sfc: Comment corrections
[pandora-kernel.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "spi.h"
23 #include "falcon.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "mdio_10g.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * Configurable values
35  *
36  **************************************************************************
37  */
38
39 static int disable_dma_stats;
40
41 /* This is set to 16 for a good reason.  In summary, if larger than
42  * 16, the descriptor cache holds more than a default socket
43  * buffer's worth of packets (for UDP we can only have at most one
44  * socket buffer's worth outstanding).  This combined with the fact
45  * that we only get 1 TX event per descriptor cache means the NIC
46  * goes idle.
47  */
48 #define TX_DC_ENTRIES 16
49 #define TX_DC_ENTRIES_ORDER 1
50 #define TX_DC_BASE 0x130000
51
52 #define RX_DC_ENTRIES 64
53 #define RX_DC_ENTRIES_ORDER 3
54 #define RX_DC_BASE 0x100000
55
56 static const unsigned int
57 /* "Large" EEPROM device: Atmel AT25640 or similar
58  * 8 KB, 16-bit address, 32 B write block */
59 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
60                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
61                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
62 /* Default flash device: Atmel AT25F1024
63  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
64 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
65                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
66                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
67                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
68                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
69
70 /* RX FIFO XOFF watermark
71  *
72  * When the amount of the RX FIFO increases used increases past this
73  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
74  * This also has an effect on RX/TX arbitration
75  */
76 static int rx_xoff_thresh_bytes = -1;
77 module_param(rx_xoff_thresh_bytes, int, 0644);
78 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
79
80 /* RX FIFO XON watermark
81  *
82  * When the amount of the RX FIFO used decreases below this
83  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
84  * This also has an effect on RX/TX arbitration
85  */
86 static int rx_xon_thresh_bytes = -1;
87 module_param(rx_xon_thresh_bytes, int, 0644);
88 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
89
90 /* If FALCON_MAX_INT_ERRORS internal errors occur within
91  * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
92  * disable it.
93  */
94 #define FALCON_INT_ERROR_EXPIRE 3600
95 #define FALCON_MAX_INT_ERRORS 5
96
97 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
98  */
99 #define FALCON_FLUSH_INTERVAL 10
100 #define FALCON_FLUSH_POLL_COUNT 100
101
102 /**************************************************************************
103  *
104  * Falcon constants
105  *
106  **************************************************************************
107  */
108
109 /* Size and alignment of special buffers (4KB) */
110 #define FALCON_BUF_SIZE 4096
111
112 /* Dummy SRAM size code */
113 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
114
115 #define FALCON_IS_DUAL_FUNC(efx)                \
116         (falcon_rev(efx) < FALCON_REV_B0)
117
118 /**************************************************************************
119  *
120  * Falcon hardware access
121  *
122  **************************************************************************/
123
124 static inline void falcon_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
125                                         unsigned int index)
126 {
127         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
128                         value, index);
129 }
130
131 /* Read the current event from the event queue */
132 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
133                                         unsigned int index)
134 {
135         return (((efx_qword_t *) (channel->eventq.addr)) + index);
136 }
137
138 /* See if an event is present
139  *
140  * We check both the high and low dword of the event for all ones.  We
141  * wrote all ones when we cleared the event, and no valid event can
142  * have all ones in either its high or low dwords.  This approach is
143  * robust against reordering.
144  *
145  * Note that using a single 64-bit comparison is incorrect; even
146  * though the CPU read will be atomic, the DMA write may not be.
147  */
148 static inline int falcon_event_present(efx_qword_t *event)
149 {
150         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
151                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
152 }
153
154 /**************************************************************************
155  *
156  * I2C bus - this is a bit-bashing interface using GPIO pins
157  * Note that it uses the output enables to tristate the outputs
158  * SDA is the data pin and SCL is the clock
159  *
160  **************************************************************************
161  */
162 static void falcon_setsda(void *data, int state)
163 {
164         struct efx_nic *efx = (struct efx_nic *)data;
165         efx_oword_t reg;
166
167         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
168         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
169         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
170 }
171
172 static void falcon_setscl(void *data, int state)
173 {
174         struct efx_nic *efx = (struct efx_nic *)data;
175         efx_oword_t reg;
176
177         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
178         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
179         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
180 }
181
182 static int falcon_getsda(void *data)
183 {
184         struct efx_nic *efx = (struct efx_nic *)data;
185         efx_oword_t reg;
186
187         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
188         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
189 }
190
191 static int falcon_getscl(void *data)
192 {
193         struct efx_nic *efx = (struct efx_nic *)data;
194         efx_oword_t reg;
195
196         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
197         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
198 }
199
200 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
201         .setsda         = falcon_setsda,
202         .setscl         = falcon_setscl,
203         .getsda         = falcon_getsda,
204         .getscl         = falcon_getscl,
205         .udelay         = 5,
206         /* Wait up to 50 ms for slave to let us pull SCL high */
207         .timeout        = DIV_ROUND_UP(HZ, 20),
208 };
209
210 /**************************************************************************
211  *
212  * Falcon special buffer handling
213  * Special buffers are used for event queues and the TX and RX
214  * descriptor rings.
215  *
216  *************************************************************************/
217
218 /*
219  * Initialise a Falcon special buffer
220  *
221  * This will define a buffer (previously allocated via
222  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
223  * it to be used for event queues, descriptor rings etc.
224  */
225 static void
226 falcon_init_special_buffer(struct efx_nic *efx,
227                            struct efx_special_buffer *buffer)
228 {
229         efx_qword_t buf_desc;
230         int index;
231         dma_addr_t dma_addr;
232         int i;
233
234         EFX_BUG_ON_PARANOID(!buffer->addr);
235
236         /* Write buffer descriptors to NIC */
237         for (i = 0; i < buffer->entries; i++) {
238                 index = buffer->index + i;
239                 dma_addr = buffer->dma_addr + (i * 4096);
240                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
241                         index, (unsigned long long)dma_addr);
242                 EFX_POPULATE_QWORD_3(buf_desc,
243                                      FRF_AZ_BUF_ADR_REGION, 0,
244                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
245                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
246                 falcon_write_buf_tbl(efx, &buf_desc, index);
247         }
248 }
249
250 /* Unmaps a buffer from Falcon and clears the buffer table entries */
251 static void
252 falcon_fini_special_buffer(struct efx_nic *efx,
253                            struct efx_special_buffer *buffer)
254 {
255         efx_oword_t buf_tbl_upd;
256         unsigned int start = buffer->index;
257         unsigned int end = (buffer->index + buffer->entries - 1);
258
259         if (!buffer->entries)
260                 return;
261
262         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
263                 buffer->index, buffer->index + buffer->entries - 1);
264
265         EFX_POPULATE_OWORD_4(buf_tbl_upd,
266                              FRF_AZ_BUF_UPD_CMD, 0,
267                              FRF_AZ_BUF_CLR_CMD, 1,
268                              FRF_AZ_BUF_CLR_END_ID, end,
269                              FRF_AZ_BUF_CLR_START_ID, start);
270         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
271 }
272
273 /*
274  * Allocate a new Falcon special buffer
275  *
276  * This allocates memory for a new buffer, clears it and allocates a
277  * new buffer ID range.  It does not write into Falcon's buffer table.
278  *
279  * This call will allocate 4KB buffers, since Falcon can't use 8KB
280  * buffers for event queues and descriptor rings.
281  */
282 static int falcon_alloc_special_buffer(struct efx_nic *efx,
283                                        struct efx_special_buffer *buffer,
284                                        unsigned int len)
285 {
286         len = ALIGN(len, FALCON_BUF_SIZE);
287
288         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
289                                             &buffer->dma_addr);
290         if (!buffer->addr)
291                 return -ENOMEM;
292         buffer->len = len;
293         buffer->entries = len / FALCON_BUF_SIZE;
294         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
295
296         /* All zeros is a potentially valid event so memset to 0xff */
297         memset(buffer->addr, 0xff, len);
298
299         /* Select new buffer ID */
300         buffer->index = efx->next_buffer_table;
301         efx->next_buffer_table += buffer->entries;
302
303         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
304                 "(virt %p phys %llx)\n", buffer->index,
305                 buffer->index + buffer->entries - 1,
306                 (u64)buffer->dma_addr, len,
307                 buffer->addr, (u64)virt_to_phys(buffer->addr));
308
309         return 0;
310 }
311
312 static void falcon_free_special_buffer(struct efx_nic *efx,
313                                        struct efx_special_buffer *buffer)
314 {
315         if (!buffer->addr)
316                 return;
317
318         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
319                 "(virt %p phys %llx)\n", buffer->index,
320                 buffer->index + buffer->entries - 1,
321                 (u64)buffer->dma_addr, buffer->len,
322                 buffer->addr, (u64)virt_to_phys(buffer->addr));
323
324         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
325                             buffer->dma_addr);
326         buffer->addr = NULL;
327         buffer->entries = 0;
328 }
329
330 /**************************************************************************
331  *
332  * Falcon generic buffer handling
333  * These buffers are used for interrupt status and MAC stats
334  *
335  **************************************************************************/
336
337 static int falcon_alloc_buffer(struct efx_nic *efx,
338                                struct efx_buffer *buffer, unsigned int len)
339 {
340         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
341                                             &buffer->dma_addr);
342         if (!buffer->addr)
343                 return -ENOMEM;
344         buffer->len = len;
345         memset(buffer->addr, 0, len);
346         return 0;
347 }
348
349 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
350 {
351         if (buffer->addr) {
352                 pci_free_consistent(efx->pci_dev, buffer->len,
353                                     buffer->addr, buffer->dma_addr);
354                 buffer->addr = NULL;
355         }
356 }
357
358 /**************************************************************************
359  *
360  * Falcon TX path
361  *
362  **************************************************************************/
363
364 /* Returns a pointer to the specified transmit descriptor in the TX
365  * descriptor queue belonging to the specified channel.
366  */
367 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
368                                                unsigned int index)
369 {
370         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
371 }
372
373 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
374 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
375 {
376         unsigned write_ptr;
377         efx_dword_t reg;
378
379         write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
380         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
381         efx_writed_page(tx_queue->efx, &reg,
382                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
383 }
384
385
386 /* For each entry inserted into the software descriptor ring, create a
387  * descriptor in the hardware TX descriptor ring (in host memory), and
388  * write a doorbell.
