IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[pandora-kernel.git] / drivers / net / sunhme.c
1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2  *           auto carrier detecting ethernet driver.  Also known as the
3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
4  *
5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6                  2006 David S. Miller (davem@davemloft.net)
7  *
8  * Changes :
9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10  *   - port to non-sparc architectures. Tested only on x86 and
11  *     only currently works with QFE PCI cards.
12  *   - ability to specify the MAC address at module load time by passing this
13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
22 #include <linux/in.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bitops.h>
36
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/dma.h>
40 #include <asm/byteorder.h>
41
42 #ifdef CONFIG_SPARC
43 #include <asm/idprom.h>
44 #include <asm/sbus.h>
45 #include <asm/openprom.h>
46 #include <asm/oplib.h>
47 #include <asm/prom.h>
48 #include <asm/auxio.h>
49 #endif
50 #include <asm/uaccess.h>
51
52 #include <asm/pgtable.h>
53 #include <asm/irq.h>
54
55 #ifdef CONFIG_PCI
56 #include <linux/pci.h>
57 #ifdef CONFIG_SPARC
58 #include <asm/pbm.h>
59 #endif
60 #endif
61
62 #include "sunhme.h"
63
64 #define DRV_NAME        "sunhme"
65 #define DRV_VERSION     "3.00"
66 #define DRV_RELDATE     "June 23, 2006"
67 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
68
69 static char version[] =
70         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
71
72 MODULE_VERSION(DRV_VERSION);
73 MODULE_AUTHOR(DRV_AUTHOR);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
76
77 static int macaddr[6];
78
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr, int, NULL, 0);
81 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
82
83 #ifdef CONFIG_SBUS
84 static struct quattro *qfe_sbus_list;
85 #endif
86
87 #ifdef CONFIG_PCI
88 static struct quattro *qfe_pci_list;
89 #endif
90
91 #undef HMEDEBUG
92 #undef SXDEBUG
93 #undef RXDEBUG
94 #undef TXDEBUG
95 #undef TXLOGGING
96
97 #ifdef TXLOGGING
98 struct hme_tx_logent {
99         unsigned int tstamp;
100         int tx_new, tx_old;
101         unsigned int action;
102 #define TXLOG_ACTION_IRQ        0x01
103 #define TXLOG_ACTION_TXMIT      0x02
104 #define TXLOG_ACTION_TBUSY      0x04
105 #define TXLOG_ACTION_NBUFS      0x08
106         unsigned int status;
107 };
108 #define TX_LOG_LEN      128
109 static struct hme_tx_logent tx_log[TX_LOG_LEN];
110 static int txlog_cur_entry;
111 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
112 {
113         struct hme_tx_logent *tlp;
114         unsigned long flags;
115
116         save_and_cli(flags);
117         tlp = &tx_log[txlog_cur_entry];
118         tlp->tstamp = (unsigned int)jiffies;
119         tlp->tx_new = hp->tx_new;
120         tlp->tx_old = hp->tx_old;
121         tlp->action = a;
122         tlp->status = s;
123         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
124         restore_flags(flags);
125 }
126 static __inline__ void tx_dump_log(void)
127 {
128         int i, this;
129
130         this = txlog_cur_entry;
131         for (i = 0; i < TX_LOG_LEN; i++) {
132                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
133                        tx_log[this].tstamp,
134                        tx_log[this].tx_new, tx_log[this].tx_old,
135                        tx_log[this].action, tx_log[this].status);
136                 this = (this + 1) & (TX_LOG_LEN - 1);
137         }
138 }
139 static __inline__ void tx_dump_ring(struct happy_meal *hp)
140 {
141         struct hmeal_init_block *hb = hp->happy_block;
142         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
143         int i;
144
145         for (i = 0; i < TX_RING_SIZE; i+=4) {
146                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
147                        i, i + 4,
148                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
149                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
150                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
151                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
152         }
153 }
154 #else
155 #define tx_add_log(hp, a, s)            do { } while(0)
156 #define tx_dump_log()                   do { } while(0)
157 #define tx_dump_ring(hp)                do { } while(0)
158 #endif
159
160 #ifdef HMEDEBUG
161 #define HMD(x)  printk x
162 #else
163 #define HMD(x)
164 #endif
165
166 /* #define AUTO_SWITCH_DEBUG */
167
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x)  printk x
170 #else
171 #define ASD(x)
172 #endif
173
174 #define DEFAULT_IPG0      16 /* For lance-mode only */
175 #define DEFAULT_IPG1       8 /* For all modes */
176 #define DEFAULT_IPG2       4 /* For all modes */
177 #define DEFAULT_JAMSIZE    4 /* Toe jam */
178
179 /* NOTE: In the descriptor writes one _must_ write the address
180  *       member _first_.  The card must not be allowed to see
181  *       the updated descriptor flags until the address is
182  *       correct.  I've added a write memory barrier between
183  *       the two stores so that I can sleep well at night... -DaveM
184  */
185
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187 static void sbus_hme_write32(void __iomem *reg, u32 val)
188 {
189         sbus_writel(val, reg);
190 }
191
192 static u32 sbus_hme_read32(void __iomem *reg)
193 {
194         return sbus_readl(reg);
195 }
196
197 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
198 {
199         rxd->rx_addr = addr;
200         wmb();
201         rxd->rx_flags = flags;
202 }
203
204 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
205 {
206         txd->tx_addr = addr;
207         wmb();
208         txd->tx_flags = flags;
209 }
210
211 static u32 sbus_hme_read_desc32(u32 *p)
212 {
213         return *p;
214 }
215
216 static void pci_hme_write32(void __iomem *reg, u32 val)
217 {
218         writel(val, reg);
219 }
220
221 static u32 pci_hme_read32(void __iomem *reg)
222 {
223         return readl(reg);
224 }
225
226 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
227 {
228         rxd->rx_addr = cpu_to_le32(addr);
229         wmb();
230         rxd->rx_flags = cpu_to_le32(flags);
231 }
232
233 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
234 {
235         txd->tx_addr = cpu_to_le32(addr);
236         wmb();
237         txd->tx_flags = cpu_to_le32(flags);
238 }
239
240 static u32 pci_hme_read_desc32(u32 *p)
241 {
242         return cpu_to_le32p(p);
243 }
244
245 #define hme_write32(__hp, __reg, __val) \
246         ((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248         ((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252         ((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254         ((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256         ((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258         ((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260         ((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262         ((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
263 #else
264 #ifdef CONFIG_SBUS
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267         sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
269         sbus_readl(__reg)
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do {    (__rxd)->rx_addr = (__addr); \
272         wmb(); \
273         (__rxd)->rx_flags = (__flags); \
274 } while(0)
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do {    (__txd)->tx_addr = (__addr); \
277         wmb(); \
278         (__txd)->tx_flags = (__flags); \
279 } while(0)
280 #define hme_read_desc32(__hp, __p)      (*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282         sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284         sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286         sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288         sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
289 #else
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292         writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
294         readl(__reg)
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do {    (__rxd)->rx_addr = cpu_to_le32(__addr); \
297         wmb(); \
298         (__rxd)->rx_flags = cpu_to_le32(__flags); \
299 } while(0)
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do {    (__txd)->tx_addr = cpu_to_le32(__addr); \
302         wmb(); \
303         (__txd)->tx_flags = cpu_to_le32(__flags); \
304 } while(0)
305 #define hme_read_desc32(__hp, __p)      cpu_to_le32p(__p)
306 #define hme_dma_map(__hp, __ptr, __size, __dir) \
307         pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
308 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
309         pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
310 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
311         pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
313         pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
314 #endif
315 #endif
316
317
318 #ifdef SBUS_DMA_BIDIRECTIONAL
319 #       define DMA_BIDIRECTIONAL        SBUS_DMA_BIDIRECTIONAL
320 #else
321 #       define DMA_BIDIRECTIONAL        0
322 #endif
323
324 #ifdef SBUS_DMA_FROMDEVICE
325 #       define DMA_FROMDEVICE           SBUS_DMA_FROMDEVICE
326 #else
327 #       define DMA_TODEVICE             1
328 #endif
329
330 #ifdef SBUS_DMA_TODEVICE
331 #       define DMA_TODEVICE             SBUS_DMA_TODEVICE
332 #else
333 #       define DMA_FROMDEVICE           2
334 #endif
335
336
337 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
338 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
339 {
340         hme_write32(hp, tregs + TCVR_BBDATA, bit);
341         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
342         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
343 }
344
345 #if 0
346 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
347 {
348         u32 ret;
349
350         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
351         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
352         ret = hme_read32(hp, tregs + TCVR_CFG);
353         if (internal)
354                 ret &= TCV_CFG_MDIO0;
355         else
356                 ret &= TCV_CFG_MDIO1;
357
358         return ret;
359 }
360 #endif
361
362 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
363 {
364         u32 retval;
365
366         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
367         udelay(1);
368         retval = hme_read32(hp, tregs + TCVR_CFG);
369         if (internal)
370                 retval &= TCV_CFG_MDIO0;
371         else
372                 retval &= TCV_CFG_MDIO1;
373         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
374
375         return retval;
376 }
377
378 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
379
380 static int happy_meal_bb_read(struct happy_meal *hp,
381                               void __iomem *tregs, int reg)
382 {
383         u32 tmp;
384         int retval = 0;
385         int i;
386
387         ASD(("happy_meal_bb_read: reg=%d ", reg));
388
389         /* Enable the MIF BitBang outputs. */
390         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
391
392         /* Force BitBang into the idle state. */
393         for (i = 0; i < 32; i++)
394                 BB_PUT_BIT(hp, tregs, 1);
395
396         /* Give it the read sequence. */
397         BB_PUT_BIT(hp, tregs, 0);
398         BB_PUT_BIT(hp, tregs, 1);
399         BB_PUT_BIT(hp, tregs, 1);
400         BB_PUT_BIT(hp, tregs, 0);
401
402         /* Give it the PHY address. */
403         tmp = hp->paddr & 0xff;
404         for (i = 4; i >= 0; i--)
405                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
406
407         /* Tell it what register we want to read. */
408         tmp = (reg & 0xff);
409         for (i = 4; i >= 0; i--)
410                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
411
412         /* Close down the MIF BitBang outputs. */
413         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
414
415         /* Now read in the value. */
416         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
417         for (i = 15; i >= 0; i--)
418                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
419         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
420         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
421         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
422         ASD(("value=%x\n", retval));
423         return retval;
424 }
425
426 static void happy_meal_bb_write(struct happy_meal *hp,
427                                 void __iomem *tregs, int reg,
428                                 unsigned short value)
429 {
430         u32 tmp;
431         int i;
432
433         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
434
435         /* Enable the MIF BitBang outputs. */
436         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
437
438         /* Force BitBang into the idle state. */
439         for (i = 0; i < 32; i++)
440                 BB_PUT_BIT(hp, tregs, 1);
441
442         /* Give it write sequence. */
443         BB_PUT_BIT(hp, tregs, 0);
444         BB_PUT_BIT(hp, tregs, 1);
445         BB_PUT_BIT(hp, tregs, 0);
446         BB_PUT_BIT(hp, tregs, 1);
447
448         /* Give it the PHY address. */
449         tmp = (hp->paddr & 0xff);
450         for (i = 4; i >= 0; i--)
451                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
452
453         /* Tell it what register we will be writing. */
454         tmp = (reg & 0xff);
455         for (i = 4; i >= 0; i--)
456                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
457
458         /* Tell it to become ready for the bits. */
459         BB_PUT_BIT(hp, tregs, 1);
460         BB_PUT_BIT(hp, tregs, 0);
461
462         for (i = 15; i >= 0; i--)
463                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
464
465         /* Close down the MIF BitBang outputs. */
466         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
467 }
468
469 #define TCVR_READ_TRIES   16
470
471 static int happy_meal_tcvr_read(struct happy_meal *hp,
472                                 void __iomem *tregs, int reg)
473 {
474         int tries = TCVR_READ_TRIES;
475         int retval;
476
477         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
478         if (hp->tcvr_type == none) {
479                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
480                 return TCVR_FAILURE;
481         }
482
483         if (!(hp->happy_flags & HFLAG_FENABLE)) {
484                 ASD(("doing bit bang\n"));
485                 return happy_meal_bb_read(hp, tregs, reg);
486         }
487
488         hme_write32(hp, tregs + TCVR_FRAME,
489                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
490         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
491                 udelay(20);
492         if (!tries) {
493                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
494                 return TCVR_FAILURE;
495         }
496         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
497         ASD(("value=%04x\n", retval));
498         return retval;
499 }
500
501 #define TCVR_WRITE_TRIES  16
502
503 static void happy_meal_tcvr_write(struct happy_meal *hp,
504                                   void __iomem *tregs, int reg,
505                                   unsigned short value)
506 {
507         int tries = TCVR_WRITE_TRIES;
508
509         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
510
511         /* Welcome to Sun Microsystems, can I take your order please? */
512         if (!(hp->happy_flags & HFLAG_FENABLE)) {
513                 happy_meal_bb_write(hp, tregs, reg, value);
514                 return;
515         }
516
517         /* Would you like fries with that? */
518         hme_write32(hp, tregs + TCVR_FRAME,
519                     (FRAME_WRITE | (hp->paddr << 23) |
520                      ((reg & 0xff) << 18) | (value & 0xffff)));
521         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
522                 udelay(20);
523
524         /* Anything else? */
525         if (!tries)
526                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
527
528         /* Fifty-two cents is your change, have a nice day. */
529 }
530
531 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
532  * that keeps watching the auto negotiation process as it progresses.
