ath5k: Storage class should be before const qualifier
[pandora-kernel.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
28
29 /*
30  * Read from eeprom
31  */
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33 {
34         u32 status, timeout;
35
36         ATH5K_TRACE(ah->ah_sc);
37         /*
38          * Initialize EEPROM access
39          */
40         if (ah->ah_version == AR5K_AR5210) {
41                 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42                 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43         } else {
44                 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45                 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46                                 AR5K_EEPROM_CMD_READ);
47         }
48
49         for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50                 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51                 if (status & AR5K_EEPROM_STAT_RDDONE) {
52                         if (status & AR5K_EEPROM_STAT_RDERR)
53                                 return -EIO;
54                         *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55                                         0xffff);
56                         return 0;
57                 }
58                 udelay(15);
59         }
60
61         return -ETIMEDOUT;
62 }
63
64 /*
65  * Translate binary channel representation in EEPROM to frequency
66  */
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68                                  unsigned int mode)
69 {
70         u16 val;
71
72         if (bin == AR5K_EEPROM_CHANNEL_DIS)
73                 return bin;
74
75         if (mode == AR5K_EEPROM_MODE_11A) {
76                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77                         val = (5 * bin) + 4800;
78                 else
79                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80                                 (bin * 10) + 5100;
81         } else {
82                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83                         val = bin + 2300;
84                 else
85                         val = bin + 2400;
86         }
87
88         return val;
89 }
90
91 /*
92  * Initialize eeprom & capabilities structs
93  */
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
96 {
97         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98         int ret;
99         u16 val;
100
101         /*
102          * Read values from EEPROM and store them in the capability structure
103          */
104         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
105         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
106         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
107         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
108         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
109
110         /* Return if we have an old EEPROM */
111         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
112                 return 0;
113
114 #ifdef notyet
115         /*
116          * Validate the checksum of the EEPROM date. There are some
117          * devices with invalid EEPROMs.
118          */
119         for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
120                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
121                 cksum ^= val;
122         }
123         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
124                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
125                 return -EIO;
126         }
127 #endif
128
129         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130             ee_ant_gain);
131
132         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
135
136                 /* XXX: Don't know which versions include these two */
137                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
138
139                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
141
142                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
146                 }
147         }
148
149         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
153
154                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
157         }
158
159         return 0;
160 }
161
162
163 /*
164  * Read antenna infos from eeprom
165  */
166 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
167                 unsigned int mode)
168 {
169         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
170         u32 o = *offset;
171         u16 val;
172         int ret, i = 0;
173
174         AR5K_EEPROM_READ(o++, val);
175         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
176         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
177         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
178
179         AR5K_EEPROM_READ(o++, val);
180         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
181         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
182         ee->ee_ant_control[mode][i++]   = val & 0x3f;
183
184         AR5K_EEPROM_READ(o++, val);
185         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
186         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
187         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
188
189         AR5K_EEPROM_READ(o++, val);
190         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
191         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
192         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
193         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
194
195         AR5K_EEPROM_READ(o++, val);
196         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
197         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
198         ee->ee_ant_control[mode][i++]   = val & 0x3f;
199
200         /* Get antenna modes */
201         ah->ah_antenna[mode][0] =
202             (ee->ee_ant_control[mode][0] << 4);
203         ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
204              ee->ee_ant_control[mode][1]        |
205             (ee->ee_ant_control[mode][2] << 6)  |
206             (ee->ee_ant_control[mode][3] << 12) |
207             (ee->ee_ant_control[mode][4] << 18) |
208             (ee->ee_ant_control[mode][5] << 24);
209         ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
210              ee->ee_ant_control[mode][6]        |
211             (ee->ee_ant_control[mode][7] << 6)  |
212             (ee->ee_ant_control[mode][8] << 12) |
213             (ee->ee_ant_control[mode][9] << 18) |
214             (ee->ee_ant_control[mode][10] << 24);
215
216         /* return new offset */
217         *offset = o;
218
219         return 0;
220 }
221
222 /*
223  * Read supported modes and some mode-specific calibration data
224  * from eeprom
225  */
226 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
227                 unsigned int mode)
228 {
229         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
230         u32 o = *offset;
231         u16 val;
232         int ret;
233
234         ee->ee_n_piers[mode] = 0;
235         AR5K_EEPROM_READ(o++, val);
236         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
237         switch(mode) {
238         case AR5K_EEPROM_MODE_11A:
239                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
240                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
241                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
242
243                 AR5K_EEPROM_READ(o++, val);
244                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
245                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
246                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
247                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
248                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
249                 ee->ee_db[mode][0]      = val & 0x7;
250                 break;
251         case AR5K_EEPROM_MODE_11G:
252         case AR5K_EEPROM_MODE_11B:
253                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
254                 ee->ee_db[mode][1]      = val & 0x7;
255                 break;
256         }
257
258         AR5K_EEPROM_READ(o++, val);
259         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
260         ee->ee_thr_62[mode]             = val & 0xff;
261
262         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
263                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
264
265         AR5K_EEPROM_READ(o++, val);
266         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
267         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
268
269         AR5K_EEPROM_READ(o++, val);
270         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
271
272         if ((val & 0xff) & 0x80)
273                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
274         else
275                 ee->ee_noise_floor_thr[mode] = val & 0xff;
276
277         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
278                 ee->ee_noise_floor_thr[mode] =
279                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
280
281         AR5K_EEPROM_READ(o++, val);
282         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
