Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[pandora-kernel.git] / drivers / net / wan / hdlc_fr.c
1 /*
2  * Generic HDLC support routines for Linux
3  * Frame Relay support
4  *
5  * Copyright (C) 1999 - 2006 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  *
11
12             Theory of PVC state
13
14  DCE mode:
15
16  (exist,new) -> 0,0 when "PVC create" or if "link unreliable"
17          0,x -> 1,1 if "link reliable" when sending FULL STATUS
18          1,1 -> 1,0 if received FULL STATUS ACK
19
20  (active)    -> 0 when "ifconfig PVC down" or "link unreliable" or "PVC create"
21              -> 1 when "PVC up" and (exist,new) = 1,0
22
23  DTE mode:
24  (exist,new,active) = FULL STATUS if "link reliable"
25                     = 0, 0, 0 if "link unreliable"
26  No LMI:
27  active = open and "link reliable"
28  exist = new = not used
29
30  CCITT LMI: ITU-T Q.933 Annex A
31  ANSI LMI: ANSI T1.617 Annex D
32  CISCO LMI: the original, aka "Gang of Four" LMI
33
34 */
35
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/poll.h>
40 #include <linux/errno.h>
41 #include <linux/if_arp.h>
42 #include <linux/init.h>
43 #include <linux/skbuff.h>
44 #include <linux/pkt_sched.h>
45 #include <linux/inetdevice.h>
46 #include <linux/lapb.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/etherdevice.h>
49 #include <linux/hdlc.h>
50
51 #undef DEBUG_PKT
52 #undef DEBUG_ECN
53 #undef DEBUG_LINK
54 #undef DEBUG_PROTO
55 #undef DEBUG_PVC
56
57 #define FR_UI                   0x03
58 #define FR_PAD                  0x00
59
60 #define NLPID_IP                0xCC
61 #define NLPID_IPV6              0x8E
62 #define NLPID_SNAP              0x80
63 #define NLPID_PAD               0x00
64 #define NLPID_CCITT_ANSI_LMI    0x08
65 #define NLPID_CISCO_LMI         0x09
66
67
68 #define LMI_CCITT_ANSI_DLCI        0 /* LMI DLCI */
69 #define LMI_CISCO_DLCI          1023
70
71 #define LMI_CALLREF             0x00 /* Call Reference */
72 #define LMI_ANSI_LOCKSHIFT      0x95 /* ANSI locking shift */
73 #define LMI_ANSI_CISCO_REPTYPE  0x01 /* report type */
74 #define LMI_CCITT_REPTYPE       0x51
75 #define LMI_ANSI_CISCO_ALIVE    0x03 /* keep alive */
76 #define LMI_CCITT_ALIVE         0x53
77 #define LMI_ANSI_CISCO_PVCSTAT  0x07 /* PVC status */
78 #define LMI_CCITT_PVCSTAT       0x57
79
80 #define LMI_FULLREP             0x00 /* full report  */
81 #define LMI_INTEGRITY           0x01 /* link integrity report */
82 #define LMI_SINGLE              0x02 /* single PVC report */
83
84 #define LMI_STATUS_ENQUIRY      0x75
85 #define LMI_STATUS              0x7D /* reply */
86
87 #define LMI_REPT_LEN               1 /* report type element length */
88 #define LMI_INTEG_LEN              2 /* link integrity element length */
89
90 #define LMI_CCITT_CISCO_LENGTH    13 /* LMI frame lengths */
91 #define LMI_ANSI_LENGTH           14
92
93
94 typedef struct {
95 #if defined(__LITTLE_ENDIAN_BITFIELD)
96         unsigned ea1:   1;
97         unsigned cr:    1;
98         unsigned dlcih: 6;
99   
100         unsigned ea2:   1;
101         unsigned de:    1;
102         unsigned becn:  1;
103         unsigned fecn:  1;
104         unsigned dlcil: 4;
105 #else
106         unsigned dlcih: 6;
107         unsigned cr:    1;
108         unsigned ea1:   1;
109
110         unsigned dlcil: 4;
111         unsigned fecn:  1;
112         unsigned becn:  1;
113         unsigned de:    1;
114         unsigned ea2:   1;
115 #endif
116 }__attribute__ ((packed)) fr_hdr;
117
118
119 typedef struct pvc_device_struct {
120         struct net_device *frad;
121         struct net_device *main;
122         struct net_device *ether;       /* bridged Ethernet interface   */
123         struct pvc_device_struct *next; /* Sorted in ascending DLCI order */
124         int dlci;
125         int open_count;
126
127         struct {
128                 unsigned int new: 1;
129                 unsigned int active: 1;
130                 unsigned int exist: 1;
131                 unsigned int deleted: 1;
132                 unsigned int fecn: 1;
133                 unsigned int becn: 1;
134                 unsigned int bandwidth; /* Cisco LMI reporting only */
135         }state;
136 }pvc_device;
137
138 struct frad_state {
139         fr_proto settings;
140         pvc_device *first_pvc;
141         int dce_pvc_count;
142
143         struct timer_list timer;
144         unsigned long last_poll;
145         int reliable;
146         int dce_changed;
147         int request;
148         int fullrep_sent;
149         u32 last_errors; /* last errors bit list */
150         u8 n391cnt;
151         u8 txseq; /* TX sequence number */
152         u8 rxseq; /* RX sequence number */
153 };
154
155
156 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr);
157
158
159 static inline u16 q922_to_dlci(u8 *hdr)
160 {
161         return ((hdr[0] & 0xFC) << 2) | ((hdr[1] & 0xF0) >> 4);
162 }
163
164
165 static inline void dlci_to_q922(u8 *hdr, u16 dlci)
166 {
167         hdr[0] = (dlci >> 2) & 0xFC;
168         hdr[1] = ((dlci << 4) & 0xF0) | 0x01;
169 }
170
171
172 static inline struct frad_state* state(hdlc_device *hdlc)
173 {
174         return(struct frad_state *)(hdlc->state);
175 }
176
177
178 static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci)
179 {
180         pvc_device *pvc = state(hdlc)->first_pvc;
181
182         while (pvc) {
183                 if (pvc->dlci == dlci)
184                         return pvc;
185                 if (pvc->dlci > dlci)
186                         return NULL; /* the listed is sorted */
187                 pvc = pvc->next;
188         }
189
190         return NULL;
191 }
192
193
194 static pvc_device* add_pvc(struct net_device *dev, u16 dlci)
195 {
196         hdlc_device *hdlc = dev_to_hdlc(dev);
197         pvc_device *pvc, **pvc_p = &state(hdlc)->first_pvc;
198
199         while (*pvc_p) {
200                 if ((*pvc_p)->dlci == dlci)
201                         return *pvc_p;
