Merge branch 'docs-move' of git://git.kernel.org/pub/scm/linux/kernel/git/rdunlap...
[pandora-kernel.git] / drivers / net / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
23
24 /**************************************************************************
25  *
26  * Configurable values
27  *
28  **************************************************************************
29  */
30
31 /* This is set to 16 for a good reason.  In summary, if larger than
32  * 16, the descriptor cache holds more than a default socket
33  * buffer's worth of packets (for UDP we can only have at most one
34  * socket buffer's worth outstanding).  This combined with the fact
35  * that we only get 1 TX event per descriptor cache means the NIC
36  * goes idle.
37  */
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
40
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
43
44 /* If EFX_MAX_INT_ERRORS internal errors occur within
45  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
46  * disable it.
47  */
48 #define EFX_INT_ERROR_EXPIRE 3600
49 #define EFX_MAX_INT_ERRORS 5
50
51 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
52  */
53 #define EFX_FLUSH_INTERVAL 10
54 #define EFX_FLUSH_POLL_COUNT 100
55
56 /* Size and alignment of special buffers (4KB) */
57 #define EFX_BUF_SIZE 4096
58
59 /* Depth of RX flush request fifo */
60 #define EFX_RX_FLUSH_COUNT 4
61
62 /* Generated event code for efx_generate_test_event() */
63 #define EFX_CHANNEL_MAGIC_TEST(_channel)        \
64         (0x00010100 + (_channel)->channel)
65
66 /* Generated event code for efx_generate_fill_event() */
67 #define EFX_CHANNEL_MAGIC_FILL(_channel)        \
68         (0x00010200 + (_channel)->channel)
69
70 /**************************************************************************
71  *
72  * Solarstorm hardware access
73  *
74  **************************************************************************/
75
76 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
77                                      unsigned int index)
78 {
79         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
80                         value, index);
81 }
82
83 /* Read the current event from the event queue */
84 static inline efx_qword_t *efx_event(struct efx_channel *channel,
85                                      unsigned int index)
86 {
87         return ((efx_qword_t *) (channel->eventq.addr)) +
88                 (index & channel->eventq_mask);
89 }
90
91 /* See if an event is present
92  *
93  * We check both the high and low dword of the event for all ones.  We
94  * wrote all ones when we cleared the event, and no valid event can
95  * have all ones in either its high or low dwords.  This approach is
96  * robust against reordering.
97  *
98  * Note that using a single 64-bit comparison is incorrect; even
99  * though the CPU read will be atomic, the DMA write may not be.
100  */
101 static inline int efx_event_present(efx_qword_t *event)
102 {
103         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
104                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
105 }
106
107 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
108                                      const efx_oword_t *mask)
109 {
110         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
111                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
112 }
113
114 int efx_nic_test_registers(struct efx_nic *efx,
115                            const struct efx_nic_register_test *regs,
116                            size_t n_regs)
117 {
118         unsigned address = 0, i, j;
119         efx_oword_t mask, imask, original, reg, buf;
120
121         /* Falcon should be in loopback to isolate the XMAC from the PHY */
122         WARN_ON(!LOOPBACK_INTERNAL(efx));
123
124         for (i = 0; i < n_regs; ++i) {
125                 address = regs[i].address;
126                 mask = imask = regs[i].mask;
127                 EFX_INVERT_OWORD(imask);
128
129                 efx_reado(efx, &original, address);
130
131                 /* bit sweep on and off */
132                 for (j = 0; j < 128; j++) {
133                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
134                                 continue;
135
136                         /* Test this testable bit can be set in isolation */
137                         EFX_AND_OWORD(reg, original, mask);
138                         EFX_SET_OWORD32(reg, j, j, 1);
139
140                         efx_writeo(efx, &reg, address);
141                         efx_reado(efx, &buf, address);
142
143                         if (efx_masked_compare_oword(&reg, &buf, &mask))
144                                 goto fail;
145
146                         /* Test this testable bit can be cleared in isolation */
147                         EFX_OR_OWORD(reg, original, mask);
148                         EFX_SET_OWORD32(reg, j, j, 0);
149
150                         efx_writeo(efx, &reg, address);
151                         efx_reado(efx, &buf, address);
152
153                         if (efx_masked_compare_oword(&reg, &buf, &mask))
154                                 goto fail;
155                 }
156
157                 efx_writeo(efx, &original, address);
158         }
159
160         return 0;
161
162 fail:
163         netif_err(efx, hw, efx->net_dev,
164                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
165                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
166                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
167         return -EIO;
168 }
169
170 /**************************************************************************
171  *
172  * Special buffer handling
173  * Special buffers are used for event queues and the TX and RX
174  * descriptor rings.
175  *
176  *************************************************************************/
177
178 /*
179  * Initialise a special buffer
180  *
181  * This will define a buffer (previously allocated via
182  * efx_alloc_special_buffer()) in the buffer table, allowing
183  * it to be used for event queues, descriptor rings etc.
184  */
185 static void
186 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
187 {
188         efx_qword_t buf_desc;
189         int index;
190         dma_addr_t dma_addr;
191         int i;
192
193         EFX_BUG_ON_PARANOID(!buffer->addr);
194
195         /* Write buffer descriptors to NIC */
196         for (i = 0; i < buffer->entries; i++) {
197                 index = buffer->index + i;
198                 dma_addr = buffer->dma_addr + (i * 4096);
199                 netif_dbg(efx, probe, efx->net_dev,
200                           "mapping special buffer %d at %llx\n",
201                           index, (unsigned long long)dma_addr);
202                 EFX_POPULATE_QWORD_3(buf_desc,
203                                      FRF_AZ_BUF_ADR_REGION, 0,
204                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
205                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
206                 efx_write_buf_tbl(efx, &buf_desc, index);
207         }
208 }
209
210 /* Unmaps a buffer and clears the buffer table entries */
211 static void
212 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
213 {
214         efx_oword_t buf_tbl_upd;
215         unsigned int start = buffer->index;
216         unsigned int end = (buffer->index + buffer->entries - 1);
217
218         if (!buffer->entries)
219                 return;
220
221         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
222                   buffer->index, buffer->index + buffer->entries - 1);
223
224         EFX_POPULATE_OWORD_4(buf_tbl_upd,
225                              FRF_AZ_BUF_UPD_CMD, 0,
226                              FRF_AZ_BUF_CLR_CMD, 1,
227                              FRF_AZ_BUF_CLR_END_ID, end,
228                              FRF_AZ_BUF_CLR_START_ID, start);
229         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
230 }
231
232 /*
233  * Allocate a new special buffer
234  *
235  * This allocates memory for a new buffer, clears it and allocates a
236  * new buffer ID range.  It does not write into the buffer table.
237  *
238  * This call will allocate 4KB buffers, since 8KB buffers can't be
239  * used for event queues and descriptor rings.
