Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-next-2.6
[pandora-kernel.git] / drivers / net / vxge / vxge-traffic.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                 Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/prefetch.h>
16
17 #include "vxge-traffic.h"
18 #include "vxge-config.h"
19 #include "vxge-main.h"
20
21 /*
22  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23  * @vp: Virtual Path handle.
24  *
25  * Enable vpath interrupts. The function is to be executed the last in
26  * vpath initialization sequence.
27  *
28  * See also: vxge_hw_vpath_intr_disable()
29  */
30 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31 {
32         u64 val64;
33
34         struct __vxge_hw_virtualpath *vpath;
35         struct vxge_hw_vpath_reg __iomem *vp_reg;
36         enum vxge_hw_status status = VXGE_HW_OK;
37         if (vp == NULL) {
38                 status = VXGE_HW_ERR_INVALID_HANDLE;
39                 goto exit;
40         }
41
42         vpath = vp->vpath;
43
44         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
45                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
46                 goto exit;
47         }
48
49         vp_reg = vpath->vp_reg;
50
51         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
52
53         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
54                         &vp_reg->general_errors_reg);
55
56         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
57                         &vp_reg->pci_config_errors_reg);
58
59         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
60                         &vp_reg->mrpcim_to_vpath_alarm_reg);
61
62         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
63                         &vp_reg->srpcim_to_vpath_alarm_reg);
64
65         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
66                         &vp_reg->vpath_ppif_int_status);
67
68         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
69                         &vp_reg->srpcim_msg_to_vpath_reg);
70
71         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
72                         &vp_reg->vpath_pcipif_int_status);
73
74         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
75                         &vp_reg->prc_alarm_reg);
76
77         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
78                         &vp_reg->wrdma_alarm_status);
79
80         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
81                         &vp_reg->asic_ntwk_vp_err_reg);
82
83         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
84                         &vp_reg->xgmac_vp_int_status);
85
86         val64 = readq(&vp_reg->vpath_general_int_status);
87
88         /* Mask unwanted interrupts */
89
90         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
91                         &vp_reg->vpath_pcipif_int_mask);
92
93         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
94                         &vp_reg->srpcim_msg_to_vpath_mask);
95
96         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
97                         &vp_reg->srpcim_to_vpath_alarm_mask);
98
99         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
100                         &vp_reg->mrpcim_to_vpath_alarm_mask);
101
102         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
103                         &vp_reg->pci_config_errors_mask);
104
105         /* Unmask the individual interrupts */
106
107         writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
108                 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
109                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
110                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
111                 &vp_reg->general_errors_mask);
112
113         __vxge_hw_pio_mem_write32_upper(
114                 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
115                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
116                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
117                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
118                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
119                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
120                 &vp_reg->kdfcctl_errors_mask);
121
122         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
123
124         __vxge_hw_pio_mem_write32_upper(
125                 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
126                 &vp_reg->prc_alarm_mask);
127
128         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
129         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
130
131         if (vpath->hldev->first_vp_id != vpath->vp_id)
132                 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
133                         &vp_reg->asic_ntwk_vp_err_mask);
134         else
135                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
136                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
137                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
138                 &vp_reg->asic_ntwk_vp_err_mask);
139
140         __vxge_hw_pio_mem_write32_upper(0,
141                 &vp_reg->vpath_general_int_mask);
142 exit:
143         return status;
144
145 }
146
147 /*
148  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
149  * @vp: Virtual Path handle.
150  *
151  * Disable vpath interrupts. The function is to be executed the last in
152  * vpath initialization sequence.
153  *
154  * See also: vxge_hw_vpath_intr_enable()
155  */
156 enum vxge_hw_status vxge_hw_vpath_intr_disable(
157                         struct __vxge_hw_vpath_handle *vp)
158 {
159         u64 val64;
160
161         struct __vxge_hw_virtualpath *vpath;
162         enum vxge_hw_status status = VXGE_HW_OK;
163         struct vxge_hw_vpath_reg __iomem *vp_reg;
164         if (vp == NULL) {
165                 status = VXGE_HW_ERR_INVALID_HANDLE;
166                 goto exit;
167         }
168
169         vpath = vp->vpath;
170
171         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
172                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
173                 goto exit;
174         }
175         vp_reg = vpath->vp_reg;
176
177         __vxge_hw_pio_mem_write32_upper(
178                 (u32)VXGE_HW_INTR_MASK_ALL,
179                 &vp_reg->vpath_general_int_mask);
180
181         val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
182
183         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
184
185         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
186                         &vp_reg->general_errors_mask);
187
188         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
189                         &vp_reg->pci_config_errors_mask);
190
191         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
192                         &vp_reg->mrpcim_to_vpath_alarm_mask);
193
194         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
195                         &vp_reg->srpcim_to_vpath_alarm_mask);
196
197         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
198                         &vp_reg->vpath_ppif_int_mask);
199
200         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
201                         &vp_reg->srpcim_msg_to_vpath_mask);
202
203         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
204                         &vp_reg->vpath_pcipif_int_mask);
205
206         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
207                         &vp_reg->wrdma_alarm_mask);
208
209         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
210                         &vp_reg->prc_alarm_mask);
211
212         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
213                         &vp_reg->xgmac_vp_int_mask);
214
215         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
216                         &vp_reg->asic_ntwk_vp_err_mask);
217
218 exit:
219         return status;
220 }
221
222 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
223 {
224         struct vxge_hw_vpath_reg __iomem *vp_reg;
225         struct vxge_hw_vp_config *config;
226         u64 val64;
227
228         if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
229                 return;
230
231         vp_reg = fifo->vp_reg;
232         config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
233
234         if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
235                 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
236                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
237                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
238                 fifo->tim_tti_cfg1_saved = val64;
239                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
240         }
241 }
242
243 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
244 {
245         u64 val64 = ring->tim_rti_cfg1_saved;
246
247         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
248         ring->tim_rti_cfg1_saved = val64;
249         writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
250 }
251
252 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
253 {
254         u64 val64 = fifo->tim_tti_cfg3_saved;
255         u64 timer = (fifo->rtimer * 1000) / 272;
256
257         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
258         if (timer)
259                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
260                         VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
261
262         writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
263         /* tti_cfg3_saved is not updated again because it is
264          * initialized at one place only - init time.
265          */
266 }
267
268 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
269 {
270         u64 val64 = ring->tim_rti_cfg3_saved;
271         u64 timer = (ring->rtimer * 1000) / 272;
272
273         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
274         if (timer)
275                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
276                         VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
277
278         writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
279         /* rti_cfg3_saved is not updated again because it is
280          * initialized at one place only - init time.
281          */
282 }
283
284 /**
285  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
286  * @channeh: Channel for rx or tx handle
287  * @msix_id:  MSIX ID
288  *
289  * The function masks the msix interrupt for the given msix_id
290  *
291  * Returns: 0
292  */
293 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
294 {
295
296         __vxge_hw_pio_mem_write32_upper(
297                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
298                 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
299 }
300
301 /**
302  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
303  * @channeh: Channel for rx or tx handle
304  * @msix_id:  MSI ID
305  *
306  * The function unmasks the msix interrupt for the given msix_id
307  *
308  * Returns: 0
309  */
310 void
311 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
312 {
313
314         __vxge_hw_pio_mem_write32_upper(
315                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
316                 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
317 }
318
319 /**
320  * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
321  * @channel: Channel for rx or tx handle
322  * @msix_id:  MSI ID
323  *
324  * The function unmasks the msix interrupt for the given msix_id
325  * if configured in MSIX oneshot mode
326  *
327  * Returns: 0
328  */
329 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
330 {
331         __vxge_hw_pio_mem_write32_upper(
332                 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
333                 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
334 }
335
336 /**
337  * vxge_hw_device_set_intr_type - Updates the configuration
338  *              with new interrupt type.
339  * @hldev: HW device handle.
340  * @intr_mode: New interrupt type
341  */
342 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
343 {
344
345         if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
346            (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
347            (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
348            (intr_mode != VXGE_HW_INTR_MODE_DEF))
349                 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
350
351         hldev->config.intr_mode = intr_mode;
352         return intr_mode;
353 }
354
355 /**
356  * vxge_hw_device_intr_enable - Enable interrupts.
357  * @hldev: HW device handle.
358  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
359  *      the type(s) of interrupts to enable.
360  *
361  * Enable Titan interrupts. The function is to be executed the last in
362  * Titan initialization sequence.