202                 if ((*pvc_p)->dlci > dlci)
203                         break;  /* the list is sorted */
204                 pvc_p = &(*pvc_p)->next;
205         }
206
207         pvc = kzalloc(sizeof(pvc_device), GFP_ATOMIC);
208 #ifdef DEBUG_PVC
209         printk(KERN_DEBUG "add_pvc: allocated pvc %p, frad %p\n", pvc, dev);
210 #endif
211         if (!pvc)
212                 return NULL;
213
214         pvc->dlci = dlci;
215         pvc->frad = dev;
216         pvc->next = *pvc_p;     /* Put it in the chain */
217         *pvc_p = pvc;
218         return pvc;
219 }
220
221
222 static inline int pvc_is_used(pvc_device *pvc)
223 {
224         return pvc->main || pvc->ether;
225 }
226
227
228 static inline void pvc_carrier(int on, pvc_device *pvc)
229 {
230         if (on) {
231                 if (pvc->main)
232                         if (!netif_carrier_ok(pvc->main))
233                                 netif_carrier_on(pvc->main);
234                 if (pvc->ether)
235                         if (!netif_carrier_ok(pvc->ether))
236                                 netif_carrier_on(pvc->ether);
237         } else {
238                 if (pvc->main)
239                         if (netif_carrier_ok(pvc->main))
240                                 netif_carrier_off(pvc->main);
241                 if (pvc->ether)
242                         if (netif_carrier_ok(pvc->ether))
243                                 netif_carrier_off(pvc->ether);
244         }
245 }
246
247
248 static inline void delete_unused_pvcs(hdlc_device *hdlc)
249 {
250         pvc_device **pvc_p = &state(hdlc)->first_pvc;
251
252         while (*pvc_p) {
253                 if (!pvc_is_used(*pvc_p)) {
254                         pvc_device *pvc = *pvc_p;
255 #ifdef DEBUG_PVC
256                         printk(KERN_DEBUG "freeing unused pvc: %p\n", pvc);
257 #endif
258                         *pvc_p = pvc->next;
259                         kfree(pvc);
260                         continue;
261                 }
262                 pvc_p = &(*pvc_p)->next;
263         }
264 }
265
266
267 static inline struct net_device** get_dev_p(pvc_device *pvc, int type)
268 {
269         if (type == ARPHRD_ETHER)
270                 return &pvc->ether;
271         else
272                 return &pvc->main;
273 }
274
275
276 static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
277 {
278         u16 head_len;
279         struct sk_buff *skb = *skb_p;
280
281         switch (skb->protocol) {
282         case __constant_htons(NLPID_CCITT_ANSI_LMI):
283                 head_len = 4;
284                 skb_push(skb, head_len);
285                 skb->data[3] = NLPID_CCITT_ANSI_LMI;
286                 break;
287
288         case __constant_htons(NLPID_CISCO_LMI):
289                 head_len = 4;
290                 skb_push(skb, head_len);
291                 skb->data[3] = NLPID_CISCO_LMI;
292                 break;
293
294         case __constant_htons(ETH_P_IP):
295                 head_len = 4;
296                 skb_push(skb, head_len);
297                 skb->data[3] = NLPID_IP;
298                 break;
299
300         case __constant_htons(ETH_P_IPV6):
301                 head_len = 4;
302                 skb_push(skb, head_len);
303                 skb->data[3] = NLPID_IPV6;
304                 break;
305
306         case __constant_htons(ETH_P_802_3):
307                 head_len = 10;
308                 if (skb_headroom(skb) < head_len) {
309                         struct sk_buff *skb2 = skb_realloc_headroom(skb,
310                                                                     head_len);
311                         if (!skb2)
312                                 return -ENOBUFS;
313                         dev_kfree_skb(skb);
314                         skb = *skb_p = skb2;
315                 }
316                 skb_push(skb, head_len);
317                 skb->data[3] = FR_PAD;
318                 skb->data[4] = NLPID_SNAP;
319                 skb->data[5] = FR_PAD;
320                 skb->data[6] = 0x80;
321                 skb->data[7] = 0xC2;
322                 skb->data[8] = 0x00;
323                 skb->data[9] = 0x07; /* bridged Ethernet frame w/out FCS */
324                 break;
325
326         default:
327                 head_len = 10;
328                 skb_push(skb, head_len);
329                 skb->data[3] = FR_PAD;
330                 skb->data[4] = NLPID_SNAP;
331                 skb->data[5] = FR_PAD;
332                 skb->data[6] = FR_PAD;
333                 skb->data[7] = FR_PAD;
334                 *(__be16*)(skb->data + 8) = skb->protocol;
335         }
336
337         dlci_to_q922(skb->data, dlci);
338         skb->data[2] = FR_UI;
339         return 0;
340 }
341
342
343
344 static int pvc_open(struct net_device *dev)
345 {
346         pvc_device *pvc = dev->priv;
347
348         if ((pvc->frad->flags & IFF_UP) == 0)
349                 return -EIO;  /* Frad must be UP in order to activate PVC */
350
351         if (pvc->open_count++ == 0) {
352                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
353                 if (state(hdlc)->settings.lmi == LMI_NONE)
354                         pvc->state.active = netif_carrier_ok(pvc->frad);
355
356                 pvc_carrier(pvc->state.active, pvc);
357                 state(hdlc)->dce_changed = 1;
358         }
359         return 0;
360 }
361
362
363
364 static int pvc_close(struct net_device *dev)
365 {
366         pvc_device *pvc = dev->priv;
367
368         if (--pvc->open_count == 0) {
369                 hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
370                 if (state(hdlc)->settings.lmi == LMI_NONE)
371                         pvc->state.active = 0;
372
373                 if (state(hdlc)->settings.dce) {
374                         state(hdlc)->dce_changed = 1;
375                         pvc->state.active = 0;
376                 }
377         }
378         return 0;
379 }
380
381
382