389  */
390 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
391 {
392
393         struct efx_tx_buffer *buffer;
394         efx_qword_t *txd;
395         unsigned write_ptr;
396
397         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
398
399         do {
400                 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
401                 buffer = &tx_queue->buffer[write_ptr];
402                 txd = falcon_tx_desc(tx_queue, write_ptr);
403                 ++tx_queue->write_count;
404
405                 /* Create TX descriptor ring entry */
406                 EFX_POPULATE_QWORD_4(*txd,
407                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
408                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409                                      FSF_AZ_TX_KER_BUF_REGION, 0,
410                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411         } while (tx_queue->write_count != tx_queue->insert_count);
412
413         wmb(); /* Ensure descriptors are written before they are fetched */
414         falcon_notify_tx_desc(tx_queue);
415 }
416
417 /* Allocate hardware resources for a TX queue */
418 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
419 {
420         struct efx_nic *efx = tx_queue->efx;
421         BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
422                      EFX_TXQ_SIZE & EFX_TXQ_MASK);
423         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
424                                            EFX_TXQ_SIZE * sizeof(efx_qword_t));
425 }
426
427 void falcon_init_tx(struct efx_tx_queue *tx_queue)
428 {
429         efx_oword_t tx_desc_ptr;
430         struct efx_nic *efx = tx_queue->efx;
431
432         tx_queue->flushed = false;
433
434         /* Pin TX descriptor ring */
435         falcon_init_special_buffer(efx, &tx_queue->txd);
436
437         /* Push TX descriptor ring to card */
438         EFX_POPULATE_OWORD_10(tx_desc_ptr,
439                               FRF_AZ_TX_DESCQ_EN, 1,
440                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
441                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
442                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
443                               FRF_AZ_TX_DESCQ_EVQ_ID,
444                               tx_queue->channel->channel,
445                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
446                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
447                               FRF_AZ_TX_DESCQ_SIZE,
448                               __ffs(tx_queue->txd.entries),
449                               FRF_AZ_TX_DESCQ_TYPE, 0,
450                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
451
452         if (falcon_rev(efx) >= FALCON_REV_B0) {
453                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
454                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
455                 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
456                                     !csum);
457         }
458
459         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
460                          tx_queue->queue);
461
462         if (falcon_rev(efx) < FALCON_REV_B0) {
463                 efx_oword_t reg;
464
465                 /* Only 128 bits in this register */
466                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
467
468                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
469                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
470                         clear_bit_le(tx_queue->queue, (void *)&reg);
471                 else
472                         set_bit_le(tx_queue->queue, (void *)&reg);
473                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
474         }
475 }
476
477 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
478 {
479         struct efx_nic *efx = tx_queue->efx;
480         efx_oword_t tx_flush_descq;
481
482         /* Post a flush command */
483         EFX_POPULATE_OWORD_2(tx_flush_descq,
484                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
485                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
486         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
487 }
488
489 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
490 {
491         struct efx_nic *efx = tx_queue->efx;
492         efx_oword_t tx_desc_ptr;
493
494         /* The queue should have been flushed */
495         WARN_ON(!tx_queue->flushed);
496
497         /* Remove TX descriptor ring from card */
498         EFX_ZERO_OWORD(tx_desc_ptr);
499         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
500                          tx_queue->queue);
501
502         /* Unpin TX descriptor ring */
503         falcon_fini_special_buffer(efx, &tx_queue->txd);
504 }
505
506 /* Free buffers backing TX queue */
507 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
508 {
509         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
510 }
511
512 /**************************************************************************
513  *
514  * Falcon RX path
515  *
516  **************************************************************************/
517
518 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
519 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
520                                                unsigned int index)
521 {
522         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
523 }
524
525 /* This creates an entry in the RX descriptor queue */
526 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
527                                         unsigned index)
528 {
529         struct efx_rx_buffer *rx_buf;
530         efx_qword_t *rxd;
531
532         rxd = falcon_rx_desc(rx_queue, index);
533         rx_buf = efx_rx_buffer(rx_queue, index);
534         EFX_POPULATE_QWORD_3(*rxd,
535                              FSF_AZ_RX_KER_BUF_SIZE,
536                              rx_buf->len -
537                              rx_queue->efx->type->rx_buffer_padding,
538                              FSF_AZ_RX_KER_BUF_REGION, 0,
539                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
540 }
541
542 /* This writes to the RX_DESC_WPTR register for the specified receive
543  * descriptor ring.
544  */
545 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
546 {
547         efx_dword_t reg;
548         unsigned write_ptr;
549
550         while (rx_queue->notified_count != rx_queue->added_count) {
551                 falcon_build_rx_desc(rx_queue,
552                                      rx_queue->notified_count &
553                                      EFX_RXQ_MASK);
554                 ++rx_queue->notified_count;
555         }
556
557         wmb();
558         write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
559         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
560         efx_writed_page(rx_queue->efx, &reg,
561                         FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
562 }
563
564 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
565 {
566         struct efx_nic *efx = rx_queue->efx;
567         BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
568                      EFX_RXQ_SIZE & EFX_RXQ_MASK);
569         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
570                                            EFX_RXQ_SIZE * sizeof(efx_qword_t));
571 }
572
573 void falcon_init_rx(struct efx_rx_queue *rx_queue)
574 {
575         efx_oword_t rx_desc_ptr;
576         struct efx_nic *efx = rx_queue->efx;
577         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
578         bool iscsi_digest_en = is_b0;
579
580         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
581                 rx_queue->queue, rx_queue->rxd.index,
582                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
583
584         rx_queue->flushed = false;
585
586         /* Pin RX descriptor ring */
587         falcon_init_special_buffer(efx, &rx_queue->rxd);
588
589         /* Push RX descriptor ring to card */
590         EFX_POPULATE_OWORD_10(rx_desc_ptr,
591                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
592                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
593                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
594                               FRF_AZ_RX_DESCQ_EVQ_ID,
595                               rx_queue->channel->channel,
596                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
597                               FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
598                               FRF_AZ_RX_DESCQ_SIZE,
599                               __ffs(rx_queue->rxd.entries),
600                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
601                               /* For >=B0 this is scatter so disable */
602                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
603                               FRF_AZ_RX_DESCQ_EN, 1);
604         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
605                          rx_queue->queue);
606 }
607
608 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
609 {
610         struct efx_nic *efx = rx_queue->efx;
611         efx_oword_t rx_flush_descq;
612
613         /* Post a flush command */
614         EFX_POPULATE_OWORD_2(rx_flush_descq,
615                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
616                              FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
617         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
618 }
619
620 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
621 {
622         efx_oword_t rx_desc_ptr;
623         struct efx_nic *efx = rx_queue->efx;
624
625         /* The queue should already have been flushed */
626         WARN_ON(!rx_queue->flushed);
627
628         /* Remove RX descriptor ring from card */
629         EFX_ZERO_OWORD(rx_desc_ptr);
630         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
631                          rx_queue->queue);
632
633         /* Unpin RX descriptor ring */
634         falcon_fini_special_buffer(efx, &rx_queue->rxd);
635 }
636
637 /* Free buffers backing RX queue */
638 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
639 {
640         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
641 }
642
643 /**************************************************************************
644  *
645  * Falcon event queue processing
646  * Event queues are processed by per-channel tasklets.
647  *
648  **************************************************************************/
649
650 /* Update a channel's event queue's read pointer (RPTR) register
651  *
652  * This writes the EVQ_RPTR_REG register for the specified channel's
653  * event queue.
654  *
655  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
656  * whereas channel->eventq_read_ptr contains the index of the "next to
657  * read" event.
658  */
659 void falcon_eventq_read_ack(struct efx_channel *channel)
660 {
661         efx_dword_t reg;
662         struct efx_nic *efx = channel->efx;
663
664         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
665         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
666                             channel->channel);
667 }
668
669 /* Use HW to insert a SW defined event */
670 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
671 {
672         efx_oword_t drv_ev_reg;
673
674         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
675                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
676         drv_ev_reg.u32[0] = event->u32[0];
677         drv_ev_reg.u32[1] = event->u32[1];
678         drv_ev_reg.u32[2] = 0;
679         drv_ev_reg.u32[3] = 0;
680         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
681         efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
682 }
683
684 /* Handle a transmit completion event
685  *
686  * Falcon batches TX completion events; the message we receive is of
687  * the form "complete all TX events up to this index".
688  */
689 static void falcon_handle_tx_event(struct efx_channel *channel,
690                                    efx_qword_t *event)
691 {
692         unsigned int tx_ev_desc_ptr;
693         unsigned int tx_ev_q_label;
694         struct efx_tx_queue *tx_queue;
695         struct efx_nic *efx = channel->efx;
696
697         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
698                 /* Transmit completion */
699                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
700                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
701                 tx_queue = &efx->tx_queue[tx_ev_q_label];
702                 channel->irq_mod_score +=
703                         (tx_ev_desc_ptr - tx_queue->read_count) &
704                         EFX_TXQ_MASK;
705                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
706         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
707                 /* Rewrite the FIFO write pointer */
708                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
709                 tx_queue = &efx->tx_queue[tx_ev_q_label];
710
711                 if (efx_dev_registered(efx))
712                         netif_tx_lock(efx->net_dev);
713                 falcon_notify_tx_desc(tx_queue);
714                 if (efx_dev_registered(efx))
715                         netif_tx_unlock(efx->net_dev);
716         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
717                    EFX_WORKAROUND_10727(efx)) {
718                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
719         } else {
720                 EFX_ERR(efx, "channel %d unexpected TX event "
721                         EFX_QWORD_FMT"\n", channel->channel,
722                         EFX_QWORD_VAL(*event));
723         }
724 }
725
726 /* Detect errors included in the rx_evt_pkt_ok bit. */
727 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
728                                     const efx_qword_t *event,
729                                     bool *rx_ev_pkt_ok,
730                                     bool *discard)
731 {
732         struct efx_nic *efx = rx_queue->efx;
733         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
734         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
735         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
736         bool rx_ev_other_err, rx_ev_pause_frm;
737         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
738         unsigned rx_ev_pkt_type;
739
740         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
741         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
742         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
743         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
744         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
745                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
746         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_FRAG_ERR);
747         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
748                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
749         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
750                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
751         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
752         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
753         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
754                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
755         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
756
757         /* Every error apart from tobe_disc and pause_frm */
758         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
759                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
760                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
761
762         /* Count errors that are not in MAC stats.  Ignore expected
763          * checksum errors during self-test. */
764         if (rx_ev_frm_trunc)
765                 ++rx_queue->channel->n_rx_frm_trunc;
766         else if (rx_ev_tobe_disc)
767                 ++rx_queue->channel->n_rx_tobe_disc;
768         else if (!efx->loopback_selftest) {
769                 if (rx_ev_ip_hdr_chksum_err)
770                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
771                 else if (rx_ev_tcp_udp_chksum_err)
772                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
773         }
774         if (rx_ev_ip_frag_err)
775                 ++rx_queue->channel->n_rx_ip_frag_err;
776
777         /* The frame must be discarded if any of these are true. */
778         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
779                     rx_ev_tobe_disc | rx_ev_pause_frm);
780
781         /* TOBE_DISC is expected on unicast mismatches; don't print out an
782          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
783          * to a FIFO overflow.
784          */
785 #ifdef EFX_ENABLE_DEBUG
786         if (rx_ev_other_err) {
787                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
788                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
789                             rx_queue->queue, EFX_QWORD_VAL(*event),
790                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
791                             rx_ev_ip_hdr_chksum_err ?
792                             " [IP_HDR_CHKSUM_ERR]" : "",
793                             rx_ev_tcp_udp_chksum_err ?
794                             " [TCP_UDP_CHKSUM_ERR]" : "",
795                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
796                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
797                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
798                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
799                             rx_ev_pause_frm ? " [PAUSE]" : "");
800         }
801 #endif
802 }
803
804 /* Handle receive events that are not in-order. */
805 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
806                                        unsigned index)
807 {
808         struct efx_nic *efx = rx_queue->efx;
809         unsigned expected, dropped;
810
811         expected = rx_queue->removed_count & EFX_RXQ_MASK;
812         dropped = (index - expected) & EFX_RXQ_MASK;
813         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
814                 dropped, index, expected);
815
816         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
817                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
818 }
819
820 /* Handle a packet received event
821  *
822  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
823  * wrong destination address
824  * Also "is multicast" and "matches multicast filter" flags can be used to
825  * discard non-matching multicast packets.