240  */
241 static int efx_alloc_special_buffer(struct efx_nic *efx,
242                                     struct efx_special_buffer *buffer,
243                                     unsigned int len)
244 {
245         len = ALIGN(len, EFX_BUF_SIZE);
246
247         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
248                                           &buffer->dma_addr, GFP_KERNEL);
249         if (!buffer->addr)
250                 return -ENOMEM;
251         buffer->len = len;
252         buffer->entries = len / EFX_BUF_SIZE;
253         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
254
255         /* All zeros is a potentially valid event so memset to 0xff */
256         memset(buffer->addr, 0xff, len);
257
258         /* Select new buffer ID */
259         buffer->index = efx->next_buffer_table;
260         efx->next_buffer_table += buffer->entries;
261
262         netif_dbg(efx, probe, efx->net_dev,
263                   "allocating special buffers %d-%d at %llx+%x "
264                   "(virt %p phys %llx)\n", buffer->index,
265                   buffer->index + buffer->entries - 1,
266                   (u64)buffer->dma_addr, len,
267                   buffer->addr, (u64)virt_to_phys(buffer->addr));
268
269         return 0;
270 }
271
272 static void
273 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
274 {
275         if (!buffer->addr)
276                 return;
277
278         netif_dbg(efx, hw, efx->net_dev,
279                   "deallocating special buffers %d-%d at %llx+%x "
280                   "(virt %p phys %llx)\n", buffer->index,
281                   buffer->index + buffer->entries - 1,
282                   (u64)buffer->dma_addr, buffer->len,
283                   buffer->addr, (u64)virt_to_phys(buffer->addr));
284
285         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
286                           buffer->dma_addr);
287         buffer->addr = NULL;
288         buffer->entries = 0;
289 }
290
291 /**************************************************************************
292  *
293  * Generic buffer handling
294  * These buffers are used for interrupt status and MAC stats
295  *
296  **************************************************************************/
297
298 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
299                          unsigned int len)
300 {
301         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
302                                             &buffer->dma_addr);
303         if (!buffer->addr)
304                 return -ENOMEM;
305         buffer->len = len;
306         memset(buffer->addr, 0, len);
307         return 0;
308 }
309
310 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
311 {
312         if (buffer->addr) {
313                 pci_free_consistent(efx->pci_dev, buffer->len,
314                                     buffer->addr, buffer->dma_addr);
315                 buffer->addr = NULL;
316         }
317 }
318
319 /**************************************************************************
320  *
321  * TX path
322  *
323  **************************************************************************/
324
325 /* Returns a pointer to the specified transmit descriptor in the TX
326  * descriptor queue belonging to the specified channel.
327  */
328 static inline efx_qword_t *
329 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
330 {
331         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
332 }
333
334 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
335 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
336 {
337         unsigned write_ptr;
338         efx_dword_t reg;
339
340         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
341         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
342         efx_writed_page(tx_queue->efx, &reg,
343                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
344 }
345
346 /* Write pointer and first descriptor for TX descriptor ring */
347 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
348                                     const efx_qword_t *txd)
349 {
350         unsigned write_ptr;
351         efx_oword_t reg;
352
353         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
354         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
355
356         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
357         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
358                              FRF_AZ_TX_DESC_WPTR, write_ptr);
359         reg.qword[0] = *txd;
360         efx_writeo_page(tx_queue->efx, &reg,
361                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
362 }
363
364 static inline bool
365 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
366 {
367         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
368
369         if (empty_read_count == 0)
370                 return false;
371
372         tx_queue->empty_read_count = 0;
373         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
374 }
375
376 /* For each entry inserted into the software descriptor ring, create a
377  * descriptor in the hardware TX descriptor ring (in host memory), and
378  * write a doorbell.
379  */
380 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
381 {
382
383         struct efx_tx_buffer *buffer;
384         efx_qword_t *txd;
385         unsigned write_ptr;
386         unsigned old_write_count = tx_queue->write_count;
387
388         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
389
390         do {
391                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
392                 buffer = &tx_queue->buffer[write_ptr];
393                 txd = efx_tx_desc(tx_queue, write_ptr);
394                 ++tx_queue->write_count;
395
396                 /* Create TX descriptor ring entry */
397                 EFX_POPULATE_QWORD_4(*txd,
398                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
399                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
400                                      FSF_AZ_TX_KER_BUF_REGION, 0,
401                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
402         } while (tx_queue->write_count != tx_queue->insert_count);
403
404         wmb(); /* Ensure descriptors are written before they are fetched */
405
406         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
407                 txd = efx_tx_desc(tx_queue,
408                                   old_write_count & tx_queue->ptr_mask);
409                 efx_push_tx_desc(tx_queue, txd);
410                 ++tx_queue->pushes;
411         } else {
412                 efx_notify_tx_desc(tx_queue);
413         }
414 }
415
416 /* Allocate hardware resources for a TX queue */
417 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
418 {
419         struct efx_nic *efx = tx_queue->efx;
420         unsigned entries;
421
422         entries = tx_queue->ptr_mask + 1;
423         return efx_alloc_special_buffer(efx, &tx_queue->txd,
424                                         entries * sizeof(efx_qword_t));
425 }
426
427 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
428 {
429         struct efx_nic *efx = tx_queue->efx;
430         efx_oword_t reg;
431
432         tx_queue->flushed = FLUSH_NONE;
433
434         /* Pin TX descriptor ring */
435         efx_init_special_buffer(efx, &tx_queue->txd);
436
437         /* Push TX descriptor ring to card */
438         EFX_POPULATE_OWORD_10(reg,
439                               FRF_AZ_TX_DESCQ_EN, 1,
440                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
441                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
442                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
443                               FRF_AZ_TX_DESCQ_EVQ_ID,
444                               tx_queue->channel->channel,
445                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
446                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
447                               FRF_AZ_TX_DESCQ_SIZE,
448                               __ffs(tx_queue->txd.entries),
449                               FRF_AZ_TX_DESCQ_TYPE, 0,
450                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
451
452         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
453                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
454                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
455                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
456                                     !csum);
457         }
458
459         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
460                          tx_queue->queue);
461
462         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
463                 /* Only 128 bits in this register */
464                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
465
466                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
467                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
468                         clear_bit_le(tx_queue->queue, (void *)&reg);
469                 else
470                         set_bit_le(tx_queue->queue, (void *)&reg);
471                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
472         }
473
474         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
475                 EFX_POPULATE_OWORD_1(reg,
476                                      FRF_BZ_TX_PACE,
477                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
478                                      FFE_BZ_TX_PACE_OFF :
479                                      FFE_BZ_TX_PACE_RESERVED);
480                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
481                                  tx_queue->queue);
482         }
483 }
484
485 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
486 {
487         struct efx_nic *efx = tx_queue->efx;
488         efx_oword_t tx_flush_descq;
489
490         tx_queue->flushed = FLUSH_PENDING;
491
492         /* Post a flush command */
493         EFX_POPULATE_OWORD_2(tx_flush_descq,
494                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
495                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
496         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
497 }
498
499 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
500 {
501         struct efx_nic *efx = tx_queue->efx;
502         efx_oword_t tx_desc_ptr;
503
504         /* The queue should have been flushed */
505         WARN_ON(tx_queue->flushed != FLUSH_DONE);
506
507         /* Remove TX descriptor ring from card */
508         EFX_ZERO_OWORD(tx_desc_ptr);
509         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
510                          tx_queue->queue);
511
512         /* Unpin TX descriptor ring */
513         efx_fini_special_buffer(efx, &tx_queue->txd);
514 }
515
516 /* Free buffers backing TX queue */
517 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
518 {
519         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
520 }
521
522 /**************************************************************************
523  *
524  * RX path
525  *
526  **************************************************************************/
527
528 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
529 static inline efx_qword_t *
530 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
531 {
532         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
533 }
534
535 /* This creates an entry in the RX descriptor queue */
536 static inline void
537 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
538 {
539         struct efx_rx_buffer *rx_buf;
540         efx_qword_t *rxd;
541
542         rxd = efx_rx_desc(rx_queue, index);
543         rx_buf = efx_rx_buffer(rx_queue, index);
544         EFX_POPULATE_QWORD_3(*rxd,
545                              FSF_AZ_RX_KER_BUF_SIZE,
546                              rx_buf->len -
547                              rx_queue->efx->type->rx_buffer_padding,
548                              FSF_AZ_RX_KER_BUF_REGION, 0,
549                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
550 }
551
552 /* This writes to the RX_DESC_WPTR register for the specified receive
553  * descriptor ring.