533  * The DP83840 is first told to start doing it's thing, we set up the time
534  * and place the timer state machine in it's initial state.
535  *
536  * Here the timer peeks at the DP83840 status registers at each click to see
537  * if the auto negotiation has completed, we assume here that the DP83840 PHY
538  * will time out at some point and just tell us what (didn't) happen.  For
539  * complete coverage we only allow so many of the ticks at this level to run,
540  * when this has expired we print a warning message and try another strategy.
541  * This "other" strategy is to force the interface into various speed/duplex
542  * configurations and we stop when we see a link-up condition before the
543  * maximum number of "peek" ticks have occurred.
544  *
545  * Once a valid link status has been detected we configure the BigMAC and
546  * the rest of the Happy Meal to speak the most efficient protocol we could
547  * get a clean link for.  The priority for link configurations, highest first
548  * is:
549  *                 100 Base-T Full Duplex
550  *                 100 Base-T Half Duplex
551  *                 10 Base-T Full Duplex
552  *                 10 Base-T Half Duplex
553  *
554  * We start a new timer now, after a successful auto negotiation status has
555  * been detected.  This timer just waits for the link-up bit to get set in
556  * the BMCR of the DP83840.  When this occurs we print a kernel log message
557  * describing the link type in use and the fact that it is up.
558  *
559  * If a fatal error of some sort is signalled and detected in the interrupt
560  * service routine, and the chip is reset, or the link is ifconfig'd down
561  * and then back up, this entire process repeats itself all over again.
562  */
563 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
564 {
565         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
566
567         /* Downgrade from full to half duplex.  Only possible
568          * via ethtool.
569          */
570         if (hp->sw_bmcr & BMCR_FULLDPLX) {
571                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
572                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
573                 return 0;
574         }
575
576         /* Downgrade from 100 to 10. */
577         if (hp->sw_bmcr & BMCR_SPEED100) {
578                 hp->sw_bmcr &= ~(BMCR_SPEED100);
579                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
580                 return 0;
581         }
582
583         /* We've tried everything. */
584         return -1;
585 }
586
587 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
588 {
589         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
590         if (hp->tcvr_type == external)
591                 printk("external ");
592         else
593                 printk("internal ");
594         printk("transceiver at ");
595         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
596         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
597                 if (hp->sw_lpa & LPA_100FULL)
598                         printk("100Mb/s, Full Duplex.\n");
599                 else
600                         printk("100Mb/s, Half Duplex.\n");
601         } else {
602                 if (hp->sw_lpa & LPA_10FULL)
603                         printk("10Mb/s, Full Duplex.\n");
604                 else
605                         printk("10Mb/s, Half Duplex.\n");
606         }
607 }
608
609 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
610 {
611         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
612         if (hp->tcvr_type == external)
613                 printk("external ");
614         else
615                 printk("internal ");
616         printk("transceiver at ");
617         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
618         if (hp->sw_bmcr & BMCR_SPEED100)
619                 printk("100Mb/s, ");
620         else
621                 printk("10Mb/s, ");
622         if (hp->sw_bmcr & BMCR_FULLDPLX)
623                 printk("Full Duplex.\n");
624         else
625                 printk("Half Duplex.\n");
626 }
627
628 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
629 {
630         int full;
631
632         /* All we care about is making sure the bigmac tx_cfg has a
633          * proper duplex setting.
634          */
635         if (hp->timer_state == arbwait) {
636                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
637                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
638                         goto no_response;
639                 if (hp->sw_lpa & LPA_100FULL)
640                         full = 1;
641                 else if (hp->sw_lpa & LPA_100HALF)
642                         full = 0;
643                 else if (hp->sw_lpa & LPA_10FULL)
644                         full = 1;
645                 else
646                         full = 0;
647         } else {
648                 /* Forcing a link mode. */
649                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
650                 if (hp->sw_bmcr & BMCR_FULLDPLX)
651                         full = 1;
652                 else
653                         full = 0;
654         }
655
656         /* Before changing other bits in the tx_cfg register, and in
657          * general any of other the TX config registers too, you
658          * must:
659          * 1) Clear Enable
660          * 2) Poll with reads until that bit reads back as zero
661          * 3) Make TX configuration changes
662          * 4) Set Enable once more
663          */
664         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
665                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
666                     ~(BIGMAC_TXCFG_ENABLE));
667         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
668                 barrier();
669         if (full) {
670                 hp->happy_flags |= HFLAG_FULL;
671                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
672                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
673                             BIGMAC_TXCFG_FULLDPLX);
674         } else {
675                 hp->happy_flags &= ~(HFLAG_FULL);
676                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
677                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
678                             ~(BIGMAC_TXCFG_FULLDPLX));
679         }
680         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
681                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
682                     BIGMAC_TXCFG_ENABLE);
683         return 0;
684 no_response:
685         return 1;
686 }
687
688 static int happy_meal_init(struct happy_meal *hp);
689
690 static int is_lucent_phy(struct happy_meal *hp)
691 {
692         void __iomem *tregs = hp->tcvregs;
693         unsigned short mr2, mr3;
694         int ret = 0;
695
696         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
697         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
698         if ((mr2 & 0xffff) == 0x0180 &&
699             ((mr3 & 0xffff) >> 10) == 0x1d)
700                 ret = 1;
701
702         return ret;
703 }
704
705 static void happy_meal_timer(unsigned long data)
706 {
707         struct happy_meal *hp = (struct happy_meal *) data;
708         void __iomem *tregs = hp->tcvregs;
709         int restart_timer = 0;
710
711         spin_lock_irq(&hp->happy_lock);
712
713         hp->timer_ticks++;
714         switch(hp->timer_state) {
715         case arbwait:
716                 /* Only allow for 5 ticks, thats 10 seconds and much too
717                  * long to wait for arbitration to complete.
718                  */
719                 if (hp->timer_ticks >= 10) {
720                         /* Enter force mode. */
721         do_force_mode:
722                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
723                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
724                                hp->dev->name);
725                         hp->sw_bmcr = BMCR_SPEED100;
726                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
727
728                         if (!is_lucent_phy(hp)) {
729                                 /* OK, seems we need do disable the transceiver for the first
730                                  * tick to make sure we get an accurate link state at the
731                                  * second tick.
732                                  */
733                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
734                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
735                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
736                         }
737                         hp->timer_state = ltrywait;
738                         hp->timer_ticks = 0;
739                         restart_timer = 1;
740                 } else {
741                         /* Anything interesting happen? */
742                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
743                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
744                                 int ret;
745
746                                 /* Just what we've been waiting for... */
747                                 ret = set_happy_link_modes(hp, tregs);
748                                 if (ret) {
749                                         /* Ooops, something bad happened, go to force
750                                          * mode.
751                                          *
752                                          * XXX Broken hubs which don't support 802.3u
753                                          * XXX auto-negotiation make this happen as well.
754                                          */
755                                         goto do_force_mode;
756                                 }
757
758                                 /* Success, at least so far, advance our state engine. */
759                                 hp->timer_state = lupwait;
760                                 restart_timer = 1;
761                         } else {
762                                 restart_timer = 1;
763                         }
764                 }
765                 break;
766
767         case lupwait:
768                 /* Auto negotiation was successful and we are awaiting a
769                  * link up status.  I have decided to let this timer run
770                  * forever until some sort of error is signalled, reporting
771                  * a message to the user at 10 second intervals.
772                  */
773                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
774                 if (hp->sw_bmsr & BMSR_LSTATUS) {
775                         /* Wheee, it's up, display the link mode in use and put
776                          * the timer to sleep.
777                          */
778                         display_link_mode(hp, tregs);
779                         hp->timer_state = asleep;
780                         restart_timer = 0;
781                 } else {
782                         if (hp->timer_ticks >= 10) {
783                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
784                                        "not completely up.\n", hp->dev->name);
785                                 hp->timer_ticks = 0;
786                                 restart_timer = 1;
787                         } else {
788                                 restart_timer = 1;
789                         }
790                 }
791                 break;
792
793         case ltrywait:
794                 /* Making the timeout here too long can make it take
795                  * annoyingly long to attempt all of the link mode
796                  * permutations, but then again this is essentially
797                  * error recovery code for the most part.
798                  */
799                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
800                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
801                 if (hp->timer_ticks == 1) {
802                         if (!is_lucent_phy(hp)) {
803                                 /* Re-enable transceiver, we'll re-enable the transceiver next
804                                  * tick, then check link state on the following tick.
805                                  */
806                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
807                                 happy_meal_tcvr_write(hp, tregs,
808                                                       DP83840_CSCONFIG, hp->sw_csconfig);
809                         }
810                         restart_timer = 1;
811                         break;
812                 }
813                 if (hp->timer_ticks == 2) {
814                         if (!is_lucent_phy(hp)) {
815                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
816                                 happy_meal_tcvr_write(hp, tregs,
817                                                       DP83840_CSCONFIG, hp->sw_csconfig);
818                         }
819                         restart_timer = 1;
820                         break;
821                 }
822                 if (hp->sw_bmsr & BMSR_LSTATUS) {
823                         /* Force mode selection success. */
824                         display_forced_link_mode(hp, tregs);
825                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
826                         hp->timer_state = asleep;
827                         restart_timer = 0;
828                 } else {
829                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
830                                 int ret;
831
832                                 ret = try_next_permutation(hp, tregs);
833                                 if (ret == -1) {
834                                         /* Aieee, tried them all, reset the
835                                          * chip and try all over again.
836                                          */
837
838                                         /* Let the user know... */
839                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
840                                                hp->dev->name);
841
842                                         ret = happy_meal_init(hp);
843                                         if (ret) {
844                                                 /* ho hum... */
845                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
846                                                        "Happy Meal.\n", hp->dev->name);
847                                         }
848                                         goto out;
849                                 }
850                                 if (!is_lucent_phy(hp)) {
851                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
852                                                                                DP83840_CSCONFIG);
853                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
854                                         happy_meal_tcvr_write(hp, tregs,
855                                                               DP83840_CSCONFIG, hp->sw_csconfig);
856                                 }
857                                 hp->timer_ticks = 0;
858                                 restart_timer = 1;
859                         } else {
860                                 restart_timer = 1;
861                         }
862                 }
863                 break;
864
865         case asleep:
866         default:
867                 /* Can't happens.... */
868                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
869                        hp->dev->name);
870                 restart_timer = 0;
871                 hp->timer_ticks = 0;
872                 hp->timer_state = asleep; /* foo on you */
873                 break;
874         };
875
876         if (restart_timer) {
877                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
878                 add_timer(&hp->happy_timer);
879         }
880
881 out:
882         spin_unlock_irq(&hp->happy_lock);
883 }
884
885 #define TX_RESET_TRIES     32
886 #define RX_RESET_TRIES     32
887
888 /* hp->happy_lock must be held */
889 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
890 {
891         int tries = TX_RESET_TRIES;
892
893         HMD(("happy_meal_tx_reset: reset, "));
894
895         /* Would you like to try our SMCC Delux? */
896         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
897         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
898                 udelay(20);
899
900         /* Lettuce, tomato, buggy hardware (no extra charge)? */
901         if (!tries)
902                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
903
904         /* Take care. */
905         HMD(("done\n"));
906 }
907
908 /* hp->happy_lock must be held */
909 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
910 {
911         int tries = RX_RESET_TRIES;
912
913         HMD(("happy_meal_rx_reset: reset, "));
914
915         /* We have a special on GNU/Viking hardware bugs today. */
916         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
917         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
918                 udelay(20);
919
920         /* Will that be all? */
921         if (!tries)
922                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
923
924         /* Don't forget your vik_1137125_wa.  Have a nice day. */
925         HMD(("done\n"));
926 }
927
928 #define STOP_TRIES         16
929
930 /* hp->happy_lock must be held */
931 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
932 {
933         int tries = STOP_TRIES;
934
935         HMD(("happy_meal_stop: reset, "));
936
937         /* We're consolidating our STB products, it's your lucky day. */
938         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
939         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
940                 udelay(20);
941
942         /* Come back next week when we are "Sun Microelectronics". */
943         if (!tries)
944                 printk(KERN_ERR "happy meal: Fry guys.");
945
946         /* Remember: "Different name, same old buggy as shit hardware." */
947         HMD(("done\n"));
948 }
949
950 /* hp->happy_lock must be held */
951 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
952 {
953         struct net_device_stats *stats = &hp->net_stats;
954
955         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
956         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
957
958         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
959         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
960
961         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
962         hme_write32(hp, bregs + BMAC_GLECTR, 0);
963
964         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
965
966         stats->collisions +=
967                 (hme_read32(hp, bregs + BMAC_EXCTR) +
968                  hme_read32(hp, bregs + BMAC_LTCTR));
969         hme_write32(hp, bregs + BMAC_EXCTR, 0);
970         hme_write32(hp, bregs + BMAC_LTCTR, 0);
971 }
972
973 /* hp->happy_lock must be held */
974 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
975 {
976         ASD(("happy_meal_poll_stop: "));
977
978         /* If polling disabled or not polling already, nothing to do. */
979         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
980            (HFLAG_POLLENABLE | HFLAG_POLL)) {
981                 HMD(("not polling, return\n"));
982                 return;
983         }
984
985         /* Shut up the MIF. */
986         ASD(("were polling, mif ints off, "));
987         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
988
989         /* Turn off polling. */
990         ASD(("polling off, "));
991         hme_write32(hp, tregs + TCVR_CFG,
992                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
993
994         /* We are no longer polling. */
995         hp->happy_flags &= ~(HFLAG_POLL);
996
997         /* Let the bits set. */
998         udelay(200);
999         ASD(("done\n"));
1000 }
1001
1002 /* Only Sun can take such nice parts and fuck up the programming interface
1003  * like this.  Good job guys...