826  */
827 static void falcon_handle_rx_event(struct efx_channel *channel,
828                                    const efx_qword_t *event)
829 {
830         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
831         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
832         unsigned expected_ptr;
833         bool rx_ev_pkt_ok, discard = false, checksummed;
834         struct efx_rx_queue *rx_queue;
835         struct efx_nic *efx = channel->efx;
836
837         /* Basic packet information */
838         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
839         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
840         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
841         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
842         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
843         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
844                 channel->channel);
845
846         rx_queue = &efx->rx_queue[channel->channel];
847
848         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
849         expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
850         if (unlikely(rx_ev_desc_ptr != expected_ptr))
851                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
852
853         if (likely(rx_ev_pkt_ok)) {
854                 /* If packet is marked as OK and packet type is TCP/IPv4 or
855                  * UDP/IPv4, then we can rely on the hardware checksum.
856                  */
857                 checksummed =
858                         efx->rx_checksum_enabled &&
859                         (rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP ||
860                          rx_ev_hdr_type == FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP);
861         } else {
862                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
863                                         &discard);
864                 checksummed = false;
865         }
866
867         /* Detect multicast packets that didn't match the filter */
868         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
869         if (rx_ev_mcast_pkt) {
870                 unsigned int rx_ev_mcast_hash_match =
871                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
872
873                 if (unlikely(!rx_ev_mcast_hash_match))
874                         discard = true;
875         }
876
877         channel->irq_mod_score += 2;
878
879         /* Handle received packet */
880         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
881                       checksummed, discard);
882 }
883
884 /* Global events are basically PHY events */
885 static void falcon_handle_global_event(struct efx_channel *channel,
886                                        efx_qword_t *event)
887 {
888         struct efx_nic *efx = channel->efx;
889         bool handled = false;
890
891         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
892             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
893             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
894                 efx->phy_op->clear_interrupt(efx);
895                 queue_work(efx->workqueue, &efx->phy_work);
896                 handled = true;
897         }
898
899         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
900             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
901                 queue_work(efx->workqueue, &efx->mac_work);
902                 handled = true;
903         }
904
905         if (falcon_rev(efx) <= FALCON_REV_A1 ?
906             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
907             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
908                 EFX_ERR(efx, "channel %d seen global RX_RESET "
909                         "event. Resetting.\n", channel->channel);
910
911                 atomic_inc(&efx->rx_reset);
912                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
913                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
914                 handled = true;
915         }
916
917         if (!handled)
918                 EFX_ERR(efx, "channel %d unknown global event "
919                         EFX_QWORD_FMT "\n", channel->channel,
920                         EFX_QWORD_VAL(*event));
921 }
922
923 static void falcon_handle_driver_event(struct efx_channel *channel,
924                                        efx_qword_t *event)
925 {
926         struct efx_nic *efx = channel->efx;
927         unsigned int ev_sub_code;
928         unsigned int ev_sub_data;
929
930         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
931         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
932
933         switch (ev_sub_code) {
934         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
935                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
936                           channel->channel, ev_sub_data);
937                 break;
938         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
939                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
940                           channel->channel, ev_sub_data);
941                 break;
942         case FSE_AZ_EVQ_INIT_DONE_EV:
943                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
944                         channel->channel, ev_sub_data);
945                 break;
946         case FSE_AZ_SRM_UPD_DONE_EV:
947                 EFX_TRACE(efx, "channel %d SRAM update done\n",
948                           channel->channel);
949                 break;
950         case FSE_AZ_WAKE_UP_EV:
951                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
952                           channel->channel, ev_sub_data);
953                 break;
954         case FSE_AZ_TIMER_EV:
955                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
956                           channel->channel, ev_sub_data);
957                 break;
958         case FSE_AA_RX_RECOVER_EV:
959                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
960                         "Resetting.\n", channel->channel);
961                 atomic_inc(&efx->rx_reset);
962                 efx_schedule_reset(efx,
963                                    EFX_WORKAROUND_6555(efx) ?
964                                    RESET_TYPE_RX_RECOVERY :
965                                    RESET_TYPE_DISABLE);
966                 break;
967         case FSE_BZ_RX_DSC_ERROR_EV:
968                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
969                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
970                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
971                 break;
972         case FSE_BZ_TX_DSC_ERROR_EV:
973                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
974                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
975                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
976                 break;
977         default:
978                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
979                           "data %04x\n", channel->channel, ev_sub_code,
980                           ev_sub_data);
981                 break;
982         }
983 }
984
985 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
986 {
987         unsigned int read_ptr;
988         efx_qword_t event, *p_event;
989         int ev_code;
990         int rx_packets = 0;
991
992         read_ptr = channel->eventq_read_ptr;
993
994         do {
995                 p_event = falcon_event(channel, read_ptr);
996                 event = *p_event;
997
998                 if (!falcon_event_present(&event))
999                         /* End of events */
1000                         break;
1001
1002                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1003                           channel->channel, EFX_QWORD_VAL(event));
1004
1005                 /* Clear this event by marking it all ones */
1006                 EFX_SET_QWORD(*p_event);
1007
1008                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1009
1010                 switch (ev_code) {
1011                 case FSE_AZ_EV_CODE_RX_EV:
1012                         falcon_handle_rx_event(channel, &event);
1013                         ++rx_packets;
1014                         break;
1015                 case FSE_AZ_EV_CODE_TX_EV:
1016                         falcon_handle_tx_event(channel, &event);
1017                         break;
1018                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1019                         channel->eventq_magic = EFX_QWORD_FIELD(
1020                                 event, FSF_AZ_DRV_GEN_EV_MAGIC);
1021                         EFX_LOG(channel->efx, "channel %d received generated "
1022                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1023                                 EFX_QWORD_VAL(event));
1024                         break;
1025                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1026                         falcon_handle_global_event(channel, &event);
1027                         break;
1028                 case FSE_AZ_EV_CODE_DRIVER_EV:
1029                         falcon_handle_driver_event(channel, &event);
1030                         break;
1031                 default:
1032                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1033                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1034                                 ev_code, EFX_QWORD_VAL(event));
1035                 }
1036
1037                 /* Increment read pointer */
1038                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1039
1040         } while (rx_packets < rx_quota);
1041
1042         channel->eventq_read_ptr = read_ptr;
1043         return rx_packets;
1044 }
1045
1046 void falcon_set_int_moderation(struct efx_channel *channel)
1047 {
1048         efx_dword_t timer_cmd;
1049         struct efx_nic *efx = channel->efx;
1050
1051         /* Set timer register */
1052         if (channel->irq_moderation) {
1053                 EFX_POPULATE_DWORD_2(timer_cmd,
1054                                      FRF_AB_TC_TIMER_MODE,
1055                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
1056                                      FRF_AB_TC_TIMER_VAL,
1057                                      channel->irq_moderation - 1);
1058         } else {
1059                 EFX_POPULATE_DWORD_2(timer_cmd,
1060                                      FRF_AB_TC_TIMER_MODE,
1061                                      FFE_BB_TIMER_MODE_DIS,
1062                                      FRF_AB_TC_TIMER_VAL, 0);
1063         }
1064         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
1065         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
1066                                channel->channel);
1067
1068 }
1069
1070 /* Allocate buffer table entries for event queue */
1071 int falcon_probe_eventq(struct efx_channel *channel)
1072 {
1073         struct efx_nic *efx = channel->efx;
1074         BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1075                      EFX_EVQ_SIZE & EFX_EVQ_MASK);
1076         return falcon_alloc_special_buffer(efx, &channel->eventq,
1077                                            EFX_EVQ_SIZE * sizeof(efx_qword_t));
1078 }
1079
1080 void falcon_init_eventq(struct efx_channel *channel)
1081 {
1082         efx_oword_t evq_ptr;
1083         struct efx_nic *efx = channel->efx;
1084
1085         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1086                 channel->channel, channel->eventq.index,
1087                 channel->eventq.index + channel->eventq.entries - 1);
1088
1089         /* Pin event queue buffer */
1090         falcon_init_special_buffer(efx, &channel->eventq);
1091
1092         /* Fill event queue with all ones (i.e. empty events) */
1093         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1094
1095         /* Push event queue to card */
1096         EFX_POPULATE_OWORD_3(evq_ptr,
1097                              FRF_AZ_EVQ_EN, 1,
1098                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1099                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1100         efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1101                          channel->channel);
1102
1103         falcon_set_int_moderation(channel);
1104 }
1105
1106 void falcon_fini_eventq(struct efx_channel *channel)
1107 {
1108         efx_oword_t eventq_ptr;
1109         struct efx_nic *efx = channel->efx;
1110
1111         /* Remove event queue from card */
1112         EFX_ZERO_OWORD(eventq_ptr);
1113         efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1114                          channel->channel);
1115
1116         /* Unpin event queue */
1117         falcon_fini_special_buffer(efx, &channel->eventq);
1118 }
1119
1120 /* Free buffers backing event queue */
1121 void falcon_remove_eventq(struct efx_channel *channel)
1122 {
1123         falcon_free_special_buffer(channel->efx, &channel->eventq);
1124 }
1125
1126
1127 /* Generates a test event on the event queue.  A subsequent call to
1128  * process_eventq() should pick up the event and place the value of
1129  * "magic" into channel->eventq_magic;
1130  */
1131 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1132 {
1133         efx_qword_t test_event;
1134
1135         EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1136                              FSE_AZ_EV_CODE_DRV_GEN_EV,
1137                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1138         falcon_generate_event(channel, &test_event);
1139 }
1140
1141 void falcon_sim_phy_event(struct efx_nic *efx)
1142 {
1143         efx_qword_t phy_event;
1144
1145         EFX_POPULATE_QWORD_1(phy_event, FSF_AZ_EV_CODE,
1146                              FSE_AZ_EV_CODE_GLOBAL_EV);
1147         if (EFX_IS10G(efx))
1148                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_XG_PHY0_INTR, 1);
1149         else
1150                 EFX_SET_QWORD_FIELD(phy_event, FSF_AB_GLB_EV_G_PHY0_INTR, 1);
1151
1152         falcon_generate_event(&efx->channel[0], &phy_event);
1153 }
1154
1155 /**************************************************************************
1156  *
1157  * Flush handling
1158  *
1159  **************************************************************************/
1160
1161
1162 static void falcon_poll_flush_events(struct efx_nic *efx)
1163 {
1164         struct efx_channel *channel = &efx->channel[0];
1165         struct efx_tx_queue *tx_queue;
1166         struct efx_rx_queue *rx_queue;
1167         unsigned int read_ptr = channel->eventq_read_ptr;
1168         unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1169
1170         do {
1171                 efx_qword_t *event = falcon_event(channel, read_ptr);
1172                 int ev_code, ev_sub_code, ev_queue;
1173                 bool ev_failed;
1174
1175                 if (!falcon_event_present(event))
1176                         break;
1177
1178                 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1179                 ev_sub_code = EFX_QWORD_FIELD(*event,
1180                                               FSF_AZ_DRIVER_EV_SUBCODE);
1181                 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1182                     ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1183                         ev_queue = EFX_QWORD_FIELD(*event,
1184                                                    FSF_AZ_DRIVER_EV_SUBDATA);
1185                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1186                                 tx_queue = efx->tx_queue + ev_queue;
1187                                 tx_queue->flushed = true;
1188                         }
1189                 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1190                            ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1191                         ev_queue = EFX_QWORD_FIELD(
1192                                 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1193                         ev_failed = EFX_QWORD_FIELD(
1194                                 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1195                         if (ev_queue < efx->n_rx_queues) {
1196                                 rx_queue = efx->rx_queue + ev_queue;
1197
1198                                 /* retry the rx flush */
1199                                 if (ev_failed)
1200                                         falcon_flush_rx_queue(rx_queue);
1201                                 else
1202                                         rx_queue->flushed = true;
1203                         }
1204                 }
1205
1206                 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1207         } while (read_ptr != end_ptr);
1208 }
1209
1210 /* Handle tx and rx flushes at the same time, since they run in
1211  * parallel in the hardware and there's no reason for us to
1212  * serialise them */
1213 int falcon_flush_queues(struct efx_nic *efx)
1214 {
1215         struct efx_rx_queue *rx_queue;
1216         struct efx_tx_queue *tx_queue;
1217         int i;
1218         bool outstanding;
1219
1220         /* Issue flush requests */
1221         efx_for_each_tx_queue(tx_queue, efx) {
1222                 tx_queue->flushed = false;
1223                 falcon_flush_tx_queue(tx_queue);
1224         }
1225         efx_for_each_rx_queue(rx_queue, efx) {
1226                 rx_queue->flushed = false;
1227                 falcon_flush_rx_queue(rx_queue);
1228         }
1229
1230         /* Poll the evq looking for flush completions. Since we're not pushing
1231          * any more rx or tx descriptors at this point, we're in no danger of
1232          * overflowing the evq whilst we wait */
1233         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1234                 msleep(FALCON_FLUSH_INTERVAL);
1235                 falcon_poll_flush_events(efx);
1236
1237                 /* Check if every queue has been succesfully flushed */
1238                 outstanding = false;
1239                 efx_for_each_tx_queue(tx_queue, efx)
1240                         outstanding |= !tx_queue->flushed;
1241                 efx_for_each_rx_queue(rx_queue, efx)
1242                         outstanding |= !rx_queue->flushed;
1243                 if (!outstanding)
1244                         return 0;
1245         }
1246
1247         /* Mark the queues as all flushed. We're going to return failure
1248          * leading to a reset, or fake up success anyway. "flushed" now
1249          * indicates that we tried to flush. */
1250         efx_for_each_tx_queue(tx_queue, efx) {
1251                 if (!tx_queue->flushed)
1252                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1253                                 tx_queue->queue);
1254                 tx_queue->flushed = true;
1255         }
1256         efx_for_each_rx_queue(rx_queue, efx) {
1257                 if (!rx_queue->flushed)
1258                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1259                                 rx_queue->queue);
1260                 rx_queue->flushed = true;
1261         }
1262
1263         if (EFX_WORKAROUND_7803(efx))
1264                 return 0;
1265
1266         return -ETIMEDOUT;
1267 }
1268
1269 /**************************************************************************
1270  *
1271  * Falcon hardware interrupts
1272  * The hardware interrupt handler does very little work; all the event
1273  * queue processing is carried out by per-channel tasklets.