363  *
364  * See also: vxge_hw_device_intr_disable()
365  */
366 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
367 {
368         u32 i;
369         u64 val64;
370         u32 val32;
371
372         vxge_hw_device_mask_all(hldev);
373
374         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
375
376                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
377                         continue;
378
379                 vxge_hw_vpath_intr_enable(
380                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
381         }
382
383         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
384                 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
385                         hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
386
387                 if (val64 != 0) {
388                         writeq(val64, &hldev->common_reg->tim_int_status0);
389
390                         writeq(~val64, &hldev->common_reg->tim_int_mask0);
391                 }
392
393                 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
394                         hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
395
396                 if (val32 != 0) {
397                         __vxge_hw_pio_mem_write32_upper(val32,
398                                         &hldev->common_reg->tim_int_status1);
399
400                         __vxge_hw_pio_mem_write32_upper(~val32,
401                                         &hldev->common_reg->tim_int_mask1);
402                 }
403         }
404
405         val64 = readq(&hldev->common_reg->titan_general_int_status);
406
407         vxge_hw_device_unmask_all(hldev);
408 }
409
410 /**
411  * vxge_hw_device_intr_disable - Disable Titan interrupts.
412  * @hldev: HW device handle.
413  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
414  *      the type(s) of interrupts to disable.
415  *
416  * Disable Titan interrupts.
417  *
418  * See also: vxge_hw_device_intr_enable()
419  */
420 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
421 {
422         u32 i;
423
424         vxge_hw_device_mask_all(hldev);
425
426         /* mask all the tim interrupts */
427         writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
428         __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
429                 &hldev->common_reg->tim_int_mask1);
430
431         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
432
433                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
434                         continue;
435
436                 vxge_hw_vpath_intr_disable(
437                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
438         }
439 }
440
441 /**
442  * vxge_hw_device_mask_all - Mask all device interrupts.
443  * @hldev: HW device handle.
444  *
445  * Mask all device interrupts.
446  *
447  * See also: vxge_hw_device_unmask_all()
448  */
449 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
450 {
451         u64 val64;
452
453         val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
454                 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
455
456         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
457                                 &hldev->common_reg->titan_mask_all_int);
458 }
459
460 /**
461  * vxge_hw_device_unmask_all - Unmask all device interrupts.
462  * @hldev: HW device handle.
463  *
464  * Unmask all device interrupts.
465  *
466  * See also: vxge_hw_device_mask_all()
467  */
468 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
469 {
470         u64 val64 = 0;
471
472         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
473                 val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
474
475         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
476                         &hldev->common_reg->titan_mask_all_int);
477 }
478
479 /**
480  * vxge_hw_device_flush_io - Flush io writes.
481  * @hldev: HW device handle.
482  *
483  * The function performs a read operation to flush io writes.
484  *
485  * Returns: void
486  */
487 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
488 {
489         u32 val32;
490
491         val32 = readl(&hldev->common_reg->titan_general_int_status);
492 }
493
494 /**
495  * __vxge_hw_device_handle_error - Handle error
496  * @hldev: HW device
497  * @vp_id: Vpath Id
498  * @type: Error type. Please see enum vxge_hw_event{}
499  *
500  * Handle error.
501  */
502 static enum vxge_hw_status
503 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
504                               enum vxge_hw_event type)
505 {
506         switch (type) {
507         case VXGE_HW_EVENT_UNKNOWN:
508                 break;
509         case VXGE_HW_EVENT_RESET_START:
510         case VXGE_HW_EVENT_RESET_COMPLETE:
511         case VXGE_HW_EVENT_LINK_DOWN:
512         case VXGE_HW_EVENT_LINK_UP:
513                 goto out;
514         case VXGE_HW_EVENT_ALARM_CLEARED:
515                 goto out;
516         case VXGE_HW_EVENT_ECCERR:
517         case VXGE_HW_EVENT_MRPCIM_ECCERR:
518                 goto out;
519         case VXGE_HW_EVENT_FIFO_ERR:
520         case VXGE_HW_EVENT_VPATH_ERR:
521         case VXGE_HW_EVENT_CRITICAL_ERR:
522         case VXGE_HW_EVENT_SERR:
523                 break;
524         case VXGE_HW_EVENT_SRPCIM_SERR:
525         case VXGE_HW_EVENT_MRPCIM_SERR:
526                 goto out;
527         case VXGE_HW_EVENT_SLOT_FREEZE:
528                 break;
529         default:
530                 vxge_assert(0);
531                 goto out;
532         }
533
534         /* notify driver */
535         if (hldev->uld_callbacks.crit_err)
536                 hldev->uld_callbacks.crit_err(
537                         (struct __vxge_hw_device *)hldev,
538                         type, vp_id);
539 out:
540
541         return VXGE_HW_OK;
542 }
543
544 /*
545  * __vxge_hw_device_handle_link_down_ind
546  * @hldev: HW device handle.
547  *
548  * Link down indication handler. The function is invoked by HW when
549  * Titan indicates that the link is down.
550  */
551 static enum vxge_hw_status
552 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
553 {
554         /*
555          * If the previous link state is not down, return.
556          */
557         if (hldev->link_state == VXGE_HW_LINK_DOWN)
558                 goto exit;
559
560         hldev->link_state = VXGE_HW_LINK_DOWN;
561
562         /* notify driver */
563         if (hldev->uld_callbacks.link_down)
564                 hldev->uld_callbacks.link_down(hldev);
565 exit:
566         return VXGE_HW_OK;
567 }
568
569 /*
570  * __vxge_hw_device_handle_link_up_ind
571  * @hldev: HW device handle.
572  *
573  * Link up indication handler. The function is invoked by HW when
574  * Titan indicates that the link is up for programmable amount of time.
575  */
576 static enum vxge_hw_status
577 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
578 {
579         /*
580          * If the previous link state is not down, return.
581          */
582         if (hldev->link_state == VXGE_HW_LINK_UP)
583                 goto exit;
584
585         hldev->link_state = VXGE_HW_LINK_UP;
586
587         /* notify driver */
588         if (hldev->uld_callbacks.link_up)
589                 hldev->uld_callbacks.link_up(hldev);
590 exit:
591         return VXGE_HW_OK;
592 }
593
594 /*
595  * __vxge_hw_vpath_alarm_process - Process Alarms.
596  * @vpath: Virtual Path.
597  * @skip_alarms: Do not clear the alarms
598  *
599  * Process vpath alarms.
