Merge remote branch 'kumar/merge' into merge
[pandora-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <net/tcp.h>
82
83 #include <asm/system.h>
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90
91 #define DRV_VERSION "2.0.26.28"
92
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102         int ret;
103
104         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107         return ret;
108 }
109
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
116         (dev_type == XFRAME_I_DEVICE) ?                                 \
117         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
118           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130         "Register test\t(offline)",
131         "Eeprom test\t(offline)",
132         "Link test\t(online)",
133         "RLDRAM test\t(offline)",
134         "BIST Test\t(offline)"
135 };
136
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138         {"tmac_frms"},
139         {"tmac_data_octets"},
140         {"tmac_drop_frms"},
141         {"tmac_mcst_frms"},
142         {"tmac_bcst_frms"},
143         {"tmac_pause_ctrl_frms"},
144         {"tmac_ttl_octets"},
145         {"tmac_ucst_frms"},
146         {"tmac_nucst_frms"},
147         {"tmac_any_err_frms"},
148         {"tmac_ttl_less_fb_octets"},
149         {"tmac_vld_ip_octets"},
150         {"tmac_vld_ip"},
151         {"tmac_drop_ip"},
152         {"tmac_icmp"},
153         {"tmac_rst_tcp"},
154         {"tmac_tcp"},
155         {"tmac_udp"},
156         {"rmac_vld_frms"},
157         {"rmac_data_octets"},
158         {"rmac_fcs_err_frms"},
159         {"rmac_drop_frms"},
160         {"rmac_vld_mcst_frms"},
161         {"rmac_vld_bcst_frms"},
162         {"rmac_in_rng_len_err_frms"},
163         {"rmac_out_rng_len_err_frms"},
164         {"rmac_long_frms"},
165         {"rmac_pause_ctrl_frms"},
166         {"rmac_unsup_ctrl_frms"},
167         {"rmac_ttl_octets"},
168         {"rmac_accepted_ucst_frms"},
169         {"rmac_accepted_nucst_frms"},
170         {"rmac_discarded_frms"},
171         {"rmac_drop_events"},
172         {"rmac_ttl_less_fb_octets"},
173         {"rmac_ttl_frms"},
174         {"rmac_usized_frms"},
175         {"rmac_osized_frms"},
176         {"rmac_frag_frms"},
177         {"rmac_jabber_frms"},
178         {"rmac_ttl_64_frms"},
179         {"rmac_ttl_65_127_frms"},
180         {"rmac_ttl_128_255_frms"},
181         {"rmac_ttl_256_511_frms"},
182         {"rmac_ttl_512_1023_frms"},
183         {"rmac_ttl_1024_1518_frms"},
184         {"rmac_ip"},
185         {"rmac_ip_octets"},
186         {"rmac_hdr_err_ip"},
187         {"rmac_drop_ip"},
188         {"rmac_icmp"},
189         {"rmac_tcp"},
190         {"rmac_udp"},
191         {"rmac_err_drp_udp"},
192         {"rmac_xgmii_err_sym"},
193         {"rmac_frms_q0"},
194         {"rmac_frms_q1"},
195         {"rmac_frms_q2"},
196         {"rmac_frms_q3"},
197         {"rmac_frms_q4"},
198         {"rmac_frms_q5"},
199         {"rmac_frms_q6"},
200         {"rmac_frms_q7"},
201         {"rmac_full_q0"},
202         {"rmac_full_q1"},
203         {"rmac_full_q2"},
204         {"rmac_full_q3"},
205         {"rmac_full_q4"},
206         {"rmac_full_q5"},
207         {"rmac_full_q6"},
208         {"rmac_full_q7"},
209         {"rmac_pause_cnt"},
210         {"rmac_xgmii_data_err_cnt"},
211         {"rmac_xgmii_ctrl_err_cnt"},
212         {"rmac_accepted_ip"},
213         {"rmac_err_tcp"},
214         {"rd_req_cnt"},
215         {"new_rd_req_cnt"},
216         {"new_rd_req_rtry_cnt"},
217         {"rd_rtry_cnt"},
218         {"wr_rtry_rd_ack_cnt"},
219         {"wr_req_cnt"},
220         {"new_wr_req_cnt"},
221         {"new_wr_req_rtry_cnt"},
222         {"wr_rtry_cnt"},
223         {"wr_disc_cnt"},
224         {"rd_rtry_wr_ack_cnt"},
225         {"txp_wr_cnt"},
226         {"txd_rd_cnt"},
227         {"txd_wr_cnt"},
228         {"rxd_rd_cnt"},
229         {"rxd_wr_cnt"},
230         {"txf_rd_cnt"},
231         {"rxf_wr_cnt"}
232 };
233
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235         {"rmac_ttl_1519_4095_frms"},
236         {"rmac_ttl_4096_8191_frms"},
237         {"rmac_ttl_8192_max_frms"},
238         {"rmac_ttl_gt_max_frms"},
239         {"rmac_osized_alt_frms"},
240         {"rmac_jabber_alt_frms"},
241         {"rmac_gt_max_alt_frms"},
242         {"rmac_vlan_frms"},
243         {"rmac_len_discard"},
244         {"rmac_fcs_discard"},
245         {"rmac_pf_discard"},
246         {"rmac_da_discard"},
247         {"rmac_red_discard"},
248         {"rmac_rts_discard"},
249         {"rmac_ingm_full_discard"},
250         {"link_fault_cnt"}
251 };
252
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254         {"\n DRIVER STATISTICS"},
255         {"single_bit_ecc_errs"},
256         {"double_bit_ecc_errs"},
257         {"parity_err_cnt"},
258         {"serious_err_cnt"},
259         {"soft_reset_cnt"},
260         {"fifo_full_cnt"},
261         {"ring_0_full_cnt"},
262         {"ring_1_full_cnt"},
263         {"ring_2_full_cnt"},
264         {"ring_3_full_cnt"},
265         {"ring_4_full_cnt"},
266         {"ring_5_full_cnt"},
267         {"ring_6_full_cnt"},
268         {"ring_7_full_cnt"},
269         {"alarm_transceiver_temp_high"},
270         {"alarm_transceiver_temp_low"},
271         {"alarm_laser_bias_current_high"},
272         {"alarm_laser_bias_current_low"},
273         {"alarm_laser_output_power_high"},
274         {"alarm_laser_output_power_low"},
275         {"warn_transceiver_temp_high"},
276         {"warn_transceiver_temp_low"},
277         {"warn_laser_bias_current_high"},
278         {"warn_laser_bias_current_low"},
279         {"warn_laser_output_power_high"},
280         {"warn_laser_output_power_low"},
281         {"lro_aggregated_pkts"},
282         {"lro_flush_both_count"},
283         {"lro_out_of_sequence_pkts"},
284         {"lro_flush_due_to_max_pkts"},
285         {"lro_avg_aggr_pkts"},
286         {"mem_alloc_fail_cnt"},
287         {"pci_map_fail_cnt"},
288         {"watchdog_timer_cnt"},
289         {"mem_allocated"},
290         {"mem_freed"},
291         {"link_up_cnt"},
292         {"link_down_cnt"},
293         {"link_up_time"},
294         {"link_down_time"},
295         {"tx_tcode_buf_abort_cnt"},
296         {"tx_tcode_desc_abort_cnt"},
297         {"tx_tcode_parity_err_cnt"},
298         {"tx_tcode_link_loss_cnt"},
299         {"tx_tcode_list_proc_err_cnt"},
300         {"rx_tcode_parity_err_cnt"},
301         {"rx_tcode_abort_cnt"},
302         {"rx_tcode_parity_abort_cnt"},
303         {"rx_tcode_rda_fail_cnt"},
304         {"rx_tcode_unkn_prot_cnt"},
305         {"rx_tcode_fcs_err_cnt"},
306         {"rx_tcode_buf_size_err_cnt"},
307         {"rx_tcode_rxd_corrupt_cnt"},
308         {"rx_tcode_unkn_err_cnt"},
309         {"tda_err_cnt"},
310         {"pfc_err_cnt"},
311         {"pcc_err_cnt"},
312         {"tti_err_cnt"},
313         {"tpa_err_cnt"},
314         {"sm_err_cnt"},
315         {"lso_err_cnt"},
316         {"mac_tmac_err_cnt"},
317         {"mac_rmac_err_cnt"},
318         {"xgxs_txgxs_err_cnt"},
319         {"xgxs_rxgxs_err_cnt"},
320         {"rc_err_cnt"},
321         {"prc_pcix_err_cnt"},
322         {"rpa_err_cnt"},
323         {"rda_err_cnt"},
324         {"rti_err_cnt"},
325         {"mc_err_cnt"}
326 };
327
328 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
331
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
342         init_timer(&timer);                             \
343         timer.function = handle;                        \
344         timer.data = (unsigned long)arg;                \
345         mod_timer(&timer, (jiffies + exp))              \
346
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 {
350         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 }
357
358 /* Add the vlan */
359 static void s2io_vlan_rx_register(struct net_device *dev,
360                                   struct vlan_group *grp)
361 {
362         int i;
363         struct s2io_nic *nic = netdev_priv(dev);
364         unsigned long flags[MAX_TX_FIFOS];
365         struct config_param *config = &nic->config;
366         struct mac_info *mac_control = &nic->mac_control;
367
368         for (i = 0; i < config->tx_fifo_num; i++) {
369                 struct fifo_info *fifo = &mac_control->fifos[i];
370
371                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
372         }
373
374         nic->vlgrp = grp;
375
376         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
377                 struct fifo_info *fifo = &mac_control->fifos[i];
378
379                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
380         }
381 }
382
383 /* Unregister the vlan */
384 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
385 {
386         int i;
387         struct s2io_nic *nic = netdev_priv(dev);
388         unsigned long flags[MAX_TX_FIFOS];
389         struct config_param *config = &nic->config;
390         struct mac_info *mac_control = &nic->mac_control;
391
392         for (i = 0; i < config->tx_fifo_num; i++) {
393                 struct fifo_info *fifo = &mac_control->fifos[i];
394
395                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
396         }
397
398         if (nic->vlgrp)
399                 vlan_group_set_device(nic->vlgrp, vid, NULL);
400
401         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
402                 struct fifo_info *fifo = &mac_control->fifos[i];
403
404                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
405         }
406 }
407
408 /*
409  * Constants to be programmed into the Xena's registers, to configure
410  * the XAUI.
411  */
412
413 #define END_SIGN        0x0
414 static const u64 herc_act_dtx_cfg[] = {
415         /* Set address */
416         0x8000051536750000ULL, 0x80000515367500E0ULL,
417         /* Write data */
418         0x8000051536750004ULL, 0x80000515367500E4ULL,
419         /* Set address */
420         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
421         /* Write data */
422         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
423         /* Set address */
424         0x801205150D440000ULL, 0x801205150D4400E0ULL,
425         /* Write data */
426         0x801205150D440004ULL, 0x801205150D4400E4ULL,
427         /* Set address */
428         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
429         /* Write data */
430         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
431         /* Done */
432         END_SIGN
433 };
434
435 static const u64 xena_dtx_cfg[] = {
436         /* Set address */
437         0x8000051500000000ULL, 0x80000515000000E0ULL,
438         /* Write data */
439         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
440         /* Set address */
441         0x8001051500000000ULL, 0x80010515000000E0ULL,
442         /* Write data */
443         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
444         /* Set address */
445         0x8002051500000000ULL, 0x80020515000000E0ULL,
446         /* Write data */
447         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
448         END_SIGN
449 };
450
451 /*
452  * Constants for Fixing the MacAddress problem seen mostly on
453  * Alpha machines.
454  */
455 static const u64 fix_mac[] = {
456         0x0060000000000000ULL, 0x0060600000000000ULL,
457         0x0040600000000000ULL, 0x0000600000000000ULL,
458         0x0020600000000000ULL, 0x0060600000000000ULL,
459         0x0020600000000000ULL, 0x0060600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0000600000000000ULL,
469         0x0040600000000000ULL, 0x0060600000000000ULL,
470         END_SIGN
471 };
472
473 MODULE_LICENSE("GPL");
474 MODULE_VERSION(DRV_VERSION);
475
476
477 /* Module Loadable parameters. */
478 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
479 S2IO_PARM_INT(rx_ring_num, 1);
480 S2IO_PARM_INT(multiq, 0);
481 S2IO_PARM_INT(rx_ring_mode, 1);
482 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
483 S2IO_PARM_INT(rmac_pause_time, 0x100);
484 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
485 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
486 S2IO_PARM_INT(shared_splits, 0);
487 S2IO_PARM_INT(tmac_util_period, 5);
488 S2IO_PARM_INT(rmac_util_period, 5);
489 S2IO_PARM_INT(l3l4hdr_size, 128);
490 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
492 /* Frequency of Rx desc syncs expressed as power of 2 */
493 S2IO_PARM_INT(rxsync_frequency, 3);
494 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
495 S2IO_PARM_INT(intr_type, 2);
496 /* Large receive offload feature */
497
498 /* Max pkts to be aggregated by LRO at one time. If not specified,
499  * aggregation happens until we hit max IP pkt size(64K)
500  */
501 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
502 S2IO_PARM_INT(indicate_max_pkts, 0);
503
504 S2IO_PARM_INT(napi, 1);
505 S2IO_PARM_INT(ufo, 0);
506 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
507
508 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
509 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
510 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
511 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
512 static unsigned int rts_frm_len[MAX_RX_RINGS] =
513 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
514
515 module_param_array(tx_fifo_len, uint, NULL, 0);
516 module_param_array(rx_ring_sz, uint, NULL, 0);
517 module_param_array(rts_frm_len, uint, NULL, 0);
518
519 /*
520  * S2IO device table.
521  * This table lists all the devices that this driver supports.
522  */
523 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
524         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
525          PCI_ANY_ID, PCI_ANY_ID},
526         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
527          PCI_ANY_ID, PCI_ANY_ID},
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {0,}
533 };
534
535 MODULE_DEVICE_TABLE(pci, s2io_tbl);
536
537 static struct pci_error_handlers s2io_err_handler = {
538         .error_detected = s2io_io_error_detected,
539         .slot_reset = s2io_io_slot_reset,
540         .resume = s2io_io_resume,
541 };
542
543 static struct pci_driver s2io_driver = {
544         .name = "S2IO",
545         .id_table = s2io_tbl,
546         .probe = s2io_init_nic,
547         .remove = __devexit_p(s2io_rem_nic),
548         .err_handler = &s2io_err_handler,
549 };
550
551 /* A simplifier macro used both by init and free shared_mem Fns(). */
552 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
553
554 /* netqueue manipulation helper functions */
555 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
556 {
557         if (!sp->config.multiq) {
558                 int i;
559
560                 for (i = 0; i < sp->config.tx_fifo_num; i++)
561                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
562         }
563         netif_tx_stop_all_queues(sp->dev);
564 }
565
566 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
567 {
568         if (!sp->config.multiq)
569                 sp->mac_control.fifos[fifo_no].queue_state =
570                         FIFO_QUEUE_STOP;
571
572         netif_tx_stop_all_queues(sp->dev);
573 }
574
575 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
576 {
577         if (!sp->config.multiq) {
578                 int i;
579
580                 for (i = 0; i < sp->config.tx_fifo_num; i++)
581                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
582         }
583         netif_tx_start_all_queues(sp->dev);
584 }
585
586 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
587 {
588         if (!sp->config.multiq)
589                 sp->mac_control.fifos[fifo_no].queue_state =
590                         FIFO_QUEUE_START;
591
592         netif_tx_start_all_queues(sp->dev);
593 }
594
595 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
596 {
597         if (!sp->config.multiq) {
598                 int i;
599
600                 for (i = 0; i < sp->config.tx_fifo_num; i++)
601                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602         }
603         netif_tx_wake_all_queues(sp->dev);
604 }
605
606 static inline void s2io_wake_tx_queue(
607         struct fifo_info *fifo, int cnt, u8 multiq)
608 {
609
610         if (multiq) {
611                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
612                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
613         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
614                 if (netif_queue_stopped(fifo->dev)) {
615                         fifo->queue_state = FIFO_QUEUE_START;
616                         netif_wake_queue(fifo->dev);
617                 }
618         }
619 }
620
621 /**
622  * init_shared_mem - Allocation and Initialization of Memory
623  * @nic: Device private variable.
624  * Description: The function allocates all the memory areas shared
625  * between the NIC and the driver. This includes Tx descriptors,
626  * Rx descriptors and the statistics block.
627  */
628
629 static int init_shared_mem(struct s2io_nic *nic)
630 {
631         u32 size;
632         void *tmp_v_addr, *tmp_v_addr_next;
633         dma_addr_t tmp_p_addr, tmp_p_addr_next;
634         struct RxD_block *pre_rxd_blk = NULL;
635         int i, j, blk_cnt;
636         int lst_size, lst_per_page;
637         struct net_device *dev = nic->dev;
638         unsigned long tmp;
639         struct buffAdd *ba;
640         struct config_param *config = &nic->config;
641         struct mac_info *mac_control = &nic->mac_control;
642         unsigned long long mem_allocated = 0;
643
644         /* Allocation and initialization of TXDLs in FIFOs */
645         size = 0;
646         for (i = 0; i < config->tx_fifo_num; i++) {
647                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
648
649                 size += tx_cfg->fifo_len;
650         }
651         if (size > MAX_AVAILABLE_TXDS) {
652                 DBG_PRINT(ERR_DBG,
653                           "Too many TxDs requested: %d, max supported: %d\n",
654                           size, MAX_AVAILABLE_TXDS);
655                 return -EINVAL;
656         }
657
658         size = 0;
659         for (i = 0; i < config->tx_fifo_num; i++) {
660                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
661
662                 size = tx_cfg->fifo_len;
663                 /*
664                  * Legal values are from 2 to 8192
665                  */
666                 if (size < 2) {
667                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
668                                   "Valid lengths are 2 through 8192\n",
669                                   i, size);
670                         return -EINVAL;
671                 }
672         }
673
674         lst_size = (sizeof(struct TxD) * config->max_txds);
675         lst_per_page = PAGE_SIZE / lst_size;
676
677         for (i = 0; i < config->tx_fifo_num; i++) {
678                 struct fifo_info *fifo = &mac_control->fifos[i];
679                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
680                 int fifo_len = tx_cfg->fifo_len;
681                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
682
683                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
684                 if (!fifo->list_info) {
685                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
686                         return -ENOMEM;
687                 }
688                 mem_allocated += list_holder_size;
689         }
690         for (i = 0; i < config->tx_fifo_num; i++) {
691                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
692                                                 lst_per_page);
693                 struct fifo_info *fifo = &mac_control->fifos[i];
694                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
695
696                 fifo->tx_curr_put_info.offset = 0;
697                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
698                 fifo->tx_curr_get_info.offset = 0;
699                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
700                 fifo->fifo_no = i;
701                 fifo->nic = nic;
702                 fifo->max_txds = MAX_SKB_FRAGS + 2;
703                 fifo->dev = dev;
704
705                 for (j = 0; j < page_num; j++) {
706                         int k = 0;
707                         dma_addr_t tmp_p;
708                         void *tmp_v;
709                         tmp_v = pci_alloc_consistent(nic->pdev,
710                                                      PAGE_SIZE, &tmp_p);
711                         if (!tmp_v) {
712                                 DBG_PRINT(INFO_DBG,
713                                           "pci_alloc_consistent failed for TxDL\n");
714                                 return -ENOMEM;
715                         }
716                         /* If we got a zero DMA address(can happen on
717                          * certain platforms like PPC), reallocate.
718                          * Store virtual address of page we don't want,
719                          * to be freed later.
720                          */
721                         if (!tmp_p) {
722                                 mac_control->zerodma_virt_addr = tmp_v;
723                                 DBG_PRINT(INIT_DBG,
724                                           "%s: Zero DMA address for TxDL. "
725                                           "Virtual address %p\n",
726                                           dev->name, tmp_v);
727                                 tmp_v = pci_alloc_consistent(nic->pdev,
728                                                              PAGE_SIZE, &tmp_p);
729                                 if (!tmp_v) {
730                                         DBG_PRINT(INFO_DBG,
731                                                   "pci_alloc_consistent failed for TxDL\n");
732                                         return -ENOMEM;
733                                 }
734                                 mem_allocated += PAGE_SIZE;
735                         }
736                         while (k < lst_per_page) {
737                                 int l = (j * lst_per_page) + k;
738                                 if (l == tx_cfg->fifo_len)
739                                         break;
740                                 fifo->list_info[l].list_virt_addr =
741                                         tmp_v + (k * lst_size);
742                                 fifo->list_info[l].list_phy_addr =
743                                         tmp_p + (k * lst_size);
744                                 k++;
745                         }
746                 }
747         }
748
749         for (i = 0; i < config->tx_fifo_num; i++) {
750                 struct fifo_info *fifo = &mac_control->fifos[i];
751                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
752
753                 size = tx_cfg->fifo_len;
754                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
755                 if (!fifo->ufo_in_band_v)
756                         return -ENOMEM;
757                 mem_allocated += (size * sizeof(u64));
758         }
759
760         /* Allocation and initialization of RXDs in Rings */
761         size = 0;
762         for (i = 0; i < config->rx_ring_num; i++) {
763                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
764                 struct ring_info *ring = &mac_control->rings[i];
765
766                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
767                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
768                                   "multiple of RxDs per Block\n",
769                                   dev->name, i);
770                         return FAILURE;
771                 }
772                 size += rx_cfg->num_rxd;
773                 ring->block_count = rx_cfg->num_rxd /
774                         (rxd_count[nic->rxd_mode] + 1);
775                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
776         }
777         if (nic->rxd_mode == RXD_MODE_1)
778                 size = (size * (sizeof(struct RxD1)));
779         else
780                 size = (size * (sizeof(struct RxD3)));
781
782         for (i = 0; i < config->rx_ring_num; i++) {
783                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
784                 struct ring_info *ring = &mac_control->rings[i];
785
786                 ring->rx_curr_get_info.block_index = 0;
787                 ring->rx_curr_get_info.offset = 0;
788                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
789                 ring->rx_curr_put_info.block_index = 0;
790                 ring->rx_curr_put_info.offset = 0;
791                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
792                 ring->nic = nic;
793                 ring->ring_no = i;
794
795                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
796                 /*  Allocating all the Rx blocks */
797                 for (j = 0; j < blk_cnt; j++) {
798                         struct rx_block_info *rx_blocks;
799                         int l;
800
801                         rx_blocks = &ring->rx_blocks[j];
802                         size = SIZE_OF_BLOCK;   /* size is always page size */
803                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
804                                                           &tmp_p_addr);
805                         if (tmp_v_addr == NULL) {
806                                 /*
807                                  * In case of failure, free_shared_mem()
808                                  * is called, which should free any
809                                  * memory that was alloced till the
810                                  * failure happened.
811                                  */
812                                 rx_blocks->block_virt_addr = tmp_v_addr;
813                                 return -ENOMEM;
814                         }
815                         mem_allocated += size;
816                         memset(tmp_v_addr, 0, size);
817
818                         size = sizeof(struct rxd_info) *
819                                 rxd_count[nic->rxd_mode];
820                         rx_blocks->block_virt_addr = tmp_v_addr;
821                         rx_blocks->block_dma_addr = tmp_p_addr;
822                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
823                         if (!rx_blocks->rxds)
824                                 return -ENOMEM;
825                         mem_allocated += size;
826                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
827                                 rx_blocks->rxds[l].virt_addr =
828                                         rx_blocks->block_virt_addr +
829                                         (rxd_size[nic->rxd_mode] * l);
830                                 rx_blocks->rxds[l].dma_addr =
831                                         rx_blocks->block_dma_addr +
832                                         (rxd_size[nic->rxd_mode] * l);
833                         }
834                 }
835                 /* Interlinking all Rx Blocks */
836                 for (j = 0; j < blk_cnt; j++) {
837                         int next = (j + 1) % blk_cnt;
838                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
839                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
840                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
841                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
842
843                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
844                         pre_rxd_blk->reserved_2_pNext_RxD_block =
845                                 (unsigned long)tmp_v_addr_next;
846                         pre_rxd_blk->pNext_RxD_Blk_physical =
847                                 (u64)tmp_p_addr_next;
848                 }
849         }
850         if (nic->rxd_mode == RXD_MODE_3B) {
851                 /*
852                  * Allocation of Storages for buffer addresses in 2BUFF mode
853                  * and the buffers as well.
854                  */
855                 for (i = 0; i < config->rx_ring_num; i++) {
856                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
857                         struct ring_info *ring = &mac_control->rings[i];
858
859                         blk_cnt = rx_cfg->num_rxd /
860                                 (rxd_count[nic->rxd_mode] + 1);
861                         size = sizeof(struct buffAdd *) * blk_cnt;
862                         ring->ba = kmalloc(size, GFP_KERNEL);
863                         if (!ring->ba)
864                                 return -ENOMEM;
865                         mem_allocated += size;
866                         for (j = 0; j < blk_cnt; j++) {
867                                 int k = 0;
868
869                                 size = sizeof(struct buffAdd) *
870                                         (rxd_count[nic->rxd_mode] + 1);
871                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
872                                 if (!ring->ba[j])
873                                         return -ENOMEM;
874                                 mem_allocated += size;
875                                 while (k != rxd_count[nic->rxd_mode]) {
876                                         ba = &ring->ba[j][k];
877                                         size = BUF0_LEN + ALIGN_SIZE;
878                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
879                                         if (!ba->ba_0_org)
880                                                 return -ENOMEM;
881                                         mem_allocated += size;
882                                         tmp = (unsigned long)ba->ba_0_org;
883                                         tmp += ALIGN_SIZE;
884                                         tmp &= ~((unsigned long)ALIGN_SIZE);
885                                         ba->ba_0 = (void *)tmp;
886
887                                         size = BUF1_LEN + ALIGN_SIZE;
888                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
889                                         if (!ba->ba_1_org)
890                                                 return -ENOMEM;
891                                         mem_allocated += size;
892                                         tmp = (unsigned long)ba->ba_1_org;
893                                         tmp += ALIGN_SIZE;
894                                         tmp &= ~((unsigned long)ALIGN_SIZE);
895                                         ba->ba_1 = (void *)tmp;
896                                         k++;
897                                 }
898                         }
899                 }
900         }
901
902         /* Allocation and initialization of Statistics block */
903         size = sizeof(struct stat_block);
904         mac_control->stats_mem =
905                 pci_alloc_consistent(nic->pdev, size,
906                                      &mac_control->stats_mem_phy);
907
908         if (!mac_control->stats_mem) {
909                 /*
910                  * In case of failure, free_shared_mem() is called, which
911                  * should free any memory that was alloced till the
912                  * failure happened.
913                  */
914                 return -ENOMEM;
915         }
916         mem_allocated += size;
917         mac_control->stats_mem_sz = size;
918
919         tmp_v_addr = mac_control->stats_mem;
920         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
921         memset(tmp_v_addr, 0, size);
922         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
923                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
924         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
925         return SUCCESS;
926 }
927
928 /**
929  * free_shared_mem - Free the allocated Memory
930  * @nic:  Device private variable.
931  * Description: This function is to free all memory locations allocated by
932  * the init_shared_mem() function and return it to the kernel.
933  */
934
935 static void free_shared_mem(struct s2io_nic *nic)
936 {
937         int i, j, blk_cnt, size;
938         void *tmp_v_addr;
939         dma_addr_t tmp_p_addr;
940         int lst_size, lst_per_page;
941         struct net_device *dev;
942         int page_num = 0;
943         struct config_param *config;
944         struct mac_info *mac_control;
945         struct stat_block *stats;
946         struct swStat *swstats;
947
948         if (!nic)
949                 return;
950
951         dev = nic->dev;
952
953         config = &nic->config;
954         mac_control = &nic->mac_control;
955         stats = mac_control->stats_info;
956         swstats = &stats->sw_stat;
957
958         lst_size = sizeof(struct TxD) * config->max_txds;
959         lst_per_page = PAGE_SIZE / lst_size;
960
961         for (i = 0; i < config->tx_fifo_num; i++) {
962                 struct fifo_info *fifo = &mac_control->fifos[i];
963                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
964
965                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
966                 for (j = 0; j < page_num; j++) {
967                         int mem_blks = (j * lst_per_page);
968                         struct list_info_hold *fli;
969
970                         if (!fifo->list_info)
971                                 return;
972
973                         fli = &fifo->list_info[mem_blks];
974                         if (!fli->list_virt_addr)
975                                 break;
976                         pci_free_consistent(nic->pdev, PAGE_SIZE,
977                                             fli->list_virt_addr,
978                                             fli->list_phy_addr);
979                         swstats->mem_freed += PAGE_SIZE;
980                 }
981                 /* If we got a zero DMA address during allocation,
982                  * free the page now
983                  */
984                 if (mac_control->zerodma_virt_addr) {
985                         pci_free_consistent(nic->pdev, PAGE_SIZE,
986                                             mac_control->zerodma_virt_addr,
987                                             (dma_addr_t)0);
988                         DBG_PRINT(INIT_DBG,
989                                   "%s: Freeing TxDL with zero DMA address. "
990                                   "Virtual address %p\n",
991                                   dev->name, mac_control->zerodma_virt_addr);
992                         swstats->mem_freed += PAGE_SIZE;
993                 }
994                 kfree(fifo->list_info);
995                 swstats->mem_freed += tx_cfg->fifo_len *
996                         sizeof(struct list_info_hold);
997         }
998
999         size = SIZE_OF_BLOCK;
1000         for (i = 0; i < config->rx_ring_num; i++) {
1001                 struct ring_info *ring = &mac_control->rings[i];
1002
1003                 blk_cnt = ring->block_count;
1004                 for (j = 0; j < blk_cnt; j++) {
1005                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1006                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1007                         if (tmp_v_addr == NULL)
1008                                 break;
1009                         pci_free_consistent(nic->pdev, size,
1010                                             tmp_v_addr, tmp_p_addr);
1011                         swstats->mem_freed += size;
1012                         kfree(ring->rx_blocks[j].rxds);
1013                         swstats->mem_freed += sizeof(struct rxd_info) *
1014                                 rxd_count[nic->rxd_mode];
1015                 }
1016         }
1017
1018         if (nic->rxd_mode == RXD_MODE_3B) {
1019                 /* Freeing buffer storage addresses in 2BUFF mode. */
1020                 for (i = 0; i < config->rx_ring_num; i++) {
1021                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1022                         struct ring_info *ring = &mac_control->rings[i];
1023
1024                         blk_cnt = rx_cfg->num_rxd /
1025                                 (rxd_count[nic->rxd_mode] + 1);
1026                         for (j = 0; j < blk_cnt; j++) {
1027                                 int k = 0;
1028                                 if (!ring->ba[j])
1029                                         continue;
1030                                 while (k != rxd_count[nic->rxd_mode]) {
1031                                         struct buffAdd *ba = &ring->ba[j][k];
1032                                         kfree(ba->ba_0_org);
1033                                         swstats->mem_freed +=
1034                                                 BUF0_LEN + ALIGN_SIZE;
1035                                         kfree(ba->ba_1_org);
1036                                         swstats->mem_freed +=
1037                                                 BUF1_LEN + ALIGN_SIZE;
1038                                         k++;
1039                                 }
1040                                 kfree(ring->ba[j]);
1041                                 swstats->mem_freed += sizeof(struct buffAdd) *
1042                                         (rxd_count[nic->rxd_mode] + 1);
1043                         }
1044                         kfree(ring->ba);
1045                         swstats->mem_freed += sizeof(struct buffAdd *) *
1046                                 blk_cnt;
1047                 }
1048         }
1049
1050         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1051                 struct fifo_info *fifo = &mac_control->fifos[i];
1052                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1053
1054                 if (fifo->ufo_in_band_v) {
1055                         swstats->mem_freed += tx_cfg->fifo_len *
1056                                 sizeof(u64);
1057                         kfree(fifo->ufo_in_band_v);
1058                 }
1059         }
1060
1061         if (mac_control->stats_mem) {
1062                 swstats->mem_freed += mac_control->stats_mem_sz;
1063                 pci_free_consistent(nic->pdev,
1064                                     mac_control->stats_mem_sz,
1065                                     mac_control->stats_mem,
1066                                     mac_control->stats_mem_phy);
1067         }
1068 }
1069
1070 /**
1071  * s2io_verify_pci_mode -
1072  */
1073
1074 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1075 {
1076         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1077         register u64 val64 = 0;
1078         int     mode;
1079
1080         val64 = readq(&bar0->pci_mode);
1081         mode = (u8)GET_PCI_MODE(val64);
1082
1083         if (val64 & PCI_MODE_UNKNOWN_MODE)
1084                 return -1;      /* Unknown PCI mode */
1085         return mode;
1086 }
1087
1088 #define NEC_VENID   0x1033
1089 #define NEC_DEVID   0x0125
1090 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1091 {
1092         struct pci_dev *tdev = NULL;
1093         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1094                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1095                         if (tdev->bus == s2io_pdev->bus->parent) {
1096                                 pci_dev_put(tdev);
1097                                 return 1;
1098                         }
1099                 }
1100         }
1101         return 0;
1102 }
1103
1104 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1105 /**
1106  * s2io_print_pci_mode -
1107  */
1108 static int s2io_print_pci_mode(struct s2io_nic *nic)
1109 {
1110         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111         register u64 val64 = 0;
1112         int     mode;
1113         struct config_param *config = &nic->config;
1114         const char *pcimode;
1115
1116         val64 = readq(&bar0->pci_mode);
1117         mode = (u8)GET_PCI_MODE(val64);
1118
1119         if (val64 & PCI_MODE_UNKNOWN_MODE)
1120                 return -1;      /* Unknown PCI mode */
1121
1122         config->bus_speed = bus_speed[mode];
1123
1124         if (s2io_on_nec_bridge(nic->pdev)) {
1125                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1126                           nic->dev->name);
1127                 return mode;
1128         }
1129
1130         switch (mode) {
1131         case PCI_MODE_PCI_33:
1132                 pcimode = "33MHz PCI bus";
1133                 break;
1134         case PCI_MODE_PCI_66:
1135                 pcimode = "66MHz PCI bus";
1136                 break;
1137         case PCI_MODE_PCIX_M1_66:
1138                 pcimode = "66MHz PCIX(M1) bus";
1139                 break;
1140         case PCI_MODE_PCIX_M1_100:
1141                 pcimode = "100MHz PCIX(M1) bus";
1142                 break;
1143         case PCI_MODE_PCIX_M1_133:
1144                 pcimode = "133MHz PCIX(M1) bus";
1145                 break;
1146         case PCI_MODE_PCIX_M2_66:
1147                 pcimode = "133MHz PCIX(M2) bus";
1148                 break;
1149         case PCI_MODE_PCIX_M2_100:
1150                 pcimode = "200MHz PCIX(M2) bus";
1151                 break;
1152         case PCI_MODE_PCIX_M2_133:
1153                 pcimode = "266MHz PCIX(M2) bus";
1154                 break;
1155         default:
1156                 pcimode = "unsupported bus!";
1157                 mode = -1;
1158         }
1159
1160         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1161                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1162
1163         return mode;
1164 }
1165
1166 /**
1167  *  init_tti - Initialization transmit traffic interrupt scheme
1168  *  @nic: device private variable
1169  *  @link: link status (UP/DOWN) used to enable/disable continuous
1170  *  transmit interrupts
1171  *  Description: The function configures transmit traffic interrupts
1172  *  Return Value:  SUCCESS on success and
1173  *  '-1' on failure
1174  */
1175
1176 static int init_tti(struct s2io_nic *nic, int link)
1177 {
1178         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1179         register u64 val64 = 0;
1180         int i;
1181         struct config_param *config = &nic->config;
1182
1183         for (i = 0; i < config->tx_fifo_num; i++) {
1184                 /*
1185                  * TTI Initialization. Default Tx timer gets us about
1186                  * 250 interrupts per sec. Continuous interrupts are enabled
1187                  * by default.