1274  *
1275  **************************************************************************/
1276
1277 /* Enable/disable/generate Falcon interrupts */
1278 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1279                                      int force)
1280 {
1281         efx_oword_t int_en_reg_ker;
1282
1283         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1284                              FRF_AZ_KER_INT_KER, force,
1285                              FRF_AZ_DRV_INT_EN_KER, enabled);
1286         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1287 }
1288
1289 void falcon_enable_interrupts(struct efx_nic *efx)
1290 {
1291         efx_oword_t int_adr_reg_ker;
1292         struct efx_channel *channel;
1293
1294         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1295         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1296
1297         /* Program address */
1298         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1299                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1300                              EFX_INT_MODE_USE_MSI(efx),
1301                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1302         efx_writeo(efx, &int_adr_reg_ker, FR_AZ_INT_ADR_KER);
1303
1304         /* Enable interrupts */
1305         falcon_interrupts(efx, 1, 0);
1306
1307         /* Force processing of all the channels to get the EVQ RPTRs up to
1308            date */
1309         efx_for_each_channel(channel, efx)
1310                 efx_schedule_channel(channel);
1311 }
1312
1313 void falcon_disable_interrupts(struct efx_nic *efx)
1314 {
1315         /* Disable interrupts */
1316         falcon_interrupts(efx, 0, 0);
1317 }
1318
1319 /* Generate a Falcon test interrupt
1320  * Interrupt must already have been enabled, otherwise nasty things
1321  * may happen.
1322  */
1323 void falcon_generate_interrupt(struct efx_nic *efx)
1324 {
1325         falcon_interrupts(efx, 1, 1);
1326 }
1327
1328 /* Acknowledge a legacy interrupt from Falcon
1329  *
1330  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1331  *
1332  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1333  * BIU. Interrupt acknowledge is read sensitive so must write instead
1334  * (then read to ensure the BIU collector is flushed)
1335  *
1336  * NB most hardware supports MSI interrupts
1337  */
1338 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1339 {
1340         efx_dword_t reg;
1341
1342         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
1343         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
1344         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
1345 }
1346
1347 /* Process a fatal interrupt
1348  * Disable bus mastering ASAP and schedule a reset
1349  */
1350 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1351 {
1352         struct falcon_nic_data *nic_data = efx->nic_data;
1353         efx_oword_t *int_ker = efx->irq_status.addr;
1354         efx_oword_t fatal_intr;
1355         int error, mem_perr;
1356
1357         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1358         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1359
1360         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1361                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1362                 EFX_OWORD_VAL(fatal_intr),
1363                 error ? "disabling bus mastering" : "no recognised error");
1364         if (error == 0)
1365                 goto out;
1366
1367         /* If this is a memory parity error dump which blocks are offending */
1368         mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1369         if (mem_perr) {
1370                 efx_oword_t reg;
1371                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1372                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1373                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1374         }
1375
1376         /* Disable both devices */
1377         pci_clear_master(efx->pci_dev);
1378         if (FALCON_IS_DUAL_FUNC(efx))
1379                 pci_clear_master(nic_data->pci_dev2);
1380         falcon_disable_interrupts(efx);
1381
1382         /* Count errors and reset or disable the NIC accordingly */
1383         if (efx->int_error_count == 0 ||
1384             time_after(jiffies, efx->int_error_expire)) {
1385                 efx->int_error_count = 0;
1386                 efx->int_error_expire =
1387                         jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
1388         }
1389         if (++efx->int_error_count < FALCON_MAX_INT_ERRORS) {
1390                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1391                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1392         } else {
1393                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1394                         "NIC will be disabled\n");
1395                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1396         }
1397 out:
1398         return IRQ_HANDLED;
1399 }
1400
1401 /* Handle a legacy interrupt from Falcon
1402  * Acknowledges the interrupt and schedule event queue processing.
1403  */
1404 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1405 {
1406         struct efx_nic *efx = dev_id;
1407         efx_oword_t *int_ker = efx->irq_status.addr;
1408         irqreturn_t result = IRQ_NONE;
1409         struct efx_channel *channel;
1410         efx_dword_t reg;
1411         u32 queues;
1412         int syserr;
1413
1414         /* Read the ISR which also ACKs the interrupts */
1415         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1416         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1417
1418         /* Check to see if we have a serious error condition */
1419         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1420         if (unlikely(syserr))
1421                 return falcon_fatal_interrupt(efx);
1422
1423         /* Schedule processing of any interrupting queues */
1424         efx_for_each_channel(channel, efx) {
1425                 if ((queues & 1) ||
1426                     falcon_event_present(
1427                             falcon_event(channel, channel->eventq_read_ptr))) {
1428                         efx_schedule_channel(channel);
1429                         result = IRQ_HANDLED;
1430                 }
1431                 queues >>= 1;
1432         }
1433
1434         if (result == IRQ_HANDLED) {
1435                 efx->last_irq_cpu = raw_smp_processor_id();
1436                 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1437                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1438         }
1439
1440         return result;
1441 }
1442
1443
1444 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1445 {
1446         struct efx_nic *efx = dev_id;
1447         efx_oword_t *int_ker = efx->irq_status.addr;
1448         struct efx_channel *channel;
1449         int syserr;
1450         int queues;
1451
1452         /* Check to see if this is our interrupt.  If it isn't, we
1453          * exit without having touched the hardware.
1454          */
1455         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1456                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1457                           raw_smp_processor_id());
1458                 return IRQ_NONE;
1459         }
1460         efx->last_irq_cpu = raw_smp_processor_id();
1461         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1462                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1463
1464         /* Check to see if we have a serious error condition */
1465         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1466         if (unlikely(syserr))
1467                 return falcon_fatal_interrupt(efx);
1468
1469         /* Determine interrupting queues, clear interrupt status
1470          * register and acknowledge the device interrupt.
1471          */
1472         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1473         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1474         EFX_ZERO_OWORD(*int_ker);
1475         wmb(); /* Ensure the vector is cleared before interrupt ack */
1476         falcon_irq_ack_a1(efx);
1477
1478         /* Schedule processing of any interrupting queues */
1479         channel = &efx->channel[0];
1480         while (queues) {
1481                 if (queues & 0x01)
1482                         efx_schedule_channel(channel);
1483                 channel++;
1484                 queues >>= 1;
1485         }
1486
1487         return IRQ_HANDLED;
1488 }
1489
1490 /* Handle an MSI interrupt from Falcon
1491  *
1492  * Handle an MSI hardware interrupt.  This routine schedules event
1493  * queue processing.  No interrupt acknowledgement cycle is necessary.
1494  * Also, we never need to check that the interrupt is for us, since
1495  * MSI interrupts cannot be shared.
1496  */
1497 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1498 {
1499         struct efx_channel *channel = dev_id;
1500         struct efx_nic *efx = channel->efx;
1501         efx_oword_t *int_ker = efx->irq_status.addr;
1502         int syserr;
1503
1504         efx->last_irq_cpu = raw_smp_processor_id();
1505         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1506                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1507
1508         /* Check to see if we have a serious error condition */
1509         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1510         if (unlikely(syserr))
1511                 return falcon_fatal_interrupt(efx);
1512
1513         /* Schedule processing of the channel */
1514         efx_schedule_channel(channel);
1515
1516         return IRQ_HANDLED;
1517 }
1518
1519
1520 /* Setup RSS indirection table.
1521  * This maps from the hash value of the packet to RXQ
1522  */
1523 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1524 {
1525         int i = 0;
1526         unsigned long offset;
1527         efx_dword_t dword;
1528
1529         if (falcon_rev(efx) < FALCON_REV_B0)
1530                 return;
1531
1532         for (offset = FR_BZ_RX_INDIRECTION_TBL;
1533              offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1534              offset += 0x10) {
1535                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1536                                      i % efx->n_rx_queues);
1537                 efx_writed(efx, &dword, offset);
1538                 i++;
1539         }
1540 }
1541
1542 /* Hook interrupt handler(s)
1543  * Try MSI and then legacy interrupts.
