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1132         hist->nfval[hist->index] = noise_floor;
1133 }
1134
1135 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1136 {
1137         s16 sort[ATH5K_NF_CAL_HIST_MAX];
1138         s16 tmp;
1139         int i, j;
1140
1141         memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1142         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1143                 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1144                         if (sort[j] > sort[j-1]) {
1145                                 tmp = sort[j];
1146                                 sort[j] = sort[j-1];
1147                                 sort[j-1] = tmp;
1148                         }
1149                 }
1150         }
1151         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1152                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1153                         "cal %d:%d\n", i, sort[i]);
1154         }
1155         return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1156 }
1157
1158 /*
1159  * When we tell the hardware to perform a noise floor calibration
1160  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1161  * sample-and-hold the minimum noise level seen at the antennas.
1162  * This value is then stored in a ring buffer of recently measured
1163  * noise floor values so we have a moving window of the last few
1164  * samples.
1165  *
1166  * The median of the values in the history is then loaded into the
1167  * hardware for its own use for RSSI and CCA measurements.
1168  */
1169 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1170 {
1171         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1172         u32 val;
1173         s16 nf, threshold;
1174         u8 ee_mode;
1175
1176         /* keep last value if calibration hasn't completed */
1177         if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1178                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1179                         "NF did not complete in calibration window\n");
1180
1181                 return;
1182         }
1183
1184         switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1185         case CHANNEL_A:
1186         case CHANNEL_T:
1187         case CHANNEL_XR:
1188                 ee_mode = AR5K_EEPROM_MODE_11A;
1189                 break;
1190         case CHANNEL_G:
1191         case CHANNEL_TG:
1192                 ee_mode = AR5K_EEPROM_MODE_11G;
1193                 break;
1194         default:
1195         case CHANNEL_B:
1196                 ee_mode = AR5K_EEPROM_MODE_11B;
1197                 break;
1198         }
1199
1200
1201         /* completed NF calibration, test threshold */
1202         nf = ath5k_hw_read_measured_noise_floor(ah);
1203         threshold = ee->ee_noise_floor_thr[ee_mode];
1204
1205         if (nf > threshold) {
1206                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1207                         "noise floor failure detected; "
1208                         "read %d, threshold %d\n",
1209                         nf, threshold);
1210
1211                 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1212         }
1213
1214         ath5k_hw_update_nfcal_hist(ah, nf);
1215         nf = ath5k_hw_get_median_noise_floor(ah);
1216
1217         /* load noise floor (in .5 dBm) so the hardware will use it */
1218         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1219         val |= (nf * 2) & AR5K_PHY_NF_M;
1220         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1221
1222         AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1223                 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1224
1225         ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1226                 0, false);
1227
1228         /*
1229          * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1230          * so that we're not capped by the median we just loaded.
1231          * This will be used as the initial value for the next noise
1232          * floor calibration.
1233          */
1234         val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1235         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1236         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1237                 AR5K_PHY_AGCCTL_NF_EN |
1238                 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1239                 AR5K_PHY_AGCCTL_NF);
1240
1241         ah->ah_noise_floor = nf;
1242
1243         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1244                 "noise floor calibrated: %d\n", nf);
1245 }
1246
1247 /*
1248  * Perform a PHY calibration on RF5110
1249  * -Fix BPSK/QAM Constellation (I/Q correction)
1250  */
1251 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1252                 struct ieee80211_channel *channel)
1253 {
1254         u32 phy_sig, phy_agc, phy_sat, beacon;
1255         int ret;
1256
1257         /*
1258          * Disable beacons and RX/TX queues, wait
1259          */
1260         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1261                 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1262         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1263         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1264
1265         mdelay(2);
1266
1267         /*
1268          * Set the channel (with AGC turned off)
1269          */
1270         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1271         udelay(10);
1272         ret = ath5k_hw_channel(ah, channel);
1273
1274         /*
1275          * Activate PHY and wait
1276          */
1277         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1278         mdelay(1);
1279
1280         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1281
1282         if (ret)
1283                 return ret;
1284
1285         /*
1286          * Calibrate the radio chip
1287          */
1288
1289         /* Remember normal state */
1290         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1291         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1292         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1293
1294         /* Update radio registers */
1295         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1296                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1297
1298         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1299                         AR5K_PHY_AGCCOARSE_LO)) |
1300                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1301                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1302
1303         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1304                         AR5K_PHY_ADCSAT_THR)) |
1305                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1306                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1307
1308         udelay(20);
1309
1310         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1311         udelay(10);
1312         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1313         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1314
1315         mdelay(1);
1316
1317         /*
1318          * Enable calibration and wait until completion
1319          */
1320         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1321
1322         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1323                         AR5K_PHY_AGCCTL_CAL, 0, false);
1324
1325         /* Reset to normal state */
1326         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1327         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1328         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1329
1330         if (ret) {
1331                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1332                                 channel->center_freq);
1333                 return ret;
1334         }
1335
1336         /*
1337          * Re-enable RX/TX and beacons
1338          */
1339         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1340                 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1341         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1342
1343         return 0;
1344 }
1345
1346 /*
1347  * Perform I/Q calibration on RF5111/5112 and newer chips
1348  */
1349 static int
1350 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1351 {
1352         u32 i_pwr, q_pwr;
1353         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1354         int i;
1355
1356         if (!ah->ah_calibration ||
1357                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1358                 return 0;
1359
1360         /* Calibration has finished, get the results and re-run */
1361         /* work around empty results which can apparently happen on 5212 */
1362         for (i = 0; i <= 10; i++) {
1363                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1364                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1365                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1366                 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1367                         "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1368                 if (i_pwr && q_pwr)
1369                         break;
1370         }
1371
1372         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1373
1374         if (ah->ah_version == AR5K_AR5211)
1375                 q_coffd = q_pwr >> 6;
1376         else
1377                 q_coffd = q_pwr >> 7;
1378
1379         /* protect against divide by 0 and loss of sign bits */
1380         if (i_coffd == 0 || q_coffd < 2)
1381                 return 0;
1382
1383         i_coff = (-iq_corr) / i_coffd;
1384         i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1385
1386         if (ah->ah_version == AR5K_AR5211)
1387                 q_coff = (i_pwr / q_coffd) - 64;
1388         else
1389                 q_coff = (i_pwr / q_coffd) - 128;
1390         q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1391
1392         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1393                         "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1394                         i_coff, q_coff, i_coffd, q_coffd);
1395
1396         /* Commit new I/Q values (set enable bit last to match HAL sources) */
1397         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1398         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1399         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1400
1401         /* Re-enable calibration -if we don't we'll commit
1402          * the same values again and again */
1403         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1404                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1405         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1406
1407         return 0;
1408 }
1409
1410 /*
1411  * Perform a PHY calibration
1412  */
1413 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1414                 struct ieee80211_channel *channel)
1415 {
1416         int ret;
1417
1418         if (ah->ah_radio == AR5K_RF5110)
1419                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1420         else {
1421                 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1422                 ath5k_hw_request_rfgain_probe(ah);
1423         }
1424
1425         return ret;
1426 }
1427
1428 /***************************\
1429 * Spur mitigation functions *
1430 \***************************/
1431
1432 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1433                                 struct ieee80211_channel *channel)