554  */
555 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
556 {
557         struct efx_nic *efx = rx_queue->efx;
558         efx_dword_t reg;
559         unsigned write_ptr;
560
561         while (rx_queue->notified_count != rx_queue->added_count) {
562                 efx_build_rx_desc(
563                         rx_queue,
564                         rx_queue->notified_count & rx_queue->ptr_mask);
565                 ++rx_queue->notified_count;
566         }
567
568         wmb();
569         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
570         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
571         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
572                         efx_rx_queue_index(rx_queue));
573 }
574
575 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
576 {
577         struct efx_nic *efx = rx_queue->efx;
578         unsigned entries;
579
580         entries = rx_queue->ptr_mask + 1;
581         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
582                                         entries * sizeof(efx_qword_t));
583 }
584
585 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
586 {
587         efx_oword_t rx_desc_ptr;
588         struct efx_nic *efx = rx_queue->efx;
589         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
590         bool iscsi_digest_en = is_b0;
591
592         netif_dbg(efx, hw, efx->net_dev,
593                   "RX queue %d ring in special buffers %d-%d\n",
594                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
595                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
596
597         rx_queue->flushed = FLUSH_NONE;
598
599         /* Pin RX descriptor ring */
600         efx_init_special_buffer(efx, &rx_queue->rxd);
601
602         /* Push RX descriptor ring to card */
603         EFX_POPULATE_OWORD_10(rx_desc_ptr,
604                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
605                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
606                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
607                               FRF_AZ_RX_DESCQ_EVQ_ID,
608                               efx_rx_queue_channel(rx_queue)->channel,
609                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
610                               FRF_AZ_RX_DESCQ_LABEL,
611                               efx_rx_queue_index(rx_queue),
612                               FRF_AZ_RX_DESCQ_SIZE,
613                               __ffs(rx_queue->rxd.entries),
614                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
615                               /* For >=B0 this is scatter so disable */
616                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
617                               FRF_AZ_RX_DESCQ_EN, 1);
618         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
619                          efx_rx_queue_index(rx_queue));
620 }
621
622 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
623 {
624         struct efx_nic *efx = rx_queue->efx;
625         efx_oword_t rx_flush_descq;
626
627         rx_queue->flushed = FLUSH_PENDING;
628
629         /* Post a flush command */
630         EFX_POPULATE_OWORD_2(rx_flush_descq,
631                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
632                              FRF_AZ_RX_FLUSH_DESCQ,
633                              efx_rx_queue_index(rx_queue));
634         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
635 }
636
637 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
638 {
639         efx_oword_t rx_desc_ptr;
640         struct efx_nic *efx = rx_queue->efx;
641
642         /* The queue should already have been flushed */
643         WARN_ON(rx_queue->flushed != FLUSH_DONE);
644
645         /* Remove RX descriptor ring from card */
646         EFX_ZERO_OWORD(rx_desc_ptr);
647         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
648                          efx_rx_queue_index(rx_queue));
649
650         /* Unpin RX descriptor ring */
651         efx_fini_special_buffer(efx, &rx_queue->rxd);
652 }
653
654 /* Free buffers backing RX queue */
655 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
656 {
657         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
658 }
659
660 /**************************************************************************
661  *
662  * Event queue processing
663  * Event queues are processed by per-channel tasklets.
664  *
665  **************************************************************************/
666
667 /* Update a channel's event queue's read pointer (RPTR) register
668  *
669  * This writes the EVQ_RPTR_REG register for the specified channel's
670  * event queue.
671  */
672 void efx_nic_eventq_read_ack(struct efx_channel *channel)
673 {
674         efx_dword_t reg;
675         struct efx_nic *efx = channel->efx;
676
677         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
678                              channel->eventq_read_ptr & channel->eventq_mask);
679         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
680                          channel->channel);
681 }
682
683 /* Use HW to insert a SW defined event */
684 static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
685 {
686         efx_oword_t drv_ev_reg;
687
688         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
689                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
690         drv_ev_reg.u32[0] = event->u32[0];
691         drv_ev_reg.u32[1] = event->u32[1];
692         drv_ev_reg.u32[2] = 0;
693         drv_ev_reg.u32[3] = 0;
694         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
695         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
696 }
697
698 /* Handle a transmit completion event
699  *
700  * The NIC batches TX completion events; the message we receive is of
701  * the form "complete all TX events up to this index".
702  */
703 static int
704 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
705 {
706         unsigned int tx_ev_desc_ptr;
707         unsigned int tx_ev_q_label;
708         struct efx_tx_queue *tx_queue;
709         struct efx_nic *efx = channel->efx;
710         int tx_packets = 0;
711
712         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
713                 /* Transmit completion */
714                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
715                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
716                 tx_queue = efx_channel_get_tx_queue(
717                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
718                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
719                               tx_queue->ptr_mask);
720                 channel->irq_mod_score += tx_packets;
721                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
722         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
723                 /* Rewrite the FIFO write pointer */
724                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
725                 tx_queue = efx_channel_get_tx_queue(
726                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
727
728                 if (efx_dev_registered(efx))
729                         netif_tx_lock(efx->net_dev);
730                 efx_notify_tx_desc(tx_queue);
731                 if (efx_dev_registered(efx))
732                         netif_tx_unlock(efx->net_dev);
733         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
734                    EFX_WORKAROUND_10727(efx)) {
735                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
736         } else {
737                 netif_err(efx, tx_err, efx->net_dev,
738                           "channel %d unexpected TX event "
739                           EFX_QWORD_FMT"\n", channel->channel,
740                           EFX_QWORD_VAL(*event));
741         }
742
743         return tx_packets;
744 }
745
746 /* Detect errors included in the rx_evt_pkt_ok bit. */
747 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
748                                  const efx_qword_t *event,
749                                  bool *rx_ev_pkt_ok,
750                                  bool *discard)
751 {
752         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
753         struct efx_nic *efx = rx_queue->efx;
754         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
755         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
756         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
757         bool rx_ev_other_err, rx_ev_pause_frm;
758         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
759         unsigned rx_ev_pkt_type;
760
761         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
762         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
763         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
764         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
765         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
766                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
767         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
768                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
769         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
770                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
771         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
772         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
773         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
774                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
775         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
776
777         /* Every error apart from tobe_disc and pause_frm */
778         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
779                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
780                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
781
782         /* Count errors that are not in MAC stats.  Ignore expected
783          * checksum errors during self-test. */
784         if (rx_ev_frm_trunc)
785                 ++channel->n_rx_frm_trunc;
786         else if (rx_ev_tobe_disc)
787                 ++channel->n_rx_tobe_disc;
788         else if (!efx->loopback_selftest) {
789                 if (rx_ev_ip_hdr_chksum_err)
790                         ++channel->n_rx_ip_hdr_chksum_err;
791                 else if (rx_ev_tcp_udp_chksum_err)
792                         ++channel->n_rx_tcp_udp_chksum_err;
793         }
794
795         /* The frame must be discarded if any of these are true. */
796         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
797                     rx_ev_tobe_disc | rx_ev_pause_frm);
798
799         /* TOBE_DISC is expected on unicast mismatches; don't print out an
800          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
801          * to a FIFO overflow.
802          */
803 #ifdef EFX_ENABLE_DEBUG
804         if (rx_ev_other_err && net_ratelimit()) {
805                 netif_dbg(efx, rx_err, efx->net_dev,
806                           " RX queue %d unexpected RX event "
807                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
808                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
809                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
810                           rx_ev_ip_hdr_chksum_err ?
811                           " [IP_HDR_CHKSUM_ERR]" : "",
812                           rx_ev_tcp_udp_chksum_err ?