1188                  */
1189                 if (nic->device_type == XFRAME_II_DEVICE) {
1190                         int count = (nic->config.bus_speed * 125)/2;
1191                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1192                 } else
1193                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1194
1195                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1199                 if (i == 0)
1200                         if (use_continuous_tx_intrs && (link == LINK_UP))
1201                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1202                 writeq(val64, &bar0->tti_data1_mem);
1203
1204                 if (nic->config.intr_type == MSI_X) {
1205                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1209                 } else {
1210                         if ((nic->config.tx_steering_type ==
1211                              TX_DEFAULT_STEERING) &&
1212                             (config->tx_fifo_num > 1) &&
1213                             (i >= nic->udp_fifo_idx) &&
1214                             (i < (nic->udp_fifo_idx +
1215                                   nic->total_udp_fifos)))
1216                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1220                         else
1221                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1225                 }
1226
1227                 writeq(val64, &bar0->tti_data2_mem);
1228
1229                 val64 = TTI_CMD_MEM_WE |
1230                         TTI_CMD_MEM_STROBE_NEW_CMD |
1231                         TTI_CMD_MEM_OFFSET(i);
1232                 writeq(val64, &bar0->tti_command_mem);
1233
1234                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1235                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1236                                           S2IO_BIT_RESET) != SUCCESS)
1237                         return FAILURE;
1238         }
1239
1240         return SUCCESS;
1241 }
1242
1243 /**
1244  *  init_nic - Initialization of hardware
1245  *  @nic: device private variable
1246  *  Description: The function sequentially configures every block
1247  *  of the H/W from their reset values.
1248  *  Return Value:  SUCCESS on success and
1249  *  '-1' on failure (endian settings incorrect).
1250  */
1251
1252 static int init_nic(struct s2io_nic *nic)
1253 {
1254         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1255         struct net_device *dev = nic->dev;
1256         register u64 val64 = 0;
1257         void __iomem *add;
1258         u32 time;
1259         int i, j;
1260         int dtx_cnt = 0;
1261         unsigned long long mem_share;
1262         int mem_size;
1263         struct config_param *config = &nic->config;
1264         struct mac_info *mac_control = &nic->mac_control;
1265
1266         /* to set the swapper controle on the card */
1267         if (s2io_set_swapper(nic)) {
1268                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1269                 return -EIO;
1270         }
1271
1272         /*
1273          * Herc requires EOI to be removed from reset before XGXS, so..
1274          */
1275         if (nic->device_type & XFRAME_II_DEVICE) {
1276                 val64 = 0xA500000000ULL;
1277                 writeq(val64, &bar0->sw_reset);
1278                 msleep(500);
1279                 val64 = readq(&bar0->sw_reset);
1280         }
1281
1282         /* Remove XGXS from reset state */
1283         val64 = 0;
1284         writeq(val64, &bar0->sw_reset);
1285         msleep(500);
1286         val64 = readq(&bar0->sw_reset);
1287
1288         /* Ensure that it's safe to access registers by checking
1289          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1290          */
1291         if (nic->device_type == XFRAME_II_DEVICE) {
1292                 for (i = 0; i < 50; i++) {
1293                         val64 = readq(&bar0->adapter_status);
1294                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1295                                 break;
1296                         msleep(10);
1297                 }
1298                 if (i == 50)
1299                         return -ENODEV;
1300         }
1301
1302         /*  Enable Receiving broadcasts */
1303         add = &bar0->mac_cfg;
1304         val64 = readq(&bar0->mac_cfg);
1305         val64 |= MAC_RMAC_BCAST_ENABLE;
1306         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1307         writel((u32)val64, add);
1308         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1309         writel((u32) (val64 >> 32), (add + 4));
1310
1311         /* Read registers in all blocks */
1312         val64 = readq(&bar0->mac_int_mask);
1313         val64 = readq(&bar0->mc_int_mask);
1314         val64 = readq(&bar0->xgxs_int_mask);
1315
1316         /*  Set MTU */
1317         val64 = dev->mtu;
1318         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1319
1320         if (nic->device_type & XFRAME_II_DEVICE) {
1321                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1322                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1323                                           &bar0->dtx_control, UF);
1324                         if (dtx_cnt & 0x1)
1325                                 msleep(1); /* Necessary!! */
1326                         dtx_cnt++;
1327                 }
1328         } else {
1329                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1330                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1331                                           &bar0->dtx_control, UF);
1332                         val64 = readq(&bar0->dtx_control);
1333                         dtx_cnt++;
1334                 }
1335         }
1336
1337         /*  Tx DMA Initialization */
1338         val64 = 0;
1339         writeq(val64, &bar0->tx_fifo_partition_0);
1340         writeq(val64, &bar0->tx_fifo_partition_1);
1341         writeq(val64, &bar0->tx_fifo_partition_2);
1342         writeq(val64, &bar0->tx_fifo_partition_3);
1343
1344         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1345                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1346
1347                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1348                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1349
1350                 if (i == (config->tx_fifo_num - 1)) {
1351                         if (i % 2 == 0)
1352                                 i++;
1353                 }
1354
1355                 switch (i) {
1356                 case 1:
1357                         writeq(val64, &bar0->tx_fifo_partition_0);
1358                         val64 = 0;
1359                         j = 0;
1360                         break;
1361                 case 3:
1362                         writeq(val64, &bar0->tx_fifo_partition_1);
1363                         val64 = 0;
1364                         j = 0;
1365                         break;
1366                 case 5:
1367                         writeq(val64, &bar0->tx_fifo_partition_2);
1368                         val64 = 0;
1369                         j = 0;
1370                         break;
1371                 case 7:
1372                         writeq(val64, &bar0->tx_fifo_partition_3);
1373                         val64 = 0;
1374                         j = 0;
1375                         break;
1376                 default:
1377                         j++;
1378                         break;
1379                 }
1380         }
1381
1382         /*
1383          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1385          */
1386         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1387                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388
1389         val64 = readq(&bar0->tx_fifo_partition_0);
1390         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1391                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1392
1393         /*
1394          * Initialization of Tx_PA_CONFIG register to ignore packet
1395          * integrity checking.
1396          */
1397         val64 = readq(&bar0->tx_pa_cfg);
1398         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1399                 TX_PA_CFG_IGNORE_SNAP_OUI |
1400                 TX_PA_CFG_IGNORE_LLC_CTRL |
1401                 TX_PA_CFG_IGNORE_L2_ERR;
1402         writeq(val64, &bar0->tx_pa_cfg);
1403
1404         /* Rx DMA intialization. */
1405         val64 = 0;
1406         for (i = 0; i < config->rx_ring_num; i++) {
1407                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1408
1409                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1410         }
1411         writeq(val64, &bar0->rx_queue_priority);
1412
1413         /*
1414          * Allocating equal share of memory to all the
1415          * configured Rings.
1416          */
1417         val64 = 0;
1418         if (nic->device_type & XFRAME_II_DEVICE)
1419                 mem_size = 32;
1420         else
1421                 mem_size = 64;
1422
1423         for (i = 0; i < config->rx_ring_num; i++) {
1424                 switch (i) {
1425                 case 0:
1426                         mem_share = (mem_size / config->rx_ring_num +
1427                                      mem_size % config->rx_ring_num);
1428                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1429                         continue;
1430                 case 1:
1431                         mem_share = (mem_size / config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1433                         continue;
1434                 case 2:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1437                         continue;
1438                 case 3:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1441                         continue;
1442                 case 4:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1445                         continue;
1446                 case 5:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1449                         continue;
1450                 case 6:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1453                         continue;
1454                 case 7:
1455                         mem_share = (mem_size / config->rx_ring_num);
1456                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457                         continue;
1458                 }
1459         }
1460         writeq(val64, &bar0->rx_queue_cfg);
1461
1462         /*
1463          * Filling Tx round robin registers
1464          * as per the number of FIFOs for equal scheduling priority
1465          */
1466         switch (config->tx_fifo_num) {
1467         case 1:
1468                 val64 = 0x0;
1469                 writeq(val64, &bar0->tx_w_round_robin_0);
1470                 writeq(val64, &bar0->tx_w_round_robin_1);
1471                 writeq(val64, &bar0->tx_w_round_robin_2);
1472                 writeq(val64, &bar0->tx_w_round_robin_3);
1473                 writeq(val64, &bar0->tx_w_round_robin_4);
1474                 break;
1475         case 2:
1476                 val64 = 0x0001000100010001ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_0);
1478                 writeq(val64, &bar0->tx_w_round_robin_1);
1479                 writeq(val64, &bar0->tx_w_round_robin_2);
1480                 writeq(val64, &bar0->tx_w_round_robin_3);
1481                 val64 = 0x0001000100000000ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_4);
1483                 break;
1484         case 3:
1485                 val64 = 0x0001020001020001ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_0);
1487                 val64 = 0x0200010200010200ULL;
1488                 writeq(val64, &bar0->tx_w_round_robin_1);
1489                 val64 = 0x0102000102000102ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_2);
1491                 val64 = 0x0001020001020001ULL;
1492                 writeq(val64, &bar0->tx_w_round_robin_3);
1493                 val64 = 0x0200010200000000ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_4);
1495                 break;
1496         case 4:
1497                 val64 = 0x0001020300010203ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_0);
1499                 writeq(val64, &bar0->tx_w_round_robin_1);
1500                 writeq(val64, &bar0->tx_w_round_robin_2);
1501                 writeq(val64, &bar0->tx_w_round_robin_3);
1502                 val64 = 0x0001020300000000ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_4);
1504                 break;
1505         case 5:
1506                 val64 = 0x0001020304000102ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_0);
1508                 val64 = 0x0304000102030400ULL;
1509                 writeq(val64, &bar0->tx_w_round_robin_1);
1510                 val64 = 0x0102030400010203ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_2);
1512                 val64 = 0x0400010203040001ULL;
1513                 writeq(val64, &bar0->tx_w_round_robin_3);
1514                 val64 = 0x0203040000000000ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_4);
1516                 break;
1517         case 6:
1518                 val64 = 0x0001020304050001ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_0);
1520                 val64 = 0x0203040500010203ULL;
1521                 writeq(val64, &bar0->tx_w_round_robin_1);
1522                 val64 = 0x0405000102030405ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_2);
1524                 val64 = 0x0001020304050001ULL;
1525                 writeq(val64, &bar0->tx_w_round_robin_3);
1526                 val64 = 0x0203040500000000ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_4);
1528                 break;
1529         case 7:
1530                 val64 = 0x0001020304050600ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_0);
1532                 val64 = 0x0102030405060001ULL;
1533                 writeq(val64, &bar0->tx_w_round_robin_1);
1534                 val64 = 0x0203040506000102ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_2);
1536                 val64 = 0x0304050600010203ULL;
1537                 writeq(val64, &bar0->tx_w_round_robin_3);
1538                 val64 = 0x0405060000000000ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_4);
1540                 break;
1541         case 8:
1542                 val64 = 0x0001020304050607ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_0);
1544                 writeq(val64, &bar0->tx_w_round_robin_1);
1545                 writeq(val64, &bar0->tx_w_round_robin_2);
1546                 writeq(val64, &bar0->tx_w_round_robin_3);
1547                 val64 = 0x0001020300000000ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_4);
1549                 break;
1550         }
1551
1552         /* Enable all configured Tx FIFO partitions */
1553         val64 = readq(&bar0->tx_fifo_partition_0);
1554         val64 |= (TX_FIFO_PARTITION_EN);
1555         writeq(val64, &bar0->tx_fifo_partition_0);
1556
1557         /* Filling the Rx round robin registers as per the
1558          * number of Rings and steering based on QoS with
1559          * equal priority.
1560          */
1561         switch (config->rx_ring_num) {
1562         case 1:
1563                 val64 = 0x0;
1564                 writeq(val64, &bar0->rx_w_round_robin_0);
1565                 writeq(val64, &bar0->rx_w_round_robin_1);
1566                 writeq(val64, &bar0->rx_w_round_robin_2);
1567                 writeq(val64, &bar0->rx_w_round_robin_3);
1568                 writeq(val64, &bar0->rx_w_round_robin_4);
1569
1570                 val64 = 0x8080808080808080ULL;
1571                 writeq(val64, &bar0->rts_qos_steering);
1572                 break;
1573         case 2:
1574                 val64 = 0x0001000100010001ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_0);
1576                 writeq(val64, &bar0->rx_w_round_robin_1);
1577                 writeq(val64, &bar0->rx_w_round_robin_2);
1578                 writeq(val64, &bar0->rx_w_round_robin_3);
1579                 val64 = 0x0001000100000000ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_4);
1581
1582                 val64 = 0x8080808040404040ULL;
1583                 writeq(val64, &bar0->rts_qos_steering);
1584                 break;
1585         case 3:
1586                 val64 = 0x0001020001020001ULL;
1587                 writeq(val64, &bar0->rx_w_round_robin_0);
1588                 val64 = 0x0200010200010200ULL;
1589                 writeq(val64, &bar0->rx_w_round_robin_1);
1590                 val64 = 0x0102000102000102ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_2);
1592                 val64 = 0x0001020001020001ULL;
1593                 writeq(val64, &bar0->rx_w_round_robin_3);
1594                 val64 = 0x0200010200000000ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_4);
1596
1597                 val64 = 0x8080804040402020ULL;
1598                 writeq(val64, &bar0->rts_qos_steering);
1599                 break;
1600         case 4:
1601                 val64 = 0x0001020300010203ULL;
1602                 writeq(val64, &bar0->rx_w_round_robin_0);
1603                 writeq(val64, &bar0->rx_w_round_robin_1);
1604                 writeq(val64, &bar0->rx_w_round_robin_2);
1605                 writeq(val64, &bar0->rx_w_round_robin_3);
1606                 val64 = 0x0001020300000000ULL;
1607                 writeq(val64, &bar0->rx_w_round_robin_4);
1608
1609                 val64 = 0x8080404020201010ULL;
1610                 writeq(val64, &bar0->rts_qos_steering);
1611                 break;
1612         case 5:
1613                 val64 = 0x0001020304000102ULL;
1614                 writeq(val64, &bar0->rx_w_round_robin_0);
1615                 val64 = 0x0304000102030400ULL;
1616                 writeq(val64, &bar0->rx_w_round_robin_1);
1617                 val64 = 0x0102030400010203ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_2);
1619                 val64 = 0x0400010203040001ULL;
1620                 writeq(val64, &bar0->rx_w_round_robin_3);
1621                 val64 = 0x0203040000000000ULL;
1622                 writeq(val64, &bar0->rx_w_round_robin_4);
1623
1624                 val64 = 0x8080404020201008ULL;
1625                 writeq(val64, &bar0->rts_qos_steering);
1626                 break;
1627         case 6:
1628                 val64 = 0x0001020304050001ULL;
1629                 writeq(val64, &bar0->rx_w_round_robin_0);
1630                 val64 = 0x0203040500010203ULL;
1631                 writeq(val64, &bar0->rx_w_round_robin_1);
1632                 val64 = 0x0405000102030405ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_2);
1634                 val64 = 0x0001020304050001ULL;
1635                 writeq(val64, &bar0->rx_w_round_robin_3);
1636                 val64 = 0x0203040500000000ULL;
1637                 writeq(val64, &bar0->rx_w_round_robin_4);
1638
1639                 val64 = 0x8080404020100804ULL;
1640                 writeq(val64, &bar0->rts_qos_steering);
1641                 break;
1642         case 7:
1643                 val64 = 0x0001020304050600ULL;
1644                 writeq(val64, &bar0->rx_w_round_robin_0);
1645                 val64 = 0x0102030405060001ULL;
1646                 writeq(val64, &bar0->rx_w_round_robin_1);
1647                 val64 = 0x0203040506000102ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_2);
1649                 val64 = 0x0304050600010203ULL;
1650                 writeq(val64, &bar0->rx_w_round_robin_3);
1651                 val64 = 0x0405060000000000ULL;
1652                 writeq(val64, &bar0->rx_w_round_robin_4);
1653
1654                 val64 = 0x8080402010080402ULL;
1655                 writeq(val64, &bar0->rts_qos_steering);
1656                 break;
1657         case 8:
1658                 val64 = 0x0001020304050607ULL;
1659                 writeq(val64, &bar0->rx_w_round_robin_0);
1660                 writeq(val64, &bar0->rx_w_round_robin_1);
1661                 writeq(val64, &bar0->rx_w_round_robin_2);
1662                 writeq(val64, &bar0->rx_w_round_robin_3);
1663                 val64 = 0x0001020300000000ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_4);
1665
1666                 val64 = 0x8040201008040201ULL;
1667                 writeq(val64, &bar0->rts_qos_steering);
1668                 break;
1669         }
1670
1671         /* UDP Fix */
1672         val64 = 0;
1673         for (i = 0; i < 8; i++)
1674                 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676         /* Set the default rts frame length for the rings configured */
1677         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1678         for (i = 0 ; i < config->rx_ring_num ; i++)
1679                 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681         /* Set the frame length for the configured rings
1682          * desired by the user
1683          */
1684         for (i = 0; i < config->rx_ring_num; i++) {
1685                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1686                  * specified frame length steering.
1687                  * If the user provides the frame length then program
1688                  * the rts_frm_len register for those values or else
1689                  * leave it as it is.
1690                  */
1691                 if (rts_frm_len[i] != 0) {
1692                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1693                                &bar0->rts_frm_len_n[i]);
1694                 }
1695         }
1696
1697         /* Disable differentiated services steering logic */
1698         for (i = 0; i < 64; i++) {
1699                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1700                         DBG_PRINT(ERR_DBG,
1701                                   "%s: rts_ds_steer failed on codepoint %d\n",
1702                                   dev->name, i);
1703                         return -ENODEV;
1704                 }
1705         }
1706
1707         /* Program statistics memory */
1708         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1709
1710         if (nic->device_type == XFRAME_II_DEVICE) {
1711                 val64 = STAT_BC(0x320);
1712                 writeq(val64, &bar0->stat_byte_cnt);
1713         }
1714
1715         /*
1716          * Initializing the sampling rate for the device to calculate the
1717          * bandwidth utilization.
1718          */
1719         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1720                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1721         writeq(val64, &bar0->mac_link_util);
1722
1723         /*
1724          * Initializing the Transmit and Receive Traffic Interrupt
1725          * Scheme.
1726          */
1727
1728         /* Initialize TTI */
1729         if (SUCCESS != init_tti(nic, nic->last_link_state))
1730                 return -ENODEV;
1731
1732         /* RTI Initialization */
1733         if (nic->device_type == XFRAME_II_DEVICE) {
1734                 /*
1735                  * Programmed to generate Apprx 500 Intrs per
1736                  * second
1737                  */
1738                 int count = (nic->config.bus_speed * 125)/4;
1739                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1740         } else
1741                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1746
1747         writeq(val64, &bar0->rti_data1_mem);
1748
1749         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751         if (nic->config.intr_type == MSI_X)
1752                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1754         else
1755                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1757         writeq(val64, &bar0->rti_data2_mem);
1758
1759         for (i = 0; i < config->rx_ring_num; i++) {
1760                 val64 = RTI_CMD_MEM_WE |
1761                         RTI_CMD_MEM_STROBE_NEW_CMD |
1762                         RTI_CMD_MEM_OFFSET(i);
1763                 writeq(val64, &bar0->rti_command_mem);
1764
1765                 /*
1766                  * Once the operation completes, the Strobe bit of the
1767                  * command register will be reset. We poll for this
1768                  * particular condition. We wait for a maximum of 500ms
1769                  * for the operation to complete, if it's not complete
1770                  * by then we return error.
1771                  */
1772                 time = 0;
1773                 while (true) {
1774                         val64 = readq(&bar0->rti_command_mem);
1775                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1776                                 break;
1777
1778                         if (time > 10) {
1779                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1780                                           dev->name);
1781                                 return -ENODEV;
1782                         }
1783                         time++;
1784                         msleep(50);
1785                 }
1786         }
1787
1788         /*
1789          * Initializing proper values as Pause threshold into all
1790          * the 8 Queues on Rx side.
1791          */
1792         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1793         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1794
1795         /* Disable RMAC PAD STRIPPING */
1796         add = &bar0->mac_cfg;
1797         val64 = readq(&bar0->mac_cfg);
1798         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1799         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1800         writel((u32) (val64), add);
1801         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1802         writel((u32) (val64 >> 32), (add + 4));
1803         val64 = readq(&bar0->mac_cfg);
1804
1805         /* Enable FCS stripping by adapter */
1806         add = &bar0->mac_cfg;
1807         val64 = readq(&bar0->mac_cfg);
1808         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1809         if (nic->device_type == XFRAME_II_DEVICE)
1810                 writeq(val64, &bar0->mac_cfg);
1811         else {
1812                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1813                 writel((u32) (val64), add);
1814                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1815                 writel((u32) (val64 >> 32), (add + 4));
1816         }
1817
1818         /*
1819          * Set the time value to be inserted in the pause frame
1820          * generated by xena.
1821          */
1822         val64 = readq(&bar0->rmac_pause_cfg);
1823         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1825         writeq(val64, &bar0->rmac_pause_cfg);
1826
1827         /*
1828          * Set the Threshold Limit for Generating the pause frame
1829          * If the amount of data in any Queue exceeds ratio of
1830          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831          * pause frame is generated
1832          */
1833         val64 = 0;
1834         for (i = 0; i < 4; i++) {
1835                 val64 |= (((u64)0xFF00 |
1836                            nic->mac_control.mc_pause_threshold_q0q3)
1837                           << (i * 2 * 8));
1838         }
1839         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1840
1841         val64 = 0;
1842         for (i = 0; i < 4; i++) {
1843                 val64 |= (((u64)0xFF00 |
1844                            nic->mac_control.mc_pause_threshold_q4q7)
1845                           << (i * 2 * 8));
1846         }
1847         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1848
1849         /*
1850          * TxDMA will stop Read request if the number of read split has
1851          * exceeded the limit pointed by shared_splits
1852          */
1853         val64 = readq(&bar0->pic_control);
1854         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1855         writeq(val64, &bar0->pic_control);
1856
1857         if (nic->config.bus_speed == 266) {
1858                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1859                 writeq(0x0, &bar0->read_retry_delay);
1860                 writeq(0x0, &bar0->write_retry_delay);
1861         }
1862
1863         /*
1864          * Programming the Herc to split every write transaction
1865          * that does not start on an ADB to reduce disconnects.
1866          */
1867         if (nic->device_type == XFRAME_II_DEVICE) {
1868                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1869                         MISC_LINK_STABILITY_PRD(3);
1870                 writeq(val64, &bar0->misc_control);
1871                 val64 = readq(&bar0->pic_control2);
1872                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873                 writeq(val64, &bar0->pic_control2);
1874         }
1875         if (strstr(nic->product_name, "CX4")) {
1876                 val64 = TMAC_AVG_IPG(0x17);
1877                 writeq(val64, &bar0->tmac_avg_ipg);
1878         }
1879
1880         return SUCCESS;
1881 }
1882 #define LINK_UP_DOWN_INTERRUPT          1
1883 #define MAC_RMAC_ERR_TIMER              2
1884
1885 static int s2io_link_fault_indication(struct s2io_nic *nic)
1886 {
1887         if (nic->device_type == XFRAME_II_DEVICE)
1888                 return LINK_UP_DOWN_INTERRUPT;
1889         else
1890                 return MAC_RMAC_ERR_TIMER;
1891 }
1892
1893 /**
1894  *  do_s2io_write_bits -  update alarm bits in alarm register
1895  *  @value: alarm bits
1896  *  @flag: interrupt status
1897  *  @addr: address value
1898  *  Description: update alarm bits in alarm register
1899  *  Return Value:
1900  *  NONE.
1901  */
1902 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903 {
1904         u64 temp64;
1905
1906         temp64 = readq(addr);
1907
1908         if (flag == ENABLE_INTRS)
1909                 temp64 &= ~((u64)value);
1910         else
1911                 temp64 |= ((u64)value);
1912         writeq(temp64, addr);
1913 }
1914
1915 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1916 {
1917         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1918         register u64 gen_int_mask = 0;
1919         u64 interruptible;
1920
1921         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1922         if (mask & TX_DMA_INTR) {
1923                 gen_int_mask |= TXDMA_INT_M;
1924
1925                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1926                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1927                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1928                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1929
1930                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1931                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1932                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1933                                    &bar0->pfc_err_mask);
1934
1935                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1936                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1937                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1938
1939                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1940                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1941                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1942                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1943                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1944                                    PCC_TXB_ECC_SG_ERR,
1945                                    flag, &bar0->pcc_err_mask);
1946
1947                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1948                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1949
1950                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1951                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1952                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1953                                    flag, &bar0->lso_err_mask);
1954
1955                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1956                                    flag, &bar0->tpa_err_mask);
1957
1958                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1959         }
1960
1961         if (mask & TX_MAC_INTR) {
1962                 gen_int_mask |= TXMAC_INT_M;
1963                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1964                                    &bar0->mac_int_mask);
1965                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1966                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1967                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1968                                    flag, &bar0->mac_tmac_err_mask);
1969         }
1970
1971         if (mask & TX_XGXS_INTR) {
1972                 gen_int_mask |= TXXGXS_INT_M;
1973                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1974                                    &bar0->xgxs_int_mask);
1975                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1976                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1977                                    flag, &bar0->xgxs_txgxs_err_mask);
1978         }
1979
1980         if (mask & RX_DMA_INTR) {
1981                 gen_int_mask |= RXDMA_INT_M;
1982                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1983                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1984                                    flag, &bar0->rxdma_int_mask);
1985                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1986                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1987                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1988                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1989                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1990                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1991                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1992                                    &bar0->prc_pcix_err_mask);
1993                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1994                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1995                                    &bar0->rpa_err_mask);
1996                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1997                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1998                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1999                                    RDA_FRM_ECC_SG_ERR |
2000                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2001                                    flag, &bar0->rda_err_mask);
2002                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2003                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2004                                    flag, &bar0->rti_err_mask);
2005         }
2006
2007         if (mask & RX_MAC_INTR) {
2008                 gen_int_mask |= RXMAC_INT_M;
2009                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2010                                    &bar0->mac_int_mask);
2011                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2012                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2013                                  RMAC_DOUBLE_ECC_ERR);
2014                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2015                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2016                 do_s2io_write_bits(interruptible,
2017                                    flag, &bar0->mac_rmac_err_mask);
2018         }
2019
2020         if (mask & RX_XGXS_INTR) {
2021                 gen_int_mask |= RXXGXS_INT_M;
2022                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2023                                    &bar0->xgxs_int_mask);
2024                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2025                                    &bar0->xgxs_rxgxs_err_mask);
2026         }
2027
2028         if (mask & MC_INTR) {
2029                 gen_int_mask |= MC_INT_M;
2030                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2031                                    flag, &bar0->mc_int_mask);
2032                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2033                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2034                                    &bar0->mc_err_mask);
2035         }
2036         nic->general_int_mask = gen_int_mask;
2037
2038         /* Remove this line when alarm interrupts are enabled */
2039         nic->general_int_mask = 0;
2040 }
2041
2042 /**
2043  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2044  *  @nic: device private variable,
2045  *  @mask: A mask indicating which Intr block must be modified and,
2046  *  @flag: A flag indicating whether to enable or disable the Intrs.
2047  *  Description: This function will either disable or enable the interrupts
2048  *  depending on the flag argument. The mask argument can be used to
2049  *  enable/disable any Intr block.
2050  *  Return Value: NONE.
2051  */
2052
2053 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2054 {
2055         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2056         register u64 temp64 = 0, intr_mask = 0;
2057
2058         intr_mask = nic->general_int_mask;
2059
2060         /*  Top level interrupt classification */
2061         /*  PIC Interrupts */
2062         if (mask & TX_PIC_INTR) {
2063                 /*  Enable PIC Intrs in the general intr mask register */
2064                 intr_mask |= TXPIC_INT_M;
2065                 if (flag == ENABLE_INTRS) {
2066                         /*
2067                          * If Hercules adapter enable GPIO otherwise
2068                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2069                          * interrupts for now.
2070                          * TODO
2071                          */
2072                         if (s2io_link_fault_indication(nic) ==
2073                             LINK_UP_DOWN_INTERRUPT) {
2074                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2075                                                    &bar0->pic_int_mask);
2076                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2077                                                    &bar0->gpio_int_mask);
2078                         } else
2079                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080                 } else if (flag == DISABLE_INTRS) {
2081                         /*
2082                          * Disable PIC Intrs in the general
2083                          * intr mask register
2084                          */
2085                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2086                 }
2087         }
2088
2089         /*  Tx traffic interrupts */
2090         if (mask & TX_TRAFFIC_INTR) {
2091                 intr_mask |= TXTRAFFIC_INT_M;
2092                 if (flag == ENABLE_INTRS) {
2093                         /*
2094                          * Enable all the Tx side interrupts
2095                          * writing 0 Enables all 64 TX interrupt levels
2096                          */
2097                         writeq(0x0, &bar0->tx_traffic_mask);
2098                 } else if (flag == DISABLE_INTRS) {
2099                         /*
2100                          * Disable Tx Traffic Intrs in the general intr mask
2101                          * register.
2102                          */
2103                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2104                 }
2105         }
2106
2107         /*  Rx traffic interrupts */
2108         if (mask & RX_TRAFFIC_INTR) {
2109                 intr_mask |= RXTRAFFIC_INT_M;
2110                 if (flag == ENABLE_INTRS) {
2111                         /* writing 0 Enables all 8 RX interrupt levels */
2112                         writeq(0x0, &bar0->rx_traffic_mask);
2113                 } else if (flag == DISABLE_INTRS) {
2114                         /*
2115                          * Disable Rx Traffic Intrs in the general intr mask
2116                          * register.
2117                          */
2118                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2119                 }
2120         }
2121
2122         temp64 = readq(&bar0->general_int_mask);
2123         if (flag == ENABLE_INTRS)
2124                 temp64 &= ~((u64)intr_mask);
2125         else
2126                 temp64 = DISABLE_ALL_INTRS;
2127         writeq(temp64, &bar0->general_int_mask);
2128
2129         nic->general_int_mask = readq(&bar0->general_int_mask);
2130 }
2131
2132 /**
2133  *  verify_pcc_quiescent- Checks for PCC quiescent state
2134  *  Return: 1 If PCC is quiescence
2135  *          0 If PCC is not quiescence
2136  */
2137 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2138 {
2139         int ret = 0, herc;
2140         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2141         u64 val64 = readq(&bar0->adapter_status);
2142
2143         herc = (sp->device_type == XFRAME_II_DEVICE);
2144
2145         if (flag == false) {
2146                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2147                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2148                                 ret = 1;
2149                 } else {
2150                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2151                                 ret = 1;
2152                 }
2153         } else {
2154                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2155                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2156                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2157                                 ret = 1;
2158                 } else {
2159                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2160                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2161                                 ret = 1;
2162                 }
2163         }
2164
2165         return ret;
2166 }
2167 /**
2168  *  verify_xena_quiescence - Checks whether the H/W is ready
2169  *  Description: Returns whether the H/W is ready to go or not. Depending
2170  *  on whether adapter enable bit was written or not the comparison
2171  *  differs and the calling function passes the input argument flag to
2172  *  indicate this.
2173  *  Return: 1 If xena is quiescence
2174  *          0 If Xena is not quiescence
2175  */
2176
2177 static int verify_xena_quiescence(struct s2io_nic *sp)
2178 {
2179         int  mode;
2180         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2181         u64 val64 = readq(&bar0->adapter_status);
2182         mode = s2io_verify_pci_mode(sp);
2183
2184         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2185                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2186                 return 0;
2187         }
2188         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2189                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2190                 return 0;
2191         }
2192         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2193                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2194                 return 0;
2195         }
2196         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2197                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2198                 return 0;
2199         }
2200         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2201                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2202                 return 0;
2203         }
2204         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2205                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2206                 return 0;
2207         }
2208         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2209                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2210                 return 0;
2211         }
2212         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2213                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2214                 return 0;
2215         }
2216
2217         /*
2218          * In PCI 33 mode, the P_PLL is not used, and therefore,
2219          * the the P_PLL_LOCK bit in the adapter_status register will
2220          * not be asserted.
2221          */
2222         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2223             sp->device_type == XFRAME_II_DEVICE &&
2224             mode != PCI_MODE_PCI_33) {
2225                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2226                 return 0;
2227         }
2228         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2229               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2230                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2231                 return 0;
2232         }
2233         return 1;
2234 }
2235
2236 /**
2237  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2238  * @sp: Pointer to device specifc structure
2239  * Description :
2240  * New procedure to clear mac address reading  problems on Alpha platforms
2241  *
2242  */
2243
2244 static void fix_mac_address(struct s2io_nic *sp)
2245 {
2246         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2247         u64 val64;
2248         int i = 0;
2249
2250         while (fix_mac[i] != END_SIGN) {
2251                 writeq(fix_mac[i++], &bar0->gpio_control);
2252                 udelay(10);
2253                 val64 = readq(&bar0->gpio_control);
2254         }
2255 }
2256
2257 /**
2258  *  start_nic - Turns the device on
2259  *  @nic : device private variable.
2260  *  Description:
2261  *  This function actually turns the device on. Before this  function is
2262  *  called,all Registers are configured from their reset states
2263  *  and shared memory is allocated but the NIC is still quiescent. On
2264  *  calling this function, the device interrupts are cleared and the NIC is
2265  *  literally switched on by writing into the adapter control register.