600  *
601  */
602 static enum vxge_hw_status
603 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
604                               u32 skip_alarms)
605 {
606         u64 val64;
607         u64 alarm_status;
608         u64 pic_status;
609         struct __vxge_hw_device *hldev = NULL;
610         enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
611         u64 mask64;
612         struct vxge_hw_vpath_stats_sw_info *sw_stats;
613         struct vxge_hw_vpath_reg __iomem *vp_reg;
614
615         if (vpath == NULL) {
616                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
617                         alarm_event);
618                 goto out2;
619         }
620
621         hldev = vpath->hldev;
622         vp_reg = vpath->vp_reg;
623         alarm_status = readq(&vp_reg->vpath_general_int_status);
624
625         if (alarm_status == VXGE_HW_ALL_FOXES) {
626                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
627                         alarm_event);
628                 goto out;
629         }
630
631         sw_stats = vpath->sw_stats;
632
633         if (alarm_status & ~(
634                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
635                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
636                 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
637                 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
638                 sw_stats->error_stats.unknown_alarms++;
639
640                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
641                         alarm_event);
642                 goto out;
643         }
644
645         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
646
647                 val64 = readq(&vp_reg->xgmac_vp_int_status);
648
649                 if (val64 &
650                 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
651
652                         val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
653
654                         if (((val64 &
655                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
656                              (!(val64 &
657                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
658                             ((val64 &
659                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
660                              (!(val64 &
661                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
662                                      ))) {
663                                 sw_stats->error_stats.network_sustained_fault++;
664
665                                 writeq(
666                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
667                                         &vp_reg->asic_ntwk_vp_err_mask);
668
669                                 __vxge_hw_device_handle_link_down_ind(hldev);
670                                 alarm_event = VXGE_HW_SET_LEVEL(
671                                         VXGE_HW_EVENT_LINK_DOWN, alarm_event);
672                         }
673
674                         if (((val64 &
675                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
676                              (!(val64 &
677                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
678                             ((val64 &
679                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
680                              (!(val64 &
681                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
682                                      ))) {
683
684                                 sw_stats->error_stats.network_sustained_ok++;
685
686                                 writeq(
687                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
688                                         &vp_reg->asic_ntwk_vp_err_mask);
689
690                                 __vxge_hw_device_handle_link_up_ind(hldev);
691                                 alarm_event = VXGE_HW_SET_LEVEL(
692                                         VXGE_HW_EVENT_LINK_UP, alarm_event);
693                         }
694
695                         writeq(VXGE_HW_INTR_MASK_ALL,
696                                 &vp_reg->asic_ntwk_vp_err_reg);
697
698                         alarm_event = VXGE_HW_SET_LEVEL(
699                                 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
700
701                         if (skip_alarms)
702                                 return VXGE_HW_OK;
703                 }
704         }
705
706         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
707
708                 pic_status = readq(&vp_reg->vpath_ppif_int_status);
709
710                 if (pic_status &
711                     VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
712
713                         val64 = readq(&vp_reg->general_errors_reg);
714                         mask64 = readq(&vp_reg->general_errors_mask);
715
716                         if ((val64 &
717                                 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
718                                 ~mask64) {
719                                 sw_stats->error_stats.ini_serr_det++;
720
721                                 alarm_event = VXGE_HW_SET_LEVEL(
722                                         VXGE_HW_EVENT_SERR, alarm_event);
723                         }
724
725                         if ((val64 &
726                             VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
727                                 ~mask64) {
728                                 sw_stats->error_stats.dblgen_fifo0_overflow++;
729
730                                 alarm_event = VXGE_HW_SET_LEVEL(
731                                         VXGE_HW_EVENT_FIFO_ERR, alarm_event);
732                         }
733
734                         if ((val64 &
735                             VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
736                                 ~mask64)
737                                 sw_stats->error_stats.statsb_pif_chain_error++;
738
739                         if ((val64 &
740                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
741                                 ~mask64)
742                                 sw_stats->error_stats.statsb_drop_timeout++;
743
744                         if ((val64 &
745                                 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
746                                 ~mask64)
747                                 sw_stats->error_stats.target_illegal_access++;
748
749                         if (!skip_alarms) {
750                                 writeq(VXGE_HW_INTR_MASK_ALL,
751                                         &vp_reg->general_errors_reg);
752                                 alarm_event = VXGE_HW_SET_LEVEL(
753                                         VXGE_HW_EVENT_ALARM_CLEARED,
754                                         alarm_event);
755                         }
756                 }
757
758                 if (pic_status &
759                     VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
760
761                         val64 = readq(&vp_reg->kdfcctl_errors_reg);
762                         mask64 = readq(&vp_reg->kdfcctl_errors_mask);
763
764                         if ((val64 &
765                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
766                                 ~mask64) {
767                                 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
768
769                                 alarm_event = VXGE_HW_SET_LEVEL(
770                                         VXGE_HW_EVENT_FIFO_ERR,
771                                         alarm_event);
772                         }
773
774                         if ((val64 &
775                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
776                                 ~mask64) {
777                                 sw_stats->error_stats.kdfcctl_fifo0_poison++;
778
779                                 alarm_event = VXGE_HW_SET_LEVEL(
780                                         VXGE_HW_EVENT_FIFO_ERR,
781                                         alarm_event);
782                         }
783
784                         if ((val64 &
785                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
786                                 ~mask64) {
787                                 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
788
789                                 alarm_event = VXGE_HW_SET_LEVEL(
790                                         VXGE_HW_EVENT_FIFO_ERR,
791                                         alarm_event);
792                         }
793
794                         if (!skip_alarms) {
795                                 writeq(VXGE_HW_INTR_MASK_ALL,
796                                         &vp_reg->kdfcctl_errors_reg);
797                                 alarm_event = VXGE_HW_SET_LEVEL(
798                                         VXGE_HW_EVENT_ALARM_CLEARED,
799                                         alarm_event);
800                         }
801                 }
802
803         }
804
805         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
806
807                 val64 = readq(&vp_reg->wrdma_alarm_status);
808
809                 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
810
811                         val64 = readq(&vp_reg->prc_alarm_reg);
812                         mask64 = readq(&vp_reg->prc_alarm_mask);
813
814                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
815                                 ~mask64)
816                                 sw_stats->error_stats.prc_ring_bumps++;
817
818                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
819                                 ~mask64) {
820                                 sw_stats->error_stats.prc_rxdcm_sc_err++;
821
822                                 alarm_event = VXGE_HW_SET_LEVEL(
823                                         VXGE_HW_EVENT_VPATH_ERR,
824                                         alarm_event);
825                         }
826
827                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
828                                 & ~mask64) {
829                                 sw_stats->error_stats.prc_rxdcm_sc_abort++;
830
831                                 alarm_event = VXGE_HW_SET_LEVEL(
832                                                 VXGE_HW_EVENT_VPATH_ERR,
833                                                 alarm_event);
834                         }
835
836                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
837                                  & ~mask64) {
838                                 sw_stats->error_stats.prc_quanta_size_err++;
839
840                                 alarm_event = VXGE_HW_SET_LEVEL(
841                                         VXGE_HW_EVENT_VPATH_ERR,
842                                         alarm_event);
843                         }
844
845                         if (!skip_alarms) {
846                                 writeq(VXGE_HW_INTR_MASK_ALL,
847                                         &vp_reg->prc_alarm_reg);
848                                 alarm_event = VXGE_HW_SET_LEVEL(
849                                                 VXGE_HW_EVENT_ALARM_CLEARED,
850                                                 alarm_event);
851                         }
852                 }
853         }
854 out:
855         hldev->stats.sw_dev_err_stats.vpath_alarms++;
856 out2:
857         if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
858                 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
859                 return VXGE_HW_OK;
860
861         __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
862
863         if (alarm_event == VXGE_HW_EVENT_SERR)
864                 return VXGE_HW_ERR_CRITICAL;
865
866         return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
867                 VXGE_HW_ERR_SLOT_FREEZE :
868                 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
869                 VXGE_HW_ERR_VPATH;
870 }
871
872 /**
873  * vxge_hw_device_begin_irq - Begin IRQ processing.
874  * @hldev: HW device handle.
875  * @skip_alarms: Do not clear the alarms
876  * @reason: "Reason" for the interrupt, the value of Titan's
877  *      general_int_status register.
878  *
879  * The function performs two actions, It first checks whether (shared IRQ) the
880  * interrupt was raised by the device. Next, it masks the device interrupts.
881  *
882  * Note:
883  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
884  * bridge. Therefore, two back-to-back interrupts are potentially possible.
885  *
886  * Returns: 0, if the interrupt is not "ours" (note that in this case the
887  * device remain enabled).
888  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
889  * status.
890  */
891 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
892                                              u32 skip_alarms, u64 *reason)
893 {
894         u32 i;
895         u64 val64;
896         u64 adapter_status;
897         u64 vpath_mask;
898         enum vxge_hw_status ret = VXGE_HW_OK;
899
900         val64 = readq(&hldev->common_reg->titan_general_int_status);
901
902         if (unlikely(!val64)) {
903                 /* not Titan interrupt  */
904                 *reason = 0;
905                 ret = VXGE_HW_ERR_WRONG_IRQ;
906                 goto exit;
907         }
908
909         if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
910
911                 adapter_status = readq(&hldev->common_reg->adapter_status);
912
913                 if (adapter_status == VXGE_HW_ALL_FOXES) {
914
915                         __vxge_hw_device_handle_error(hldev,
916                                 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
917                         *reason = 0;
918                         ret = VXGE_HW_ERR_SLOT_FREEZE;
919                         goto exit;
920                 }
921         }
922
923         hldev->stats.sw_dev_info_stats.total_intr_cnt++;
924
925         *reason = val64;
926
927         vpath_mask = hldev->vpaths_deployed >>
928                                 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
929
930         if (val64 &
931             VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
932                 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
933
934                 return VXGE_HW_OK;
935         }
936
937         hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
938
939         if (unlikely(val64 &
940                         VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
941
942                 enum vxge_hw_status error_level = VXGE_HW_OK;
943
944                 hldev->stats.sw_dev_err_stats.vpath_alarms++;
945
946                 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
947
948                         if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
949                                 continue;
950
951                         ret = __vxge_hw_vpath_alarm_process(
952                                 &hldev->virtual_paths[i], skip_alarms);
953
954                         error_level = VXGE_HW_SET_LEVEL(ret, error_level);
955
956                         if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
957                                 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
958                                 break;
959                 }
960
961                 ret = error_level;
962         }
963 exit:
964         return ret;
965 }
966
967 /**
968  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
969  * condition that has caused the Tx and RX interrupt.
970  * @hldev: HW device.
971  *
972  * Acknowledge (that is, clear) the condition that has caused
973  * the Tx and Rx interrupt.