1004  */
1005 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
1006 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
1007
1008 /* hp->happy_lock must be held */
1009 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
1010 {
1011         u32 tconfig;
1012         int result, tries = TCVR_RESET_TRIES;
1013
1014         tconfig = hme_read32(hp, tregs + TCVR_CFG);
1015         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
1016         if (hp->tcvr_type == external) {
1017                 ASD(("external<"));
1018                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1019                 hp->tcvr_type = internal;
1020                 hp->paddr = TCV_PADDR_ITX;
1021                 ASD(("ISOLATE,"));
1022                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1023                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1024                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1025                 if (result == TCVR_FAILURE) {
1026                         ASD(("phyread_fail>\n"));
1027                         return -1;
1028                 }
1029                 ASD(("phyread_ok,PSELECT>"));
1030                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1031                 hp->tcvr_type = external;
1032                 hp->paddr = TCV_PADDR_ETX;
1033         } else {
1034                 if (tconfig & TCV_CFG_MDIO1) {
1035                         ASD(("internal<PSELECT,"));
1036                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1037                         ASD(("ISOLATE,"));
1038                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1039                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1040                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1041                         if (result == TCVR_FAILURE) {
1042                                 ASD(("phyread_fail>\n"));
1043                                 return -1;
1044                         }
1045                         ASD(("phyread_ok,~PSELECT>"));
1046                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1047                         hp->tcvr_type = internal;
1048                         hp->paddr = TCV_PADDR_ITX;
1049                 }
1050         }
1051
1052         ASD(("BMCR_RESET "));
1053         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1054
1055         while (--tries) {
1056                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1057                 if (result == TCVR_FAILURE)
1058                         return -1;
1059                 hp->sw_bmcr = result;
1060                 if (!(result & BMCR_RESET))
1061                         break;
1062                 udelay(20);
1063         }
1064         if (!tries) {
1065                 ASD(("BMCR RESET FAILED!\n"));
1066                 return -1;
1067         }
1068         ASD(("RESET_OK\n"));
1069
1070         /* Get fresh copies of the PHY registers. */
1071         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1072         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1073         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1074         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1075
1076         ASD(("UNISOLATE"));
1077         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1078         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1079
1080         tries = TCVR_UNISOLATE_TRIES;
1081         while (--tries) {
1082                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1083                 if (result == TCVR_FAILURE)
1084                         return -1;
1085                 if (!(result & BMCR_ISOLATE))
1086                         break;
1087                 udelay(20);
1088         }
1089         if (!tries) {
1090                 ASD((" FAILED!\n"));
1091                 return -1;
1092         }
1093         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1094         if (!is_lucent_phy(hp)) {
1095                 result = happy_meal_tcvr_read(hp, tregs,
1096                                               DP83840_CSCONFIG);
1097                 happy_meal_tcvr_write(hp, tregs,
1098                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1099         }
1100         return 0;
1101 }
1102
1103 /* Figure out whether we have an internal or external transceiver.
1104  *
1105  * hp->happy_lock must be held
1106  */
1107 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1108 {
1109         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1110
1111         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1112         if (hp->happy_flags & HFLAG_POLL) {
1113                 /* If we are polling, we must stop to get the transceiver type. */
1114                 ASD(("<polling> "));
1115                 if (hp->tcvr_type == internal) {
1116                         if (tconfig & TCV_CFG_MDIO1) {
1117                                 ASD(("<internal> <poll stop> "));
1118                                 happy_meal_poll_stop(hp, tregs);
1119                                 hp->paddr = TCV_PADDR_ETX;
1120                                 hp->tcvr_type = external;
1121                                 ASD(("<external>\n"));
1122                                 tconfig &= ~(TCV_CFG_PENABLE);
1123                                 tconfig |= TCV_CFG_PSELECT;
1124                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1125                         }
1126                 } else {
1127                         if (hp->tcvr_type == external) {
1128                                 ASD(("<external> "));
1129                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1130                                         ASD(("<poll stop> "));
1131                                         happy_meal_poll_stop(hp, tregs);
1132                                         hp->paddr = TCV_PADDR_ITX;
1133                                         hp->tcvr_type = internal;
1134                                         ASD(("<internal>\n"));
1135                                         hme_write32(hp, tregs + TCVR_CFG,
1136                                                     hme_read32(hp, tregs + TCVR_CFG) &
1137                                                     ~(TCV_CFG_PSELECT));
1138                                 }
1139                                 ASD(("\n"));
1140                         } else {
1141                                 ASD(("<none>\n"));
1142                         }
1143                 }
1144         } else {
1145                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1146
1147                 /* Else we can just work off of the MDIO bits. */
1148                 ASD(("<not polling> "));
1149                 if (reread & TCV_CFG_MDIO1) {
1150                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1151                         hp->paddr = TCV_PADDR_ETX;
1152                         hp->tcvr_type = external;
1153                         ASD(("<external>\n"));
1154                 } else {
1155                         if (reread & TCV_CFG_MDIO0) {
1156                                 hme_write32(hp, tregs + TCVR_CFG,
1157                                             tconfig & ~(TCV_CFG_PSELECT));
1158                                 hp->paddr = TCV_PADDR_ITX;
1159                                 hp->tcvr_type = internal;
1160                                 ASD(("<internal>\n"));
1161                         } else {
1162                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1163                                 hp->tcvr_type = none; /* Grrr... */
1164                                 ASD(("<none>\n"));
1165                         }
1166                 }
1167         }
1168 }
1169
1170 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1171  *
1172  * The buffers we dma into must be 64 byte aligned.  So we use a special
1173  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1174  * we really need.
1175  *
1176  * We use skb_reserve() to align the data block we get in the skb.  We
1177  * also program the etxregs->cfg register to use an offset of 2.  This
1178  * imperical constant plus the ethernet header size will always leave
1179  * us with a nicely aligned ip header once we pass things up to the
1180  * protocol layers.
1181  *
1182  * The numbers work out to:
1183  *
1184  *         Max ethernet frame size         1518
1185  *         Ethernet header size              14
1186  *         Happy Meal base offset             2
1187  *
1188  * Say a skb data area is at 0xf001b010, and its size alloced is
1189  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1190  *
1191  * First our alloc_skb() routine aligns the data base to a 64 byte
1192  * boundary.  We now have 0xf001b040 as our skb data address.  We
1193  * plug this into the receive descriptor address.
1194  *
1195  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1196  * So now the data we will end up looking at starts at 0xf001b042.  When
1197  * the packet arrives, we will check out the size received and subtract
1198  * this from the skb->length.  Then we just pass the packet up to the
1199  * protocols as is, and allocate a new skb to replace this slot we have
1200  * just received from.
1201  *
1202  * The ethernet layer will strip the ether header from the front of the
1203  * skb we just sent to it, this leaves us with the ip header sitting
1204  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1205  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1206  * bit checksum is obtained from the low bits of the receive descriptor
1207  * flags, thus:
1208  *
1209  *      skb->csum = rxd->rx_flags & 0xffff;
1210  *      skb->ip_summed = CHECKSUM_COMPLETE;
1211  *
1212  * before sending off the skb to the protocols, and we are good as gold.
1213  */
1214 static void happy_meal_clean_rings(struct happy_meal *hp)
1215 {
1216         int i;
1217
1218         for (i = 0; i < RX_RING_SIZE; i++) {
1219                 if (hp->rx_skbs[i] != NULL) {
1220                         struct sk_buff *skb = hp->rx_skbs[i];
1221                         struct happy_meal_rxd *rxd;
1222                         u32 dma_addr;
1223
1224                         rxd = &hp->happy_block->happy_meal_rxd[i];
1225                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1226                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
1227                         dev_kfree_skb_any(skb);
1228                         hp->rx_skbs[i] = NULL;
1229                 }
1230         }
1231
1232         for (i = 0; i < TX_RING_SIZE; i++) {
1233                 if (hp->tx_skbs[i] != NULL) {
1234                         struct sk_buff *skb = hp->tx_skbs[i];
1235                         struct happy_meal_txd *txd;
1236                         u32 dma_addr;
1237                         int frag;
1238
1239                         hp->tx_skbs[i] = NULL;
1240
1241                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1242                                 txd = &hp->happy_block->happy_meal_txd[i];
1243                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1244                                 hme_dma_unmap(hp, dma_addr,
1245                                               (hme_read_desc32(hp, &txd->tx_flags)
1246                                                & TXFLAG_SIZE),
1247                                               DMA_TODEVICE);
1248
1249                                 if (frag != skb_shinfo(skb)->nr_frags)
1250                                         i++;
1251                         }
1252
1253                         dev_kfree_skb_any(skb);
1254                 }
1255         }
1256 }
1257
1258 /* hp->happy_lock must be held */
1259 static void happy_meal_init_rings(struct happy_meal *hp)
1260 {
1261         struct hmeal_init_block *hb = hp->happy_block;
1262         struct net_device *dev = hp->dev;
1263         int i;
1264
1265         HMD(("happy_meal_init_rings: counters to zero, "));
1266         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1267
1268         /* Free any skippy bufs left around in the rings. */
1269         HMD(("clean, "));
1270         happy_meal_clean_rings(hp);
1271
1272         /* Now get new skippy bufs for the receive ring. */
1273         HMD(("init rxring, "));
1274         for (i = 0; i < RX_RING_SIZE; i++) {
1275                 struct sk_buff *skb;
1276
1277                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1278                 if (!skb) {
1279                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1280                         continue;
1281                 }
1282                 hp->rx_skbs[i] = skb;
1283                 skb->dev = dev;
1284
1285                 /* Because we reserve afterwards. */
1286                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
1287                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1288                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1289                               hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
1290                 skb_reserve(skb, RX_OFFSET);
1291         }
1292
1293         HMD(("init txring, "));
1294         for (i = 0; i < TX_RING_SIZE; i++)
1295                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1296
1297         HMD(("done\n"));
1298 }
1299
1300 /* hp->happy_lock must be held */
1301 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1302                                               void __iomem *tregs,
1303                                               struct ethtool_cmd *ep)
1304 {
1305         int timeout;
1306
1307         /* Read all of the registers we are interested in now. */
1308         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1309         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1310         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1311         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1312
1313         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1314
1315         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1316         if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1317                 /* Advertise everything we can support. */
1318                 if (hp->sw_bmsr & BMSR_10HALF)
1319                         hp->sw_advertise |= (ADVERTISE_10HALF);
1320                 else
1321                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1322
1323                 if (hp->sw_bmsr & BMSR_10FULL)
1324                         hp->sw_advertise |= (ADVERTISE_10FULL);
1325                 else
1326                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1327                 if (hp->sw_bmsr & BMSR_100HALF)
1328                         hp->sw_advertise |= (ADVERTISE_100HALF);
1329                 else
1330                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1331                 if (hp->sw_bmsr & BMSR_100FULL)
1332                         hp->sw_advertise |= (ADVERTISE_100FULL);
1333                 else
1334                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1335                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1336
1337                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1338                  * XXX and this is because the DP83840 does not support it, changes
1339                  * XXX would need to be made to the tx/rx logic in the driver as well
1340                  * XXX so I completely skip checking for it in the BMSR for now.
