Merge branch 'e1000-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[pandora-kernel.git] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/etherdevice.h>
51
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
55
56 #include "tsi108_eth.h"
57
58 #define MII_READ_DELAY 10000    /* max link wait time in msec */
59
60 #define TSI108_RXRING_LEN     256
61
62 /* NOTE: The driver currently does not support receiving packets
63  * larger than the buffer size, so don't decrease this (unless you
64  * want to add such support).
65  */
66 #define TSI108_RXBUF_SIZE     1536
67
68 #define TSI108_TXRING_LEN     256
69
70 #define TSI108_TX_INT_FREQ    64
71
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
74
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
77
78 struct tsi108_prv_data {
79         void  __iomem *regs;    /* Base of normal regs */
80         void  __iomem *phyregs; /* Base of register bank used for PHY access */
81
82         unsigned int phy;               /* Index of PHY for this interface */
83         unsigned int irq_num;
84         unsigned int id;
85
86         struct timer_list timer;/* Timer that triggers the check phy function */
87         unsigned int rxtail;    /* Next entry in rxring to read */
88         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
89         unsigned int rxfree;    /* Number of free, allocated RX buffers */
90
91         unsigned int rxpending; /* Non-zero if there are still descriptors
92                                  * to be processed from a previous descriptor
93                                  * interrupt condition that has been cleared */
94
95         unsigned int txtail;    /* Next TX descriptor to check status on */
96         unsigned int txhead;    /* Next TX descriptor to use */
97
98         /* Number of free TX descriptors.  This could be calculated from
99          * rxhead and rxtail if one descriptor were left unused to disambiguate
100          * full and empty conditions, but it's simpler to just keep track
101          * explicitly. */
102
103         unsigned int txfree;
104
105         unsigned int phy_ok;            /* The PHY is currently powered on. */
106
107         /* PHY status (duplex is 1 for half, 2 for full,
108          * so that the default 0 indicates that neither has
109          * yet been configured). */
110
111         unsigned int link_up;
112         unsigned int speed;
113         unsigned int duplex;
114
115         tx_desc *txring;
116         rx_desc *rxring;
117         struct sk_buff *txskbs[TSI108_TXRING_LEN];
118         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
119
120         dma_addr_t txdma, rxdma;
121
122         /* txlock nests in misclock and phy_lock */
123
124         spinlock_t txlock, misclock;
125
126         /* stats is used to hold the upper bits of each hardware counter,
127          * and tmpstats is used to hold the full values for returning
128          * to the caller of get_stats().  They must be separate in case
129          * an overflow interrupt occurs before the stats are consumed.
130          */
131
132         struct net_device_stats stats;
133         struct net_device_stats tmpstats;
134
135         /* These stats are kept separate in hardware, thus require individual
136          * fields for handling carry.  They are combined in get_stats.
137          */
138
139         unsigned long rx_fcs;   /* Add to rx_frame_errors */
140         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
141         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
142         unsigned long rx_underruns;     /* Add to rx_length_errors */
143         unsigned long rx_overruns;      /* Add to rx_length_errors */
144
145         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
146         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
147
148         unsigned long mc_hash[16];
149         u32 msg_enable;                 /* debug message level */
150         struct mii_if_info mii_if;
151         unsigned int init_media;
152 };
153
154 /* Structure for a device driver */
155
156 static struct platform_driver tsi_eth_driver = {
157         .probe = tsi108_init_one,
158         .remove = tsi108_ether_remove,
159         .driver = {
160                 .name = "tsi-ethernet",
161         },
162 };
163
164 static void tsi108_timed_checker(unsigned long dev_ptr);
165
166 static void dump_eth_one(struct net_device *dev)
167 {
168         struct tsi108_prv_data *data = netdev_priv(dev);
169
170         printk("Dumping %s...\n", dev->name);
171         printk("intstat %x intmask %x phy_ok %d"
172                " link %d speed %d duplex %d\n",
173                TSI_READ(TSI108_EC_INTSTAT),
174                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
175                data->link_up, data->speed, data->duplex);
176
177         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
178                data->txhead, data->txtail, data->txfree,
179                TSI_READ(TSI108_EC_TXSTAT),
180                TSI_READ(TSI108_EC_TXESTAT),
181                TSI_READ(TSI108_EC_TXERR));
182
183         printk("RX: head %d, tail %d, free %d, stat %x,"
184                " estat %x, err %x, pending %d\n\n",
185                data->rxhead, data->rxtail, data->rxfree,
186                TSI_READ(TSI108_EC_RXSTAT),
187                TSI_READ(TSI108_EC_RXESTAT),
188                TSI_READ(TSI108_EC_RXERR), data->rxpending);
189 }
190
191 /* Synchronization is needed between the thread and up/down events.
192  * Note that the PHY is accessed through the same registers for both
193  * interfaces, so this can't be made interface-specific.
194  */
195
196 static DEFINE_SPINLOCK(phy_lock);
197
198 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
199 {
200         unsigned i;
201
202         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
203                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
204                                 (reg << TSI108_MAC_MII_ADDR_REG));
205         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
206         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
207         for (i = 0; i < 100; i++) {
208                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
209                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
210                         break;
211                 udelay(10);
212         }
213
214         if (i == 100)
215                 return 0xffff;
216         else
217                 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
218 }
219
220 static void tsi108_write_mii(struct tsi108_prv_data *data,
221                                 int reg, u16 val)
222 {
223         unsigned i = 100;
224         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
225                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
226                                 (reg << TSI108_MAC_MII_ADDR_REG));
227         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
228         while (i--) {
229                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
230                         TSI108_MAC_MII_IND_BUSY))
231                         break;
232                 udelay(10);
233         }
234 }
235
236 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
237 {
238         struct tsi108_prv_data *data = netdev_priv(dev);
239         return tsi108_read_mii(data, reg);
240 }
241
242 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
243 {
244         struct tsi108_prv_data *data = netdev_priv(dev);
245         tsi108_write_mii(data, reg, val);
246 }
247
248 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
249                                         int reg, u16 val)
250 {
251         unsigned i = 1000;
252         TSI_WRITE(TSI108_MAC_MII_ADDR,
253                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
254                              | (reg << TSI108_MAC_MII_ADDR_REG));
255         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
256         while(i--) {
257                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
258                         return;
259                 udelay(10);
260         }
261         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
262 }
263
264 static int mii_speed(struct mii_if_info *mii)
265 {
266         int advert, lpa, val, media;
267         int lpa2 = 0;
268         int speed;
269
270         if (!mii_link_ok(mii))
271                 return 0;
272
273         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
274         if ((val & BMSR_ANEGCOMPLETE) == 0)
275                 return 0;
276
277         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
278         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
279         media = mii_nway_result(advert & lpa);
280
281         if (mii->supports_gmii)
282                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
283
284         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
285                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
286         return speed;
287 }
288
289 static void tsi108_check_phy(struct net_device *dev)
290 {
291         struct tsi108_prv_data *data = netdev_priv(dev);
292         u32 mac_cfg2_reg, portctrl_reg;
293         u32 duplex;
294         u32 speed;
295         unsigned long flags;
296
297         /* Do a dummy read, as for some reason the first read
298          * after a link becomes up returns link down, even if
299          * it's been a while since the link came up.