2266  *  Return Value:
2267  *  SUCCESS on success and -1 on failure.
2268  */
2269
2270 static int start_nic(struct s2io_nic *nic)
2271 {
2272         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2273         struct net_device *dev = nic->dev;
2274         register u64 val64 = 0;
2275         u16 subid, i;
2276         struct config_param *config = &nic->config;
2277         struct mac_info *mac_control = &nic->mac_control;
2278
2279         /*  PRC Initialization and configuration */
2280         for (i = 0; i < config->rx_ring_num; i++) {
2281                 struct ring_info *ring = &mac_control->rings[i];
2282
2283                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2284                        &bar0->prc_rxd0_n[i]);
2285
2286                 val64 = readq(&bar0->prc_ctrl_n[i]);
2287                 if (nic->rxd_mode == RXD_MODE_1)
2288                         val64 |= PRC_CTRL_RC_ENABLED;
2289                 else
2290                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2291                 if (nic->device_type == XFRAME_II_DEVICE)
2292                         val64 |= PRC_CTRL_GROUP_READS;
2293                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295                 writeq(val64, &bar0->prc_ctrl_n[i]);
2296         }
2297
2298         if (nic->rxd_mode == RXD_MODE_3B) {
2299                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300                 val64 = readq(&bar0->rx_pa_cfg);
2301                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2302                 writeq(val64, &bar0->rx_pa_cfg);
2303         }
2304
2305         if (vlan_tag_strip == 0) {
2306                 val64 = readq(&bar0->rx_pa_cfg);
2307                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2308                 writeq(val64, &bar0->rx_pa_cfg);
2309                 nic->vlan_strip_flag = 0;
2310         }
2311
2312         /*
2313          * Enabling MC-RLDRAM. After enabling the device, we timeout
2314          * for around 100ms, which is approximately the time required
2315          * for the device to be ready for operation.
2316          */
2317         val64 = readq(&bar0->mc_rldram_mrs);
2318         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2319         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2320         val64 = readq(&bar0->mc_rldram_mrs);
2321
2322         msleep(100);    /* Delay by around 100 ms. */
2323
2324         /* Enabling ECC Protection. */
2325         val64 = readq(&bar0->adapter_control);
2326         val64 &= ~ADAPTER_ECC_EN;
2327         writeq(val64, &bar0->adapter_control);
2328
2329         /*
2330          * Verify if the device is ready to be enabled, if so enable
2331          * it.
2332          */
2333         val64 = readq(&bar0->adapter_status);
2334         if (!verify_xena_quiescence(nic)) {
2335                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2336                           "Adapter status reads: 0x%llx\n",
2337                           dev->name, (unsigned long long)val64);
2338                 return FAILURE;
2339         }
2340
2341         /*
2342          * With some switches, link might be already up at this point.
2343          * Because of this weird behavior, when we enable laser,
2344          * we may not get link. We need to handle this. We cannot
2345          * figure out which switch is misbehaving. So we are forced to
2346          * make a global change.
2347          */
2348
2349         /* Enabling Laser. */
2350         val64 = readq(&bar0->adapter_control);
2351         val64 |= ADAPTER_EOI_TX_ON;
2352         writeq(val64, &bar0->adapter_control);
2353
2354         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2355                 /*
2356                  * Dont see link state interrupts initially on some switches,
2357                  * so directly scheduling the link state task here.
2358                  */
2359                 schedule_work(&nic->set_link_task);
2360         }
2361         /* SXE-002: Initialize link and activity LED */
2362         subid = nic->pdev->subsystem_device;
2363         if (((subid & 0xFF) >= 0x07) &&
2364             (nic->device_type == XFRAME_I_DEVICE)) {
2365                 val64 = readq(&bar0->gpio_control);
2366                 val64 |= 0x0000800000000000ULL;
2367                 writeq(val64, &bar0->gpio_control);
2368                 val64 = 0x0411040400000000ULL;
2369                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2370         }
2371
2372         return SUCCESS;
2373 }
2374 /**
2375  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2376  */
2377 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2378                                         struct TxD *txdlp, int get_off)
2379 {
2380         struct s2io_nic *nic = fifo_data->nic;
2381         struct sk_buff *skb;
2382         struct TxD *txds;
2383         u16 j, frg_cnt;
2384
2385         txds = txdlp;
2386         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2387                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2388                                  sizeof(u64), PCI_DMA_TODEVICE);
2389                 txds++;
2390         }
2391
2392         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2393         if (!skb) {
2394                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2395                 return NULL;
2396         }
2397         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2398                          skb_headlen(skb), PCI_DMA_TODEVICE);
2399         frg_cnt = skb_shinfo(skb)->nr_frags;
2400         if (frg_cnt) {
2401                 txds++;
2402                 for (j = 0; j < frg_cnt; j++, txds++) {
2403                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2404                         if (!txds->Buffer_Pointer)
2405                                 break;
2406                         pci_unmap_page(nic->pdev,
2407                                        (dma_addr_t)txds->Buffer_Pointer,
2408                                        frag->size, PCI_DMA_TODEVICE);
2409                 }
2410         }
2411         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2412         return skb;
2413 }
2414
2415 /**
2416  *  free_tx_buffers - Free all queued Tx buffers
2417  *  @nic : device private variable.
2418  *  Description:
2419  *  Free all queued Tx buffers.
2420  *  Return Value: void
2421  */
2422
2423 static void free_tx_buffers(struct s2io_nic *nic)
2424 {
2425         struct net_device *dev = nic->dev;
2426         struct sk_buff *skb;
2427         struct TxD *txdp;
2428         int i, j;
2429         int cnt = 0;
2430         struct config_param *config = &nic->config;
2431         struct mac_info *mac_control = &nic->mac_control;
2432         struct stat_block *stats = mac_control->stats_info;
2433         struct swStat *swstats = &stats->sw_stat;
2434
2435         for (i = 0; i < config->tx_fifo_num; i++) {
2436                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2437                 struct fifo_info *fifo = &mac_control->fifos[i];
2438                 unsigned long flags;
2439
2440                 spin_lock_irqsave(&fifo->tx_lock, flags);
2441                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2442                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2443                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2444                         if (skb) {
2445                                 swstats->mem_freed += skb->truesize;
2446                                 dev_kfree_skb(skb);
2447                                 cnt++;
2448                         }
2449                 }
2450                 DBG_PRINT(INTR_DBG,
2451                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2452                           dev->name, cnt, i);
2453                 fifo->tx_curr_get_info.offset = 0;
2454                 fifo->tx_curr_put_info.offset = 0;
2455                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2456         }
2457 }
2458
2459 /**
2460  *   stop_nic -  To stop the nic
2461  *   @nic ; device private variable.
2462  *   Description:
2463  *   This function does exactly the opposite of what the start_nic()
2464  *   function does. This function is called to stop the device.
2465  *   Return Value:
2466  *   void.
2467  */
2468
2469 static void stop_nic(struct s2io_nic *nic)
2470 {
2471         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2472         register u64 val64 = 0;
2473         u16 interruptible;
2474
2475         /*  Disable all interrupts */
2476         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2477         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2478         interruptible |= TX_PIC_INTR;
2479         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2480
2481         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482         val64 = readq(&bar0->adapter_control);
2483         val64 &= ~(ADAPTER_CNTL_EN);
2484         writeq(val64, &bar0->adapter_control);
2485 }
2486
2487 /**
2488  *  fill_rx_buffers - Allocates the Rx side skbs
2489  *  @ring_info: per ring structure
2490  *  @from_card_up: If this is true, we will map the buffer to get
2491  *     the dma address for buf0 and buf1 to give it to the card.
2492  *     Else we will sync the already mapped buffer to give it to the card.
2493  *  Description:
2494  *  The function allocates Rx side skbs and puts the physical
2495  *  address of these buffers into the RxD buffer pointers, so that the NIC
2496  *  can DMA the received frame into these locations.
2497  *  The NIC supports 3 receive modes, viz
2498  *  1. single buffer,
2499  *  2. three buffer and
2500  *  3. Five buffer modes.
2501  *  Each mode defines how many fragments the received frame will be split
2502  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2503  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504  *  is split into 3 fragments. As of now only single buffer mode is
2505  *  supported.
2506  *   Return Value:
2507  *  SUCCESS on success or an appropriate -ve value on failure.
2508  */
2509 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2510                            int from_card_up)
2511 {
2512         struct sk_buff *skb;
2513         struct RxD_t *rxdp;
2514         int off, size, block_no, block_no1;
2515         u32 alloc_tab = 0;
2516         u32 alloc_cnt;
2517         u64 tmp;
2518         struct buffAdd *ba;
2519         struct RxD_t *first_rxdp = NULL;
2520         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2521         int rxd_index = 0;
2522         struct RxD1 *rxdp1;
2523         struct RxD3 *rxdp3;
2524         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2525
2526         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2527
2528         block_no1 = ring->rx_curr_get_info.block_index;
2529         while (alloc_tab < alloc_cnt) {
2530                 block_no = ring->rx_curr_put_info.block_index;
2531
2532                 off = ring->rx_curr_put_info.offset;
2533
2534                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2535
2536                 rxd_index = off + 1;
2537                 if (block_no)
2538                         rxd_index += (block_no * ring->rxd_count);
2539
2540                 if ((block_no == block_no1) &&
2541                     (off == ring->rx_curr_get_info.offset) &&
2542                     (rxdp->Host_Control)) {
2543                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2544                                   ring->dev->name);
2545                         goto end;
2546                 }
2547                 if (off && (off == ring->rxd_count)) {
2548                         ring->rx_curr_put_info.block_index++;
2549                         if (ring->rx_curr_put_info.block_index ==
2550                             ring->block_count)
2551                                 ring->rx_curr_put_info.block_index = 0;
2552                         block_no = ring->rx_curr_put_info.block_index;
2553                         off = 0;
2554                         ring->rx_curr_put_info.offset = off;
2555                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2556                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2557                                   ring->dev->name, rxdp);
2558
2559                 }
2560
2561                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2562                     ((ring->rxd_mode == RXD_MODE_3B) &&
2563                      (rxdp->Control_2 & s2BIT(0)))) {
2564                         ring->rx_curr_put_info.offset = off;
2565                         goto end;
2566                 }
2567                 /* calculate size of skb based on ring mode */
2568                 size = ring->mtu +
2569                         HEADER_ETHERNET_II_802_3_SIZE +
2570                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2571                 if (ring->rxd_mode == RXD_MODE_1)
2572                         size += NET_IP_ALIGN;
2573                 else
2574                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2575
2576                 /* allocate skb */
2577                 skb = dev_alloc_skb(size);
2578                 if (!skb) {
2579                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2580                                   ring->dev->name);
2581                         if (first_rxdp) {
2582                                 wmb();
2583                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2584                         }
2585                         swstats->mem_alloc_fail_cnt++;
2586
2587                         return -ENOMEM ;
2588                 }
2589                 swstats->mem_allocated += skb->truesize;
2590
2591                 if (ring->rxd_mode == RXD_MODE_1) {
2592                         /* 1 buffer mode - normal operation mode */
2593                         rxdp1 = (struct RxD1 *)rxdp;
2594                         memset(rxdp, 0, sizeof(struct RxD1));
2595                         skb_reserve(skb, NET_IP_ALIGN);
2596                         rxdp1->Buffer0_ptr =
2597                                 pci_map_single(ring->pdev, skb->data,
2598                                                size - NET_IP_ALIGN,
2599                                                PCI_DMA_FROMDEVICE);
2600                         if (pci_dma_mapping_error(nic->pdev,
2601                                                   rxdp1->Buffer0_ptr))
2602                                 goto pci_map_failed;
2603
2604                         rxdp->Control_2 =
2605                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2606                         rxdp->Host_Control = (unsigned long)skb;
2607                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2608                         /*
2609                          * 2 buffer mode -
2610                          * 2 buffer mode provides 128
2611                          * byte aligned receive buffers.
2612                          */
2613
2614                         rxdp3 = (struct RxD3 *)rxdp;
2615                         /* save buffer pointers to avoid frequent dma mapping */
2616                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2617                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2618                         memset(rxdp, 0, sizeof(struct RxD3));
2619                         /* restore the buffer pointers for dma sync*/
2620                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2621                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2622
2623                         ba = &ring->ba[block_no][off];
2624                         skb_reserve(skb, BUF0_LEN);
2625                         tmp = (u64)(unsigned long)skb->data;
2626                         tmp += ALIGN_SIZE;
2627                         tmp &= ~ALIGN_SIZE;
2628                         skb->data = (void *) (unsigned long)tmp;
2629                         skb_reset_tail_pointer(skb);
2630
2631                         if (from_card_up) {
2632                                 rxdp3->Buffer0_ptr =
2633                                         pci_map_single(ring->pdev, ba->ba_0,
2634                                                        BUF0_LEN,
2635                                                        PCI_DMA_FROMDEVICE);
2636                                 if (pci_dma_mapping_error(nic->pdev,
2637                                                           rxdp3->Buffer0_ptr))
2638                                         goto pci_map_failed;
2639                         } else
2640                                 pci_dma_sync_single_for_device(ring->pdev,
2641                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2642                                                                BUF0_LEN,
2643                                                                PCI_DMA_FROMDEVICE);
2644
2645                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2646                         if (ring->rxd_mode == RXD_MODE_3B) {
2647                                 /* Two buffer mode */
2648
2649                                 /*
2650                                  * Buffer2 will have L3/L4 header plus
2651                                  * L4 payload
2652                                  */
2653                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2654                                                                     skb->data,
2655                                                                     ring->mtu + 4,
2656                                                                     PCI_DMA_FROMDEVICE);
2657
2658                                 if (pci_dma_mapping_error(nic->pdev,
2659                                                           rxdp3->Buffer2_ptr))
2660                                         goto pci_map_failed;
2661
2662                                 if (from_card_up) {
2663                                         rxdp3->Buffer1_ptr =
2664                                                 pci_map_single(ring->pdev,
2665                                                                ba->ba_1,
2666                                                                BUF1_LEN,
2667                                                                PCI_DMA_FROMDEVICE);
2668
2669                                         if (pci_dma_mapping_error(nic->pdev,
2670                                                                   rxdp3->Buffer1_ptr)) {
2671                                                 pci_unmap_single(ring->pdev,
2672                                                                  (dma_addr_t)(unsigned long)
2673                                                                  skb->data,
2674                                                                  ring->mtu + 4,
2675                                                                  PCI_DMA_FROMDEVICE);
2676                                                 goto pci_map_failed;
2677                                         }
2678                                 }
2679                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681                                         (ring->mtu + 4);
2682                         }
2683                         rxdp->Control_2 |= s2BIT(0);
2684                         rxdp->Host_Control = (unsigned long) (skb);
2685                 }
2686                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687                         rxdp->Control_1 |= RXD_OWN_XENA;
2688                 off++;
2689                 if (off == (ring->rxd_count + 1))
2690                         off = 0;
2691                 ring->rx_curr_put_info.offset = off;
2692
2693                 rxdp->Control_2 |= SET_RXD_MARKER;
2694                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695                         if (first_rxdp) {
2696                                 wmb();
2697                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698                         }
2699                         first_rxdp = rxdp;
2700                 }
2701                 ring->rx_bufs_left += 1;
2702                 alloc_tab++;
2703         }
2704
2705 end:
2706         /* Transfer ownership of first descriptor to adapter just before
2707          * exiting. Before that, use memory barrier so that ownership
2708          * and other fields are seen by adapter correctly.
2709          */
2710         if (first_rxdp) {
2711                 wmb();
2712                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713         }
2714
2715         return SUCCESS;
2716
2717 pci_map_failed:
2718         swstats->pci_map_fail_cnt++;
2719         swstats->mem_freed += skb->truesize;
2720         dev_kfree_skb_irq(skb);
2721         return -ENOMEM;
2722 }
2723
2724 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2725 {
2726         struct net_device *dev = sp->dev;
2727         int j;
2728         struct sk_buff *skb;
2729         struct RxD_t *rxdp;
2730         struct buffAdd *ba;
2731         struct RxD1 *rxdp1;
2732         struct RxD3 *rxdp3;
2733         struct mac_info *mac_control = &sp->mac_control;
2734         struct stat_block *stats = mac_control->stats_info;
2735         struct swStat *swstats = &stats->sw_stat;
2736
2737         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2738                 rxdp = mac_control->rings[ring_no].
2739                         rx_blocks[blk].rxds[j].virt_addr;
2740                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2741                 if (!skb)
2742                         continue;
2743                 if (sp->rxd_mode == RXD_MODE_1) {
2744                         rxdp1 = (struct RxD1 *)rxdp;
2745                         pci_unmap_single(sp->pdev,
2746                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2747                                          dev->mtu +
2748                                          HEADER_ETHERNET_II_802_3_SIZE +
2749                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2750                                          PCI_DMA_FROMDEVICE);
2751                         memset(rxdp, 0, sizeof(struct RxD1));
2752                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2753                         rxdp3 = (struct RxD3 *)rxdp;
2754                         ba = &mac_control->rings[ring_no].ba[blk][j];
2755                         pci_unmap_single(sp->pdev,
2756                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2757                                          BUF0_LEN,
2758                                          PCI_DMA_FROMDEVICE);
2759                         pci_unmap_single(sp->pdev,
2760                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2761                                          BUF1_LEN,
2762                                          PCI_DMA_FROMDEVICE);
2763                         pci_unmap_single(sp->pdev,
2764                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2765                                          dev->mtu + 4,
2766                                          PCI_DMA_FROMDEVICE);
2767                         memset(rxdp, 0, sizeof(struct RxD3));
2768                 }
2769                 swstats->mem_freed += skb->truesize;
2770                 dev_kfree_skb(skb);
2771                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2772         }
2773 }
2774
2775 /**
2776  *  free_rx_buffers - Frees all Rx buffers
2777  *  @sp: device private variable.
2778  *  Description:
2779  *  This function will free all Rx buffers allocated by host.
2780  *  Return Value:
2781  *  NONE.
2782  */
2783
2784 static void free_rx_buffers(struct s2io_nic *sp)
2785 {
2786         struct net_device *dev = sp->dev;
2787         int i, blk = 0, buf_cnt = 0;
2788         struct config_param *config = &sp->config;
2789         struct mac_info *mac_control = &sp->mac_control;
2790
2791         for (i = 0; i < config->rx_ring_num; i++) {
2792                 struct ring_info *ring = &mac_control->rings[i];
2793
2794                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2795                         free_rxd_blk(sp, i, blk);
2796
2797                 ring->rx_curr_put_info.block_index = 0;
2798                 ring->rx_curr_get_info.block_index = 0;
2799                 ring->rx_curr_put_info.offset = 0;
2800                 ring->rx_curr_get_info.offset = 0;
2801                 ring->rx_bufs_left = 0;
2802                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2803                           dev->name, buf_cnt, i);
2804         }
2805 }
2806
2807 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2808 {
2809         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2810                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2811                           ring->dev->name);
2812         }
2813         return 0;
2814 }
2815
2816 /**
2817  * s2io_poll - Rx interrupt handler for NAPI support
2818  * @napi : pointer to the napi structure.
2819  * @budget : The number of packets that were budgeted to be processed
2820  * during  one pass through the 'Poll" function.
2821  * Description:
2822  * Comes into picture only if NAPI support has been incorporated. It does
2823  * the same thing that rx_intr_handler does, but not in a interrupt context
2824  * also It will process only a given number of packets.
2825  * Return value:
2826  * 0 on success and 1 if there are No Rx packets to be processed.
2827  */
2828
2829 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2830 {
2831         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2832         struct net_device *dev = ring->dev;
2833         int pkts_processed = 0;
2834         u8 __iomem *addr = NULL;
2835         u8 val8 = 0;
2836         struct s2io_nic *nic = netdev_priv(dev);
2837         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2838         int budget_org = budget;
2839
2840         if (unlikely(!is_s2io_card_up(nic)))
2841                 return 0;
2842
2843         pkts_processed = rx_intr_handler(ring, budget);
2844         s2io_chk_rx_buffers(nic, ring);
2845
2846         if (pkts_processed < budget_org) {
2847                 napi_complete(napi);
2848                 /*Re Enable MSI-Rx Vector*/
2849                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2850                 addr += 7 - ring->ring_no;
2851                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2852                 writeb(val8, addr);
2853                 val8 = readb(addr);
2854         }
2855         return pkts_processed;
2856 }
2857
2858 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2859 {
2860         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2861         int pkts_processed = 0;
2862         int ring_pkts_processed, i;
2863         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2864         int budget_org = budget;
2865         struct config_param *config = &nic->config;
2866         struct mac_info *mac_control = &nic->mac_control;
2867
2868         if (unlikely(!is_s2io_card_up(nic)))
2869                 return 0;
2870
2871         for (i = 0; i < config->rx_ring_num; i++) {
2872                 struct ring_info *ring = &mac_control->rings[i];
2873                 ring_pkts_processed = rx_intr_handler(ring, budget);
2874                 s2io_chk_rx_buffers(nic, ring);
2875                 pkts_processed += ring_pkts_processed;
2876                 budget -= ring_pkts_processed;
2877                 if (budget <= 0)
2878                         break;
2879         }
2880         if (pkts_processed < budget_org) {
2881                 napi_complete(napi);
2882                 /* Re enable the Rx interrupts for the ring */
2883                 writeq(0, &bar0->rx_traffic_mask);
2884                 readl(&bar0->rx_traffic_mask);
2885         }
2886         return pkts_processed;
2887 }
2888
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2890 /**
2891  * s2io_netpoll - netpoll event handler entry point
2892  * @dev : pointer to the device structure.
2893  * Description:
2894  *      This function will be called by upper layer to check for events on the
2895  * interface in situations where interrupts are disabled. It is used for
2896  * specific in-kernel networking tasks, such as remote consoles and kernel
2897  * debugging over the network (example netdump in RedHat).
2898  */
2899 static void s2io_netpoll(struct net_device *dev)
2900 {
2901         struct s2io_nic *nic = netdev_priv(dev);
2902         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2903         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2904         int i;
2905         struct config_param *config = &nic->config;
2906         struct mac_info *mac_control = &nic->mac_control;
2907
2908         if (pci_channel_offline(nic->pdev))
2909                 return;
2910
2911         disable_irq(dev->irq);
2912
2913         writeq(val64, &bar0->rx_traffic_int);
2914         writeq(val64, &bar0->tx_traffic_int);
2915
2916         /* we need to free up the transmitted skbufs or else netpoll will
2917          * run out of skbs and will fail and eventually netpoll application such
2918          * as netdump will fail.
2919          */
2920         for (i = 0; i < config->tx_fifo_num; i++)
2921                 tx_intr_handler(&mac_control->fifos[i]);
2922
2923         /* check for received packet and indicate up to network */
2924         for (i = 0; i < config->rx_ring_num; i++) {
2925                 struct ring_info *ring = &mac_control->rings[i];
2926
2927                 rx_intr_handler(ring, 0);
2928         }
2929
2930         for (i = 0; i < config->rx_ring_num; i++) {
2931                 struct ring_info *ring = &mac_control->rings[i];
2932
2933                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2934                         DBG_PRINT(INFO_DBG,
2935                                   "%s: Out of memory in Rx Netpoll!!\n",
2936                                   dev->name);
2937                         break;
2938                 }
2939         }
2940         enable_irq(dev->irq);
2941 }
2942 #endif
2943
2944 /**
2945  *  rx_intr_handler - Rx interrupt handler
2946  *  @ring_info: per ring structure.
2947  *  @budget: budget for napi processing.
2948  *  Description:
2949  *  If the interrupt is because of a received frame or if the
2950  *  receive ring contains fresh as yet un-processed frames,this function is
2951  *  called. It picks out the RxD at which place the last Rx processing had
2952  *  stopped and sends the skb to the OSM's Rx handler and then increments
2953  *  the offset.
2954  *  Return Value:
2955  *  No. of napi packets processed.
2956  */
2957 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2958 {
2959         int get_block, put_block;
2960         struct rx_curr_get_info get_info, put_info;
2961         struct RxD_t *rxdp;
2962         struct sk_buff *skb;
2963         int pkt_cnt = 0, napi_pkts = 0;
2964         int i;
2965         struct RxD1 *rxdp1;
2966         struct RxD3 *rxdp3;
2967
2968         get_info = ring_data->rx_curr_get_info;
2969         get_block = get_info.block_index;
2970         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2971         put_block = put_info.block_index;
2972         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2973
2974         while (RXD_IS_UP2DT(rxdp)) {
2975                 /*
2976                  * If your are next to put index then it's
2977                  * FIFO full condition
2978                  */
2979                 if ((get_block == put_block) &&
2980                     (get_info.offset + 1) == put_info.offset) {
2981                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2982                                   ring_data->dev->name);
2983                         break;
2984                 }
2985                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2986                 if (skb == NULL) {
2987                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2988                                   ring_data->dev->name);
2989                         return 0;
2990                 }
2991                 if (ring_data->rxd_mode == RXD_MODE_1) {
2992                         rxdp1 = (struct RxD1 *)rxdp;
2993                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2994                                          rxdp1->Buffer0_ptr,
2995                                          ring_data->mtu +
2996                                          HEADER_ETHERNET_II_802_3_SIZE +
2997                                          HEADER_802_2_SIZE +
2998                                          HEADER_SNAP_SIZE,
2999                                          PCI_DMA_FROMDEVICE);
3000                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3001                         rxdp3 = (struct RxD3 *)rxdp;
3002                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3003                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3004                                                     BUF0_LEN,
3005                                                     PCI_DMA_FROMDEVICE);
3006                         pci_unmap_single(ring_data->pdev,
3007                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3008                                          ring_data->mtu + 4,
3009                                          PCI_DMA_FROMDEVICE);
3010                 }
3011                 prefetch(skb->data);
3012                 rx_osm_handler(ring_data, rxdp);
3013                 get_info.offset++;
3014                 ring_data->rx_curr_get_info.offset = get_info.offset;
3015                 rxdp = ring_data->rx_blocks[get_block].
3016                         rxds[get_info.offset].virt_addr;
3017                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3018                         get_info.offset = 0;
3019                         ring_data->rx_curr_get_info.offset = get_info.offset;
3020                         get_block++;
3021                         if (get_block == ring_data->block_count)
3022                                 get_block = 0;
3023                         ring_data->rx_curr_get_info.block_index = get_block;
3024                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3025                 }
3026
3027                 if (ring_data->nic->config.napi) {
3028                         budget--;
3029                         napi_pkts++;
3030                         if (!budget)
3031                                 break;
3032                 }
3033                 pkt_cnt++;
3034                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3035                         break;
3036         }
3037         if (ring_data->lro) {
3038                 /* Clear all LRO sessions before exiting */
3039                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3040                         struct lro *lro = &ring_data->lro0_n[i];
3041                         if (lro->in_use) {
3042                                 update_L3L4_header(ring_data->nic, lro);
3043                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3044                                 clear_lro_session(lro);
3045                         }
3046                 }
3047         }
3048         return napi_pkts;
3049 }
3050
3051 /**
3052  *  tx_intr_handler - Transmit interrupt handler
3053  *  @nic : device private variable
3054  *  Description:
3055  *  If an interrupt was raised to indicate DMA complete of the
3056  *  Tx packet, this function is called. It identifies the last TxD
3057  *  whose buffer was freed and frees all skbs whose data have already
3058  *  DMA'ed into the NICs internal memory.
3059  *  Return Value:
3060  *  NONE
3061  */
3062
3063 static void tx_intr_handler(struct fifo_info *fifo_data)
3064 {
3065         struct s2io_nic *nic = fifo_data->nic;
3066         struct tx_curr_get_info get_info, put_info;
3067         struct sk_buff *skb = NULL;
3068         struct TxD *txdlp;
3069         int pkt_cnt = 0;
3070         unsigned long flags = 0;
3071         u8 err_mask;
3072         struct stat_block *stats = nic->mac_control.stats_info;
3073         struct swStat *swstats = &stats->sw_stat;
3074
3075         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3076                 return;
3077
3078         get_info = fifo_data->tx_curr_get_info;
3079         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3080         txdlp = (struct TxD *)
3081                 fifo_data->list_info[get_info.offset].list_virt_addr;
3082         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3083                (get_info.offset != put_info.offset) &&
3084                (txdlp->Host_Control)) {
3085                 /* Check for TxD errors */
3086                 if (txdlp->Control_1 & TXD_T_CODE) {
3087                         unsigned long long err;
3088                         err = txdlp->Control_1 & TXD_T_CODE;
3089                         if (err & 0x1) {
3090                                 swstats->parity_err_cnt++;
3091                         }
3092
3093                         /* update t_code statistics */
3094                         err_mask = err >> 48;
3095                         switch (err_mask) {
3096                         case 2:
3097                                 swstats->tx_buf_abort_cnt++;
3098                                 break;
3099
3100                         case 3:
3101                                 swstats->tx_desc_abort_cnt++;
3102                                 break;
3103
3104                         case 7:
3105                                 swstats->tx_parity_err_cnt++;
3106                                 break;
3107
3108                         case 10:
3109                                 swstats->tx_link_loss_cnt++;
3110                                 break;
3111
3112                         case 15:
3113                                 swstats->tx_list_proc_err_cnt++;
3114                                 break;
3115                         }
3116                 }
3117
3118                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3119                 if (skb == NULL) {
3120                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3121                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3122                                   __func__);
3123                         return;
3124                 }
3125                 pkt_cnt++;
3126
3127                 /* Updating the statistics block */
3128                 swstats->mem_freed += skb->truesize;
3129                 dev_kfree_skb_irq(skb);
3130
3131                 get_info.offset++;
3132                 if (get_info.offset == get_info.fifo_len + 1)
3133                         get_info.offset = 0;
3134                 txdlp = (struct TxD *)
3135                         fifo_data->list_info[get_info.offset].list_virt_addr;
3136                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3137         }
3138
3139         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3140
3141         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3142 }
3143
3144 /**
3145  *  s2io_mdio_write - Function to write in to MDIO registers
3146  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147  *  @addr     : address value
3148  *  @value    : data value
3149  *  @dev      : pointer to net_device structure
3150  *  Description:
3151  *  This function is used to write values to the MDIO registers
3152  *  NONE
3153  */
3154 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3155                             struct net_device *dev)
3156 {
3157         u64 val64;
3158         struct s2io_nic *sp = netdev_priv(dev);
3159         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3160
3161         /* address transaction */
3162         val64 = MDIO_MMD_INDX_ADDR(addr) |
3163                 MDIO_MMD_DEV_ADDR(mmd_type) |
3164                 MDIO_MMS_PRT_ADDR(0x0);
3165         writeq(val64, &bar0->mdio_control);
3166         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3167         writeq(val64, &bar0->mdio_control);
3168         udelay(100);
3169
3170         /* Data transaction */
3171         val64 = MDIO_MMD_INDX_ADDR(addr) |
3172                 MDIO_MMD_DEV_ADDR(mmd_type) |
3173                 MDIO_MMS_PRT_ADDR(0x0) |
3174                 MDIO_MDIO_DATA(value) |
3175                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3176         writeq(val64, &bar0->mdio_control);
3177         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3178         writeq(val64, &bar0->mdio_control);
3179         udelay(100);
3180
3181         val64 = MDIO_MMD_INDX_ADDR(addr) |
3182                 MDIO_MMD_DEV_ADDR(mmd_type) |
3183                 MDIO_MMS_PRT_ADDR(0x0) |
3184                 MDIO_OP(MDIO_OP_READ_TRANS);
3185         writeq(val64, &bar0->mdio_control);
3186         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3187         writeq(val64, &bar0->mdio_control);
3188         udelay(100);
3189 }
3190
3191 /**
3192  *  s2io_mdio_read - Function to write in to MDIO registers
3193  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194  *  @addr     : address value
3195  *  @dev      : pointer to net_device structure
3196  *  Description:
3197  *  This function is used to read values to the MDIO registers
3198  *  NONE
3199  */
3200 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3201 {
3202         u64 val64 = 0x0;
3203         u64 rval64 = 0x0;
3204         struct s2io_nic *sp = netdev_priv(dev);
3205         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3206
3207         /* address transaction */
3208         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3209                          | MDIO_MMD_DEV_ADDR(mmd_type)
3210                          | MDIO_MMS_PRT_ADDR(0x0));
3211         writeq(val64, &bar0->mdio_control);
3212         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3213         writeq(val64, &bar0->mdio_control);
3214         udelay(100);
3215
3216         /* Data transaction */
3217         val64 = MDIO_MMD_INDX_ADDR(addr) |
3218                 MDIO_MMD_DEV_ADDR(mmd_type) |
3219                 MDIO_MMS_PRT_ADDR(0x0) |
3220                 MDIO_OP(MDIO_OP_READ_TRANS);
3221         writeq(val64, &bar0->mdio_control);
3222         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3223         writeq(val64, &bar0->mdio_control);
3224         udelay(100);
3225
3226         /* Read the value from regs */
3227         rval64 = readq(&bar0->mdio_control);
3228         rval64 = rval64 & 0xFFFF0000;
3229         rval64 = rval64 >> 16;
3230         return rval64;
3231 }
3232
3233 /**
3234  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3235  *  @counter      : counter value to be updated
3236  *  @flag         : flag to indicate the status
3237  *  @type         : counter type
3238  *  Description:
3239  *  This function is to check the status of the xpak counters value
3240  *  NONE
3241  */
3242
3243 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3244                                   u16 flag, u16 type)
3245 {
3246         u64 mask = 0x3;
3247         u64 val64;
3248         int i;
3249         for (i = 0; i < index; i++)
3250                 mask = mask << 0x2;
3251
3252         if (flag > 0) {
3253                 *counter = *counter + 1;
3254                 val64 = *regs_stat & mask;
3255                 val64 = val64 >> (index * 0x2);
3256                 val64 = val64 + 1;
3257                 if (val64 == 3) {
3258                         switch (type) {
3259                         case 1:
3260                                 DBG_PRINT(ERR_DBG,
3261                                           "Take Xframe NIC out of service.\n");
3262                                 DBG_PRINT(ERR_DBG,
3263 "Excessive temperatures may result in premature transceiver failure.\n");
3264                                 break;
3265                         case 2:
3266                                 DBG_PRINT(ERR_DBG,
3267                                           "Take Xframe NIC out of service.\n");
3268                                 DBG_PRINT(ERR_DBG,
3269 "Excessive bias currents may indicate imminent laser diode failure.\n");
3270                                 break;
3271                         case 3:
3272                                 DBG_PRINT(ERR_DBG,
3273                                           "Take Xframe NIC out of service.\n");
3274                                 DBG_PRINT(ERR_DBG,
3275 "Excessive laser output power may saturate far-end receiver.\n");
3276                                 break;
3277                         default:
3278                                 DBG_PRINT(ERR_DBG,
3279                                           "Incorrect XPAK Alarm type\n");
3280                         }
3281                         val64 = 0x0;
3282                 }
3283                 val64 = val64 << (index * 0x2);
3284                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3285
3286         } else {
3287                 *regs_stat = *regs_stat & (~mask);
3288         }
3289 }
3290
3291 /**
3292  *  s2io_updt_xpak_counter - Function to update the xpak counters
3293  *  @dev         : pointer to net_device struct
3294  *  Description:
3295  *  This function is to upate the status of the xpak counters value
3296  *  NONE
3297  */
3298 static void s2io_updt_xpak_counter(struct net_device *dev)
3299 {
3300         u16 flag  = 0x0;
3301         u16 type  = 0x0;
3302         u16 val16 = 0x0;
3303         u64 val64 = 0x0;
3304         u64 addr  = 0x0;
3305
3306         struct s2io_nic *sp = netdev_priv(dev);
3307         struct stat_block *stats = sp->mac_control.stats_info;
3308         struct xpakStat *xstats = &stats->xpak_stat;
3309
3310         /* Check the communication with the MDIO slave */
3311         addr = MDIO_CTRL1;
3312         val64 = 0x0;
3313         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3314         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3315                 DBG_PRINT(ERR_DBG,
3316                           "ERR: MDIO slave access failed - Returned %llx\n",
3317                           (unsigned long long)val64);
3318                 return;
3319         }
3320
3321         /* Check for the expected value of control reg 1 */
3322         if (val64 != MDIO_CTRL1_SPEED10G) {
3323                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3324                           "Returned: %llx- Expected: 0x%x\n",
3325                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3326                 return;
3327         }
3328
3329         /* Loading the DOM register to MDIO register */
3330         addr = 0xA100;
3331         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3332         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3333
3334         /* Reading the Alarm flags */
3335         addr = 0xA070;
3336         val64 = 0x0;
3337         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339         flag = CHECKBIT(val64, 0x7);
3340         type = 1;
3341         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3342                               &xstats->xpak_regs_stat,
3343                               0x0, flag, type);
3344
3345         if (CHECKBIT(val64, 0x6))
3346                 xstats->alarm_transceiver_temp_low++;
3347
3348         flag = CHECKBIT(val64, 0x3);
3349         type = 2;
3350         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3351                               &xstats->xpak_regs_stat,
3352                               0x2, flag, type);
3353
3354         if (CHECKBIT(val64, 0x2))
3355                 xstats->alarm_laser_bias_current_low++;
3356
3357         flag = CHECKBIT(val64, 0x1);
3358         type = 3;
3359         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3360                               &xstats->xpak_regs_stat,
3361                               0x4, flag, type);
3362
3363         if (CHECKBIT(val64, 0x0))
3364                 xstats->alarm_laser_output_power_low++;
3365
3366         /* Reading the Warning flags */
3367         addr = 0xA074;
3368         val64 = 0x0;
3369         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3370
3371         if (CHECKBIT(val64, 0x7))
3372                 xstats->warn_transceiver_temp_high++;
3373
3374         if (CHECKBIT(val64, 0x6))
3375                 xstats->warn_transceiver_temp_low++;
3376
3377         if (CHECKBIT(val64, 0x3))
3378                 xstats->warn_laser_bias_current_high++;
3379
3380         if (CHECKBIT(val64, 0x2))
3381                 xstats->warn_laser_bias_current_low++;
3382
3383         if (CHECKBIT(val64, 0x1))
3384                 xstats->warn_laser_output_power_high++;
3385
3386         if (CHECKBIT(val64, 0x0))
3387                 xstats->warn_laser_output_power_low++;
3388 }
3389
3390 /**
3391  *  wait_for_cmd_complete - waits for a command to complete.