283         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
284         ee->ee_xpd[mode]                = val & 0x1;
285
286         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
287                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
288
289         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
290                 AR5K_EEPROM_READ(o++, val);
291                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
292
293                 if (mode == AR5K_EEPROM_MODE_11A)
294                         ee->ee_xr_power[mode] = val & 0x3f;
295                 else {
296                         ee->ee_ob[mode][0] = val & 0x7;
297                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
298                 }
299         }
300
301         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
302                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
303                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
304         } else {
305                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
306
307                 AR5K_EEPROM_READ(o++, val);
308                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
309
310                 if (mode == AR5K_EEPROM_MODE_11G) {
311                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
312                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
313                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
314                 }
315         }
316
317         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
318                         mode == AR5K_EEPROM_MODE_11A) {
319                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
320                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
321         }
322
323         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
324                 goto done;
325
326         /* Note: >= v5 have bg freq piers on another location
327          * so these freq piers are ignored for >= v5 (should be 0xff
328          * anyway) */
329         switch(mode) {
330         case AR5K_EEPROM_MODE_11A:
331                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
332                         break;
333
334                 AR5K_EEPROM_READ(o++, val);
335                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
336                 break;
337         case AR5K_EEPROM_MODE_11B:
338                 AR5K_EEPROM_READ(o++, val);
339
340                 ee->ee_pwr_cal_b[0].freq =
341                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
342                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
343                         ee->ee_n_piers[mode]++;
344
345                 ee->ee_pwr_cal_b[1].freq =
346                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
347                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
348                         ee->ee_n_piers[mode]++;
349
350                 AR5K_EEPROM_READ(o++, val);
351                 ee->ee_pwr_cal_b[2].freq =
352                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
353                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
354                         ee->ee_n_piers[mode]++;
355
356                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
357                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
358                 break;
359         case AR5K_EEPROM_MODE_11G:
360                 AR5K_EEPROM_READ(o++, val);
361
362                 ee->ee_pwr_cal_g[0].freq =
363                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
364                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
365                         ee->ee_n_piers[mode]++;
366
367                 ee->ee_pwr_cal_g[1].freq =
368                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
369                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
370                         ee->ee_n_piers[mode]++;
371
372                 AR5K_EEPROM_READ(o++, val);
373                 ee->ee_turbo_max_power[mode] = val & 0x7f;
374                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
375
376                 AR5K_EEPROM_READ(o++, val);
377                 ee->ee_pwr_cal_g[2].freq =
378                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
379                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
380                         ee->ee_n_piers[mode]++;
381
382                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
383                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
384
385                 AR5K_EEPROM_READ(o++, val);
386                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
387                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
388
389                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
390                         AR5K_EEPROM_READ(o++, val);
391                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
392                 }
393                 break;
394         }
395
396 done:
397         /* return new offset */
398         *offset = o;
399
400         return 0;
401 }
402
403 /*
404  * Read turbo mode information on newer EEPROM versions
405  */
406 static int
407 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
408                               u32 *offset, unsigned int mode)
409 {
410         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
411         u32 o = *offset;
412         u16 val;
413         int ret;
414
415         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
416                 return 0;
417
418         switch (mode){
419         case AR5K_EEPROM_MODE_11A:
420                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
421
422                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
423                 AR5K_EEPROM_READ(o++, val);
424                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
425                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
426
427                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
428                 AR5K_EEPROM_READ(o++, val);
429                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
430                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
431
432                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
433                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
434                 break;
435         case AR5K_EEPROM_MODE_11G:
436                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
437
438                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
439                 AR5K_EEPROM_READ(o++, val);
440                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
441                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
442
443                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
444                 AR5K_EEPROM_READ(o++, val);
445                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
446                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
447                 break;
448         }
449
450         /* return new offset */
451         *offset = o;
452
453         return 0;
454 }
455
456 /* Read mode-specific data (except power calibration data) */
457 static int
458 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
459 {
460         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
461         u32 mode_offset[3];
462         unsigned int mode;
463         u32 offset;
464         int ret;
465
466         /*
467          * Get values for all modes
468          */
469         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
470         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
471         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
472
473         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
474                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
475
476         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
477                 offset = mode_offset[mode];
478
479                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
480                 if (ret)
481                         return ret;
482
483                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
484                 if (ret)
485                         return ret;
486
487                 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
488                 if (ret)
489                         return ret;
490         }
491
492         /* override for older eeprom versions for better performance */
493         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
494                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
495                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
496                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
497         }
498
499         return 0;
500 }
501
502 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
503  * frequency mask) */
504 static inline int
505 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
506                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
507 {