300          */
301
302         spin_lock_irqsave(&phy_lock, flags);
303
304         if (!data->phy_ok)
305                 goto out;
306
307         tsi108_read_mii(data, MII_BMSR);
308
309         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
310         data->init_media = 0;
311
312         if (netif_carrier_ok(dev)) {
313
314                 speed = mii_speed(&data->mii_if);
315
316                 if ((speed != data->speed) || duplex) {
317
318                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
319                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
320
321                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
322
323                         if (speed == 1000) {
324                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
325                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
326                         } else {
327                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
328                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
329                         }
330
331                         data->speed = speed;
332
333                         if (data->mii_if.full_duplex) {
334                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
335                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
336                                 data->duplex = 2;
337                         } else {
338                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
339                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
340                                 data->duplex = 1;
341                         }
342
343                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
344                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
345
346                         if (data->link_up == 0) {
347                                 /* The manual says it can take 3-4 usecs for the speed change
348                                  * to take effect.
349                                  */
350                                 udelay(5);
351
352                                 spin_lock(&data->txlock);
353                                 if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
354                                         netif_wake_queue(dev);
355
356                                 data->link_up = 1;
357                                 spin_unlock(&data->txlock);
358                         }
359                 }
360
361         } else {
362                 if (data->link_up == 1) {
363                         netif_stop_queue(dev);
364                         data->link_up = 0;
365                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
366                 }
367
368                 goto out;
369         }
370
371
372 out:
373         spin_unlock_irqrestore(&phy_lock, flags);
374 }
375
376 static inline void
377 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
378                       unsigned long *upper)
379 {
380         if (carry & carry_bit)
381                 *upper += carry_shift;
382 }
383
384 static void tsi108_stat_carry(struct net_device *dev)
385 {
386         struct tsi108_prv_data *data = netdev_priv(dev);
387         u32 carry1, carry2;
388
389         spin_lock_irq(&data->misclock);
390
391         carry1 = TSI_READ(TSI108_STAT_CARRY1);
392         carry2 = TSI_READ(TSI108_STAT_CARRY2);
393
394         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
395         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
396
397         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
398                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
399
400         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
401                               TSI108_STAT_RXPKTS_CARRY,
402                               &data->stats.rx_packets);
403
404         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
405                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
406
407         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
408                               TSI108_STAT_RXMCAST_CARRY,
409                               &data->stats.multicast);
410
411         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
412                               TSI108_STAT_RXALIGN_CARRY,
413                               &data->stats.rx_frame_errors);
414
415         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
416                               TSI108_STAT_RXLENGTH_CARRY,
417                               &data->stats.rx_length_errors);
418
419         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
420                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
421
422         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
423                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
424
425         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
426                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
427
428         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
429                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
430
431         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
432                               TSI108_STAT_RXDROP_CARRY,
433                               &data->stats.rx_missed_errors);
434
435         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
436                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
437
438         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
439                               TSI108_STAT_TXPKTS_CARRY,
440                               &data->stats.tx_packets);
441
442         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
443                               TSI108_STAT_TXEXDEF_CARRY,
444                               &data->stats.tx_aborted_errors);
445
446         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
447                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
448
449         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
450                               TSI108_STAT_TXTCOL_CARRY,
451                               &data->stats.collisions);
452
453         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
454                               TSI108_STAT_TXPAUSEDROP_CARRY,
455                               &data->tx_pause_drop);
456
457         spin_unlock_irq(&data->misclock);
458 }
459
460 /* Read a stat counter atomically with respect to carries.
461  * data->misclock must be held.
462  */
463 static inline unsigned long
464 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
465                  int carry_shift, unsigned long *upper)
466 {
467         int carryreg;
468         unsigned long val;
469
470         if (reg < 0xb0)
471                 carryreg = TSI108_STAT_CARRY1;
472         else
473                 carryreg = TSI108_STAT_CARRY2;
474
475       again:
476         val = TSI_READ(reg) | *upper;
477
478         /* Check to see if it overflowed, but the interrupt hasn't
479          * been serviced yet.  If so, handle the carry here, and
480          * try again.