383 static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
384 {
385         pvc_device *pvc = dev->priv;
386         fr_proto_pvc_info info;
387
388         if (ifr->ifr_settings.type == IF_GET_PROTO) {
389                 if (dev->type == ARPHRD_ETHER)
390                         ifr->ifr_settings.type = IF_PROTO_FR_ETH_PVC;
391                 else
392                         ifr->ifr_settings.type = IF_PROTO_FR_PVC;
393
394                 if (ifr->ifr_settings.size < sizeof(info)) {
395                         /* data size wanted */
396                         ifr->ifr_settings.size = sizeof(info);
397                         return -ENOBUFS;
398                 }
399
400                 info.dlci = pvc->dlci;
401                 memcpy(info.master, pvc->frad->name, IFNAMSIZ);
402                 if (copy_to_user(ifr->ifr_settings.ifs_ifsu.fr_pvc_info,
403                                  &info, sizeof(info)))
404                         return -EFAULT;
405                 return 0;
406         }
407
408         return -EINVAL;
409 }
410
411 static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
412 {
413         pvc_device *pvc = dev->priv;
414
415         if (pvc->state.active) {
416                 if (dev->type == ARPHRD_ETHER) {
417                         int pad = ETH_ZLEN - skb->len;
418                         if (pad > 0) { /* Pad the frame with zeros */
419                                 int len = skb->len;
420                                 if (skb_tailroom(skb) < pad)
421                                         if (pskb_expand_head(skb, 0, pad,
422                                                              GFP_ATOMIC)) {
423                                                 dev->stats.tx_dropped++;
424                                                 dev_kfree_skb(skb);
425                                                 return 0;
426                                         }
427                                 skb_put(skb, pad);
428                                 memset(skb->data + len, 0, pad);
429                         }
430                         skb->protocol = __constant_htons(ETH_P_802_3);
431                 }
432                 if (!fr_hard_header(&skb, pvc->dlci)) {
433                         dev->stats.tx_bytes += skb->len;
434                         dev->stats.tx_packets++;
435                         if (pvc->state.fecn) /* TX Congestion counter */
436                                 dev->stats.tx_compressed++;
437                         skb->dev = pvc->frad;
438                         dev_queue_xmit(skb);
439                         return 0;
440                 }
441         }
442
443         dev->stats.tx_dropped++;
444         dev_kfree_skb(skb);
445         return 0;
446 }
447
448
449
450 static int pvc_change_mtu(struct net_device *dev, int new_mtu)
451 {
452         if ((new_mtu < 68) || (new_mtu > HDLC_MAX_MTU))
453                 return -EINVAL;
454         dev->mtu = new_mtu;
455         return 0;
456 }
457
458
459
460 static inline void fr_log_dlci_active(pvc_device *pvc)
461 {
462         printk(KERN_INFO "%s: DLCI %d [%s%s%s]%s %s\n",
463                pvc->frad->name,
464                pvc->dlci,
465                pvc->main ? pvc->main->name : "",
466                pvc->main && pvc->ether ? " " : "",
467                pvc->ether ? pvc->ether->name : "",
468                pvc->state.new ? " new" : "",
469                !pvc->state.exist ? "deleted" :
470                pvc->state.active ? "active" : "inactive");
471 }
472
473
474
475 static inline u8 fr_lmi_nextseq(u8 x)
476 {
477         x++;
478         return x ? x : 1;
479 }
480
481
482 static void fr_lmi_send(struct net_device *dev, int fullrep)
483 {
484         hdlc_device *hdlc = dev_to_hdlc(dev);
485         struct sk_buff *skb;
486         pvc_device *pvc = state(hdlc)->first_pvc;
487         int lmi = state(hdlc)->settings.lmi;
488         int dce = state(hdlc)->settings.dce;
489         int len = lmi == LMI_ANSI ? LMI_ANSI_LENGTH : LMI_CCITT_CISCO_LENGTH;
490         int stat_len = (lmi == LMI_CISCO) ? 6 : 3;
491         u8 *data;
492         int i = 0;
493
494         if (dce && fullrep) {
495                 len += state(hdlc)->dce_pvc_count * (2 + stat_len);
496                 if (len > HDLC_MAX_MRU) {
497                         printk(KERN_WARNING "%s: Too many PVCs while sending "
498                                "LMI full report\n", dev->name);
499                         return;
500                 }
501         }
502
503         skb = dev_alloc_skb(len);
504         if (!skb) {
505                 printk(KERN_WARNING "%s: Memory squeeze on fr_lmi_send()\n",
506                        dev->name);
507                 return;
508         }
509         memset(skb->data, 0, len);
510         skb_reserve(skb, 4);
511         if (lmi == LMI_CISCO) {
512                 skb->protocol = __constant_htons(NLPID_CISCO_LMI);
513                 fr_hard_header(&skb, LMI_CISCO_DLCI);
514         } else {
515                 skb->protocol = __constant_htons(NLPID_CCITT_ANSI_LMI);
516                 fr_hard_header(&skb, LMI_CCITT_ANSI_DLCI);
517         }
518         data = skb_tail_pointer(skb);
519         data[i++] = LMI_CALLREF;
520         data[i++] = dce ? LMI_STATUS : LMI_STATUS_ENQUIRY;
521         if (lmi == LMI_ANSI)
522                 data[i++] = LMI_ANSI_LOCKSHIFT;
523         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
524                 LMI_ANSI_CISCO_REPTYPE;
525         data[i++] = LMI_REPT_LEN;
526         data[i++] = fullrep ? LMI_FULLREP : LMI_INTEGRITY;
527         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_ALIVE : LMI_ANSI_CISCO_ALIVE;
528         data[i++] = LMI_INTEG_LEN;
529         data[i++] = state(hdlc)->txseq =
530                 fr_lmi_nextseq(state(hdlc)->txseq);
531         data[i++] = state(hdlc)->rxseq;
532
533         if (dce && fullrep) {
534                 while (pvc) {