974  * See also: vxge_hw_device_begin_irq(),
975  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
976  */
977 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
978 {
979
980         if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
981            (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
982                 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
983                                  hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
984                                 &hldev->common_reg->tim_int_status0);
985         }
986
987         if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
988            (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
989                 __vxge_hw_pio_mem_write32_upper(
990                                 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
991                                  hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
992                                 &hldev->common_reg->tim_int_status1);
993         }
994 }
995
996 /*
997  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
998  * @channel: Channel
999  * @dtrh: Buffer to return the DTR pointer
1000  *
1001  * Allocates a dtr from the reserve array. If the reserve array is empty,
1002  * it swaps the reserve and free arrays.
1003  *
1004  */
1005 static enum vxge_hw_status
1006 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1007 {
1008         void **tmp_arr;
1009
1010         if (channel->reserve_ptr - channel->reserve_top > 0) {
1011 _alloc_after_swap:
1012                 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1013
1014                 return VXGE_HW_OK;
1015         }
1016
1017         /* switch between empty and full arrays */
1018
1019         /* the idea behind such a design is that by having free and reserved
1020          * arrays separated we basically separated irq and non-irq parts.
1021          * i.e. no additional lock need to be done when we free a resource */
1022
1023         if (channel->length - channel->free_ptr > 0) {
1024
1025                 tmp_arr = channel->reserve_arr;
1026                 channel->reserve_arr = channel->free_arr;
1027                 channel->free_arr = tmp_arr;
1028                 channel->reserve_ptr = channel->length;
1029                 channel->reserve_top = channel->free_ptr;
1030                 channel->free_ptr = channel->length;
1031
1032                 channel->stats->reserve_free_swaps_cnt++;
1033
1034                 goto _alloc_after_swap;
1035         }
1036
1037         channel->stats->full_cnt++;
1038
1039         *dtrh = NULL;
1040         return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1041 }
1042
1043 /*
1044  * vxge_hw_channel_dtr_post - Post a dtr to the channel
1045  * @channelh: Channel
1046  * @dtrh: DTR pointer
1047  *
1048  * Posts a dtr to work array.
1049  *
1050  */
1051 static void
1052 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1053 {
1054         vxge_assert(channel->work_arr[channel->post_index] == NULL);
1055
1056         channel->work_arr[channel->post_index++] = dtrh;
1057
1058         /* wrap-around */
1059         if (channel->post_index == channel->length)
1060                 channel->post_index = 0;
1061 }
1062
1063 /*
1064  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1065  * @channel: Channel
1066  * @dtr: Buffer to return the next completed DTR pointer
1067  *
1068  * Returns the next completed dtr with out removing it from work array
1069  *
1070  */
1071 void
1072 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1073 {
1074         vxge_assert(channel->compl_index < channel->length);
1075
1076         *dtrh = channel->work_arr[channel->compl_index];
1077         prefetch(*dtrh);
1078 }
1079
1080 /*
1081  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1082  * @channel: Channel handle
1083  *
1084  * Removes the next completed dtr from work array
1085  *
1086  */
1087 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1088 {
1089         channel->work_arr[channel->compl_index] = NULL;
1090
1091         /* wrap-around */
1092         if (++channel->compl_index == channel->length)
1093                 channel->compl_index = 0;
1094
1095         channel->stats->total_compl_cnt++;
1096 }
1097
1098 /*
1099  * vxge_hw_channel_dtr_free - Frees a dtr
1100  * @channel: Channel handle
1101  * @dtr:  DTR pointer
1102  *
1103  * Returns the dtr to free array
1104  *
1105  */
1106 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1107 {
1108         channel->free_arr[--channel->free_ptr] = dtrh;
1109 }
1110
1111 /*
1112  * vxge_hw_channel_dtr_count
1113  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1114  *
1115  * Retrieve number of DTRs available. This function can not be called
1116  * from data path. ring_initial_replenishi() is the only user.
1117  */
1118 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1119 {
1120         return (channel->reserve_ptr - channel->reserve_top) +
1121                 (channel->length - channel->free_ptr);
1122 }
1123
1124 /**
1125  * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
1126  * @ring: Handle to the ring object used for receive
1127  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1128  * with a valid handle.
1129  *
1130  * Reserve Rx descriptor for the subsequent filling-in driver
1131  * and posting on the corresponding channel (@channelh)
1132  * via vxge_hw_ring_rxd_post().
1133  *
1134  * Returns: VXGE_HW_OK - success.
1135  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1136  *
1137  */
1138 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1139         void **rxdh)
1140 {
1141         enum vxge_hw_status status;
1142         struct __vxge_hw_channel *channel;
1143
1144         channel = &ring->channel;
1145
1146         status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1147
1148         if (status == VXGE_HW_OK) {
1149                 struct vxge_hw_ring_rxd_1 *rxdp =
1150                         (struct vxge_hw_ring_rxd_1 *)*rxdh;
1151
1152                 rxdp->control_0 = rxdp->control_1 = 0;
1153         }
1154
1155         return status;
1156 }
1157
1158 /**
1159  * vxge_hw_ring_rxd_free - Free descriptor.
1160  * @ring: Handle to the ring object used for receive
1161  * @rxdh: Descriptor handle.
1162  *
1163  * Free the reserved descriptor. This operation is "symmetrical" to
1164  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1165  * lifecycle.
1166  *
1167  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1168  * be:
1169  *
1170  * - reserved (vxge_hw_ring_rxd_reserve);
1171  *
1172  * - posted     (vxge_hw_ring_rxd_post);
1173  *
1174  * - completed (vxge_hw_ring_rxd_next_completed);
1175  *
1176  * - and recycled again (vxge_hw_ring_rxd_free).
1177  *
1178  * For alternative state transitions and more details please refer to
1179  * the design doc.
1180  *
1181  */
1182 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1183 {
1184         struct __vxge_hw_channel *channel;
1185
1186         channel = &ring->channel;
1187
1188         vxge_hw_channel_dtr_free(channel, rxdh);
1189
1190 }
1191
1192 /**
1193  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1194  * @ring: Handle to the ring object used for receive
1195  * @rxdh: Descriptor handle.
1196  *
1197  * This routine prepares a rxd and posts
1198  */
1199 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1200 {
1201         struct __vxge_hw_channel *channel;
1202
1203         channel = &ring->channel;
1204
1205         vxge_hw_channel_dtr_post(channel, rxdh);
1206 }
1207
1208 /**
1209  * vxge_hw_ring_rxd_post_post - Process rxd after post.
1210  * @ring: Handle to the ring object used for receive
1211  * @rxdh: Descriptor handle.
1212  *
1213  * Processes rxd after post
1214  */
1215 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1216 {
1217         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1218         struct __vxge_hw_channel *channel;
1219
1220         channel = &ring->channel;
1221
1222         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1223
1224         if (ring->stats->common_stats.usage_cnt > 0)
1225                 ring->stats->common_stats.usage_cnt--;
1226 }
1227
1228 /**
1229  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1230  * @ring: Handle to the ring object used for receive
1231  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1232  *
1233  * Post descriptor on the ring.
1234  * Prior to posting the descriptor should be filled in accordance with
1235  * Host/Titan interface specification for a given service (LL, etc.).
1236  *
1237  */
1238 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1239 {
1240         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1241         struct __vxge_hw_channel *channel;
1242
1243         channel = &ring->channel;
1244
1245         wmb();
1246         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1247
1248         vxge_hw_channel_dtr_post(channel, rxdh);
1249
1250         if (ring->stats->common_stats.usage_cnt > 0)
1251                 ring->stats->common_stats.usage_cnt--;
1252 }
1253
1254 /**
1255  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1256  * @ring: Handle to the ring object used for receive
1257  * @rxdh: Descriptor handle.
1258  *
1259  * Processes rxd after post with memory barrier.
1260  */
1261 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1262 {
1263         wmb();
1264         vxge_hw_ring_rxd_post_post(ring, rxdh);
1265 }
1266
1267 /**
1268  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1269  * @ring: Handle to the ring object used for receive
1270  * @rxdh: Descriptor handle. Returned by HW.
1271  * @t_code:     Transfer code, as per Titan User Guide,
1272  *       Receive Descriptor Format. Returned by HW.
1273  *
1274  * Retrieve the _next_ completed descriptor.
1275  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1276  * driver of new completed descriptors. After that
1277  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1278  * completions (the very first completion is passed by HW via
1279  * vxge_hw_ring_callback_f).
1280  *
1281  * Implementation-wise, the driver is free to call
1282  * vxge_hw_ring_rxd_next_completed either immediately from inside the
1283  * ring callback, or in a deferred fashion and separate (from HW)
1284  * context.
1285  *
1286  * Non-zero @t_code means failure to fill-in receive buffer(s)
1287  * of the descriptor.