481          */
482
483         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
484                 *upper += carry_shift;
485                 TSI_WRITE(carryreg, carry_bit);
486                 goto again;
487         }
488
489         return val;
490 }
491
492 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
493 {
494         unsigned long excol;
495
496         struct tsi108_prv_data *data = netdev_priv(dev);
497         spin_lock_irq(&data->misclock);
498
499         data->tmpstats.rx_packets =
500             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
501                              TSI108_STAT_CARRY1_RXPKTS,
502                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
503
504         data->tmpstats.tx_packets =
505             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
506                              TSI108_STAT_CARRY2_TXPKTS,
507                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
508
509         data->tmpstats.rx_bytes =
510             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
511                              TSI108_STAT_CARRY1_RXBYTES,
512                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
513
514         data->tmpstats.tx_bytes =
515             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
516                              TSI108_STAT_CARRY2_TXBYTES,
517                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
518
519         data->tmpstats.multicast =
520             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
521                              TSI108_STAT_CARRY1_RXMCAST,
522                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
523
524         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
525                                  TSI108_STAT_CARRY2_TXEXCOL,
526                                  TSI108_STAT_TXEXCOL_CARRY,
527                                  &data->tx_coll_abort);
528
529         data->tmpstats.collisions =
530             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
531                              TSI108_STAT_CARRY2_TXTCOL,
532                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
533
534         data->tmpstats.collisions += excol;
535
536         data->tmpstats.rx_length_errors =
537             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
538                              TSI108_STAT_CARRY1_RXLENGTH,
539                              TSI108_STAT_RXLENGTH_CARRY,
540                              &data->stats.rx_length_errors);
541
542         data->tmpstats.rx_length_errors +=
543             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
544                              TSI108_STAT_CARRY1_RXRUNT,
545                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
546
547         data->tmpstats.rx_length_errors +=
548             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
549                              TSI108_STAT_CARRY1_RXJUMBO,
550                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
551
552         data->tmpstats.rx_frame_errors =
553             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
554                              TSI108_STAT_CARRY1_RXALIGN,
555                              TSI108_STAT_RXALIGN_CARRY,
556                              &data->stats.rx_frame_errors);
557
558         data->tmpstats.rx_frame_errors +=
559             tsi108_read_stat(data, TSI108_STAT_RXFCS,
560                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
561                              &data->rx_fcs);
562
563         data->tmpstats.rx_frame_errors +=
564             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
565                              TSI108_STAT_CARRY1_RXFRAG,
566                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
567
568         data->tmpstats.rx_missed_errors =
569             tsi108_read_stat(data, TSI108_STAT_RXDROP,
570                              TSI108_STAT_CARRY1_RXDROP,
571                              TSI108_STAT_RXDROP_CARRY,
572                              &data->stats.rx_missed_errors);
573
574         /* These three are maintained by software. */
575         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
576         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
577
578         data->tmpstats.tx_aborted_errors =
579             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
580                              TSI108_STAT_CARRY2_TXEXDEF,
581                              TSI108_STAT_TXEXDEF_CARRY,
582                              &data->stats.tx_aborted_errors);
583
584         data->tmpstats.tx_aborted_errors +=
585             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
586                              TSI108_STAT_CARRY2_TXPAUSE,
587                              TSI108_STAT_TXPAUSEDROP_CARRY,
588                              &data->tx_pause_drop);
589
590         data->tmpstats.tx_aborted_errors += excol;
591
592         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
593         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
594             data->tmpstats.rx_crc_errors +
595             data->tmpstats.rx_frame_errors +
596             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
597
598         spin_unlock_irq(&data->misclock);
599         return &data->tmpstats;
600 }
601
602 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
603 {
604         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
605                              TSI108_EC_RXQ_PTRHIGH_VALID);
606
607         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
608                              | TSI108_EC_RXCTRL_QUEUE0);
609 }
610
611 static void tsi108_restart_tx(struct tsi108_prv_data * data)
612 {
613         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
614                              TSI108_EC_TXQ_PTRHIGH_VALID);
615
616         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
617                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
618 }
619
620 /* txlock must be held by caller, with IRQs disabled, and
621  * with permission to re-enable them when the lock is dropped.
622  */
623 static void tsi108_complete_tx(struct net_device *dev)
624 {
625         struct tsi108_prv_data *data = netdev_priv(dev);
626         int tx;
627         struct sk_buff *skb;
628         int release = 0;
629
630         while (!data->txfree || data->txhead != data->txtail) {
631                 tx = data->txtail;
632
633                 if (data->txring[tx].misc & TSI108_TX_OWN)
634                         break;
635
636                 skb = data->txskbs[tx];
637
638                 if (!(data->txring[tx].misc & TSI108_TX_OK))
639                         printk("%s: bad tx packet, misc %x\n",
640                                dev->name, data->txring[tx].misc);
641
642                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
643                 data->txfree++;
644
645                 if (data->txring[tx].misc & TSI108_TX_EOF) {
646                         dev_kfree_skb_any(skb);
647                         release++;
648                 }
649         }
650
651         if (release) {
652                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
653                         netif_wake_queue(dev);
654         }
655 }
656
657 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
658 {
659         struct tsi108_prv_data *data = netdev_priv(dev);
660         int frags = skb_shinfo(skb)->nr_frags + 1;
661         int i;
662
663         if (!data->phy_ok && net_ratelimit())
664                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
665
666         if (!data->link_up) {
667                 printk(KERN_ERR "%s: Transmit while link is down!\n",
668                        dev->name);
669                 netif_stop_queue(dev);
670                 return NETDEV_TX_BUSY;
671         }
672
673         if (data->txfree < MAX_SKB_FRAGS + 1) {
674                 netif_stop_queue(dev);
675
676                 if (net_ratelimit())
677                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
678                                dev->name);
679                 return NETDEV_TX_BUSY;
680         }
681
682         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
683                 netif_stop_queue(dev);
684         }
685
686         spin_lock_irq(&data->txlock);
687
688         for (i = 0; i < frags; i++) {
689                 int misc = 0;
690                 int tx = data->txhead;
691
692                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
693                  * the interrupt bit.  TX descriptor-complete interrupts are
694                  * enabled when the queue fills up, and masked when there is
695                  * still free space.  This way, when saturating the outbound
696                  * link, the tx interrupts are kept to a reasonable level.
697                  * When the queue is not full, reclamation of skbs still occurs
698                  * as new packets are transmitted, or on a queue-empty
699                  * interrupt.