1434 {
1435         u8 refclk_freq;
1436
1437         if ((ah->ah_radio == AR5K_RF5112) ||
1438         (ah->ah_radio == AR5K_RF5413) ||
1439         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1440                 refclk_freq = 40;
1441         else
1442                 refclk_freq = 32;
1443
1444         if ((channel->center_freq % refclk_freq != 0) &&
1445         ((channel->center_freq % refclk_freq < 10) ||
1446         (channel->center_freq % refclk_freq > 22)))
1447                 return true;
1448         else
1449                 return false;
1450 }
1451
1452 void
1453 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1454                                 struct ieee80211_channel *channel)
1455 {
1456         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1457         u32 mag_mask[4] = {0, 0, 0, 0};
1458         u32 pilot_mask[2] = {0, 0};
1459         /* Note: fbin values are scaled up by 2 */
1460         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1461         s32 spur_delta_phase, spur_freq_sigma_delta;
1462         s32 spur_offset, num_symbols_x16;
1463         u8 num_symbol_offsets, i, freq_band;
1464
1465         /* Convert current frequency to fbin value (the same way channels
1466          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1467          * up by 2 so we can compare it later */
1468         if (channel->hw_value & CHANNEL_2GHZ) {
1469                 chan_fbin = (channel->center_freq - 2300) * 10;
1470                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1471         } else {
1472                 chan_fbin = (channel->center_freq - 4900) * 10;
1473                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1474         }
1475
1476         /* Check if any spur_chan_fbin from EEPROM is
1477          * within our current channel's spur detection range */
1478         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1479         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1480         /* XXX: Half/Quarter channels ?*/
1481         if (channel->hw_value & CHANNEL_TURBO)
1482                 spur_detection_window *= 2;
1483
1484         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1485                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1486
1487                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1488                  * so it's zero if we got nothing from EEPROM */
1489                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1490                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1491                         break;
1492                 }
1493
1494                 if ((chan_fbin - spur_detection_window <=
1495                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1496                 (chan_fbin + spur_detection_window >=
1497                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1498                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1499                         break;
1500                 }
1501         }
1502
1503         /* We need to enable spur filter for this channel */
1504         if (spur_chan_fbin) {
1505                 spur_offset = spur_chan_fbin - chan_fbin;
1506                 /*
1507                  * Calculate deltas:
1508                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1509                  * spur_delta_phase -> spur_offset / chip_freq << 11
1510                  * Note: Both values have 100KHz resolution
1511                  */
1512                 /* XXX: Half/Quarter rate channels ? */
1513                 switch (channel->hw_value) {
1514                 case CHANNEL_A:
1515                         /* Both sample_freq and chip_freq are 40MHz */
1516                         spur_delta_phase = (spur_offset << 17) / 25;
1517                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1518                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1519                         break;
1520                 case CHANNEL_G:
1521                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1522                          * (for b compatibility) */
1523                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1524                         spur_delta_phase = (spur_offset << 17) / 25;
1525                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1526                         break;
1527                 case CHANNEL_T:
1528                 case CHANNEL_TG:
1529                         /* Both sample_freq and chip_freq are 80MHz */
1530                         spur_delta_phase = (spur_offset << 16) / 25;
1531                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1532                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1533                         break;
1534                 default:
1535                         return;
1536                 }
1537
1538                 /* Calculate pilot and magnitude masks */
1539
1540                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1541                  * and divide by symbol_width to find how many symbols we have
1542                  * Note: number of symbols is scaled up by 16 */
1543                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1544
1545                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1546                 if (!(num_symbols_x16 & 0xF))
1547                         /* _X_ */
1548                         num_symbol_offsets = 3;
1549                 else
1550                         /* _xx_ */
1551                         num_symbol_offsets = 4;
1552
1553                 for (i = 0; i < num_symbol_offsets; i++) {
1554
1555                         /* Calculate pilot mask */
1556                         s32 curr_sym_off =
1557                                 (num_symbols_x16 / 16) + i + 25;
1558
1559                         /* Pilot magnitude mask seems to be a way to
1560                          * declare the boundaries for our detection
1561                          * window or something, it's 2 for the middle
1562                          * value(s) where the symbol is expected to be
1563                          * and 1 on the boundary values */
1564                         u8 plt_mag_map =
1565                                 (i == 0 || i == (num_symbol_offsets - 1))
1566                                                                 ? 1 : 2;
1567
1568                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1569                                 if (curr_sym_off <= 25)
1570                                         pilot_mask[0] |= 1 << curr_sym_off;
1571                                 else if (curr_sym_off >= 27)
1572                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1573                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1574                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1575
1576                         /* Calculate magnitude mask (for viterbi decoder) */
1577                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1578                                 mag_mask[0] |=
1579                                         plt_mag_map << (curr_sym_off + 1) * 2;
1580                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1581                                 mag_mask[1] |=
1582                                         plt_mag_map << (curr_sym_off - 15) * 2;
1583                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1584                                 mag_mask[2] |=
1585                                         plt_mag_map << (curr_sym_off - 31) * 2;
1586                         else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1587                                 mag_mask[3] |=
1588                                         plt_mag_map << (curr_sym_off - 47) * 2;
1589
1590                 }
1591
1592                 /* Write settings on hw to enable spur filter */
1593                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1594                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1595                 /* XXX: Self correlator also ? */
1596                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1597                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1598                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1599                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1600
1601                 /* Set delta phase and freq sigma delta */
1602                 ath5k_hw_reg_write(ah,
1603                                 AR5K_REG_SM(spur_delta_phase,
1604                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1605                                 AR5K_REG_SM(spur_freq_sigma_delta,
1606                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1607                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1608                                 AR5K_PHY_TIMING_11);
1609
1610                 /* Write pilot masks */
1611                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1612                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1613                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1614                                         pilot_mask[1]);
1615
1616                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1617                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1618                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1619                                         pilot_mask[1]);
1620
1621                 /* Write magnitude masks */
1622                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1623                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1624                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1625                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1626                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1627                                         mag_mask[3]);
1628
1629                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1630                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1631                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1632                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1633                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1634                                         mag_mask[3]);
1635
1636         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1637         AR5K_PHY_IQ_SPUR_FILT_EN) {
1638                 /* Clean up spur mitigation settings and disable fliter */
1639                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1640                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1641                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1642                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1643                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1644                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1645                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1646
1647                 /* Clear pilot masks */
1648                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1649                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1650                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1651                                         0);
1652
1653                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1654                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1655                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1656                                         0);