1341                  */
1342
1343 #ifdef AUTO_SWITCH_DEBUG
1344                 ASD(("%s: Advertising [ ", hp->dev->name));
1345                 if (hp->sw_advertise & ADVERTISE_10HALF)
1346                         ASD(("10H "));
1347                 if (hp->sw_advertise & ADVERTISE_10FULL)
1348                         ASD(("10F "));
1349                 if (hp->sw_advertise & ADVERTISE_100HALF)
1350                         ASD(("100H "));
1351                 if (hp->sw_advertise & ADVERTISE_100FULL)
1352                         ASD(("100F "));
1353 #endif
1354
1355                 /* Enable Auto-Negotiation, this is usually on already... */
1356                 hp->sw_bmcr |= BMCR_ANENABLE;
1357                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1358
1359                 /* Restart it to make sure it is going. */
1360                 hp->sw_bmcr |= BMCR_ANRESTART;
1361                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1362
1363                 /* BMCR_ANRESTART self clears when the process has begun. */
1364
1365                 timeout = 64;  /* More than enough. */
1366                 while (--timeout) {
1367                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1368                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1369                                 break; /* got it. */
1370                         udelay(10);
1371                 }
1372                 if (!timeout) {
1373                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1374                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1375                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1376                                hp->dev->name);
1377                         goto force_link;
1378                 } else {
1379                         hp->timer_state = arbwait;
1380                 }
1381         } else {
1382 force_link:
1383                 /* Force the link up, trying first a particular mode.
1384                  * Either we are here at the request of ethtool or
1385                  * because the Happy Meal would not start to autoneg.
1386                  */
1387
1388                 /* Disable auto-negotiation in BMCR, enable the duplex and
1389                  * speed setting, init the timer state machine, and fire it off.
1390                  */
1391                 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1392                         hp->sw_bmcr = BMCR_SPEED100;
1393                 } else {
1394                         if (ep->speed == SPEED_100)
1395                                 hp->sw_bmcr = BMCR_SPEED100;
1396                         else
1397                                 hp->sw_bmcr = 0;
1398                         if (ep->duplex == DUPLEX_FULL)
1399                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1400                 }
1401                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1402
1403                 if (!is_lucent_phy(hp)) {
1404                         /* OK, seems we need do disable the transceiver for the first
1405                          * tick to make sure we get an accurate link state at the
1406                          * second tick.
1407                          */
1408                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1409                                                                DP83840_CSCONFIG);
1410                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1411                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1412                                               hp->sw_csconfig);
1413                 }
1414                 hp->timer_state = ltrywait;
1415         }
1416
1417         hp->timer_ticks = 0;
1418         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1419         hp->happy_timer.data = (unsigned long) hp;
1420         hp->happy_timer.function = &happy_meal_timer;
1421         add_timer(&hp->happy_timer);
1422 }
1423
1424 /* hp->happy_lock must be held */
1425 static int happy_meal_init(struct happy_meal *hp)
1426 {
1427         void __iomem *gregs        = hp->gregs;
1428         void __iomem *etxregs      = hp->etxregs;
1429         void __iomem *erxregs      = hp->erxregs;
1430         void __iomem *bregs        = hp->bigmacregs;
1431         void __iomem *tregs        = hp->tcvregs;
1432         u32 regtmp, rxcfg;
1433         unsigned char *e = &hp->dev->dev_addr[0];
1434
1435         /* If auto-negotiation timer is running, kill it. */
1436         del_timer(&hp->happy_timer);
1437
1438         HMD(("happy_meal_init: happy_flags[%08x] ",
1439              hp->happy_flags));
1440         if (!(hp->happy_flags & HFLAG_INIT)) {
1441                 HMD(("set HFLAG_INIT, "));
1442                 hp->happy_flags |= HFLAG_INIT;
1443                 happy_meal_get_counters(hp, bregs);
1444         }
1445
1446         /* Stop polling. */
1447         HMD(("to happy_meal_poll_stop\n"));
1448         happy_meal_poll_stop(hp, tregs);
1449
1450         /* Stop transmitter and receiver. */
1451         HMD(("happy_meal_init: to happy_meal_stop\n"));
1452         happy_meal_stop(hp, gregs);
1453
1454         /* Alloc and reset the tx/rx descriptor chains. */
1455         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1456         happy_meal_init_rings(hp);
1457
1458         /* Shut up the MIF. */
1459         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1460              hme_read32(hp, tregs + TCVR_IMASK)));
1461         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1462
1463         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1464         if (hp->happy_flags & HFLAG_FENABLE) {
1465                 HMD(("use frame old[%08x], ",
1466                      hme_read32(hp, tregs + TCVR_CFG)));
1467                 hme_write32(hp, tregs + TCVR_CFG,
1468                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1469         } else {
1470                 HMD(("use bitbang old[%08x], ",
1471                      hme_read32(hp, tregs + TCVR_CFG)));
1472                 hme_write32(hp, tregs + TCVR_CFG,
1473                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1474         }
1475
1476         /* Check the state of the transceiver. */
1477         HMD(("to happy_meal_transceiver_check\n"));
1478         happy_meal_transceiver_check(hp, tregs);
1479
1480         /* Put the Big Mac into a sane state. */
1481         HMD(("happy_meal_init: "));
1482         switch(hp->tcvr_type) {
1483         case none:
1484                 /* Cannot operate if we don't know the transceiver type! */
1485                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1486                 return -EAGAIN;
1487
1488         case internal:
1489                 /* Using the MII buffers. */
1490                 HMD(("internal, using MII, "));
1491                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1492                 break;
1493
1494         case external:
1495                 /* Not using the MII, disable it. */
1496                 HMD(("external, disable MII, "));
1497                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1498                 break;
1499         };
1500
1501         if (happy_meal_tcvr_reset(hp, tregs))
1502                 return -EAGAIN;
1503
1504         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1505         HMD(("tx/rx reset, "));
1506         happy_meal_tx_reset(hp, bregs);
1507         happy_meal_rx_reset(hp, bregs);
1508
1509         /* Set jam size and inter-packet gaps to reasonable defaults. */
1510         HMD(("jsize/ipg1/ipg2, "));
1511         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1512         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1513         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1514
1515         /* Load up the MAC address and random seed. */
1516         HMD(("rseed/macaddr, "));
1517
1518         /* The docs recommend to use the 10LSB of our MAC here. */
1519         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1520
1521         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1522         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1523         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1524
1525         HMD(("htable, "));
1526         if ((hp->dev->flags & IFF_ALLMULTI) ||
1527             (hp->dev->mc_count > 64)) {
1528                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1529                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1530                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1531                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1532         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1533                 u16 hash_table[4];
1534                 struct dev_mc_list *dmi = hp->dev->mc_list;
1535                 char *addrs;
1536                 int i;
1537                 u32 crc;
1538
1539                 for (i = 0; i < 4; i++)
1540                         hash_table[i] = 0;
1541
1542                 for (i = 0; i < hp->dev->mc_count; i++) {
1543                         addrs = dmi->dmi_addr;
1544                         dmi = dmi->next;
1545
1546                         if (!(*addrs & 1))
1547                                 continue;
1548
1549                         crc = ether_crc_le(6, addrs);
1550                         crc >>= 26;
1551                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1552                 }
1553                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1554                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1555                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1556                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1557         } else {
1558                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1559                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1560                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1561                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1562         }
1563
1564         /* Set the RX and TX ring ptrs. */
1565         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1566              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1567              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1568         hme_write32(hp, erxregs + ERX_RING,
1569                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1570         hme_write32(hp, etxregs + ETX_RING,
1571                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1572
1573         /* Parity issues in the ERX unit of some HME revisions can cause some
1574          * registers to not be written unless their parity is even.  Detect such
1575          * lost writes and simply rewrite with a low bit set (which will be ignored
1576          * since the rxring needs to be 2K aligned).
1577          */
1578         if (hme_read32(hp, erxregs + ERX_RING) !=
1579             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1580                 hme_write32(hp, erxregs + ERX_RING,
1581                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1582                             | 0x4);
1583
1584         /* Set the supported burst sizes. */
1585         HMD(("happy_meal_init: old[%08x] bursts<",
1586              hme_read32(hp, gregs + GREG_CFG)));
1587
1588 #ifndef CONFIG_SPARC
1589         /* It is always PCI and can handle 64byte bursts. */
1590         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1591 #else
1592         if ((hp->happy_bursts & DMA_BURST64) &&
1593             ((hp->happy_flags & HFLAG_PCI) != 0
1594 #ifdef CONFIG_SBUS
1595              || sbus_can_burst64(hp->happy_dev)
1596 #endif
1597              || 0)) {
1598                 u32 gcfg = GREG_CFG_BURST64;
1599
1600                 /* I have no idea if I should set the extended
1601                  * transfer mode bit for Cheerio, so for now I
1602                  * do not.  -DaveM
1603                  */
1604 #ifdef CONFIG_SBUS
1605                 if ((hp->happy_flags & HFLAG_PCI) == 0 &&
1606                     sbus_can_dma_64bit(hp->happy_dev)) {
1607                         sbus_set_sbus64(hp->happy_dev,
1608                                         hp->happy_bursts);
1609                         gcfg |= GREG_CFG_64BIT;
1610                 }
1611 #endif
1612
1613                 HMD(("64>"));
1614                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1615         } else if (hp->happy_bursts & DMA_BURST32) {
1616                 HMD(("32>"));
1617                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1618         } else if (hp->happy_bursts & DMA_BURST16) {
1619                 HMD(("16>"));
1620                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1621         } else {
1622                 HMD(("XXX>"));
1623                 hme_write32(hp, gregs + GREG_CFG, 0);
1624         }
1625 #endif /* CONFIG_SPARC */
1626
1627         /* Turn off interrupts we do not want to hear. */
1628         HMD((", enable global interrupts, "));
1629         hme_write32(hp, gregs + GREG_IMASK,
1630                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1631                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1632
1633         /* Set the transmit ring buffer size. */
1634         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1635              hme_read32(hp, etxregs + ETX_RSIZE)));
1636         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1637
1638         /* Enable transmitter DVMA. */
1639         HMD(("tx dma enable old[%08x], ",
1640              hme_read32(hp, etxregs + ETX_CFG)));
1641         hme_write32(hp, etxregs + ETX_CFG,
1642                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1643
1644         /* This chip really rots, for the receiver sometimes when you
1645          * write to its control registers not all the bits get there
1646          * properly.  I cannot think of a sane way to provide complete
1647          * coverage for this hardware bug yet.
1648          */
1649         HMD(("erx regs bug old[%08x]\n",
1650              hme_read32(hp, erxregs + ERX_CFG)));
1651         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1652         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1653         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1654         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1655                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1656                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1657                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1658                 /* XXX Should return failure here... */
1659         }
1660
1661         /* Enable Big Mac hash table filter. */
1662         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1663              hme_read32(hp, bregs + BMAC_RXCFG)));
1664         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1665         if (hp->dev->flags & IFF_PROMISC)
1666                 rxcfg |= BIGMAC_RXCFG_PMISC;
1667         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1668
1669         /* Let the bits settle in the chip. */
1670         udelay(10);
1671
1672         /* Ok, configure the Big Mac transmitter. */
1673         HMD(("BIGMAC init, "));
1674         regtmp = 0;
1675         if (hp->happy_flags & HFLAG_FULL)
1676                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1677
1678         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1679          * to deadlock with the PHY if a Jabber occurs.
1680          */
1681         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1682
1683         /* Give up after 16 TX attempts. */
1684         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1685
1686         /* Enable the output drivers no matter what. */
1687         regtmp = BIGMAC_XCFG_ODENABLE;
1688
1689         /* If card can do lance mode, enable it. */
1690         if (hp->happy_flags & HFLAG_LANCE)
1691                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1692
1693         /* Disable the MII buffers if using external transceiver. */
1694         if (hp->tcvr_type == external)
1695                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1696
1697         HMD(("XIF config old[%08x], ",
1698              hme_read32(hp, bregs + BMAC_XIFCFG)));
1699         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1700
1701         /* Start things up. */
1702         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1703              hme_read32(hp, bregs + BMAC_TXCFG),
1704              hme_read32(hp, bregs + BMAC_RXCFG)));
1705         hme_write32(hp, bregs + BMAC_TXCFG,
1706                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1707         hme_write32(hp, bregs + BMAC_RXCFG,
1708                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1709
1710         /* Get the autonegotiation started, and the watch timer ticking. */
1711         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1712
1713         /* Success. */
1714         return 0;
1715 }
1716
1717 /* hp->happy_lock must be held */
1718 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1719 {
1720         void __iomem *tregs     = hp->tcvregs;
1721         void __iomem *bregs     = hp->bigmacregs;
1722         void __iomem *gregs     = hp->gregs;
1723
1724         happy_meal_stop(hp, gregs);
1725         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1726         if (hp->happy_flags & HFLAG_FENABLE)
1727                 hme_write32(hp, tregs + TCVR_CFG,
1728                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1729         else
1730                 hme_write32(hp, tregs + TCVR_CFG,
1731                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1732         happy_meal_transceiver_check(hp, tregs);
1733         switch(hp->tcvr_type) {
1734         case none:
1735                 return;
1736         case internal:
1737                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1738                 break;
1739         case external:
1740                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1741                 break;
1742         };
1743         if (happy_meal_tcvr_reset(hp, tregs))
1744                 return;
1745
1746         /* Latch PHY registers as of now. */
1747         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1748         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1749
1750         /* Advertise everything we can support. */
1751         if (hp->sw_bmsr & BMSR_10HALF)
1752                 hp->sw_advertise |= (ADVERTISE_10HALF);
1753         else
1754                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1755
1756         if (hp->sw_bmsr & BMSR_10FULL)
1757                 hp->sw_advertise |= (ADVERTISE_10FULL);
1758         else
1759                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1760         if (hp->sw_bmsr & BMSR_100HALF)
1761                 hp->sw_advertise |= (ADVERTISE_100HALF);
1762         else
1763                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1764         if (hp->sw_bmsr & BMSR_100FULL)
1765                 hp->sw_advertise |= (ADVERTISE_100FULL);
1766         else
1767                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1768
1769         /* Update the PHY advertisement register. */
1770         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1771 }
1772
1773 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1774  * the hardware, so we cannot re-read it and get a correct value.