700                  */
701
702                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
703                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
704                         misc = TSI108_TX_INT;
705
706                 data->txskbs[tx] = skb;
707
708                 if (i == 0) {
709                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
710                                         skb->len - skb->data_len, DMA_TO_DEVICE);
711                         data->txring[tx].len = skb->len - skb->data_len;
712                         misc |= TSI108_TX_SOF;
713                 } else {
714                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
715
716                         data->txring[tx].buf0 =
717                             dma_map_page(NULL, frag->page, frag->page_offset,
718                                             frag->size, DMA_TO_DEVICE);
719                         data->txring[tx].len = frag->size;
720                 }
721
722                 if (i == frags - 1)
723                         misc |= TSI108_TX_EOF;
724
725                 if (netif_msg_pktdata(data)) {
726                         int i;
727                         printk("%s: Tx Frame contents (%d)\n", dev->name,
728                                skb->len);
729                         for (i = 0; i < skb->len; i++)
730                                 printk(" %2.2x", skb->data[i]);
731                         printk(".\n");
732                 }
733                 data->txring[tx].misc = misc | TSI108_TX_OWN;
734
735                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
736                 data->txfree--;
737         }
738
739         tsi108_complete_tx(dev);
740
741         /* This must be done after the check for completed tx descriptors,
742          * so that the tail pointer is correct.
743          */
744
745         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
746                 tsi108_restart_tx(data);
747
748         spin_unlock_irq(&data->txlock);
749         return NETDEV_TX_OK;
750 }
751
752 static int tsi108_complete_rx(struct net_device *dev, int budget)
753 {
754         struct tsi108_prv_data *data = netdev_priv(dev);
755         int done = 0;
756
757         while (data->rxfree && done != budget) {
758                 int rx = data->rxtail;
759                 struct sk_buff *skb;
760
761                 if (data->rxring[rx].misc & TSI108_RX_OWN)
762                         break;
763
764                 skb = data->rxskbs[rx];
765                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
766                 data->rxfree--;
767                 done++;
768
769                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
770                         spin_lock_irq(&data->misclock);
771
772                         if (data->rxring[rx].misc & TSI108_RX_CRC)
773                                 data->stats.rx_crc_errors++;
774                         if (data->rxring[rx].misc & TSI108_RX_OVER)
775                                 data->stats.rx_fifo_errors++;
776
777                         spin_unlock_irq(&data->misclock);
778
779                         dev_kfree_skb_any(skb);
780                         continue;
781                 }
782                 if (netif_msg_pktdata(data)) {
783                         int i;
784                         printk("%s: Rx Frame contents (%d)\n",
785                                dev->name, data->rxring[rx].len);
786                         for (i = 0; i < data->rxring[rx].len; i++)
787                                 printk(" %2.2x", skb->data[i]);
788                         printk(".\n");
789                 }
790
791                 skb_put(skb, data->rxring[rx].len);
792                 skb->protocol = eth_type_trans(skb, dev);
793                 netif_receive_skb(skb);
794                 dev->last_rx = jiffies;
795         }
796
797         return done;
798 }
799
800 static int tsi108_refill_rx(struct net_device *dev, int budget)
801 {
802         struct tsi108_prv_data *data = netdev_priv(dev);
803         int done = 0;
804
805         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
806                 int rx = data->rxhead;
807                 struct sk_buff *skb;
808
809                 data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
810                 if (!skb)
811                         break;
812
813                 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
814
815                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
816                                                         TSI108_RX_SKB_SIZE,
817                                                         DMA_FROM_DEVICE);
818
819                 /* Sometimes the hardware sets blen to zero after packet
820                  * reception, even though the manual says that it's only ever
821                  * modified by the driver.
822                  */
823
824                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
825                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
826
827                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
828                 data->rxfree++;
829                 done++;
830         }
831
832         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
833                            TSI108_EC_RXSTAT_QUEUE0))
834                 tsi108_restart_rx(data, dev);
835
836         return done;
837 }
838
839 static int tsi108_poll(struct net_device *dev, int *budget)
840 {
841         struct tsi108_prv_data *data = netdev_priv(dev);
842         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
843         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
844         int total_budget = min(*budget, dev->quota);
845         int num_received = 0, num_filled = 0, budget_used;
846
847         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
848             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
849
850         TSI_WRITE(TSI108_EC_RXESTAT, estat);
851         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
852
853         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
854                 num_received = tsi108_complete_rx(dev, total_budget);
855
856         /* This should normally fill no more slots than the number of
857          * packets received in tsi108_complete_rx().  The exception
858          * is when we previously ran out of memory for RX SKBs.  In that
859          * case, it's helpful to obey the budget, not only so that the
860          * CPU isn't hogged, but so that memory (which may still be low)
861          * is not hogged by one device.
862          *
863          * A work unit is considered to be two SKBs to allow us to catch
864          * up when the ring has shrunk due to out-of-memory but we're
865          * still removing the full budget's worth of packets each time.
866          */
867
868         if (data->rxfree < TSI108_RXRING_LEN)
869                 num_filled = tsi108_refill_rx(dev, total_budget * 2);
870
871         if (intstat & TSI108_INT_RXERROR) {
872                 u32 err = TSI_READ(TSI108_EC_RXERR);
873                 TSI_WRITE(TSI108_EC_RXERR, err);
874
875                 if (err) {
876                         if (net_ratelimit())
877                                 printk(KERN_DEBUG "%s: RX error %x\n",
878                                        dev->name, err);
879
880                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
881                               TSI108_EC_RXSTAT_QUEUE0))
882                                 tsi108_restart_rx(data, dev);
883                 }
884         }
885
886         if (intstat & TSI108_INT_RXOVERRUN) {
887                 spin_lock_irq(&data->misclock);
888                 data->stats.rx_fifo_errors++;
889                 spin_unlock_irq(&data->misclock);
890         }
891
892         budget_used = max(num_received, num_filled / 2);
893
894         *budget -= budget_used;
895         dev->quota -= budget_used;
896
897         if (budget_used != total_budget) {
898                 data->rxpending = 0;
899                 netif_rx_complete(dev);
900
901                 TSI_WRITE(TSI108_EC_INTMASK,
902                                      TSI_READ(TSI108_EC_INTMASK)
903                                      & ~(TSI108_INT_RXQUEUE0
904                                          | TSI108_INT_RXTHRESH |
905                                          TSI108_INT_RXOVERRUN |
906                                          TSI108_INT_RXERROR |
907                                          TSI108_INT_RXWAIT));
908
909                 /* IRQs are level-triggered, so no need to re-check */
910                 return 0;
911         } else {
912                 data->rxpending = 1;
913         }
914
915         return 1;
916 }
917
918 static void tsi108_rx_int(struct net_device *dev)
919 {
920         struct tsi108_prv_data *data = netdev_priv(dev);
921
922         /* A race could cause dev to already be scheduled, so it's not an
923          * error if that happens (and interrupts shouldn't be re-masked,
924          * because that can cause harmful races, if poll has already
925          * unmasked them but not cleared LINK_STATE_SCHED).