1544  */
1545 int falcon_init_interrupt(struct efx_nic *efx)
1546 {
1547         struct efx_channel *channel;
1548         int rc;
1549
1550         if (!EFX_INT_MODE_USE_MSI(efx)) {
1551                 irq_handler_t handler;
1552                 if (falcon_rev(efx) >= FALCON_REV_B0)
1553                         handler = falcon_legacy_interrupt_b0;
1554                 else
1555                         handler = falcon_legacy_interrupt_a1;
1556
1557                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1558                                  efx->name, efx);
1559                 if (rc) {
1560                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1561                                 efx->pci_dev->irq);
1562                         goto fail1;
1563                 }
1564                 return 0;
1565         }
1566
1567         /* Hook MSI or MSI-X interrupt */
1568         efx_for_each_channel(channel, efx) {
1569                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1570                                  IRQF_PROBE_SHARED, /* Not shared */
1571                                  channel->name, channel);
1572                 if (rc) {
1573                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1574                         goto fail2;
1575                 }
1576         }
1577
1578         return 0;
1579
1580  fail2:
1581         efx_for_each_channel(channel, efx)
1582                 free_irq(channel->irq, channel);
1583  fail1:
1584         return rc;
1585 }
1586
1587 void falcon_fini_interrupt(struct efx_nic *efx)
1588 {
1589         struct efx_channel *channel;
1590         efx_oword_t reg;
1591
1592         /* Disable MSI/MSI-X interrupts */
1593         efx_for_each_channel(channel, efx) {
1594                 if (channel->irq)
1595                         free_irq(channel->irq, channel);
1596         }
1597
1598         /* ACK legacy interrupt */
1599         if (falcon_rev(efx) >= FALCON_REV_B0)
1600                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1601         else
1602                 falcon_irq_ack_a1(efx);
1603
1604         /* Disable legacy interrupt */
1605         if (efx->legacy_irq)
1606                 free_irq(efx->legacy_irq, efx);
1607 }
1608
1609 /**************************************************************************
1610  *
1611  * EEPROM/flash
1612  *
1613  **************************************************************************
1614  */
1615
1616 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1617
1618 static int falcon_spi_poll(struct efx_nic *efx)
1619 {
1620         efx_oword_t reg;
1621         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
1622         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1623 }
1624
1625 /* Wait for SPI command completion */
1626 static int falcon_spi_wait(struct efx_nic *efx)
1627 {
1628         /* Most commands will finish quickly, so we start polling at
1629          * very short intervals.  Sometimes the command may have to
1630          * wait for VPD or expansion ROM access outside of our
1631          * control, so we allow up to 100 ms. */
1632         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1633         int i;
1634
1635         for (i = 0; i < 10; i++) {
1636                 if (!falcon_spi_poll(efx))
1637                         return 0;
1638                 udelay(10);
1639         }
1640
1641         for (;;) {
1642                 if (!falcon_spi_poll(efx))
1643                         return 0;
1644                 if (time_after_eq(jiffies, timeout)) {
1645                         EFX_ERR(efx, "timed out waiting for SPI\n");
1646                         return -ETIMEDOUT;
1647                 }
1648                 schedule_timeout_uninterruptible(1);
1649         }
1650 }
1651
1652 int falcon_spi_cmd(const struct efx_spi_device *spi,
1653                    unsigned int command, int address,
1654                    const void *in, void *out, size_t len)
1655 {
1656         struct efx_nic *efx = spi->efx;
1657         bool addressed = (address >= 0);
1658         bool reading = (out != NULL);
1659         efx_oword_t reg;
1660         int rc;
1661
1662         /* Input validation */
1663         if (len > FALCON_SPI_MAX_LEN)
1664                 return -EINVAL;
1665         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1666
1667         /* Check that previous command is not still running */
1668         rc = falcon_spi_poll(efx);
1669         if (rc)
1670                 return rc;
1671
1672         /* Program address register, if we have an address */
1673         if (addressed) {
1674                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
1675                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
1676         }
1677
1678         /* Program data register, if we have data */
1679         if (in != NULL) {
1680                 memcpy(&reg, in, len);
1681                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
1682         }
1683
1684         /* Issue read/write command */
1685         EFX_POPULATE_OWORD_7(reg,
1686                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
1687                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
1688                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
1689                              FRF_AB_EE_SPI_HCMD_READ, reading,
1690                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
1691                              FRF_AB_EE_SPI_HCMD_ADBCNT,
1692                              (addressed ? spi->addr_len : 0),
1693                              FRF_AB_EE_SPI_HCMD_ENC, command);
1694         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
1695
1696         /* Wait for read/write to complete */
1697         rc = falcon_spi_wait(efx);
1698         if (rc)
1699                 return rc;
1700
1701         /* Read data */
1702         if (out != NULL) {
1703                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
1704                 memcpy(out, &reg, len);
1705         }
1706
1707         return 0;
1708 }
1709
1710 static size_t
1711 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1712 {
1713         return min(FALCON_SPI_MAX_LEN,
1714                    (spi->block_size - (start & (spi->block_size - 1))));
1715 }
1716
1717 static inline u8
1718 efx_spi_munge_command(const struct efx_spi_device *spi,
1719                       const u8 command, const unsigned int address)
1720 {
1721         return command | (((address >> 8) & spi->munge_address) << 3);
1722 }
1723
1724 /* Wait up to 10 ms for buffered write completion */
1725 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1726 {
1727         struct efx_nic *efx = spi->efx;
1728         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1729         u8 status;
1730         int rc;
1731
1732         for (;;) {
1733                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1734                                     &status, sizeof(status));
1735                 if (rc)
1736                         return rc;
1737                 if (!(status & SPI_STATUS_NRDY))
1738                         return 0;
1739                 if (time_after_eq(jiffies, timeout)) {
1740                         EFX_ERR(efx, "SPI write timeout on device %d"
1741                                 " last status=0x%02x\n",
1742                                 spi->device_id, status);
1743                         return -ETIMEDOUT;
1744                 }
1745                 schedule_timeout_uninterruptible(1);
1746         }
1747 }
1748
1749 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1750                     size_t len, size_t *retlen, u8 *buffer)
1751 {
1752         size_t block_len, pos = 0;
1753         unsigned int command;
1754         int rc = 0;
1755
1756         while (pos < len) {
1757                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1758
1759                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1760                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1761                                     buffer + pos, block_len);
1762                 if (rc)
1763                         break;
1764                 pos += block_len;
1765
1766                 /* Avoid locking up the system */
1767                 cond_resched();
1768                 if (signal_pending(current)) {
1769                         rc = -EINTR;
1770                         break;
1771                 }
1772         }
1773
1774         if (retlen)
1775                 *retlen = pos;
1776         return rc;
1777 }
1778
1779 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1780                      size_t len, size_t *retlen, const u8 *buffer)
1781 {
1782         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1783         size_t block_len, pos = 0;
1784         unsigned int command;
1785         int rc = 0;
1786
1787         while (pos < len) {
1788                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1789                 if (rc)
1790                         break;
1791
1792                 block_len = min(len - pos,
1793                                 falcon_spi_write_limit(spi, start + pos));
1794                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1795                 rc = falcon_spi_cmd(spi, command, start + pos,
1796                                     buffer + pos, NULL, block_len);
1797                 if (rc)
1798                         break;
1799
1800                 rc = falcon_spi_wait_write(spi);
1801                 if (rc)
1802                         break;
1803
1804                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1805                 rc = falcon_spi_cmd(spi, command, start + pos,
1806                                     NULL, verify_buffer, block_len);
1807                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1808                         rc = -EIO;
1809                         break;
1810                 }
1811
1812                 pos += block_len;
1813
1814                 /* Avoid locking up the system */
1815                 cond_resched();
1816                 if (signal_pending(current)) {
1817                         rc = -EINTR;
1818                         break;
1819                 }
1820         }
1821
1822         if (retlen)
1823                 *retlen = pos;
1824         return rc;
1825 }
1826
1827 /**************************************************************************
1828  *
1829  * MAC wrapper
1830  *
1831  **************************************************************************
1832  */
1833
1834 static int falcon_reset_macs(struct efx_nic *efx)
1835 {
1836         efx_oword_t reg;
1837         int count;
1838
1839         if (falcon_rev(efx) < FALCON_REV_B0) {
1840                 /* It's not safe to use GLB_CTL_REG to reset the
1841                  * macs, so instead use the internal MAC resets
1842                  */
1843                 if (!EFX_IS10G(efx)) {
1844                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
1845                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1846                         udelay(1000);
1847
1848                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
1849                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
1850                         udelay(1000);
1851                         return 0;
1852                 } else {
1853                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1854                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1855
1856                         for (count = 0; count < 10000; count++) {
1857                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1858                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1859                                     0)
1860                                         return 0;
1861                                 udelay(10);
1862                         }
1863
1864                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1865                         return -ETIMEDOUT;
1866                 }
1867         }
1868
1869         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1870          * the drain sequence with the statistics fetch */
1871         efx_stats_disable(efx);
1872
1873         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1874         EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, 1);
1875         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1876
1877         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1878         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1879         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1880         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1881         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1882
1883         count = 0;
1884         while (1) {
1885                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1886                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1887                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1888                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1889                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1890                                 count);
1891                         break;
1892                 }
1893                 if (count > 20) {
1894                         EFX_ERR(efx, "MAC reset failed\n");
1895                         break;
1896                 }
1897                 count++;
1898                 udelay(10);
1899         }
1900
1901         efx_stats_enable(efx);
1902
1903         /* If we've reset the EM block and the link is up, then
1904          * we'll have to kick the XAUI link so the PHY can recover */
1905         if (efx->link_state.up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1906                 falcon_reset_xaui(efx);
1907
1908         return 0;
1909 }
1910
1911 void falcon_drain_tx_fifo(struct efx_nic *efx)
1912 {
1913         efx_oword_t reg;
1914
1915         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1916             (efx->loopback_mode != LOOPBACK_NONE))
1917                 return;
1918
1919         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1920         /* There is no point in draining more than once */
1921         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1922                 return;
1923
1924         falcon_reset_macs(efx);