1288  * For instance, parity error detected during the data transfer.
1289  * In this case Titan will complete the descriptor and indicate
1290  * for the host that the received data is not to be used.
1291  * For details please refer to Titan User Guide.
1292  *
1293  * Returns: VXGE_HW_OK - success.
1294  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1295  * are currently available for processing.
1296  *
1297  * See also: vxge_hw_ring_callback_f{},
1298  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1299  */
1300 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1301         struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1302 {
1303         struct __vxge_hw_channel *channel;
1304         struct vxge_hw_ring_rxd_1 *rxdp;
1305         enum vxge_hw_status status = VXGE_HW_OK;
1306         u64 control_0, own;
1307
1308         channel = &ring->channel;
1309
1310         vxge_hw_channel_dtr_try_complete(channel, rxdh);
1311
1312         rxdp = *rxdh;
1313         if (rxdp == NULL) {
1314                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1315                 goto exit;
1316         }
1317
1318         control_0 = rxdp->control_0;
1319         own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1320         *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1321
1322         /* check whether it is not the end */
1323         if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1324
1325                 vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
1326                                 0);
1327
1328                 ++ring->cmpl_cnt;
1329                 vxge_hw_channel_dtr_complete(channel);
1330
1331                 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1332
1333                 ring->stats->common_stats.usage_cnt++;
1334                 if (ring->stats->common_stats.usage_max <
1335                                 ring->stats->common_stats.usage_cnt)
1336                         ring->stats->common_stats.usage_max =
1337                                 ring->stats->common_stats.usage_cnt;
1338
1339                 status = VXGE_HW_OK;
1340                 goto exit;
1341         }
1342
1343         /* reset it. since we don't want to return
1344          * garbage to the driver */
1345         *rxdh = NULL;
1346         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1347 exit:
1348         return status;
1349 }
1350
1351 /**
1352  * vxge_hw_ring_handle_tcode - Handle transfer code.
1353  * @ring: Handle to the ring object used for receive
1354  * @rxdh: Descriptor handle.
1355  * @t_code: One of the enumerated (and documented in the Titan user guide)
1356  * "transfer codes".
1357  *
1358  * Handle descriptor's transfer code. The latter comes with each completed
1359  * descriptor.
1360  *
1361  * Returns: one of the enum vxge_hw_status{} enumerated types.
1362  * VXGE_HW_OK                   - for success.
1363  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1364  */
1365 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1366         struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1367 {
1368         struct __vxge_hw_channel *channel;
1369         enum vxge_hw_status status = VXGE_HW_OK;
1370
1371         channel = &ring->channel;
1372
1373         /* If the t_code is not supported and if the
1374          * t_code is other than 0x5 (unparseable packet
1375          * such as unknown UPV6 header), Drop it !!!
1376          */
1377
1378         if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1379                 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1380                 status = VXGE_HW_OK;
1381                 goto exit;
1382         }
1383
1384         if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1385                 status = VXGE_HW_ERR_INVALID_TCODE;
1386                 goto exit;
1387         }
1388
1389         ring->stats->rxd_t_code_err_cnt[t_code]++;
1390 exit:
1391         return status;
1392 }
1393
1394 /**
1395  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1396  *
1397  * @fifo: fifohandle
1398  * @txdl_ptr: The starting location of the TxDL in host memory
1399  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1400  * @no_snoop: No snoop flags
1401  *
1402  * This function posts a non-offload doorbell to doorbell FIFO
1403  *
1404  */
1405 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1406         u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1407 {
1408         struct __vxge_hw_channel *channel;
1409
1410         channel = &fifo->channel;
1411
1412         writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1413                 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1414                 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1415                 &fifo->nofl_db->control_0);
1416
1417         mmiowb();
1418
1419         writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1420
1421         mmiowb();
1422 }
1423
1424 /**
1425  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1426  * the fifo
1427  * @fifoh: Handle to the fifo object used for non offload send
1428  */
1429 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1430 {
1431         return vxge_hw_channel_dtr_count(&fifoh->channel);
1432 }
1433
1434 /**
1435  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1436  * @fifoh: Handle to the fifo object used for non offload send
1437  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1438  *        with a valid handle.
1439  * @txdl_priv: Buffer to return the pointer to per txdl space
1440  *
1441  * Reserve a single TxDL (that is, fifo descriptor)
1442  * for the subsequent filling-in by driver)
1443  * and posting on the corresponding channel (@channelh)
1444  * via vxge_hw_fifo_txdl_post().
1445  *
1446  * Note: it is the responsibility of driver to reserve multiple descriptors
1447  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1448  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1449  *
1450  * Returns: VXGE_HW_OK - success;
1451  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1452  *
1453  */
1454 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1455         struct __vxge_hw_fifo *fifo,
1456         void **txdlh, void **txdl_priv)
1457 {
1458         struct __vxge_hw_channel *channel;
1459         enum vxge_hw_status status;
1460         int i;
1461
1462         channel = &fifo->channel;
1463
1464         status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1465
1466         if (status == VXGE_HW_OK) {
1467                 struct vxge_hw_fifo_txd *txdp =
1468                         (struct vxge_hw_fifo_txd *)*txdlh;
1469                 struct __vxge_hw_fifo_txdl_priv *priv;
1470
1471                 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1472
1473                 /* reset the TxDL's private */
1474                 priv->align_dma_offset = 0;
1475                 priv->align_vaddr_start = priv->align_vaddr;
1476                 priv->align_used_frags = 0;
1477                 priv->frags = 0;
1478                 priv->alloc_frags = fifo->config->max_frags;
1479                 priv->next_txdl_priv = NULL;
1480
1481                 *txdl_priv = (void *)(size_t)txdp->host_control;
1482
1483                 for (i = 0; i < fifo->config->max_frags; i++) {
1484                         txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1485                         txdp->control_0 = txdp->control_1 = 0;
1486                 }
1487         }
1488
1489         return status;
1490 }
1491
1492 /**
1493  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1494  * descriptor.
1495  * @fifo: Handle to the fifo object used for non offload send
1496  * @txdlh: Descriptor handle.
1497  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1498  *            (of buffers).
1499  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1500  * @size: Size of the data buffer (in bytes).
1501  *
1502  * This API is part of the preparation of the transmit descriptor for posting
1503  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1504  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1505  * All three APIs fill in the fields of the fifo descriptor,
1506  * in accordance with the Titan specification.
1507  *
1508  */
1509 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1510                                   void *txdlh, u32 frag_idx,
1511                                   dma_addr_t dma_pointer, u32 size)
1512 {
1513         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1514         struct vxge_hw_fifo_txd *txdp, *txdp_last;
1515         struct __vxge_hw_channel *channel;
1516
1517         channel = &fifo->channel;
1518
1519         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1520         txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1521
1522         if (frag_idx != 0)
1523                 txdp->control_0 = txdp->control_1 = 0;
1524         else {
1525                 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1526                         VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1527                 txdp->control_1 |= fifo->interrupt_type;
1528                 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1529                         fifo->tx_intr_num);
1530                 if (txdl_priv->frags) {
1531                         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1532                         (txdl_priv->frags - 1);
1533                         txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1534                                 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1535                 }
1536         }
1537
1538         vxge_assert(frag_idx < txdl_priv->alloc_frags);
1539
1540         txdp->buffer_pointer = (u64)dma_pointer;
1541         txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1542         fifo->stats->total_buffers++;
1543         txdl_priv->frags++;
1544 }
1545
1546 /**
1547  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1548  * @fifo: Handle to the fifo object used for non offload send
1549  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1550  * @frags: Number of contiguous buffers that are part of a single
1551  *         transmit operation.
1552  *
1553  * Post descriptor on the 'fifo' type channel for transmission.
1554  * Prior to posting the descriptor should be filled in accordance with
1555  * Host/Titan interface specification for a given service (LL, etc.).
1556  *
1557  */
1558 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1559 {
1560         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1561         struct vxge_hw_fifo_txd *txdp_last;
1562         struct vxge_hw_fifo_txd *txdp_first;
1563         struct __vxge_hw_channel *channel;
1564
1565         channel = &fifo->channel;
1566
1567         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1568         txdp_first = txdlh;
1569
1570         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1571         txdp_last->control_0 |=
1572               VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1573         txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1574
1575         vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1576
1577         __vxge_hw_non_offload_db_post(fifo,
1578                 (u64)txdl_priv->dma_addr,
1579                 txdl_priv->frags - 1,
1580                 fifo->no_snoop_bits);
1581
1582         fifo->stats->total_posts++;
1583         fifo->stats->common_stats.usage_cnt++;
1584         if (fifo->stats->common_stats.usage_max <
1585                 fifo->stats->common_stats.usage_cnt)
1586                 fifo->stats->common_stats.usage_max =
1587                         fifo->stats->common_stats.usage_cnt;
1588 }
1589
1590 /**
1591  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1592  * @fifo: Handle to the fifo object used for non offload send
1593  * @txdlh: Descriptor handle. Returned by HW.