813                           " [TCP_UDP_CHKSUM_ERR]" : "",
814                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
815                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
816                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
817                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
818                           rx_ev_pause_frm ? " [PAUSE]" : "");
819         }
820 #endif
821 }
822
823 /* Handle receive events that are not in-order. */
824 static void
825 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
826 {
827         struct efx_nic *efx = rx_queue->efx;
828         unsigned expected, dropped;
829
830         expected = rx_queue->removed_count & rx_queue->ptr_mask;
831         dropped = (index - expected) & rx_queue->ptr_mask;
832         netif_info(efx, rx_err, efx->net_dev,
833                    "dropped %d events (index=%d expected=%d)\n",
834                    dropped, index, expected);
835
836         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
837                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
838 }
839
840 /* Handle a packet received event
841  *
842  * The NIC gives a "discard" flag if it's a unicast packet with the
843  * wrong destination address
844  * Also "is multicast" and "matches multicast filter" flags can be used to
845  * discard non-matching multicast packets.
846  */
847 static void
848 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
849 {
850         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
851         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
852         unsigned expected_ptr;
853         bool rx_ev_pkt_ok, discard = false, checksummed;
854         struct efx_rx_queue *rx_queue;
855
856         /* Basic packet information */
857         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
858         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
859         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
860         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
861         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
862         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
863                 channel->channel);
864
865         rx_queue = efx_channel_get_rx_queue(channel);
866
867         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
868         expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
869         if (unlikely(rx_ev_desc_ptr != expected_ptr))
870                 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
871
872         if (likely(rx_ev_pkt_ok)) {
873                 /* If packet is marked as OK and packet type is TCP/IP or
874                  * UDP/IP, then we can rely on the hardware checksum.
875                  */
876                 checksummed =
877                         rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
878                         rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP;
879         } else {
880                 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
881                 checksummed = false;
882         }
883
884         /* Detect multicast packets that didn't match the filter */
885         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
886         if (rx_ev_mcast_pkt) {
887                 unsigned int rx_ev_mcast_hash_match =
888                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
889
890                 if (unlikely(!rx_ev_mcast_hash_match)) {
891                         ++channel->n_rx_mcast_mismatch;
892                         discard = true;
893                 }
894         }
895
896         channel->irq_mod_score += 2;
897
898         /* Handle received packet */
899         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
900                       checksummed, discard);
901 }
902
903 static void
904 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
905 {
906         struct efx_nic *efx = channel->efx;
907         unsigned code;
908
909         code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
910         if (code == EFX_CHANNEL_MAGIC_TEST(channel))
911                 ; /* ignore */
912         else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
913                 /* The queue must be empty, so we won't receive any rx
914                  * events, so efx_process_channel() won't refill the
915                  * queue. Refill it here */
916                 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
917         else
918                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
919                           "generated event "EFX_QWORD_FMT"\n",
920                           channel->channel, EFX_QWORD_VAL(*event));
921 }
922
923 static void
924 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
925 {
926         struct efx_nic *efx = channel->efx;
927         unsigned int ev_sub_code;
928         unsigned int ev_sub_data;
929
930         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
931         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
932
933         switch (ev_sub_code) {
934         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
935                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
936                            channel->channel, ev_sub_data);
937                 break;
938         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
939                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
940                            channel->channel, ev_sub_data);
941                 break;
942         case FSE_AZ_EVQ_INIT_DONE_EV:
943                 netif_dbg(efx, hw, efx->net_dev,
944                           "channel %d EVQ %d initialised\n",
945                           channel->channel, ev_sub_data);
946                 break;
947         case FSE_AZ_SRM_UPD_DONE_EV:
948                 netif_vdbg(efx, hw, efx->net_dev,
949                            "channel %d SRAM update done\n", channel->channel);
950                 break;
951         case FSE_AZ_WAKE_UP_EV:
952                 netif_vdbg(efx, hw, efx->net_dev,
953                            "channel %d RXQ %d wakeup event\n",
954                            channel->channel, ev_sub_data);
955                 break;
956         case FSE_AZ_TIMER_EV:
957                 netif_vdbg(efx, hw, efx->net_dev,
958                            "channel %d RX queue %d timer expired\n",
959                            channel->channel, ev_sub_data);
960                 break;
961         case FSE_AA_RX_RECOVER_EV:
962                 netif_err(efx, rx_err, efx->net_dev,
963                           "channel %d seen DRIVER RX_RESET event. "
964                         "Resetting.\n", channel->channel);
965                 atomic_inc(&efx->rx_reset);
966                 efx_schedule_reset(efx,
967                                    EFX_WORKAROUND_6555(efx) ?
968                                    RESET_TYPE_RX_RECOVERY :
969                                    RESET_TYPE_DISABLE);
970                 break;
971         case FSE_BZ_RX_DSC_ERROR_EV:
972                 netif_err(efx, rx_err, efx->net_dev,
973                           "RX DMA Q %d reports descriptor fetch error."
974                           " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
975                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
976                 break;
977         case FSE_BZ_TX_DSC_ERROR_EV:
978                 netif_err(efx, tx_err, efx->net_dev,
979                           "TX DMA Q %d reports descriptor fetch error."
980                           " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
981                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
982                 break;
983         default:
984                 netif_vdbg(efx, hw, efx->net_dev,
985                            "channel %d unknown driver event code %d "
986                            "data %04x\n", channel->channel, ev_sub_code,
987                            ev_sub_data);
988                 break;
989         }
990 }
991
992 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
993 {
994         struct efx_nic *efx = channel->efx;
995         unsigned int read_ptr;
996         efx_qword_t event, *p_event;
997         int ev_code;
998         int tx_packets = 0;
999         int spent = 0;
1000
1001         read_ptr = channel->eventq_read_ptr;
1002
1003         for (;;) {
1004                 p_event = efx_event(channel, read_ptr);
1005                 event = *p_event;
1006
1007                 if (!efx_event_present(&event))
1008                         /* End of events */
1009                         break;
1010
1011                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1012                            "channel %d event is "EFX_QWORD_FMT"\n",
1013                            channel->channel, EFX_QWORD_VAL(event));
1014
1015                 /* Clear this event by marking it all ones */
1016                 EFX_SET_QWORD(*p_event);
1017
1018                 ++read_ptr;
1019
1020                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1021
1022                 switch (ev_code) {
1023                 case FSE_AZ_EV_CODE_RX_EV:
1024                         efx_handle_rx_event(channel, &event);
1025                         if (++spent == budget)
1026                                 goto out;
1027                         break;
1028                 case FSE_AZ_EV_CODE_TX_EV:
1029                         tx_packets += efx_handle_tx_event(channel, &event);
1030                         if (tx_packets > efx->txq_entries) {
1031                                 spent = budget;
1032                                 goto out;
1033                         }
1034                         break;
1035                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1036                         efx_handle_generated_event(channel, &event);
1037                         break;
1038                 case FSE_AZ_EV_CODE_DRIVER_EV:
1039                         efx_handle_driver_event(channel, &event);
1040                         break;
1041                 case FSE_CZ_EV_CODE_MCDI_EV:
1042                         efx_mcdi_process_event(channel, &event);
1043                         break;
1044                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1045                         if (efx->type->handle_global_event &&
1046                             efx->type->handle_global_event(channel, &event))
1047                                 break;
1048                         /* else fall through */
1049                 default:
1050                         netif_err(channel->efx, hw, channel->efx->net_dev,
1051                                   "channel %d unknown event type %d (data "
1052                                   EFX_QWORD_FMT ")\n", channel->channel,
1053                                   ev_code, EFX_QWORD_VAL(event));
1054                 }
1055         }
1056
1057 out:
1058         channel->eventq_read_ptr = read_ptr;
1059         return spent;
1060 }
1061
1062 /* Check whether an event is present in the eventq at the current
1063  * read pointer.  Only useful for self-test.