1925 }
1926
1927 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1928 {
1929         efx_oword_t reg;
1930
1931         if (falcon_rev(efx) < FALCON_REV_B0)
1932                 return;
1933
1934         /* Isolate the MAC -> RX */
1935         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1936         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1937         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1938
1939         if (!efx->link_state.up)
1940                 falcon_drain_tx_fifo(efx);
1941 }
1942
1943 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1944 {
1945         struct efx_link_state *link_state = &efx->link_state;
1946         efx_oword_t reg;
1947         int link_speed;
1948         bool tx_fc;
1949
1950         switch (link_state->speed) {
1951         case 10000: link_speed = 3; break;
1952         case 1000:  link_speed = 2; break;
1953         case 100:   link_speed = 1; break;
1954         default:    link_speed = 0; break;
1955         }
1956         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1957          * as advertised.  Disable to ensure packets are not
1958          * indefinitely held and TX queue can be flushed at any point
1959          * while the link is down. */
1960         EFX_POPULATE_OWORD_5(reg,
1961                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1962                              FRF_AB_MAC_BCAD_ACPT, 1,
1963                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
1964                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1965                              FRF_AB_MAC_SPEED, link_speed);
1966         /* On B0, MAC backpressure can be disabled and packets get
1967          * discarded. */
1968         if (falcon_rev(efx) >= FALCON_REV_B0) {
1969                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1970                                     !link_state->up);
1971         }
1972
1973         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1974
1975         /* Restore the multicast hash registers. */
1976         falcon_set_multicast_hash(efx);
1977
1978         /* Transmission of pause frames when RX crosses the threshold is
1979          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1980          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1981         tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1982         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1983         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, tx_fc);
1984
1985         /* Unisolate the MAC -> RX */
1986         if (falcon_rev(efx) >= FALCON_REV_B0)
1987                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1988         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1989 }
1990
1991 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1992 {
1993         efx_oword_t reg;
1994         u32 *dma_done;
1995         int i;
1996
1997         if (disable_dma_stats)
1998                 return 0;
1999
2000         /* Statistics fetch will fail if the MAC is in TX drain */
2001         if (falcon_rev(efx) >= FALCON_REV_B0) {
2002                 efx_oword_t temp;
2003                 efx_reado(efx, &temp, FR_AB_MAC_CTRL);
2004                 if (EFX_OWORD_FIELD(temp, FRF_BB_TXFIFO_DRAIN_EN))
2005                         return 0;
2006         }
2007
2008         dma_done = (efx->stats_buffer.addr + done_offset);
2009         *dma_done = FALCON_STATS_NOT_DONE;
2010         wmb(); /* ensure done flag is clear */
2011
2012         /* Initiate DMA transfer of stats */
2013         EFX_POPULATE_OWORD_2(reg,
2014                              FRF_AB_MAC_STAT_DMA_CMD, 1,
2015                              FRF_AB_MAC_STAT_DMA_ADR,
2016                              efx->stats_buffer.dma_addr);
2017         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
2018
2019         /* Wait for transfer to complete */
2020         for (i = 0; i < 400; i++) {
2021                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2022                         rmb(); /* Ensure the stats are valid. */
2023                         return 0;
2024                 }
2025                 udelay(10);
2026         }
2027
2028         EFX_ERR(efx, "timed out waiting for statistics\n");
2029         return -ETIMEDOUT;
2030 }
2031
2032 /**************************************************************************
2033  *
2034  * PHY access via GMII
2035  *
2036  **************************************************************************
2037  */
2038
2039 /* Wait for GMII access to complete */
2040 static int falcon_gmii_wait(struct efx_nic *efx)
2041 {
2042         efx_oword_t md_stat;
2043         int count;
2044
2045         /* wait upto 50ms - taken max from datasheet */
2046         for (count = 0; count < 5000; count++) {
2047                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
2048                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
2049                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
2050                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
2051                                 EFX_ERR(efx, "error from GMII access "
2052                                         EFX_OWORD_FMT"\n",
2053                                         EFX_OWORD_VAL(md_stat));
2054                                 return -EIO;
2055                         }
2056                         return 0;
2057                 }
2058                 udelay(10);
2059         }
2060         EFX_ERR(efx, "timed out waiting for GMII\n");
2061         return -ETIMEDOUT;
2062 }
2063
2064 /* Write an MDIO register of a PHY connected to Falcon. */
2065 static int falcon_mdio_write(struct net_device *net_dev,
2066                              int prtad, int devad, u16 addr, u16 value)
2067 {
2068         struct efx_nic *efx = netdev_priv(net_dev);
2069         efx_oword_t reg;
2070         int rc;
2071
2072         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
2073                     prtad, devad, addr, value);
2074
2075         spin_lock_bh(&efx->phy_lock);
2076
2077         /* Check MDIO not currently being accessed */
2078         rc = falcon_gmii_wait(efx);
2079         if (rc)
2080                 goto out;
2081
2082         /* Write the address/ID register */
2083         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2084         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2085
2086         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2087                              FRF_AB_MD_DEV_ADR, devad);
2088         efx_writeo(efx, &reg, FR_AB_MD_ID);
2089
2090         /* Write data */
2091         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
2092         efx_writeo(efx, &reg, FR_AB_MD_TXD);
2093
2094         EFX_POPULATE_OWORD_2(reg,
2095                              FRF_AB_MD_WRC, 1,
2096                              FRF_AB_MD_GC, 0);
2097         efx_writeo(efx, &reg, FR_AB_MD_CS);
2098
2099         /* Wait for data to be written */
2100         rc = falcon_gmii_wait(efx);
2101         if (rc) {
2102                 /* Abort the write operation */
2103                 EFX_POPULATE_OWORD_2(reg,
2104                                      FRF_AB_MD_WRC, 0,
2105                                      FRF_AB_MD_GC, 1);
2106                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2107                 udelay(10);
2108         }
2109
2110  out:
2111         spin_unlock_bh(&efx->phy_lock);
2112         return rc;
2113 }
2114
2115 /* Read an MDIO register of a PHY connected to Falcon. */
2116 static int falcon_mdio_read(struct net_device *net_dev,
2117                             int prtad, int devad, u16 addr)
2118 {
2119         struct efx_nic *efx = netdev_priv(net_dev);
2120         efx_oword_t reg;
2121         int rc;
2122
2123         spin_lock_bh(&efx->phy_lock);
2124
2125         /* Check MDIO not currently being accessed */
2126         rc = falcon_gmii_wait(efx);
2127         if (rc)
2128                 goto out;
2129
2130         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
2131         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
2132
2133         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
2134                              FRF_AB_MD_DEV_ADR, devad);
2135         efx_writeo(efx, &reg, FR_AB_MD_ID);
2136
2137         /* Request data to be read */
2138         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
2139         efx_writeo(efx, &reg, FR_AB_MD_CS);
2140
2141         /* Wait for data to become available */
2142         rc = falcon_gmii_wait(efx);
2143         if (rc == 0) {
2144                 efx_reado(efx, &reg, FR_AB_MD_RXD);
2145                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
2146                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
2147                             prtad, devad, addr, rc);
2148         } else {
2149                 /* Abort the read operation */
2150                 EFX_POPULATE_OWORD_2(reg,
2151                                      FRF_AB_MD_RIC, 0,
2152                                      FRF_AB_MD_GC, 1);
2153                 efx_writeo(efx, &reg, FR_AB_MD_CS);
2154
2155                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
2156                         prtad, devad, addr, rc);
2157         }
2158
2159  out:
2160         spin_unlock_bh(&efx->phy_lock);
2161         return rc;
2162 }
2163
2164 int falcon_switch_mac(struct efx_nic *efx)
2165 {
2166         struct efx_mac_operations *old_mac_op = efx->mac_op;
2167         efx_oword_t nic_stat;
2168         unsigned strap_val;
2169         int rc = 0;
2170
2171         /* Don't try to fetch MAC stats while we're switching MACs */
2172         efx_stats_disable(efx);
2173
2174         /* Internal loopbacks override the phy speed setting */
2175         if (efx->loopback_mode == LOOPBACK_GMAC) {
2176                 efx->link_state.speed = 1000;
2177                 efx->link_state.fd = true;
2178         } else if (LOOPBACK_INTERNAL(efx)) {
2179                 efx->link_state.speed = 10000;
2180                 efx->link_state.fd = true;
2181         }
2182
2183         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2184         efx->mac_op = (EFX_IS10G(efx) ?
2185                        &falcon_xmac_operations : &falcon_gmac_operations);
2186
2187         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2188          * changed, because this function is run post online reset */
2189         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2190         strap_val = EFX_IS10G(efx) ? 5 : 3;
2191         if (falcon_rev(efx) >= FALCON_REV_B0) {
2192                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
2193                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
2194                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
2195         } else {
2196                 /* Falcon A1 does not support 1G/10G speed switching
2197                  * and must not be used with a PHY that does. */
2198                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
2199                        strap_val);
2200         }
2201
2202         if (old_mac_op == efx->mac_op)
2203                 goto out;
2204
2205         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2206         /* Not all macs support a mac-level link state */
2207         efx->mac_up = true;
2208
2209         rc = falcon_reset_macs(efx);
2210 out:
2211         efx_stats_enable(efx);
2212         return rc;
2213 }
2214
2215 /* This call is responsible for hooking in the MAC and PHY operations */
2216 int falcon_probe_port(struct efx_nic *efx)
2217 {
2218         int rc;
2219
2220         switch (efx->phy_type) {
2221         case PHY_TYPE_SFX7101:
2222                 efx->phy_op = &falcon_sfx7101_phy_ops;
2223                 break;
2224         case PHY_TYPE_SFT9001A:
2225         case PHY_TYPE_SFT9001B:
2226                 efx->phy_op = &falcon_sft9001_phy_ops;
2227                 break;
2228         case PHY_TYPE_QT2022C2:
2229         case PHY_TYPE_QT2025C:
2230                 efx->phy_op = &falcon_qt202x_phy_ops;
2231                 break;
2232         default:
2233                 EFX_ERR(efx, "Unknown PHY type %d\n",
2234                         efx->phy_type);
2235                 return -ENODEV;
2236         }
2237
2238         if (efx->phy_op->macs & EFX_XMAC)
2239                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2240                                         (1 << LOOPBACK_XGXS) |
2241                                         (1 << LOOPBACK_XAUI));
2242         if (efx->phy_op->macs & EFX_GMAC)
2243                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2244         efx->loopback_modes |= efx->phy_op->loopbacks;
2245
2246         /* Set up MDIO structure for PHY */
2247         efx->mdio.mmds = efx->phy_op->mmds;
2248         efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
2249         efx->mdio.mdio_read = falcon_mdio_read;
2250         efx->mdio.mdio_write = falcon_mdio_write;
2251
2252         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2253         if (falcon_rev(efx) >= FALCON_REV_B0)
2254                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2255         else
2256                 efx->wanted_fc = EFX_FC_RX;
2257
2258         /* Allocate buffer for stats */
2259         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2260                                  FALCON_MAC_STATS_SIZE);
2261         if (rc)
2262                 return rc;
2263         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
2264                 (u64)efx->stats_buffer.dma_addr,
2265                 efx->stats_buffer.addr,
2266                 (u64)virt_to_phys(efx->stats_buffer.addr));
2267
2268         return 0;
2269 }
2270
2271 void falcon_remove_port(struct efx_nic *efx)
2272 {
2273         falcon_free_buffer(efx, &efx->stats_buffer);
2274 }
2275
2276 /**************************************************************************
2277  *
2278  * Multicast filtering
2279  *
2280  **************************************************************************
2281  */
2282
2283 void falcon_set_multicast_hash(struct efx_nic *efx)
2284 {
2285         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2286
2287         /* Broadcast packets go through the multicast hash filter.
2288          * ether_crc_le() of the broadcast address is 0xbe2612ff
2289          * so we always add bit 0xff to the mask.