535                         data[i++] = lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
536                                 LMI_ANSI_CISCO_PVCSTAT;
537                         data[i++] = stat_len;
538
539                         /* LMI start/restart */
540                         if (state(hdlc)->reliable && !pvc->state.exist) {
541                                 pvc->state.exist = pvc->state.new = 1;
542                                 fr_log_dlci_active(pvc);
543                         }
544
545                         /* ifconfig PVC up */
546                         if (pvc->open_count && !pvc->state.active &&
547                             pvc->state.exist && !pvc->state.new) {
548                                 pvc_carrier(1, pvc);
549                                 pvc->state.active = 1;
550                                 fr_log_dlci_active(pvc);
551                         }
552
553                         if (lmi == LMI_CISCO) {
554                                 data[i] = pvc->dlci >> 8;
555                                 data[i + 1] = pvc->dlci & 0xFF;
556                         } else {
557                                 data[i] = (pvc->dlci >> 4) & 0x3F;
558                                 data[i + 1] = ((pvc->dlci << 3) & 0x78) | 0x80;
559                                 data[i + 2] = 0x80;
560                         }
561
562                         if (pvc->state.new)
563                                 data[i + 2] |= 0x08;
564                         else if (pvc->state.active)
565                                 data[i + 2] |= 0x02;
566
567                         i += stat_len;
568                         pvc = pvc->next;
569                 }
570         }
571
572         skb_put(skb, i);
573         skb->priority = TC_PRIO_CONTROL;
574         skb->dev = dev;
575         skb_reset_network_header(skb);
576
577         dev_queue_xmit(skb);
578 }
579
580
581
582 static void fr_set_link_state(int reliable, struct net_device *dev)
583 {
584         hdlc_device *hdlc = dev_to_hdlc(dev);
585         pvc_device *pvc = state(hdlc)->first_pvc;
586
587         state(hdlc)->reliable = reliable;
588         if (reliable) {
589                 netif_dormant_off(dev);
590                 state(hdlc)->n391cnt = 0; /* Request full status */
591                 state(hdlc)->dce_changed = 1;
592
593                 if (state(hdlc)->settings.lmi == LMI_NONE) {
594                         while (pvc) {   /* Activate all PVCs */
595                                 pvc_carrier(1, pvc);
596                                 pvc->state.exist = pvc->state.active = 1;
597                                 pvc->state.new = 0;
598                                 pvc = pvc->next;
599                         }
600                 }
601         } else {
602                 netif_dormant_on(dev);
603                 while (pvc) {           /* Deactivate all PVCs */
604                         pvc_carrier(0, pvc);
605                         pvc->state.exist = pvc->state.active = 0;
606                         pvc->state.new = 0;
607                         if (!state(hdlc)->settings.dce)
608                                 pvc->state.bandwidth = 0;
609                         pvc = pvc->next;
610                 }
611         }
612 }
613
614
615 static void fr_timer(unsigned long arg)
616 {
617         struct net_device *dev = (struct net_device *)arg;
618         hdlc_device *hdlc = dev_to_hdlc(dev);
619         int i, cnt = 0, reliable;
620         u32 list;
621
622         if (state(hdlc)->settings.dce) {
623                 reliable = state(hdlc)->request &&
624                         time_before(jiffies, state(hdlc)->last_poll +
625                                     state(hdlc)->settings.t392 * HZ);
626                 state(hdlc)->request = 0;
627         } else {
628                 state(hdlc)->last_errors <<= 1; /* Shift the list */
629                 if (state(hdlc)->request) {
630                         if (state(hdlc)->reliable)
631                                 printk(KERN_INFO "%s: No LMI status reply "
632                                        "received\n", dev->name);
633                         state(hdlc)->last_errors |= 1;
634                 }
635
636                 list = state(hdlc)->last_errors;
637                 for (i = 0; i < state(hdlc)->settings.n393; i++, list >>= 1)
638                         cnt += (list & 1);      /* errors count */
639
640                 reliable = (cnt < state(hdlc)->settings.n392);
641         }
642
643         if (state(hdlc)->reliable != reliable) {
644                 printk(KERN_INFO "%s: Link %sreliable\n", dev->name,
645                        reliable ? "" : "un");
646                 fr_set_link_state(reliable, dev);
647         }
648
649         if (state(hdlc)->settings.dce)
650                 state(hdlc)->timer.expires = jiffies +
651                         state(hdlc)->settings.t392 * HZ;
652         else {
653                 if (state(hdlc)->n391cnt)
654                         state(hdlc)->n391cnt--;
655
656                 fr_lmi_send(dev, state(hdlc)->n391cnt == 0);
657
658                 state(hdlc)->last_poll = jiffies;
659                 state(hdlc)->request = 1;
660                 state(hdlc)->timer.expires = jiffies +
661                         state(hdlc)->settings.t391 * HZ;
662         }
663
664         state(hdlc)->timer.function = fr_timer;
665         state(hdlc)->timer.data = arg;
666         add_timer(&state(hdlc)->timer);
667 }
668
669
670 static int fr_lmi_recv(struct net_device *dev, struct sk_buff *skb)
671 {
672         hdlc_device *hdlc = dev_to_hdlc(dev);
673         pvc_device *pvc;
674         u8 rxseq, txseq;
675         int lmi = state(hdlc)->settings.lmi;
676         int dce = state(hdlc)->settings.dce;
677         int stat_len = (lmi == LMI_CISCO) ? 6 : 3, reptype, error, no_ram, i;
678
679         if (skb->len < (lmi == LMI_ANSI ? LMI_ANSI_LENGTH :
680                         LMI_CCITT_CISCO_LENGTH)) {