1064  */
1065 bool efx_nic_event_present(struct efx_channel *channel)
1066 {
1067         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1068 }
1069
1070 /* Allocate buffer table entries for event queue */
1071 int efx_nic_probe_eventq(struct efx_channel *channel)
1072 {
1073         struct efx_nic *efx = channel->efx;
1074         unsigned entries;
1075
1076         entries = channel->eventq_mask + 1;
1077         return efx_alloc_special_buffer(efx, &channel->eventq,
1078                                         entries * sizeof(efx_qword_t));
1079 }
1080
1081 void efx_nic_init_eventq(struct efx_channel *channel)
1082 {
1083         efx_oword_t reg;
1084         struct efx_nic *efx = channel->efx;
1085
1086         netif_dbg(efx, hw, efx->net_dev,
1087                   "channel %d event queue in special buffers %d-%d\n",
1088                   channel->channel, channel->eventq.index,
1089                   channel->eventq.index + channel->eventq.entries - 1);
1090
1091         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1092                 EFX_POPULATE_OWORD_3(reg,
1093                                      FRF_CZ_TIMER_Q_EN, 1,
1094                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1095                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1096                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1097         }
1098
1099         /* Pin event queue buffer */
1100         efx_init_special_buffer(efx, &channel->eventq);
1101
1102         /* Fill event queue with all ones (i.e. empty events) */
1103         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1104
1105         /* Push event queue to card */
1106         EFX_POPULATE_OWORD_3(reg,
1107                              FRF_AZ_EVQ_EN, 1,
1108                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1109                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1110         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1111                          channel->channel);
1112
1113         efx->type->push_irq_moderation(channel);
1114 }
1115
1116 void efx_nic_fini_eventq(struct efx_channel *channel)
1117 {
1118         efx_oword_t reg;
1119         struct efx_nic *efx = channel->efx;
1120
1121         /* Remove event queue from card */
1122         EFX_ZERO_OWORD(reg);
1123         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1124                          channel->channel);
1125         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1126                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1127
1128         /* Unpin event queue */
1129         efx_fini_special_buffer(efx, &channel->eventq);
1130 }
1131
1132 /* Free buffers backing event queue */
1133 void efx_nic_remove_eventq(struct efx_channel *channel)
1134 {
1135         efx_free_special_buffer(channel->efx, &channel->eventq);
1136 }
1137
1138
1139 void efx_nic_generate_test_event(struct efx_channel *channel)
1140 {
1141         unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1142         efx_qword_t test_event;
1143
1144         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1145                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1146                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1147         efx_generate_event(channel, &test_event);
1148 }
1149
1150 void efx_nic_generate_fill_event(struct efx_channel *channel)
1151 {
1152         unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1153         efx_qword_t test_event;
1154
1155         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1156                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1157                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1158         efx_generate_event(channel, &test_event);
1159 }
1160
1161 /**************************************************************************
1162  *
1163  * Flush handling
1164  *
1165  **************************************************************************/
1166
1167
1168 static void efx_poll_flush_events(struct efx_nic *efx)
1169 {
1170         struct efx_channel *channel = efx_get_channel(efx, 0);
1171         struct efx_tx_queue *tx_queue;
1172         struct efx_rx_queue *rx_queue;
1173         unsigned int read_ptr = channel->eventq_read_ptr;
1174         unsigned int end_ptr = read_ptr + channel->eventq_mask - 1;
1175
1176         do {
1177                 efx_qword_t *event = efx_event(channel, read_ptr);
1178                 int ev_code, ev_sub_code, ev_queue;
1179                 bool ev_failed;
1180
1181                 if (!efx_event_present(event))
1182                         break;
1183
1184                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1185                 ev_sub_code = EFX_QWORD_FIELD(*event,
1186                                               FSF_AZ_DRIVER_EV_SUBCODE);
1187                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1188                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1189                         ev_queue = EFX_QWORD_FIELD(*event,
1190                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1191                         if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1192                                 tx_queue = efx_get_tx_queue(
1193                                         efx, ev_queue / EFX_TXQ_TYPES,
1194                                         ev_queue % EFX_TXQ_TYPES);
1195                                 tx_queue->flushed = FLUSH_DONE;
1196                         }
1197                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1198                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1199                         ev_queue = EFX_QWORD_FIELD(
1200                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1201                         ev_failed = EFX_QWORD_FIELD(
1202                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1203                         if (ev_queue < efx->n_rx_channels) {
1204                                 rx_queue = efx_get_rx_queue(efx, ev_queue);
1205                                 rx_queue->flushed =
1206                                         ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1207                         }
1208                 }
1209
1210                 /* We're about to destroy the queue anyway, so
1211                  * it's ok to throw away every non-flush event */
1212                 EFX_SET_QWORD(*event);
1213
1214                 ++read_ptr;
1215         } while (read_ptr != end_ptr);
1216
1217         channel->eventq_read_ptr = read_ptr;
1218 }
1219
1220 /* Handle tx and rx flushes at the same time, since they run in
1221  * parallel in the hardware and there's no reason for us to
1222  * serialise them */
1223 int efx_nic_flush_queues(struct efx_nic *efx)
1224 {
1225         struct efx_channel *channel;
1226         struct efx_rx_queue *rx_queue;
1227         struct efx_tx_queue *tx_queue;
1228         int i, tx_pending, rx_pending;
1229
1230         /* If necessary prepare the hardware for flushing */
1231         efx->type->prepare_flush(efx);
1232
1233         /* Flush all tx queues in parallel */
1234         efx_for_each_channel(channel, efx) {
1235                 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1236                         if (tx_queue->initialised)
1237                                 efx_flush_tx_queue(tx_queue);
1238                 }
1239         }
1240
1241         /* The hardware supports four concurrent rx flushes, each of which may
1242          * need to be retried if there is an outstanding descriptor fetch */
1243         for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1244                 rx_pending = tx_pending = 0;
1245                 efx_for_each_channel(channel, efx) {
1246                         efx_for_each_channel_rx_queue(rx_queue, channel) {
1247                                 if (rx_queue->flushed == FLUSH_PENDING)
1248                                         ++rx_pending;
1249                         }
1250                 }
1251                 efx_for_each_channel(channel, efx) {
1252                         efx_for_each_channel_rx_queue(rx_queue, channel) {
1253                                 if (rx_pending == EFX_RX_FLUSH_COUNT)
1254                                         break;
1255                                 if (rx_queue->flushed == FLUSH_FAILED ||
1256                                     rx_queue->flushed == FLUSH_NONE) {
1257                                         efx_flush_rx_queue(rx_queue);
1258                                         ++rx_pending;
1259                                 }
1260                         }
1261                         efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1262                                 if (tx_queue->initialised &&
1263                                     tx_queue->flushed != FLUSH_DONE)
1264                                         ++tx_pending;
1265                         }
1266                 }
1267
1268                 if (rx_pending == 0 && tx_pending == 0)
1269                         return 0;
1270
1271                 msleep(EFX_FLUSH_INTERVAL);
1272                 efx_poll_flush_events(efx);
1273         }
1274
1275         /* Mark the queues as all flushed. We're going to return failure
1276          * leading to a reset, or fake up success anyway */
1277         efx_for_each_channel(channel, efx) {
1278                 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1279                         if (tx_queue->initialised &&
1280                             tx_queue->flushed != FLUSH_DONE)
1281                                 netif_err(efx, hw, efx->net_dev,
1282                                           "tx queue %d flush command timed out\n",
1283                                           tx_queue->queue);
1284                         tx_queue->flushed = FLUSH_DONE;
1285                 }
1286                 efx_for_each_channel_rx_queue(rx_queue, channel) {
1287                         if (rx_queue->flushed != FLUSH_DONE)
1288                                 netif_err(efx, hw, efx->net_dev,
1289                                           "rx queue %d flush command timed out\n",
1290                                           efx_rx_queue_index(rx_queue));
1291                         rx_queue->flushed = FLUSH_DONE;
1292                 }
1293         }
1294
1295         return -ETIMEDOUT;
1296 }
1297
1298 /**************************************************************************
1299  *
1300  * Hardware interrupts
1301  * The hardware interrupt handler does very little work; all the event
1302  * queue processing is carried out by per-channel tasklets.