508         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
509         int o = *offset;
510         int i = 0;
511         u8 freq1, freq2;
512         int ret;
513         u16 val;
514
515         ee->ee_n_piers[mode] = 0;
516         while(i < max) {
517                 AR5K_EEPROM_READ(o++, val);
518
519                 freq1 = val & 0xff;
520                 if (!freq1)
521                         break;
522
523                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
524                                 freq1, mode);
525                 ee->ee_n_piers[mode]++;
526
527                 freq2 = (val >> 8) & 0xff;
528                 if (!freq2)
529                         break;
530
531                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
532                                 freq2, mode);
533                 ee->ee_n_piers[mode]++;
534         }
535
536         /* return new offset */
537         *offset = o;
538
539         return 0;
540 }
541
542 /* Read frequency piers for 802.11a */
543 static int
544 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
545 {
546         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
547         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
548         int i, ret;
549         u16 val;
550         u8 mask;
551
552         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
553                 ath5k_eeprom_read_freq_list(ah, &offset,
554                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
555                         AR5K_EEPROM_MODE_11A);
556         } else {
557                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
558
559                 AR5K_EEPROM_READ(offset++, val);
560                 pcal[0].freq  = (val >> 9) & mask;
561                 pcal[1].freq  = (val >> 2) & mask;
562                 pcal[2].freq  = (val << 5) & mask;
563
564                 AR5K_EEPROM_READ(offset++, val);
565                 pcal[2].freq |= (val >> 11) & 0x1f;
566                 pcal[3].freq  = (val >> 4) & mask;
567                 pcal[4].freq  = (val << 3) & mask;
568
569                 AR5K_EEPROM_READ(offset++, val);
570                 pcal[4].freq |= (val >> 13) & 0x7;
571                 pcal[5].freq  = (val >> 6) & mask;
572                 pcal[6].freq  = (val << 1) & mask;
573
574                 AR5K_EEPROM_READ(offset++, val);
575                 pcal[6].freq |= (val >> 15) & 0x1;
576                 pcal[7].freq  = (val >> 8) & mask;
577                 pcal[8].freq  = (val >> 1) & mask;
578                 pcal[9].freq  = (val << 6) & mask;
579
580                 AR5K_EEPROM_READ(offset++, val);
581                 pcal[9].freq |= (val >> 10) & 0x3f;
582
583                 /* Fixed number of piers */
584                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
585
586                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
587                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
588                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
589                 }
590         }
591
592         return 0;
593 }
594
595 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
596 static inline int
597 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
598 {
599         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
600         struct ath5k_chan_pcal_info *pcal;
601
602         switch(mode) {
603         case AR5K_EEPROM_MODE_11B:
604                 pcal = ee->ee_pwr_cal_b;
605                 break;
606         case AR5K_EEPROM_MODE_11G:
607                 pcal = ee->ee_pwr_cal_g;
608                 break;
609         default:
610                 return -EINVAL;
611         }
612
613         ath5k_eeprom_read_freq_list(ah, &offset,
614                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
615                 mode);
616
617         return 0;
618 }
619
620 /*
621  * Read power calibration for RF5111 chips
622  *
623  * For RF5111 we have an XPD -eXternal Power Detector- curve
624  * for each calibrated channel. Each curve has 0,5dB Power steps
625  * on x axis and PCDAC steps (offsets) on y axis and looks like an
626  * exponential function. To recreate the curve we read 11 points
627  * here and interpolate later.
628  */
629
630 /* Used to match PCDAC steps with power values on RF5111 chips
631  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
632  * steps that match with the power values we read from eeprom. On
633  * older eeprom versions (< 3.2) these steps are equaly spaced at
634  * 10% of the pcdac curve -until the curve reaches it's maximum-
635  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
636  * these 11 steps are spaced in a different way. This function returns
637  * the pcdac steps based on eeprom version and curve min/max so that we
638  * can have pcdac/pwr points.
639  */
640 static inline void
641 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
642 {
643         static const u16 intercepts3[] =
644                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
645         static const u16 intercepts3_2[] =
646                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
647         const u16 *ip;
648         int i;
649
650         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
651                 ip = intercepts3_2;
652         else
653                 ip = intercepts3;
654
655         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
656                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
657 }
658
659 /* Convert RF5111 specific data to generic raw data
660  * used by interpolation code */
661 static int
662 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
663                                 struct ath5k_chan_pcal_info *chinfo)
664 {
665         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
666         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
667         struct ath5k_pdgain_info *pd;
668         u8 pier, point, idx;
669         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
670
671         /* Fill raw data for each calibration pier */
672         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
673
674                 pcinfo = &chinfo[pier].rf5111_info;
675
676                 /* Allocate pd_curves for this cal pier */
677                 chinfo[pier].pd_curves =
678                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
679                                 sizeof(struct ath5k_pdgain_info),
680                                 GFP_KERNEL);
681
682                 if (!chinfo[pier].pd_curves)
683                         return -ENOMEM;
684
685                 /* Only one curve for RF5111
686                  * find out which one and place
687                  * in in pd_curves.
688                  * Note: ee_x_gain is reversed here */
689                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692                                 pdgain_idx[0] = idx;
693                                 break;
694                         }
695                 }
696
697                 ee->ee_pd_gains[mode] = 1;
698
699                 pd = &chinfo[pier].pd_curves[idx];
700
701                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703                 /* Allocate pd points for this curve */
704                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
705                                         sizeof(u8), GFP_KERNEL);
706                 if (!pd->pd_step)
707                         return -ENOMEM;
708
709                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
710                                         sizeof(s16), GFP_KERNEL);
711                 if (!pd->pd_pwr)
712                         return -ENOMEM;
713
714                 /* Fill raw dataset
715                  * (convert power to 0.25dB units
716                  * for RF5112 combatibility) */
717                 for (point = 0; point < pd->pd_points; point++) {
718
719                         /* Absolute values */
720                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
721
722                         /* Already sorted */
723                         pd->pd_step[point] = pcinfo->pcdac[point];
724                 }
725
726                 /* Set min/max pwr */
727                 chinfo[pier].min_pwr = pd->pd_pwr[0];
728                 chinfo[pier].max_pwr = pd->pd_pwr[10];
729
730         }
731
732         return 0;
733 }
734
735 /* Parse EEPROM data */
736 static int
737 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
738 {
739         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
740         struct ath5k_chan_pcal_info *pcal;
741         int offset, ret;
742         int i;
743         u16 val;
744
745         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
746         switch(mode) {
747         case AR5K_EEPROM_MODE_11A:
748                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
749                         return 0;
750
751                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
752                         offset + AR5K_EEPROM_GROUP1_OFFSET);
753                 if (ret < 0)
754                         return ret;
755
756                 offset += AR5K_EEPROM_GROUP2_OFFSET;
757                 pcal = ee->ee_pwr_cal_a;
758                 break;
759         case AR5K_EEPROM_MODE_11B:
760                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
761                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
762                         return 0;
763
764                 pcal = ee->ee_pwr_cal_b;
765                 offset += AR5K_EEPROM_GROUP3_OFFSET;
766
767                 /* fixed piers */
768                 pcal[0].freq = 2412;
769                 pcal[1].freq = 2447;
770                 pcal[2].freq = 2484;
771                 ee->ee_n_piers[mode] = 3;
772                 break;
773         case AR5K_EEPROM_MODE_11G:
774                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
775                         return 0;
776
777                 pcal = ee->ee_pwr_cal_g;
778                 offset += AR5K_EEPROM_GROUP4_OFFSET;
779
780                 /* fixed piers */
781                 pcal[0].freq = 2312;
782                 pcal[1].freq = 2412;
783                 pcal[2].freq = 2484;
784                 ee->ee_n_piers[mode] = 3;
785                 break;
786         default:
787                 return -EINVAL;
788         }
789
790         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
791                 struct ath5k_chan_pcal_info_rf5111 *cdata =
792                         &pcal[i].rf5111_info;
793
794                 AR5K_EEPROM_READ(offset++, val);
795                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
796                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
797                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
798
799                 AR5K_EEPROM_READ(offset++, val);
800                 cdata->pwr[0] |= ((val >> 14) & 0x3);
801                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
802                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
803                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
804
805                 AR5K_EEPROM_READ(offset++, val);
806                 cdata->pwr[3] |= ((val >> 12) & 0xf);
807                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
808                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
809
810                 AR5K_EEPROM_READ(offset++, val);
811                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
812                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
813                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
814
815                 AR5K_EEPROM_READ(offset++, val);
816                 cdata->pwr[8] |= ((val >> 14) & 0x3);
817                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
818                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
819
820                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
821                         cdata->pcdac_max, cdata->pcdac);
822         }
823
824         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
825 }
826
827
828 /*
829  * Read power calibration for RF5112 chips
830  *
831  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
832  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
833  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
834  * power steps on x axis and PCDAC steps on y axis and looks like a
835  * linear function. To recreate the curve and pass the power values
836  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
837  * and 3 points for xpd 3 (higher gain -> lower power) here and
838  * interpolate later.
839  *
840  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
841  */
842
843 /* Convert RF5112 specific data to generic raw data
844  * used by interpolation code */
845 static int
846 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
847                                 struct ath5k_chan_pcal_info *chinfo)
848 {
849         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
850         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
851         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
852         unsigned int pier, pdg, point;
853
854         /* Fill raw data for each calibration pier */
855         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
856
857                 pcinfo = &chinfo[pier].rf5112_info;
858
859                 /* Allocate pd_curves for this cal pier */
860                 chinfo[pier].pd_curves =
861                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
862                                         sizeof(struct ath5k_pdgain_info),
863                                         GFP_KERNEL);
864
865                 if (!chinfo[pier].pd_curves)
866                         return -ENOMEM;
867
868                 /* Fill pd_curves */
869                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
870
871                         u8 idx = pdgain_idx[pdg];
872                         struct ath5k_pdgain_info *pd =
873                                         &chinfo[pier].pd_curves[idx];
874
875                         /* Lowest gain curve (max power) */
876                         if (pdg == 0) {
877                                 /* One more point for better accuracy */
878                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
879
880                                 /* Allocate pd points for this curve */
881                                 pd->pd_step = kcalloc(pd->pd_points,
882                                                 sizeof(u8), GFP_KERNEL);
883
884                                 if (!pd->pd_step)
885                                         return -ENOMEM;
886
887                                 pd->pd_pwr = kcalloc(pd->pd_points,
888                                                 sizeof(s16), GFP_KERNEL);
889
890                                 if (!pd->pd_pwr)
891                                         return -ENOMEM;
892
893
894                                 /* Fill raw dataset
895                                  * (all power levels are in 0.25dB units) */
896                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
897                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
898
899                                 for (point = 1; point < pd->pd_points;
900                                 point++) {
901                                         /* Absolute values */
902                                         pd->pd_pwr[point] =
903                                                 pcinfo->pwr_x0[point];
904
905                                         /* Deltas */
906                                         pd->pd_step[point] =
907                                                 pd->pd_step[point - 1] +
908                                                 pcinfo->pcdac_x0[point];
909                                 }
910
911                                 /* Set min power for this frequency */
912                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
913
914                         /* Highest gain curve (min power) */
915                         } else if (pdg == 1) {
916
917                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
918
919                                 /* Allocate pd points for this curve */
920                                 pd->pd_step = kcalloc(pd->pd_points,
921                                                 sizeof(u8), GFP_KERNEL);
922
923                                 if (!pd->pd_step)
924                                         return -ENOMEM;
925
926                                 pd->pd_pwr = kcalloc(pd->pd_points,
927                                                 sizeof(s16), GFP_KERNEL);
928
929                                 if (!pd->pd_pwr)
930                                         return -ENOMEM;
931
932                                 /* Fill raw dataset
933                                  * (all power levels are in 0.25dB units) */
934                                 for (point = 0; point < pd->pd_points;
935                                 point++) {
936                                         /* Absolute values */
937                                         pd->pd_pwr[point] =
938                                                 pcinfo->pwr_x3[point];
939
940                                         /* Fixed points */
941                                         pd->pd_step[point] =
942                                                 pcinfo->pcdac_x3[point];
943                                 }
944
945                                 /* Since we have a higher gain curve
946                                  * override min power */
947                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
948                         }
949                 }
950         }
951
952         return 0;
953 }
954
955 /* Parse EEPROM data */
956 static int
957 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
958 {
959         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
960         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
961         struct ath5k_chan_pcal_info *gen_chan_info;
962         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
963         u32 offset;
964         u8 i, c;
965         u16 val;
966         int ret;
967         u8 pd_gains = 0;
968
969         /* Count how many curves we have and
970          * identify them (which one of the 4
971          * available curves we have on each count).