3392  *  @sp : private member of the device structure, which is a pointer to the
3393  *  s2io_nic structure.
3394  *  Description: Function that waits for a command to Write into RMAC
3395  *  ADDR DATA registers to be completed and returns either success or
3396  *  error depending on whether the command was complete or not.
3397  *  Return value:
3398  *   SUCCESS on success and FAILURE on failure.
3399  */
3400
3401 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3402                                  int bit_state)
3403 {
3404         int ret = FAILURE, cnt = 0, delay = 1;
3405         u64 val64;
3406
3407         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3408                 return FAILURE;
3409
3410         do {
3411                 val64 = readq(addr);
3412                 if (bit_state == S2IO_BIT_RESET) {
3413                         if (!(val64 & busy_bit)) {
3414                                 ret = SUCCESS;
3415                                 break;
3416                         }
3417                 } else {
3418                         if (val64 & busy_bit) {
3419                                 ret = SUCCESS;
3420                                 break;
3421                         }
3422                 }
3423
3424                 if (in_interrupt())
3425                         mdelay(delay);
3426                 else
3427                         msleep(delay);
3428
3429                 if (++cnt >= 10)
3430                         delay = 50;
3431         } while (cnt < 20);
3432         return ret;
3433 }
3434 /*
3435  * check_pci_device_id - Checks if the device id is supported
3436  * @id : device id
3437  * Description: Function to check if the pci device id is supported by driver.
3438  * Return value: Actual device id if supported else PCI_ANY_ID
3439  */
3440 static u16 check_pci_device_id(u16 id)
3441 {
3442         switch (id) {
3443         case PCI_DEVICE_ID_HERC_WIN:
3444         case PCI_DEVICE_ID_HERC_UNI:
3445                 return XFRAME_II_DEVICE;
3446         case PCI_DEVICE_ID_S2IO_UNI:
3447         case PCI_DEVICE_ID_S2IO_WIN:
3448                 return XFRAME_I_DEVICE;
3449         default:
3450                 return PCI_ANY_ID;
3451         }
3452 }
3453
3454 /**
3455  *  s2io_reset - Resets the card.
3456  *  @sp : private member of the device structure.
3457  *  Description: Function to Reset the card. This function then also
3458  *  restores the previously saved PCI configuration space registers as
3459  *  the card reset also resets the configuration space.
3460  *  Return value:
3461  *  void.
3462  */
3463
3464 static void s2io_reset(struct s2io_nic *sp)
3465 {
3466         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3467         u64 val64;
3468         u16 subid, pci_cmd;
3469         int i;
3470         u16 val16;
3471         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3472         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3473         struct stat_block *stats;
3474         struct swStat *swstats;
3475
3476         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3477                   __func__, pci_name(sp->pdev));
3478
3479         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3480         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3481
3482         val64 = SW_RESET_ALL;
3483         writeq(val64, &bar0->sw_reset);
3484         if (strstr(sp->product_name, "CX4"))
3485                 msleep(750);
3486         msleep(250);
3487         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3488
3489                 /* Restore the PCI state saved during initialization. */
3490                 pci_restore_state(sp->pdev);
3491                 pci_save_state(sp->pdev);
3492                 pci_read_config_word(sp->pdev, 0x2, &val16);
3493                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3494                         break;
3495                 msleep(200);
3496         }
3497
3498         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3499                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3500
3501         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3502
3503         s2io_init_pci(sp);
3504
3505         /* Set swapper to enable I/O register access */
3506         s2io_set_swapper(sp);
3507
3508         /* restore mac_addr entries */
3509         do_s2io_restore_unicast_mc(sp);
3510
3511         /* Restore the MSIX table entries from local variables */
3512         restore_xmsi_data(sp);
3513
3514         /* Clear certain PCI/PCI-X fields after reset */
3515         if (sp->device_type == XFRAME_II_DEVICE) {
3516                 /* Clear "detected parity error" bit */
3517                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3518
3519                 /* Clearing PCIX Ecc status register */
3520                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3521
3522                 /* Clearing PCI_STATUS error reflected here */
3523                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3524         }
3525
3526         /* Reset device statistics maintained by OS */
3527         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3528
3529         stats = sp->mac_control.stats_info;
3530         swstats = &stats->sw_stat;
3531
3532         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3533         up_cnt = swstats->link_up_cnt;
3534         down_cnt = swstats->link_down_cnt;
3535         up_time = swstats->link_up_time;
3536         down_time = swstats->link_down_time;
3537         reset_cnt = swstats->soft_reset_cnt;
3538         mem_alloc_cnt = swstats->mem_allocated;
3539         mem_free_cnt = swstats->mem_freed;
3540         watchdog_cnt = swstats->watchdog_timer_cnt;
3541
3542         memset(stats, 0, sizeof(struct stat_block));
3543
3544         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3545         swstats->link_up_cnt = up_cnt;
3546         swstats->link_down_cnt = down_cnt;
3547         swstats->link_up_time = up_time;
3548         swstats->link_down_time = down_time;
3549         swstats->soft_reset_cnt = reset_cnt;
3550         swstats->mem_allocated = mem_alloc_cnt;
3551         swstats->mem_freed = mem_free_cnt;
3552         swstats->watchdog_timer_cnt = watchdog_cnt;
3553
3554         /* SXE-002: Configure link and activity LED to turn it off */
3555         subid = sp->pdev->subsystem_device;
3556         if (((subid & 0xFF) >= 0x07) &&
3557             (sp->device_type == XFRAME_I_DEVICE)) {
3558                 val64 = readq(&bar0->gpio_control);
3559                 val64 |= 0x0000800000000000ULL;
3560                 writeq(val64, &bar0->gpio_control);
3561                 val64 = 0x0411040400000000ULL;
3562                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3563         }
3564
3565         /*
3566          * Clear spurious ECC interrupts that would have occurred on
3567          * XFRAME II cards after reset.
3568          */
3569         if (sp->device_type == XFRAME_II_DEVICE) {
3570                 val64 = readq(&bar0->pcc_err_reg);
3571                 writeq(val64, &bar0->pcc_err_reg);
3572         }
3573
3574         sp->device_enabled_once = false;
3575 }
3576
3577 /**
3578  *  s2io_set_swapper - to set the swapper controle on the card
3579  *  @sp : private member of the device structure,
3580  *  pointer to the s2io_nic structure.
3581  *  Description: Function to set the swapper control on the card
3582  *  correctly depending on the 'endianness' of the system.
3583  *  Return value:
3584  *  SUCCESS on success and FAILURE on failure.
3585  */
3586
3587 static int s2io_set_swapper(struct s2io_nic *sp)
3588 {
3589         struct net_device *dev = sp->dev;
3590         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3591         u64 val64, valt, valr;
3592
3593         /*
3594          * Set proper endian settings and verify the same by reading
3595          * the PIF Feed-back register.
3596          */
3597
3598         val64 = readq(&bar0->pif_rd_swapper_fb);
3599         if (val64 != 0x0123456789ABCDEFULL) {
3600                 int i = 0;
3601                 static const u64 value[] = {
3602                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3603                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3604                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3605                         0                       /* FE=0, SE=0 */
3606                 };
3607
3608                 while (i < 4) {
3609                         writeq(value[i], &bar0->swapper_ctrl);
3610                         val64 = readq(&bar0->pif_rd_swapper_fb);
3611                         if (val64 == 0x0123456789ABCDEFULL)
3612                                 break;
3613                         i++;
3614                 }
3615                 if (i == 4) {
3616                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3617                                   "feedback read %llx\n",
3618                                   dev->name, (unsigned long long)val64);
3619                         return FAILURE;
3620                 }
3621                 valr = value[i];
3622         } else {
3623                 valr = readq(&bar0->swapper_ctrl);
3624         }
3625
3626         valt = 0x0123456789ABCDEFULL;
3627         writeq(valt, &bar0->xmsi_address);
3628         val64 = readq(&bar0->xmsi_address);
3629
3630         if (val64 != valt) {
3631                 int i = 0;
3632                 static const u64 value[] = {
3633                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3634                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3635                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3636                         0                       /* FE=0, SE=0 */
3637                 };
3638
3639                 while (i < 4) {
3640                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3641                         writeq(valt, &bar0->xmsi_address);
3642                         val64 = readq(&bar0->xmsi_address);
3643                         if (val64 == valt)
3644                                 break;
3645                         i++;
3646                 }
3647                 if (i == 4) {
3648                         unsigned long long x = val64;
3649                         DBG_PRINT(ERR_DBG,
3650                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3651                         return FAILURE;
3652                 }
3653         }
3654         val64 = readq(&bar0->swapper_ctrl);
3655         val64 &= 0xFFFF000000000000ULL;
3656
3657 #ifdef __BIG_ENDIAN
3658         /*
3659          * The device by default set to a big endian format, so a
3660          * big endian driver need not set anything.
3661          */
3662         val64 |= (SWAPPER_CTRL_TXP_FE |
3663                   SWAPPER_CTRL_TXP_SE |
3664                   SWAPPER_CTRL_TXD_R_FE |
3665                   SWAPPER_CTRL_TXD_W_FE |
3666                   SWAPPER_CTRL_TXF_R_FE |
3667                   SWAPPER_CTRL_RXD_R_FE |
3668                   SWAPPER_CTRL_RXD_W_FE |
3669                   SWAPPER_CTRL_RXF_W_FE |
3670                   SWAPPER_CTRL_XMSI_FE |
3671                   SWAPPER_CTRL_STATS_FE |
3672                   SWAPPER_CTRL_STATS_SE);
3673         if (sp->config.intr_type == INTA)
3674                 val64 |= SWAPPER_CTRL_XMSI_SE;
3675         writeq(val64, &bar0->swapper_ctrl);
3676 #else
3677         /*
3678          * Initially we enable all bits to make it accessible by the
3679          * driver, then we selectively enable only those bits that
3680          * we want to set.
3681          */
3682         val64 |= (SWAPPER_CTRL_TXP_FE |
3683                   SWAPPER_CTRL_TXP_SE |
3684                   SWAPPER_CTRL_TXD_R_FE |
3685                   SWAPPER_CTRL_TXD_R_SE |
3686                   SWAPPER_CTRL_TXD_W_FE |
3687                   SWAPPER_CTRL_TXD_W_SE |
3688                   SWAPPER_CTRL_TXF_R_FE |
3689                   SWAPPER_CTRL_RXD_R_FE |
3690                   SWAPPER_CTRL_RXD_R_SE |
3691                   SWAPPER_CTRL_RXD_W_FE |
3692                   SWAPPER_CTRL_RXD_W_SE |
3693                   SWAPPER_CTRL_RXF_W_FE |
3694                   SWAPPER_CTRL_XMSI_FE |
3695                   SWAPPER_CTRL_STATS_FE |
3696                   SWAPPER_CTRL_STATS_SE);
3697         if (sp->config.intr_type == INTA)
3698                 val64 |= SWAPPER_CTRL_XMSI_SE;
3699         writeq(val64, &bar0->swapper_ctrl);
3700 #endif
3701         val64 = readq(&bar0->swapper_ctrl);
3702
3703         /*
3704          * Verifying if endian settings are accurate by reading a
3705          * feedback register.
3706          */
3707         val64 = readq(&bar0->pif_rd_swapper_fb);
3708         if (val64 != 0x0123456789ABCDEFULL) {
3709                 /* Endian settings are incorrect, calls for another dekko. */
3710                 DBG_PRINT(ERR_DBG,
3711                           "%s: Endian settings are wrong, feedback read %llx\n",
3712                           dev->name, (unsigned long long)val64);
3713                 return FAILURE;
3714         }
3715
3716         return SUCCESS;
3717 }
3718
3719 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3720 {
3721         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722         u64 val64;
3723         int ret = 0, cnt = 0;
3724
3725         do {
3726                 val64 = readq(&bar0->xmsi_access);
3727                 if (!(val64 & s2BIT(15)))
3728                         break;
3729                 mdelay(1);
3730                 cnt++;
3731         } while (cnt < 5);
3732         if (cnt == 5) {
3733                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3734                 ret = 1;
3735         }
3736
3737         return ret;
3738 }
3739
3740 static void restore_xmsi_data(struct s2io_nic *nic)
3741 {
3742         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3743         u64 val64;
3744         int i, msix_index;
3745
3746         if (nic->device_type == XFRAME_I_DEVICE)
3747                 return;
3748
3749         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3750                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3751                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3752                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3753                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3754                 writeq(val64, &bar0->xmsi_access);
3755                 if (wait_for_msix_trans(nic, msix_index)) {
3756                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3757                                   __func__, msix_index);
3758                         continue;
3759                 }
3760         }
3761 }
3762
3763 static void store_xmsi_data(struct s2io_nic *nic)
3764 {
3765         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3766         u64 val64, addr, data;
3767         int i, msix_index;
3768
3769         if (nic->device_type == XFRAME_I_DEVICE)
3770                 return;
3771
3772         /* Store and display */
3773         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3774                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3775                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3776                 writeq(val64, &bar0->xmsi_access);
3777                 if (wait_for_msix_trans(nic, msix_index)) {
3778                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3779                                   __func__, msix_index);
3780                         continue;
3781                 }
3782                 addr = readq(&bar0->xmsi_address);
3783                 data = readq(&bar0->xmsi_data);
3784                 if (addr && data) {
3785                         nic->msix_info[i].addr = addr;
3786                         nic->msix_info[i].data = data;
3787                 }
3788         }
3789 }
3790
3791 static int s2io_enable_msi_x(struct s2io_nic *nic)
3792 {
3793         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3794         u64 rx_mat;
3795         u16 msi_control; /* Temp variable */
3796         int ret, i, j, msix_indx = 1;
3797         int size;
3798         struct stat_block *stats = nic->mac_control.stats_info;
3799         struct swStat *swstats = &stats->sw_stat;
3800
3801         size = nic->num_entries * sizeof(struct msix_entry);
3802         nic->entries = kzalloc(size, GFP_KERNEL);
3803         if (!nic->entries) {
3804                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3805                           __func__);
3806                 swstats->mem_alloc_fail_cnt++;
3807                 return -ENOMEM;
3808         }
3809         swstats->mem_allocated += size;
3810
3811         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3812         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3813         if (!nic->s2io_entries) {
3814                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3815                           __func__);
3816                 swstats->mem_alloc_fail_cnt++;
3817                 kfree(nic->entries);
3818                 swstats->mem_freed
3819                         += (nic->num_entries * sizeof(struct msix_entry));
3820                 return -ENOMEM;
3821         }
3822         swstats->mem_allocated += size;
3823
3824         nic->entries[0].entry = 0;
3825         nic->s2io_entries[0].entry = 0;
3826         nic->s2io_entries[0].in_use = MSIX_FLG;
3827         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3828         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3829
3830         for (i = 1; i < nic->num_entries; i++) {
3831                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3832                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3833                 nic->s2io_entries[i].arg = NULL;
3834                 nic->s2io_entries[i].in_use = 0;
3835         }
3836
3837         rx_mat = readq(&bar0->rx_mat);
3838         for (j = 0; j < nic->config.rx_ring_num; j++) {
3839                 rx_mat |= RX_MAT_SET(j, msix_indx);
3840                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3841                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3842                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3843                 msix_indx += 8;
3844         }
3845         writeq(rx_mat, &bar0->rx_mat);
3846         readq(&bar0->rx_mat);
3847
3848         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3849         /* We fail init if error or we get less vectors than min required */
3850         if (ret) {
3851                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3852                 kfree(nic->entries);
3853                 swstats->mem_freed += nic->num_entries *
3854                         sizeof(struct msix_entry);
3855                 kfree(nic->s2io_entries);
3856                 swstats->mem_freed += nic->num_entries *
3857                         sizeof(struct s2io_msix_entry);
3858                 nic->entries = NULL;
3859                 nic->s2io_entries = NULL;
3860                 return -ENOMEM;
3861         }
3862
3863         /*
3864          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3865          * in the herc NIC. (Temp change, needs to be removed later)
3866          */
3867         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3868         msi_control |= 0x1; /* Enable MSI */
3869         pci_write_config_word(nic->pdev, 0x42, msi_control);
3870
3871         return 0;
3872 }
3873
3874 /* Handle software interrupt used during MSI(X) test */
3875 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3876 {
3877         struct s2io_nic *sp = dev_id;
3878
3879         sp->msi_detected = 1;
3880         wake_up(&sp->msi_wait);
3881
3882         return IRQ_HANDLED;
3883 }
3884
3885 /* Test interrupt path by forcing a a software IRQ */
3886 static int s2io_test_msi(struct s2io_nic *sp)
3887 {
3888         struct pci_dev *pdev = sp->pdev;
3889         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3890         int err;
3891         u64 val64, saved64;
3892
3893         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3894                           sp->name, sp);
3895         if (err) {
3896                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3897                           sp->dev->name, pci_name(pdev), pdev->irq);
3898                 return err;
3899         }
3900
3901         init_waitqueue_head(&sp->msi_wait);
3902         sp->msi_detected = 0;
3903
3904         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3905         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3906         val64 |= SCHED_INT_CTRL_TIMER_EN;
3907         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3908         writeq(val64, &bar0->scheduled_int_ctrl);
3909
3910         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3911
3912         if (!sp->msi_detected) {
3913                 /* MSI(X) test failed, go back to INTx mode */
3914                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3915                           "using MSI(X) during test\n",
3916                           sp->dev->name, pci_name(pdev));
3917
3918                 err = -EOPNOTSUPP;
3919         }
3920
3921         free_irq(sp->entries[1].vector, sp);
3922
3923         writeq(saved64, &bar0->scheduled_int_ctrl);
3924
3925         return err;
3926 }
3927
3928 static void remove_msix_isr(struct s2io_nic *sp)
3929 {
3930         int i;
3931         u16 msi_control;
3932
3933         for (i = 0; i < sp->num_entries; i++) {
3934                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3935                         int vector = sp->entries[i].vector;
3936                         void *arg = sp->s2io_entries[i].arg;
3937                         free_irq(vector, arg);
3938                 }
3939         }
3940
3941         kfree(sp->entries);
3942         kfree(sp->s2io_entries);
3943         sp->entries = NULL;
3944         sp->s2io_entries = NULL;
3945
3946         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3947         msi_control &= 0xFFFE; /* Disable MSI */
3948         pci_write_config_word(sp->pdev, 0x42, msi_control);
3949
3950         pci_disable_msix(sp->pdev);
3951 }
3952
3953 static void remove_inta_isr(struct s2io_nic *sp)
3954 {
3955         struct net_device *dev = sp->dev;
3956
3957         free_irq(sp->pdev->irq, dev);
3958 }
3959
3960 /* ********************************************************* *
3961  * Functions defined below concern the OS part of the driver *
3962  * ********************************************************* */
3963
3964 /**
3965  *  s2io_open - open entry point of the driver
3966  *  @dev : pointer to the device structure.
3967  *  Description:
3968  *  This function is the open entry point of the driver. It mainly calls a
3969  *  function to allocate Rx buffers and inserts them into the buffer
3970  *  descriptors and then enables the Rx part of the NIC.
3971  *  Return value:
3972  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3973  *   file on failure.
3974  */
3975
3976 static int s2io_open(struct net_device *dev)
3977 {
3978         struct s2io_nic *sp = netdev_priv(dev);
3979         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3980         int err = 0;
3981
3982         /*
3983          * Make sure you have link off by default every time
3984          * Nic is initialized
3985          */
3986         netif_carrier_off(dev);
3987         sp->last_link_state = 0;
3988
3989         /* Initialize H/W and enable interrupts */
3990         err = s2io_card_up(sp);
3991         if (err) {
3992                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3993                           dev->name);
3994                 goto hw_init_failed;
3995         }
3996
3997         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3998                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3999                 s2io_card_down(sp);
4000                 err = -ENODEV;
4001                 goto hw_init_failed;
4002         }
4003         s2io_start_all_tx_queue(sp);
4004         return 0;
4005
4006 hw_init_failed:
4007         if (sp->config.intr_type == MSI_X) {
4008                 if (sp->entries) {
4009                         kfree(sp->entries);
4010                         swstats->mem_freed += sp->num_entries *
4011                                 sizeof(struct msix_entry);
4012                 }
4013                 if (sp->s2io_entries) {
4014                         kfree(sp->s2io_entries);
4015                         swstats->mem_freed += sp->num_entries *
4016                                 sizeof(struct s2io_msix_entry);
4017                 }
4018         }
4019         return err;
4020 }
4021
4022 /**
4023  *  s2io_close -close entry point of the driver
4024  *  @dev : device pointer.
4025  *  Description:
4026  *  This is the stop entry point of the driver. It needs to undo exactly
4027  *  whatever was done by the open entry point,thus it's usually referred to
4028  *  as the close function.Among other things this function mainly stops the
4029  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4030  *  Return value:
4031  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4032  *  file on failure.
4033  */
4034
4035 static int s2io_close(struct net_device *dev)
4036 {
4037         struct s2io_nic *sp = netdev_priv(dev);
4038         struct config_param *config = &sp->config;
4039         u64 tmp64;
4040         int offset;
4041
4042         /* Return if the device is already closed               *
4043          *  Can happen when s2io_card_up failed in change_mtu    *
4044          */
4045         if (!is_s2io_card_up(sp))
4046                 return 0;
4047
4048         s2io_stop_all_tx_queue(sp);
4049         /* delete all populated mac entries */
4050         for (offset = 1; offset < config->max_mc_addr; offset++) {
4051                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4052                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4053                         do_s2io_delete_unicast_mc(sp, tmp64);
4054         }
4055
4056         s2io_card_down(sp);
4057
4058         return 0;
4059 }
4060
4061 /**
4062  *  s2io_xmit - Tx entry point of te driver
4063  *  @skb : the socket buffer containing the Tx data.
4064  *  @dev : device pointer.
4065  *  Description :
4066  *  This function is the Tx entry point of the driver. S2IO NIC supports
4067  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4068  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4069  *  not be upadted.
4070  *  Return value:
4071  *  0 on success & 1 on failure.
4072  */
4073
4074 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4075 {
4076         struct s2io_nic *sp = netdev_priv(dev);
4077         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4078         register u64 val64;
4079         struct TxD *txdp;
4080         struct TxFIFO_element __iomem *tx_fifo;
4081         unsigned long flags = 0;
4082         u16 vlan_tag = 0;
4083         struct fifo_info *fifo = NULL;
4084         int do_spin_lock = 1;
4085         int offload_type;
4086         int enable_per_list_interrupt = 0;
4087         struct config_param *config = &sp->config;
4088         struct mac_info *mac_control = &sp->mac_control;
4089         struct stat_block *stats = mac_control->stats_info;
4090         struct swStat *swstats = &stats->sw_stat;
4091
4092         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4093
4094         if (unlikely(skb->len <= 0)) {
4095                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4096                 dev_kfree_skb_any(skb);
4097                 return NETDEV_TX_OK;
4098         }
4099
4100         if (!is_s2io_card_up(sp)) {
4101                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4102                           dev->name);
4103                 dev_kfree_skb(skb);
4104                 return NETDEV_TX_OK;
4105         }
4106
4107         queue = 0;
4108         if (vlan_tx_tag_present(skb))
4109                 vlan_tag = vlan_tx_tag_get(skb);
4110         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4111                 if (skb->protocol == htons(ETH_P_IP)) {
4112                         struct iphdr *ip;
4113                         struct tcphdr *th;
4114                         ip = ip_hdr(skb);
4115
4116                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4117                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4118                                                        ip->ihl*4);
4119
4120                                 if (ip->protocol == IPPROTO_TCP) {
4121                                         queue_len = sp->total_tcp_fifos;
4122                                         queue = (ntohs(th->source) +
4123                                                  ntohs(th->dest)) &
4124                                                 sp->fifo_selector[queue_len - 1];
4125                                         if (queue >= queue_len)
4126                                                 queue = queue_len - 1;
4127                                 } else if (ip->protocol == IPPROTO_UDP) {
4128                                         queue_len = sp->total_udp_fifos;
4129                                         queue = (ntohs(th->source) +
4130                                                  ntohs(th->dest)) &
4131                                                 sp->fifo_selector[queue_len - 1];
4132                                         if (queue >= queue_len)
4133                                                 queue = queue_len - 1;
4134                                         queue += sp->udp_fifo_idx;
4135                                         if (skb->len > 1024)
4136                                                 enable_per_list_interrupt = 1;
4137                                         do_spin_lock = 0;
4138                                 }
4139                         }
4140                 }
4141         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4142                 /* get fifo number based on skb->priority value */
4143                 queue = config->fifo_mapping
4144                         [skb->priority & (MAX_TX_FIFOS - 1)];
4145         fifo = &mac_control->fifos[queue];
4146
4147         if (do_spin_lock)
4148                 spin_lock_irqsave(&fifo->tx_lock, flags);
4149         else {
4150                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4151                         return NETDEV_TX_LOCKED;
4152         }
4153
4154         if (sp->config.multiq) {
4155                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4156                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4157                         return NETDEV_TX_BUSY;
4158                 }
4159         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4160                 if (netif_queue_stopped(dev)) {
4161                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4162                         return NETDEV_TX_BUSY;
4163                 }
4164         }
4165
4166         put_off = (u16)fifo->tx_curr_put_info.offset;
4167         get_off = (u16)fifo->tx_curr_get_info.offset;
4168         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4169
4170         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4171         /* Avoid "put" pointer going beyond "get" pointer */
4172         if (txdp->Host_Control ||
4173             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4174                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4175                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4176                 dev_kfree_skb(skb);
4177                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178                 return NETDEV_TX_OK;
4179         }
4180
4181         offload_type = s2io_offload_type(skb);
4182         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4183                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4184                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4185         }
4186         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4187                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4188                                     TXD_TX_CKO_TCP_EN |
4189                                     TXD_TX_CKO_UDP_EN);
4190         }
4191         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4192         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4193         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4194         if (enable_per_list_interrupt)
4195                 if (put_off & (queue_len >> 5))
4196                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4197         if (vlan_tag) {
4198                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4199                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4200         }
4201
4202         frg_len = skb_headlen(skb);
4203         if (offload_type == SKB_GSO_UDP) {
4204                 int ufo_size;
4205
4206                 ufo_size = s2io_udp_mss(skb);
4207                 ufo_size &= ~7;
4208                 txdp->Control_1 |= TXD_UFO_EN;
4209                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4210                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4211 #ifdef __BIG_ENDIAN
4212                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4213                 fifo->ufo_in_band_v[put_off] =
4214                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4215 #else
4216                 fifo->ufo_in_band_v[put_off] =
4217                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4218 #endif
4219                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4220                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4221                                                       fifo->ufo_in_band_v,
4222                                                       sizeof(u64),
4223                                                       PCI_DMA_TODEVICE);
4224                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4225                         goto pci_map_failed;
4226                 txdp++;
4227         }
4228
4229         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4230                                               frg_len, PCI_DMA_TODEVICE);
4231         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4232                 goto pci_map_failed;
4233
4234         txdp->Host_Control = (unsigned long)skb;
4235         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4236         if (offload_type == SKB_GSO_UDP)
4237                 txdp->Control_1 |= TXD_UFO_EN;
4238
4239         frg_cnt = skb_shinfo(skb)->nr_frags;
4240         /* For fragmented SKB. */
4241         for (i = 0; i < frg_cnt; i++) {
4242                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4243                 /* A '0' length fragment will be ignored */
4244                 if (!frag->size)
4245                         continue;
4246                 txdp++;
4247                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4248                                                          frag->page_offset,
4249                                                          frag->size,
4250                                                          PCI_DMA_TODEVICE);
4251                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4252                 if (offload_type == SKB_GSO_UDP)
4253                         txdp->Control_1 |= TXD_UFO_EN;
4254         }
4255         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4256
4257         if (offload_type == SKB_GSO_UDP)
4258                 frg_cnt++; /* as Txd0 was used for inband header */
4259
4260         tx_fifo = mac_control->tx_FIFO_start[queue];
4261         val64 = fifo->list_info[put_off].list_phy_addr;
4262         writeq(val64, &tx_fifo->TxDL_Pointer);
4263
4264         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4265                  TX_FIFO_LAST_LIST);
4266         if (offload_type)
4267                 val64 |= TX_FIFO_SPECIAL_FUNC;
4268
4269         writeq(val64, &tx_fifo->List_Control);
4270
4271         mmiowb();
4272
4273         put_off++;
4274         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4275                 put_off = 0;
4276         fifo->tx_curr_put_info.offset = put_off;
4277
4278         /* Avoid "put" pointer going beyond "get" pointer */
4279         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4280                 swstats->fifo_full_cnt++;
4281                 DBG_PRINT(TX_DBG,
4282                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4283                           put_off, get_off);
4284                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4285         }
4286         swstats->mem_allocated += skb->truesize;
4287         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4288
4289         if (sp->config.intr_type == MSI_X)
4290                 tx_intr_handler(fifo);
4291
4292         return NETDEV_TX_OK;
4293
4294 pci_map_failed:
4295         swstats->pci_map_fail_cnt++;
4296         s2io_stop_tx_queue(sp, fifo->fifo_no);
4297         swstats->mem_freed += skb->truesize;
4298         dev_kfree_skb(skb);
4299         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4300         return NETDEV_TX_OK;
4301 }
4302
4303 static void
4304 s2io_alarm_handle(unsigned long data)
4305 {
4306         struct s2io_nic *sp = (struct s2io_nic *)data;
4307         struct net_device *dev = sp->dev;
4308
4309         s2io_handle_errors(dev);
4310         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4311 }
4312
4313 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4314 {
4315         struct ring_info *ring = (struct ring_info *)dev_id;
4316         struct s2io_nic *sp = ring->nic;
4317         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4318
4319         if (unlikely(!is_s2io_card_up(sp)))
4320                 return IRQ_HANDLED;
4321
4322         if (sp->config.napi) {
4323                 u8 __iomem *addr = NULL;
4324                 u8 val8 = 0;
4325
4326                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4327                 addr += (7 - ring->ring_no);
4328                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4329                 writeb(val8, addr);
4330                 val8 = readb(addr);
4331                 napi_schedule(&ring->napi);
4332         } else {
4333                 rx_intr_handler(ring, 0);
4334                 s2io_chk_rx_buffers(sp, ring);
4335         }
4336
4337         return IRQ_HANDLED;
4338 }
4339
4340 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4341 {
4342         int i;
4343         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4344         struct s2io_nic *sp = fifos->nic;
4345         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4346         struct config_param *config  = &sp->config;
4347         u64 reason;
4348
4349         if (unlikely(!is_s2io_card_up(sp)))
4350                 return IRQ_NONE;
4351
4352         reason = readq(&bar0->general_int_status);
4353         if (unlikely(reason == S2IO_MINUS_ONE))
4354                 /* Nothing much can be done. Get out */
4355                 return IRQ_HANDLED;
4356
4357         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4358                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4359
4360                 if (reason & GEN_INTR_TXPIC)
4361                         s2io_txpic_intr_handle(sp);
4362
4363                 if (reason & GEN_INTR_TXTRAFFIC)
4364                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4365
4366                 for (i = 0; i < config->tx_fifo_num; i++)
4367                         tx_intr_handler(&fifos[i]);
4368
4369                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4370                 readl(&bar0->general_int_status);
4371                 return IRQ_HANDLED;
4372         }
4373         /* The interrupt was not raised by us */
4374         return IRQ_NONE;
4375 }
4376
4377 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4378 {
4379         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4380         u64 val64;
4381
4382         val64 = readq(&bar0->pic_int_status);
4383         if (val64 & PIC_INT_GPIO) {
4384                 val64 = readq(&bar0->gpio_int_reg);
4385                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4386                     (val64 & GPIO_INT_REG_LINK_UP)) {
4387                         /*
4388                          * This is unstable state so clear both up/down
4389                          * interrupt and adapter to re-evaluate the link state.