1775  *
1776  * hp->happy_lock must be held
1777  */
1778 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1779 {
1780         int reset = 0;
1781
1782         /* Only print messages for non-counter related interrupts. */
1783         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1784                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1785                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1786                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1787                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1788                       GREG_STAT_SLVPERR))
1789                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1790                        hp->dev->name, status);
1791
1792         if (status & GREG_STAT_RFIFOVF) {
1793                 /* Receive FIFO overflow is harmless and the hardware will take
1794                    care of it, just some packets are lost. Who cares. */
1795                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1796         }
1797
1798         if (status & GREG_STAT_STSTERR) {
1799                 /* BigMAC SQE link test failed. */
1800                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1801                 reset = 1;
1802         }
1803
1804         if (status & GREG_STAT_TFIFO_UND) {
1805                 /* Transmit FIFO underrun, again DMA error likely. */
1806                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1807                        hp->dev->name);
1808                 reset = 1;
1809         }
1810
1811         if (status & GREG_STAT_MAXPKTERR) {
1812                 /* Driver error, tried to transmit something larger
1813                  * than ethernet max mtu.
1814                  */
1815                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1816                 reset = 1;
1817         }
1818
1819         if (status & GREG_STAT_NORXD) {
1820                 /* This is harmless, it just means the system is
1821                  * quite loaded and the incoming packet rate was
1822                  * faster than the interrupt handler could keep up
1823                  * with.
1824                  */
1825                 printk(KERN_INFO "%s: Happy Meal out of receive "
1826                        "descriptors, packet dropped.\n",
1827                        hp->dev->name);
1828         }
1829
1830         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1831                 /* All sorts of DMA receive errors. */
1832                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1833                 if (status & GREG_STAT_RXERR)
1834                         printk("GenericError ");
1835                 if (status & GREG_STAT_RXPERR)
1836                         printk("ParityError ");
1837                 if (status & GREG_STAT_RXTERR)
1838                         printk("RxTagBotch ");
1839                 printk("]\n");
1840                 reset = 1;
1841         }
1842
1843         if (status & GREG_STAT_EOPERR) {
1844                 /* Driver bug, didn't set EOP bit in tx descriptor given
1845                  * to the happy meal.
1846                  */
1847                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1848                        hp->dev->name);
1849                 reset = 1;
1850         }
1851
1852         if (status & GREG_STAT_MIFIRQ) {
1853                 /* MIF signalled an interrupt, were we polling it? */
1854                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1855         }
1856
1857         if (status &
1858             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1859                 /* All sorts of transmit DMA errors. */
1860                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1861                 if (status & GREG_STAT_TXEACK)
1862                         printk("GenericError ");
1863                 if (status & GREG_STAT_TXLERR)
1864                         printk("LateError ");
1865                 if (status & GREG_STAT_TXPERR)
1866                         printk("ParityErro ");
1867                 if (status & GREG_STAT_TXTERR)
1868                         printk("TagBotch ");
1869                 printk("]\n");
1870                 reset = 1;
1871         }
1872
1873         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1874                 /* Bus or parity error when cpu accessed happy meal registers
1875                  * or it's internal FIFO's.  Should never see this.
1876                  */
1877                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1878                        hp->dev->name,
1879                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1880                 reset = 1;
1881         }
1882
1883         if (reset) {
1884                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1885                 happy_meal_init(hp);
1886                 return 1;
1887         }
1888         return 0;
1889 }
1890
1891 /* hp->happy_lock must be held */
1892 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1893 {
1894         void __iomem *tregs = hp->tcvregs;
1895
1896         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1897         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1898         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1899
1900         /* Use the fastest transmission protocol possible. */
1901         if (hp->sw_lpa & LPA_100FULL) {
1902                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1903                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1904         } else if (hp->sw_lpa & LPA_100HALF) {
1905                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1906                 hp->sw_bmcr |= BMCR_SPEED100;
1907         } else if (hp->sw_lpa & LPA_10FULL) {
1908                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1909                 hp->sw_bmcr |= BMCR_FULLDPLX;
1910         } else {
1911                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1912         }
1913         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1914
1915         /* Finally stop polling and shut up the MIF. */
1916         happy_meal_poll_stop(hp, tregs);
1917 }
1918
1919 #ifdef TXDEBUG
1920 #define TXD(x) printk x
1921 #else
1922 #define TXD(x)
1923 #endif
1924
1925 /* hp->happy_lock must be held */
1926 static void happy_meal_tx(struct happy_meal *hp)
1927 {
1928         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1929         struct happy_meal_txd *this;
1930         struct net_device *dev = hp->dev;
1931         int elem;
1932
1933         elem = hp->tx_old;
1934         TXD(("TX<"));
1935         while (elem != hp->tx_new) {
1936                 struct sk_buff *skb;
1937                 u32 flags, dma_addr, dma_len;
1938                 int frag;
1939
1940                 TXD(("[%d]", elem));
1941                 this = &txbase[elem];
1942                 flags = hme_read_desc32(hp, &this->tx_flags);
1943                 if (flags & TXFLAG_OWN)
1944                         break;
1945                 skb = hp->tx_skbs[elem];
1946                 if (skb_shinfo(skb)->nr_frags) {
1947                         int last;
1948
1949                         last = elem + skb_shinfo(skb)->nr_frags;
1950                         last &= (TX_RING_SIZE - 1);
1951                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1952                         if (flags & TXFLAG_OWN)
1953                                 break;
1954                 }
1955                 hp->tx_skbs[elem] = NULL;
1956                 hp->net_stats.tx_bytes += skb->len;
1957
1958                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1959                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1960                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1961
1962                         dma_len &= TXFLAG_SIZE;
1963                         hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
1964
1965                         elem = NEXT_TX(elem);
1966                         this = &txbase[elem];
1967                 }
1968
1969                 dev_kfree_skb_irq(skb);
1970                 hp->net_stats.tx_packets++;
1971         }
1972         hp->tx_old = elem;
1973         TXD((">"));
1974
1975         if (netif_queue_stopped(dev) &&
1976             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1977                 netif_wake_queue(dev);
1978 }
1979
1980 #ifdef RXDEBUG
1981 #define RXD(x) printk x
1982 #else
1983 #define RXD(x)
1984 #endif
1985
1986 /* Originally I used to handle the allocation failure by just giving back just
1987  * that one ring buffer to the happy meal.  Problem is that usually when that
1988  * condition is triggered, the happy meal expects you to do something reasonable
1989  * with all of the packets it has DMA'd in.  So now I just drop the entire
1990  * ring when we cannot get a new skb and give them all back to the happy meal,
1991  * maybe things will be "happier" now.
1992  *
1993  * hp->happy_lock must be held
1994  */
1995 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1996 {
1997         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1998         struct happy_meal_rxd *this;
1999         int elem = hp->rx_new, drops = 0;
2000         u32 flags;
2001
2002         RXD(("RX<"));
2003         this = &rxbase[elem];
2004         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2005                 struct sk_buff *skb;
2006                 int len = flags >> 16;
2007                 u16 csum = flags & RXFLAG_CSUM;
2008                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2009
2010                 RXD(("[%d ", elem));
2011
2012                 /* Check for errors. */
2013                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2014                         RXD(("ERR(%08x)]", flags));
2015                         hp->net_stats.rx_errors++;
2016                         if (len < ETH_ZLEN)
2017                                 hp->net_stats.rx_length_errors++;
2018                         if (len & (RXFLAG_OVERFLOW >> 16)) {
2019                                 hp->net_stats.rx_over_errors++;
2020                                 hp->net_stats.rx_fifo_errors++;
2021                         }
2022
2023                         /* Return it to the Happy meal. */
2024         drop_it:
2025                         hp->net_stats.rx_dropped++;
2026                         hme_write_rxd(hp, this,
2027                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2028                                       dma_addr);
2029                         goto next;
2030                 }
2031                 skb = hp->rx_skbs[elem];
2032                 if (len > RX_COPY_THRESHOLD) {
2033                         struct sk_buff *new_skb;
2034
2035                         /* Now refill the entry, if we can. */
2036                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2037                         if (new_skb == NULL) {
2038                                 drops++;
2039                                 goto drop_it;
2040                         }
2041                         hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
2042                         hp->rx_skbs[elem] = new_skb;
2043                         new_skb->dev = dev;
2044                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
2045                         hme_write_rxd(hp, this,
2046                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2047                                       hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
2048                         skb_reserve(new_skb, RX_OFFSET);
2049
2050                         /* Trim the original skb for the netif. */
2051                         skb_trim(skb, len);
2052                 } else {
2053                         struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
2054
2055                         if (copy_skb == NULL) {
2056                                 drops++;
2057                                 goto drop_it;
2058                         }
2059
2060                         copy_skb->dev = dev;
2061                         skb_reserve(copy_skb, 2);
2062                         skb_put(copy_skb, len);
2063                         hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
2064                         memcpy(copy_skb->data, skb->data, len);
2065                         hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
2066
2067                         /* Reuse original ring buffer. */
2068                         hme_write_rxd(hp, this,
2069                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2070                                       dma_addr);
2071
2072                         skb = copy_skb;
2073                 }
2074
2075                 /* This card is _fucking_ hot... */
2076                 skb->csum = ntohs(csum ^ 0xffff);
2077                 skb->ip_summed = CHECKSUM_COMPLETE;
2078
2079                 RXD(("len=%d csum=%4x]", len, csum));
2080                 skb->protocol = eth_type_trans(skb, dev);
2081                 netif_rx(skb);
2082
2083                 dev->last_rx = jiffies;
2084                 hp->net_stats.rx_packets++;
2085                 hp->net_stats.rx_bytes += len;
2086         next:
2087                 elem = NEXT_RX(elem);
2088                 this = &rxbase[elem];
2089         }
2090         hp->rx_new = elem;
2091         if (drops)
2092                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2093         RXD((">"));
2094 }
2095
2096 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2097 {
2098         struct net_device *dev = (struct net_device *) dev_id;
2099         struct happy_meal *hp  = dev->priv;
2100         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2101
2102         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2103
2104         spin_lock(&hp->happy_lock);
2105
2106         if (happy_status & GREG_STAT_ERRORS) {
2107                 HMD(("ERRORS "));
2108                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2109                         goto out;
2110         }
2111
2112         if (happy_status & GREG_STAT_MIFIRQ) {
2113                 HMD(("MIFIRQ "));
2114                 happy_meal_mif_interrupt(hp);
2115         }
2116
2117         if (happy_status & GREG_STAT_TXALL) {
2118                 HMD(("TXALL "));
2119                 happy_meal_tx(hp);
2120         }
2121
2122         if (happy_status & GREG_STAT_RXTOHOST) {
2123                 HMD(("RXTOHOST "));
2124                 happy_meal_rx(hp, dev);
2125         }
2126
2127         HMD(("done\n"));
2128 out:
2129         spin_unlock(&hp->happy_lock);
2130
2131         return IRQ_HANDLED;
2132 }
2133
2134 #ifdef CONFIG_SBUS
2135 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2136 {
2137         struct quattro *qp = (struct quattro *) cookie;
2138         int i;
2139
2140         for (i = 0; i < 4; i++) {
2141                 struct net_device *dev = qp->happy_meals[i];
2142                 struct happy_meal *hp  = dev->priv;
2143                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2144
2145                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2146
2147                 if (!(happy_status & (GREG_STAT_ERRORS |
2148                                       GREG_STAT_MIFIRQ |
2149                                       GREG_STAT_TXALL |
2150                                       GREG_STAT_RXTOHOST)))
2151                         continue;
2152
2153                 spin_lock(&hp->happy_lock);
2154
2155                 if (happy_status & GREG_STAT_ERRORS) {
2156                         HMD(("ERRORS "));
2157                         if (happy_meal_is_not_so_happy(hp, happy_status))
2158                                 goto next;
2159                 }
2160
2161                 if (happy_status & GREG_STAT_MIFIRQ) {
2162                         HMD(("MIFIRQ "));
2163                         happy_meal_mif_interrupt(hp);
2164                 }
2165
2166                 if (happy_status & GREG_STAT_TXALL) {
2167                         HMD(("TXALL "));
2168                         happy_meal_tx(hp);
2169                 }
2170
2171                 if (happy_status & GREG_STAT_RXTOHOST) {
2172                         HMD(("RXTOHOST "));
2173                         happy_meal_rx(hp, dev);
2174                 }
2175
2176         next:
2177                 spin_unlock(&hp->happy_lock);
2178         }
2179         HMD(("done\n"));
2180
2181         return IRQ_HANDLED;
2182 }
2183 #endif
2184
2185 static int happy_meal_open(struct net_device *dev)
2186 {
2187         struct happy_meal *hp = dev->priv;
2188         int res;
2189
2190         HMD(("happy_meal_open: "));
2191
2192         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2193          * into a single source which we register handling at probe time.