1303  *
1304  **************************************************************************/
1305
1306 /* Enable/disable/generate interrupts */
1307 static inline void efx_nic_interrupts(struct efx_nic *efx,
1308                                       bool enabled, bool force)
1309 {
1310         efx_oword_t int_en_reg_ker;
1311
1312         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1313                              FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1314                              FRF_AZ_KER_INT_KER, force,
1315                              FRF_AZ_DRV_INT_EN_KER, enabled);
1316         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1317 }
1318
1319 void efx_nic_enable_interrupts(struct efx_nic *efx)
1320 {
1321         struct efx_channel *channel;
1322
1323         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1324         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1325
1326         /* Enable interrupts */
1327         efx_nic_interrupts(efx, true, false);
1328
1329         /* Force processing of all the channels to get the EVQ RPTRs up to
1330            date */
1331         efx_for_each_channel(channel, efx)
1332                 efx_schedule_channel(channel);
1333 }
1334
1335 void efx_nic_disable_interrupts(struct efx_nic *efx)
1336 {
1337         /* Disable interrupts */
1338         efx_nic_interrupts(efx, false, false);
1339 }
1340
1341 /* Generate a test interrupt
1342  * Interrupt must already have been enabled, otherwise nasty things
1343  * may happen.
1344  */
1345 void efx_nic_generate_interrupt(struct efx_nic *efx)
1346 {
1347         efx_nic_interrupts(efx, true, true);
1348 }
1349
1350 /* Process a fatal interrupt
1351  * Disable bus mastering ASAP and schedule a reset
1352  */
1353 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1354 {
1355         struct falcon_nic_data *nic_data = efx->nic_data;
1356         efx_oword_t *int_ker = efx->irq_status.addr;
1357         efx_oword_t fatal_intr;
1358         int error, mem_perr;
1359
1360         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1361         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1362
1363         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1364                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1365                   EFX_OWORD_VAL(fatal_intr),
1366                   error ? "disabling bus mastering" : "no recognised error");
1367
1368         /* If this is a memory parity error dump which blocks are offending */
1369         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1370                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1371         if (mem_perr) {
1372                 efx_oword_t reg;
1373                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1374                 netif_err(efx, hw, efx->net_dev,
1375                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1376                           EFX_OWORD_VAL(reg));
1377         }
1378
1379         /* Disable both devices */
1380         pci_clear_master(efx->pci_dev);
1381         if (efx_nic_is_dual_func(efx))
1382                 pci_clear_master(nic_data->pci_dev2);
1383         efx_nic_disable_interrupts(efx);
1384
1385         /* Count errors and reset or disable the NIC accordingly */
1386         if (efx->int_error_count == 0 ||
1387             time_after(jiffies, efx->int_error_expire)) {
1388                 efx->int_error_count = 0;
1389                 efx->int_error_expire =
1390                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1391         }
1392         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1393                 netif_err(efx, hw, efx->net_dev,
1394                           "SYSTEM ERROR - reset scheduled\n");
1395                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1396         } else {
1397                 netif_err(efx, hw, efx->net_dev,
1398                           "SYSTEM ERROR - max number of errors seen."
1399                           "NIC will be disabled\n");
1400                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1401         }
1402
1403         return IRQ_HANDLED;
1404 }
1405
1406 /* Handle a legacy interrupt
1407  * Acknowledges the interrupt and schedule event queue processing.
1408  */
1409 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1410 {
1411         struct efx_nic *efx = dev_id;
1412         efx_oword_t *int_ker = efx->irq_status.addr;
1413         irqreturn_t result = IRQ_NONE;
1414         struct efx_channel *channel;
1415         efx_dword_t reg;
1416         u32 queues;
1417         int syserr;
1418
1419         /* Could this be ours?  If interrupts are disabled then the
1420          * channel state may not be valid.
1421          */
1422         if (!efx->legacy_irq_enabled)
1423                 return result;
1424
1425         /* Read the ISR which also ACKs the interrupts */
1426         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1427         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1428
1429         /* Check to see if we have a serious error condition */
1430         if (queues & (1U << efx->fatal_irq_level)) {
1431                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1432                 if (unlikely(syserr))
1433                         return efx_nic_fatal_interrupt(efx);
1434         }
1435
1436         if (queues != 0) {
1437                 if (EFX_WORKAROUND_15783(efx))
1438                         efx->irq_zero_count = 0;
1439
1440                 /* Schedule processing of any interrupting queues */
1441                 efx_for_each_channel(channel, efx) {
1442                         if (queues & 1)
1443                                 efx_schedule_channel(channel);
1444                         queues >>= 1;
1445                 }
1446                 result = IRQ_HANDLED;
1447
1448         } else if (EFX_WORKAROUND_15783(efx)) {
1449                 efx_qword_t *event;
1450
1451                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1452                  * because this might be a shared interrupt. */
1453                 if (efx->irq_zero_count++ == 0)
1454                         result = IRQ_HANDLED;
1455
1456                 /* Ensure we schedule or rearm all event queues */
1457                 efx_for_each_channel(channel, efx) {
1458                         event = efx_event(channel, channel->eventq_read_ptr);
1459                         if (efx_event_present(event))
1460                                 efx_schedule_channel(channel);
1461                         else
1462                                 efx_nic_eventq_read_ack(channel);
1463                 }
1464         }
1465
1466         if (result == IRQ_HANDLED) {
1467                 efx->last_irq_cpu = raw_smp_processor_id();
1468                 netif_vdbg(efx, intr, efx->net_dev,
1469                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1470                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1471         }
1472
1473         return result;
1474 }
1475
1476 /* Handle an MSI interrupt
1477  *
1478  * Handle an MSI hardware interrupt.  This routine schedules event
1479  * queue processing.  No interrupt acknowledgement cycle is necessary.
1480  * Also, we never need to check that the interrupt is for us, since
1481  * MSI interrupts cannot be shared.
1482  */
1483 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1484 {
1485         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1486         struct efx_nic *efx = channel->efx;
1487         efx_oword_t *int_ker = efx->irq_status.addr;
1488         int syserr;
1489
1490         efx->last_irq_cpu = raw_smp_processor_id();
1491         netif_vdbg(efx, intr, efx->net_dev,
1492                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1493                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1494
1495         /* Check to see if we have a serious error condition */
1496         if (channel->channel == efx->fatal_irq_level) {
1497                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1498                 if (unlikely(syserr))
1499                         return efx_nic_fatal_interrupt(efx);
1500         }
1501
1502         /* Schedule processing of the channel */
1503         efx_schedule_channel(channel);
1504
1505         return IRQ_HANDLED;
1506 }
1507
1508
1509 /* Setup RSS indirection table.
1510  * This maps from the hash value of the packet to RXQ
1511  */
1512 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1513 {
1514         size_t i = 0;
1515         efx_dword_t dword;
1516
1517         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1518                 return;
1519
1520         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1521                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1522
1523         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1524                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1525                                      efx->rx_indir_table[i]);
1526                 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1527         }
1528 }
1529
1530 /* Hook interrupt handler(s)
1531  * Try MSI and then legacy interrupts.