4390                          */
4391                         val64 |= GPIO_INT_REG_LINK_DOWN;
4392                         val64 |= GPIO_INT_REG_LINK_UP;
4393                         writeq(val64, &bar0->gpio_int_reg);
4394                         val64 = readq(&bar0->gpio_int_mask);
4395                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4396                                    GPIO_INT_MASK_LINK_DOWN);
4397                         writeq(val64, &bar0->gpio_int_mask);
4398                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4399                         val64 = readq(&bar0->adapter_status);
4400                         /* Enable Adapter */
4401                         val64 = readq(&bar0->adapter_control);
4402                         val64 |= ADAPTER_CNTL_EN;
4403                         writeq(val64, &bar0->adapter_control);
4404                         val64 |= ADAPTER_LED_ON;
4405                         writeq(val64, &bar0->adapter_control);
4406                         if (!sp->device_enabled_once)
4407                                 sp->device_enabled_once = 1;
4408
4409                         s2io_link(sp, LINK_UP);
4410                         /*
4411                          * unmask link down interrupt and mask link-up
4412                          * intr
4413                          */
4414                         val64 = readq(&bar0->gpio_int_mask);
4415                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4416                         val64 |= GPIO_INT_MASK_LINK_UP;
4417                         writeq(val64, &bar0->gpio_int_mask);
4418
4419                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4420                         val64 = readq(&bar0->adapter_status);
4421                         s2io_link(sp, LINK_DOWN);
4422                         /* Link is down so unmaks link up interrupt */
4423                         val64 = readq(&bar0->gpio_int_mask);
4424                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4425                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4426                         writeq(val64, &bar0->gpio_int_mask);
4427
4428                         /* turn off LED */
4429                         val64 = readq(&bar0->adapter_control);
4430                         val64 = val64 & (~ADAPTER_LED_ON);
4431                         writeq(val64, &bar0->adapter_control);
4432                 }
4433         }
4434         val64 = readq(&bar0->gpio_int_mask);
4435 }
4436
4437 /**
4438  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4439  *  @value: alarm bits
4440  *  @addr: address value
4441  *  @cnt: counter variable
4442  *  Description: Check for alarm and increment the counter
4443  *  Return Value:
4444  *  1 - if alarm bit set
4445  *  0 - if alarm bit is not set
4446  */
4447 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4448                                  unsigned long long *cnt)
4449 {
4450         u64 val64;
4451         val64 = readq(addr);
4452         if (val64 & value) {
4453                 writeq(val64, addr);
4454                 (*cnt)++;
4455                 return 1;
4456         }
4457         return 0;
4458
4459 }
4460
4461 /**
4462  *  s2io_handle_errors - Xframe error indication handler
4463  *  @nic: device private variable
4464  *  Description: Handle alarms such as loss of link, single or
4465  *  double ECC errors, critical and serious errors.
4466  *  Return Value:
4467  *  NONE
4468  */
4469 static void s2io_handle_errors(void *dev_id)
4470 {
4471         struct net_device *dev = (struct net_device *)dev_id;
4472         struct s2io_nic *sp = netdev_priv(dev);
4473         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4474         u64 temp64 = 0, val64 = 0;
4475         int i = 0;
4476
4477         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4478         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4479
4480         if (!is_s2io_card_up(sp))
4481                 return;
4482
4483         if (pci_channel_offline(sp->pdev))
4484                 return;
4485
4486         memset(&sw_stat->ring_full_cnt, 0,
4487                sizeof(sw_stat->ring_full_cnt));
4488
4489         /* Handling the XPAK counters update */
4490         if (stats->xpak_timer_count < 72000) {
4491                 /* waiting for an hour */
4492                 stats->xpak_timer_count++;
4493         } else {
4494                 s2io_updt_xpak_counter(dev);
4495                 /* reset the count to zero */
4496                 stats->xpak_timer_count = 0;
4497         }
4498
4499         /* Handling link status change error Intr */
4500         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4501                 val64 = readq(&bar0->mac_rmac_err_reg);
4502                 writeq(val64, &bar0->mac_rmac_err_reg);
4503                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4504                         schedule_work(&sp->set_link_task);
4505         }
4506
4507         /* In case of a serious error, the device will be Reset. */
4508         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4509                                   &sw_stat->serious_err_cnt))
4510                 goto reset;
4511
4512         /* Check for data parity error */
4513         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4514                                   &sw_stat->parity_err_cnt))
4515                 goto reset;
4516
4517         /* Check for ring full counter */
4518         if (sp->device_type == XFRAME_II_DEVICE) {
4519                 val64 = readq(&bar0->ring_bump_counter1);
4520                 for (i = 0; i < 4; i++) {
4521                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4522                         temp64 >>= 64 - ((i+1)*16);
4523                         sw_stat->ring_full_cnt[i] += temp64;
4524                 }
4525
4526                 val64 = readq(&bar0->ring_bump_counter2);
4527                 for (i = 0; i < 4; i++) {
4528                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4529                         temp64 >>= 64 - ((i+1)*16);
4530                         sw_stat->ring_full_cnt[i+4] += temp64;
4531                 }
4532         }
4533
4534         val64 = readq(&bar0->txdma_int_status);
4535         /*check for pfc_err*/
4536         if (val64 & TXDMA_PFC_INT) {
4537                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4538                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4539                                           PFC_PCIX_ERR,
4540                                           &bar0->pfc_err_reg,
4541                                           &sw_stat->pfc_err_cnt))
4542                         goto reset;
4543                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4544                                       &bar0->pfc_err_reg,
4545                                       &sw_stat->pfc_err_cnt);
4546         }
4547
4548         /*check for tda_err*/
4549         if (val64 & TXDMA_TDA_INT) {
4550                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4551                                           TDA_SM0_ERR_ALARM |
4552                                           TDA_SM1_ERR_ALARM,
4553                                           &bar0->tda_err_reg,
4554                                           &sw_stat->tda_err_cnt))
4555                         goto reset;
4556                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4557                                       &bar0->tda_err_reg,
4558                                       &sw_stat->tda_err_cnt);
4559         }
4560         /*check for pcc_err*/
4561         if (val64 & TXDMA_PCC_INT) {
4562                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4563                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4564                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4565                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4566                                           PCC_TXB_ECC_DB_ERR,
4567                                           &bar0->pcc_err_reg,
4568                                           &sw_stat->pcc_err_cnt))
4569                         goto reset;
4570                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4571                                       &bar0->pcc_err_reg,
4572                                       &sw_stat->pcc_err_cnt);
4573         }
4574
4575         /*check for tti_err*/
4576         if (val64 & TXDMA_TTI_INT) {
4577                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4578                                           &bar0->tti_err_reg,
4579                                           &sw_stat->tti_err_cnt))
4580                         goto reset;
4581                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4582                                       &bar0->tti_err_reg,
4583                                       &sw_stat->tti_err_cnt);
4584         }
4585
4586         /*check for lso_err*/
4587         if (val64 & TXDMA_LSO_INT) {
4588                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4589                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4590                                           &bar0->lso_err_reg,
4591                                           &sw_stat->lso_err_cnt))
4592                         goto reset;
4593                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4594                                       &bar0->lso_err_reg,
4595                                       &sw_stat->lso_err_cnt);
4596         }
4597
4598         /*check for tpa_err*/
4599         if (val64 & TXDMA_TPA_INT) {
4600                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4601                                           &bar0->tpa_err_reg,
4602                                           &sw_stat->tpa_err_cnt))
4603                         goto reset;
4604                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4605                                       &bar0->tpa_err_reg,
4606                                       &sw_stat->tpa_err_cnt);
4607         }
4608
4609         /*check for sm_err*/
4610         if (val64 & TXDMA_SM_INT) {
4611                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4612                                           &bar0->sm_err_reg,
4613                                           &sw_stat->sm_err_cnt))
4614                         goto reset;
4615         }
4616
4617         val64 = readq(&bar0->mac_int_status);
4618         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4619                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4620                                           &bar0->mac_tmac_err_reg,
4621                                           &sw_stat->mac_tmac_err_cnt))
4622                         goto reset;
4623                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4624                                       TMAC_DESC_ECC_SG_ERR |
4625                                       TMAC_DESC_ECC_DB_ERR,
4626                                       &bar0->mac_tmac_err_reg,
4627                                       &sw_stat->mac_tmac_err_cnt);
4628         }
4629
4630         val64 = readq(&bar0->xgxs_int_status);
4631         if (val64 & XGXS_INT_STATUS_TXGXS) {
4632                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633                                           &bar0->xgxs_txgxs_err_reg,
4634                                           &sw_stat->xgxs_txgxs_err_cnt))
4635                         goto reset;
4636                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637                                       &bar0->xgxs_txgxs_err_reg,
4638                                       &sw_stat->xgxs_txgxs_err_cnt);
4639         }
4640
4641         val64 = readq(&bar0->rxdma_int_status);
4642         if (val64 & RXDMA_INT_RC_INT_M) {
4643                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4644                                           RC_FTC_ECC_DB_ERR |
4645                                           RC_PRCn_SM_ERR_ALARM |
4646                                           RC_FTC_SM_ERR_ALARM,
4647                                           &bar0->rc_err_reg,
4648                                           &sw_stat->rc_err_cnt))
4649                         goto reset;
4650                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4651                                       RC_FTC_ECC_SG_ERR |
4652                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4653                                       &sw_stat->rc_err_cnt);
4654                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4655                                           PRC_PCI_AB_WR_Rn |
4656                                           PRC_PCI_AB_F_WR_Rn,
4657                                           &bar0->prc_pcix_err_reg,
4658                                           &sw_stat->prc_pcix_err_cnt))
4659                         goto reset;
4660                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4661                                       PRC_PCI_DP_WR_Rn |
4662                                       PRC_PCI_DP_F_WR_Rn,
4663                                       &bar0->prc_pcix_err_reg,
4664                                       &sw_stat->prc_pcix_err_cnt);
4665         }
4666
4667         if (val64 & RXDMA_INT_RPA_INT_M) {
4668                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4669                                           &bar0->rpa_err_reg,
4670                                           &sw_stat->rpa_err_cnt))
4671                         goto reset;
4672                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4673                                       &bar0->rpa_err_reg,
4674                                       &sw_stat->rpa_err_cnt);
4675         }
4676
4677         if (val64 & RXDMA_INT_RDA_INT_M) {
4678                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4679                                           RDA_FRM_ECC_DB_N_AERR |
4680                                           RDA_SM1_ERR_ALARM |
4681                                           RDA_SM0_ERR_ALARM |
4682                                           RDA_RXD_ECC_DB_SERR,
4683                                           &bar0->rda_err_reg,
4684                                           &sw_stat->rda_err_cnt))
4685                         goto reset;
4686                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4687                                       RDA_FRM_ECC_SG_ERR |
4688                                       RDA_MISC_ERR |
4689                                       RDA_PCIX_ERR,
4690                                       &bar0->rda_err_reg,
4691                                       &sw_stat->rda_err_cnt);
4692         }
4693
4694         if (val64 & RXDMA_INT_RTI_INT_M) {
4695                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4696                                           &bar0->rti_err_reg,
4697                                           &sw_stat->rti_err_cnt))
4698                         goto reset;
4699                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4700                                       &bar0->rti_err_reg,
4701                                       &sw_stat->rti_err_cnt);
4702         }
4703
4704         val64 = readq(&bar0->mac_int_status);
4705         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4706                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4707                                           &bar0->mac_rmac_err_reg,
4708                                           &sw_stat->mac_rmac_err_cnt))
4709                         goto reset;
4710                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4711                                       RMAC_SINGLE_ECC_ERR |
4712                                       RMAC_DOUBLE_ECC_ERR,
4713                                       &bar0->mac_rmac_err_reg,
4714                                       &sw_stat->mac_rmac_err_cnt);
4715         }
4716
4717         val64 = readq(&bar0->xgxs_int_status);
4718         if (val64 & XGXS_INT_STATUS_RXGXS) {
4719                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4720                                           &bar0->xgxs_rxgxs_err_reg,
4721                                           &sw_stat->xgxs_rxgxs_err_cnt))
4722                         goto reset;
4723         }
4724
4725         val64 = readq(&bar0->mc_int_status);
4726         if (val64 & MC_INT_STATUS_MC_INT) {
4727                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4728                                           &bar0->mc_err_reg,
4729                                           &sw_stat->mc_err_cnt))
4730                         goto reset;
4731
4732                 /* Handling Ecc errors */
4733                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4734                         writeq(val64, &bar0->mc_err_reg);
4735                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4736                                 sw_stat->double_ecc_errs++;
4737                                 if (sp->device_type != XFRAME_II_DEVICE) {
4738                                         /*
4739                                          * Reset XframeI only if critical error
4740                                          */
4741                                         if (val64 &
4742                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4743                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4744                                                 goto reset;
4745                                 }
4746                         } else
4747                                 sw_stat->single_ecc_errs++;
4748                 }
4749         }
4750         return;
4751
4752 reset:
4753         s2io_stop_all_tx_queue(sp);
4754         schedule_work(&sp->rst_timer_task);
4755         sw_stat->soft_reset_cnt++;
4756 }
4757
4758 /**
4759  *  s2io_isr - ISR handler of the device .
4760  *  @irq: the irq of the device.
4761  *  @dev_id: a void pointer to the dev structure of the NIC.
4762  *  Description:  This function is the ISR handler of the device. It
4763  *  identifies the reason for the interrupt and calls the relevant
4764  *  service routines. As a contongency measure, this ISR allocates the
4765  *  recv buffers, if their numbers are below the panic value which is
4766  *  presently set to 25% of the original number of rcv buffers allocated.
4767  *  Return value:
4768  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4769  *   IRQ_NONE: will be returned if interrupt is not from our device
4770  */
4771 static irqreturn_t s2io_isr(int irq, void *dev_id)
4772 {
4773         struct net_device *dev = (struct net_device *)dev_id;
4774         struct s2io_nic *sp = netdev_priv(dev);
4775         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4776         int i;
4777         u64 reason = 0;
4778         struct mac_info *mac_control;
4779         struct config_param *config;
4780
4781         /* Pretend we handled any irq's from a disconnected card */
4782         if (pci_channel_offline(sp->pdev))
4783                 return IRQ_NONE;
4784
4785         if (!is_s2io_card_up(sp))
4786                 return IRQ_NONE;
4787
4788         config = &sp->config;
4789         mac_control = &sp->mac_control;
4790
4791         /*
4792          * Identify the cause for interrupt and call the appropriate
4793          * interrupt handler. Causes for the interrupt could be;
4794          * 1. Rx of packet.
4795          * 2. Tx complete.
4796          * 3. Link down.
4797          */
4798         reason = readq(&bar0->general_int_status);
4799
4800         if (unlikely(reason == S2IO_MINUS_ONE))
4801                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4802
4803         if (reason &
4804             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4805                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4806
4807                 if (config->napi) {
4808                         if (reason & GEN_INTR_RXTRAFFIC) {
4809                                 napi_schedule(&sp->napi);
4810                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4811                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4812                                 readl(&bar0->rx_traffic_int);
4813                         }
4814                 } else {
4815                         /*
4816                          * rx_traffic_int reg is an R1 register, writing all 1's
4817                          * will ensure that the actual interrupt causing bit
4818                          * get's cleared and hence a read can be avoided.
4819                          */
4820                         if (reason & GEN_INTR_RXTRAFFIC)
4821                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4822
4823                         for (i = 0; i < config->rx_ring_num; i++) {
4824                                 struct ring_info *ring = &mac_control->rings[i];
4825
4826                                 rx_intr_handler(ring, 0);
4827                         }
4828                 }
4829
4830                 /*
4831                  * tx_traffic_int reg is an R1 register, writing all 1's
4832                  * will ensure that the actual interrupt causing bit get's
4833                  * cleared and hence a read can be avoided.
4834                  */
4835                 if (reason & GEN_INTR_TXTRAFFIC)
4836                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4837
4838                 for (i = 0; i < config->tx_fifo_num; i++)
4839                         tx_intr_handler(&mac_control->fifos[i]);
4840
4841                 if (reason & GEN_INTR_TXPIC)
4842                         s2io_txpic_intr_handle(sp);
4843
4844                 /*
4845                  * Reallocate the buffers from the interrupt handler itself.
4846                  */
4847                 if (!config->napi) {
4848                         for (i = 0; i < config->rx_ring_num; i++) {
4849                                 struct ring_info *ring = &mac_control->rings[i];
4850
4851                                 s2io_chk_rx_buffers(sp, ring);
4852                         }
4853                 }
4854                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855                 readl(&bar0->general_int_status);
4856
4857                 return IRQ_HANDLED;
4858
4859         } else if (!reason) {
4860                 /* The interrupt was not raised by us */
4861                 return IRQ_NONE;
4862         }
4863
4864         return IRQ_HANDLED;
4865 }
4866
4867 /**
4868  * s2io_updt_stats -
4869  */
4870 static void s2io_updt_stats(struct s2io_nic *sp)
4871 {
4872         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4873         u64 val64;
4874         int cnt = 0;
4875
4876         if (is_s2io_card_up(sp)) {
4877                 /* Apprx 30us on a 133 MHz bus */
4878                 val64 = SET_UPDT_CLICKS(10) |
4879                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4880                 writeq(val64, &bar0->stat_cfg);
4881                 do {
4882                         udelay(100);
4883                         val64 = readq(&bar0->stat_cfg);
4884                         if (!(val64 & s2BIT(0)))
4885                                 break;
4886                         cnt++;
4887                         if (cnt == 5)
4888                                 break; /* Updt failed */
4889                 } while (1);
4890         }
4891 }
4892
4893 /**
4894  *  s2io_get_stats - Updates the device statistics structure.
4895  *  @dev : pointer to the device structure.
4896  *  Description:
4897  *  This function updates the device statistics structure in the s2io_nic
4898  *  structure and returns a pointer to the same.
4899  *  Return value:
4900  *  pointer to the updated net_device_stats structure.
4901  */
4902 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4903 {
4904         struct s2io_nic *sp = netdev_priv(dev);
4905         struct mac_info *mac_control = &sp->mac_control;
4906         struct stat_block *stats = mac_control->stats_info;
4907         u64 delta;
4908
4909         /* Configure Stats for immediate updt */
4910         s2io_updt_stats(sp);
4911
4912         /* A device reset will cause the on-adapter statistics to be zero'ed.
4913          * This can be done while running by changing the MTU.  To prevent the
4914          * system from having the stats zero'ed, the driver keeps a copy of the
4915          * last update to the system (which is also zero'ed on reset).  This
4916          * enables the driver to accurately know the delta between the last
4917          * update and the current update.
4918          */
4919         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4920                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4921         sp->stats.rx_packets += delta;
4922         dev->stats.rx_packets += delta;
4923
4924         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4925                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4926         sp->stats.tx_packets += delta;
4927         dev->stats.tx_packets += delta;
4928
4929         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4930                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4931         sp->stats.rx_bytes += delta;
4932         dev->stats.rx_bytes += delta;
4933
4934         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4935                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4936         sp->stats.tx_bytes += delta;
4937         dev->stats.tx_bytes += delta;
4938
4939         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4940         sp->stats.rx_errors += delta;
4941         dev->stats.rx_errors += delta;
4942
4943         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4944                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4945         sp->stats.tx_errors += delta;
4946         dev->stats.tx_errors += delta;
4947
4948         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4949         sp->stats.rx_dropped += delta;
4950         dev->stats.rx_dropped += delta;
4951
4952         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4953         sp->stats.tx_dropped += delta;
4954         dev->stats.tx_dropped += delta;
4955
4956         /* The adapter MAC interprets pause frames as multicast packets, but
4957          * does not pass them up.  This erroneously increases the multicast
4958          * packet count and needs to be deducted when the multicast frame count
4959          * is queried.
4960          */
4961         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4962                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4963         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4964         delta -= sp->stats.multicast;
4965         sp->stats.multicast += delta;
4966         dev->stats.multicast += delta;
4967
4968         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4969                 le32_to_cpu(stats->rmac_usized_frms)) +
4970                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4971         sp->stats.rx_length_errors += delta;
4972         dev->stats.rx_length_errors += delta;
4973
4974         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4975         sp->stats.rx_crc_errors += delta;
4976         dev->stats.rx_crc_errors += delta;
4977
4978         return &dev->stats;
4979 }
4980
4981 /**
4982  *  s2io_set_multicast - entry point for multicast address enable/disable.
4983  *  @dev : pointer to the device structure
4984  *  Description:
4985  *  This function is a driver entry point which gets called by the kernel
4986  *  whenever multicast addresses must be enabled/disabled. This also gets
4987  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4988  *  determine, if multicast address must be enabled or if promiscuous mode
4989  *  is to be disabled etc.
4990  *  Return value:
4991  *  void.
4992  */
4993
4994 static void s2io_set_multicast(struct net_device *dev)
4995 {
4996         int i, j, prev_cnt;
4997         struct netdev_hw_addr *ha;
4998         struct s2io_nic *sp = netdev_priv(dev);
4999         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5000         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
5001                 0xfeffffffffffULL;
5002         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5003         void __iomem *add;
5004         struct config_param *config = &sp->config;
5005
5006         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5007                 /*  Enable all Multicast addresses */
5008                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5009                        &bar0->rmac_addr_data0_mem);
5010                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5011                        &bar0->rmac_addr_data1_mem);
5012                 val64 = RMAC_ADDR_CMD_MEM_WE |
5013                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5014                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5015                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5016                 /* Wait till command completes */
5017                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5018                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5019                                       S2IO_BIT_RESET);
5020
5021                 sp->m_cast_flg = 1;
5022                 sp->all_multi_pos = config->max_mc_addr - 1;
5023         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5024                 /*  Disable all Multicast addresses */
5025                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5026                        &bar0->rmac_addr_data0_mem);
5027                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5028                        &bar0->rmac_addr_data1_mem);
5029                 val64 = RMAC_ADDR_CMD_MEM_WE |
5030                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5031                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5032                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5033                 /* Wait till command completes */
5034                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5035                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5036                                       S2IO_BIT_RESET);
5037
5038                 sp->m_cast_flg = 0;
5039                 sp->all_multi_pos = 0;
5040         }
5041
5042         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5043                 /*  Put the NIC into promiscuous mode */
5044                 add = &bar0->mac_cfg;
5045                 val64 = readq(&bar0->mac_cfg);
5046                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5047
5048                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5049                 writel((u32)val64, add);
5050                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5051                 writel((u32) (val64 >> 32), (add + 4));
5052
5053                 if (vlan_tag_strip != 1) {
5054                         val64 = readq(&bar0->rx_pa_cfg);
5055                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5056                         writeq(val64, &bar0->rx_pa_cfg);
5057                         sp->vlan_strip_flag = 0;
5058                 }
5059
5060                 val64 = readq(&bar0->mac_cfg);
5061                 sp->promisc_flg = 1;
5062                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5063                           dev->name);
5064         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5065                 /*  Remove the NIC from promiscuous mode */
5066                 add = &bar0->mac_cfg;
5067                 val64 = readq(&bar0->mac_cfg);
5068                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5069
5070                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5071                 writel((u32)val64, add);
5072                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5073                 writel((u32) (val64 >> 32), (add + 4));
5074
5075                 if (vlan_tag_strip != 0) {
5076                         val64 = readq(&bar0->rx_pa_cfg);
5077                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5078                         writeq(val64, &bar0->rx_pa_cfg);
5079                         sp->vlan_strip_flag = 1;
5080                 }
5081
5082                 val64 = readq(&bar0->mac_cfg);
5083                 sp->promisc_flg = 0;
5084                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5085         }
5086
5087         /*  Update individual M_CAST address list */
5088         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5089                 if (netdev_mc_count(dev) >
5090                     (config->max_mc_addr - config->max_mac_addr)) {
5091                         DBG_PRINT(ERR_DBG,
5092                                   "%s: No more Rx filters can be added - "
5093                                   "please enable ALL_MULTI instead\n",
5094                                   dev->name);
5095                         return;
5096                 }
5097
5098                 prev_cnt = sp->mc_addr_count;
5099                 sp->mc_addr_count = netdev_mc_count(dev);
5100
5101                 /* Clear out the previous list of Mc in the H/W. */
5102                 for (i = 0; i < prev_cnt; i++) {
5103                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5104                                &bar0->rmac_addr_data0_mem);
5105                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106                                &bar0->rmac_addr_data1_mem);
5107                         val64 = RMAC_ADDR_CMD_MEM_WE |
5108                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109                                 RMAC_ADDR_CMD_MEM_OFFSET
5110                                 (config->mc_start_offset + i);
5111                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113                         /* Wait for command completes */
5114                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116                                                   S2IO_BIT_RESET)) {
5117                                 DBG_PRINT(ERR_DBG,
5118                                           "%s: Adding Multicasts failed\n",
5119                                           dev->name);
5120                                 return;
5121                         }
5122                 }
5123
5124                 /* Create the new Rx filter list and update the same in H/W. */
5125                 i = 0;
5126                 netdev_for_each_mc_addr(ha, dev) {
5127                         mac_addr = 0;
5128                         for (j = 0; j < ETH_ALEN; j++) {
5129                                 mac_addr |= ha->addr[j];
5130                                 mac_addr <<= 8;
5131                         }
5132                         mac_addr >>= 8;
5133                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5134                                &bar0->rmac_addr_data0_mem);
5135                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5136                                &bar0->rmac_addr_data1_mem);
5137                         val64 = RMAC_ADDR_CMD_MEM_WE |
5138                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5139                                 RMAC_ADDR_CMD_MEM_OFFSET
5140                                 (i + config->mc_start_offset);
5141                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5142
5143                         /* Wait for command completes */
5144                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5145                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5146                                                   S2IO_BIT_RESET)) {
5147                                 DBG_PRINT(ERR_DBG,
5148                                           "%s: Adding Multicasts failed\n",
5149                                           dev->name);
5150                                 return;
5151                         }
5152                         i++;
5153                 }
5154         }
5155 }
5156
5157 /* read from CAM unicast & multicast addresses and store it in
5158  * def_mac_addr structure
5159  */
5160 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5161 {
5162         int offset;
5163         u64 mac_addr = 0x0;
5164         struct config_param *config = &sp->config;
5165
5166         /* store unicast & multicast mac addresses */
5167         for (offset = 0; offset < config->max_mc_addr; offset++) {
5168                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5169                 /* if read fails disable the entry */
5170                 if (mac_addr == FAILURE)
5171                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5172                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5173         }
5174 }
5175
5176 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5177 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5178 {
5179         int offset;
5180         struct config_param *config = &sp->config;
5181         /* restore unicast mac address */
5182         for (offset = 0; offset < config->max_mac_addr; offset++)
5183                 do_s2io_prog_unicast(sp->dev,
5184                                      sp->def_mac_addr[offset].mac_addr);
5185
5186         /* restore multicast mac address */
5187         for (offset = config->mc_start_offset;
5188              offset < config->max_mc_addr; offset++)
5189                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5190 }
5191
5192 /* add a multicast MAC address to CAM */
5193 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5194 {
5195         int i;
5196         u64 mac_addr = 0;
5197         struct config_param *config = &sp->config;
5198
5199         for (i = 0; i < ETH_ALEN; i++) {
5200                 mac_addr <<= 8;
5201                 mac_addr |= addr[i];
5202         }
5203         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5204                 return SUCCESS;
5205
5206         /* check if the multicast mac already preset in CAM */
5207         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5208                 u64 tmp64;
5209                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5210                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5211                         break;
5212
5213                 if (tmp64 == mac_addr)
5214                         return SUCCESS;
5215         }
5216         if (i == config->max_mc_addr) {
5217                 DBG_PRINT(ERR_DBG,
5218                           "CAM full no space left for multicast MAC\n");
5219                 return FAILURE;
5220         }
5221         /* Update the internal structure with this new mac address */
5222         do_s2io_copy_mac_addr(sp, i, mac_addr);
5223
5224         return do_s2io_add_mac(sp, mac_addr, i);
5225 }
5226
5227 /* add MAC address to CAM */
5228 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5229 {
5230         u64 val64;
5231         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5232
5233         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5234                &bar0->rmac_addr_data0_mem);
5235
5236         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5238         writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240         /* Wait till command completes */
5241         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243                                   S2IO_BIT_RESET)) {
5244                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5245                 return FAILURE;
5246         }
5247         return SUCCESS;
5248 }
5249 /* deletes a specified unicast/multicast mac entry from CAM */
5250 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5251 {
5252         int offset;
5253         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5254         struct config_param *config = &sp->config;
5255
5256         for (offset = 1;
5257              offset < config->max_mc_addr; offset++) {
5258                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5259                 if (tmp64 == addr) {
5260                         /* disable the entry by writing  0xffffffffffffULL */
5261                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5262                                 return FAILURE;
5263                         /* store the new mac list from CAM */
5264                         do_s2io_store_unicast_mc(sp);
5265                         return SUCCESS;
5266                 }
5267         }
5268         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5269                   (unsigned long long)addr);
5270         return FAILURE;
5271 }
5272
5273 /* read mac entries from CAM */
5274 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5275 {
5276         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5277         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5278
5279         /* read mac addr */
5280         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5281                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5282         writeq(val64, &bar0->rmac_addr_cmd_mem);
5283
5284         /* Wait till command completes */
5285         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5286                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5287                                   S2IO_BIT_RESET)) {
5288                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5289                 return FAILURE;
5290         }
5291         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5292
5293         return tmp64 >> 16;
5294 }
5295
5296 /**
5297  * s2io_set_mac_addr driver entry point
5298  */
5299
5300 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5301 {
5302         struct sockaddr *addr = p;
5303
5304         if (!is_valid_ether_addr(addr->sa_data))
5305                 return -EINVAL;
5306
5307         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5308
5309         /* store the MAC address in CAM */
5310         return do_s2io_prog_unicast(dev, dev->dev_addr);
5311 }
5312 /**
5313  *  do_s2io_prog_unicast - Programs the Xframe mac address
5314  *  @dev : pointer to the device structure.
5315  *  @addr: a uchar pointer to the new mac address which is to be set.
5316  *  Description : This procedure will program the Xframe to receive
5317  *  frames with new Mac Address
5318  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5319  *  as defined in errno.h file on failure.
5320  */
5321
5322 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5323 {
5324         struct s2io_nic *sp = netdev_priv(dev);
5325         register u64 mac_addr = 0, perm_addr = 0;
5326         int i;
5327         u64 tmp64;
5328         struct config_param *config = &sp->config;
5329
5330         /*
5331          * Set the new MAC address as the new unicast filter and reflect this
5332          * change on the device address registered with the OS. It will be
5333          * at offset 0.
5334          */
5335         for (i = 0; i < ETH_ALEN; i++) {
5336                 mac_addr <<= 8;
5337                 mac_addr |= addr[i];
5338                 perm_addr <<= 8;
5339                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5340         }
5341
5342         /* check if the dev_addr is different than perm_addr */
5343         if (mac_addr == perm_addr)
5344                 return SUCCESS;
5345
5346         /* check if the mac already preset in CAM */
5347         for (i = 1; i < config->max_mac_addr; i++) {
5348                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5349                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5350                         break;
5351
5352                 if (tmp64 == mac_addr) {
5353                         DBG_PRINT(INFO_DBG,
5354                                   "MAC addr:0x%llx already present in CAM\n",
5355                                   (unsigned long long)mac_addr);
5356                         return SUCCESS;
5357                 }
5358         }
5359         if (i == config->max_mac_addr) {
5360                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5361                 return FAILURE;
5362         }
5363         /* Update the internal structure with this new mac address */
5364         do_s2io_copy_mac_addr(sp, i, mac_addr);
5365
5366         return do_s2io_add_mac(sp, mac_addr, i);
5367 }
5368
5369 /**
5370  * s2io_ethtool_sset - Sets different link parameters.
5371  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5372  * @info: pointer to the structure with parameters given by ethtool to set
5373  * link information.
5374  * Description:
5375  * The function sets different link parameters provided by the user onto
5376  * the NIC.
5377  * Return value:
5378  * 0 on success.
5379  */
5380
5381 static int s2io_ethtool_sset(struct net_device *dev,
5382                              struct ethtool_cmd *info)
5383 {
5384         struct s2io_nic *sp = netdev_priv(dev);
5385         if ((info->autoneg == AUTONEG_ENABLE) ||
5386             (info->speed != SPEED_10000) ||
5387             (info->duplex != DUPLEX_FULL))
5388                 return -EINVAL;
5389         else {
5390                 s2io_close(sp->dev);
5391                 s2io_open(sp->dev);
5392         }
5393
5394         return 0;
5395 }
5396
5397 /**
5398  * s2io_ethtol_gset - Return link specific information.
5399  * @sp : private member of the device structure, pointer to the
5400  *      s2io_nic structure.
5401  * @info : pointer to the structure with parameters given by ethtool
5402  * to return link information.
5403  * Description:
5404  * Returns link specific information like speed, duplex etc.. to ethtool.
5405  * Return value :
5406  * return 0 on success.
5407  */
5408
5409 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5410 {
5411         struct s2io_nic *sp = netdev_priv(dev);
5412         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5413         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5414         info->port = PORT_FIBRE;
5415
5416         /* info->transceiver */
5417         info->transceiver = XCVR_EXTERNAL;
5418
5419         if (netif_carrier_ok(sp->dev)) {
5420                 info->speed = 10000;
5421                 info->duplex = DUPLEX_FULL;
5422         } else {
5423                 info->speed = -1;
5424                 info->duplex = -1;
5425         }
5426
5427         info->autoneg = AUTONEG_DISABLE;
5428         return 0;
5429 }
5430
5431 /**
5432  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5433  * @sp : private member of the device structure, which is a pointer to the
5434  * s2io_nic structure.