681                 printk(KERN_INFO "%s: Short LMI frame\n", dev->name);
682                 return 1;
683         }
684
685         if (skb->data[3] != (lmi == LMI_CISCO ? NLPID_CISCO_LMI :
686                              NLPID_CCITT_ANSI_LMI)) {
687                 printk(KERN_INFO "%s: Received non-LMI frame with LMI DLCI\n",
688                        dev->name);
689                 return 1;
690         }
691
692         if (skb->data[4] != LMI_CALLREF) {
693                 printk(KERN_INFO "%s: Invalid LMI Call reference (0x%02X)\n",
694                        dev->name, skb->data[4]);
695                 return 1;
696         }
697
698         if (skb->data[5] != (dce ? LMI_STATUS_ENQUIRY : LMI_STATUS)) {
699                 printk(KERN_INFO "%s: Invalid LMI Message type (0x%02X)\n",
700                        dev->name, skb->data[5]);
701                 return 1;
702         }
703
704         if (lmi == LMI_ANSI) {
705                 if (skb->data[6] != LMI_ANSI_LOCKSHIFT) {
706                         printk(KERN_INFO "%s: Not ANSI locking shift in LMI"
707                                " message (0x%02X)\n", dev->name, skb->data[6]);
708                         return 1;
709                 }
710                 i = 7;
711         } else
712                 i = 6;
713
714         if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_REPTYPE :
715                              LMI_ANSI_CISCO_REPTYPE)) {
716                 printk(KERN_INFO "%s: Not an LMI Report type IE (0x%02X)\n",
717                        dev->name, skb->data[i]);
718                 return 1;
719         }
720
721         if (skb->data[++i] != LMI_REPT_LEN) {
722                 printk(KERN_INFO "%s: Invalid LMI Report type IE length"
723                        " (%u)\n", dev->name, skb->data[i]);
724                 return 1;
725         }
726
727         reptype = skb->data[++i];
728         if (reptype != LMI_INTEGRITY && reptype != LMI_FULLREP) {
729                 printk(KERN_INFO "%s: Unsupported LMI Report type (0x%02X)\n",
730                        dev->name, reptype);
731                 return 1;
732         }
733
734         if (skb->data[++i] != (lmi == LMI_CCITT ? LMI_CCITT_ALIVE :
735                                LMI_ANSI_CISCO_ALIVE)) {
736                 printk(KERN_INFO "%s: Not an LMI Link integrity verification"
737                        " IE (0x%02X)\n", dev->name, skb->data[i]);
738                 return 1;
739         }
740
741         if (skb->data[++i] != LMI_INTEG_LEN) {
742                 printk(KERN_INFO "%s: Invalid LMI Link integrity verification"
743                        " IE length (%u)\n", dev->name, skb->data[i]);
744                 return 1;
745         }
746         i++;
747
748         state(hdlc)->rxseq = skb->data[i++]; /* TX sequence from peer */
749         rxseq = skb->data[i++]; /* Should confirm our sequence */
750
751         txseq = state(hdlc)->txseq;
752
753         if (dce)
754                 state(hdlc)->last_poll = jiffies;
755
756         error = 0;
757         if (!state(hdlc)->reliable)
758                 error = 1;
759
760         if (rxseq == 0 || rxseq != txseq) { /* Ask for full report next time */
761                 state(hdlc)->n391cnt = 0;
762                 error = 1;
763         }
764
765         if (dce) {
766                 if (state(hdlc)->fullrep_sent && !error) {
767 /* Stop sending full report - the last one has been confirmed by DTE */
768                         state(hdlc)->fullrep_sent = 0;
769                         pvc = state(hdlc)->first_pvc;
770                         while (pvc) {
771                                 if (pvc->state.new) {
772                                         pvc->state.new = 0;
773
774 /* Tell DTE that new PVC is now active */
775                                         state(hdlc)->dce_changed = 1;
776                                 }
777                                 pvc = pvc->next;
778                         }
779                 }
780
781                 if (state(hdlc)->dce_changed) {
782                         reptype = LMI_FULLREP;
783                         state(hdlc)->fullrep_sent = 1;
784                         state(hdlc)->dce_changed = 0;
785                 }
786
787                 state(hdlc)->request = 1; /* got request */
788                 fr_lmi_send(dev, reptype == LMI_FULLREP ? 1 : 0);
789                 return 0;
790         }
791
792         /* DTE */
793
794         state(hdlc)->request = 0; /* got response, no request pending */
795
796         if (error)
797                 return 0;
798
799         if (reptype != LMI_FULLREP)
800                 return 0;
801
802         pvc = state(hdlc)->first_pvc;
803
804         while (pvc) {
805                 pvc->state.deleted = 1;
806                 pvc = pvc->next;
807         }
808
809         no_ram = 0;
810         while (skb->len >= i + 2 + stat_len) {
811                 u16 dlci;
812                 u32 bw;
813                 unsigned int active, new;
814
815                 if (skb->data[i] != (lmi == LMI_CCITT ? LMI_CCITT_PVCSTAT :
816                                        LMI_ANSI_CISCO_PVCSTAT)) {
817                         printk(KERN_INFO "%s: Not an LMI PVC status IE"
818                                " (0x%02X)\n", dev->name, skb->data[i]);
819                         return 1;
820                 }
821
822                 if (skb->data[++i] != stat_len) {
823                         printk(KERN_INFO "%s: Invalid LMI PVC status IE length"
824                                " (%u)\n", dev->name, skb->data[i]);
825                         return 1;
826                 }
827                 i++;
828
829                 new = !! (skb->data[i + 2] & 0x08);
830                 active = !! (skb->data[i + 2] & 0x02);
831                 if (lmi == LMI_CISCO) {
832                         dlci = (skb->data[i] << 8) | skb->data[i + 1];