2290          */
2291         set_bit_le(0xff, mc_hash->byte);
2292
2293         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
2294         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
2295 }
2296
2297
2298 /**************************************************************************
2299  *
2300  * Falcon test code
2301  *
2302  **************************************************************************/
2303
2304 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2305 {
2306         struct falcon_nvconfig *nvconfig;
2307         struct efx_spi_device *spi;
2308         void *region;
2309         int rc, magic_num, struct_ver;
2310         __le16 *word, *limit;
2311         u32 csum;
2312
2313         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2314         if (!spi)
2315                 return -EINVAL;
2316
2317         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2318         if (!region)
2319                 return -ENOMEM;
2320         nvconfig = region + FALCON_NVCONFIG_OFFSET;
2321
2322         mutex_lock(&efx->spi_lock);
2323         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2324         mutex_unlock(&efx->spi_lock);
2325         if (rc) {
2326                 EFX_ERR(efx, "Failed to read %s\n",
2327                         efx->spi_flash ? "flash" : "EEPROM");
2328                 rc = -EIO;
2329                 goto out;
2330         }
2331
2332         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2333         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2334
2335         rc = -EINVAL;
2336         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
2337                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2338                 goto out;
2339         }
2340         if (struct_ver < 2) {
2341                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2342                 goto out;
2343         } else if (struct_ver < 4) {
2344                 word = &nvconfig->board_magic_num;
2345                 limit = (__le16 *) (nvconfig + 1);
2346         } else {
2347                 word = region;
2348                 limit = region + FALCON_NVCONFIG_END;
2349         }
2350         for (csum = 0; word < limit; ++word)
2351                 csum += le16_to_cpu(*word);
2352
2353         if (~csum & 0xffff) {
2354                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2355                 goto out;
2356         }
2357
2358         rc = 0;
2359         if (nvconfig_out)
2360                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2361
2362  out:
2363         kfree(region);
2364         return rc;
2365 }
2366
2367 /* Registers tested in the falcon register test */
2368 static struct {
2369         unsigned address;
2370         efx_oword_t mask;
2371 } efx_test_registers[] = {
2372         { FR_AZ_ADR_REGION,
2373           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2374         { FR_AZ_RX_CFG,
2375           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2376         { FR_AZ_TX_CFG,
2377           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2378         { FR_AZ_TX_RESERVED,
2379           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2380         { FR_AB_MAC_CTRL,
2381           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2382         { FR_AZ_SRM_TX_DC_CFG,
2383           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2384         { FR_AZ_RX_DC_CFG,
2385           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2386         { FR_AZ_RX_DC_PF_WM,
2387           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2388         { FR_BZ_DP_CTRL,
2389           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2390         { FR_AB_GM_CFG2,
2391           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2392         { FR_AB_GMF_CFG0,
2393           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2394         { FR_AB_XM_GLB_CFG,
2395           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2396         { FR_AB_XM_TX_CFG,
2397           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2398         { FR_AB_XM_RX_CFG,
2399           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2400         { FR_AB_XM_RX_PARAM,
2401           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2402         { FR_AB_XM_FC,
2403           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2404         { FR_AB_XM_ADR_LO,
2405           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2406         { FR_AB_XX_SD_CTL,
2407           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2408 };
2409
2410 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2411                                      const efx_oword_t *mask)
2412 {
2413         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2414                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2415 }
2416
2417 int falcon_test_registers(struct efx_nic *efx)
2418 {
2419         unsigned address = 0, i, j;
2420         efx_oword_t mask, imask, original, reg, buf;
2421
2422         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2423         WARN_ON(!LOOPBACK_INTERNAL(efx));
2424
2425         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2426                 address = efx_test_registers[i].address;
2427                 mask = imask = efx_test_registers[i].mask;
2428                 EFX_INVERT_OWORD(imask);
2429
2430                 efx_reado(efx, &original, address);
2431
2432                 /* bit sweep on and off */
2433                 for (j = 0; j < 128; j++) {
2434                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2435                                 continue;
2436
2437                         /* Test this testable bit can be set in isolation */
2438                         EFX_AND_OWORD(reg, original, mask);
2439                         EFX_SET_OWORD32(reg, j, j, 1);
2440
2441                         efx_writeo(efx, &reg, address);
2442                         efx_reado(efx, &buf, address);
2443
2444                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2445                                 goto fail;
2446
2447                         /* Test this testable bit can be cleared in isolation */
2448                         EFX_OR_OWORD(reg, original, mask);
2449                         EFX_SET_OWORD32(reg, j, j, 0);
2450
2451                         efx_writeo(efx, &reg, address);
2452                         efx_reado(efx, &buf, address);
2453
2454                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2455                                 goto fail;
2456                 }
2457
2458                 efx_writeo(efx, &original, address);
2459         }
2460
2461         return 0;
2462
2463 fail:
2464         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2465                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2466                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2467         return -EIO;
2468 }
2469
2470 /**************************************************************************
2471  *
2472  * Device reset
2473  *
2474  **************************************************************************
2475  */
2476
2477 /* Resets NIC to known state.  This routine must be called in process
2478  * context and is allowed to sleep. */
2479 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2480 {
2481         struct falcon_nic_data *nic_data = efx->nic_data;
2482         efx_oword_t glb_ctl_reg_ker;
2483         int rc;
2484
2485         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
2486
2487         /* Initiate device reset */
2488         if (method == RESET_TYPE_WORLD) {
2489                 rc = pci_save_state(efx->pci_dev);
2490                 if (rc) {
2491                         EFX_ERR(efx, "failed to backup PCI state of primary "
2492                                 "function prior to hardware reset\n");
2493                         goto fail1;
2494                 }
2495                 if (FALCON_IS_DUAL_FUNC(efx)) {
2496                         rc = pci_save_state(nic_data->pci_dev2);
2497                         if (rc) {
2498                                 EFX_ERR(efx, "failed to backup PCI state of "
2499                                         "secondary function prior to "
2500                                         "hardware reset\n");
2501                                 goto fail2;
2502                         }
2503                 }
2504
2505                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2506                                      FRF_AB_EXT_PHY_RST_DUR,
2507                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2508                                      FRF_AB_SWRST, 1);
2509         } else {
2510                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2511                                      /* exclude PHY from "invisible" reset */
2512                                      FRF_AB_EXT_PHY_RST_CTL,
2513                                      method == RESET_TYPE_INVISIBLE,
2514                                      /* exclude EEPROM/flash and PCIe */
2515                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2516                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2517                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2518                                      FRF_AB_EE_RST_CTL, 1,
2519                                      FRF_AB_EXT_PHY_RST_DUR,
2520                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2521                                      FRF_AB_SWRST, 1);
2522         }
2523         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2524
2525         EFX_LOG(efx, "waiting for hardware reset\n");
2526         schedule_timeout_uninterruptible(HZ / 20);
2527
2528         /* Restore PCI configuration if needed */
2529         if (method == RESET_TYPE_WORLD) {
2530                 if (FALCON_IS_DUAL_FUNC(efx)) {
2531                         rc = pci_restore_state(nic_data->pci_dev2);
2532                         if (rc) {
2533                                 EFX_ERR(efx, "failed to restore PCI config for "
2534                                         "the secondary function\n");
2535                                 goto fail3;
2536                         }
2537                 }
2538                 rc = pci_restore_state(efx->pci_dev);
2539                 if (rc) {
2540                         EFX_ERR(efx, "failed to restore PCI config for the "
2541                                 "primary function\n");
2542                         goto fail4;
2543                 }
2544                 EFX_LOG(efx, "successfully restored PCI config\n");
2545         }
2546
2547         /* Assert that reset complete */
2548         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2549         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2550                 rc = -ETIMEDOUT;
2551                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2552                 goto fail5;
2553         }
2554         EFX_LOG(efx, "hardware reset complete\n");
2555
2556         return 0;
2557
2558         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2559 fail2:
2560 fail3:
2561         pci_restore_state(efx->pci_dev);
2562 fail1:
2563 fail4:
2564 fail5:
2565         return rc;
2566 }
2567
2568 /* Zeroes out the SRAM contents.  This routine must be called in
2569  * process context and is allowed to sleep.
2570  */
2571 static int falcon_reset_sram(struct efx_nic *efx)
2572 {
2573         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2574         int count;
2575
2576         /* Set the SRAM wake/sleep GPIO appropriately. */
2577         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2578         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2579         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2580         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2581
2582         /* Initiate SRAM reset */
2583         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2584                              FRF_AZ_SRM_INIT_EN, 1,
2585                              FRF_AZ_SRM_NB_SZ, 0);
2586         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2587
2588         /* Wait for SRAM reset to complete */
2589         count = 0;
2590         do {
2591                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2592
2593                 /* SRAM reset is slow; expect around 16ms */
2594                 schedule_timeout_uninterruptible(HZ / 50);
2595
2596                 /* Check for reset complete */
2597                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2598                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2599                         EFX_LOG(efx, "SRAM reset complete\n");
2600
2601                         return 0;
2602                 }
2603         } while (++count < 20); /* wait upto 0.4 sec */
2604
2605         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2606         return -ETIMEDOUT;
2607 }
2608
2609 static int falcon_spi_device_init(struct efx_nic *efx,
2610                                   struct efx_spi_device **spi_device_ret,
2611                                   unsigned int device_id, u32 device_type)
2612 {
2613         struct efx_spi_device *spi_device;
2614
2615         if (device_type != 0) {
2616                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2617                 if (!spi_device)
2618                         return -ENOMEM;
2619                 spi_device->device_id = device_id;
2620                 spi_device->size =
2621                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2622                 spi_device->addr_len =
2623                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2624                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2625                                              spi_device->addr_len == 1);
2626                 spi_device->erase_command =
2627                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2628                 spi_device->erase_size =
2629                         1 << SPI_DEV_TYPE_FIELD(device_type,
2630                                                 SPI_DEV_TYPE_ERASE_SIZE);
2631                 spi_device->block_size =
2632                         1 << SPI_DEV_TYPE_FIELD(device_type,
2633                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2634
2635                 spi_device->efx = efx;
2636         } else {
2637                 spi_device = NULL;
2638         }
2639
2640         kfree(*spi_device_ret);
2641         *spi_device_ret = spi_device;
2642         return 0;
2643 }
2644
2645
2646 static void falcon_remove_spi_devices(struct efx_nic *efx)
2647 {
2648         kfree(efx->spi_eeprom);
2649         efx->spi_eeprom = NULL;
2650         kfree(efx->spi_flash);
2651         efx->spi_flash = NULL;
2652 }
2653
2654 /* Extract non-volatile configuration */
2655 static int falcon_probe_nvconfig(struct efx_nic *efx)
2656 {
2657         struct falcon_nvconfig *nvconfig;
2658         int board_rev;
2659         int rc;
2660
2661         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2662         if (!nvconfig)
2663                 return -ENOMEM;
2664
2665         rc = falcon_read_nvram(efx, nvconfig);
2666         if (rc == -EINVAL) {
2667                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2668                 efx->phy_type = PHY_TYPE_NONE;
2669                 efx->mdio.prtad = MDIO_PRTAD_NONE;
2670                 board_rev = 0;
2671                 rc = 0;
2672         } else if (rc) {
2673                 goto fail1;
2674         } else {
2675                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2676                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2677
2678                 efx->phy_type = v2->port0_phy_type;
2679                 efx->mdio.prtad = v2->port0_phy_addr;
2680                 board_rev = le16_to_cpu(v2->board_revision);
2681
2682                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2683                         rc = falcon_spi_device_init(
2684                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2685                                 le32_to_cpu(v3->spi_device_type
2686                                             [FFE_AB_SPI_DEVICE_FLASH]));
2687                         if (rc)
2688                                 goto fail2;
2689                         rc = falcon_spi_device_init(
2690                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2691                                 le32_to_cpu(v3->spi_device_type
2692                                             [FFE_AB_SPI_DEVICE_EEPROM]));
2693                         if (rc)
2694                                 goto fail2;
2695                 }
2696         }
2697
2698         /* Read the MAC addresses */
2699         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2700
2701         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
2702
2703         falcon_probe_board(efx, board_rev);
2704
2705         kfree(nvconfig);
2706         return 0;
2707
2708  fail2:
2709         falcon_remove_spi_devices(efx);
2710  fail1:
2711         kfree(nvconfig);
2712         return rc;
2713 }
2714
2715 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2716  * count, port speed).  Set workaround and feature flags accordingly.