926          *
927          * This can happen if this code races with tsi108_poll(), which masks
928          * the interrupts after tsi108_irq_one() read the mask, but before
929          * netif_rx_schedule is called.  It could also happen due to calls
930          * from tsi108_check_rxring().
931          */
932
933         if (netif_rx_schedule_prep(dev)) {
934                 /* Mask, rather than ack, the receive interrupts.  The ack
935                  * will happen in tsi108_poll().
936                  */
937
938                 TSI_WRITE(TSI108_EC_INTMASK,
939                                      TSI_READ(TSI108_EC_INTMASK) |
940                                      TSI108_INT_RXQUEUE0
941                                      | TSI108_INT_RXTHRESH |
942                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
943                                      TSI108_INT_RXWAIT);
944                 __netif_rx_schedule(dev);
945         } else {
946                 if (!netif_running(dev)) {
947                         /* This can happen if an interrupt occurs while the
948                          * interface is being brought down, as the START
949                          * bit is cleared before the stop function is called.
950                          *
951                          * In this case, the interrupts must be masked, or
952                          * they will continue indefinitely.
953                          *
954                          * There's a race here if the interface is brought down
955                          * and then up in rapid succession, as the device could
956                          * be made running after the above check and before
957                          * the masking below.  This will only happen if the IRQ
958                          * thread has a lower priority than the task brining
959                          * up the interface.  Fixing this race would likely
960                          * require changes in generic code.
961                          */
962
963                         TSI_WRITE(TSI108_EC_INTMASK,
964                                              TSI_READ
965                                              (TSI108_EC_INTMASK) |
966                                              TSI108_INT_RXQUEUE0 |
967                                              TSI108_INT_RXTHRESH |
968                                              TSI108_INT_RXOVERRUN |
969                                              TSI108_INT_RXERROR |
970                                              TSI108_INT_RXWAIT);
971                 }
972         }
973 }
974
975 /* If the RX ring has run out of memory, try periodically
976  * to allocate some more, as otherwise poll would never
977  * get called (apart from the initial end-of-queue condition).
978  *
979  * This is called once per second (by default) from the thread.
980  */
981
982 static void tsi108_check_rxring(struct net_device *dev)
983 {
984         struct tsi108_prv_data *data = netdev_priv(dev);
985
986         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
987          * directly, so as to keep the receive path single-threaded
988          * (and thus not needing a lock).
989          */
990
991         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
992                 tsi108_rx_int(dev);
993 }
994
995 static void tsi108_tx_int(struct net_device *dev)
996 {
997         struct tsi108_prv_data *data = netdev_priv(dev);
998         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
999
1000         TSI_WRITE(TSI108_EC_TXESTAT, estat);
1001         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
1002                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
1003         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
1004                 u32 err = TSI_READ(TSI108_EC_TXERR);
1005                 TSI_WRITE(TSI108_EC_TXERR, err);
1006
1007                 if (err && net_ratelimit())
1008                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1009         }
1010
1011         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1012                 spin_lock(&data->txlock);
1013                 tsi108_complete_tx(dev);
1014                 spin_unlock(&data->txlock);
1015         }
1016 }
1017
1018
1019 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1020 {
1021         struct net_device *dev = dev_id;
1022         struct tsi108_prv_data *data = netdev_priv(dev);
1023         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1024
1025         if (!(stat & TSI108_INT_ANY))
1026                 return IRQ_NONE;        /* Not our interrupt */
1027
1028         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1029
1030         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1031                     TSI108_INT_TXERROR))
1032                 tsi108_tx_int(dev);
1033         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1034                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1035                     TSI108_INT_RXERROR))
1036                 tsi108_rx_int(dev);
1037
1038         if (stat & TSI108_INT_SFN) {
1039                 if (net_ratelimit())
1040                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1041                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1042         }
1043
1044         if (stat & TSI108_INT_STATCARRY) {
1045                 tsi108_stat_carry(dev);
1046                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1047         }
1048
1049         return IRQ_HANDLED;
1050 }
1051
1052 static void tsi108_stop_ethernet(struct net_device *dev)
1053 {
1054         struct tsi108_prv_data *data = netdev_priv(dev);
1055         int i = 1000;
1056         /* Disable all TX and RX queues ... */
1057         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1058         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1059
1060         /* ...and wait for them to become idle */
1061         while(i--) {
1062                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1063                         break;
1064                 udelay(10);
1065         }
1066         i = 1000;
1067         while(i--){
1068                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1069                         return;
1070                 udelay(10);
1071         }
1072         printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1073 }
1074
1075 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1076 {
1077         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1078         udelay(100);
1079         TSI_WRITE(TSI108_MAC_CFG1, 0);
1080
1081         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1082         udelay(100);
1083         TSI_WRITE(TSI108_EC_PORTCTRL,
1084                              TSI_READ(TSI108_EC_PORTCTRL) &
1085                              ~TSI108_EC_PORTCTRL_STATRST);
1086
1087         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1088         udelay(100);
1089         TSI_WRITE(TSI108_EC_TXCFG,
1090                              TSI_READ(TSI108_EC_TXCFG) &
1091                              ~TSI108_EC_TXCFG_RST);
1092
1093         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1094         udelay(100);
1095         TSI_WRITE(TSI108_EC_RXCFG,
1096                              TSI_READ(TSI108_EC_RXCFG) &
1097                              ~TSI108_EC_RXCFG_RST);
1098
1099         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1100                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1101                              TSI108_MAC_MII_MGMT_RST);
1102         udelay(100);
1103         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1104                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1105                              ~(TSI108_MAC_MII_MGMT_RST |
1106                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1107 }
1108
1109 static int tsi108_get_mac(struct net_device *dev)
1110 {
1111         struct tsi108_prv_data *data = netdev_priv(dev);
1112         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1113         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1114
1115         /* Note that the octets are reversed from what the manual says,
1116          * producing an even weirder ordering...