972          * Curves are stored from lower (x0) to
973          * higher (x3) gain */
974         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
975                 /* ee_x_gain[mode] is x gain mask */
976                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
977                         pdgain_idx[pd_gains++] = i;
978         }
979         ee->ee_pd_gains[mode] = pd_gains;
980
981         if (pd_gains == 0 || pd_gains > 2)
982                 return -EINVAL;
983
984         switch (mode) {
985         case AR5K_EEPROM_MODE_11A:
986                 /*
987                  * Read 5GHz EEPROM channels
988                  */
989                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
990                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
991
992                 offset += AR5K_EEPROM_GROUP2_OFFSET;
993                 gen_chan_info = ee->ee_pwr_cal_a;
994                 break;
995         case AR5K_EEPROM_MODE_11B:
996                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
997                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
998                         offset += AR5K_EEPROM_GROUP3_OFFSET;
999
1000                 /* NB: frequency piers parsed during mode init */
1001                 gen_chan_info = ee->ee_pwr_cal_b;
1002                 break;
1003         case AR5K_EEPROM_MODE_11G:
1004                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1005                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1006                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1007                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1008                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1009
1010                 /* NB: frequency piers parsed during mode init */
1011                 gen_chan_info = ee->ee_pwr_cal_g;
1012                 break;
1013         default:
1014                 return -EINVAL;
1015         }
1016
1017         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1018                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1019
1020                 /* Power values in quarter dB
1021                  * for the lower xpd gain curve
1022                  * (0 dBm -> higher output power) */
1023                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1024                         AR5K_EEPROM_READ(offset++, val);
1025                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1026                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1027                 }
1028
1029                 /* PCDAC steps
1030                  * corresponding to the above power
1031                  * measurements */
1032                 AR5K_EEPROM_READ(offset++, val);
1033                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1034                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1035                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1036
1037                 /* Power values in quarter dB
1038                  * for the higher xpd gain curve
1039                  * (18 dBm -> lower output power) */
1040                 AR5K_EEPROM_READ(offset++, val);
1041                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1042                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1043
1044                 AR5K_EEPROM_READ(offset++, val);
1045                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1046
1047                 /* PCDAC steps
1048                  * corresponding to the above power
1049                  * measurements (fixed) */
1050                 chan_pcal_info->pcdac_x3[0] = 20;
1051                 chan_pcal_info->pcdac_x3[1] = 35;
1052                 chan_pcal_info->pcdac_x3[2] = 63;
1053
1054                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1055                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1056
1057                         /* Last xpd0 power level is also channel maximum */
1058                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1059                 } else {
1060                         chan_pcal_info->pcdac_x0[0] = 1;
1061                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1062                 }
1063
1064         }
1065
1066         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1067 }
1068
1069
1070 /*
1071  * Read power calibration for RF2413 chips
1072  *
1073  * For RF2413 we have a Power to PDDAC table (Power Detector)
1074  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1075  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1076  * axis and looks like an exponential function like the RF5111 curve.
1077  *
1078  * To recreate the curves we read here the points and interpolate
1079  * later. Note that in most cases only 2 (higher and lower) curves are
1080  * used (like RF5112) but vendors have the oportunity to include all
1081  * 4 curves on eeprom. The final curve (higher power) has an extra
1082  * point for better accuracy like RF5112.
1083  */
1084
1085 /* For RF2413 power calibration data doesn't start on a fixed location and
1086  * if a mode is not supported, it's section is missing -not zeroed-.
1087  * So we need to calculate the starting offset for each section by using
1088  * these two functions */
1089
1090 /* Return the size of each section based on the mode and the number of pd
1091  * gains available (maximum 4). */
1092 static inline unsigned int
1093 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1094 {
1095         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1096         unsigned int sz;
1097
1098         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1099         sz *= ee->ee_n_piers[mode];
1100
1101         return sz;
1102 }
1103
1104 /* Return the starting offset for a section based on the modes supported
1105  * and each section's size. */
1106 static unsigned int
1107 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1108 {
1109         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1110
1111         switch(mode) {
1112         case AR5K_EEPROM_MODE_11G:
1113                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1114                         offset += ath5k_pdgains_size_2413(ee,
1115                                         AR5K_EEPROM_MODE_11B) +
1116                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1117                 /* fall through */
1118         case AR5K_EEPROM_MODE_11B:
1119                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1120                         offset += ath5k_pdgains_size_2413(ee,
1121                                         AR5K_EEPROM_MODE_11A) +
1122                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1123                 /* fall through */
1124         case AR5K_EEPROM_MODE_11A:
1125                 break;
1126         default:
1127                 break;
1128         }
1129
1130         return offset;
1131 }
1132
1133 /* Convert RF2413 specific data to generic raw data
1134  * used by interpolation code */
1135 static int
1136 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1137                                 struct ath5k_chan_pcal_info *chinfo)
1138 {
1139         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1140         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1141         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1142         unsigned int pier, pdg, point;
1143
1144         /* Fill raw data for each calibration pier */
1145         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1146
1147                 pcinfo = &chinfo[pier].rf2413_info;
1148
1149                 /* Allocate pd_curves for this cal pier */
1150                 chinfo[pier].pd_curves =
1151                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1152                                         sizeof(struct ath5k_pdgain_info),
1153                                         GFP_KERNEL);
1154
1155                 if (!chinfo[pier].pd_curves)