5435  * @info : pointer to the structure with parameters given by ethtool to
5436  * return driver information.
5437  * Description:
5438  * Returns driver specefic information like name, version etc.. to ethtool.
5439  * Return value:
5440  *  void
5441  */
5442
5443 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5444                                   struct ethtool_drvinfo *info)
5445 {
5446         struct s2io_nic *sp = netdev_priv(dev);
5447
5448         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5449         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5450         strncpy(info->fw_version, "", sizeof(info->fw_version));
5451         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5452         info->regdump_len = XENA_REG_SPACE;
5453         info->eedump_len = XENA_EEPROM_SPACE;
5454 }
5455
5456 /**
5457  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5458  *  @sp: private member of the device structure, which is a pointer to the
5459  *  s2io_nic structure.
5460  *  @regs : pointer to the structure with parameters given by ethtool for
5461  *  dumping the registers.
5462  *  @reg_space: The input argumnet into which all the registers are dumped.
5463  *  Description:
5464  *  Dumps the entire register space of xFrame NIC into the user given
5465  *  buffer area.
5466  * Return value :
5467  * void .
5468  */
5469
5470 static void s2io_ethtool_gregs(struct net_device *dev,
5471                                struct ethtool_regs *regs, void *space)
5472 {
5473         int i;
5474         u64 reg;
5475         u8 *reg_space = (u8 *)space;
5476         struct s2io_nic *sp = netdev_priv(dev);
5477
5478         regs->len = XENA_REG_SPACE;
5479         regs->version = sp->pdev->subsystem_device;
5480
5481         for (i = 0; i < regs->len; i += 8) {
5482                 reg = readq(sp->bar0 + i);
5483                 memcpy((reg_space + i), &reg, 8);
5484         }
5485 }
5486
5487 /**
5488  *  s2io_phy_id  - timer function that alternates adapter LED.
5489  *  @data : address of the private member of the device structure, which
5490  *  is a pointer to the s2io_nic structure, provided as an u32.
5491  * Description: This is actually the timer function that alternates the
5492  * adapter LED bit of the adapter control bit to set/reset every time on
5493  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5494  *  once every second.
5495  */
5496 static void s2io_phy_id(unsigned long data)
5497 {
5498         struct s2io_nic *sp = (struct s2io_nic *)data;
5499         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5500         u64 val64 = 0;
5501         u16 subid;
5502
5503         subid = sp->pdev->subsystem_device;
5504         if ((sp->device_type == XFRAME_II_DEVICE) ||
5505             ((subid & 0xFF) >= 0x07)) {
5506                 val64 = readq(&bar0->gpio_control);
5507                 val64 ^= GPIO_CTRL_GPIO_0;
5508                 writeq(val64, &bar0->gpio_control);
5509         } else {
5510                 val64 = readq(&bar0->adapter_control);
5511                 val64 ^= ADAPTER_LED_ON;
5512                 writeq(val64, &bar0->adapter_control);
5513         }
5514
5515         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5516 }
5517
5518 /**
5519  * s2io_ethtool_idnic - To physically identify the nic on the system.
5520  * @sp : private member of the device structure, which is a pointer to the
5521  * s2io_nic structure.
5522  * @id : pointer to the structure with identification parameters given by
5523  * ethtool.
5524  * Description: Used to physically identify the NIC on the system.
5525  * The Link LED will blink for a time specified by the user for
5526  * identification.
5527  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5528  * identification is possible only if it's link is up.
5529  * Return value:
5530  * int , returns 0 on success
5531  */
5532
5533 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5534 {
5535         u64 val64 = 0, last_gpio_ctrl_val;
5536         struct s2io_nic *sp = netdev_priv(dev);
5537         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5538         u16 subid;
5539
5540         subid = sp->pdev->subsystem_device;
5541         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5542         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5543                 val64 = readq(&bar0->adapter_control);
5544                 if (!(val64 & ADAPTER_CNTL_EN)) {
5545                         pr_err("Adapter Link down, cannot blink LED\n");
5546                         return -EFAULT;
5547                 }
5548         }
5549         if (sp->id_timer.function == NULL) {
5550                 init_timer(&sp->id_timer);
5551                 sp->id_timer.function = s2io_phy_id;
5552                 sp->id_timer.data = (unsigned long)sp;
5553         }
5554         mod_timer(&sp->id_timer, jiffies);
5555         if (data)
5556                 msleep_interruptible(data * HZ);
5557         else
5558                 msleep_interruptible(MAX_FLICKER_TIME);
5559         del_timer_sync(&sp->id_timer);
5560
5561         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5562                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5563                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5564         }
5565
5566         return 0;
5567 }
5568
5569 static void s2io_ethtool_gringparam(struct net_device *dev,
5570                                     struct ethtool_ringparam *ering)
5571 {
5572         struct s2io_nic *sp = netdev_priv(dev);
5573         int i, tx_desc_count = 0, rx_desc_count = 0;
5574
5575         if (sp->rxd_mode == RXD_MODE_1) {
5576                 ering->rx_max_pending = MAX_RX_DESC_1;
5577                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5578         } else {
5579                 ering->rx_max_pending = MAX_RX_DESC_2;
5580                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5581         }
5582
5583         ering->rx_mini_max_pending = 0;
5584         ering->tx_max_pending = MAX_TX_DESC;
5585
5586         for (i = 0; i < sp->config.rx_ring_num; i++)
5587                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5588         ering->rx_pending = rx_desc_count;
5589         ering->rx_jumbo_pending = rx_desc_count;
5590         ering->rx_mini_pending = 0;
5591
5592         for (i = 0; i < sp->config.tx_fifo_num; i++)
5593                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5594         ering->tx_pending = tx_desc_count;
5595         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5596 }
5597
5598 /**
5599  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5600  * @sp : private member of the device structure, which is a pointer to the
5601  *      s2io_nic structure.
5602  * @ep : pointer to the structure with pause parameters given by ethtool.
5603  * Description:
5604  * Returns the Pause frame generation and reception capability of the NIC.
5605  * Return value:
5606  *  void
5607  */
5608 static void s2io_ethtool_getpause_data(struct net_device *dev,
5609                                        struct ethtool_pauseparam *ep)
5610 {
5611         u64 val64;
5612         struct s2io_nic *sp = netdev_priv(dev);
5613         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5614
5615         val64 = readq(&bar0->rmac_pause_cfg);
5616         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5617                 ep->tx_pause = true;
5618         if (val64 & RMAC_PAUSE_RX_ENABLE)
5619                 ep->rx_pause = true;
5620         ep->autoneg = false;
5621 }
5622
5623 /**
5624  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5625  * @sp : private member of the device structure, which is a pointer to the
5626  *      s2io_nic structure.
5627  * @ep : pointer to the structure with pause parameters given by ethtool.
5628  * Description:
5629  * It can be used to set or reset Pause frame generation or reception
5630  * support of the NIC.
5631  * Return value:
5632  * int, returns 0 on Success
5633  */
5634
5635 static int s2io_ethtool_setpause_data(struct net_device *dev,
5636                                       struct ethtool_pauseparam *ep)
5637 {
5638         u64 val64;
5639         struct s2io_nic *sp = netdev_priv(dev);
5640         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5641
5642         val64 = readq(&bar0->rmac_pause_cfg);
5643         if (ep->tx_pause)
5644                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5645         else
5646                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5647         if (ep->rx_pause)
5648                 val64 |= RMAC_PAUSE_RX_ENABLE;
5649         else
5650                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5651         writeq(val64, &bar0->rmac_pause_cfg);
5652         return 0;
5653 }
5654
5655 /**
5656  * read_eeprom - reads 4 bytes of data from user given offset.
5657  * @sp : private member of the device structure, which is a pointer to the
5658  *      s2io_nic structure.
5659  * @off : offset at which the data must be written
5660  * @data : Its an output parameter where the data read at the given
5661  *      offset is stored.
5662  * Description:
5663  * Will read 4 bytes of data from the user given offset and return the
5664  * read data.
5665  * NOTE: Will allow to read only part of the EEPROM visible through the
5666  *   I2C bus.
5667  * Return value:
5668  *  -1 on failure and 0 on success.
5669  */
5670
5671 #define S2IO_DEV_ID             5
5672 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5673 {
5674         int ret = -1;
5675         u32 exit_cnt = 0;
5676         u64 val64;
5677         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5678
5679         if (sp->device_type == XFRAME_I_DEVICE) {
5680                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5681                         I2C_CONTROL_ADDR(off) |
5682                         I2C_CONTROL_BYTE_CNT(0x3) |
5683                         I2C_CONTROL_READ |
5684                         I2C_CONTROL_CNTL_START;
5685                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5686
5687                 while (exit_cnt < 5) {
5688                         val64 = readq(&bar0->i2c_control);
5689                         if (I2C_CONTROL_CNTL_END(val64)) {
5690                                 *data = I2C_CONTROL_GET_DATA(val64);
5691                                 ret = 0;
5692                                 break;
5693                         }
5694                         msleep(50);
5695                         exit_cnt++;
5696                 }
5697         }
5698
5699         if (sp->device_type == XFRAME_II_DEVICE) {
5700                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5701                         SPI_CONTROL_BYTECNT(0x3) |
5702                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5703                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5704                 val64 |= SPI_CONTROL_REQ;
5705                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5706                 while (exit_cnt < 5) {
5707                         val64 = readq(&bar0->spi_control);
5708                         if (val64 & SPI_CONTROL_NACK) {
5709                                 ret = 1;
5710                                 break;
5711                         } else if (val64 & SPI_CONTROL_DONE) {
5712                                 *data = readq(&bar0->spi_data);
5713                                 *data &= 0xffffff;
5714                                 ret = 0;
5715                                 break;
5716                         }
5717                         msleep(50);
5718                         exit_cnt++;
5719                 }
5720         }
5721         return ret;
5722 }
5723
5724 /**
5725  *  write_eeprom - actually writes the relevant part of the data value.
5726  *  @sp : private member of the device structure, which is a pointer to the
5727  *       s2io_nic structure.
5728  *  @off : offset at which the data must be written
5729  *  @data : The data that is to be written
5730  *  @cnt : Number of bytes of the data that are actually to be written into
5731  *  the Eeprom. (max of 3)
5732  * Description:
5733  *  Actually writes the relevant part of the data value into the Eeprom
5734  *  through the I2C bus.
5735  * Return value:
5736  *  0 on success, -1 on failure.
5737  */
5738
5739 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5740 {
5741         int exit_cnt = 0, ret = -1;
5742         u64 val64;
5743         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5744
5745         if (sp->device_type == XFRAME_I_DEVICE) {
5746                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5747                         I2C_CONTROL_ADDR(off) |
5748                         I2C_CONTROL_BYTE_CNT(cnt) |
5749                         I2C_CONTROL_SET_DATA((u32)data) |
5750                         I2C_CONTROL_CNTL_START;
5751                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5752
5753                 while (exit_cnt < 5) {
5754                         val64 = readq(&bar0->i2c_control);
5755                         if (I2C_CONTROL_CNTL_END(val64)) {
5756                                 if (!(val64 & I2C_CONTROL_NACK))
5757                                         ret = 0;
5758                                 break;
5759                         }
5760                         msleep(50);
5761                         exit_cnt++;
5762                 }
5763         }
5764
5765         if (sp->device_type == XFRAME_II_DEVICE) {
5766                 int write_cnt = (cnt == 8) ? 0 : cnt;
5767                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5768
5769                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5770                         SPI_CONTROL_BYTECNT(write_cnt) |
5771                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5772                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5773                 val64 |= SPI_CONTROL_REQ;
5774                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5775                 while (exit_cnt < 5) {
5776                         val64 = readq(&bar0->spi_control);
5777                         if (val64 & SPI_CONTROL_NACK) {
5778                                 ret = 1;
5779                                 break;
5780                         } else if (val64 & SPI_CONTROL_DONE) {
5781                                 ret = 0;
5782                                 break;
5783                         }
5784                         msleep(50);
5785                         exit_cnt++;
5786                 }
5787         }
5788         return ret;
5789 }
5790 static void s2io_vpd_read(struct s2io_nic *nic)
5791 {
5792         u8 *vpd_data;
5793         u8 data;
5794         int i = 0, cnt, len, fail = 0;
5795         int vpd_addr = 0x80;
5796         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5797
5798         if (nic->device_type == XFRAME_II_DEVICE) {
5799                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5800                 vpd_addr = 0x80;
5801         } else {
5802                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5803                 vpd_addr = 0x50;
5804         }
5805         strcpy(nic->serial_num, "NOT AVAILABLE");
5806
5807         vpd_data = kmalloc(256, GFP_KERNEL);
5808         if (!vpd_data) {
5809                 swstats->mem_alloc_fail_cnt++;
5810                 return;
5811         }
5812         swstats->mem_allocated += 256;
5813
5814         for (i = 0; i < 256; i += 4) {
5815                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5816                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5817                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5818                 for (cnt = 0; cnt < 5; cnt++) {
5819                         msleep(2);
5820                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5821                         if (data == 0x80)
5822                                 break;
5823                 }
5824                 if (cnt >= 5) {
5825                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5826                         fail = 1;
5827                         break;
5828                 }
5829                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5830                                       (u32 *)&vpd_data[i]);
5831         }
5832
5833         if (!fail) {
5834                 /* read serial number of adapter */
5835                 for (cnt = 0; cnt < 252; cnt++) {
5836                         if ((vpd_data[cnt] == 'S') &&
5837                             (vpd_data[cnt+1] == 'N')) {
5838                                 len = vpd_data[cnt+2];
5839                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5840                                         memcpy(nic->serial_num,
5841                                                &vpd_data[cnt + 3],
5842                                                len);
5843                                         memset(nic->serial_num+len,
5844                                                0,
5845                                                VPD_STRING_LEN-len);
5846                                         break;
5847                                 }
5848                         }
5849                 }
5850         }
5851
5852         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5853                 len = vpd_data[1];
5854                 memcpy(nic->product_name, &vpd_data[3], len);
5855                 nic->product_name[len] = 0;
5856         }
5857         kfree(vpd_data);
5858         swstats->mem_freed += 256;
5859 }
5860
5861 /**
5862  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5863  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5864  *  @eeprom : pointer to the user level structure provided by ethtool,
5865  *  containing all relevant information.
5866  *  @data_buf : user defined value to be written into Eeprom.
5867  *  Description: Reads the values stored in the Eeprom at given offset
5868  *  for a given length. Stores these values int the input argument data
5869  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5870  *  Return value:
5871  *  int  0 on success
5872  */
5873
5874 static int s2io_ethtool_geeprom(struct net_device *dev,
5875                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5876 {
5877         u32 i, valid;
5878         u64 data;
5879         struct s2io_nic *sp = netdev_priv(dev);
5880
5881         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5882
5883         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5884                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5885
5886         for (i = 0; i < eeprom->len; i += 4) {
5887                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5888                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5889                         return -EFAULT;
5890                 }
5891                 valid = INV(data);
5892                 memcpy((data_buf + i), &valid, 4);
5893         }
5894         return 0;
5895 }
5896
5897 /**
5898  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5899  *  @sp : private member of the device structure, which is a pointer to the
5900  *  s2io_nic structure.
5901  *  @eeprom : pointer to the user level structure provided by ethtool,
5902  *  containing all relevant information.
5903  *  @data_buf ; user defined value to be written into Eeprom.
5904  *  Description:
5905  *  Tries to write the user provided value in the Eeprom, at the offset
5906  *  given by the user.
5907  *  Return value:
5908  *  0 on success, -EFAULT on failure.
5909  */
5910
5911 static int s2io_ethtool_seeprom(struct net_device *dev,
5912                                 struct ethtool_eeprom *eeprom,
5913                                 u8 *data_buf)
5914 {
5915         int len = eeprom->len, cnt = 0;
5916         u64 valid = 0, data;
5917         struct s2io_nic *sp = netdev_priv(dev);
5918
5919         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5920                 DBG_PRINT(ERR_DBG,
5921                           "ETHTOOL_WRITE_EEPROM Err: "
5922                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5923                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5924                           eeprom->magic);
5925                 return -EFAULT;
5926         }
5927
5928         while (len) {
5929                 data = (u32)data_buf[cnt] & 0x000000FF;
5930                 if (data)
5931                         valid = (u32)(data << 24);
5932                 else
5933                         valid = data;
5934
5935                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5936                         DBG_PRINT(ERR_DBG,
5937                                   "ETHTOOL_WRITE_EEPROM Err: "
5938                                   "Cannot write into the specified offset\n");
5939                         return -EFAULT;
5940                 }
5941                 cnt++;
5942                 len--;
5943         }
5944
5945         return 0;
5946 }
5947
5948 /**
5949  * s2io_register_test - reads and writes into all clock domains.
5950  * @sp : private member of the device structure, which is a pointer to the
5951  * s2io_nic structure.
5952  * @data : variable that returns the result of each of the test conducted b
5953  * by the driver.
5954  * Description:
5955  * Read and write into all clock domains. The NIC has 3 clock domains,
5956  * see that registers in all the three regions are accessible.
5957  * Return value:
5958  * 0 on success.
5959  */
5960
5961 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5962 {
5963         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5964         u64 val64 = 0, exp_val;
5965         int fail = 0;
5966
5967         val64 = readq(&bar0->pif_rd_swapper_fb);
5968         if (val64 != 0x123456789abcdefULL) {
5969                 fail = 1;
5970                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5971         }
5972
5973         val64 = readq(&bar0->rmac_pause_cfg);
5974         if (val64 != 0xc000ffff00000000ULL) {
5975                 fail = 1;
5976                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5977         }
5978
5979         val64 = readq(&bar0->rx_queue_cfg);
5980         if (sp->device_type == XFRAME_II_DEVICE)
5981                 exp_val = 0x0404040404040404ULL;
5982         else
5983                 exp_val = 0x0808080808080808ULL;
5984         if (val64 != exp_val) {
5985                 fail = 1;
5986                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5987         }
5988
5989         val64 = readq(&bar0->xgxs_efifo_cfg);
5990         if (val64 != 0x000000001923141EULL) {
5991                 fail = 1;
5992                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5993         }
5994
5995         val64 = 0x5A5A5A5A5A5A5A5AULL;
5996         writeq(val64, &bar0->xmsi_data);
5997         val64 = readq(&bar0->xmsi_data);
5998         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5999                 fail = 1;
6000                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
6001         }
6002
6003         val64 = 0xA5A5A5A5A5A5A5A5ULL;
6004         writeq(val64, &bar0->xmsi_data);
6005         val64 = readq(&bar0->xmsi_data);
6006         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6007                 fail = 1;
6008                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6009         }
6010
6011         *data = fail;
6012         return fail;
6013 }
6014
6015 /**
6016  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6017  * @sp : private member of the device structure, which is a pointer to the
6018  * s2io_nic structure.
6019  * @data:variable that returns the result of each of the test conducted by
6020  * the driver.
6021  * Description:
6022  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6023  * register.
6024  * Return value:
6025  * 0 on success.
6026  */
6027
6028 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6029 {
6030         int fail = 0;
6031         u64 ret_data, org_4F0, org_7F0;
6032         u8 saved_4F0 = 0, saved_7F0 = 0;
6033         struct net_device *dev = sp->dev;
6034
6035         /* Test Write Error at offset 0 */
6036         /* Note that SPI interface allows write access to all areas
6037          * of EEPROM. Hence doing all negative testing only for Xframe I.
6038          */
6039         if (sp->device_type == XFRAME_I_DEVICE)
6040                 if (!write_eeprom(sp, 0, 0, 3))
6041                         fail = 1;
6042
6043         /* Save current values at offsets 0x4F0 and 0x7F0 */
6044         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6045                 saved_4F0 = 1;
6046         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6047                 saved_7F0 = 1;
6048
6049         /* Test Write at offset 4f0 */
6050         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6051                 fail = 1;
6052         if (read_eeprom(sp, 0x4F0, &ret_data))
6053                 fail = 1;
6054
6055         if (ret_data != 0x012345) {
6056                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6057                           "Data written %llx Data read %llx\n",
6058                           dev->name, (unsigned long long)0x12345,
6059                           (unsigned long long)ret_data);
6060                 fail = 1;
6061         }
6062
6063         /* Reset the EEPROM data go FFFF */
6064         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6065
6066         /* Test Write Request Error at offset 0x7c */
6067         if (sp->device_type == XFRAME_I_DEVICE)
6068                 if (!write_eeprom(sp, 0x07C, 0, 3))
6069                         fail = 1;
6070
6071         /* Test Write Request at offset 0x7f0 */
6072         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6073                 fail = 1;
6074         if (read_eeprom(sp, 0x7F0, &ret_data))
6075                 fail = 1;
6076
6077         if (ret_data != 0x012345) {
6078                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6079                           "Data written %llx Data read %llx\n",
6080                           dev->name, (unsigned long long)0x12345,
6081                           (unsigned long long)ret_data);
6082                 fail = 1;
6083         }
6084
6085         /* Reset the EEPROM data go FFFF */
6086         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6087
6088         if (sp->device_type == XFRAME_I_DEVICE) {
6089                 /* Test Write Error at offset 0x80 */
6090                 if (!write_eeprom(sp, 0x080, 0, 3))
6091                         fail = 1;
6092
6093                 /* Test Write Error at offset 0xfc */
6094                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6095                         fail = 1;
6096
6097                 /* Test Write Error at offset 0x100 */
6098                 if (!write_eeprom(sp, 0x100, 0, 3))
6099                         fail = 1;
6100
6101                 /* Test Write Error at offset 4ec */
6102                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6103                         fail = 1;
6104         }
6105
6106         /* Restore values at offsets 0x4F0 and 0x7F0 */
6107         if (saved_4F0)
6108                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6109         if (saved_7F0)
6110                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6111
6112         *data = fail;
6113         return fail;
6114 }
6115
6116 /**
6117  * s2io_bist_test - invokes the MemBist test of the card .
6118  * @sp : private member of the device structure, which is a pointer to the
6119  * s2io_nic structure.
6120  * @data:variable that returns the result of each of the test conducted by
6121  * the driver.
6122  * Description:
6123  * This invokes the MemBist test of the card. We give around
6124  * 2 secs time for the Test to complete. If it's still not complete
6125  * within this peiod, we consider that the test failed.
6126  * Return value:
6127  * 0 on success and -1 on failure.
6128  */
6129
6130 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6131 {
6132         u8 bist = 0;
6133         int cnt = 0, ret = -1;
6134
6135         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6136         bist |= PCI_BIST_START;
6137         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6138
6139         while (cnt < 20) {
6140                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6141                 if (!(bist & PCI_BIST_START)) {
6142                         *data = (bist & PCI_BIST_CODE_MASK);
6143                         ret = 0;
6144                         break;
6145                 }
6146                 msleep(100);
6147                 cnt++;
6148         }
6149
6150         return ret;
6151 }
6152
6153 /**
6154  * s2io-link_test - verifies the link state of the nic
6155  * @sp ; private member of the device structure, which is a pointer to the
6156  * s2io_nic structure.
6157  * @data: variable that returns the result of each of the test conducted by
6158  * the driver.
6159  * Description:
6160  * The function verifies the link state of the NIC and updates the input
6161  * argument 'data' appropriately.
6162  * Return value:
6163  * 0 on success.
6164  */
6165
6166 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6167 {
6168         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6169         u64 val64;
6170
6171         val64 = readq(&bar0->adapter_status);
6172         if (!(LINK_IS_UP(val64)))
6173                 *data = 1;
6174         else
6175                 *data = 0;
6176
6177         return *data;
6178 }
6179
6180 /**
6181  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6182  * @sp - private member of the device structure, which is a pointer to the
6183  * s2io_nic structure.
6184  * @data - variable that returns the result of each of the test
6185  * conducted by the driver.
6186  * Description:
6187  *  This is one of the offline test that tests the read and write
6188  *  access to the RldRam chip on the NIC.
6189  * Return value:
6190  *  0 on success.
6191  */
6192
6193 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6194 {
6195         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6196         u64 val64;
6197         int cnt, iteration = 0, test_fail = 0;
6198
6199         val64 = readq(&bar0->adapter_control);
6200         val64 &= ~ADAPTER_ECC_EN;
6201         writeq(val64, &bar0->adapter_control);
6202
6203         val64 = readq(&bar0->mc_rldram_test_ctrl);
6204         val64 |= MC_RLDRAM_TEST_MODE;
6205         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6206
6207         val64 = readq(&bar0->mc_rldram_mrs);
6208         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6209         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6210
6211         val64 |= MC_RLDRAM_MRS_ENABLE;
6212         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6213
6214         while (iteration < 2) {
6215                 val64 = 0x55555555aaaa0000ULL;
6216                 if (iteration == 1)
6217                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6218                 writeq(val64, &bar0->mc_rldram_test_d0);
6219
6220                 val64 = 0xaaaa5a5555550000ULL;
6221                 if (iteration == 1)
6222                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6223                 writeq(val64, &bar0->mc_rldram_test_d1);
6224
6225                 val64 = 0x55aaaaaaaa5a0000ULL;
6226                 if (iteration == 1)
6227                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6228                 writeq(val64, &bar0->mc_rldram_test_d2);
6229
6230                 val64 = (u64) (0x0000003ffffe0100ULL);
6231                 writeq(val64, &bar0->mc_rldram_test_add);
6232
6233                 val64 = MC_RLDRAM_TEST_MODE |
6234                         MC_RLDRAM_TEST_WRITE |
6235                         MC_RLDRAM_TEST_GO;
6236                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6237
6238                 for (cnt = 0; cnt < 5; cnt++) {
6239                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6240                         if (val64 & MC_RLDRAM_TEST_DONE)
6241                                 break;
6242                         msleep(200);
6243                 }
6244
6245                 if (cnt == 5)
6246                         break;
6247
6248                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6249                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6250
6251                 for (cnt = 0; cnt < 5; cnt++) {
6252                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6253                         if (val64 & MC_RLDRAM_TEST_DONE)
6254                                 break;
6255                         msleep(500);
6256                 }
6257
6258                 if (cnt == 5)
6259                         break;
6260
6261                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6262                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6263                         test_fail = 1;
6264
6265                 iteration++;
6266         }
6267
6268         *data = test_fail;
6269
6270         /* Bring the adapter out of test mode */
6271         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6272
6273         return test_fail;
6274 }
6275
6276 /**
6277  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6278  *  @sp : private member of the device structure, which is a pointer to the
6279  *  s2io_nic structure.
6280  *  @ethtest : pointer to a ethtool command specific structure that will be
6281  *  returned to the user.
6282  *  @data : variable that returns the result of each of the test
6283  * conducted by the driver.
6284  * Description:
6285  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6286  *  the health of the card.
6287  * Return value:
6288  *  void
6289  */
6290
6291 static void s2io_ethtool_test(struct net_device *dev,
6292                               struct ethtool_test *ethtest,
6293                               uint64_t *data)
6294 {
6295         struct s2io_nic *sp = netdev_priv(dev);
6296         int orig_state = netif_running(sp->dev);
6297
6298         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6299                 /* Offline Tests. */
6300                 if (orig_state)
6301                         s2io_close(sp->dev);
6302
6303                 if (s2io_register_test(sp, &data[0]))
6304                         ethtest->flags |= ETH_TEST_FL_FAILED;
6305
6306                 s2io_reset(sp);
6307
6308                 if (s2io_rldram_test(sp, &data[3]))
6309                         ethtest->flags |= ETH_TEST_FL_FAILED;
6310
6311                 s2io_reset(sp);
6312
6313                 if (s2io_eeprom_test(sp, &data[1]))
6314                         ethtest->flags |= ETH_TEST_FL_FAILED;
6315
6316                 if (s2io_bist_test(sp, &data[4]))
6317                         ethtest->flags |= ETH_TEST_FL_FAILED;
6318
6319                 if (orig_state)
6320                         s2io_open(sp->dev);
6321
6322                 data[2] = 0;
6323         } else {
6324                 /* Online Tests. */
6325                 if (!orig_state) {
6326                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6327                                   dev->name);
6328                         data[0] = -1;
6329                         data[1] = -1;
6330                         data[2] = -1;
6331                         data[3] = -1;
6332                         data[4] = -1;
6333                 }
6334
6335                 if (s2io_link_test(sp, &data[2]))
6336                         ethtest->flags |= ETH_TEST_FL_FAILED;
6337
6338                 data[0] = 0;
6339                 data[1] = 0;
6340                 data[3] = 0;
6341                 data[4] = 0;
6342         }
6343 }
6344
6345 static void s2io_get_ethtool_stats(struct net_device *dev,
6346                                    struct ethtool_stats *estats,
6347                                    u64 *tmp_stats)
6348 {
6349         int i = 0, k;
6350         struct s2io_nic *sp = netdev_priv(dev);
6351         struct stat_block *stats = sp->mac_control.stats_info;
6352         struct swStat *swstats = &stats->sw_stat;
6353         struct xpakStat *xstats = &stats->xpak_stat;
6354
6355         s2io_updt_stats(sp);
6356         tmp_stats[i++] =
6357                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6358                 le32_to_cpu(stats->tmac_frms);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6361                 le32_to_cpu(stats->tmac_data_octets);
6362         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6363         tmp_stats[i++] =
6364                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6365                 le32_to_cpu(stats->tmac_mcst_frms);
6366         tmp_stats[i++] =
6367                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6368                 le32_to_cpu(stats->tmac_bcst_frms);
6369         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6370         tmp_stats[i++] =
6371                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6372                 le32_to_cpu(stats->tmac_ttl_octets);
6373         tmp_stats[i++] =
6374                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6375                 le32_to_cpu(stats->tmac_ucst_frms);
6376         tmp_stats[i++] =
6377                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6378                 le32_to_cpu(stats->tmac_nucst_frms);
6379         tmp_stats[i++] =
6380                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6381                 le32_to_cpu(stats->tmac_any_err_frms);
6382         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6383         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6384         tmp_stats[i++] =
6385                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6386                 le32_to_cpu(stats->tmac_vld_ip);
6387         tmp_stats[i++] =
6388                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6389                 le32_to_cpu(stats->tmac_drop_ip);
6390         tmp_stats[i++] =
6391                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6392                 le32_to_cpu(stats->tmac_icmp);
6393         tmp_stats[i++] =
6394                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6395                 le32_to_cpu(stats->tmac_rst_tcp);
6396         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6397         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6398                 le32_to_cpu(stats->tmac_udp);
6399         tmp_stats[i++] =
6400                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6401                 le32_to_cpu(stats->rmac_vld_frms);
6402         tmp_stats[i++] =
6403                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6404                 le32_to_cpu(stats->rmac_data_octets);
6405         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6406         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6407         tmp_stats[i++] =
6408                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6409                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6410         tmp_stats[i++] =
6411                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6412                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6413         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6414         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6416         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6417         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6418         tmp_stats[i++] =
6419                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6420                 le32_to_cpu(stats->rmac_ttl_octets);
6421         tmp_stats[i++] =
6422                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6423                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6424         tmp_stats[i++] =
6425                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6426                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6427         tmp_stats[i++] =
6428                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6429                 le32_to_cpu(stats->rmac_discarded_frms);
6430         tmp_stats[i++] =
6431                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6432                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6433         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6434         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6435         tmp_stats[i++] =
6436                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6437                 le32_to_cpu(stats->rmac_usized_frms);
6438         tmp_stats[i++] =
6439                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6440                 le32_to_cpu(stats->rmac_osized_frms);
6441         tmp_stats[i++] =
6442                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6443                 le32_to_cpu(stats->rmac_frag_frms);
6444         tmp_stats[i++] =
6445                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6446                 le32_to_cpu(stats->rmac_jabber_frms);
6447         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6448         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6449         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6450         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6451         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6452         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6453         tmp_stats[i++] =
6454                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6455                 le32_to_cpu(stats->rmac_ip);
6456         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6457         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6458         tmp_stats[i++] =
6459                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6460                 le32_to_cpu(stats->rmac_drop_ip);
6461         tmp_stats[i++] =
6462                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6463                 le32_to_cpu(stats->rmac_icmp);
6464         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6465         tmp_stats[i++] =
6466                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6467                 le32_to_cpu(stats->rmac_udp);
6468         tmp_stats[i++] =
6469                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6470                 le32_to_cpu(stats->rmac_err_drp_udp);
6471         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6472         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6473         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6474         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6475         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6476         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6477         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6478         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6479         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6480         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6481         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6482         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6483         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6484         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6485         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6486         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6487         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6488         tmp_stats[i++] =
6489                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6490                 le32_to_cpu(stats->rmac_pause_cnt);
6491         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6492         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6493         tmp_stats[i++] =
6494                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6495                 le32_to_cpu(stats->rmac_accepted_ip);
6496         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6497         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6498         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6499         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6500         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6501         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6502         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6503         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6504         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6505         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6506         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6507         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6508         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6509         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6510         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6511         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6512         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6513         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6514         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6515
6516         /* Enhanced statistics exist only for Hercules */
6517         if (sp->device_type == XFRAME_II_DEVICE) {
6518                 tmp_stats[i++] =
6519                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6520                 tmp_stats[i++] =
6521                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6522                 tmp_stats[i++] =
6523                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6524                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6525                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6526                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6527                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6528                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6529                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6530                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6531                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6532                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6533                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6534                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6535                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6536                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6537         }
6538
6539         tmp_stats[i++] = 0;
6540         tmp_stats[i++] = swstats->single_ecc_errs;
6541         tmp_stats[i++] = swstats->double_ecc_errs;
6542         tmp_stats[i++] = swstats->parity_err_cnt;
6543         tmp_stats[i++] = swstats->serious_err_cnt;
6544         tmp_stats[i++] = swstats->soft_reset_cnt;
6545         tmp_stats[i++] = swstats->fifo_full_cnt;
6546         for (k = 0; k < MAX_RX_RINGS; k++)
6547                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6548         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6549         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6550         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6551         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6552         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6553         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6554         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6555         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6556         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6557         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6558         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6559         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6560         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6561         tmp_stats[i++] = swstats->sending_both;
6562         tmp_stats[i++] = swstats->outof_sequence_pkts;
6563         tmp_stats[i++] = swstats->flush_max_pkts;
6564         if (swstats->num_aggregations) {
6565                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6566                 int count = 0;
6567                 /*
6568                  * Since 64-bit divide does not work on all platforms,
6569                  * do repeated subtraction.