2194          */
2195         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2196                 if (request_irq(dev->irq, &happy_meal_interrupt,
2197                                 IRQF_SHARED, dev->name, (void *)dev)) {
2198                         HMD(("EAGAIN\n"));
2199                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2200                                dev->irq);
2201
2202                         return -EAGAIN;
2203                 }
2204         }
2205
2206         HMD(("to happy_meal_init\n"));
2207
2208         spin_lock_irq(&hp->happy_lock);
2209         res = happy_meal_init(hp);
2210         spin_unlock_irq(&hp->happy_lock);
2211
2212         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2213                 free_irq(dev->irq, dev);
2214         return res;
2215 }
2216
2217 static int happy_meal_close(struct net_device *dev)
2218 {
2219         struct happy_meal *hp = dev->priv;
2220
2221         spin_lock_irq(&hp->happy_lock);
2222         happy_meal_stop(hp, hp->gregs);
2223         happy_meal_clean_rings(hp);
2224
2225         /* If auto-negotiation timer is running, kill it. */
2226         del_timer(&hp->happy_timer);
2227
2228         spin_unlock_irq(&hp->happy_lock);
2229
2230         /* On Quattro QFE cards, all hme interrupts are concentrated
2231          * into a single source which we register handling at probe
2232          * time and never unregister.
2233          */
2234         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2235                 free_irq(dev->irq, dev);
2236
2237         return 0;
2238 }
2239
2240 #ifdef SXDEBUG
2241 #define SXD(x) printk x
2242 #else
2243 #define SXD(x)
2244 #endif
2245
2246 static void happy_meal_tx_timeout(struct net_device *dev)
2247 {
2248         struct happy_meal *hp = dev->priv;
2249
2250         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2251         tx_dump_log();
2252         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2253                 hme_read32(hp, hp->gregs + GREG_STAT),
2254                 hme_read32(hp, hp->etxregs + ETX_CFG),
2255                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2256
2257         spin_lock_irq(&hp->happy_lock);
2258         happy_meal_init(hp);
2259         spin_unlock_irq(&hp->happy_lock);
2260
2261         netif_wake_queue(dev);
2262 }
2263
2264 static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
2265 {
2266         struct happy_meal *hp = dev->priv;
2267         int entry;
2268         u32 tx_flags;
2269
2270         tx_flags = TXFLAG_OWN;
2271         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2272                 u32 csum_start_off, csum_stuff_off;
2273
2274                 csum_start_off = (u32) (skb->h.raw - skb->data);
2275                 csum_stuff_off = (u32) ((skb->h.raw + skb->csum) - skb->data);
2276
2277                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2278                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2279                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2280         }
2281
2282         spin_lock_irq(&hp->happy_lock);
2283
2284         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2285                 netif_stop_queue(dev);
2286                 spin_unlock_irq(&hp->happy_lock);
2287                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2288                        dev->name);
2289                 return 1;
2290         }
2291
2292         entry = hp->tx_new;
2293         SXD(("SX<l[%d]e[%d]>", len, entry));
2294         hp->tx_skbs[entry] = skb;
2295
2296         if (skb_shinfo(skb)->nr_frags == 0) {
2297                 u32 mapping, len;
2298
2299                 len = skb->len;
2300                 mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
2301                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2302                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2303                               (tx_flags | (len & TXFLAG_SIZE)),
2304                               mapping);
2305                 entry = NEXT_TX(entry);
2306         } else {
2307                 u32 first_len, first_mapping;
2308                 int frag, first_entry = entry;
2309
2310                 /* We must give this initial chunk to the device last.
2311                  * Otherwise we could race with the device.
2312                  */
2313                 first_len = skb_headlen(skb);
2314                 first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
2315                 entry = NEXT_TX(entry);
2316
2317                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2318                         skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2319                         u32 len, mapping, this_txflags;
2320
2321                         len = this_frag->size;
2322                         mapping = hme_dma_map(hp,
2323                                               ((void *) page_address(this_frag->page) +
2324                                                this_frag->page_offset),
2325                                               len, DMA_TODEVICE);
2326                         this_txflags = tx_flags;
2327                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2328                                 this_txflags |= TXFLAG_EOP;
2329                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2330                                       (this_txflags | (len & TXFLAG_SIZE)),
2331                                       mapping);
2332                         entry = NEXT_TX(entry);
2333                 }
2334                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2335                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2336                               first_mapping);
2337         }
2338
2339         hp->tx_new = entry;
2340
2341         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2342                 netif_stop_queue(dev);
2343
2344         /* Get it going. */
2345         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2346
2347         spin_unlock_irq(&hp->happy_lock);
2348
2349         dev->trans_start = jiffies;
2350
2351         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2352         return 0;
2353 }
2354
2355 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2356 {
2357         struct happy_meal *hp = dev->priv;
2358
2359         spin_lock_irq(&hp->happy_lock);
2360         happy_meal_get_counters(hp, hp->bigmacregs);
2361         spin_unlock_irq(&hp->happy_lock);
2362
2363         return &hp->net_stats;
2364 }
2365
2366 static void happy_meal_set_multicast(struct net_device *dev)
2367 {
2368         struct happy_meal *hp = dev->priv;
2369         void __iomem *bregs = hp->bigmacregs;
2370         struct dev_mc_list *dmi = dev->mc_list;
2371         char *addrs;
2372         int i;
2373         u32 crc;
2374
2375         spin_lock_irq(&hp->happy_lock);
2376
2377         netif_stop_queue(dev);
2378
2379         if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
2380                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2381                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2382                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2383                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2384         } else if (dev->flags & IFF_PROMISC) {
2385                 hme_write32(hp, bregs + BMAC_RXCFG,
2386                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2387         } else {
2388                 u16 hash_table[4];
2389
2390                 for (i = 0; i < 4; i++)
2391                         hash_table[i] = 0;
2392
2393                 for (i = 0; i < dev->mc_count; i++) {
2394                         addrs = dmi->dmi_addr;
2395                         dmi = dmi->next;
2396
2397                         if (!(*addrs & 1))
2398                                 continue;
2399
2400                         crc = ether_crc_le(6, addrs);
2401                         crc >>= 26;
2402                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2403                 }
2404                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2405                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2406                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2407                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2408         }
2409
2410         netif_wake_queue(dev);
2411
2412         spin_unlock_irq(&hp->happy_lock);
2413 }
2414
2415 /* Ethtool support... */
2416 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2417 {
2418         struct happy_meal *hp = dev->priv;
2419
2420         cmd->supported =
2421                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2422                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2423                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2424
2425         /* XXX hardcoded stuff for now */
2426         cmd->port = PORT_TP; /* XXX no MII support */
2427         cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2428         cmd->phy_address = 0; /* XXX fixed PHYAD */
2429
2430         /* Record PHY settings. */
2431         spin_lock_irq(&hp->happy_lock);
2432         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2433         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2434         spin_unlock_irq(&hp->happy_lock);
2435
2436         if (hp->sw_bmcr & BMCR_ANENABLE) {
2437                 cmd->autoneg = AUTONEG_ENABLE;
2438                 cmd->speed =
2439                         (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2440                         SPEED_100 : SPEED_10;
2441                 if (cmd->speed == SPEED_100)
2442                         cmd->duplex =
2443                                 (hp->sw_lpa & (LPA_100FULL)) ?
2444                                 DUPLEX_FULL : DUPLEX_HALF;
2445                 else
2446                         cmd->duplex =
2447                                 (hp->sw_lpa & (LPA_10FULL)) ?
2448                                 DUPLEX_FULL : DUPLEX_HALF;
2449         } else {
2450                 cmd->autoneg = AUTONEG_DISABLE;
2451                 cmd->speed =
2452                         (hp->sw_bmcr & BMCR_SPEED100) ?
2453                         SPEED_100 : SPEED_10;
2454                 cmd->duplex =
2455                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2456                         DUPLEX_FULL : DUPLEX_HALF;
2457         }
2458         return 0;
2459 }
2460
2461 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2462 {
2463         struct happy_meal *hp = dev->priv;
2464
2465         /* Verify the settings we care about. */
2466         if (cmd->autoneg != AUTONEG_ENABLE &&
2467             cmd->autoneg != AUTONEG_DISABLE)
2468                 return -EINVAL;
2469         if (cmd->autoneg == AUTONEG_DISABLE &&
2470             ((cmd->speed != SPEED_100 &&
2471               cmd->speed != SPEED_10) ||
2472              (cmd->duplex != DUPLEX_HALF &&
2473               cmd->duplex != DUPLEX_FULL)))
2474                 return -EINVAL;
2475
2476         /* Ok, do it to it. */
2477         spin_lock_irq(&hp->happy_lock);
2478         del_timer(&hp->happy_timer);
2479         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2480         spin_unlock_irq(&hp->happy_lock);
2481
2482         return 0;
2483 }
2484
2485 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2486 {
2487         struct happy_meal *hp = dev->priv;
2488
2489         strcpy(info->driver, "sunhme");
2490         strcpy(info->version, "2.02");
2491         if (hp->happy_flags & HFLAG_PCI) {
2492                 struct pci_dev *pdev = hp->happy_dev;
2493                 strcpy(info->bus_info, pci_name(pdev));
2494         }
2495 #ifdef CONFIG_SBUS
2496         else {
2497                 struct sbus_dev *sdev = hp->happy_dev;
2498                 sprintf(info->bus_info, "SBUS:%d",
2499                         sdev->slot);
2500         }
2501 #endif
2502 }
2503
2504 static u32 hme_get_link(struct net_device *dev)
2505 {
2506         struct happy_meal *hp = dev->priv;
2507
2508         spin_lock_irq(&hp->happy_lock);
2509         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2510         spin_unlock_irq(&hp->happy_lock);
2511
2512         return (hp->sw_bmsr & BMSR_LSTATUS);
2513 }
2514
2515 static const struct ethtool_ops hme_ethtool_ops = {
2516         .get_settings           = hme_get_settings,
2517         .set_settings           = hme_set_settings,
2518         .get_drvinfo            = hme_get_drvinfo,
2519         .get_link               = hme_get_link,
2520 };
2521
2522 static int hme_version_printed;
2523
2524 #ifdef CONFIG_SBUS
2525 void __devinit quattro_get_ranges(struct quattro *qp)
2526 {
2527         struct sbus_dev *sdev = qp->quattro_dev;
2528         int err;
2529
2530         err = prom_getproperty(sdev->prom_node,
2531                                "ranges",
2532                                (char *)&qp->ranges[0],
2533                                sizeof(qp->ranges));
2534         if (err == 0 || err == -1) {
2535                 qp->nranges = 0;
2536                 return;
2537         }
2538         qp->nranges = (err / sizeof(struct linux_prom_ranges));
2539 }
2540
2541 static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
2542 {
2543         struct sbus_dev *sdev = hp->happy_dev;
2544         int rng;
2545
2546         for (rng = 0; rng < qp->nranges; rng++) {
2547                 struct linux_prom_ranges *rngp = &qp->ranges[rng];
2548                 int reg;
2549
2550                 for (reg = 0; reg < 5; reg++) {
2551                         if (sdev->reg_addrs[reg].which_io ==
2552                             rngp->ot_child_space)
2553                                 break;
2554                 }
2555                 if (reg == 5)
2556                         continue;
2557
2558                 sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
2559                 sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
2560         }
2561 }
2562
2563 /* Given a happy meal sbus device, find it's quattro parent.
2564  * If none exist, allocate and return a new one.
2565  *
2566  * Return NULL on failure.