1117          */
1118         if (word2 == 0 && word1 == 0) {
1119                 dev->dev_addr[0] = 0x00;
1120                 dev->dev_addr[1] = 0x06;
1121                 dev->dev_addr[2] = 0xd2;
1122                 dev->dev_addr[3] = 0x00;
1123                 dev->dev_addr[4] = 0x00;
1124                 if (0x8 == data->phy)
1125                         dev->dev_addr[5] = 0x01;
1126                 else
1127                         dev->dev_addr[5] = 0x02;
1128
1129                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1130
1131                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1132                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1133
1134                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1135                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1136         } else {
1137                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1138                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1139                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1140                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1141                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1142                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1143         }
1144
1145         if (!is_valid_ether_addr(dev->dev_addr)) {
1146                 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1147                 return -EINVAL;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static int tsi108_set_mac(struct net_device *dev, void *addr)
1154 {
1155         struct tsi108_prv_data *data = netdev_priv(dev);
1156         u32 word1, word2;
1157         int i;
1158
1159         if (!is_valid_ether_addr(addr))
1160                 return -EINVAL;
1161
1162         for (i = 0; i < 6; i++)
1163                 /* +2 is for the offset of the HW addr type */
1164                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1165
1166         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1167
1168         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1169             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1170
1171         spin_lock_irq(&data->misclock);
1172         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1173         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1174         spin_lock(&data->txlock);
1175
1176         if (data->txfree && data->link_up)
1177                 netif_wake_queue(dev);
1178
1179         spin_unlock(&data->txlock);
1180         spin_unlock_irq(&data->misclock);
1181         return 0;
1182 }
1183
1184 /* Protected by dev->xmit_lock. */
1185 static void tsi108_set_rx_mode(struct net_device *dev)
1186 {
1187         struct tsi108_prv_data *data = netdev_priv(dev);
1188         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1189
1190         if (dev->flags & IFF_PROMISC) {
1191                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1192                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1193                 goto out;
1194         }
1195
1196         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1197
1198         if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1199                 int i;
1200                 struct dev_mc_list *mc = dev->mc_list;
1201                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1202
1203                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1204
1205                 while (mc) {
1206                         u32 hash, crc;
1207
1208                         if (mc->dmi_addrlen == 6) {
1209                                 crc = ether_crc(6, mc->dmi_addr);
1210                                 hash = crc >> 23;
1211
1212                                 __set_bit(hash, &data->mc_hash[0]);
1213                         } else {
1214                                 printk(KERN_ERR
1215                                        "%s: got multicast address of length %d "
1216                                        "instead of 6.\n", dev->name,
1217                                        mc->dmi_addrlen);
1218                         }
1219
1220                         mc = mc->next;
1221                 }
1222
1223                 TSI_WRITE(TSI108_EC_HASHADDR,
1224                                      TSI108_EC_HASHADDR_AUTOINC |
1225                                      TSI108_EC_HASHADDR_MCAST);
1226
1227                 for (i = 0; i < 16; i++) {
1228                         /* The manual says that the hardware may drop
1229                          * back-to-back writes to the data register.
1230                          */
1231                         udelay(1);
1232                         TSI_WRITE(TSI108_EC_HASHDATA,
1233                                              data->mc_hash[i]);
1234                 }
1235         }
1236
1237       out:
1238         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1239 }
1240
1241 static void tsi108_init_phy(struct net_device *dev)
1242 {
1243         struct tsi108_prv_data *data = netdev_priv(dev);
1244         u32 i = 0;
1245         u16 phyval = 0;
1246         unsigned long flags;
1247
1248         spin_lock_irqsave(&phy_lock, flags);
1249
1250         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1251         while (i--){
1252                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1253                         break;
1254                 udelay(10);
1255         }
1256         if (i == 0)
1257                 printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1258
1259 #if (TSI108_PHY_TYPE == PHY_BCM54XX)    /* Broadcom BCM54xx PHY */
1260         tsi108_write_mii(data, 0x09, 0x0300);
1261         tsi108_write_mii(data, 0x10, 0x1020);
1262         tsi108_write_mii(data, 0x1c, 0x8c00);
1263 #endif
1264
1265         tsi108_write_mii(data,
1266                          MII_BMCR,
1267                          BMCR_ANENABLE | BMCR_ANRESTART);
1268         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1269                 cpu_relax();
1270
1271         /* Set G/MII mode and receive clock select in TBI control #2.  The
1272          * second port won't work if this isn't done, even though we don't
1273          * use TBI mode.
1274          */
1275
1276         tsi108_write_tbi(data, 0x11, 0x30);
1277
1278         /* FIXME: It seems to take more than 2 back-to-back reads to the
1279          * PHY_STAT register before the link up status bit is set.