6570                  */
6571                 while (tmp >= swstats->num_aggregations) {
6572                         tmp -= swstats->num_aggregations;
6573                         count++;
6574                 }
6575                 tmp_stats[i++] = count;
6576         } else
6577                 tmp_stats[i++] = 0;
6578         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6579         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6580         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6581         tmp_stats[i++] = swstats->mem_allocated;
6582         tmp_stats[i++] = swstats->mem_freed;
6583         tmp_stats[i++] = swstats->link_up_cnt;
6584         tmp_stats[i++] = swstats->link_down_cnt;
6585         tmp_stats[i++] = swstats->link_up_time;
6586         tmp_stats[i++] = swstats->link_down_time;
6587
6588         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6589         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6590         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6591         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6592         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6593
6594         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6595         tmp_stats[i++] = swstats->rx_abort_cnt;
6596         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6597         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6598         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6599         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6600         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6601         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6602         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6603         tmp_stats[i++] = swstats->tda_err_cnt;
6604         tmp_stats[i++] = swstats->pfc_err_cnt;
6605         tmp_stats[i++] = swstats->pcc_err_cnt;
6606         tmp_stats[i++] = swstats->tti_err_cnt;
6607         tmp_stats[i++] = swstats->tpa_err_cnt;
6608         tmp_stats[i++] = swstats->sm_err_cnt;
6609         tmp_stats[i++] = swstats->lso_err_cnt;
6610         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6611         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6612         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6613         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6614         tmp_stats[i++] = swstats->rc_err_cnt;
6615         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6616         tmp_stats[i++] = swstats->rpa_err_cnt;
6617         tmp_stats[i++] = swstats->rda_err_cnt;
6618         tmp_stats[i++] = swstats->rti_err_cnt;
6619         tmp_stats[i++] = swstats->mc_err_cnt;
6620 }
6621
6622 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6623 {
6624         return XENA_REG_SPACE;
6625 }
6626
6627
6628 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6629 {
6630         struct s2io_nic *sp = netdev_priv(dev);
6631
6632         return sp->rx_csum;
6633 }
6634
6635 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6636 {
6637         struct s2io_nic *sp = netdev_priv(dev);
6638
6639         if (data)
6640                 sp->rx_csum = 1;
6641         else
6642                 sp->rx_csum = 0;
6643
6644         return 0;
6645 }
6646
6647 static int s2io_get_eeprom_len(struct net_device *dev)
6648 {
6649         return XENA_EEPROM_SPACE;
6650 }
6651
6652 static int s2io_get_sset_count(struct net_device *dev, int sset)
6653 {
6654         struct s2io_nic *sp = netdev_priv(dev);
6655
6656         switch (sset) {
6657         case ETH_SS_TEST:
6658                 return S2IO_TEST_LEN;
6659         case ETH_SS_STATS:
6660                 switch (sp->device_type) {
6661                 case XFRAME_I_DEVICE:
6662                         return XFRAME_I_STAT_LEN;
6663                 case XFRAME_II_DEVICE:
6664                         return XFRAME_II_STAT_LEN;
6665                 default:
6666                         return 0;
6667                 }
6668         default:
6669                 return -EOPNOTSUPP;
6670         }
6671 }
6672
6673 static void s2io_ethtool_get_strings(struct net_device *dev,
6674                                      u32 stringset, u8 *data)
6675 {
6676         int stat_size = 0;
6677         struct s2io_nic *sp = netdev_priv(dev);
6678
6679         switch (stringset) {
6680         case ETH_SS_TEST:
6681                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6682                 break;
6683         case ETH_SS_STATS:
6684                 stat_size = sizeof(ethtool_xena_stats_keys);
6685                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6686                 if (sp->device_type == XFRAME_II_DEVICE) {
6687                         memcpy(data + stat_size,
6688                                &ethtool_enhanced_stats_keys,
6689                                sizeof(ethtool_enhanced_stats_keys));
6690                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6691                 }
6692
6693                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6694                        sizeof(ethtool_driver_stats_keys));
6695         }
6696 }
6697
6698 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6699 {
6700         if (data)
6701                 dev->features |= NETIF_F_IP_CSUM;
6702         else
6703                 dev->features &= ~NETIF_F_IP_CSUM;
6704
6705         return 0;
6706 }
6707
6708 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6709 {
6710         return (dev->features & NETIF_F_TSO) != 0;
6711 }
6712
6713 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6714 {
6715         if (data)
6716                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6717         else
6718                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6719
6720         return 0;
6721 }
6722
6723 static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6724 {
6725         struct s2io_nic *sp = netdev_priv(dev);
6726         int rc = 0;
6727         int changed = 0;
6728
6729         if (ethtool_invalid_flags(dev, data, ETH_FLAG_LRO))
6730                 return -EINVAL;
6731
6732         if (data & ETH_FLAG_LRO) {
6733                 if (!(dev->features & NETIF_F_LRO)) {
6734                         dev->features |= NETIF_F_LRO;
6735                         changed = 1;
6736                 }
6737         } else if (dev->features & NETIF_F_LRO) {
6738                 dev->features &= ~NETIF_F_LRO;
6739                 changed = 1;
6740         }
6741
6742         if (changed && netif_running(dev)) {
6743                 s2io_stop_all_tx_queue(sp);
6744                 s2io_card_down(sp);
6745                 rc = s2io_card_up(sp);
6746                 if (rc)
6747                         s2io_reset(sp);
6748                 else
6749                         s2io_start_all_tx_queue(sp);
6750         }
6751
6752         return rc;
6753 }
6754
6755 static const struct ethtool_ops netdev_ethtool_ops = {
6756         .get_settings = s2io_ethtool_gset,
6757         .set_settings = s2io_ethtool_sset,
6758         .get_drvinfo = s2io_ethtool_gdrvinfo,
6759         .get_regs_len = s2io_ethtool_get_regs_len,
6760         .get_regs = s2io_ethtool_gregs,
6761         .get_link = ethtool_op_get_link,
6762         .get_eeprom_len = s2io_get_eeprom_len,
6763         .get_eeprom = s2io_ethtool_geeprom,
6764         .set_eeprom = s2io_ethtool_seeprom,
6765         .get_ringparam = s2io_ethtool_gringparam,
6766         .get_pauseparam = s2io_ethtool_getpause_data,
6767         .set_pauseparam = s2io_ethtool_setpause_data,
6768         .get_rx_csum = s2io_ethtool_get_rx_csum,
6769         .set_rx_csum = s2io_ethtool_set_rx_csum,
6770         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6771         .set_flags = s2io_ethtool_set_flags,
6772         .get_flags = ethtool_op_get_flags,
6773         .set_sg = ethtool_op_set_sg,
6774         .get_tso = s2io_ethtool_op_get_tso,
6775         .set_tso = s2io_ethtool_op_set_tso,
6776         .set_ufo = ethtool_op_set_ufo,
6777         .self_test = s2io_ethtool_test,
6778         .get_strings = s2io_ethtool_get_strings,
6779         .phys_id = s2io_ethtool_idnic,
6780         .get_ethtool_stats = s2io_get_ethtool_stats,
6781         .get_sset_count = s2io_get_sset_count,
6782 };
6783
6784 /**
6785  *  s2io_ioctl - Entry point for the Ioctl
6786  *  @dev :  Device pointer.
6787  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6788  *  a proprietary structure used to pass information to the driver.
6789  *  @cmd :  This is used to distinguish between the different commands that
6790  *  can be passed to the IOCTL functions.
6791  *  Description:
6792  *  Currently there are no special functionality supported in IOCTL, hence
6793  *  function always return EOPNOTSUPPORTED
6794  */
6795
6796 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6797 {
6798         return -EOPNOTSUPP;
6799 }
6800
6801 /**
6802  *  s2io_change_mtu - entry point to change MTU size for the device.
6803  *   @dev : device pointer.
6804  *   @new_mtu : the new MTU size for the device.
6805  *   Description: A driver entry point to change MTU size for the device.
6806  *   Before changing the MTU the device must be stopped.
6807  *  Return value:
6808  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6809  *   file on failure.
6810  */
6811
6812 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6813 {
6814         struct s2io_nic *sp = netdev_priv(dev);
6815         int ret = 0;
6816
6817         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6818                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6819                 return -EPERM;
6820         }
6821
6822         dev->mtu = new_mtu;
6823         if (netif_running(dev)) {
6824                 s2io_stop_all_tx_queue(sp);
6825                 s2io_card_down(sp);
6826                 ret = s2io_card_up(sp);
6827                 if (ret) {
6828                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6829                                   __func__);
6830                         return ret;
6831                 }
6832                 s2io_wake_all_tx_queue(sp);
6833         } else { /* Device is down */
6834                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6835                 u64 val64 = new_mtu;
6836
6837                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6838         }
6839
6840         return ret;
6841 }
6842
6843 /**
6844  * s2io_set_link - Set the LInk status
6845  * @data: long pointer to device private structue
6846  * Description: Sets the link status for the adapter
6847  */
6848
6849 static void s2io_set_link(struct work_struct *work)
6850 {
6851         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6852                                             set_link_task);
6853         struct net_device *dev = nic->dev;
6854         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6855         register u64 val64;
6856         u16 subid;
6857
6858         rtnl_lock();
6859
6860         if (!netif_running(dev))
6861                 goto out_unlock;
6862
6863         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6864                 /* The card is being reset, no point doing anything */
6865                 goto out_unlock;
6866         }
6867
6868         subid = nic->pdev->subsystem_device;
6869         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6870                 /*
6871                  * Allow a small delay for the NICs self initiated
6872                  * cleanup to complete.
6873                  */
6874                 msleep(100);
6875         }
6876
6877         val64 = readq(&bar0->adapter_status);
6878         if (LINK_IS_UP(val64)) {
6879                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6880                         if (verify_xena_quiescence(nic)) {
6881                                 val64 = readq(&bar0->adapter_control);
6882                                 val64 |= ADAPTER_CNTL_EN;
6883                                 writeq(val64, &bar0->adapter_control);
6884                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6885                                             nic->device_type, subid)) {
6886                                         val64 = readq(&bar0->gpio_control);
6887                                         val64 |= GPIO_CTRL_GPIO_0;
6888                                         writeq(val64, &bar0->gpio_control);
6889                                         val64 = readq(&bar0->gpio_control);
6890                                 } else {
6891                                         val64 |= ADAPTER_LED_ON;
6892                                         writeq(val64, &bar0->adapter_control);
6893                                 }
6894                                 nic->device_enabled_once = true;
6895                         } else {
6896                                 DBG_PRINT(ERR_DBG,
6897                                           "%s: Error: device is not Quiescent\n",
6898                                           dev->name);
6899                                 s2io_stop_all_tx_queue(nic);
6900                         }
6901                 }
6902                 val64 = readq(&bar0->adapter_control);
6903                 val64 |= ADAPTER_LED_ON;
6904                 writeq(val64, &bar0->adapter_control);
6905                 s2io_link(nic, LINK_UP);
6906         } else {
6907                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6908                                                       subid)) {
6909                         val64 = readq(&bar0->gpio_control);
6910                         val64 &= ~GPIO_CTRL_GPIO_0;
6911                         writeq(val64, &bar0->gpio_control);
6912                         val64 = readq(&bar0->gpio_control);
6913                 }
6914                 /* turn off LED */
6915                 val64 = readq(&bar0->adapter_control);
6916                 val64 = val64 & (~ADAPTER_LED_ON);
6917                 writeq(val64, &bar0->adapter_control);
6918                 s2io_link(nic, LINK_DOWN);
6919         }
6920         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6921
6922 out_unlock:
6923         rtnl_unlock();
6924 }
6925
6926 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6927                                   struct buffAdd *ba,
6928                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6929                                   u64 *temp2, int size)
6930 {
6931         struct net_device *dev = sp->dev;
6932         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6933
6934         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6935                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6936                 /* allocate skb */
6937                 if (*skb) {
6938                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6939                         /*
6940                          * As Rx frame are not going to be processed,
6941                          * using same mapped address for the Rxd
6942                          * buffer pointer
6943                          */
6944                         rxdp1->Buffer0_ptr = *temp0;
6945                 } else {
6946                         *skb = dev_alloc_skb(size);
6947                         if (!(*skb)) {
6948                                 DBG_PRINT(INFO_DBG,
6949                                           "%s: Out of memory to allocate %s\n",
6950                                           dev->name, "1 buf mode SKBs");
6951                                 stats->mem_alloc_fail_cnt++;
6952                                 return -ENOMEM ;
6953                         }
6954                         stats->mem_allocated += (*skb)->truesize;
6955                         /* storing the mapped addr in a temp variable
6956                          * such it will be used for next rxd whose
6957                          * Host Control is NULL
6958                          */
6959                         rxdp1->Buffer0_ptr = *temp0 =
6960                                 pci_map_single(sp->pdev, (*skb)->data,
6961                                                size - NET_IP_ALIGN,
6962                                                PCI_DMA_FROMDEVICE);
6963                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6964                                 goto memalloc_failed;
6965                         rxdp->Host_Control = (unsigned long) (*skb);
6966                 }
6967         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6968                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6969                 /* Two buffer Mode */
6970                 if (*skb) {
6971                         rxdp3->Buffer2_ptr = *temp2;
6972                         rxdp3->Buffer0_ptr = *temp0;
6973                         rxdp3->Buffer1_ptr = *temp1;
6974                 } else {
6975                         *skb = dev_alloc_skb(size);
6976                         if (!(*skb)) {
6977                                 DBG_PRINT(INFO_DBG,
6978                                           "%s: Out of memory to allocate %s\n",
6979                                           dev->name,
6980                                           "2 buf mode SKBs");
6981                                 stats->mem_alloc_fail_cnt++;
6982                                 return -ENOMEM;
6983                         }
6984                         stats->mem_allocated += (*skb)->truesize;
6985                         rxdp3->Buffer2_ptr = *temp2 =
6986                                 pci_map_single(sp->pdev, (*skb)->data,
6987                                                dev->mtu + 4,
6988                                                PCI_DMA_FROMDEVICE);
6989                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6990                                 goto memalloc_failed;
6991                         rxdp3->Buffer0_ptr = *temp0 =
6992                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6993                                                PCI_DMA_FROMDEVICE);
6994                         if (pci_dma_mapping_error(sp->pdev,
6995                                                   rxdp3->Buffer0_ptr)) {
6996                                 pci_unmap_single(sp->pdev,
6997                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6998                                                  dev->mtu + 4,
6999                                                  PCI_DMA_FROMDEVICE);
7000                                 goto memalloc_failed;
7001                         }
7002                         rxdp->Host_Control = (unsigned long) (*skb);
7003
7004                         /* Buffer-1 will be dummy buffer not used */
7005                         rxdp3->Buffer1_ptr = *temp1 =
7006                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
7007                                                PCI_DMA_FROMDEVICE);
7008                         if (pci_dma_mapping_error(sp->pdev,
7009                                                   rxdp3->Buffer1_ptr)) {
7010                                 pci_unmap_single(sp->pdev,
7011                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
7012                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
7013                                 pci_unmap_single(sp->pdev,
7014                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
7015                                                  dev->mtu + 4,
7016                                                  PCI_DMA_FROMDEVICE);
7017                                 goto memalloc_failed;
7018                         }
7019                 }
7020         }
7021         return 0;
7022
7023 memalloc_failed:
7024         stats->pci_map_fail_cnt++;
7025         stats->mem_freed += (*skb)->truesize;
7026         dev_kfree_skb(*skb);
7027         return -ENOMEM;
7028 }
7029
7030 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7031                                 int size)
7032 {
7033         struct net_device *dev = sp->dev;
7034         if (sp->rxd_mode == RXD_MODE_1) {
7035                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7036         } else if (sp->rxd_mode == RXD_MODE_3B) {
7037                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7038                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7039                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7040         }
7041 }
7042
7043 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
7044 {
7045         int i, j, k, blk_cnt = 0, size;
7046         struct config_param *config = &sp->config;
7047         struct mac_info *mac_control = &sp->mac_control;
7048         struct net_device *dev = sp->dev;
7049         struct RxD_t *rxdp = NULL;
7050         struct sk_buff *skb = NULL;
7051         struct buffAdd *ba = NULL;
7052         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7053
7054         /* Calculate the size based on ring mode */
7055         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7056                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7057         if (sp->rxd_mode == RXD_MODE_1)
7058                 size += NET_IP_ALIGN;
7059         else if (sp->rxd_mode == RXD_MODE_3B)
7060                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7061
7062         for (i = 0; i < config->rx_ring_num; i++) {
7063                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7064                 struct ring_info *ring = &mac_control->rings[i];
7065
7066                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7067
7068                 for (j = 0; j < blk_cnt; j++) {
7069                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7070                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7071                                 if (sp->rxd_mode == RXD_MODE_3B)
7072                                         ba = &ring->ba[j][k];
7073                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7074                                                            (u64 *)&temp0_64,
7075                                                            (u64 *)&temp1_64,
7076                                                            (u64 *)&temp2_64,
7077                                                            size) == -ENOMEM) {
7078                                         return 0;
7079                                 }
7080
7081                                 set_rxd_buffer_size(sp, rxdp, size);
7082                                 wmb();
7083                                 /* flip the Ownership bit to Hardware */
7084                                 rxdp->Control_1 |= RXD_OWN_XENA;
7085                         }
7086                 }
7087         }
7088         return 0;
7089
7090 }
7091
7092 static int s2io_add_isr(struct s2io_nic *sp)
7093 {
7094         int ret = 0;
7095         struct net_device *dev = sp->dev;
7096         int err = 0;
7097
7098         if (sp->config.intr_type == MSI_X)
7099                 ret = s2io_enable_msi_x(sp);
7100         if (ret) {
7101                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7102                 sp->config.intr_type = INTA;
7103         }
7104
7105         /*
7106          * Store the values of the MSIX table in
7107          * the struct s2io_nic structure
7108          */
7109         store_xmsi_data(sp);
7110
7111         /* After proper initialization of H/W, register ISR */
7112         if (sp->config.intr_type == MSI_X) {
7113                 int i, msix_rx_cnt = 0;
7114
7115                 for (i = 0; i < sp->num_entries; i++) {
7116                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7117                                 if (sp->s2io_entries[i].type ==
7118                                     MSIX_RING_TYPE) {
7119                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7120                                                 dev->name, i);
7121                                         err = request_irq(sp->entries[i].vector,
7122                                                           s2io_msix_ring_handle,
7123                                                           0,
7124                                                           sp->desc[i],
7125                                                           sp->s2io_entries[i].arg);
7126                                 } else if (sp->s2io_entries[i].type ==
7127                                            MSIX_ALARM_TYPE) {
7128                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7129                                                 dev->name, i);
7130                                         err = request_irq(sp->entries[i].vector,
7131                                                           s2io_msix_fifo_handle,
7132                                                           0,
7133                                                           sp->desc[i],
7134                                                           sp->s2io_entries[i].arg);
7135
7136                                 }
7137                                 /* if either data or addr is zero print it. */
7138                                 if (!(sp->msix_info[i].addr &&
7139                                       sp->msix_info[i].data)) {
7140                                         DBG_PRINT(ERR_DBG,
7141                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7142                                                   sp->desc[i],
7143                                                   (unsigned long long)
7144                                                   sp->msix_info[i].addr,
7145                                                   (unsigned long long)
7146                                                   ntohl(sp->msix_info[i].data));
7147                                 } else
7148                                         msix_rx_cnt++;
7149                                 if (err) {
7150                                         remove_msix_isr(sp);
7151
7152                                         DBG_PRINT(ERR_DBG,
7153                                                   "%s:MSI-X-%d registration "
7154                                                   "failed\n", dev->name, i);
7155
7156                                         DBG_PRINT(ERR_DBG,
7157                                                   "%s: Defaulting to INTA\n",
7158                                                   dev->name);
7159                                         sp->config.intr_type = INTA;
7160                                         break;
7161                                 }
7162                                 sp->s2io_entries[i].in_use =
7163                                         MSIX_REGISTERED_SUCCESS;
7164                         }
7165                 }
7166                 if (!err) {
7167                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7168                         DBG_PRINT(INFO_DBG,
7169                                   "MSI-X-TX entries enabled through alarm vector\n");
7170                 }
7171         }
7172         if (sp->config.intr_type == INTA) {
7173                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7174                                   sp->name, dev);
7175                 if (err) {
7176                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7177                                   dev->name);
7178                         return -1;
7179                 }
7180         }
7181         return 0;
7182 }
7183
7184 static void s2io_rem_isr(struct s2io_nic *sp)
7185 {
7186         if (sp->config.intr_type == MSI_X)
7187                 remove_msix_isr(sp);
7188         else
7189                 remove_inta_isr(sp);
7190 }
7191
7192 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7193 {
7194         int cnt = 0;
7195         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7196         register u64 val64 = 0;
7197         struct config_param *config;
7198         config = &sp->config;
7199
7200         if (!is_s2io_card_up(sp))
7201                 return;
7202
7203         del_timer_sync(&sp->alarm_timer);
7204         /* If s2io_set_link task is executing, wait till it completes. */
7205         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7206                 msleep(50);
7207         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7208
7209         /* Disable napi */
7210         if (sp->config.napi) {
7211                 int off = 0;
7212                 if (config->intr_type ==  MSI_X) {
7213                         for (; off < sp->config.rx_ring_num; off++)
7214                                 napi_disable(&sp->mac_control.rings[off].napi);
7215                 }
7216                 else
7217                         napi_disable(&sp->napi);
7218         }
7219
7220         /* disable Tx and Rx traffic on the NIC */
7221         if (do_io)
7222                 stop_nic(sp);
7223
7224         s2io_rem_isr(sp);
7225
7226         /* stop the tx queue, indicate link down */
7227         s2io_link(sp, LINK_DOWN);
7228
7229         /* Check if the device is Quiescent and then Reset the NIC */
7230         while (do_io) {
7231                 /* As per the HW requirement we need to replenish the
7232                  * receive buffer to avoid the ring bump. Since there is
7233                  * no intention of processing the Rx frame at this pointwe are
7234                  * just settting the ownership bit of rxd in Each Rx
7235                  * ring to HW and set the appropriate buffer size
7236                  * based on the ring mode
7237                  */
7238                 rxd_owner_bit_reset(sp);
7239
7240                 val64 = readq(&bar0->adapter_status);
7241                 if (verify_xena_quiescence(sp)) {
7242                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7243                                 break;
7244                 }
7245
7246                 msleep(50);
7247                 cnt++;
7248                 if (cnt == 10) {
7249                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7250                                   "adapter status reads 0x%llx\n",
7251                                   (unsigned long long)val64);
7252                         break;
7253                 }
7254         }
7255         if (do_io)
7256                 s2io_reset(sp);
7257
7258         /* Free all Tx buffers */
7259         free_tx_buffers(sp);
7260
7261         /* Free all Rx buffers */
7262         free_rx_buffers(sp);
7263
7264         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7265 }
7266
7267 static void s2io_card_down(struct s2io_nic *sp)
7268 {
7269         do_s2io_card_down(sp, 1);
7270 }
7271
7272 static int s2io_card_up(struct s2io_nic *sp)
7273 {
7274         int i, ret = 0;
7275         struct config_param *config;
7276         struct mac_info *mac_control;
7277         struct net_device *dev = (struct net_device *)sp->dev;
7278         u16 interruptible;
7279
7280         /* Initialize the H/W I/O registers */
7281         ret = init_nic(sp);
7282         if (ret != 0) {
7283                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7284                           dev->name);
7285                 if (ret != -EIO)
7286                         s2io_reset(sp);
7287                 return ret;
7288         }
7289
7290         /*
7291          * Initializing the Rx buffers. For now we are considering only 1
7292          * Rx ring and initializing buffers into 30 Rx blocks
7293          */
7294         config = &sp->config;
7295         mac_control = &sp->mac_control;
7296
7297         for (i = 0; i < config->rx_ring_num; i++) {
7298                 struct ring_info *ring = &mac_control->rings[i];
7299
7300                 ring->mtu = dev->mtu;
7301                 ring->lro = !!(dev->features & NETIF_F_LRO);
7302                 ret = fill_rx_buffers(sp, ring, 1);
7303                 if (ret) {
7304                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7305                                   dev->name);
7306                         s2io_reset(sp);
7307                         free_rx_buffers(sp);
7308                         return -ENOMEM;
7309                 }
7310                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7311                           ring->rx_bufs_left);
7312         }
7313
7314         /* Initialise napi */
7315         if (config->napi) {
7316                 if (config->intr_type ==  MSI_X) {
7317                         for (i = 0; i < sp->config.rx_ring_num; i++)
7318                                 napi_enable(&sp->mac_control.rings[i].napi);
7319                 } else {
7320                         napi_enable(&sp->napi);
7321                 }
7322         }
7323
7324         /* Maintain the state prior to the open */
7325         if (sp->promisc_flg)
7326                 sp->promisc_flg = 0;
7327         if (sp->m_cast_flg) {
7328                 sp->m_cast_flg = 0;
7329                 sp->all_multi_pos = 0;
7330         }
7331
7332         /* Setting its receive mode */
7333         s2io_set_multicast(dev);
7334
7335         if (dev->features & NETIF_F_LRO) {
7336                 /* Initialize max aggregatable pkts per session based on MTU */
7337                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7338                 /* Check if we can use (if specified) user provided value */
7339                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7340                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7341         }
7342
7343         /* Enable Rx Traffic and interrupts on the NIC */
7344         if (start_nic(sp)) {
7345                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7346                 s2io_reset(sp);
7347                 free_rx_buffers(sp);
7348                 return -ENODEV;
7349         }
7350
7351         /* Add interrupt service routine */
7352         if (s2io_add_isr(sp) != 0) {
7353                 if (sp->config.intr_type == MSI_X)
7354                         s2io_rem_isr(sp);
7355                 s2io_reset(sp);
7356                 free_rx_buffers(sp);
7357                 return -ENODEV;
7358         }
7359
7360         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7361
7362         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7363
7364         /*  Enable select interrupts */
7365         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7366         if (sp->config.intr_type != INTA) {
7367                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7368                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7369         } else {
7370                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7371                 interruptible |= TX_PIC_INTR;
7372                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7373         }
7374
7375         return 0;
7376 }
7377
7378 /**
7379  * s2io_restart_nic - Resets the NIC.
7380  * @data : long pointer to the device private structure
7381  * Description:
7382  * This function is scheduled to be run by the s2io_tx_watchdog
7383  * function after 0.5 secs to reset the NIC. The idea is to reduce
7384  * the run time of the watch dog routine which is run holding a
7385  * spin lock.
7386  */
7387
7388 static void s2io_restart_nic(struct work_struct *work)
7389 {
7390         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7391         struct net_device *dev = sp->dev;
7392
7393         rtnl_lock();
7394
7395         if (!netif_running(dev))
7396                 goto out_unlock;
7397
7398         s2io_card_down(sp);
7399         if (s2io_card_up(sp)) {
7400                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7401         }
7402         s2io_wake_all_tx_queue(sp);
7403         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7404 out_unlock:
7405         rtnl_unlock();
7406 }
7407
7408 /**
7409  *  s2io_tx_watchdog - Watchdog for transmit side.
7410  *  @dev : Pointer to net device structure
7411  *  Description:
7412  *  This function is triggered if the Tx Queue is stopped
7413  *  for a pre-defined amount of time when the Interface is still up.
7414  *  If the Interface is jammed in such a situation, the hardware is
7415  *  reset (by s2io_close) and restarted again (by s2io_open) to
7416  *  overcome any problem that might have been caused in the hardware.
7417  *  Return value:
7418  *  void
7419  */
7420
7421 static void s2io_tx_watchdog(struct net_device *dev)
7422 {
7423         struct s2io_nic *sp = netdev_priv(dev);
7424         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7425
7426         if (netif_carrier_ok(dev)) {
7427                 swstats->watchdog_timer_cnt++;
7428                 schedule_work(&sp->rst_timer_task);
7429                 swstats->soft_reset_cnt++;
7430         }
7431 }
7432
7433 /**
7434  *   rx_osm_handler - To perform some OS related operations on SKB.
7435  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7436  *   @skb : the socket buffer pointer.
7437  *   @len : length of the packet
7438  *   @cksum : FCS checksum of the frame.
7439  *   @ring_no : the ring from which this RxD was extracted.
7440  *   Description:
7441  *   This function is called by the Rx interrupt serivce routine to perform
7442  *   some OS related operations on the SKB before passing it to the upper
7443  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7444  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7445  *   to the upper layer. If the checksum is wrong, it increments the Rx
7446  *   packet error count, frees the SKB and returns error.
7447  *   Return value:
7448  *   SUCCESS on success and -1 on failure.
7449  */
7450 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7451 {
7452         struct s2io_nic *sp = ring_data->nic;
7453         struct net_device *dev = (struct net_device *)ring_data->dev;
7454         struct sk_buff *skb = (struct sk_buff *)
7455                 ((unsigned long)rxdp->Host_Control);
7456         int ring_no = ring_data->ring_no;
7457         u16 l3_csum, l4_csum;
7458         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7459         struct lro *uninitialized_var(lro);
7460         u8 err_mask;
7461         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7462
7463         skb->dev = dev;
7464
7465         if (err) {
7466                 /* Check for parity error */
7467                 if (err & 0x1)
7468                         swstats->parity_err_cnt++;
7469
7470                 err_mask = err >> 48;
7471                 switch (err_mask) {
7472                 case 1:
7473                         swstats->rx_parity_err_cnt++;
7474                         break;
7475
7476                 case 2:
7477                         swstats->rx_abort_cnt++;
7478                         break;
7479
7480                 case 3:
7481                         swstats->rx_parity_abort_cnt++;
7482                         break;
7483
7484                 case 4:
7485                         swstats->rx_rda_fail_cnt++;
7486                         break;
7487
7488                 case 5:
7489                         swstats->rx_unkn_prot_cnt++;
7490                         break;
7491
7492                 case 6:
7493                         swstats->rx_fcs_err_cnt++;
7494                         break;
7495
7496                 case 7:
7497                         swstats->rx_buf_size_err_cnt++;
7498                         break;
7499
7500                 case 8:
7501                         swstats->rx_rxd_corrupt_cnt++;
7502                         break;
7503
7504                 case 15:
7505                         swstats->rx_unkn_err_cnt++;
7506                         break;
7507                 }
7508                 /*
7509                  * Drop the packet if bad transfer code. Exception being
7510                  * 0x5, which could be due to unsupported IPv6 extension header.
7511                  * In this case, we let stack handle the packet.
7512                  * Note that in this case, since checksum will be incorrect,
7513                  * stack will validate the same.
7514                  */
7515                 if (err_mask != 0x5) {
7516                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7517                                   dev->name, err_mask);
7518                         dev->stats.rx_crc_errors++;
7519                         swstats->mem_freed
7520                                 += skb->truesize;
7521                         dev_kfree_skb(skb);
7522                         ring_data->rx_bufs_left -= 1;
7523                         rxdp->Host_Control = 0;
7524                         return 0;
7525                 }
7526         }
7527
7528         rxdp->Host_Control = 0;
7529         if (sp->rxd_mode == RXD_MODE_1) {
7530                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7531
7532                 skb_put(skb, len);
7533         } else if (sp->rxd_mode == RXD_MODE_3B) {
7534                 int get_block = ring_data->rx_curr_get_info.block_index;
7535                 int get_off = ring_data->rx_curr_get_info.offset;
7536                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7537                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7538                 unsigned char *buff = skb_push(skb, buf0_len);
7539
7540                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7541                 memcpy(buff, ba->ba_0, buf0_len);
7542                 skb_put(skb, buf2_len);
7543         }
7544
7545         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7546             ((!ring_data->lro) ||
7547              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7548             (sp->rx_csum)) {
7549                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7550                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7551                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7552                         /*
7553                          * NIC verifies if the Checksum of the received
7554                          * frame is Ok or not and accordingly returns
7555                          * a flag in the RxD.
7556                          */
7557                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7558                         if (ring_data->lro) {
7559                                 u32 tcp_len = 0;
7560                                 u8 *tcp;
7561                                 int ret = 0;
7562
7563                                 ret = s2io_club_tcp_session(ring_data,
7564                                                             skb->data, &tcp,
7565                                                             &tcp_len, &lro,
7566                                                             rxdp, sp);
7567                                 switch (ret) {
7568                                 case 3: /* Begin anew */
7569                                         lro->parent = skb;
7570                                         goto aggregate;
7571                                 case 1: /* Aggregate */
7572                                         lro_append_pkt(sp, lro, skb, tcp_len);
7573                                         goto aggregate;
7574                                 case 4: /* Flush session */
7575                                         lro_append_pkt(sp, lro, skb, tcp_len);
7576                                         queue_rx_frame(lro->parent,
7577                                                        lro->vlan_tag);
7578                                         clear_lro_session(lro);
7579                                         swstats->flush_max_pkts++;
7580                                         goto aggregate;
7581                                 case 2: /* Flush both */
7582                                         lro->parent->data_len = lro->frags_len;
7583                                         swstats->sending_both++;
7584                                         queue_rx_frame(lro->parent,
7585                                                        lro->vlan_tag);
7586                                         clear_lro_session(lro);
7587                                         goto send_up;
7588                                 case 0: /* sessions exceeded */
7589                                 case -1: /* non-TCP or not L2 aggregatable */
7590                                 case 5: /*
7591                                          * First pkt in session not
7592                                          * L3/L4 aggregatable
7593                                          */
7594                                         break;
7595                                 default:
7596                                         DBG_PRINT(ERR_DBG,
7597                                                   "%s: Samadhana!!\n",
7598                                                   __func__);
7599                                         BUG();
7600                                 }
7601                         }
7602                 } else {
7603                         /*
7604                          * Packet with erroneous checksum, let the
7605                          * upper layers deal with it.
7606                          */
7607                         skb_checksum_none_assert(skb);
7608                 }
7609         } else
7610                 skb_checksum_none_assert(skb);
7611
7612         swstats->mem_freed += skb->truesize;
7613 send_up:
7614         skb_record_rx_queue(skb, ring_no);
7615         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7616 aggregate:
7617         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7618         return SUCCESS;
7619 }
7620
7621 /**
7622  *  s2io_link - stops/starts the Tx queue.
7623  *  @sp : private member of the device structure, which is a pointer to the
7624  *  s2io_nic structure.
7625  *  @link : inidicates whether link is UP/DOWN.
7626  *  Description:
7627  *  This function stops/starts the Tx queue depending on whether the link
7628  *  status of the NIC is is down or up. This is called by the Alarm
7629  *  interrupt handler whenever a link change interrupt comes up.
7630  *  Return value:
7631  *  void.