2567  */
2568 static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
2569 {
2570         struct sbus_dev *sdev;
2571         struct quattro *qp;
2572         int i;
2573
2574         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2575                 for (i = 0, sdev = qp->quattro_dev;
2576                      (sdev != NULL) && (i < 4);
2577                      sdev = sdev->next, i++) {
2578                         if (sdev == goal_sdev)
2579                                 return qp;
2580                 }
2581         }
2582
2583         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2584         if (qp != NULL) {
2585                 int i;
2586
2587                 for (i = 0; i < 4; i++)
2588                         qp->happy_meals[i] = NULL;
2589
2590                 qp->quattro_dev = goal_sdev;
2591                 qp->next = qfe_sbus_list;
2592                 qfe_sbus_list = qp;
2593                 quattro_get_ranges(qp);
2594         }
2595         return qp;
2596 }
2597
2598 /* After all quattro cards have been probed, we call these functions
2599  * to register the IRQ handlers.
2600  */
2601 static void __init quattro_sbus_register_irqs(void)
2602 {
2603         struct quattro *qp;
2604
2605         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2606                 struct sbus_dev *sdev = qp->quattro_dev;
2607                 int err;
2608
2609                 err = request_irq(sdev->irqs[0],
2610                                   quattro_sbus_interrupt,
2611                                   IRQF_SHARED, "Quattro",
2612                                   qp);
2613                 if (err != 0) {
2614                         printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
2615                         panic("QFE request irq");
2616                 }
2617         }
2618 }
2619
2620 static void quattro_sbus_free_irqs(void)
2621 {
2622         struct quattro *qp;
2623
2624         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2625                 struct sbus_dev *sdev = qp->quattro_dev;
2626
2627                 free_irq(sdev->irqs[0], qp);
2628         }
2629 }
2630 #endif /* CONFIG_SBUS */
2631
2632 #ifdef CONFIG_PCI
2633 static struct quattro * __init quattro_pci_find(struct pci_dev *pdev)
2634 {
2635         struct pci_dev *bdev = pdev->bus->self;
2636         struct quattro *qp;
2637
2638         if (!bdev) return NULL;
2639         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2640                 struct pci_dev *qpdev = qp->quattro_dev;
2641
2642                 if (qpdev == bdev)
2643                         return qp;
2644         }
2645         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2646         if (qp != NULL) {
2647                 int i;
2648
2649                 for (i = 0; i < 4; i++)
2650                         qp->happy_meals[i] = NULL;
2651
2652                 qp->quattro_dev = bdev;
2653                 qp->next = qfe_pci_list;
2654                 qfe_pci_list = qp;
2655
2656                 /* No range tricks necessary on PCI. */
2657                 qp->nranges = 0;
2658         }
2659         return qp;
2660 }
2661 #endif /* CONFIG_PCI */
2662
2663 #ifdef CONFIG_SBUS
2664 static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
2665 {
2666         struct device_node *dp = sdev->ofdev.node;
2667         struct quattro *qp = NULL;
2668         struct happy_meal *hp;
2669         struct net_device *dev;
2670         int i, qfe_slot = -1;
2671         int err = -ENODEV;
2672
2673         if (is_qfe) {
2674                 qp = quattro_sbus_find(sdev);
2675                 if (qp == NULL)
2676                         goto err_out;
2677                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2678                         if (qp->happy_meals[qfe_slot] == NULL)
2679                                 break;
2680                 if (qfe_slot == 4)
2681                         goto err_out;
2682         }
2683
2684         err = -ENOMEM;
2685         dev = alloc_etherdev(sizeof(struct happy_meal));
2686         if (!dev)
2687                 goto err_out;
2688         SET_MODULE_OWNER(dev);
2689         SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
2690
2691         if (hme_version_printed++ == 0)
2692                 printk(KERN_INFO "%s", version);
2693
2694         /* If user did not specify a MAC address specifically, use
2695          * the Quattro local-mac-address property...
2696          */
2697         for (i = 0; i < 6; i++) {
2698                 if (macaddr[i] != 0)
2699                         break;
2700         }
2701         if (i < 6) { /* a mac address was given */
2702                 for (i = 0; i < 6; i++)
2703                         dev->dev_addr[i] = macaddr[i];
2704                 macaddr[5]++;
2705         } else {
2706                 unsigned char *addr;
2707                 int len;
2708
2709                 addr = of_get_property(dp, "local-mac-address", &len);
2710
2711                 if (qfe_slot != -1 && addr && len == 6)
2712                         memcpy(dev->dev_addr, addr, 6);
2713                 else
2714                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
2715         }
2716
2717         hp = dev->priv;
2718
2719         hp->happy_dev = sdev;
2720
2721         spin_lock_init(&hp->happy_lock);
2722
2723         err = -ENODEV;
2724         if (sdev->num_registers != 5) {
2725                 printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
2726                        sdev->num_registers);
2727                 goto err_out_free_netdev;
2728         }
2729
2730         if (qp != NULL) {
2731                 hp->qfe_parent = qp;
2732                 hp->qfe_ent = qfe_slot;
2733                 qp->happy_meals[qfe_slot] = dev;
2734                 quattro_apply_ranges(qp, hp);
2735         }
2736
2737         hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
2738                                  GREG_REG_SIZE, "HME Global Regs");
2739         if (!hp->gregs) {
2740                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2741                 goto err_out_free_netdev;
2742         }
2743
2744         hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
2745                                    ETX_REG_SIZE, "HME TX Regs");
2746         if (!hp->etxregs) {
2747                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2748                 goto err_out_iounmap;
2749         }
2750
2751         hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
2752                                    ERX_REG_SIZE, "HME RX Regs");
2753         if (!hp->erxregs) {
2754                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2755                 goto err_out_iounmap;
2756         }
2757
2758         hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
2759                                       BMAC_REG_SIZE, "HME BIGMAC Regs");
2760         if (!hp->bigmacregs) {
2761                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2762                 goto err_out_iounmap;
2763         }
2764
2765         hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
2766                                    TCVR_REG_SIZE, "HME Tranceiver Regs");
2767         if (!hp->tcvregs) {
2768                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2769                 goto err_out_iounmap;
2770         }
2771
2772         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2773         if (hp->hm_revision == 0xff)
2774                 hp->hm_revision = 0xa0;
2775
2776         /* Now enable the feature flags we can. */
2777         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2778                 hp->happy_flags = HFLAG_20_21;
2779         else if (hp->hm_revision != 0xa0)
2780                 hp->happy_flags = HFLAG_NOT_A0;
2781
2782         if (qp != NULL)
2783                 hp->happy_flags |= HFLAG_QUATTRO;
2784
2785         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2786         hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
2787                                                  "burst-sizes", 0x00);
2788
2789         hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
2790                                                 PAGE_SIZE,
2791                                                 &hp->hblock_dvma);
2792         err = -ENOMEM;
2793         if (!hp->happy_block) {
2794                 printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
2795                 goto err_out_iounmap;
2796         }
2797
2798         /* Force check of the link first time we are brought up. */
2799         hp->linkcheck = 0;
2800
2801         /* Force timer state to 'asleep' with count of zero. */
2802         hp->timer_state = asleep;
2803         hp->timer_ticks = 0;
2804
2805         init_timer(&hp->happy_timer);
2806
2807         hp->dev = dev;
2808         dev->open = &happy_meal_open;
2809         dev->stop = &happy_meal_close;
2810         dev->hard_start_xmit = &happy_meal_start_xmit;
2811         dev->get_stats = &happy_meal_get_stats;
2812         dev->set_multicast_list = &happy_meal_set_multicast;
2813         dev->tx_timeout = &happy_meal_tx_timeout;
2814         dev->watchdog_timeo = 5*HZ;
2815         dev->ethtool_ops = &hme_ethtool_ops;
2816
2817         /* Happy Meal can do it all... except VLAN. */
2818         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
2819
2820         dev->irq = sdev->irqs[0];
2821
2822 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2823         /* Hook up PCI register/dma accessors. */
2824         hp->read_desc32 = sbus_hme_read_desc32;
2825         hp->write_txd = sbus_hme_write_txd;
2826         hp->write_rxd = sbus_hme_write_rxd;
2827         hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
2828         hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
2829         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
2830                 sbus_dma_sync_single_for_cpu;
2831         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
2832                 sbus_dma_sync_single_for_device;
2833         hp->read32 = sbus_hme_read32;
2834         hp->write32 = sbus_hme_write32;
2835 #endif
2836
2837         /* Grrr, Happy Meal comes up by default not advertising
2838          * full duplex 100baseT capabilities, fix this.
2839          */
2840         spin_lock_irq(&hp->happy_lock);
2841         happy_meal_set_initial_advertisement(hp);
2842         spin_unlock_irq(&hp->happy_lock);
2843
2844         if (register_netdev(hp->dev)) {
2845                 printk(KERN_ERR "happymeal: Cannot register net device, "
2846                        "aborting.\n");
2847                 goto err_out_free_consistent;
2848         }
2849
2850         dev_set_drvdata(&sdev->ofdev.dev, hp);
2851
2852         if (qfe_slot != -1)
2853                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2854                        dev->name, qfe_slot);
2855         else
2856                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2857                        dev->name);
2858
2859         for (i = 0; i < 6; i++)
2860                 printk("%2.2x%c",
2861                        dev->dev_addr[i], i == 5 ? ' ' : ':');
2862         printk("\n");
2863
2864         return 0;
2865
2866 err_out_free_consistent:
2867         sbus_free_consistent(hp->happy_dev,
2868                              PAGE_SIZE,
2869                              hp->happy_block,
2870                              hp->hblock_dvma);
2871
2872 err_out_iounmap:
2873         if (hp->gregs)
2874                 sbus_iounmap(hp->gregs, GREG_REG_SIZE);
2875         if (hp->etxregs)
2876                 sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
2877         if (hp->erxregs)
2878                 sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
2879         if (hp->bigmacregs)
2880                 sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
2881         if (hp->tcvregs)
2882                 sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
2883
2884 err_out_free_netdev:
2885         free_netdev(dev);
2886
2887 err_out:
2888         return err;
2889 }
2890 #endif
2891
2892 #ifdef CONFIG_PCI
2893 #ifndef CONFIG_SPARC
2894 static int is_quattro_p(struct pci_dev *pdev)
2895 {
2896         struct pci_dev *busdev = pdev->bus->self;
2897         struct list_head *tmp;
2898         int n_hmes;
2899
2900         if (busdev == NULL ||
2901             busdev->vendor != PCI_VENDOR_ID_DEC ||
2902             busdev->device != PCI_DEVICE_ID_DEC_21153)
2903                 return 0;
2904
2905         n_hmes = 0;
2906         tmp = pdev->bus->devices.next;
2907         while (tmp != &pdev->bus->devices) {
2908                 struct pci_dev *this_pdev = pci_dev_b(tmp);
2909
2910                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2911                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2912                         n_hmes++;
2913
2914                 tmp = tmp->next;
2915         }
2916
2917         if (n_hmes != 4)
2918                 return 0;
2919
2920         return 1;
2921 }
2922
2923 /* Fetch MAC address from vital product data of PCI ROM. */
2924 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2925 {
2926         int this_offset;
2927
2928         for (this_offset = 0x20; this_offset < len; this_offset++) {
2929                 void __iomem *p = rom_base + this_offset;
2930
2931                 if (readb(p + 0) != 0x90 ||
2932                     readb(p + 1) != 0x00 ||
2933                     readb(p + 2) != 0x09 ||
2934                     readb(p + 3) != 0x4e ||
2935                     readb(p + 4) != 0x41 ||
2936                     readb(p + 5) != 0x06)
2937                         continue;
2938
2939                 this_offset += 6;
2940                 p += 6;
2941
2942                 if (index == 0) {
2943                         int i;
2944
2945                         for (i = 0; i < 6; i++)
2946                                 dev_addr[i] = readb(p + i);
2947                         return 1;
2948                 }
2949                 index--;
2950         }
2951         return 0;
2952 }
2953
2954 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2955 {
2956         size_t size;
2957         void __iomem *p = pci_map_rom(pdev, &size);
2958
2959         if (p) {
2960                 int index = 0;
2961                 int found;
2962
2963                 if (is_quattro_p(pdev))
2964                         index = PCI_SLOT(pdev->devfn);
2965
2966                 found = readb(p) == 0x55 &&
2967                         readb(p + 1) == 0xaa &&
2968                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2969                 pci_unmap_rom(pdev, p);
2970                 if (found)
2971                         return;
2972         }
2973
2974         /* Sun MAC prefix then 3 random bytes. */
2975         dev_addr[0] = 0x08;