2717  */
2718 static int falcon_probe_nic_variant(struct efx_nic *efx)
2719 {
2720         efx_oword_t altera_build;
2721         efx_oword_t nic_stat;
2722
2723         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
2724         if (EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER)) {
2725                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2726                 return -ENODEV;
2727         }
2728
2729         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2730
2731         switch (falcon_rev(efx)) {
2732         case FALCON_REV_A0:
2733         case 0xff:
2734                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2735                 return -ENODEV;
2736
2737         case FALCON_REV_A1:
2738                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2739                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2740                         return -ENODEV;
2741                 }
2742                 break;
2743
2744         case FALCON_REV_B0:
2745                 break;
2746
2747         default:
2748                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2749                 return -ENODEV;
2750         }
2751
2752         /* Initial assumed speed */
2753         efx->link_state.speed = EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) ? 10000 : 1000;
2754
2755         return 0;
2756 }
2757
2758 /* Probe all SPI devices on the NIC */
2759 static void falcon_probe_spi_devices(struct efx_nic *efx)
2760 {
2761         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2762         int boot_dev;
2763
2764         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2765         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2766         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2767
2768         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2769                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2770                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2771                 EFX_LOG(efx, "Booted from %s\n",
2772                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
2773         } else {
2774                 /* Disable VPD and set clock dividers to safe
2775                  * values for initial programming. */
2776                 boot_dev = -1;
2777                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2778                         " setting SPI config\n");
2779                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2780                                      /* 125 MHz / 7 ~= 20 MHz */
2781                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2782                                      /* 125 MHz / 63 ~= 2 MHz */
2783                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2784                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2785         }
2786
2787         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2788                 falcon_spi_device_init(efx, &efx->spi_flash,
2789                                        FFE_AB_SPI_DEVICE_FLASH,
2790                                        default_flash_type);
2791         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2792                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2793                                        FFE_AB_SPI_DEVICE_EEPROM,
2794                                        large_eeprom_type);
2795 }
2796
2797 int falcon_probe_nic(struct efx_nic *efx)
2798 {
2799         struct falcon_nic_data *nic_data;
2800         struct falcon_board *board;
2801         int rc;
2802
2803         /* Allocate storage for hardware specific data */
2804         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2805         if (!nic_data)
2806                 return -ENOMEM;
2807         efx->nic_data = nic_data;
2808
2809         /* Determine number of ports etc. */
2810         rc = falcon_probe_nic_variant(efx);
2811         if (rc)
2812                 goto fail1;
2813
2814         /* Probe secondary function if expected */
2815         if (FALCON_IS_DUAL_FUNC(efx)) {
2816                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2817
2818                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2819                                              dev))) {
2820                         if (dev->bus == efx->pci_dev->bus &&
2821                             dev->devfn == efx->pci_dev->devfn + 1) {
2822                                 nic_data->pci_dev2 = dev;
2823                                 break;
2824                         }
2825                 }
2826                 if (!nic_data->pci_dev2) {
2827                         EFX_ERR(efx, "failed to find secondary function\n");
2828                         rc = -ENODEV;
2829                         goto fail2;
2830                 }
2831         }
2832
2833         /* Now we can reset the NIC */
2834         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2835         if (rc) {
2836                 EFX_ERR(efx, "failed to reset NIC\n");
2837                 goto fail3;
2838         }
2839
2840         /* Allocate memory for INT_KER */
2841         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2842         if (rc)
2843                 goto fail4;
2844         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2845
2846         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
2847                 (u64)efx->irq_status.dma_addr,
2848                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
2849
2850         falcon_probe_spi_devices(efx);
2851
2852         /* Read in the non-volatile configuration */
2853         rc = falcon_probe_nvconfig(efx);
2854         if (rc)
2855                 goto fail5;
2856
2857         /* Initialise I2C adapter */
2858         board = falcon_board(efx);
2859         board->i2c_adap.owner = THIS_MODULE;
2860         board->i2c_data = falcon_i2c_bit_operations;
2861         board->i2c_data.data = efx;
2862         board->i2c_adap.algo_data = &board->i2c_data;
2863         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2864         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2865                 sizeof(board->i2c_adap.name));
2866         rc = i2c_bit_add_bus(&board->i2c_adap);
2867         if (rc)
2868                 goto fail5;
2869
2870         rc = falcon_board(efx)->init(efx);
2871         if (rc) {
2872                 EFX_ERR(efx, "failed to initialise board\n");
2873                 goto fail6;
2874         }
2875
2876         return 0;
2877
2878  fail6:
2879         BUG_ON(i2c_del_adapter(&board->i2c_adap));
2880         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2881  fail5:
2882         falcon_remove_spi_devices(efx);
2883         falcon_free_buffer(efx, &efx->irq_status);
2884  fail4:
2885  fail3:
2886         if (nic_data->pci_dev2) {
2887                 pci_dev_put(nic_data->pci_dev2);
2888                 nic_data->pci_dev2 = NULL;
2889         }
2890  fail2:
2891  fail1:
2892         kfree(efx->nic_data);
2893         return rc;
2894 }
2895
2896 static void falcon_init_rx_cfg(struct efx_nic *efx)
2897 {
2898         /* Prior to Siena the RX DMA engine will split each frame at
2899          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2900          * be so large that that never happens. */
2901         const unsigned huge_buf_size = (3 * 4096) >> 5;
2902         /* RX control FIFO thresholds (32 entries) */
2903         const unsigned ctrl_xon_thr = 20;
2904         const unsigned ctrl_xoff_thr = 25;
2905         /* RX data FIFO thresholds (256-byte units; size varies) */
2906         int data_xon_thr = rx_xon_thresh_bytes >> 8;
2907         int data_xoff_thr = rx_xoff_thresh_bytes >> 8;
2908         efx_oword_t reg;
2909
2910         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2911         if (falcon_rev(efx) <= FALCON_REV_A1) {
2912                 /* Data FIFO size is 5.5K */
2913                 if (data_xon_thr < 0)
2914                         data_xon_thr = 512 >> 8;
2915                 if (data_xoff_thr < 0)
2916                         data_xoff_thr = 2048 >> 8;
2917                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2918                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2919                                     huge_buf_size);
2920                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
2921                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
2922                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2923                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2924         } else {
2925                 /* Data FIFO size is 80K; register fields moved */
2926                 if (data_xon_thr < 0)
2927                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
2928                 if (data_xoff_thr < 0)
2929                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
2930                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2931                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2932                                     huge_buf_size);
2933                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
2934                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
2935                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2936                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2937                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2938         }
2939         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2940 }
2941
2942 /* This call performs hardware-specific global initialisation, such as
2943  * defining the descriptor cache sizes and number of RSS channels.
2944  * It does not set up any buffers, descriptor rings or event queues.
2945  */
2946 int falcon_init_nic(struct efx_nic *efx)
2947 {
2948         efx_oword_t temp;
2949         int rc;
2950
2951         /* Use on-chip SRAM */
2952         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2953         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2954         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2955
2956         /* Set the source of the GMAC clock */
2957         if (falcon_rev(efx) == FALCON_REV_B0) {
2958                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
2959                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
2960                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
2961         }
2962
2963         rc = falcon_reset_sram(efx);
2964         if (rc)
2965                 return rc;
2966
2967         /* Set positions of descriptor caches in SRAM. */
2968         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2969         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
2970         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2971         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
2972
2973         /* Set TX descriptor cache size. */
2974         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
2975         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2976         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
2977
2978         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2979          * this allows most efficient prefetching.
2980          */
2981         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
2982         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2983         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
2984         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2985         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
2986
2987         /* Clear the parity enables on the TX data fifos as
2988          * they produce false parity errors because of timing issues
2989          */
2990         if (EFX_WORKAROUND_5129(efx)) {
2991                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2992                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2993                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2994         }
2995
2996         /* Enable all the genuinely fatal interrupts.  (They are still
2997          * masked by the overall interrupt mask, controlled by
2998          * falcon_interrupts()).
2999          *
3000          * Note: All other fatal interrupts are enabled
3001          */
3002         EFX_POPULATE_OWORD_3(temp,
3003                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
3004                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
3005                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
3006         EFX_INVERT_OWORD(temp);
3007         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
3008
3009         if (EFX_WORKAROUND_7244(efx)) {
3010                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
3011                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
3012                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
3013                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
3014                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
3015                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
3016         }
3017
3018         falcon_setup_rss_indir_table(efx);
3019
3020         /* XXX This is documented only for Falcon A0/A1 */
3021         /* Setup RX.  Wait for descriptor is broken and must
3022          * be disabled.  RXDP recovery shouldn't be needed, but is.
3023          */
3024         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
3025         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
3026         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
3027         if (EFX_WORKAROUND_5583(efx))
3028                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
3029         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
3030
3031         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3032          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3033          */
3034         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
3035         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
3036         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
3037         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
3038         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
3039         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
3040         /* Enable SW_EV to inherit in char driver - assume harmless here */
3041         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
3042         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3043         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
3044         /* Squash TX of packets of 16 bytes or less */
3045         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3046                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
3047         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
3048
3049         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3050          * descriptors (which is bad).
3051          */
3052         efx_reado(efx, &temp, FR_AZ_TX_CFG);
3053         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
3054         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
3055
3056         falcon_init_rx_cfg(efx);
3057
3058         /* Set destination of both TX and RX Flush events */
3059         if (falcon_rev(efx) >= FALCON_REV_B0) {
3060                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
3061                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
3062         }
3063
3064         return 0;
3065 }
3066
3067 void falcon_remove_nic(struct efx_nic *efx)
3068 {
3069         struct falcon_nic_data *nic_data = efx->nic_data;
3070         struct falcon_board *board = falcon_board(efx);
3071         int rc;
3072
3073         falcon_board(efx)->fini(efx);
3074
3075         /* Remove I2C adapter and clear it in preparation for a retry */
3076         rc = i2c_del_adapter(&board->i2c_adap);
3077         BUG_ON(rc);
3078         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
3079
3080         falcon_remove_spi_devices(efx);
3081         falcon_free_buffer(efx, &efx->irq_status);
3082
3083         falcon_reset_hw(efx, RESET_TYPE_ALL);
3084
3085         /* Release the second function after the reset */
3086         if (nic_data->pci_dev2) {
3087                 pci_dev_put(nic_data->pci_dev2);
3088                 nic_data->pci_dev2 = NULL;
3089         }
3090
3091         /* Tear down the private nic state */
3092         kfree(efx->nic_data);
3093         efx->nic_data = NULL;
3094 }
3095
3096 void falcon_update_nic_stats(struct efx_nic *efx)
3097 {
3098         efx_oword_t cnt;
3099
3100         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
3101         efx->n_rx_nodesc_drop_cnt +=
3102                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
3103 }
3104
3105 /**************************************************************************
3106  *
3107  * Revision-dependent attributes used by efx.c
3108  *
3109  **************************************************************************
3110  */
3111
3112 struct efx_nic_type falcon_a_nic_type = {
3113         .mem_map_size = 0x20000,
3114         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
3115         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
3116         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
3117         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
3118         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
3119         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3120         .rx_buffer_padding = 0x24,
3121         .max_interrupt_mode = EFX_INT_MODE_MSI,
3122         .phys_addr_channels = 4,
3123 };
3124
3125 struct efx_nic_type falcon_b_nic_type = {
3126         /* Map everything up to and including the RSS indirection
3127          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3128          * requires that they not be mapped.  */
3129         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
3130                          FR_BZ_RX_INDIRECTION_TBL_STEP *
3131                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
3132         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
3133         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
3134         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
3135         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
3136         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
3137         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
3138         .rx_buffer_padding = 0,
3139         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3140         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3141                                    * interrupt handler only supports 32
3142                                    * channels */
3143 };
3144