1532  */
1533 int efx_nic_init_interrupt(struct efx_nic *efx)
1534 {
1535         struct efx_channel *channel;
1536         int rc;
1537
1538         if (!EFX_INT_MODE_USE_MSI(efx)) {
1539                 irq_handler_t handler;
1540                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1541                         handler = efx_legacy_interrupt;
1542                 else
1543                         handler = falcon_legacy_interrupt_a1;
1544
1545                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1546                                  efx->name, efx);
1547                 if (rc) {
1548                         netif_err(efx, drv, efx->net_dev,
1549                                   "failed to hook legacy IRQ %d\n",
1550                                   efx->pci_dev->irq);
1551                         goto fail1;
1552                 }
1553                 return 0;
1554         }
1555
1556         /* Hook MSI or MSI-X interrupt */
1557         efx_for_each_channel(channel, efx) {
1558                 rc = request_irq(channel->irq, efx_msi_interrupt,
1559                                  IRQF_PROBE_SHARED, /* Not shared */
1560                                  efx->channel_name[channel->channel],
1561                                  &efx->channel[channel->channel]);
1562                 if (rc) {
1563                         netif_err(efx, drv, efx->net_dev,
1564                                   "failed to hook IRQ %d\n", channel->irq);
1565                         goto fail2;
1566                 }
1567         }
1568
1569         return 0;
1570
1571  fail2:
1572         efx_for_each_channel(channel, efx)
1573                 free_irq(channel->irq, &efx->channel[channel->channel]);
1574  fail1:
1575         return rc;
1576 }
1577
1578 void efx_nic_fini_interrupt(struct efx_nic *efx)
1579 {
1580         struct efx_channel *channel;
1581         efx_oword_t reg;
1582
1583         /* Disable MSI/MSI-X interrupts */
1584         efx_for_each_channel(channel, efx) {
1585                 if (channel->irq)
1586                         free_irq(channel->irq, &efx->channel[channel->channel]);
1587         }
1588
1589         /* ACK legacy interrupt */
1590         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1591                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1592         else
1593                 falcon_irq_ack_a1(efx);
1594
1595         /* Disable legacy interrupt */
1596         if (efx->legacy_irq)
1597                 free_irq(efx->legacy_irq, efx);
1598 }
1599
1600 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1601 {
1602         efx_oword_t altera_build;
1603         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1604         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1605 }
1606
1607 void efx_nic_init_common(struct efx_nic *efx)
1608 {
1609         efx_oword_t temp;
1610
1611         /* Set positions of descriptor caches in SRAM. */
1612         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1613                              efx->type->tx_dc_base / 8);
1614         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1615         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1616                              efx->type->rx_dc_base / 8);
1617         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1618
1619         /* Set TX descriptor cache size. */
1620         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1621         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1622         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1623
1624         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1625          * this allows most efficient prefetching.
1626          */
1627         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1628         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1629         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1630         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1631         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1632
1633         /* Program INT_KER address */
1634         EFX_POPULATE_OWORD_2(temp,
1635                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1636                              EFX_INT_MODE_USE_MSI(efx),
1637                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1638         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1639
1640         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1641                 /* Use an interrupt level unused by event queues */
1642                 efx->fatal_irq_level = 0x1f;
1643         else
1644                 /* Use a valid MSI-X vector */
1645                 efx->fatal_irq_level = 0;
1646
1647         /* Enable all the genuinely fatal interrupts.  (They are still
1648          * masked by the overall interrupt mask, controlled by
1649          * falcon_interrupts()).
1650          *
1651          * Note: All other fatal interrupts are enabled
1652          */
1653         EFX_POPULATE_OWORD_3(temp,
1654                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1655                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1656                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1657         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1658                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1659         EFX_INVERT_OWORD(temp);
1660         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1661
1662         efx_nic_push_rx_indir_table(efx);
1663
1664         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1665          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1666          */
1667         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1668         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1669         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1670         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1671         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1672         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1673         /* Enable SW_EV to inherit in char driver - assume harmless here */
1674         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1675         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1676         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1677         /* Disable hardware watchdog which can misfire */
1678         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1679         /* Squash TX of packets of 16 bytes or less */
1680         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1681                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1682         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1683
1684         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1685                 EFX_POPULATE_OWORD_4(temp,
1686                                      /* Default values */
1687                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1688                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1689                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1690                                      /* Allow large pace values in the
1691                                       * fast bin. */
1692                                      FRF_BZ_TX_PACE_BIN_TH,
1693                                      FFE_BZ_TX_PACE_RESERVED);
1694                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1695         }
1696 }
1697
1698 /* Register dump */
1699
1700 #define REGISTER_REVISION_A     1
1701 #define REGISTER_REVISION_B     2
1702 #define REGISTER_REVISION_C     3
1703 #define REGISTER_REVISION_Z     3       /* latest revision */
1704
1705 struct efx_nic_reg {
1706         u32 offset:24;
1707         u32 min_revision:2, max_revision:2;
1708 };
1709
1710 #define REGISTER(name, min_rev, max_rev) {                              \
1711         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1712         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1713 }
1714 #define REGISTER_AA(name) REGISTER(name, A, A)
1715 #define REGISTER_AB(name) REGISTER(name, A, B)
1716 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1717 #define REGISTER_BB(name) REGISTER(name, B, B)
1718 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1719 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1720
1721 static const struct efx_nic_reg efx_nic_regs[] = {
1722         REGISTER_AZ(ADR_REGION),
1723         REGISTER_AZ(INT_EN_KER),
1724         REGISTER_BZ(INT_EN_CHAR),
1725         REGISTER_AZ(INT_ADR_KER),
1726         REGISTER_BZ(INT_ADR_CHAR),
1727         /* INT_ACK_KER is WO */
1728         /* INT_ISR0 is RC */
1729         REGISTER_AZ(HW_INIT),
1730         REGISTER_CZ(USR_EV_CFG),
1731         REGISTER_AB(EE_SPI_HCMD),
1732         REGISTER_AB(EE_SPI_HADR),
1733         REGISTER_AB(EE_SPI_HDATA),
1734         REGISTER_AB(EE_BASE_PAGE),
1735         REGISTER_AB(EE_VPD_CFG0),
1736         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1737         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1738         /* PCIE_CORE_INDIRECT is indirect */
1739         REGISTER_AB(NIC_STAT),
1740         REGISTER_AB(GPIO_CTL),
1741         REGISTER_AB(GLB_CTL),
1742         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1743         REGISTER_BZ(DP_CTRL),
1744         REGISTER_AZ(MEM_STAT),
1745         REGISTER_AZ(CS_DEBUG),
1746         REGISTER_AZ(ALTERA_BUILD),
1747         REGISTER_AZ(CSR_SPARE),
1748         REGISTER_AB(PCIE_SD_CTL0123),
1749         REGISTER_AB(PCIE_SD_CTL45),
1750         REGISTER_AB(PCIE_PCS_CTL_STAT),
1751         /* DEBUG_DATA_OUT is not used */
1752         /* DRV_EV is WO */
1753         REGISTER_AZ(EVQ_CTL),
1754         REGISTER_AZ(EVQ_CNT1),