1657
1658                 /* Clear magnitude masks */
1659                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1660                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1661                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1662                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1663                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1664                                         0);
1665
1666                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1667                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1668                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1669                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1670                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1671                                         0);
1672         }
1673 }
1674
1675 /********************\
1676   Misc PHY functions
1677 \********************/
1678
1679 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1680 {
1681         /*Just a try M.F.*/
1682         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1683
1684         return 0;
1685 }
1686
1687 /*
1688  * Get the PHY Chip revision
1689  */
1690 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1691 {
1692         unsigned int i;
1693         u32 srev;
1694         u16 ret;
1695
1696         /*
1697          * Set the radio chip access register
1698          */
1699         switch (chan) {
1700         case CHANNEL_2GHZ:
1701                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1702                 break;
1703         case CHANNEL_5GHZ:
1704                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1705                 break;
1706         default:
1707                 return 0;
1708         }
1709
1710         mdelay(2);
1711
1712         /* ...wait until PHY is ready and read the selected radio revision */
1713         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1714
1715         for (i = 0; i < 8; i++)
1716                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1717
1718         if (ah->ah_version == AR5K_AR5210) {
1719                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1720                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1721         } else {
1722                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1723                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1724                                 ((srev & 0x0f) << 4), 8);
1725         }
1726
1727         /* Reset to the 5GHz mode */
1728         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1729
1730         return ret;
1731 }
1732
1733 /*****************\
1734 * Antenna control *
1735 \*****************/
1736
1737 static void /*TODO:Boundary check*/
1738 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1739 {
1740         if (ah->ah_version != AR5K_AR5210)
1741                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1742 }
1743
1744 /*
1745  * Enable/disable fast rx antenna diversity
1746  */
1747 static void
1748 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1749 {
1750         switch (ee_mode) {
1751         case AR5K_EEPROM_MODE_11G:
1752                 /* XXX: This is set to
1753                  * disabled on initvals !!! */
1754         case AR5K_EEPROM_MODE_11A:
1755                 if (enable)
1756                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1757                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1758                 else
1759                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1760                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1761                 break;
1762         case AR5K_EEPROM_MODE_11B:
1763                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1764                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1765                 break;
1766         default:
1767                 return;
1768         }
1769
1770         if (enable) {
1771                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1772                                 AR5K_PHY_RESTART_DIV_GC, 4);
1773
1774                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1775                                         AR5K_PHY_FAST_ANT_DIV_EN);
1776         } else {
1777                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1778                                 AR5K_PHY_RESTART_DIV_GC, 0);
1779
1780                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1781                                         AR5K_PHY_FAST_ANT_DIV_EN);
1782         }
1783 }
1784
1785 void
1786 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1787 {
1788         u8 ant0, ant1;
1789
1790         /*
1791          * In case a fixed antenna was set as default
1792          * use the same switch table twice.
1793          */
1794         if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1795                 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1796         else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1797                 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1798         else {
1799                 ant0 = AR5K_ANT_SWTABLE_A;
1800                 ant1 = AR5K_ANT_SWTABLE_B;
1801         }
1802
1803         /* Set antenna idle switch table */
1804         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1805                         AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1806                         (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1807                         AR5K_PHY_ANT_CTL_TXRX_EN));
1808
1809         /* Set antenna switch tables */
1810         ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1811                 AR5K_PHY_ANT_SWITCH_TABLE_0);
1812         ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1813                 AR5K_PHY_ANT_SWITCH_TABLE_1);
1814 }
1815
1816 /*
1817  * Set antenna operating mode
1818  */
1819 void
1820 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1821 {
1822         struct ieee80211_channel *channel = ah->ah_current_channel;
1823         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1824         bool use_def_for_sg;
1825         u8 def_ant, tx_ant, ee_mode;
1826         u32 sta_id1 = 0;
1827
1828         /* if channel is not initialized yet we can't set the antennas
1829          * so just store the mode. it will be set on the next reset */
1830         if (channel == NULL) {
1831                 ah->ah_ant_mode = ant_mode;
1832                 return;
1833         }
1834
1835         def_ant = ah->ah_def_ant;
1836
1837         switch (channel->hw_value & CHANNEL_MODES) {
1838         case CHANNEL_A:
1839         case CHANNEL_T:
1840         case CHANNEL_XR:
1841                 ee_mode = AR5K_EEPROM_MODE_11A;
1842                 break;
1843         case CHANNEL_G:
1844         case CHANNEL_TG:
1845                 ee_mode = AR5K_EEPROM_MODE_11G;
1846                 break;
1847         case CHANNEL_B:
1848                 ee_mode = AR5K_EEPROM_MODE_11B;
1849                 break;
1850         default:
1851                 ATH5K_ERR(ah->ah_sc,
1852                         "invalid channel: %d\n", channel->center_freq);
1853                 return;
1854         }
1855
1856         switch (ant_mode) {
1857         case AR5K_ANTMODE_DEFAULT:
1858                 tx_ant = 0;
1859                 use_def_for_tx = false;
1860                 update_def_on_tx = false;
1861                 use_def_for_rts = false;
1862                 use_def_for_sg = false;
1863                 fast_div = true;
1864                 break;
1865         case AR5K_ANTMODE_FIXED_A:
1866                 def_ant = 1;
1867                 tx_ant = 1;
1868                 use_def_for_tx = true;
1869                 update_def_on_tx = false;
1870                 use_def_for_rts = true;
1871                 use_def_for_sg = true;
1872                 fast_div = false;
1873                 break;
1874         case AR5K_ANTMODE_FIXED_B:
1875                 def_ant = 2;
1876                 tx_ant = 2;
1877                 use_def_for_tx = true;
1878                 update_def_on_tx = false;
1879                 use_def_for_rts = true;
1880                 use_def_for_sg = true;
1881                 fast_div = false;
1882                 break;
1883         case AR5K_ANTMODE_SINGLE_AP:
1884                 def_ant = 1;    /* updated on tx */
1885                 tx_ant = 0;
1886                 use_def_for_tx = true;
1887                 update_def_on_tx = true;
1888                 use_def_for_rts = true;
1889                 use_def_for_sg = true;
1890                 fast_div = true;
1891                 break;
1892         case AR5K_ANTMODE_SECTOR_AP:
1893                 tx_ant = 1;     /* variable */
1894                 use_def_for_tx = false;
1895                 update_def_on_tx = false;
1896                 use_def_for_rts = true;
1897                 use_def_for_sg = false;
1898                 fast_div = false;
1899                 break;
1900         case AR5K_ANTMODE_SECTOR_STA:
1901                 tx_ant = 1;     /* variable */
1902                 use_def_for_tx = true;
1903                 update_def_on_tx = false;
1904                 use_def_for_rts = true;
1905                 use_def_for_sg = false;
1906                 fast_div = true;
1907                 break;
1908         case AR5K_ANTMODE_DEBUG:
1909                 def_ant = 1;
1910                 tx_ant = 2;
1911                 use_def_for_tx = false;
1912                 update_def_on_tx = false;
1913                 use_def_for_rts = false;
1914                 use_def_for_sg = false;
1915                 fast_div = false;
1916                 break;
1917         default:
1918                 return;
1919         }
1920
1921         ah->ah_tx_ant = tx_ant;
1922         ah->ah_ant_mode = ant_mode;
1923         ah->ah_def_ant = def_ant;
1924
1925         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1926         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1927         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1928         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1929
1930         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1931
1932         if (sta_id1)
1933                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1934
1935         ath5k_hw_set_antenna_switch(ah, ee_mode);
1936         /* Note: set diversity before default antenna
1937          * because it won't work correctly */
1938         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1939         ath5k_hw_set_def_antenna(ah, def_ant);
1940 }
1941
1942
1943 /****************\
1944 * TX power setup *
1945 \****************/
1946
1947 /*
1948  * Helper functions
1949  */
1950
1951 /*
1952  * Do linear interpolation between two given (x, y) points
1953  */
1954 static s16
1955 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1956                                         s16 y_left, s16 y_right)
1957 {
1958         s16 ratio, result;
1959
1960         /* Avoid divide by zero and skip interpolation
1961          * if we have the same point */
1962         if ((x_left == x_right) || (y_left == y_right))
1963                 return y_left;
1964
1965         /*
1966          * Since we use ints and not fps, we need to scale up in
1967          * order to get a sane ratio value (or else we 'll eg. get
1968          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1969          * to have some accuracy both for 0.5 and 0.25 steps.