2976         dev_addr[1] = 0x00;
2977         dev_addr[2] = 0x20;
2978         get_random_bytes(&dev_addr[3], 3);
2979         return;
2980 }
2981 #endif /* !(CONFIG_SPARC) */
2982
2983 static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
2984                                           const struct pci_device_id *ent)
2985 {
2986         struct quattro *qp = NULL;
2987 #ifdef CONFIG_SPARC
2988         struct pcidev_cookie *pcp;
2989 #endif
2990         struct happy_meal *hp;
2991         struct net_device *dev;
2992         void __iomem *hpreg_base;
2993         unsigned long hpreg_res;
2994         int i, qfe_slot = -1;
2995         char prom_name[64];
2996         int err;
2997
2998         /* Now make sure pci_dev cookie is there. */
2999 #ifdef CONFIG_SPARC
3000         pcp = pdev->sysdata;
3001         if (pcp == NULL) {
3002                 printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n");
3003                 return -ENODEV;
3004         }
3005
3006         strcpy(prom_name, pcp->prom_node->name);
3007 #else
3008         if (is_quattro_p(pdev))
3009                 strcpy(prom_name, "SUNW,qfe");
3010         else
3011                 strcpy(prom_name, "SUNW,hme");
3012 #endif
3013
3014         err = -ENODEV;
3015         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3016                 qp = quattro_pci_find(pdev);
3017                 if (qp == NULL)
3018                         goto err_out;
3019                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3020                         if (qp->happy_meals[qfe_slot] == NULL)
3021                                 break;
3022                 if (qfe_slot == 4)
3023                         goto err_out;
3024         }
3025
3026         dev = alloc_etherdev(sizeof(struct happy_meal));
3027         err = -ENOMEM;
3028         if (!dev)
3029                 goto err_out;
3030         SET_MODULE_OWNER(dev);
3031         SET_NETDEV_DEV(dev, &pdev->dev);
3032
3033         if (hme_version_printed++ == 0)
3034                 printk(KERN_INFO "%s", version);
3035
3036         dev->base_addr = (long) pdev;
3037
3038         hp = (struct happy_meal *)dev->priv;
3039         memset(hp, 0, sizeof(*hp));
3040
3041         hp->happy_dev = pdev;
3042
3043         spin_lock_init(&hp->happy_lock);
3044
3045         if (qp != NULL) {
3046                 hp->qfe_parent = qp;
3047                 hp->qfe_ent = qfe_slot;
3048                 qp->happy_meals[qfe_slot] = dev;
3049         }
3050
3051         hpreg_res = pci_resource_start(pdev, 0);
3052         err = -ENODEV;
3053         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3054                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3055                 goto err_out_clear_quattro;
3056         }
3057         if (pci_request_regions(pdev, DRV_NAME)) {
3058                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3059                        "aborting.\n");
3060                 goto err_out_clear_quattro;
3061         }
3062
3063         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
3064                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3065                 goto err_out_free_res;
3066         }
3067
3068         for (i = 0; i < 6; i++) {
3069                 if (macaddr[i] != 0)
3070                         break;
3071         }
3072         if (i < 6) { /* a mac address was given */
3073                 for (i = 0; i < 6; i++)
3074                         dev->dev_addr[i] = macaddr[i];
3075                 macaddr[5]++;
3076         } else {
3077 #ifdef CONFIG_SPARC
3078                 unsigned char *addr;
3079                 int len;
3080
3081                 if (qfe_slot != -1 &&
3082                     (addr = of_get_property(pcp->prom_node,
3083                                             "local-mac-address", &len)) != NULL
3084                     && len == 6) {
3085                         memcpy(dev->dev_addr, addr, 6);
3086                 } else {
3087                         memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
3088                 }
3089 #else
3090                 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3091 #endif
3092         }
3093
3094         /* Layout registers. */
3095         hp->gregs      = (hpreg_base + 0x0000UL);
3096         hp->etxregs    = (hpreg_base + 0x2000UL);
3097         hp->erxregs    = (hpreg_base + 0x4000UL);
3098         hp->bigmacregs = (hpreg_base + 0x6000UL);
3099         hp->tcvregs    = (hpreg_base + 0x7000UL);
3100
3101 #ifdef CONFIG_SPARC
3102         hp->hm_revision = of_getintprop_default(pcp->prom_node, "hm-rev", 0xff);
3103         if (hp->hm_revision == 0xff) {
3104                 unsigned char prev;
3105
3106                 pci_read_config_byte(pdev, PCI_REVISION_ID, &prev);
3107                 hp->hm_revision = 0xc0 | (prev & 0x0f);
3108         }
3109 #else
3110         /* works with this on non-sparc hosts */
3111         hp->hm_revision = 0x20;
3112 #endif
3113
3114         /* Now enable the feature flags we can. */
3115         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3116                 hp->happy_flags = HFLAG_20_21;
3117         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3118                 hp->happy_flags = HFLAG_NOT_A0;
3119
3120         if (qp != NULL)
3121                 hp->happy_flags |= HFLAG_QUATTRO;
3122
3123         /* And of course, indicate this is PCI. */
3124         hp->happy_flags |= HFLAG_PCI;
3125
3126 #ifdef CONFIG_SPARC
3127         /* Assume PCI happy meals can handle all burst sizes. */
3128         hp->happy_bursts = DMA_BURSTBITS;
3129 #endif
3130
3131         hp->happy_block = (struct hmeal_init_block *)
3132                 pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
3133
3134         err = -ENODEV;
3135         if (!hp->happy_block) {
3136                 printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
3137                 goto err_out_iounmap;
3138         }
3139
3140         hp->linkcheck = 0;
3141         hp->timer_state = asleep;
3142         hp->timer_ticks = 0;
3143
3144         init_timer(&hp->happy_timer);
3145
3146         hp->dev = dev;
3147         dev->open = &happy_meal_open;
3148         dev->stop = &happy_meal_close;
3149         dev->hard_start_xmit = &happy_meal_start_xmit;
3150         dev->get_stats = &happy_meal_get_stats;
3151         dev->set_multicast_list = &happy_meal_set_multicast;
3152         dev->tx_timeout = &happy_meal_tx_timeout;
3153         dev->watchdog_timeo = 5*HZ;
3154         dev->ethtool_ops = &hme_ethtool_ops;
3155         dev->irq = pdev->irq;
3156         dev->dma = 0;
3157
3158         /* Happy Meal can do it all... */
3159         dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
3160
3161 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3162         /* Hook up PCI register/dma accessors. */
3163         hp->read_desc32 = pci_hme_read_desc32;
3164         hp->write_txd = pci_hme_write_txd;
3165         hp->write_rxd = pci_hme_write_rxd;
3166         hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
3167         hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
3168         hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
3169                 pci_dma_sync_single_for_cpu;
3170         hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
3171                 pci_dma_sync_single_for_device;
3172         hp->read32 = pci_hme_read32;
3173         hp->write32 = pci_hme_write32;
3174 #endif
3175
3176         /* Grrr, Happy Meal comes up by default not advertising
3177          * full duplex 100baseT capabilities, fix this.
3178          */
3179         spin_lock_irq(&hp->happy_lock);
3180         happy_meal_set_initial_advertisement(hp);
3181         spin_unlock_irq(&hp->happy_lock);
3182
3183         if (register_netdev(hp->dev)) {
3184                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3185                        "aborting.\n");
3186                 goto err_out_iounmap;
3187         }
3188
3189         dev_set_drvdata(&pdev->dev, hp);
3190
3191         if (!qfe_slot) {
3192                 struct pci_dev *qpdev = qp->quattro_dev;
3193
3194                 prom_name[0] = 0;
3195                 if (!strncmp(dev->name, "eth", 3)) {
3196                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3197                         sprintf(prom_name, "-%d", i + 3);
3198                 }
3199                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3200                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3201                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3202                         printk("DEC 21153 PCI Bridge\n");
3203                 else
3204                         printk("unknown bridge %04x.%04x\n",
3205                                 qpdev->vendor, qpdev->device);
3206         }
3207
3208         if (qfe_slot != -1)
3209                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3210                        dev->name, qfe_slot);
3211         else
3212                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3213                        dev->name);
3214
3215         for (i = 0; i < 6; i++)
3216                 printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':');
3217
3218         printk("\n");
3219
3220         return 0;
3221
3222 err_out_iounmap:
3223         iounmap(hp->gregs);
3224
3225 err_out_free_res:
3226         pci_release_regions(pdev);
3227
3228 err_out_clear_quattro:
3229         if (qp != NULL)
3230                 qp->happy_meals[qfe_slot] = NULL;
3231
3232         free_netdev(dev);
3233
3234 err_out:
3235         return err;
3236 }
3237
3238 static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
3239 {
3240         struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
3241         struct net_device *net_dev = hp->dev;
3242
3243         unregister_netdev(net_dev);
3244
3245         pci_free_consistent(hp->happy_dev,
3246                             PAGE_SIZE,
3247                             hp->happy_block,
3248                             hp->hblock_dvma);
3249         iounmap(hp->gregs);
3250         pci_release_regions(hp->happy_dev);
3251
3252         free_netdev(net_dev);
3253
3254         dev_set_drvdata(&pdev->dev, NULL);
3255 }
3256
3257 static struct pci_device_id happymeal_pci_ids[] = {
3258         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3259         { }                     /* Terminating entry */
3260 };
3261
3262 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3263
3264 static struct pci_driver hme_pci_driver = {
3265         .name           = "hme",
3266         .id_table       = happymeal_pci_ids,
3267         .probe          = happy_meal_pci_probe,
3268         .remove         = __devexit_p(happy_meal_pci_remove),
3269 };
3270
3271 static int __init happy_meal_pci_init(void)
3272 {
3273         return pci_register_driver(&hme_pci_driver);
3274 }
3275
3276 static void happy_meal_pci_exit(void)
3277 {
3278         pci_unregister_driver(&hme_pci_driver);
3279
3280         while (qfe_pci_list) {
3281                 struct quattro *qfe = qfe_pci_list;
3282                 struct quattro *next = qfe->next;
3283
3284                 kfree(qfe);
3285
3286                 qfe_pci_list = next;
3287         }
3288 }
3289
3290 #endif
3291
3292 #ifdef CONFIG_SBUS
3293 static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
3294 {
3295         struct sbus_dev *sdev = to_sbus_device(&dev->dev);
3296         struct device_node *dp = dev->node;
3297         char *model = of_get_property(dp, "model", NULL);
3298         int is_qfe = (match->data != NULL);
3299
3300         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3301                 is_qfe = 1;
3302
3303         return happy_meal_sbus_probe_one(sdev, is_qfe);
3304 }
3305
3306 static int __devexit hme_sbus_remove(struct of_device *dev)
3307 {
3308         struct happy_meal *hp = dev_get_drvdata(&dev->dev);
3309         struct net_device *net_dev = hp->dev;
3310
3311         unregister_netdevice(net_dev);
3312
3313         /* XXX qfe parent interrupt... */
3314
3315         sbus_iounmap(hp->gregs, GREG_REG_SIZE);
3316         sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
3317         sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
3318         sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
3319         sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
3320         sbus_free_consistent(hp->happy_dev,
3321                              PAGE_SIZE,
3322                              hp->happy_block,
3323                              hp->hblock_dvma);
3324
3325         free_netdev(net_dev);
3326
3327         dev_set_drvdata(&dev->dev, NULL);
3328
3329         return 0;
3330 }
3331
3332 static struct of_device_id hme_sbus_match[] = {
3333         {
3334                 .name = "SUNW,hme",
3335         },
3336         {
3337                 .name = "SUNW,qfe",
3338                 .data = (void *) 1,
3339         },
3340         {
3341                 .name = "qfe",
3342                 .data = (void *) 1,
3343         },
3344         {},
3345 };
3346
3347 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3348
3349 static struct of_platform_driver hme_sbus_driver = {
3350         .name           = "hme",
3351         .match_table    = hme_sbus_match,
3352         .probe          = hme_sbus_probe,
3353         .remove         = __devexit_p(hme_sbus_remove),
3354 };
3355
3356 static int __init happy_meal_sbus_init(void)
3357 {
3358         int err;
3359
3360         err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
3361         if (!err)
3362                 quattro_sbus_register_irqs();
3363
3364         return err;
3365 }
3366
3367 static void happy_meal_sbus_exit(void)
3368 {
3369         of_unregister_driver(&hme_sbus_driver);
3370         quattro_sbus_free_irqs();
3371
3372         while (qfe_sbus_list) {
3373                 struct quattro *qfe = qfe_sbus_list;
3374                 struct quattro *next = qfe->next;
3375
3376                 kfree(qfe);
3377
3378                 qfe_sbus_list = next;
3379         }
3380 }
3381 #endif
3382
3383 static int __init happy_meal_probe(void)
3384 {
3385         int err = 0;
3386
3387 #ifdef CONFIG_SBUS
3388         err = happy_meal_sbus_init();
3389 #endif
3390 #ifdef CONFIG_PCI
3391         if (!err) {
3392                 err = happy_meal_pci_init();
3393 #ifdef CONFIG_SBUS
3394                 if (err)
3395                         happy_meal_sbus_exit();
3396 #endif
3397         }
3398 #endif
3399
3400         return err;
3401 }
3402
3403
3404 static void __exit happy_meal_exit(void)
3405 {
3406 #ifdef CONFIG_SBUS
3407         happy_meal_sbus_exit();
3408 #endif
3409 #ifdef CONFIG_PCI
3410         happy_meal_pci_exit();
3411 #endif
3412 }
3413
3414 module_init(happy_meal_probe);
3415 module_exit(happy_meal_exit);