833                         bw = (skb->data[i + 3] << 16) |
834                                 (skb->data[i + 4] << 8) |
835                                 (skb->data[i + 5]);
836                 } else {
837                         dlci = ((skb->data[i] & 0x3F) << 4) |
838                                 ((skb->data[i + 1] & 0x78) >> 3);
839                         bw = 0;
840                 }
841
842                 pvc = add_pvc(dev, dlci);
843
844                 if (!pvc && !no_ram) {
845                         printk(KERN_WARNING
846                                "%s: Memory squeeze on fr_lmi_recv()\n",
847                                dev->name);
848                         no_ram = 1;
849                 }
850
851                 if (pvc) {
852                         pvc->state.exist = 1;
853                         pvc->state.deleted = 0;
854                         if (active != pvc->state.active ||
855                             new != pvc->state.new ||
856                             bw != pvc->state.bandwidth ||
857                             !pvc->state.exist) {
858                                 pvc->state.new = new;
859                                 pvc->state.active = active;
860                                 pvc->state.bandwidth = bw;
861                                 pvc_carrier(active, pvc);
862                                 fr_log_dlci_active(pvc);
863                         }
864                 }
865
866                 i += stat_len;
867         }
868
869         pvc = state(hdlc)->first_pvc;
870
871         while (pvc) {
872                 if (pvc->state.deleted && pvc->state.exist) {
873                         pvc_carrier(0, pvc);
874                         pvc->state.active = pvc->state.new = 0;
875                         pvc->state.exist = 0;
876                         pvc->state.bandwidth = 0;
877                         fr_log_dlci_active(pvc);
878                 }
879                 pvc = pvc->next;
880         }
881
882         /* Next full report after N391 polls */
883         state(hdlc)->n391cnt = state(hdlc)->settings.n391;
884
885         return 0;
886 }
887
888
889 static int fr_rx(struct sk_buff *skb)
890 {
891         struct net_device *frad = skb->dev;
892         hdlc_device *hdlc = dev_to_hdlc(frad);
893         fr_hdr *fh = (fr_hdr*)skb->data;
894         u8 *data = skb->data;
895         u16 dlci;
896         pvc_device *pvc;
897         struct net_device *dev = NULL;
898
899         if (skb->len <= 4 || fh->ea1 || data[2] != FR_UI)
900                 goto rx_error;
901
902         dlci = q922_to_dlci(skb->data);
903
904         if ((dlci == LMI_CCITT_ANSI_DLCI &&
905              (state(hdlc)->settings.lmi == LMI_ANSI ||
906               state(hdlc)->settings.lmi == LMI_CCITT)) ||
907             (dlci == LMI_CISCO_DLCI &&
908              state(hdlc)->settings.lmi == LMI_CISCO)) {
909                 if (fr_lmi_recv(frad, skb))
910                         goto rx_error;
911                 dev_kfree_skb_any(skb);
912                 return NET_RX_SUCCESS;
913         }
914
915         pvc = find_pvc(hdlc, dlci);
916         if (!pvc) {
917 #ifdef DEBUG_PKT
918                 printk(KERN_INFO "%s: No PVC for received frame's DLCI %d\n",
919                        frad->name, dlci);
920 #endif
921                 dev_kfree_skb_any(skb);
922                 return NET_RX_DROP;
923         }
924
925         if (pvc->state.fecn != fh->fecn) {
926 #ifdef DEBUG_ECN
927                 printk(KERN_DEBUG "%s: DLCI %d FECN O%s\n", frad->name,
928                        dlci, fh->fecn ? "N" : "FF");
929 #endif
930                 pvc->state.fecn ^= 1;
931         }
932
933         if (pvc->state.becn != fh->becn) {
934 #ifdef DEBUG_ECN
935                 printk(KERN_DEBUG "%s: DLCI %d BECN O%s\n", frad->name,
936                        dlci, fh->becn ? "N" : "FF");
937 #endif
938                 pvc->state.becn ^= 1;
939         }
940
941
942         if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
943                 frad->stats.rx_dropped++;
944                 return NET_RX_DROP;
945         }
946
947         if (data[3] == NLPID_IP) {
948                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
949                 dev = pvc->main;
950                 skb->protocol = htons(ETH_P_IP);
951
952         } else if (data[3] == NLPID_IPV6) {
953                 skb_pull(skb, 4); /* Remove 4-byte header (hdr, UI, NLPID) */
954                 dev = pvc->main;
955                 skb->protocol = htons(ETH_P_IPV6);
956
957         } else if (skb->len > 10 && data[3] == FR_PAD &&
958                    data[4] == NLPID_SNAP && data[5] == FR_PAD) {
959                 u16 oui = ntohs(*(__be16*)(data + 6));
960                 u16 pid = ntohs(*(__be16*)(data + 8));
961                 skb_pull(skb, 10);
962
963                 switch ((((u32)oui) << 16) | pid) {
964                 case ETH_P_ARP: /* routed frame with SNAP */
965                 case ETH_P_IPX:
966                 case ETH_P_IP:  /* a long variant */
967                 case ETH_P_IPV6:
968                         dev = pvc->main;
969                         skb->protocol = htons(pid);
970                         break;
971
972                 case 0x80C20007: /* bridged Ethernet frame */
973                         if ((dev = pvc->ether) != NULL)
974                                 skb->protocol = eth_type_trans(skb, dev);
975                         break;
976
977                 default:
978                         printk(KERN_INFO "%s: Unsupported protocol, OUI=%x "
979                                "PID=%x\n", frad->name, oui, pid);
980                         dev_kfree_skb_any(skb);
981                         return NET_RX_DROP;
982                 }
983         } else {
984                 printk(KERN_INFO "%s: Unsupported protocol, NLPID=%x "
985                        "length = %i\n", frad->name, data[3], skb->len);
986                 dev_kfree_skb_any(skb);