1970          */
1971         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1972
1973         /* Now scale down to be in range */
1974         result = y_left + (ratio * (target - x_left) / 100);
1975
1976         return result;
1977 }
1978
1979 /*
1980  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1981  *
1982  * Since we have the top of the curve and we draw the line below
1983  * until we reach 1 (1 pcdac step) we need to know which point
1984  * (x value) that is so that we don't go below y axis and have negative
1985  * pcdac values when creating the curve, or fill the table with zeroes.
1986  */
1987 static s16
1988 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1989                                 const s16 *pwrL, const s16 *pwrR)
1990 {
1991         s8 tmp;
1992         s16 min_pwrL, min_pwrR;
1993         s16 pwr_i;
1994
1995         /* Some vendors write the same pcdac value twice !!! */
1996         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1997                 return max(pwrL[0], pwrR[0]);
1998
1999         if (pwrL[0] == pwrL[1])
2000                 min_pwrL = pwrL[0];
2001         else {
2002                 pwr_i = pwrL[0];
2003                 do {
2004                         pwr_i--;
2005                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2006                                                         pwrL[0], pwrL[1],
2007                                                         stepL[0], stepL[1]);
2008                 } while (tmp > 1);
2009
2010                 min_pwrL = pwr_i;
2011         }
2012
2013         if (pwrR[0] == pwrR[1])
2014                 min_pwrR = pwrR[0];
2015         else {
2016                 pwr_i = pwrR[0];
2017                 do {
2018                         pwr_i--;
2019                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2020                                                         pwrR[0], pwrR[1],
2021                                                         stepR[0], stepR[1]);
2022                 } while (tmp > 1);
2023
2024                 min_pwrR = pwr_i;
2025         }
2026
2027         /* Keep the right boundary so that it works for both curves */
2028         return max(min_pwrL, min_pwrR);
2029 }
2030
2031 /*
2032  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2033  * Power to PCDAC curve.
2034  *
2035  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2036  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2037  * PCDAC/PDADC step for each curve is 64 but we can write more than
2038  * one curves on hw so we can go up to 128 (which is the max step we
2039  * can write on the final table).
2040  *
2041  * We write y values (PCDAC/PDADC steps) on hw.
2042  */
2043 static void
2044 ath5k_create_power_curve(s16 pmin, s16 pmax,
2045                         const s16 *pwr, const u8 *vpd,
2046                         u8 num_points,
2047                         u8 *vpd_table, u8 type)
2048 {
2049         u8 idx[2] = { 0, 1 };
2050         s16 pwr_i = 2*pmin;
2051         int i;
2052
2053         if (num_points < 2)
2054                 return;
2055
2056         /* We want the whole line, so adjust boundaries
2057          * to cover the entire power range. Note that
2058          * power values are already 0.25dB so no need
2059          * to multiply pwr_i by 2 */
2060         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2061                 pwr_i = pmin;
2062                 pmin = 0;
2063                 pmax = 63;
2064         }
2065
2066         /* Find surrounding turning points (TPs)
2067          * and interpolate between them */
2068         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2069         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2070
2071                 /* We passed the right TP, move to the next set of TPs
2072                  * if we pass the last TP, extrapolate above using the last
2073                  * two TPs for ratio */
2074                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2075                         idx[0]++;
2076                         idx[1]++;
2077                 }
2078
2079                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2080                                                 pwr[idx[0]], pwr[idx[1]],
2081                                                 vpd[idx[0]], vpd[idx[1]]);
2082
2083                 /* Increase by 0.5dB
2084                  * (0.25 dB units) */
2085                 pwr_i += 2;
2086         }
2087 }
2088
2089 /*
2090  * Get the surrounding per-channel power calibration piers
2091  * for a given frequency so that we can interpolate between
2092  * them and come up with an apropriate dataset for our current
2093  * channel.
2094  */
2095 static void
2096 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2097                         struct ieee80211_channel *channel,
2098                         struct ath5k_chan_pcal_info **pcinfo_l,
2099                         struct ath5k_chan_pcal_info **pcinfo_r)
2100 {
2101         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2102         struct ath5k_chan_pcal_info *pcinfo;
2103         u8 idx_l, idx_r;
2104         u8 mode, max, i;
2105         u32 target = channel->center_freq;
2106
2107         idx_l = 0;
2108         idx_r = 0;
2109
2110         if (!(channel->hw_value & CHANNEL_OFDM)) {
2111                 pcinfo = ee->ee_pwr_cal_b;
2112                 mode = AR5K_EEPROM_MODE_11B;
2113         } else if (channel->hw_value & CHANNEL_2GHZ) {
2114                 pcinfo = ee->ee_pwr_cal_g;
2115                 mode = AR5K_EEPROM_MODE_11G;
2116         } else {
2117                 pcinfo = ee->ee_pwr_cal_a;
2118                 mode = AR5K_EEPROM_MODE_11A;
2119         }
2120         max = ee->ee_n_piers[mode] - 1;
2121
2122         /* Frequency is below our calibrated
2123          * range. Use the lowest power curve
2124          * we have */
2125         if (target < pcinfo[0].freq) {
2126                 idx_l = idx_r = 0;
2127                 goto done;
2128         }
2129
2130         /* Frequency is above our calibrated
2131          * range. Use the highest power curve
2132          * we have */
2133         if (target > pcinfo[max].freq) {
2134                 idx_l = idx_r = max;
2135                 goto done;
2136         }
2137
2138         /* Frequency is inside our calibrated
2139          * channel range. Pick the surrounding
2140          * calibration piers so that we can
2141          * interpolate */
2142         for (i = 0; i <= max; i++) {
2143
2144                 /* Frequency matches one of our calibration
2145                  * piers, no need to interpolate, just use
2146                  * that calibration pier */
2147                 if (pcinfo[i].freq == target) {
2148                         idx_l = idx_r = i;
2149                         goto done;
2150                 }
2151
2152                 /* We found a calibration pier that's above
2153                  * frequency, use this pier and the previous
2154                  * one to interpolate */
2155                 if (target < pcinfo[i].freq) {
2156                         idx_r = i;
2157                         idx_l = idx_r - 1;
2158                         goto done;
2159                 }
2160         }
2161
2162 done:
2163         *pcinfo_l = &pcinfo[idx_l];
2164         *pcinfo_r = &pcinfo[idx_r];
2165 }
2166
2167 /*
2168  * Get the surrounding per-rate power calibration data
2169  * for a given frequency and interpolate between power
2170  * values to set max target power supported by hw for
2171  * each rate.