1280          */
1281
1282         data->link_up = 1;
1283
1284         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1285                  BMSR_LSTATUS)) {
1286                 if (i++ > (MII_READ_DELAY / 10)) {
1287                         data->link_up = 0;
1288                         break;
1289                 }
1290                 spin_unlock_irqrestore(&phy_lock, flags);
1291                 msleep(10);
1292                 spin_lock_irqsave(&phy_lock, flags);
1293         }
1294
1295         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1296         data->phy_ok = 1;
1297         data->init_media = 1;
1298         spin_unlock_irqrestore(&phy_lock, flags);
1299 }
1300
1301 static void tsi108_kill_phy(struct net_device *dev)
1302 {
1303         struct tsi108_prv_data *data = netdev_priv(dev);
1304         unsigned long flags;
1305
1306         spin_lock_irqsave(&phy_lock, flags);
1307         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1308         data->phy_ok = 0;
1309         spin_unlock_irqrestore(&phy_lock, flags);
1310 }
1311
1312 static int tsi108_open(struct net_device *dev)
1313 {
1314         int i;
1315         struct tsi108_prv_data *data = netdev_priv(dev);
1316         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1317         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1318
1319         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1320         if (i != 0) {
1321                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1322                        data->id, data->irq_num);
1323                 return i;
1324         } else {
1325                 dev->irq = data->irq_num;
1326                 printk(KERN_NOTICE
1327                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1328                        data->id, dev->irq, dev->name);
1329         }
1330
1331         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1332                         &data->rxdma, GFP_KERNEL);
1333
1334         if (!data->rxring) {
1335                 printk(KERN_DEBUG
1336                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1337                 return -ENOMEM;
1338         } else {
1339                 memset(data->rxring, 0, rxring_size);
1340         }
1341
1342         data->txring = dma_alloc_coherent(NULL, txring_size,
1343                         &data->txdma, GFP_KERNEL);
1344
1345         if (!data->txring) {
1346                 printk(KERN_DEBUG
1347                        "TSI108_ETH: failed to allocate memory for txring!\n");
1348                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1349                 return -ENOMEM;
1350         } else {
1351                 memset(data->txring, 0, txring_size);
1352         }
1353
1354         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1355                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1356                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1357                 data->rxring[i].vlan = 0;
1358         }
1359
1360         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1361
1362         data->rxtail = 0;
1363         data->rxhead = 0;
1364
1365         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1366                 struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1367
1368                 if (!skb) {
1369                         /* Bah.  No memory for now, but maybe we'll get
1370                          * some more later.
1371                          * For now, we'll live with the smaller ring.
1372                          */
1373                         printk(KERN_WARNING
1374                                "%s: Could only allocate %d receive skb(s).\n",
1375                                dev->name, i);
1376                         data->rxhead = i;
1377                         break;
1378                 }
1379
1380                 data->rxskbs[i] = skb;
1381                 /* Align the payload on a 4-byte boundary */
1382                 skb_reserve(skb, 2);
1383                 data->rxskbs[i] = skb;
1384                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1385                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1386         }
1387
1388         data->rxfree = i;
1389         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1390
1391         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1392                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1393                 data->txring[i].misc = 0;
1394         }
1395
1396         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1397         data->txtail = 0;
1398         data->txhead = 0;
1399         data->txfree = TSI108_TXRING_LEN;
1400         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1401         tsi108_init_phy(dev);
1402
1403         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1404         mod_timer(&data->timer, jiffies + 1);
1405
1406         tsi108_restart_rx(data, dev);
1407
1408         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1409
1410         TSI_WRITE(TSI108_EC_INTMASK,
1411                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1412                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1413                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1414                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1415
1416         TSI_WRITE(TSI108_MAC_CFG1,
1417                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1418         netif_start_queue(dev);
1419         return 0;
1420 }
1421
1422 static int tsi108_close(struct net_device *dev)
1423 {
1424         struct tsi108_prv_data *data = netdev_priv(dev);
1425
1426         netif_stop_queue(dev);
1427
1428         del_timer_sync(&data->timer);
1429
1430         tsi108_stop_ethernet(dev);
1431         tsi108_kill_phy(dev);
1432         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1433         TSI_WRITE(TSI108_MAC_CFG1, 0);
1434
1435         /* Check for any pending TX packets, and drop them. */
1436
1437         while (!data->txfree || data->txhead != data->txtail) {
1438                 int tx = data->txtail;
1439                 struct sk_buff *skb;
1440                 skb = data->txskbs[tx];
1441                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1442                 data->txfree++;
1443                 dev_kfree_skb(skb);
1444         }
1445
1446         synchronize_irq(data->irq_num);
1447         free_irq(data->irq_num, dev);
1448
1449         /* Discard the RX ring. */
1450
1451         while (data->rxfree) {
1452                 int rx = data->rxtail;
1453                 struct sk_buff *skb;
1454
1455                 skb = data->rxskbs[rx];
1456                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1457                 data->rxfree--;
1458                 dev_kfree_skb(skb);
1459         }
1460
1461         dma_free_coherent(0,
1462                             TSI108_RXRING_LEN * sizeof(rx_desc),
1463                             data->rxring, data->rxdma);
1464         dma_free_coherent(0,
1465                             TSI108_TXRING_LEN * sizeof(tx_desc),
1466                             data->txring, data->txdma);
1467
1468         return 0;
1469 }
1470
1471 static void tsi108_init_mac(struct net_device *dev)
1472 {
1473         struct tsi108_prv_data *data = netdev_priv(dev);
1474
1475         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1476                              TSI108_MAC_CFG2_PADCRC);
1477
1478         TSI_WRITE(TSI108_EC_TXTHRESH,
1479                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1480                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1481
1482         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1483                              ~(TSI108_STAT_CARRY1_RXBYTES |
1484                                TSI108_STAT_CARRY1_RXPKTS |
1485                                TSI108_STAT_CARRY1_RXFCS |
1486                                TSI108_STAT_CARRY1_RXMCAST |
1487                                TSI108_STAT_CARRY1_RXALIGN |
1488                                TSI108_STAT_CARRY1_RXLENGTH |
1489                                TSI108_STAT_CARRY1_RXRUNT |
1490                                TSI108_STAT_CARRY1_RXJUMBO |