7632  */
7633
7634 static void s2io_link(struct s2io_nic *sp, int link)
7635 {
7636         struct net_device *dev = (struct net_device *)sp->dev;
7637         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7638
7639         if (link != sp->last_link_state) {
7640                 init_tti(sp, link);
7641                 if (link == LINK_DOWN) {
7642                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7643                         s2io_stop_all_tx_queue(sp);
7644                         netif_carrier_off(dev);
7645                         if (swstats->link_up_cnt)
7646                                 swstats->link_up_time =
7647                                         jiffies - sp->start_time;
7648                         swstats->link_down_cnt++;
7649                 } else {
7650                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7651                         if (swstats->link_down_cnt)
7652                                 swstats->link_down_time =
7653                                         jiffies - sp->start_time;
7654                         swstats->link_up_cnt++;
7655                         netif_carrier_on(dev);
7656                         s2io_wake_all_tx_queue(sp);
7657                 }
7658         }
7659         sp->last_link_state = link;
7660         sp->start_time = jiffies;
7661 }
7662
7663 /**
7664  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7665  *  @sp : private member of the device structure, which is a pointer to the
7666  *  s2io_nic structure.
7667  *  Description:
7668  *  This function initializes a few of the PCI and PCI-X configuration registers
7669  *  with recommended values.
7670  *  Return value:
7671  *  void
7672  */
7673
7674 static void s2io_init_pci(struct s2io_nic *sp)
7675 {
7676         u16 pci_cmd = 0, pcix_cmd = 0;
7677
7678         /* Enable Data Parity Error Recovery in PCI-X command register. */
7679         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7680                              &(pcix_cmd));
7681         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7682                               (pcix_cmd | 1));
7683         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7684                              &(pcix_cmd));
7685
7686         /* Set the PErr Response bit in PCI command register. */
7687         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7688         pci_write_config_word(sp->pdev, PCI_COMMAND,
7689                               (pci_cmd | PCI_COMMAND_PARITY));
7690         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7691 }
7692
7693 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7694                             u8 *dev_multiq)
7695 {
7696         int i;
7697
7698         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7699                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7700                           "(%d) not supported\n", tx_fifo_num);
7701
7702                 if (tx_fifo_num < 1)
7703                         tx_fifo_num = 1;
7704                 else
7705                         tx_fifo_num = MAX_TX_FIFOS;
7706
7707                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7708         }
7709
7710         if (multiq)
7711                 *dev_multiq = multiq;
7712
7713         if (tx_steering_type && (1 == tx_fifo_num)) {
7714                 if (tx_steering_type != TX_DEFAULT_STEERING)
7715                         DBG_PRINT(ERR_DBG,
7716                                   "Tx steering is not supported with "
7717                                   "one fifo. Disabling Tx steering.\n");
7718                 tx_steering_type = NO_STEERING;
7719         }
7720
7721         if ((tx_steering_type < NO_STEERING) ||
7722             (tx_steering_type > TX_DEFAULT_STEERING)) {
7723                 DBG_PRINT(ERR_DBG,
7724                           "Requested transmit steering not supported\n");
7725                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7726                 tx_steering_type = NO_STEERING;
7727         }
7728
7729         if (rx_ring_num > MAX_RX_RINGS) {
7730                 DBG_PRINT(ERR_DBG,
7731                           "Requested number of rx rings not supported\n");
7732                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7733                           MAX_RX_RINGS);
7734                 rx_ring_num = MAX_RX_RINGS;
7735         }
7736
7737         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7738                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7739                           "Defaulting to INTA\n");
7740                 *dev_intr_type = INTA;
7741         }
7742
7743         if ((*dev_intr_type == MSI_X) &&
7744             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7745              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7746                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7747                           "Defaulting to INTA\n");
7748                 *dev_intr_type = INTA;
7749         }
7750
7751         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7752                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7753                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7754                 rx_ring_mode = 1;
7755         }
7756
7757         for (i = 0; i < MAX_RX_RINGS; i++)
7758                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7759                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7760                                   "supported\nDefaulting to %d\n",
7761                                   MAX_RX_BLOCKS_PER_RING);
7762                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7763                 }
7764
7765         return SUCCESS;
7766 }
7767
7768 /**
7769  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7770  * or Traffic class respectively.
7771  * @nic: device private variable
7772  * Description: The function configures the receive steering to
7773  * desired receive ring.
7774  * Return Value:  SUCCESS on success and
7775  * '-1' on failure (endian settings incorrect).
7776  */
7777 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7778 {
7779         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7780         register u64 val64 = 0;
7781
7782         if (ds_codepoint > 63)
7783                 return FAILURE;
7784
7785         val64 = RTS_DS_MEM_DATA(ring);
7786         writeq(val64, &bar0->rts_ds_mem_data);
7787
7788         val64 = RTS_DS_MEM_CTRL_WE |
7789                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7790                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7791
7792         writeq(val64, &bar0->rts_ds_mem_ctrl);
7793
7794         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7795                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7796                                      S2IO_BIT_RESET);
7797 }
7798
7799 static const struct net_device_ops s2io_netdev_ops = {
7800         .ndo_open               = s2io_open,
7801         .ndo_stop               = s2io_close,
7802         .ndo_get_stats          = s2io_get_stats,
7803         .ndo_start_xmit         = s2io_xmit,
7804         .ndo_validate_addr      = eth_validate_addr,
7805         .ndo_set_multicast_list = s2io_set_multicast,
7806         .ndo_do_ioctl           = s2io_ioctl,
7807         .ndo_set_mac_address    = s2io_set_mac_addr,
7808         .ndo_change_mtu         = s2io_change_mtu,
7809         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7810         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7811         .ndo_tx_timeout         = s2io_tx_watchdog,
7812 #ifdef CONFIG_NET_POLL_CONTROLLER
7813         .ndo_poll_controller    = s2io_netpoll,
7814 #endif
7815 };
7816
7817 /**
7818  *  s2io_init_nic - Initialization of the adapter .
7819  *  @pdev : structure containing the PCI related information of the device.
7820  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7821  *  Description:
7822  *  The function initializes an adapter identified by the pci_dec structure.
7823  *  All OS related initialization including memory and device structure and
7824  *  initlaization of the device private variable is done. Also the swapper
7825  *  control register is initialized to enable read and write into the I/O
7826  *  registers of the device.
7827  *  Return value:
7828  *  returns 0 on success and negative on failure.
7829  */
7830
7831 static int __devinit
7832 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7833 {
7834         struct s2io_nic *sp;
7835         struct net_device *dev;
7836         int i, j, ret;
7837         int dma_flag = false;
7838         u32 mac_up, mac_down;
7839         u64 val64 = 0, tmp64 = 0;
7840         struct XENA_dev_config __iomem *bar0 = NULL;
7841         u16 subid;
7842         struct config_param *config;
7843         struct mac_info *mac_control;
7844         int mode;
7845         u8 dev_intr_type = intr_type;
7846         u8 dev_multiq = 0;
7847
7848         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7849         if (ret)
7850                 return ret;
7851
7852         ret = pci_enable_device(pdev);
7853         if (ret) {
7854                 DBG_PRINT(ERR_DBG,
7855                           "%s: pci_enable_device failed\n", __func__);
7856                 return ret;
7857         }
7858
7859         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7860                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7861                 dma_flag = true;
7862                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7863                         DBG_PRINT(ERR_DBG,
7864                                   "Unable to obtain 64bit DMA "
7865                                   "for consistent allocations\n");
7866                         pci_disable_device(pdev);
7867                         return -ENOMEM;
7868                 }
7869         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7870                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7871         } else {
7872                 pci_disable_device(pdev);
7873                 return -ENOMEM;
7874         }
7875         ret = pci_request_regions(pdev, s2io_driver_name);
7876         if (ret) {
7877                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7878                           __func__, ret);
7879                 pci_disable_device(pdev);
7880                 return -ENODEV;
7881         }
7882         if (dev_multiq)
7883                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7884         else
7885                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7886         if (dev == NULL) {
7887                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7888                 pci_disable_device(pdev);
7889                 pci_release_regions(pdev);
7890                 return -ENODEV;
7891         }
7892
7893         pci_set_master(pdev);
7894         pci_set_drvdata(pdev, dev);
7895         SET_NETDEV_DEV(dev, &pdev->dev);
7896
7897         /*  Private member variable initialized to s2io NIC structure */
7898         sp = netdev_priv(dev);
7899         sp->dev = dev;
7900         sp->pdev = pdev;
7901         sp->high_dma_flag = dma_flag;
7902         sp->device_enabled_once = false;
7903         if (rx_ring_mode == 1)
7904                 sp->rxd_mode = RXD_MODE_1;
7905         if (rx_ring_mode == 2)
7906                 sp->rxd_mode = RXD_MODE_3B;
7907
7908         sp->config.intr_type = dev_intr_type;
7909
7910         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7911             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7912                 sp->device_type = XFRAME_II_DEVICE;
7913         else
7914                 sp->device_type = XFRAME_I_DEVICE;
7915
7916
7917         /* Initialize some PCI/PCI-X fields of the NIC. */
7918         s2io_init_pci(sp);
7919
7920         /*
7921          * Setting the device configuration parameters.
7922          * Most of these parameters can be specified by the user during
7923          * module insertion as they are module loadable parameters. If
7924          * these parameters are not not specified during load time, they
7925          * are initialized with default values.
7926          */
7927         config = &sp->config;
7928         mac_control = &sp->mac_control;
7929
7930         config->napi = napi;
7931         config->tx_steering_type = tx_steering_type;
7932
7933         /* Tx side parameters. */
7934         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7935                 config->tx_fifo_num = MAX_TX_FIFOS;
7936         else
7937                 config->tx_fifo_num = tx_fifo_num;
7938
7939         /* Initialize the fifos used for tx steering */
7940         if (config->tx_fifo_num < 5) {
7941                 if (config->tx_fifo_num  == 1)
7942                         sp->total_tcp_fifos = 1;
7943                 else
7944                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7945                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7946                 sp->total_udp_fifos = 1;
7947                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7948         } else {
7949                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7950                                        FIFO_OTHER_MAX_NUM);
7951                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7952                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7953                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7954         }
7955
7956         config->multiq = dev_multiq;
7957         for (i = 0; i < config->tx_fifo_num; i++) {
7958                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7959
7960                 tx_cfg->fifo_len = tx_fifo_len[i];
7961                 tx_cfg->fifo_priority = i;
7962         }
7963
7964         /* mapping the QoS priority to the configured fifos */
7965         for (i = 0; i < MAX_TX_FIFOS; i++)
7966                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7967
7968         /* map the hashing selector table to the configured fifos */
7969         for (i = 0; i < config->tx_fifo_num; i++)
7970                 sp->fifo_selector[i] = fifo_selector[i];
7971
7972
7973         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7974         for (i = 0; i < config->tx_fifo_num; i++) {
7975                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7976
7977                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7978                 if (tx_cfg->fifo_len < 65) {
7979                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7980                         break;
7981                 }
7982         }
7983         /* + 2 because one Txd for skb->data and one Txd for UFO */
7984         config->max_txds = MAX_SKB_FRAGS + 2;
7985
7986         /* Rx side parameters. */
7987         config->rx_ring_num = rx_ring_num;
7988         for (i = 0; i < config->rx_ring_num; i++) {
7989                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7990                 struct ring_info *ring = &mac_control->rings[i];
7991
7992                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7993                 rx_cfg->ring_priority = i;
7994                 ring->rx_bufs_left = 0;
7995                 ring->rxd_mode = sp->rxd_mode;
7996                 ring->rxd_count = rxd_count[sp->rxd_mode];
7997                 ring->pdev = sp->pdev;
7998                 ring->dev = sp->dev;
7999         }
8000
8001         for (i = 0; i < rx_ring_num; i++) {
8002                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
8003
8004                 rx_cfg->ring_org = RING_ORG_BUFF1;
8005                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
8006         }
8007
8008         /*  Setting Mac Control parameters */
8009         mac_control->rmac_pause_time = rmac_pause_time;
8010         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
8011         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
8012
8013
8014         /*  initialize the shared memory used by the NIC and the host */
8015         if (init_shared_mem(sp)) {
8016                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
8017                 ret = -ENOMEM;
8018                 goto mem_alloc_failed;
8019         }
8020
8021         sp->bar0 = pci_ioremap_bar(pdev, 0);
8022         if (!sp->bar0) {
8023                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
8024                           dev->name);
8025                 ret = -ENOMEM;
8026                 goto bar0_remap_failed;
8027         }
8028
8029         sp->bar1 = pci_ioremap_bar(pdev, 2);
8030         if (!sp->bar1) {
8031                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
8032                           dev->name);
8033                 ret = -ENOMEM;
8034                 goto bar1_remap_failed;
8035         }
8036
8037         dev->irq = pdev->irq;
8038         dev->base_addr = (unsigned long)sp->bar0;
8039
8040         /* Initializing the BAR1 address as the start of the FIFO pointer. */
8041         for (j = 0; j < MAX_TX_FIFOS; j++) {
8042                 mac_control->tx_FIFO_start[j] =
8043                         (struct TxFIFO_element __iomem *)
8044                         (sp->bar1 + (j * 0x00020000));
8045         }
8046
8047         /*  Driver entry points */
8048         dev->netdev_ops = &s2io_netdev_ops;
8049         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8050         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8051         dev->features |= NETIF_F_LRO;
8052         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8053         if (sp->high_dma_flag == true)
8054                 dev->features |= NETIF_F_HIGHDMA;
8055         dev->features |= NETIF_F_TSO;
8056         dev->features |= NETIF_F_TSO6;
8057         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
8058                 dev->features |= NETIF_F_UFO;
8059                 dev->features |= NETIF_F_HW_CSUM;
8060         }
8061         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8062         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8063         INIT_WORK(&sp->set_link_task, s2io_set_link);
8064
8065         pci_save_state(sp->pdev);
8066
8067         /* Setting swapper control on the NIC, for proper reset operation */
8068         if (s2io_set_swapper(sp)) {
8069                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8070                           dev->name);
8071                 ret = -EAGAIN;
8072                 goto set_swap_failed;
8073         }
8074
8075         /* Verify if the Herc works on the slot its placed into */
8076         if (sp->device_type & XFRAME_II_DEVICE) {
8077                 mode = s2io_verify_pci_mode(sp);
8078                 if (mode < 0) {
8079                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8080                                   __func__);
8081                         ret = -EBADSLT;
8082                         goto set_swap_failed;
8083                 }
8084         }
8085
8086         if (sp->config.intr_type == MSI_X) {
8087                 sp->num_entries = config->rx_ring_num + 1;
8088                 ret = s2io_enable_msi_x(sp);
8089
8090                 if (!ret) {
8091                         ret = s2io_test_msi(sp);
8092                         /* rollback MSI-X, will re-enable during add_isr() */
8093                         remove_msix_isr(sp);
8094                 }
8095                 if (ret) {
8096
8097                         DBG_PRINT(ERR_DBG,
8098                                   "MSI-X requested but failed to enable\n");
8099                         sp->config.intr_type = INTA;
8100                 }
8101         }
8102
8103         if (config->intr_type ==  MSI_X) {
8104                 for (i = 0; i < config->rx_ring_num ; i++) {
8105                         struct ring_info *ring = &mac_control->rings[i];
8106
8107                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8108                 }
8109         } else {
8110                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8111         }
8112
8113         /* Not needed for Herc */
8114         if (sp->device_type & XFRAME_I_DEVICE) {
8115                 /*
8116                  * Fix for all "FFs" MAC address problems observed on
8117                  * Alpha platforms
8118                  */
8119                 fix_mac_address(sp);
8120                 s2io_reset(sp);
8121         }
8122
8123         /*
8124          * MAC address initialization.
8125          * For now only one mac address will be read and used.
8126          */
8127         bar0 = sp->bar0;
8128         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8129                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8130         writeq(val64, &bar0->rmac_addr_cmd_mem);
8131         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8132                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8133                               S2IO_BIT_RESET);
8134         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8135         mac_down = (u32)tmp64;
8136         mac_up = (u32) (tmp64 >> 32);
8137
8138         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8139         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8140         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8141         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8142         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8143         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8144
8145         /*  Set the factory defined MAC address initially   */
8146         dev->addr_len = ETH_ALEN;
8147         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8148         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8149
8150         /* initialize number of multicast & unicast MAC entries variables */
8151         if (sp->device_type == XFRAME_I_DEVICE) {
8152                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8153                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8154                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8155         } else if (sp->device_type == XFRAME_II_DEVICE) {
8156                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8157                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8158                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8159         }
8160
8161         /* store mac addresses from CAM to s2io_nic structure */
8162         do_s2io_store_unicast_mc(sp);
8163
8164         /* Configure MSIX vector for number of rings configured plus one */
8165         if ((sp->device_type == XFRAME_II_DEVICE) &&
8166             (config->intr_type == MSI_X))
8167                 sp->num_entries = config->rx_ring_num + 1;
8168
8169         /* Store the values of the MSIX table in the s2io_nic structure */
8170         store_xmsi_data(sp);
8171         /* reset Nic and bring it to known state */
8172         s2io_reset(sp);
8173
8174         /*
8175          * Initialize link state flags
8176          * and the card state parameter
8177          */
8178         sp->state = 0;
8179
8180         /* Initialize spinlocks */
8181         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8182                 struct fifo_info *fifo = &mac_control->fifos[i];
8183
8184                 spin_lock_init(&fifo->tx_lock);
8185         }
8186
8187         /*
8188          * SXE-002: Configure link and activity LED to init state
8189          * on driver load.
8190          */
8191         subid = sp->pdev->subsystem_device;
8192         if ((subid & 0xFF) >= 0x07) {
8193                 val64 = readq(&bar0->gpio_control);
8194                 val64 |= 0x0000800000000000ULL;
8195                 writeq(val64, &bar0->gpio_control);
8196                 val64 = 0x0411040400000000ULL;
8197                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8198                 val64 = readq(&bar0->gpio_control);
8199         }
8200
8201         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8202
8203         if (register_netdev(dev)) {
8204                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8205                 ret = -ENODEV;
8206                 goto register_failed;
8207         }
8208         s2io_vpd_read(sp);
8209         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8210         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8211                   sp->product_name, pdev->revision);
8212         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8213                   s2io_driver_version);
8214         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8215         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8216         if (sp->device_type & XFRAME_II_DEVICE) {
8217                 mode = s2io_print_pci_mode(sp);
8218                 if (mode < 0) {
8219                         ret = -EBADSLT;
8220                         unregister_netdev(dev);
8221                         goto set_swap_failed;
8222                 }
8223         }
8224         switch (sp->rxd_mode) {
8225         case RXD_MODE_1:
8226                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8227                           dev->name);
8228                 break;
8229         case RXD_MODE_3B:
8230                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8231                           dev->name);
8232                 break;
8233         }
8234
8235         switch (sp->config.napi) {
8236         case 0:
8237                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8238                 break;
8239         case 1:
8240                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8241                 break;
8242         }
8243
8244         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8245                   sp->config.tx_fifo_num);
8246
8247         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8248                   sp->config.rx_ring_num);
8249
8250         switch (sp->config.intr_type) {
8251         case INTA:
8252                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8253                 break;
8254         case MSI_X:
8255                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8256                 break;
8257         }
8258         if (sp->config.multiq) {
8259                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8260                         struct fifo_info *fifo = &mac_control->fifos[i];
8261
8262                         fifo->multiq = config->multiq;
8263                 }
8264                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8265                           dev->name);
8266         } else
8267                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8268                           dev->name);
8269
8270         switch (sp->config.tx_steering_type) {
8271         case NO_STEERING:
8272                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8273                           dev->name);
8274                 break;
8275         case TX_PRIORITY_STEERING:
8276                 DBG_PRINT(ERR_DBG,
8277                           "%s: Priority steering enabled for transmit\n",
8278                           dev->name);
8279                 break;
8280         case TX_DEFAULT_STEERING:
8281                 DBG_PRINT(ERR_DBG,
8282                           "%s: Default steering enabled for transmit\n",
8283                           dev->name);
8284         }
8285
8286         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8287                   dev->name);
8288         if (ufo)
8289                 DBG_PRINT(ERR_DBG,
8290                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8291                           dev->name);
8292         /* Initialize device name */
8293         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8294
8295         if (vlan_tag_strip)
8296                 sp->vlan_strip_flag = 1;
8297         else
8298                 sp->vlan_strip_flag = 0;
8299
8300         /*
8301          * Make Link state as off at this point, when the Link change
8302          * interrupt comes the state will be automatically changed to
8303          * the right state.
8304          */
8305         netif_carrier_off(dev);
8306
8307         return 0;
8308
8309 register_failed:
8310 set_swap_failed:
8311         iounmap(sp->bar1);
8312 bar1_remap_failed:
8313         iounmap(sp->bar0);
8314 bar0_remap_failed:
8315 mem_alloc_failed:
8316         free_shared_mem(sp);
8317         pci_disable_device(pdev);
8318         pci_release_regions(pdev);
8319         pci_set_drvdata(pdev, NULL);
8320         free_netdev(dev);
8321
8322         return ret;
8323 }
8324
8325 /**
8326  * s2io_rem_nic - Free the PCI device
8327  * @pdev: structure containing the PCI related information of the device.
8328  * Description: This function is called by the Pci subsystem to release a
8329  * PCI device and free up all resource held up by the device. This could
8330  * be in response to a Hot plug event or when the driver is to be removed
8331  * from memory.
8332  */
8333
8334 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8335 {
8336         struct net_device *dev = pci_get_drvdata(pdev);
8337         struct s2io_nic *sp;
8338
8339         if (dev == NULL) {
8340                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8341                 return;
8342         }
8343
8344         sp = netdev_priv(dev);
8345
8346         cancel_work_sync(&sp->rst_timer_task);
8347         cancel_work_sync(&sp->set_link_task);
8348
8349         unregister_netdev(dev);
8350
8351         free_shared_mem(sp);
8352         iounmap(sp->bar0);
8353         iounmap(sp->bar1);
8354         pci_release_regions(pdev);
8355         pci_set_drvdata(pdev, NULL);
8356         free_netdev(dev);
8357         pci_disable_device(pdev);
8358 }
8359
8360 /**
8361  * s2io_starter - Entry point for the driver
8362  * Description: This function is the entry point for the driver. It verifies
8363  * the module loadable parameters and initializes PCI configuration space.
8364  */
8365
8366 static int __init s2io_starter(void)
8367 {
8368         return pci_register_driver(&s2io_driver);
8369 }
8370
8371 /**
8372  * s2io_closer - Cleanup routine for the driver
8373  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8374  */
8375
8376 static __exit void s2io_closer(void)
8377 {
8378         pci_unregister_driver(&s2io_driver);
8379         DBG_PRINT(INIT_DBG, "cleanup done\n");
8380 }
8381
8382 module_init(s2io_starter);
8383 module_exit(s2io_closer);
8384
8385 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8386                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8387                                 struct s2io_nic *sp)
8388 {
8389         int ip_off;
8390         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8391
8392         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8393                 DBG_PRINT(INIT_DBG,
8394                           "%s: Non-TCP frames not supported for LRO\n",
8395                           __func__);
8396                 return -1;
8397         }
8398
8399         /* Checking for DIX type or DIX type with VLAN */
8400         if ((l2_type == 0) || (l2_type == 4)) {
8401                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8402                 /*
8403                  * If vlan stripping is disabled and the frame is VLAN tagged,
8404                  * shift the offset by the VLAN header size bytes.
8405                  */
8406                 if ((!sp->vlan_strip_flag) &&
8407                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8408                         ip_off += HEADER_VLAN_SIZE;
8409         } else {
8410                 /* LLC, SNAP etc are considered non-mergeable */
8411                 return -1;
8412         }
8413
8414         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8415         ip_len = (u8)((*ip)->ihl);
8416         ip_len <<= 2;
8417         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8418
8419         return 0;
8420 }
8421
8422 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8423                                   struct tcphdr *tcp)
8424 {
8425         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8426         if ((lro->iph->saddr != ip->saddr) ||
8427             (lro->iph->daddr != ip->daddr) ||
8428             (lro->tcph->source != tcp->source) ||
8429             (lro->tcph->dest != tcp->dest))
8430                 return -1;
8431         return 0;
8432 }
8433
8434 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8435 {
8436         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8437 }
8438
8439 static void initiate_new_session(struct lro *lro, u8 *l2h,
8440                                  struct iphdr *ip, struct tcphdr *tcp,
8441                                  u32 tcp_pyld_len, u16 vlan_tag)
8442 {
8443         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8444         lro->l2h = l2h;
8445         lro->iph = ip;
8446         lro->tcph = tcp;
8447         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8448         lro->tcp_ack = tcp->ack_seq;
8449         lro->sg_num = 1;
8450         lro->total_len = ntohs(ip->tot_len);
8451         lro->frags_len = 0;
8452         lro->vlan_tag = vlan_tag;
8453         /*
8454          * Check if we saw TCP timestamp.
8455          * Other consistency checks have already been done.
8456          */
8457         if (tcp->doff == 8) {
8458                 __be32 *ptr;
8459                 ptr = (__be32 *)(tcp+1);
8460                 lro->saw_ts = 1;
8461                 lro->cur_tsval = ntohl(*(ptr+1));
8462                 lro->cur_tsecr = *(ptr+2);
8463         }
8464         lro->in_use = 1;
8465 }
8466
8467 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8468 {
8469         struct iphdr *ip = lro->iph;
8470         struct tcphdr *tcp = lro->tcph;
8471         __sum16 nchk;
8472         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8473
8474         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8475
8476         /* Update L3 header */
8477         ip->tot_len = htons(lro->total_len);
8478         ip->check = 0;
8479         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8480         ip->check = nchk;
8481
8482         /* Update L4 header */
8483         tcp->ack_seq = lro->tcp_ack;
8484         tcp->window = lro->window;
8485
8486         /* Update tsecr field if this session has timestamps enabled */
8487         if (lro->saw_ts) {
8488                 __be32 *ptr = (__be32 *)(tcp + 1);
8489                 *(ptr+2) = lro->cur_tsecr;
8490         }
8491
8492         /* Update counters required for calculation of
8493          * average no. of packets aggregated.
8494          */
8495         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8496         swstats->num_aggregations++;
8497 }
8498
8499 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8500                              struct tcphdr *tcp, u32 l4_pyld)
8501 {
8502         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8503         lro->total_len += l4_pyld;
8504         lro->frags_len += l4_pyld;
8505         lro->tcp_next_seq += l4_pyld;
8506         lro->sg_num++;
8507
8508         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8509         lro->tcp_ack = tcp->ack_seq;
8510         lro->window = tcp->window;
8511
8512         if (lro->saw_ts) {
8513                 __be32 *ptr;
8514                 /* Update tsecr and tsval from this packet */
8515                 ptr = (__be32 *)(tcp+1);
8516                 lro->cur_tsval = ntohl(*(ptr+1));
8517                 lro->cur_tsecr = *(ptr + 2);
8518         }
8519 }
8520
8521 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8522                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8523 {
8524         u8 *ptr;
8525
8526         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8527
8528         if (!tcp_pyld_len) {
8529                 /* Runt frame or a pure ack */
8530                 return -1;
8531         }
8532
8533         if (ip->ihl != 5) /* IP has options */
8534                 return -1;
8535
8536         /* If we see CE codepoint in IP header, packet is not mergeable */
8537         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8538                 return -1;
8539
8540         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8541         if (tcp->urg || tcp->psh || tcp->rst ||
8542             tcp->syn || tcp->fin ||
8543             tcp->ece || tcp->cwr || !tcp->ack) {
8544                 /*
8545                  * Currently recognize only the ack control word and
8546                  * any other control field being set would result in
8547                  * flushing the LRO session
8548                  */
8549                 return -1;
8550         }
8551
8552         /*
8553          * Allow only one TCP timestamp option. Don't aggregate if
8554          * any other options are detected.
8555          */
8556         if (tcp->doff != 5 && tcp->doff != 8)
8557                 return -1;
8558
8559         if (tcp->doff == 8) {
8560                 ptr = (u8 *)(tcp + 1);
8561                 while (*ptr == TCPOPT_NOP)
8562                         ptr++;
8563                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8564                         return -1;
8565
8566                 /* Ensure timestamp value increases monotonically */
8567                 if (l_lro)
8568                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8569                                 return -1;
8570
8571                 /* timestamp echo reply should be non-zero */
8572                 if (*((__be32 *)(ptr+6)) == 0)
8573                         return -1;
8574         }
8575
8576         return 0;
8577 }
8578
8579 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8580                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8581                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8582 {
8583         struct iphdr *ip;
8584         struct tcphdr *tcph;
8585         int ret = 0, i;
8586         u16 vlan_tag = 0;
8587         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8588
8589         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8590                                    rxdp, sp);
8591         if (ret)
8592                 return ret;
8593
8594         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8595
8596         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8597         tcph = (struct tcphdr *)*tcp;
8598         *tcp_len = get_l4_pyld_length(ip, tcph);
8599         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8600                 struct lro *l_lro = &ring_data->lro0_n[i];
8601                 if (l_lro->in_use) {
8602                         if (check_for_socket_match(l_lro, ip, tcph))
8603                                 continue;
8604                         /* Sock pair matched */
8605                         *lro = l_lro;
8606
8607                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8608                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8609                                           "expected 0x%x, actual 0x%x\n",
8610                                           __func__,
8611                                           (*lro)->tcp_next_seq,
8612                                           ntohl(tcph->seq));
8613
8614                                 swstats->outof_sequence_pkts++;
8615                                 ret = 2;
8616                                 break;
8617                         }
8618
8619                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8620                                                       *tcp_len))
8621                                 ret = 1; /* Aggregate */
8622                         else
8623                                 ret = 2; /* Flush both */
8624                         break;
8625                 }
8626         }
8627
8628         if (ret == 0) {
8629                 /* Before searching for available LRO objects,
8630                  * check if the pkt is L3/L4 aggregatable. If not
8631                  * don't create new LRO session. Just send this
8632                  * packet up.
8633                  */
8634                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8635                         return 5;
8636
8637                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8638                         struct lro *l_lro = &ring_data->lro0_n[i];
8639                         if (!(l_lro->in_use)) {
8640                                 *lro = l_lro;
8641                                 ret = 3; /* Begin anew */
8642                                 break;
8643                         }
8644                 }
8645         }
8646
8647         if (ret == 0) { /* sessions exceeded */
8648                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8649                           __func__);
8650                 *lro = NULL;
8651                 return ret;
8652         }
8653
8654         switch (ret) {
8655         case 3:
8656                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8657                                      vlan_tag);
8658                 break;
8659         case 2:
8660                 update_L3L4_header(sp, *lro);
8661                 break;
8662         case 1:
8663                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8664                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8665                         update_L3L4_header(sp, *lro);
8666                         ret = 4; /* Flush the LRO */
8667                 }
8668                 break;
8669         default:
8670                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8671                 break;
8672         }
8673
8674         return ret;
8675 }
8676
8677 static void clear_lro_session(struct lro *lro)
8678 {
8679         static u16 lro_struct_size = sizeof(struct lro);
8680
8681         memset(lro, 0, lro_struct_size);
8682 }
8683
8684 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8685 {
8686         struct net_device *dev = skb->dev;
8687         struct s2io_nic *sp = netdev_priv(dev);
8688
8689         skb->protocol = eth_type_trans(skb, dev);
8690         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8691                 /* Queueing the vlan frame to the upper layer */
8692                 if (sp->config.napi)
8693                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8694                 else
8695                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8696         } else {
8697                 if (sp->config.napi)
8698                         netif_receive_skb(skb);
8699                 else
8700                         netif_rx(skb);
8701         }
8702 }
8703
8704 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8705                            struct sk_buff *skb, u32 tcp_len)
8706 {
8707         struct sk_buff *first = lro->parent;
8708         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8709
8710         first->len += tcp_len;
8711         first->data_len = lro->frags_len;
8712         skb_pull(skb, (skb->len - tcp_len));
8713         if (skb_shinfo(first)->frag_list)
8714                 lro->last_frag->next = skb;
8715         else
8716                 skb_shinfo(first)->frag_list = skb;
8717         first->truesize += skb->truesize;
8718         lro->last_frag = skb;
8719         swstats->clubbed_frms_cnt++;
8720 }
8721
8722 /**
8723  * s2io_io_error_detected - called when PCI error is detected
8724  * @pdev: Pointer to PCI device
8725  * @state: The current pci connection state
8726  *
8727  * This function is called after a PCI bus error affecting
8728  * this device has been detected.
8729  */
8730 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8731                                                pci_channel_state_t state)
8732 {
8733         struct net_device *netdev = pci_get_drvdata(pdev);
8734         struct s2io_nic *sp = netdev_priv(netdev);
8735
8736         netif_device_detach(netdev);
8737
8738         if (state == pci_channel_io_perm_failure)
8739                 return PCI_ERS_RESULT_DISCONNECT;
8740
8741         if (netif_running(netdev)) {
8742                 /* Bring down the card, while avoiding PCI I/O */
8743                 do_s2io_card_down(sp, 0);
8744         }
8745         pci_disable_device(pdev);
8746
8747         return PCI_ERS_RESULT_NEED_RESET;
8748 }
8749
8750 /**
8751  * s2io_io_slot_reset - called after the pci bus has been reset.
8752  * @pdev: Pointer to PCI device
8753  *
8754  * Restart the card from scratch, as if from a cold-boot.
8755  * At this point, the card has exprienced a hard reset,
8756  * followed by fixups by BIOS, and has its config space
8757  * set up identically to what it was at cold boot.
8758  */
8759 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8760 {
8761         struct net_device *netdev = pci_get_drvdata(pdev);
8762         struct s2io_nic *sp = netdev_priv(netdev);
8763
8764         if (pci_enable_device(pdev)) {
8765                 pr_err("Cannot re-enable PCI device after reset.\n");
8766                 return PCI_ERS_RESULT_DISCONNECT;
8767         }
8768
8769         pci_set_master(pdev);
8770         s2io_reset(sp);
8771
8772         return PCI_ERS_RESULT_RECOVERED;
8773 }
8774
8775 /**
8776  * s2io_io_resume - called when traffic can start flowing again.
8777  * @pdev: Pointer to PCI device
8778  *
8779  * This callback is called when the error recovery driver tells
8780  * us that its OK to resume normal operation.
8781  */
8782 static void s2io_io_resume(struct pci_dev *pdev)
8783 {
8784         struct net_device *netdev = pci_get_drvdata(pdev);
8785         struct s2io_nic *sp = netdev_priv(netdev);
8786
8787         if (netif_running(netdev)) {
8788                 if (s2io_card_up(sp)) {
8789                         pr_err("Can't bring device back up after reset.\n");
8790                         return;
8791                 }
8792
8793                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8794                         s2io_card_down(sp);
8795                         pr_err("Can't restore mac addr after reset.\n");
8796                         return;
8797                 }
8798         }
8799
8800         netif_device_attach(netdev);
8801         netif_tx_wake_all_queues(netdev);
8802 }