1594  * @t_code: Transfer code, as per Titan User Guide,
1595  *          Transmit Descriptor Format.
1596  *          Returned by HW.
1597  *
1598  * Retrieve the _next_ completed descriptor.
1599  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1600  * driver of new completed descriptors. After that
1601  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1602  * completions (the very first completion is passed by HW via
1603  * vxge_hw_channel_callback_f).
1604  *
1605  * Implementation-wise, the driver is free to call
1606  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1607  * channel callback, or in a deferred fashion and separate (from HW)
1608  * context.
1609  *
1610  * Non-zero @t_code means failure to process the descriptor.
1611  * The failure could happen, for instance, when the link is
1612  * down, in which case Titan completes the descriptor because it
1613  * is not able to send the data out.
1614  *
1615  * For details please refer to Titan User Guide.
1616  *
1617  * Returns: VXGE_HW_OK - success.
1618  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1619  * are currently available for processing.
1620  *
1621  */
1622 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1623         struct __vxge_hw_fifo *fifo, void **txdlh,
1624         enum vxge_hw_fifo_tcode *t_code)
1625 {
1626         struct __vxge_hw_channel *channel;
1627         struct vxge_hw_fifo_txd *txdp;
1628         enum vxge_hw_status status = VXGE_HW_OK;
1629
1630         channel = &fifo->channel;
1631
1632         vxge_hw_channel_dtr_try_complete(channel, txdlh);
1633
1634         txdp = *txdlh;
1635         if (txdp == NULL) {
1636                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1637                 goto exit;
1638         }
1639
1640         /* check whether host owns it */
1641         if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1642
1643                 vxge_assert(txdp->host_control != 0);
1644
1645                 vxge_hw_channel_dtr_complete(channel);
1646
1647                 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1648
1649                 if (fifo->stats->common_stats.usage_cnt > 0)
1650                         fifo->stats->common_stats.usage_cnt--;
1651
1652                 status = VXGE_HW_OK;
1653                 goto exit;
1654         }
1655
1656         /* no more completions */
1657         *txdlh = NULL;
1658         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1659 exit:
1660         return status;
1661 }
1662
1663 /**
1664  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1665  * @fifo: Handle to the fifo object used for non offload send
1666  * @txdlh: Descriptor handle.
1667  * @t_code: One of the enumerated (and documented in the Titan user guide)
1668  *          "transfer codes".
1669  *
1670  * Handle descriptor's transfer code. The latter comes with each completed
1671  * descriptor.
1672  *
1673  * Returns: one of the enum vxge_hw_status{} enumerated types.
1674  * VXGE_HW_OK - for success.
1675  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1676  */
1677 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1678                                               void *txdlh,
1679                                               enum vxge_hw_fifo_tcode t_code)
1680 {
1681         struct __vxge_hw_channel *channel;
1682
1683         enum vxge_hw_status status = VXGE_HW_OK;
1684         channel = &fifo->channel;
1685
1686         if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1687                 status = VXGE_HW_ERR_INVALID_TCODE;
1688                 goto exit;
1689         }
1690
1691         fifo->stats->txd_t_code_err_cnt[t_code]++;
1692 exit:
1693         return status;
1694 }
1695
1696 /**
1697  * vxge_hw_fifo_txdl_free - Free descriptor.
1698  * @fifo: Handle to the fifo object used for non offload send
1699  * @txdlh: Descriptor handle.
1700  *
1701  * Free the reserved descriptor. This operation is "symmetrical" to
1702  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1703  * lifecycle.
1704  *
1705  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1706  * be:
1707  *
1708  * - reserved (vxge_hw_fifo_txdl_reserve);
1709  *
1710  * - posted (vxge_hw_fifo_txdl_post);
1711  *
1712  * - completed (vxge_hw_fifo_txdl_next_completed);
1713  *
1714  * - and recycled again (vxge_hw_fifo_txdl_free).
1715  *
1716  * For alternative state transitions and more details please refer to
1717  * the design doc.
1718  *
1719  */
1720 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1721 {
1722         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1723         u32 max_frags;
1724         struct __vxge_hw_channel *channel;
1725
1726         channel = &fifo->channel;
1727
1728         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1729                         (struct vxge_hw_fifo_txd *)txdlh);
1730
1731         max_frags = fifo->config->max_frags;
1732
1733         vxge_hw_channel_dtr_free(channel, txdlh);
1734 }
1735
1736 /**
1737  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1738  *               to MAC address table.
1739  * @vp: Vpath handle.
1740  * @macaddr: MAC address to be added for this vpath into the list
1741  * @macaddr_mask: MAC address mask for macaddr
1742  * @duplicate_mode: Duplicate MAC address add mode. Please see
1743  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1744  *
1745  * Adds the given mac address and mac address mask into the list for this
1746  * vpath.
1747  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1748  * vxge_hw_vpath_mac_addr_get_next
1749  *
1750  */
1751 enum vxge_hw_status
1752 vxge_hw_vpath_mac_addr_add(
1753         struct __vxge_hw_vpath_handle *vp,
1754         u8 (macaddr)[ETH_ALEN],
1755         u8 (macaddr_mask)[ETH_ALEN],
1756         enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1757 {
1758         u32 i;
1759         u64 data1 = 0ULL;
1760         u64 data2 = 0ULL;
1761         enum vxge_hw_status status = VXGE_HW_OK;
1762
1763         if (vp == NULL) {
1764                 status = VXGE_HW_ERR_INVALID_HANDLE;
1765                 goto exit;
1766         }
1767
1768         for (i = 0; i < ETH_ALEN; i++) {
1769                 data1 <<= 8;
1770                 data1 |= (u8)macaddr[i];
1771
1772                 data2 <<= 8;
1773                 data2 |= (u8)macaddr_mask[i];
1774         }
1775
1776         switch (duplicate_mode) {
1777         case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1778                 i = 0;
1779                 break;
1780         case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1781                 i = 1;
1782                 break;
1783         case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1784                 i = 2;
1785                 break;
1786         default:
1787                 i = 0;
1788                 break;
1789         }
1790
1791         status = __vxge_hw_vpath_rts_table_set(vp,
1792                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1793                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1794                         0,
1795                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1796                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1797                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1798 exit:
1799         return status;
1800 }
1801
1802 /**
1803  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1804  *               from MAC address table.
1805  * @vp: Vpath handle.
1806  * @macaddr: First MAC address entry for this vpath in the list
1807  * @macaddr_mask: MAC address mask for macaddr
1808  *
1809  * Returns the first mac address and mac address mask in the list for this
1810  * vpath.
1811  * see also: vxge_hw_vpath_mac_addr_get_next
1812  *
1813  */
1814 enum vxge_hw_status
1815 vxge_hw_vpath_mac_addr_get(
1816         struct __vxge_hw_vpath_handle *vp,
1817         u8 (macaddr)[ETH_ALEN],
1818         u8 (macaddr_mask)[ETH_ALEN])
1819 {
1820         u32 i;
1821         u64 data1 = 0ULL;
1822         u64 data2 = 0ULL;
1823         enum vxge_hw_status status = VXGE_HW_OK;
1824
1825         if (vp == NULL) {
1826                 status = VXGE_HW_ERR_INVALID_HANDLE;
1827                 goto exit;
1828         }
1829
1830         status = __vxge_hw_vpath_rts_table_get(vp,
1831                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1832                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1833                         0, &data1, &data2);
1834
1835         if (status != VXGE_HW_OK)
1836                 goto exit;
1837
1838         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1839
1840         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1841
1842         for (i = ETH_ALEN; i > 0; i--) {
1843                 macaddr[i-1] = (u8)(data1 & 0xFF);
1844                 data1 >>= 8;
1845
1846                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1847                 data2 >>= 8;
1848         }
1849 exit:
1850         return status;
1851 }
1852
1853 /**
1854  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1855  * vpath
1856  *               from MAC address table.
1857  * @vp: Vpath handle.
1858  * @macaddr: Next MAC address entry for this vpath in the list
1859  * @macaddr_mask: MAC address mask for macaddr
1860  *
1861  * Returns the next mac address and mac address mask in the list for this
1862  * vpath.