1156                         return -ENOMEM;
1157
1158                 /* Fill pd_curves */
1159                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1160
1161                         u8 idx = pdgain_idx[pdg];
1162                         struct ath5k_pdgain_info *pd =
1163                                         &chinfo[pier].pd_curves[idx];
1164
1165                         /* One more point for the highest power
1166                          * curve (lowest gain) */
1167                         if (pdg == ee->ee_pd_gains[mode] - 1)
1168                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1169                         else
1170                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1171
1172                         /* Allocate pd points for this curve */
1173                         pd->pd_step = kcalloc(pd->pd_points,
1174                                         sizeof(u8), GFP_KERNEL);
1175
1176                         if (!pd->pd_step)
1177                                 return -ENOMEM;
1178
1179                         pd->pd_pwr = kcalloc(pd->pd_points,
1180                                         sizeof(s16), GFP_KERNEL);
1181
1182                         if (!pd->pd_pwr)
1183                                 return -ENOMEM;
1184
1185                         /* Fill raw dataset
1186                          * convert all pwr levels to
1187                          * quarter dB for RF5112 combatibility */
1188                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1189                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1190
1191                         for (point = 1; point < pd->pd_points; point++) {
1192
1193                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1194                                         2 * pcinfo->pwr[pdg][point - 1];
1195
1196                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1197                                                 pcinfo->pddac[pdg][point - 1];
1198
1199                         }
1200
1201                         /* Highest gain curve -> min power */
1202                         if (pdg == 0)
1203                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1204
1205                         /* Lowest gain curve -> max power */
1206                         if (pdg == ee->ee_pd_gains[mode] - 1)
1207                                 chinfo[pier].max_pwr =
1208                                         pd->pd_pwr[pd->pd_points - 1];
1209                 }
1210         }
1211
1212         return 0;
1213 }
1214
1215 /* Parse EEPROM data */
1216 static int
1217 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1218 {
1219         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1220         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1221         struct ath5k_chan_pcal_info *chinfo;
1222         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1223         u32 offset;
1224         int idx, i, ret;
1225         u16 val;
1226         u8 pd_gains = 0;
1227
1228         /* Count how many curves we have and
1229          * identify them (which one of the 4
1230          * available curves we have on each count).
1231          * Curves are stored from higher to
1232          * lower gain so we go backwards */
1233         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1234                 /* ee_x_gain[mode] is x gain mask */
1235                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1236                         pdgain_idx[pd_gains++] = idx;
1237
1238         }
1239         ee->ee_pd_gains[mode] = pd_gains;
1240
1241         if (pd_gains == 0)
1242                 return -EINVAL;
1243
1244         offset = ath5k_cal_data_offset_2413(ee, mode);
1245         switch (mode) {
1246         case AR5K_EEPROM_MODE_11A:
1247                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1248                         return 0;
1249
1250                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1251                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1252                 chinfo = ee->ee_pwr_cal_a;
1253                 break;
1254         case AR5K_EEPROM_MODE_11B:
1255                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1256                         return 0;
1257
1258                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1259                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1260                 chinfo = ee->ee_pwr_cal_b;
1261                 break;
1262         case AR5K_EEPROM_MODE_11G:
1263                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1264                         return 0;
1265
1266                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1267                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1268                 chinfo = ee->ee_pwr_cal_g;
1269                 break;
1270         default:
1271                 return -EINVAL;
1272         }
1273
1274         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1275                 pcinfo = &chinfo[i].rf2413_info;
1276
1277                 /*
1278                  * Read pwr_i, pddac_i and the first
1279                  * 2 pd points (pwr, pddac)
1280                  */
1281                 AR5K_EEPROM_READ(offset++, val);
1282                 pcinfo->pwr_i[0] = val & 0x1f;
1283                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1284                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1285
1286                 AR5K_EEPROM_READ(offset++, val);
1287                 pcinfo->pddac[0][0] = val & 0x3f;
1288                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1289                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1290
1291                 AR5K_EEPROM_READ(offset++, val);
1292                 pcinfo->pwr[0][2] = val & 0xf;
1293                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1294
1295                 pcinfo->pwr[0][3] = 0;
1296                 pcinfo->pddac[0][3] = 0;
1297
1298                 if (pd_gains > 1) {
1299                         /*
1300                          * Pd gain 0 is not the last pd gain
1301                          * so it only has 2 pd points.
1302                          * Continue wih pd gain 1.
1303                          */
1304                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1305
1306                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1307                         AR5K_EEPROM_READ(offset++, val);
1308                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1309
1310                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1311                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1312
1313                         AR5K_EEPROM_READ(offset++, val);
1314                         pcinfo->pwr[1][1] = val & 0xf;
1315                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1316                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1317
1318                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1319                         AR5K_EEPROM_READ(offset++, val);
1320                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1321
1322                         pcinfo->pwr[1][3] = 0;
1323                         pcinfo->pddac[1][3] = 0;
1324                 } else if (pd_gains == 1) {
1325                         /*
1326                          * Pd gain 0 is the last one so
1327                          * read the extra point.
1328                          */
1329                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1330
1331                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1332                         AR5K_EEPROM_READ(offset++, val);
1333                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1334                 }
1335
1336                 /*
1337                  * Proceed with the other pd_gains
1338                  * as above.