987                 return NET_RX_DROP;
988         }
989
990         if (dev) {
991                 dev->stats.rx_packets++; /* PVC traffic */
992                 dev->stats.rx_bytes += skb->len;
993                 if (pvc->state.becn)
994                         dev->stats.rx_compressed++;
995                 skb->dev = dev;
996                 netif_rx(skb);
997                 return NET_RX_SUCCESS;
998         } else {
999                 dev_kfree_skb_any(skb);
1000                 return NET_RX_DROP;
1001         }
1002
1003  rx_error:
1004         frad->stats.rx_errors++; /* Mark error */
1005         dev_kfree_skb_any(skb);
1006         return NET_RX_DROP;
1007 }
1008
1009
1010
1011 static void fr_start(struct net_device *dev)
1012 {
1013         hdlc_device *hdlc = dev_to_hdlc(dev);
1014 #ifdef DEBUG_LINK
1015         printk(KERN_DEBUG "fr_start\n");
1016 #endif
1017         if (state(hdlc)->settings.lmi != LMI_NONE) {
1018                 state(hdlc)->reliable = 0;
1019                 state(hdlc)->dce_changed = 1;
1020                 state(hdlc)->request = 0;
1021                 state(hdlc)->fullrep_sent = 0;
1022                 state(hdlc)->last_errors = 0xFFFFFFFF;
1023                 state(hdlc)->n391cnt = 0;
1024                 state(hdlc)->txseq = state(hdlc)->rxseq = 0;
1025
1026                 init_timer(&state(hdlc)->timer);
1027                 /* First poll after 1 s */
1028                 state(hdlc)->timer.expires = jiffies + HZ;
1029                 state(hdlc)->timer.function = fr_timer;
1030                 state(hdlc)->timer.data = (unsigned long)dev;
1031                 add_timer(&state(hdlc)->timer);
1032         } else
1033                 fr_set_link_state(1, dev);
1034 }
1035
1036
1037 static void fr_stop(struct net_device *dev)
1038 {
1039         hdlc_device *hdlc = dev_to_hdlc(dev);
1040 #ifdef DEBUG_LINK
1041         printk(KERN_DEBUG "fr_stop\n");
1042 #endif
1043         if (state(hdlc)->settings.lmi != LMI_NONE)
1044                 del_timer_sync(&state(hdlc)->timer);
1045         fr_set_link_state(0, dev);
1046 }
1047
1048
1049 static void fr_close(struct net_device *dev)
1050 {
1051         hdlc_device *hdlc = dev_to_hdlc(dev);
1052         pvc_device *pvc = state(hdlc)->first_pvc;
1053
1054         while (pvc) {           /* Shutdown all PVCs for this FRAD */
1055                 if (pvc->main)
1056                         dev_close(pvc->main);
1057                 if (pvc->ether)
1058                         dev_close(pvc->ether);
1059                 pvc = pvc->next;
1060         }
1061 }
1062
1063
1064 static void pvc_setup(struct net_device *dev)
1065 {
1066         dev->type = ARPHRD_DLCI;
1067         dev->flags = IFF_POINTOPOINT;
1068         dev->hard_header_len = 10;
1069         dev->addr_len = 2;
1070 }
1071
1072 static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
1073 {
1074         hdlc_device *hdlc = dev_to_hdlc(frad);
1075         pvc_device *pvc;
1076         struct net_device *dev;
1077         int result, used;
1078
1079         if ((pvc = add_pvc(frad, dlci)) == NULL) {
1080                 printk(KERN_WARNING "%s: Memory squeeze on fr_add_pvc()\n",
1081                        frad->name);
1082                 return -ENOBUFS;
1083         }
1084
1085         if (*get_dev_p(pvc, type))
1086                 return -EEXIST;
1087
1088         used = pvc_is_used(pvc);
1089
1090         if (type == ARPHRD_ETHER)
1091                 dev = alloc_netdev(0, "pvceth%d", ether_setup);
1092         else
1093                 dev = alloc_netdev(0, "pvc%d", pvc_setup);
1094
1095         if (!dev) {
1096                 printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n",
1097                        frad->name);
1098                 delete_unused_pvcs(hdlc);
1099                 return -ENOBUFS;
1100         }
1101
1102         if (type == ARPHRD_ETHER)
1103                 random_ether_addr(dev->dev_addr);
1104         else {
1105                 *(__be16*)dev->dev_addr = htons(dlci);
1106                 dlci_to_q922(dev->broadcast, dlci);
1107         }
1108         dev->hard_start_xmit = pvc_xmit;
1109         dev->open = pvc_open;
1110         dev->stop = pvc_close;
1111         dev->do_ioctl = pvc_ioctl;
1112         dev->change_mtu = pvc_change_mtu;
1113         dev->mtu = HDLC_MAX_MTU;
1114         dev->tx_queue_len = 0;
1115         dev->priv = pvc;
1116
1117         result = dev_alloc_name(dev, dev->name);
1118         if (result < 0) {
1119                 free_netdev(dev);
1120                 delete_unused_pvcs(hdlc);
1121                 return result;
1122         }
1123
1124         if (register_netdevice(dev) != 0) {
1125                 free_netdev(dev);
1126                 delete_unused_pvcs(hdlc);
1127                 return -EIO;
1128         }
1129
1130         dev->destructor = free_netdev;
1131         *get_dev_p(pvc, type) = dev;
1132         if (!used) {
1133                 state(hdlc)->dce_changed = 1;
1134                 state(hdlc)->dce_pvc_count++;
1135         }
1136         return 0;
1137 }
1138
1139
1140
1141 static int fr_del_pvc(hdlc_device *hdlc, unsigned int dlci, int type)
1142 {
1143         pvc_device *pvc;
1144         struct net_device *dev;
1145
1146         if ((pvc = find_pvc(hdlc, dlci)) == NULL)
1147                 return -ENOENT;
1148
1149         if ((dev = *get_dev_p(pvc, type)) == NULL)
1150                 return -ENOENT;
1151
1152         if (dev->flags & IFF_UP)
1153                 return -EBUSY;          /* PVC in use */
1154
1155         unregister_netdevice(dev); /* the destructor will free_netdev(dev) */
1156         *get_dev_p(pvc, type) = NULL;
1157
1158         if (!pvc_is_used(pvc)) {
1159                 state(hdlc)->dce_pvc_count--;
1160                 state(hdlc)->dce_changed = 1;
1161         }
1162         delete_unused_pvcs(hdlc);
1163         return 0;
1164 }
1165
1166
1167
1168 static void fr_destroy(struct net_device *frad)