2172  */
2173 static void
2174 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2175                         struct ieee80211_channel *channel,
2176                         struct ath5k_rate_pcal_info *rates)
2177 {
2178         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2179         struct ath5k_rate_pcal_info *rpinfo;
2180         u8 idx_l, idx_r;
2181         u8 mode, max, i;
2182         u32 target = channel->center_freq;
2183
2184         idx_l = 0;
2185         idx_r = 0;
2186
2187         if (!(channel->hw_value & CHANNEL_OFDM)) {
2188                 rpinfo = ee->ee_rate_tpwr_b;
2189                 mode = AR5K_EEPROM_MODE_11B;
2190         } else if (channel->hw_value & CHANNEL_2GHZ) {
2191                 rpinfo = ee->ee_rate_tpwr_g;
2192                 mode = AR5K_EEPROM_MODE_11G;
2193         } else {
2194                 rpinfo = ee->ee_rate_tpwr_a;
2195                 mode = AR5K_EEPROM_MODE_11A;
2196         }
2197         max = ee->ee_rate_target_pwr_num[mode] - 1;
2198
2199         /* Get the surrounding calibration
2200          * piers - same as above */
2201         if (target < rpinfo[0].freq) {
2202                 idx_l = idx_r = 0;
2203                 goto done;
2204         }
2205
2206         if (target > rpinfo[max].freq) {
2207                 idx_l = idx_r = max;
2208                 goto done;
2209         }
2210
2211         for (i = 0; i <= max; i++) {
2212
2213                 if (rpinfo[i].freq == target) {
2214                         idx_l = idx_r = i;
2215                         goto done;
2216                 }
2217
2218                 if (target < rpinfo[i].freq) {
2219                         idx_r = i;
2220                         idx_l = idx_r - 1;
2221                         goto done;
2222                 }
2223         }
2224
2225 done:
2226         /* Now interpolate power value, based on the frequency */
2227         rates->freq = target;
2228
2229         rates->target_power_6to24 =
2230                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2231                                         rpinfo[idx_r].freq,
2232                                         rpinfo[idx_l].target_power_6to24,
2233                                         rpinfo[idx_r].target_power_6to24);
2234
2235         rates->target_power_36 =
2236                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2237                                         rpinfo[idx_r].freq,
2238                                         rpinfo[idx_l].target_power_36,
2239                                         rpinfo[idx_r].target_power_36);
2240
2241         rates->target_power_48 =
2242                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2243                                         rpinfo[idx_r].freq,
2244                                         rpinfo[idx_l].target_power_48,
2245                                         rpinfo[idx_r].target_power_48);
2246
2247         rates->target_power_54 =
2248                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2249                                         rpinfo[idx_r].freq,
2250                                         rpinfo[idx_l].target_power_54,
2251                                         rpinfo[idx_r].target_power_54);
2252 }
2253
2254 /*
2255  * Get the max edge power for this channel if
2256  * we have such data from EEPROM's Conformance Test
2257  * Limits (CTL), and limit max power if needed.
2258  */
2259 static void
2260 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2261                         struct ieee80211_channel *channel)
2262 {
2263         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2264         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2265         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2266         u8 *ctl_val = ee->ee_ctl;
2267         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2268         s16 edge_pwr = 0;
2269         u8 rep_idx;
2270         u8 i, ctl_mode;
2271         u8 ctl_idx = 0xFF;
2272         u32 target = channel->center_freq;
2273
2274         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2275
2276         switch (channel->hw_value & CHANNEL_MODES) {
2277         case CHANNEL_A:
2278                 ctl_mode |= AR5K_CTL_11A;
2279                 break;
2280         case CHANNEL_G:
2281                 ctl_mode |= AR5K_CTL_11G;
2282                 break;
2283         case CHANNEL_B:
2284                 ctl_mode |= AR5K_CTL_11B;
2285                 break;
2286         case CHANNEL_T:
2287                 ctl_mode |= AR5K_CTL_TURBO;
2288                 break;
2289         case CHANNEL_TG:
2290                 ctl_mode |= AR5K_CTL_TURBOG;
2291                 break;
2292         case CHANNEL_XR:
2293                 /* Fall through */
2294         default:
2295                 return;
2296         }
2297
2298         for (i = 0; i < ee->ee_ctls; i++) {
2299                 if (ctl_val[i] == ctl_mode) {
2300                         ctl_idx = i;
2301                         break;
2302                 }
2303         }
2304
2305         /* If we have a CTL dataset available grab it and find the
2306          * edge power for our frequency */
2307         if (ctl_idx == 0xFF)
2308                 return;
2309
2310         /* Edge powers are sorted by frequency from lower
2311          * to higher. Each CTL corresponds to 8 edge power
2312          * measurements. */
2313         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2314
2315         /* Don't do boundaries check because we
2316          * might have more that one bands defined
2317          * for this mode */
2318
2319         /* Get the edge power that's closer to our
2320          * frequency */
2321         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2322                 rep_idx += i;
2323                 if (target <= rep[rep_idx].freq)
2324                         edge_pwr = (s16) rep[rep_idx].edge;
2325         }
2326
2327         if (edge_pwr)
2328                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2329 }
2330
2331
2332 /*
2333  * Power to PCDAC table functions
2334  */
2335
2336 /*
2337  * Fill Power to PCDAC table on RF5111
2338  *
2339  * No further processing is needed for RF5111, the only thing we have to
2340  * do is fill the values below and above calibration range since eeprom data
2341  * may not cover the entire PCDAC table.
2342  */
2343 static void
2344 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2345                                                         s16 *table_max)
2346 {
2347         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2348         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2349         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2350         s16     min_pwr, max_pwr;
2351
2352         /* Get table boundaries */
2353         min_pwr = table_min[0];
2354         pcdac_0 = pcdac_tmp[0];
2355
2356         max_pwr = table_max[0];
2357         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2358
2359         /* Extrapolate below minimum using pcdac_0 */
2360         pcdac_i = 0;
2361         for (i = 0; i < min_pwr; i++)
2362                 pcdac_out[pcdac_i++] = pcdac_0;
2363
2364         /* Copy values from pcdac_tmp */
2365         pwr_idx = min_pwr;
2366         for (i = 0 ; pwr_idx <= max_pwr &&
2367         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2368                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2369                 pwr_idx++;
2370         }
2371
2372         /* Extrapolate above maximum */
2373         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2374                 pcdac_out[pcdac_i++] = pcdac_n;
2375
2376 }
2377
2378 /*
2379  * Combine available XPD Curves and fill Linear Power to PCDAC table
2380  * on RF5112
2381  *
2382  * RFX112 can have up to 2 curves (one for low txpower range and one for
2383  * higher txpower range). We need to put them both on pcdac_out and place
2384  * them in the correct location. In case we only have one curve available
2385  * just fit it on pcdac_out (it's supposed to cover the entire range of
2386  * available pwr levels since it's always the higher power curve). Extrapolate
2387  * below and above final table if needed.