1755         REGISTER_AZ(EVQ_CNT2),
1756         REGISTER_AZ(BUF_TBL_CFG),
1757         REGISTER_AZ(SRM_RX_DC_CFG),
1758         REGISTER_AZ(SRM_TX_DC_CFG),
1759         REGISTER_AZ(SRM_CFG),
1760         /* BUF_TBL_UPD is WO */
1761         REGISTER_AZ(SRM_UPD_EVQ),
1762         REGISTER_AZ(SRAM_PARITY),
1763         REGISTER_AZ(RX_CFG),
1764         REGISTER_BZ(RX_FILTER_CTL),
1765         /* RX_FLUSH_DESCQ is WO */
1766         REGISTER_AZ(RX_DC_CFG),
1767         REGISTER_AZ(RX_DC_PF_WM),
1768         REGISTER_BZ(RX_RSS_TKEY),
1769         /* RX_NODESC_DROP is RC */
1770         REGISTER_AA(RX_SELF_RST),
1771         /* RX_DEBUG, RX_PUSH_DROP are not used */
1772         REGISTER_CZ(RX_RSS_IPV6_REG1),
1773         REGISTER_CZ(RX_RSS_IPV6_REG2),
1774         REGISTER_CZ(RX_RSS_IPV6_REG3),
1775         /* TX_FLUSH_DESCQ is WO */
1776         REGISTER_AZ(TX_DC_CFG),
1777         REGISTER_AA(TX_CHKSM_CFG),
1778         REGISTER_AZ(TX_CFG),
1779         /* TX_PUSH_DROP is not used */
1780         REGISTER_AZ(TX_RESERVED),
1781         REGISTER_BZ(TX_PACE),
1782         /* TX_PACE_DROP_QID is RC */
1783         REGISTER_BB(TX_VLAN),
1784         REGISTER_BZ(TX_IPFIL_PORTEN),
1785         REGISTER_AB(MD_TXD),
1786         REGISTER_AB(MD_RXD),
1787         REGISTER_AB(MD_CS),
1788         REGISTER_AB(MD_PHY_ADR),
1789         REGISTER_AB(MD_ID),
1790         /* MD_STAT is RC */
1791         REGISTER_AB(MAC_STAT_DMA),
1792         REGISTER_AB(MAC_CTRL),
1793         REGISTER_BB(GEN_MODE),
1794         REGISTER_AB(MAC_MC_HASH_REG0),
1795         REGISTER_AB(MAC_MC_HASH_REG1),
1796         REGISTER_AB(GM_CFG1),
1797         REGISTER_AB(GM_CFG2),
1798         /* GM_IPG and GM_HD are not used */
1799         REGISTER_AB(GM_MAX_FLEN),
1800         /* GM_TEST is not used */
1801         REGISTER_AB(GM_ADR1),
1802         REGISTER_AB(GM_ADR2),
1803         REGISTER_AB(GMF_CFG0),
1804         REGISTER_AB(GMF_CFG1),
1805         REGISTER_AB(GMF_CFG2),
1806         REGISTER_AB(GMF_CFG3),
1807         REGISTER_AB(GMF_CFG4),
1808         REGISTER_AB(GMF_CFG5),
1809         REGISTER_BB(TX_SRC_MAC_CTL),
1810         REGISTER_AB(XM_ADR_LO),
1811         REGISTER_AB(XM_ADR_HI),
1812         REGISTER_AB(XM_GLB_CFG),
1813         REGISTER_AB(XM_TX_CFG),
1814         REGISTER_AB(XM_RX_CFG),
1815         REGISTER_AB(XM_MGT_INT_MASK),
1816         REGISTER_AB(XM_FC),
1817         REGISTER_AB(XM_PAUSE_TIME),
1818         REGISTER_AB(XM_TX_PARAM),
1819         REGISTER_AB(XM_RX_PARAM),
1820         /* XM_MGT_INT_MSK (note no 'A') is RC */
1821         REGISTER_AB(XX_PWR_RST),
1822         REGISTER_AB(XX_SD_CTL),
1823         REGISTER_AB(XX_TXDRV_CTL),
1824         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1825         /* XX_CORE_STAT is partly RC */
1826 };
1827
1828 struct efx_nic_reg_table {
1829         u32 offset:24;
1830         u32 min_revision:2, max_revision:2;
1831         u32 step:6, rows:21;
1832 };
1833
1834 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1835         offset,                                                         \
1836         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
1837         step, rows                                                      \
1838 }
1839 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
1840         REGISTER_TABLE_DIMENSIONS(                                      \
1841                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
1842                 min_rev, max_rev,                                       \
1843                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
1844                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1845 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1846 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1847 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1848 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1849 #define REGISTER_TABLE_BB_CZ(name)                                      \
1850         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
1851                                   FR_BZ_ ## name ## _STEP,              \
1852                                   FR_BB_ ## name ## _ROWS),             \
1853         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
1854                                   FR_BZ_ ## name ## _STEP,              \
1855                                   FR_CZ_ ## name ## _ROWS)
1856 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1857
1858 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1859         /* DRIVER is not used */
1860         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1861         REGISTER_TABLE_BB(TX_IPFIL_TBL),
1862         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1863         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1864         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1865         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1866         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1867         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1868         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1869         /* We can't reasonably read all of the buffer table (up to 8MB!).
1870          * However this driver will only use a few entries.  Reading
1871          * 1K entries allows for some expansion of queue count and
1872          * size before we need to change the version. */
1873         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1874                                   A, A, 8, 1024),
1875         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1876                                   B, Z, 8, 1024),
1877         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1878         REGISTER_TABLE_BB_CZ(TIMER_TBL),
1879         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1880         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1881         /* TX_FILTER_TBL0 is huge and not used by this driver */
1882         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1883         REGISTER_TABLE_CZ(MC_TREG_SMEM),
1884         /* MSIX_PBA_TABLE is not mapped */
1885         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1886         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1887 };
1888
1889 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1890 {
1891         const struct efx_nic_reg *reg;
1892         const struct efx_nic_reg_table *table;
1893         size_t len = 0;
1894
1895         for (reg = efx_nic_regs;
1896              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1897              reg++)
1898                 if (efx->type->revision >= reg->min_revision &&
1899                     efx->type->revision <= reg->max_revision)
1900                         len += sizeof(efx_oword_t);
1901
1902         for (table = efx_nic_reg_tables;
1903              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1904              table++)
1905                 if (efx->type->revision >= table->min_revision &&
1906                     efx->type->revision <= table->max_revision)
1907                         len += table->rows * min_t(size_t, table->step, 16);
1908
1909         return len;
1910 }
1911
1912 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1913 {
1914         const struct efx_nic_reg *reg;
1915         const struct efx_nic_reg_table *table;
1916
1917         for (reg = efx_nic_regs;
1918              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1919              reg++) {
1920                 if (efx->type->revision >= reg->min_revision &&
1921                     efx->type->revision <= reg->max_revision) {
1922                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1923                         buf += sizeof(efx_oword_t);
1924                 }
1925         }
1926
1927         for (table = efx_nic_reg_tables;
1928              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1929              table++) {
1930                 size_t size, i;
1931
1932                 if (!(efx->type->revision >= table->min_revision &&
1933                       efx->type->revision <= table->max_revision))
1934                         continue;
1935
1936                 size = min_t(size_t, table->step, 16);
1937
1938                 if (table->offset >= efx->type->mem_map_size) {
1939                         /* No longer mapped; return dummy data */
1940                         memcpy(buf, "\xde\xc0\xad\xde", 4);
1941                         buf += table->rows * size;
1942                         continue;
1943                 }
1944
1945                 for (i = 0; i < table->rows; i++) {
1946                         switch (table->step) {
1947                         case 4: /* 32-bit register or SRAM */
1948                                 efx_readd_table(efx, buf, table->offset, i);
1949                                 break;
1950                         case 8: /* 64-bit SRAM */
1951                                 efx_sram_readq(efx,
1952                                                efx->membase + table->offset,
1953                                                buf, i);
1954                                 break;
1955                         case 16: /* 128-bit register */
1956                                 efx_reado_table(efx, buf, table->offset, i);
1957                                 break;
1958                         case 32: /* 128-bit register, interleaved */
1959                                 efx_reado_table(efx, buf, table->offset, 2 * i);
1960                                 break;
1961                         default:
1962                                 WARN_ON(1);
1963                                 return;
1964                         }
1965                         buf += size;
1966                 }
1967         }
1968 }