1339                  */
1340                 if (pd_gains > 2) {
1341                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1342                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1343
1344                         AR5K_EEPROM_READ(offset++, val);
1345                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1346                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1347                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1348
1349                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1350                         AR5K_EEPROM_READ(offset++, val);
1351                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1352
1353                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1354                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1355
1356                         pcinfo->pwr[2][3] = 0;
1357                         pcinfo->pddac[2][3] = 0;
1358                 } else if (pd_gains == 2) {
1359                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1360                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1361                 }
1362
1363                 if (pd_gains > 3) {
1364                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1365                         AR5K_EEPROM_READ(offset++, val);
1366                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1367
1368                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1369                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1370                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1371
1372                         AR5K_EEPROM_READ(offset++, val);
1373                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1374                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1375                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1376
1377                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1378                         AR5K_EEPROM_READ(offset++, val);
1379                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1380
1381                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1382                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1383
1384                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1385                         AR5K_EEPROM_READ(offset++, val);
1386                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1387                 } else if (pd_gains == 3) {
1388                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1389                         AR5K_EEPROM_READ(offset++, val);
1390                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1391
1392                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1393                 }
1394         }
1395
1396         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1397 }
1398
1399
1400 /*
1401  * Read per rate target power (this is the maximum tx power
1402  * supported by the card). This info is used when setting
1403  * tx power, no matter the channel.
1404  *
1405  * This also works for v5 EEPROMs.
1406  */
1407 static int
1408 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1409 {
1410         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1411         struct ath5k_rate_pcal_info *rate_pcal_info;
1412         u8 *rate_target_pwr_num;
1413         u32 offset;
1414         u16 val;
1415         int ret, i;
1416
1417         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1418         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1419         switch (mode) {
1420         case AR5K_EEPROM_MODE_11A:
1421                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1422                 rate_pcal_info = ee->ee_rate_tpwr_a;
1423                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1424                 break;
1425         case AR5K_EEPROM_MODE_11B:
1426                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1427                 rate_pcal_info = ee->ee_rate_tpwr_b;
1428                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1429                 break;
1430         case AR5K_EEPROM_MODE_11G:
1431                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1432                 rate_pcal_info = ee->ee_rate_tpwr_g;
1433                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1434                 break;
1435         default:
1436                 return -EINVAL;
1437         }
1438
1439         /* Different freq mask for older eeproms (<= v3.2) */
1440         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1441                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1442                         AR5K_EEPROM_READ(offset++, val);
1443                         rate_pcal_info[i].freq =
1444                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1445
1446                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1447                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1448
1449                         AR5K_EEPROM_READ(offset++, val);
1450
1451                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1452                             val == 0) {
1453                                 (*rate_target_pwr_num) = i;
1454                                 break;
1455                         }
1456
1457                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1458                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1459                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1460                 }
1461         } else {
1462                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1463                         AR5K_EEPROM_READ(offset++, val);
1464                         rate_pcal_info[i].freq =
1465                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1466
1467                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1468                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1469
1470                         AR5K_EEPROM_READ(offset++, val);
1471
1472                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1473                             val == 0) {
1474                                 (*rate_target_pwr_num) = i;
1475                                 break;
1476                         }
1477
1478                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1479                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1480                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1481                 }
1482         }
1483
1484         return 0;
1485 }
1486
1487 /*
1488  * Read per channel calibration info from EEPROM
1489  *
1490  * This info is used to calibrate the baseband power table. Imagine
1491  * that for each channel there is a power curve that's hw specific
1492  * (depends on amplifier etc) and we try to "correct" this curve using
1493  * offests we pass on to phy chip (baseband -> before amplifier) so that
1494  * it can use accurate power values when setting tx power (takes amplifier's
1495  * performance on each channel into account).
1496  *
1497  * EEPROM provides us with the offsets for some pre-calibrated channels
1498  * and we have to interpolate to create the full table for these channels and
1499  * also the table for any channel.
1500  */
1501 static int
1502 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1503 {
1504         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1505         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1506         int mode;
1507         int err;
1508
1509         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1510                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1511                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1512         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1513                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1514                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1515         else
1516                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1517
1518
1519         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1520         mode++) {
1521                 err = read_pcal(ah, mode);
1522                 if (err)
1523                         return err;
1524
1525                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1526                 if (err < 0)
1527                         return err;
1528         }
1529
1530         return 0;
1531 }
1532
1533 static int
1534 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1535 {