2388  */
2389 static void
2390 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2391                                                 s16 *table_max, u8 pdcurves)
2392 {
2393         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2394         u8      *pcdac_low_pwr;
2395         u8      *pcdac_high_pwr;
2396         u8      *pcdac_tmp;
2397         u8      pwr;
2398         s16     max_pwr_idx;
2399         s16     min_pwr_idx;
2400         s16     mid_pwr_idx = 0;
2401         /* Edge flag turs on the 7nth bit on the PCDAC
2402          * to delcare the higher power curve (force values
2403          * to be greater than 64). If we only have one curve
2404          * we don't need to set this, if we have 2 curves and
2405          * fill the table backwards this can also be used to
2406          * switch from higher power curve to lower power curve */
2407         u8      edge_flag;
2408         int     i;
2409
2410         /* When we have only one curve available
2411          * that's the higher power curve. If we have
2412          * two curves the first is the high power curve
2413          * and the next is the low power curve. */
2414         if (pdcurves > 1) {
2415                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2416                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2417                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2418                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2419
2420                 /* If table size goes beyond 31.5dB, keep the
2421                  * upper 31.5dB range when setting tx power.
2422                  * Note: 126 = 31.5 dB in quarter dB steps */
2423                 if (table_max[0] - table_min[1] > 126)
2424                         min_pwr_idx = table_max[0] - 126;
2425                 else
2426                         min_pwr_idx = table_min[1];
2427
2428                 /* Since we fill table backwards
2429                  * start from high power curve */
2430                 pcdac_tmp = pcdac_high_pwr;
2431
2432                 edge_flag = 0x40;
2433         } else {
2434                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2435                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2436                 min_pwr_idx = table_min[0];
2437                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2438                 pcdac_tmp = pcdac_high_pwr;
2439                 edge_flag = 0;
2440         }
2441
2442         /* This is used when setting tx power*/
2443         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2444
2445         /* Fill Power to PCDAC table backwards */
2446         pwr = max_pwr_idx;
2447         for (i = 63; i >= 0; i--) {
2448                 /* Entering lower power range, reset
2449                  * edge flag and set pcdac_tmp to lower
2450                  * power curve.*/
2451                 if (edge_flag == 0x40 &&
2452                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2453                         edge_flag = 0x00;
2454                         pcdac_tmp = pcdac_low_pwr;
2455                         pwr = mid_pwr_idx/2;
2456                 }
2457
2458                 /* Don't go below 1, extrapolate below if we have
2459                  * already swithced to the lower power curve -or
2460                  * we only have one curve and edge_flag is zero
2461                  * anyway */
2462                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2463                         while (i >= 0) {
2464                                 pcdac_out[i] = pcdac_out[i + 1];
2465                                 i--;
2466                         }
2467                         break;
2468                 }
2469
2470                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2471
2472                 /* Extrapolate above if pcdac is greater than
2473                  * 126 -this can happen because we OR pcdac_out
2474                  * value with edge_flag on high power curve */
2475                 if (pcdac_out[i] > 126)
2476                         pcdac_out[i] = 126;
2477
2478                 /* Decrease by a 0.5dB step */
2479                 pwr--;
2480         }
2481 }
2482
2483 /* Write PCDAC values on hw */
2484 static void
2485 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2486 {
2487         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2488         int     i;
2489
2490         /*
2491          * Write TX power values
2492          */
2493         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2494                 ath5k_hw_reg_write(ah,
2495                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2496                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2497                         AR5K_PHY_PCDAC_TXPOWER(i));
2498         }
2499 }
2500
2501
2502 /*
2503  * Power to PDADC table functions
2504  */
2505
2506 /*
2507  * Set the gain boundaries and create final Power to PDADC table
2508  *
2509  * We can have up to 4 pd curves, we need to do a simmilar process
2510  * as we do for RF5112. This time we don't have an edge_flag but we
2511  * set the gain boundaries on a separate register.
2512  */
2513 static void
2514 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2515                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2516 {
2517         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2518         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2519         u8 *pdadc_tmp;
2520         s16 pdadc_0;
2521         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2522         u8 pd_gain_overlap;
2523
2524         /* Note: Register value is initialized on initvals
2525          * there is no feedback from hw.
2526          * XXX: What about pd_gain_overlap from EEPROM ? */
2527         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2528                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2529
2530         /* Create final PDADC table */
2531         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2532                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2533
2534                 if (pdg == pdcurves - 1)
2535                         /* 2 dB boundary stretch for last
2536                          * (higher power) curve */
2537                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2538                 else
2539                         /* Set gain boundary in the middle
2540                          * between this curve and the next one */
2541                         gain_boundaries[pdg] =
2542                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2543
2544                 /* Sanity check in case our 2 db stretch got out of
2545                  * range. */
2546                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2547                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2548
2549                 /* For the first curve (lower power)
2550                  * start from 0 dB */
2551                 if (pdg == 0)
2552                         pdadc_0 = 0;
2553                 else
2554                         /* For the other curves use the gain overlap */
2555                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2556                                                         pd_gain_overlap;
2557
2558                 /* Force each power step to be at least 0.5 dB */
2559                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2560                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2561                 else
2562                         pwr_step = 1;
2563
2564                 /* If pdadc_0 is negative, we need to extrapolate
2565                  * below this pdgain by a number of pwr_steps */
2566                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2567                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2568                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2569                         pdadc_0++;
2570                 }
2571
2572                 /* Set last pwr level, using gain boundaries */
2573                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2574                 /* Limit it to be inside pwr range */
2575                 table_size = pwr_max[pdg] - pwr_min[pdg];
2576                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2577
2578                 /* Fill pdadc_out table */
2579                 while (pdadc_0 < max_idx && pdadc_i < 128)
2580                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2581
2582                 /* Need to extrapolate above this pdgain? */
2583                 if (pdadc_n <= max_idx)
2584                         continue;
2585
2586                 /* Force each power step to be at least 0.5 dB */
2587                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2588                         pwr_step = pdadc_tmp[table_size - 1] -
2589                                                 pdadc_tmp[table_size - 2];
2590                 else
2591                         pwr_step = 1;
2592
2593                 /* Extrapolate above */
2594                 while ((pdadc_0 < (s16) pdadc_n) &&
2595                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2596                         s16 tmp = pdadc_tmp[table_size - 1] +
2597                                         (pdadc_0 - max_idx) * pwr_step;
2598                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2599                         pdadc_0++;
2600                 }
2601         }
2602
2603         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2604                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2605                 pdg++;
2606         }
2607
2608         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2609                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2610                 pdadc_i++;
2611         }
2612
2613         /* Set gain boundaries */
2614         ath5k_hw_reg_write(ah,
2615                 AR5K_REG_SM(pd_gain_overlap,
2616                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2617                 AR5K_REG_SM(gain_boundaries[0],
2618                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2619                 AR5K_REG_SM(gain_boundaries[1],
2620                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2621                 AR5K_REG_SM(gain_boundaries[2],
2622                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2623                 AR5K_REG_SM(gain_boundaries[3],
2624                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2625                 AR5K_PHY_TPC_RG5);
2626
2627         /* Used for setting rate power table */
2628         ah->ah_txpower.txp_min_idx = pwr_min[0];
2629
2630 }
2631
2632 /* Write PDADC values on hw */
2633 static void
2634 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2635                         u8 pdcurves, u8 *pdg_to_idx)
2636 {
2637         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2638         u32 reg;
2639         u8 i;
2640
2641         /* Select the right pdgain curves */
2642
2643         /* Clear current settings */
2644         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2645         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2646                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2647                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2648                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2649
2650         /*
2651          * Use pd_gains curve from eeprom
2652          *
2653          * This overrides the default setting from initvals
2654          * in case some vendors (e.g. Zcomax) don't use the default
2655          * curves. If we don't honor their settings we 'll get a
2656          * 5dB (1 * gain overlap ?) drop.