1863  * see also: vxge_hw_vpath_mac_addr_get
1864  *
1865  */
1866 enum vxge_hw_status
1867 vxge_hw_vpath_mac_addr_get_next(
1868         struct __vxge_hw_vpath_handle *vp,
1869         u8 (macaddr)[ETH_ALEN],
1870         u8 (macaddr_mask)[ETH_ALEN])
1871 {
1872         u32 i;
1873         u64 data1 = 0ULL;
1874         u64 data2 = 0ULL;
1875         enum vxge_hw_status status = VXGE_HW_OK;
1876
1877         if (vp == NULL) {
1878                 status = VXGE_HW_ERR_INVALID_HANDLE;
1879                 goto exit;
1880         }
1881
1882         status = __vxge_hw_vpath_rts_table_get(vp,
1883                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1884                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1885                         0, &data1, &data2);
1886
1887         if (status != VXGE_HW_OK)
1888                 goto exit;
1889
1890         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1891
1892         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1893
1894         for (i = ETH_ALEN; i > 0; i--) {
1895                 macaddr[i-1] = (u8)(data1 & 0xFF);
1896                 data1 >>= 8;
1897
1898                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1899                 data2 >>= 8;
1900         }
1901
1902 exit:
1903         return status;
1904 }
1905
1906 /**
1907  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1908  *               to MAC address table.
1909  * @vp: Vpath handle.
1910  * @macaddr: MAC address to be added for this vpath into the list
1911  * @macaddr_mask: MAC address mask for macaddr
1912  *
1913  * Delete the given mac address and mac address mask into the list for this
1914  * vpath.
1915  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1916  * vxge_hw_vpath_mac_addr_get_next
1917  *
1918  */
1919 enum vxge_hw_status
1920 vxge_hw_vpath_mac_addr_delete(
1921         struct __vxge_hw_vpath_handle *vp,
1922         u8 (macaddr)[ETH_ALEN],
1923         u8 (macaddr_mask)[ETH_ALEN])
1924 {
1925         u32 i;
1926         u64 data1 = 0ULL;
1927         u64 data2 = 0ULL;
1928         enum vxge_hw_status status = VXGE_HW_OK;
1929
1930         if (vp == NULL) {
1931                 status = VXGE_HW_ERR_INVALID_HANDLE;
1932                 goto exit;
1933         }
1934
1935         for (i = 0; i < ETH_ALEN; i++) {
1936                 data1 <<= 8;
1937                 data1 |= (u8)macaddr[i];
1938
1939                 data2 <<= 8;
1940                 data2 |= (u8)macaddr_mask[i];
1941         }
1942
1943         status = __vxge_hw_vpath_rts_table_set(vp,
1944                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1945                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1946                         0,
1947                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1948                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1949 exit:
1950         return status;
1951 }
1952
1953 /**
1954  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1955  *               to vlan id table.
1956  * @vp: Vpath handle.
1957  * @vid: vlan id to be added for this vpath into the list
1958  *
1959  * Adds the given vlan id into the list for this  vpath.
1960  * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
1961  * vxge_hw_vpath_vid_get_next
1962  *
1963  */
1964 enum vxge_hw_status
1965 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1966 {
1967         enum vxge_hw_status status = VXGE_HW_OK;
1968
1969         if (vp == NULL) {
1970                 status = VXGE_HW_ERR_INVALID_HANDLE;
1971                 goto exit;
1972         }
1973
1974         status = __vxge_hw_vpath_rts_table_set(vp,
1975                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1976                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1977                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1978 exit:
1979         return status;
1980 }
1981
1982 /**
1983  * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
1984  *               from vlan id table.
1985  * @vp: Vpath handle.
1986  * @vid: Buffer to return vlan id
1987  *
1988  * Returns the first vlan id in the list for this vpath.
1989  * see also: vxge_hw_vpath_vid_get_next
1990  *
1991  */
1992 enum vxge_hw_status
1993 vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
1994 {
1995         u64 data;
1996         enum vxge_hw_status status = VXGE_HW_OK;
1997
1998         if (vp == NULL) {
1999                 status = VXGE_HW_ERR_INVALID_HANDLE;
2000                 goto exit;
2001         }
2002
2003         status = __vxge_hw_vpath_rts_table_get(vp,
2004                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
2005                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2006                         0, vid, &data);
2007
2008         *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
2009 exit:
2010         return status;
2011 }
2012
2013 /**
2014  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
2015  *               to vlan id table.
2016  * @vp: Vpath handle.
2017  * @vid: vlan id to be added for this vpath into the list
2018  *
2019  * Adds the given vlan id into the list for this  vpath.
2020  * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
2021  * vxge_hw_vpath_vid_get_next
2022  *
2023  */
2024 enum vxge_hw_status
2025 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
2026 {
2027         enum vxge_hw_status status = VXGE_HW_OK;
2028
2029         if (vp == NULL) {
2030                 status = VXGE_HW_ERR_INVALID_HANDLE;
2031                 goto exit;
2032         }
2033
2034         status = __vxge_hw_vpath_rts_table_set(vp,
2035                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
2036                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
2037                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
2038 exit:
2039         return status;
2040 }
2041
2042 /**
2043  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
2044  * @vp: Vpath handle.
2045  *
2046  * Enable promiscuous mode of Titan-e operation.
2047  *
2048  * See also: vxge_hw_vpath_promisc_disable().
2049  */
2050 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2051                         struct __vxge_hw_vpath_handle *vp)
2052 {
2053         u64 val64;
2054         struct __vxge_hw_virtualpath *vpath;
2055         enum vxge_hw_status status = VXGE_HW_OK;
2056
2057         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2058                 status = VXGE_HW_ERR_INVALID_HANDLE;
2059                 goto exit;
2060         }
2061
2062         vpath = vp->vpath;
2063
2064         /* Enable promiscuous mode for function 0 only */
2065         if (!(vpath->hldev->access_rights &
2066                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2067                 return VXGE_HW_OK;
2068
2069         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2070
2071         if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2072
2073                 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2074                          VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2075                          VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2076                          VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2077
2078                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2079         }
2080 exit:
2081         return status;
2082 }
2083
2084 /**
2085  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2086  * @vp: Vpath handle.
2087  *
2088  * Disable promiscuous mode of Titan-e operation.
2089  *
2090  * See also: vxge_hw_vpath_promisc_enable().
2091  */
2092 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2093                         struct __vxge_hw_vpath_handle *vp)
2094 {
2095         u64 val64;
2096         struct __vxge_hw_virtualpath *vpath;
2097         enum vxge_hw_status status = VXGE_HW_OK;
2098
2099         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2100                 status = VXGE_HW_ERR_INVALID_HANDLE;
2101                 goto exit;
2102         }
2103
2104         vpath = vp->vpath;
2105
2106         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2107
2108         if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2109
2110                 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2111                            VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2112                            VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2113
2114                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2115         }
2116 exit:
2117         return status;
2118 }
2119
2120 /*
2121  * vxge_hw_vpath_bcast_enable - Enable broadcast
2122  * @vp: Vpath handle.
2123  *
2124  * Enable receiving broadcasts.
2125  */
2126 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2127                         struct __vxge_hw_vpath_handle *vp)
2128 {
2129         u64 val64;
2130         struct __vxge_hw_virtualpath *vpath;
2131         enum vxge_hw_status status = VXGE_HW_OK;
2132
2133         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2134                 status = VXGE_HW_ERR_INVALID_HANDLE;
2135                 goto exit;
2136         }
2137
2138         vpath = vp->vpath;
2139
2140         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2141
2142         if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2143                 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2144                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2145         }
2146 exit:
2147         return status;
2148 }
2149
2150 /**
2151  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2152  * @vp: Vpath handle.
2153  *
2154  * Enable Titan-e multicast addresses.
2155  * Returns: VXGE_HW_OK on success.
2156  *
2157  */
2158 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2159                         struct __vxge_hw_vpath_handle *vp)
2160 {
2161         u64 val64;
2162         struct __vxge_hw_virtualpath *vpath;
2163         enum vxge_hw_status status = VXGE_HW_OK;
2164
2165         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2166                 status = VXGE_HW_ERR_INVALID_HANDLE;
2167                 goto exit;
2168         }
2169
2170         vpath = vp->vpath;
2171
2172         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2173
2174         if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2175                 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2176                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2177         }
2178 exit:
2179         return status;
2180 }
2181
2182 /**
2183  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2184  * @vp: Vpath handle.
2185  *
2186  * Disable Titan-e multicast addresses.
2187  * Returns: VXGE_HW_OK - success.