1536         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1537         struct ath5k_chan_pcal_info *chinfo;
1538         u8 pier, pdg;
1539
1540         switch (mode) {
1541         case AR5K_EEPROM_MODE_11A:
1542                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1543                         return 0;
1544                 chinfo = ee->ee_pwr_cal_a;
1545                 break;
1546         case AR5K_EEPROM_MODE_11B:
1547                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1548                         return 0;
1549                 chinfo = ee->ee_pwr_cal_b;
1550                 break;
1551         case AR5K_EEPROM_MODE_11G:
1552                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1553                         return 0;
1554                 chinfo = ee->ee_pwr_cal_g;
1555                 break;
1556         default:
1557                 return -EINVAL;
1558         }
1559
1560         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1561                 if (!chinfo[pier].pd_curves)
1562                         continue;
1563
1564                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1565                         struct ath5k_pdgain_info *pd =
1566                                         &chinfo[pier].pd_curves[pdg];
1567
1568                         if (pd != NULL) {
1569                                 kfree(pd->pd_step);
1570                                 kfree(pd->pd_pwr);
1571                         }
1572                 }
1573
1574                 kfree(chinfo[pier].pd_curves);
1575         }
1576
1577         return 0;
1578 }
1579
1580 void
1581 ath5k_eeprom_detach(struct ath5k_hw *ah)
1582 {
1583         u8 mode;
1584
1585         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1586                 ath5k_eeprom_free_pcal_info(ah, mode);
1587 }
1588
1589 /* Read conformance test limits used for regulatory control */
1590 static int
1591 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1592 {
1593         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1594         struct ath5k_edge_power *rep;
1595         unsigned int fmask, pmask;
1596         unsigned int ctl_mode;
1597         int ret, i, j;
1598         u32 offset;
1599         u16 val;
1600
1601         pmask = AR5K_EEPROM_POWER_M;
1602         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1603         offset = AR5K_EEPROM_CTL(ee->ee_version);
1604         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1605         for (i = 0; i < ee->ee_ctls; i += 2) {
1606                 AR5K_EEPROM_READ(offset++, val);
1607                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1608                 ee->ee_ctl[i + 1] = val & 0xff;
1609         }
1610
1611         offset = AR5K_EEPROM_GROUP8_OFFSET;
1612         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1613                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1614                         AR5K_EEPROM_GROUP5_OFFSET;
1615         else
1616                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1617
1618         rep = ee->ee_ctl_pwr;
1619         for(i = 0; i < ee->ee_ctls; i++) {
1620                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1621                 case AR5K_CTL_11A:
1622                 case AR5K_CTL_TURBO:
1623                         ctl_mode = AR5K_EEPROM_MODE_11A;
1624                         break;
1625                 default:
1626                         ctl_mode = AR5K_EEPROM_MODE_11G;
1627                         break;
1628                 }
1629                 if (ee->ee_ctl[i] == 0) {
1630                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1631                                 offset += 8;
1632                         else
1633                                 offset += 7;
1634                         rep += AR5K_EEPROM_N_EDGES;
1635                         continue;
1636                 }
1637                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1638                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1639                                 AR5K_EEPROM_READ(offset++, val);
1640                                 rep[j].freq = (val >> 8) & fmask;
1641                                 rep[j + 1].freq = val & fmask;
1642                         }
1643                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1644                                 AR5K_EEPROM_READ(offset++, val);
1645                                 rep[j].edge = (val >> 8) & pmask;
1646                                 rep[j].flag = (val >> 14) & 1;
1647                                 rep[j + 1].edge = val & pmask;
1648                                 rep[j + 1].flag = (val >> 6) & 1;
1649                         }
1650                 } else {
1651                         AR5K_EEPROM_READ(offset++, val);
1652                         rep[0].freq = (val >> 9) & fmask;
1653                         rep[1].freq = (val >> 2) & fmask;
1654                         rep[2].freq = (val << 5) & fmask;
1655
1656                         AR5K_EEPROM_READ(offset++, val);
1657                         rep[2].freq |= (val >> 11) & 0x1f;
1658                         rep[3].freq = (val >> 4) & fmask;
1659                         rep[4].freq = (val << 3) & fmask;
1660
1661                         AR5K_EEPROM_READ(offset++, val);
1662                         rep[4].freq |= (val >> 13) & 0x7;
1663                         rep[5].freq = (val >> 6) & fmask;
1664                         rep[6].freq = (val << 1) & fmask;
1665
1666                         AR5K_EEPROM_READ(offset++, val);
1667                         rep[6].freq |= (val >> 15) & 0x1;
1668                         rep[7].freq = (val >> 8) & fmask;
1669
1670                         rep[0].edge = (val >> 2) & pmask;
1671                         rep[1].edge = (val << 4) & pmask;
1672
1673                         AR5K_EEPROM_READ(offset++, val);
1674                         rep[1].edge |= (val >> 12) & 0xf;
1675                         rep[2].edge = (val >> 6) & pmask;
1676                         rep[3].edge = val & pmask;
1677
1678                         AR5K_EEPROM_READ(offset++, val);
1679                         rep[4].edge = (val >> 10) & pmask;
1680                         rep[5].edge = (val >> 4) & pmask;
1681                         rep[6].edge = (val << 2) & pmask;
1682
1683                         AR5K_EEPROM_READ(offset++, val);
1684                         rep[6].edge |= (val >> 14) & 0x3;
1685                         rep[7].edge = (val >> 8) & pmask;
1686                 }
1687                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1688                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1689                                 rep[j].freq, ctl_mode);
1690                 }
1691                 rep += AR5K_EEPROM_N_EDGES;
1692         }
1693
1694         return 0;
1695 }
1696
1697
1698 /*
1699  * Initialize eeprom power tables
1700  */
1701 int
1702 ath5k_eeprom_init(struct ath5k_hw *ah)
1703 {
1704         int err;
1705
1706         err = ath5k_eeprom_init_header(ah);
1707         if (err < 0)
1708                 return err;
1709
1710         err = ath5k_eeprom_init_modes(ah);
1711         if (err < 0)
1712                 return err;
1713
1714         err = ath5k_eeprom_read_pcal_info(ah);
1715         if (err < 0)
1716                 return err;
1717
1718         err = ath5k_eeprom_read_ctl_info(ah);
1719         if (err < 0)
1720                 return err;
1721
1722         return 0;
1723 }
1724
1725 /*
1726  * Read the MAC address from eeprom
1727  */
1728 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1729 {
1730         u8 mac_d[ETH_ALEN] = {};
1731         u32 total, offset;
1732         u16 data;
1733         int octet, ret;
1734
1735         ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1736         if (ret)
1737                 return ret;
1738
1739         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1740                 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1741                 if (ret)
1742                         return ret;
1743
1744                 total += data;
1745                 mac_d[octet + 1] = data & 0xff;
1746                 mac_d[octet] = data >> 8;
1747                 octet += 2;
1748         }
1749
1750         if (!total || total == 3 * 0xffff)
1751                 return -EINVAL;
1752
1753         memcpy(mac, mac_d, ETH_ALEN);
1754
1755         return 0;
1756 }
1757
1758 bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1759 {
1760         u16 data;
1761
1762         ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1763
1764         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1765                 return true;
1766         else
1767                 return false;
1768 }
1769