1169 {
1170         hdlc_device *hdlc = dev_to_hdlc(frad);
1171         pvc_device *pvc = state(hdlc)->first_pvc;
1172         state(hdlc)->first_pvc = NULL; /* All PVCs destroyed */
1173         state(hdlc)->dce_pvc_count = 0;
1174         state(hdlc)->dce_changed = 1;
1175
1176         while (pvc) {
1177                 pvc_device *next = pvc->next;
1178                 /* destructors will free_netdev() main and ether */
1179                 if (pvc->main)
1180                         unregister_netdevice(pvc->main);
1181
1182                 if (pvc->ether)
1183                         unregister_netdevice(pvc->ether);
1184
1185                 kfree(pvc);
1186                 pvc = next;
1187         }
1188 }
1189
1190
1191 static struct hdlc_proto proto = {
1192         .close          = fr_close,
1193         .start          = fr_start,
1194         .stop           = fr_stop,
1195         .detach         = fr_destroy,
1196         .ioctl          = fr_ioctl,
1197         .netif_rx       = fr_rx,
1198         .module         = THIS_MODULE,
1199 };
1200
1201
1202 static int fr_ioctl(struct net_device *dev, struct ifreq *ifr)
1203 {
1204         fr_proto __user *fr_s = ifr->ifr_settings.ifs_ifsu.fr;
1205         const size_t size = sizeof(fr_proto);
1206         fr_proto new_settings;
1207         hdlc_device *hdlc = dev_to_hdlc(dev);
1208         fr_proto_pvc pvc;
1209         int result;
1210
1211         switch (ifr->ifr_settings.type) {
1212         case IF_GET_PROTO:
1213                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1214                         return -EINVAL;
1215                 ifr->ifr_settings.type = IF_PROTO_FR;
1216                 if (ifr->ifr_settings.size < size) {
1217                         ifr->ifr_settings.size = size; /* data size wanted */
1218                         return -ENOBUFS;
1219                 }
1220                 if (copy_to_user(fr_s, &state(hdlc)->settings, size))
1221                         return -EFAULT;
1222                 return 0;
1223
1224         case IF_PROTO_FR:
1225                 if(!capable(CAP_NET_ADMIN))
1226                         return -EPERM;
1227
1228                 if(dev->flags & IFF_UP)
1229                         return -EBUSY;
1230
1231                 if (copy_from_user(&new_settings, fr_s, size))
1232                         return -EFAULT;
1233
1234                 if (new_settings.lmi == LMI_DEFAULT)
1235                         new_settings.lmi = LMI_ANSI;
1236
1237                 if ((new_settings.lmi != LMI_NONE &&
1238                      new_settings.lmi != LMI_ANSI &&
1239                      new_settings.lmi != LMI_CCITT &&
1240                      new_settings.lmi != LMI_CISCO) ||
1241                     new_settings.t391 < 1 ||
1242                     new_settings.t392 < 2 ||
1243                     new_settings.n391 < 1 ||
1244                     new_settings.n392 < 1 ||
1245                     new_settings.n393 < new_settings.n392 ||
1246                     new_settings.n393 > 32 ||
1247                     (new_settings.dce != 0 &&
1248                      new_settings.dce != 1))
1249                         return -EINVAL;
1250
1251                 result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
1252                 if (result)
1253                         return result;
1254
1255                 if (dev_to_hdlc(dev)->proto != &proto) { /* Different proto */
1256                         result = attach_hdlc_protocol(dev, &proto,
1257                                                       sizeof(struct frad_state));
1258                         if (result)
1259                                 return result;
1260                         state(hdlc)->first_pvc = NULL;
1261                         state(hdlc)->dce_pvc_count = 0;
1262                 }
1263                 memcpy(&state(hdlc)->settings, &new_settings, size);
1264
1265                 dev->hard_start_xmit = hdlc->xmit;
1266                 dev->type = ARPHRD_FRAD;
1267                 return 0;
1268
1269         case IF_PROTO_FR_ADD_PVC:
1270         case IF_PROTO_FR_DEL_PVC:
1271         case IF_PROTO_FR_ADD_ETH_PVC:
1272         case IF_PROTO_FR_DEL_ETH_PVC:
1273                 if (dev_to_hdlc(dev)->proto != &proto) /* Different proto */
1274                         return -EINVAL;
1275
1276                 if(!capable(CAP_NET_ADMIN))
1277                         return -EPERM;
1278
1279                 if (copy_from_user(&pvc, ifr->ifr_settings.ifs_ifsu.fr_pvc,
1280                                    sizeof(fr_proto_pvc)))
1281                         return -EFAULT;
1282
1283                 if (pvc.dlci <= 0 || pvc.dlci >= 1024)
1284                         return -EINVAL; /* Only 10 bits, DLCI 0 reserved */
1285
1286                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC ||
1287                     ifr->ifr_settings.type == IF_PROTO_FR_DEL_ETH_PVC)
1288                         result = ARPHRD_ETHER; /* bridged Ethernet device */
1289                 else
1290                         result = ARPHRD_DLCI;
1291
1292                 if (ifr->ifr_settings.type == IF_PROTO_FR_ADD_PVC ||
1293                     ifr->ifr_settings.type == IF_PROTO_FR_ADD_ETH_PVC)
1294                         return fr_add_pvc(dev, pvc.dlci, result);
1295                 else
1296                         return fr_del_pvc(hdlc, pvc.dlci, result);
1297         }
1298
1299         return -EINVAL;
1300 }
1301
1302
1303 static int __init mod_init(void)
1304 {
1305         register_hdlc_protocol(&proto);
1306         return 0;
1307 }
1308
1309
1310 static void __exit mod_exit(void)
1311 {
1312         unregister_hdlc_protocol(&proto);
1313 }
1314
1315
1316 module_init(mod_init);
1317 module_exit(mod_exit);
1318
1319 MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>");
1320 MODULE_DESCRIPTION("Frame-Relay protocol support for generic HDLC");
1321 MODULE_LICENSE("GPL v2");