2657          */
2658         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2659
2660         switch (pdcurves) {
2661         case 3:
2662                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2663                 /* Fall through */
2664         case 2:
2665                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2666                 /* Fall through */
2667         case 1:
2668                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2669                 break;
2670         }
2671         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2672
2673         /*
2674          * Write TX power values
2675          */
2676         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2677                 ath5k_hw_reg_write(ah,
2678                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2679                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2680                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2681                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2682                         AR5K_PHY_PDADC_TXPOWER(i));
2683         }
2684 }
2685
2686
2687 /*
2688  * Common code for PCDAC/PDADC tables
2689  */
2690
2691 /*
2692  * This is the main function that uses all of the above
2693  * to set PCDAC/PDADC table on hw for the current channel.
2694  * This table is used for tx power calibration on the basband,
2695  * without it we get weird tx power levels and in some cases
2696  * distorted spectral mask
2697  */
2698 static int
2699 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2700                         struct ieee80211_channel *channel,
2701                         u8 ee_mode, u8 type)
2702 {
2703         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2704         struct ath5k_chan_pcal_info *pcinfo_L;
2705         struct ath5k_chan_pcal_info *pcinfo_R;
2706         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2707         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2708         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2709         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2710         u8 *tmpL;
2711         u8 *tmpR;
2712         u32 target = channel->center_freq;
2713         int pdg, i;
2714
2715         /* Get surounding freq piers for this channel */
2716         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2717                                                 &pcinfo_L,
2718                                                 &pcinfo_R);
2719
2720         /* Loop over pd gain curves on
2721          * surounding freq piers by index */
2722         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2723
2724                 /* Fill curves in reverse order
2725                  * from lower power (max gain)
2726                  * to higher power. Use curve -> idx
2727                  * backmapping we did on eeprom init */
2728                 u8 idx = pdg_curve_to_idx[pdg];
2729
2730                 /* Grab the needed curves by index */
2731                 pdg_L = &pcinfo_L->pd_curves[idx];
2732                 pdg_R = &pcinfo_R->pd_curves[idx];
2733
2734                 /* Initialize the temp tables */
2735                 tmpL = ah->ah_txpower.tmpL[pdg];
2736                 tmpR = ah->ah_txpower.tmpR[pdg];
2737
2738                 /* Set curve's x boundaries and create
2739                  * curves so that they cover the same
2740                  * range (if we don't do that one table
2741                  * will have values on some range and the
2742                  * other one won't have any so interpolation
2743                  * will fail) */
2744                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2745                                         pdg_R->pd_pwr[0]) / 2;
2746
2747                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2748                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2749
2750                 /* Now create the curves on surrounding channels
2751                  * and interpolate if needed to get the final
2752                  * curve for this gain on this channel */
2753                 switch (type) {
2754                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2755                         /* Override min/max so that we don't loose
2756                          * accuracy (don't divide by 2) */
2757                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2758                                                 pdg_R->pd_pwr[0]);
2759
2760                         table_max[pdg] =
2761                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2762                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2763
2764                         /* Override minimum so that we don't get
2765                          * out of bounds while extrapolating
2766                          * below. Don't do this when we have 2
2767                          * curves and we are on the high power curve
2768                          * because table_min is ok in this case */
2769                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2770
2771                                 table_min[pdg] =
2772                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2773                                                                 pdg_R->pd_step,
2774                                                                 pdg_L->pd_pwr,
2775                                                                 pdg_R->pd_pwr);
2776
2777                                 /* Don't go too low because we will
2778                                  * miss the upper part of the curve.
2779                                  * Note: 126 = 31.5dB (max power supported)
2780                                  * in 0.25dB units */
2781                                 if (table_max[pdg] - table_min[pdg] > 126)
2782                                         table_min[pdg] = table_max[pdg] - 126;
2783                         }
2784
2785                         /* Fall through */
2786                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2787                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2788
2789                         ath5k_create_power_curve(table_min[pdg],
2790                                                 table_max[pdg],
2791                                                 pdg_L->pd_pwr,
2792                                                 pdg_L->pd_step,
2793                                                 pdg_L->pd_points, tmpL, type);
2794
2795                         /* We are in a calibration
2796                          * pier, no need to interpolate
2797                          * between freq piers */
2798                         if (pcinfo_L == pcinfo_R)
2799                                 continue;
2800
2801                         ath5k_create_power_curve(table_min[pdg],
2802                                                 table_max[pdg],
2803                                                 pdg_R->pd_pwr,
2804                                                 pdg_R->pd_step,
2805                                                 pdg_R->pd_points, tmpR, type);
2806                         break;
2807                 default:
2808                         return -EINVAL;
2809                 }
2810
2811                 /* Interpolate between curves
2812                  * of surounding freq piers to
2813                  * get the final curve for this
2814                  * pd gain. Re-use tmpL for interpolation
2815                  * output */
2816                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2817                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2818                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2819                                                         (s16) pcinfo_L->freq,
2820                                                         (s16) pcinfo_R->freq,
2821                                                         (s16) tmpL[i],
2822                                                         (s16) tmpR[i]);
2823                 }
2824         }
2825
2826         /* Now we have a set of curves for this
2827          * channel on tmpL (x range is table_max - table_min
2828          * and y values are tmpL[pdg][]) sorted in the same
2829          * order as EEPROM (because we've used the backmapping).
2830          * So for RF5112 it's from higher power to lower power
2831          * and for RF2413 it's from lower power to higher power.
2832          * For RF5111 we only have one curve. */
2833
2834         /* Fill min and max power levels for this
2835          * channel by interpolating the values on
2836          * surounding channels to complete the dataset */
2837         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2838                                         (s16) pcinfo_L->freq,
2839                                         (s16) pcinfo_R->freq,
2840                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2841
2842         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2843                                         (s16) pcinfo_L->freq,
2844                                         (s16) pcinfo_R->freq,
2845                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2846
2847         /* We are ready to go, fill PCDAC/PDADC
2848          * table and write settings on hardware */
2849         switch (type) {
2850         case AR5K_PWRTABLE_LINEAR_PCDAC:
2851                 /* For RF5112 we can have one or two curves
2852                  * and each curve covers a certain power lvl
2853                  * range so we need to do some more processing */
2854                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2855                                                 ee->ee_pd_gains[ee_mode]);
2856
2857                 /* Set txp.offset so that we can
2858                  * match max power value with max
2859                  * table index */
2860                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2861
2862                 /* Write settings on hw */
2863                 ath5k_setup_pcdac_table(ah);
2864                 break;
2865         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2866                 /* We are done for RF5111 since it has only
2867                  * one curve, just fit the curve on the table */
2868                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2869
2870                 /* No rate powertable adjustment for RF5111 */
2871                 ah->ah_txpower.txp_min_idx = 0;
2872                 ah->ah_txpower.txp_offset = 0;
2873
2874                 /* Write settings on hw */
2875                 ath5k_setup_pcdac_table(ah);
2876                 break;
2877         case AR5K_PWRTABLE_PWR_TO_PDADC:
2878                 /* Set PDADC boundaries and fill
2879                  * final PDADC table */
2880                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2881                                                 ee->ee_pd_gains[ee_mode]);
2882
2883                 /* Write settings on hw */
2884                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2885
2886                 /* Set txp.offset, note that table_min
2887                  * can be negative */
2888                 ah->ah_txpower.txp_offset = table_min[0];
2889                 break;
2890         default:
2891                 return -EINVAL;
2892         }
2893
2894         return 0;
2895 }
2896
2897
2898 /*
2899  * Per-rate tx power setting
2900  *
2901  * This is the code that sets the desired tx power (below
2902  * maximum) on hw for each rate (we also have TPC that sets
2903  * power per packet). We do that by providing an index on the
2904  * PCDAC/PDADC table we set up.