1491                                TSI108_STAT_CARRY1_RXFRAG |
1492                                TSI108_STAT_CARRY1_RXJABBER |
1493                                TSI108_STAT_CARRY1_RXDROP));
1494
1495         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1496                              ~(TSI108_STAT_CARRY2_TXBYTES |
1497                                TSI108_STAT_CARRY2_TXPKTS |
1498                                TSI108_STAT_CARRY2_TXEXDEF |
1499                                TSI108_STAT_CARRY2_TXEXCOL |
1500                                TSI108_STAT_CARRY2_TXTCOL |
1501                                TSI108_STAT_CARRY2_TXPAUSE));
1502
1503         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1504         TSI_WRITE(TSI108_MAC_CFG1, 0);
1505
1506         TSI_WRITE(TSI108_EC_RXCFG,
1507                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1508
1509         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1510                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1511                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1512                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1513
1514         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1515                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1516                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1517                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1518
1519         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1520                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1521                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1522                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1523
1524         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1525                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1526                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1527                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1528
1529         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1530 }
1531
1532 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1533 {
1534         struct tsi108_prv_data *data = netdev_priv(dev);
1535         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1536 }
1537
1538 static int
1539 tsi108_init_one(struct platform_device *pdev)
1540 {
1541         struct net_device *dev = NULL;
1542         struct tsi108_prv_data *data = NULL;
1543         hw_info *einfo;
1544         int err = 0;
1545
1546         einfo = pdev->dev.platform_data;
1547
1548         if (NULL == einfo) {
1549                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1550                        pdev->id);
1551                 return -ENODEV;
1552         }
1553
1554         /* Create an ethernet device instance */
1555
1556         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1557         if (!dev) {
1558                 printk("tsi108_eth: Could not allocate a device structure\n");
1559                 return -ENOMEM;
1560         }
1561
1562         printk("tsi108_eth%d: probe...\n", pdev->id);
1563         data = netdev_priv(dev);
1564
1565         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1566                         pdev->id, einfo->regs, einfo->phyregs,
1567                         einfo->phy, einfo->irq_num);
1568
1569         data->regs = ioremap(einfo->regs, 0x400);
1570         if (NULL == data->regs) {
1571                 err = -ENOMEM;
1572                 goto regs_fail;
1573         }
1574
1575         data->phyregs = ioremap(einfo->phyregs, 0x400);
1576         if (NULL == data->phyregs) {
1577                 err = -ENOMEM;
1578                 goto regs_fail;
1579         }
1580 /* MII setup */
1581         data->mii_if.dev = dev;
1582         data->mii_if.mdio_read = tsi108_mdio_read;
1583         data->mii_if.mdio_write = tsi108_mdio_write;
1584         data->mii_if.phy_id = einfo->phy;
1585         data->mii_if.phy_id_mask = 0x1f;
1586         data->mii_if.reg_num_mask = 0x1f;
1587         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1588
1589         data->phy = einfo->phy;
1590         data->irq_num = einfo->irq_num;
1591         data->id = pdev->id;
1592         dev->open = tsi108_open;
1593         dev->stop = tsi108_close;
1594         dev->hard_start_xmit = tsi108_send_packet;
1595         dev->set_mac_address = tsi108_set_mac;
1596         dev->set_multicast_list = tsi108_set_rx_mode;
1597         dev->get_stats = tsi108_get_stats;
1598         dev->poll = tsi108_poll;
1599         dev->do_ioctl = tsi108_do_ioctl;
1600         dev->weight = 64;  /* 64 is more suitable for GigE interface - klai */
1601
1602         /* Apparently, the Linux networking code won't use scatter-gather
1603          * if the hardware doesn't do checksums.  However, it's faster
1604          * to checksum in place and use SG, as (among other reasons)
1605          * the cache won't be dirtied (which then has to be flushed
1606          * before DMA).  The checksumming is done by the driver (via
1607          * a new function skb_csum_dev() in net/core/skbuff.c).
1608          */
1609
1610         dev->features = NETIF_F_HIGHDMA;
1611         SET_MODULE_OWNER(dev);
1612
1613         spin_lock_init(&data->txlock);
1614         spin_lock_init(&data->misclock);
1615
1616         tsi108_reset_ether(data);
1617         tsi108_kill_phy(dev);
1618
1619         if ((err = tsi108_get_mac(dev)) != 0) {
1620                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1621                        dev->name);
1622                 goto register_fail;
1623         }
1624
1625         tsi108_init_mac(dev);
1626         err = register_netdev(dev);
1627         if (err) {
1628                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1629                                 dev->name);
1630                 goto register_fail;
1631         }
1632
1633         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: "
1634                "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name,
1635                dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1636                dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1637 #ifdef DEBUG
1638         data->msg_enable = DEBUG;
1639         dump_eth_one(dev);
1640 #endif
1641
1642         return 0;
1643
1644 register_fail:
1645         iounmap(data->regs);
1646         iounmap(data->phyregs);
1647
1648 regs_fail:
1649         free_netdev(dev);
1650         return err;
1651 }
1652
1653 /* There's no way to either get interrupts from the PHY when
1654  * something changes, or to have the Tsi108 automatically communicate
1655  * with the PHY to reconfigure itself.
1656  *
1657  * Thus, we have to do it using a timer.
1658  */
1659
1660 static void tsi108_timed_checker(unsigned long dev_ptr)
1661 {
1662         struct net_device *dev = (struct net_device *)dev_ptr;
1663         struct tsi108_prv_data *data = netdev_priv(dev);
1664
1665         tsi108_check_phy(dev);
1666         tsi108_check_rxring(dev);
1667         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1668 }
1669
1670 static int tsi108_ether_init(void)
1671 {
1672         int ret;
1673         ret = platform_driver_register (&tsi_eth_driver);
1674         if (ret < 0){
1675                 printk("tsi108_ether_init: error initializing ethernet "
1676                        "device\n");
1677                 return ret;
1678         }
1679         return 0;
1680 }
1681
1682 static int tsi108_ether_remove(struct platform_device *pdev)
1683 {
1684         struct net_device *dev = platform_get_drvdata(pdev);
1685         struct tsi108_prv_data *priv = netdev_priv(dev);
1686
1687         unregister_netdev(dev);
1688         tsi108_stop_ethernet(dev);
1689         platform_set_drvdata(pdev, NULL);
1690         iounmap(priv->regs);
1691         iounmap(priv->phyregs);
1692         free_netdev(dev);
1693
1694         return 0;
1695 }
1696 static void tsi108_ether_exit(void)
1697 {
1698         platform_driver_unregister(&tsi_eth_driver);
1699 }
1700
1701 module_init(tsi108_ether_init);
1702 module_exit(tsi108_ether_exit);
1703
1704 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1705 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1706 MODULE_LICENSE("GPL");