2188  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2189  *
2190  */
2191 enum vxge_hw_status
2192 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2193 {
2194         u64 val64;
2195         struct __vxge_hw_virtualpath *vpath;
2196         enum vxge_hw_status status = VXGE_HW_OK;
2197
2198         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2199                 status = VXGE_HW_ERR_INVALID_HANDLE;
2200                 goto exit;
2201         }
2202
2203         vpath = vp->vpath;
2204
2205         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2206
2207         if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2208                 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2209                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2210         }
2211 exit:
2212         return status;
2213 }
2214
2215 /*
2216  * vxge_hw_vpath_alarm_process - Process Alarms.
2217  * @vpath: Virtual Path.
2218  * @skip_alarms: Do not clear the alarms
2219  *
2220  * Process vpath alarms.
2221  *
2222  */
2223 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2224                         struct __vxge_hw_vpath_handle *vp,
2225                         u32 skip_alarms)
2226 {
2227         enum vxge_hw_status status = VXGE_HW_OK;
2228
2229         if (vp == NULL) {
2230                 status = VXGE_HW_ERR_INVALID_HANDLE;
2231                 goto exit;
2232         }
2233
2234         status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2235 exit:
2236         return status;
2237 }
2238
2239 /**
2240  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2241  *                            alrms
2242  * @vp: Virtual Path handle.
2243  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2244  *             interrupts(Can be repeated). If fifo or ring are not enabled
2245  *             the MSIX vector for that should be set to 0
2246  * @alarm_msix_id: MSIX vector for alarm.
2247  *
2248  * This API will associate a given MSIX vector numbers with the four TIM
2249  * interrupts and alarm interrupt.
2250  */
2251 void
2252 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2253                        int alarm_msix_id)
2254 {
2255         u64 val64;
2256         struct __vxge_hw_virtualpath *vpath = vp->vpath;
2257         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2258         u32 vp_id = vp->vpath->vp_id;
2259
2260         val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2261                   (vp_id * 4) + tim_msix_id[0]) |
2262                  VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2263                   (vp_id * 4) + tim_msix_id[1]);
2264
2265         writeq(val64, &vp_reg->interrupt_cfg0);
2266
2267         writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2268                         (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2269                         &vp_reg->interrupt_cfg2);
2270
2271         if (vpath->hldev->config.intr_mode ==
2272                                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2273                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2274                                 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2275                                 0, 32), &vp_reg->one_shot_vect0_en);
2276                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2277                                 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2278                                 0, 32), &vp_reg->one_shot_vect1_en);
2279                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2280                                 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2281                                 0, 32), &vp_reg->one_shot_vect2_en);
2282         }
2283 }
2284
2285 /**
2286  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2287  * @vp: Virtual Path handle.
2288  * @msix_id:  MSIX ID
2289  *
2290  * The function masks the msix interrupt for the given msix_id
2291  *
2292  * Returns: 0,
2293  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2294  * status.
2295  * See also:
2296  */
2297 void
2298 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2299 {
2300         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2301         __vxge_hw_pio_mem_write32_upper(
2302                 (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2303                 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2304 }
2305
2306 /**
2307  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2308  * @vp: Virtual Path handle.
2309  * @msix_id:  MSI ID
2310  *
2311  * The function clears the msix interrupt for the given msix_id
2312  *
2313  * Returns: 0,
2314  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2315  * status.
2316  * See also:
2317  */
2318 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2319 {
2320         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2321
2322         if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2323                 __vxge_hw_pio_mem_write32_upper(
2324                         (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2325                         &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2326         else
2327                 __vxge_hw_pio_mem_write32_upper(
2328                         (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2329                         &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2330 }
2331
2332 /**
2333  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2334  * @vp: Virtual Path handle.
2335  * @msix_id:  MSI ID
2336  *
2337  * The function unmasks the msix interrupt for the given msix_id
2338  *
2339  * Returns: 0,
2340  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2341  * status.
2342  * See also:
2343  */
2344 void
2345 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2346 {
2347         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2348         __vxge_hw_pio_mem_write32_upper(
2349                         (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2350                         &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2351 }
2352
2353 /**
2354  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2355  * @vp: Virtual Path handle.
2356  *
2357  * Mask Tx and Rx vpath interrupts.
2358  *
2359  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2360  */
2361 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2362 {
2363         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2364         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2365         u64     val64;
2366         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2367
2368         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2369                 tim_int_mask1, vp->vpath->vp_id);
2370
2371         val64 = readq(&hldev->common_reg->tim_int_mask0);
2372
2373         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2374                 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2375                 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2376                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2377                         &hldev->common_reg->tim_int_mask0);
2378         }
2379
2380         val64 = readl(&hldev->common_reg->tim_int_mask1);
2381
2382         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2383                 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2384                 __vxge_hw_pio_mem_write32_upper(
2385                         (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2386                         tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2387                         &hldev->common_reg->tim_int_mask1);
2388         }
2389 }
2390
2391 /**
2392  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2393  * @vp: Virtual Path handle.
2394  *
2395  * Unmask Tx and Rx vpath interrupts.
2396  *
2397  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2398  */
2399 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2400 {
2401         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2402         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2403         u64     val64;
2404         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2405
2406         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2407                 tim_int_mask1, vp->vpath->vp_id);
2408
2409         val64 = readq(&hldev->common_reg->tim_int_mask0);
2410
2411         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2412            (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2413                 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2414                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2415                         &hldev->common_reg->tim_int_mask0);
2416         }
2417
2418         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2419            (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2420                 __vxge_hw_pio_mem_write32_upper(
2421                         (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2422                           tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2423                         &hldev->common_reg->tim_int_mask1);
2424         }
2425 }
2426
2427 /**
2428  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2429  * descriptors and process the same.
2430  * @ring: Handle to the ring object used for receive
2431  *
2432  * The function polls the Rx for the completed  descriptors and calls
2433  * the driver via supplied completion   callback.
2434  *
2435  * Returns: VXGE_HW_OK, if the polling is completed successful.
2436  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2437  * descriptors available which are yet to be processed.
2438  *
2439  * See also: vxge_hw_vpath_poll_rx()
2440  */
2441 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2442 {
2443         u8 t_code;
2444         enum vxge_hw_status status = VXGE_HW_OK;
2445         void *first_rxdh;
2446         u64 val64 = 0;
2447         int new_count = 0;
2448
2449         ring->cmpl_cnt = 0;
2450
2451         status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2452         if (status == VXGE_HW_OK)
2453                 ring->callback(ring, first_rxdh,
2454                         t_code, ring->channel.userdata);
2455
2456         if (ring->cmpl_cnt != 0) {
2457                 ring->doorbell_cnt += ring->cmpl_cnt;
2458                 if (ring->doorbell_cnt >= ring->rxds_limit) {
2459                         /*
2460                          * Each RxD is of 4 qwords, update the number of
2461                          * qwords replenished
2462                          */
2463                         new_count = (ring->doorbell_cnt * 4);
2464
2465                         /* For each block add 4 more qwords */
2466                         ring->total_db_cnt += ring->doorbell_cnt;
2467                         if (ring->total_db_cnt >= ring->rxds_per_block) {
2468                                 new_count += 4;
2469                                 /* Reset total count */
2470                                 ring->total_db_cnt %= ring->rxds_per_block;
2471                         }
2472                         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2473                                 &ring->vp_reg->prc_rxd_doorbell);
2474                         val64 =
2475                           readl(&ring->common_reg->titan_general_int_status);
2476                         ring->doorbell_cnt = 0;
2477                 }
2478         }
2479
2480         return status;
2481 }
2482
2483 /**
2484  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2485  * the same.
2486  * @fifo: Handle to the fifo object used for non offload send
2487  *
2488  * The function polls the Tx for the completed descriptors and calls
2489  * the driver via supplied completion callback.
2490  *
2491  * Returns: VXGE_HW_OK, if the polling is completed successful.
2492  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2493  * descriptors available which are yet to be processed.
2494  */
2495 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2496                                         struct sk_buff ***skb_ptr, int nr_skb,
2497                                         int *more)
2498 {
2499         enum vxge_hw_fifo_tcode t_code;
2500         void *first_txdlh;
2501         enum vxge_hw_status status = VXGE_HW_OK;
2502         struct __vxge_hw_channel *channel;
2503
2504         channel = &fifo->channel;
2505
2506         status = vxge_hw_fifo_txdl_next_completed(fifo,
2507                                 &first_txdlh, &t_code);
2508         if (status == VXGE_HW_OK)
2509                 if (fifo->callback(fifo, first_txdlh, t_code,
2510                         channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2511                         status = VXGE_HW_COMPLETIONS_REMAIN;
2512
2513         return status;
2514 }