2905  */
2906
2907 /*
2908  * Set rate power table
2909  *
2910  * For now we only limit txpower based on maximum tx power
2911  * supported by hw (what's inside rate_info). We need to limit
2912  * this even more, based on regulatory domain etc.
2913  *
2914  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2915  * and is indexed as follows:
2916  * rates[0] - rates[7] -> OFDM rates
2917  * rates[8] - rates[14] -> CCK rates
2918  * rates[15] -> XR rates (they all have the same power)
2919  */
2920 static void
2921 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2922                         struct ath5k_rate_pcal_info *rate_info,
2923                         u8 ee_mode)
2924 {
2925         unsigned int i;
2926         u16 *rates;
2927
2928         /* max_pwr is power level we got from driver/user in 0.5dB
2929          * units, switch to 0.25dB units so we can compare */
2930         max_pwr *= 2;
2931         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2932
2933         /* apply rate limits */
2934         rates = ah->ah_txpower.txp_rates_power_table;
2935
2936         /* OFDM rates 6 to 24Mb/s */
2937         for (i = 0; i < 5; i++)
2938                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2939
2940         /* Rest OFDM rates */
2941         rates[5] = min(rates[0], rate_info->target_power_36);
2942         rates[6] = min(rates[0], rate_info->target_power_48);
2943         rates[7] = min(rates[0], rate_info->target_power_54);
2944
2945         /* CCK rates */
2946         /* 1L */
2947         rates[8] = min(rates[0], rate_info->target_power_6to24);
2948         /* 2L */
2949         rates[9] = min(rates[0], rate_info->target_power_36);
2950         /* 2S */
2951         rates[10] = min(rates[0], rate_info->target_power_36);
2952         /* 5L */
2953         rates[11] = min(rates[0], rate_info->target_power_48);
2954         /* 5S */
2955         rates[12] = min(rates[0], rate_info->target_power_48);
2956         /* 11L */
2957         rates[13] = min(rates[0], rate_info->target_power_54);
2958         /* 11S */
2959         rates[14] = min(rates[0], rate_info->target_power_54);
2960
2961         /* XR rates */
2962         rates[15] = min(rates[0], rate_info->target_power_6to24);
2963
2964         /* CCK rates have different peak to average ratio
2965          * so we have to tweak their power so that gainf
2966          * correction works ok. For this we use OFDM to
2967          * CCK delta from eeprom */
2968         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2969         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2970                 for (i = 8; i <= 15; i++)
2971                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2972
2973         /* Now that we have all rates setup use table offset to
2974          * match the power range set by user with the power indices
2975          * on PCDAC/PDADC table */
2976         for (i = 0; i < 16; i++) {
2977                 rates[i] += ah->ah_txpower.txp_offset;
2978                 /* Don't get out of bounds */
2979                 if (rates[i] > 63)
2980                         rates[i] = 63;
2981         }
2982
2983         /* Min/max in 0.25dB units */
2984         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2985         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2986         ah->ah_txpower.txp_ofdm = rates[7];
2987 }
2988
2989
2990 /*
2991  * Set transmission power
2992  */
2993 int
2994 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2995                 u8 ee_mode, u8 txpower)
2996 {
2997         struct ath5k_rate_pcal_info rate_info;
2998         u8 type;
2999         int ret;
3000
3001         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3002                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3003                 return -EINVAL;
3004         }
3005
3006         /* Reset TX power values */
3007         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3008         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3009         ah->ah_txpower.txp_min_pwr = 0;
3010         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3011
3012         /* Initialize TX power table */
3013         switch (ah->ah_radio) {
3014         case AR5K_RF5111:
3015                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3016                 break;
3017         case AR5K_RF5112:
3018                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3019                 break;
3020         case AR5K_RF2413:
3021         case AR5K_RF5413:
3022         case AR5K_RF2316:
3023         case AR5K_RF2317:
3024         case AR5K_RF2425:
3025                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3026                 break;
3027         default:
3028                 return -EINVAL;
3029         }
3030
3031         /* FIXME: Only on channel/mode change */
3032         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3033         if (ret)
3034                 return ret;
3035
3036         /* Limit max power if we have a CTL available */
3037         ath5k_get_max_ctl_power(ah, channel);
3038
3039         /* FIXME: Antenna reduction stuff */
3040
3041         /* FIXME: Limit power on turbo modes */
3042
3043         /* FIXME: TPC scale reduction */
3044
3045         /* Get surounding channels for per-rate power table
3046          * calibration */
3047         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3048
3049         /* Setup rate power table */
3050         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3051
3052         /* Write rate power table on hw */
3053         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3054                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3055                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3056
3057         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3058                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3059                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3060
3061         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3062                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3063                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3064
3065         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3066                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3067                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3068
3069         /* FIXME: TPC support */
3070         if (ah->ah_txpower.txp_tpc) {
3071                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3072                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3073
3074                 ath5k_hw_reg_write(ah,
3075                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3076                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3077                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3078                         AR5K_TPC);
3079         } else {
3080                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3081                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3082         }
3083
3084         return 0;
3085 }
3086
3087 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3088 {
3089         /*Just a try M.F.*/
3090         struct ieee80211_channel *channel = ah->ah_current_channel;
3091         u8 ee_mode;
3092
3093         switch (channel->hw_value & CHANNEL_MODES) {
3094         case CHANNEL_A:
3095         case CHANNEL_T:
3096         case CHANNEL_XR:
3097                 ee_mode = AR5K_EEPROM_MODE_11A;
3098                 break;
3099         case CHANNEL_G:
3100         case CHANNEL_TG:
3101                 ee_mode = AR5K_EEPROM_MODE_11G;
3102                 break;
3103         case CHANNEL_B:
3104                 ee_mode = AR5K_EEPROM_MODE_11B;
3105                 break;
3106         default:
3107                 ATH5K_ERR(ah->ah_sc,
3108                         "invalid channel: %d\n", channel->center_freq);
3109                 return -EINVAL;
3110         }
3111
3112         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3113                 "changing txpower to %d\n", txpower);
3114
3115         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3116 }