drivers/net: Kill now superfluous ->last_rx stores.
[pandora-kernel.git] / drivers / net / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <net/sock.h>
44
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66 /*
67  * Implementation notes:
68  *
69  * The DMA engine only allows for DMA within physical 64KB chunks of
70  * memory. The current approach of the driver (and stack) is to use
71  * linear blocks of memory for the skbuffs. However, as the data block
72  * is always the first part of the skb and skbs are 2^n aligned so we
73  * are guarantted to get the whole block within one 64KB align 64KB
74  * chunk.
75  *
76  * On the long term, relying on being able to allocate 64KB linear
77  * chunks of memory is not feasible and the skb handling code and the
78  * stack will need to know about I/O vectors or something similar.
79  */
80
81 static int __devinit rr_init_one(struct pci_dev *pdev,
82         const struct pci_device_id *ent)
83 {
84         struct net_device *dev;
85         static int version_disp;
86         u8 pci_latency;
87         struct rr_private *rrpriv;
88         void *tmpptr;
89         dma_addr_t ring_dma;
90         int ret = -ENOMEM;
91
92         dev = alloc_hippi_dev(sizeof(struct rr_private));
93         if (!dev)
94                 goto out3;
95
96         ret = pci_enable_device(pdev);
97         if (ret) {
98                 ret = -ENODEV;
99                 goto out2;
100         }
101
102         rrpriv = netdev_priv(dev);
103
104         SET_NETDEV_DEV(dev, &pdev->dev);
105
106         if (pci_request_regions(pdev, "rrunner")) {
107                 ret = -EIO;
108                 goto out;
109         }
110
111         pci_set_drvdata(pdev, dev);
112
113         rrpriv->pci_dev = pdev;
114
115         spin_lock_init(&rrpriv->lock);
116
117         dev->irq = pdev->irq;
118         dev->open = &rr_open;
119         dev->hard_start_xmit = &rr_start_xmit;
120         dev->stop = &rr_close;
121         dev->do_ioctl = &rr_ioctl;
122
123         dev->base_addr = pci_resource_start(pdev, 0);
124
125         /* display version info if adapter is found */
126         if (!version_disp) {
127                 /* set display flag to TRUE so that */
128                 /* we only display this string ONCE */
129                 version_disp = 1;
130                 printk(version);
131         }
132
133         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134         if (pci_latency <= 0x58){
135                 pci_latency = 0x58;
136                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
137         }
138
139         pci_set_master(pdev);
140
141         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142                "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
143                dev->base_addr, dev->irq, pci_latency);
144
145         /*
146          * Remap the regs into kernel space.
147          */
148
149         rrpriv->regs = ioremap(dev->base_addr, 0x1000);
150
151         if (!rrpriv->regs){
152                 printk(KERN_ERR "%s:  Unable to map I/O register, "
153                         "RoadRunner will be disabled.\n", dev->name);
154                 ret = -EIO;
155                 goto out;
156         }
157
158         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159         rrpriv->tx_ring = tmpptr;
160         rrpriv->tx_ring_dma = ring_dma;
161
162         if (!tmpptr) {
163                 ret = -ENOMEM;
164                 goto out;
165         }
166
167         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168         rrpriv->rx_ring = tmpptr;
169         rrpriv->rx_ring_dma = ring_dma;
170
171         if (!tmpptr) {
172                 ret = -ENOMEM;
173                 goto out;
174         }
175
176         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177         rrpriv->evt_ring = tmpptr;
178         rrpriv->evt_ring_dma = ring_dma;
179
180         if (!tmpptr) {
181                 ret = -ENOMEM;
182                 goto out;
183         }
184
185         /*
186          * Don't access any register before this point!
187          */
188 #ifdef __BIG_ENDIAN
189         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190                 &rrpriv->regs->HostCtrl);
191 #endif
192         /*
193          * Need to add a case for little-endian 64-bit hosts here.
194          */
195
196         rr_init(dev);
197
198         dev->base_addr = 0;
199
200         ret = register_netdev(dev);
201         if (ret)
202                 goto out;
203         return 0;
204
205  out:
206         if (rrpriv->rx_ring)
207                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                     rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                     rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 iounmap(rrpriv->regs);
214         if (pdev) {
215                 pci_release_regions(pdev);
216                 pci_set_drvdata(pdev, NULL);
217         }
218  out2:
219         free_netdev(dev);
220  out3:
221         return ret;
222 }
223
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
225 {
226         struct net_device *dev = pci_get_drvdata(pdev);
227
228         if (dev) {
229                 struct rr_private *rr = netdev_priv(dev);
230
231                 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
232                         printk(KERN_ERR "%s: trying to unload running NIC\n",
233                                dev->name);
234                         writel(HALT_NIC, &rr->regs->HostCtrl);
235                 }
236
237                 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
238                                     rr->evt_ring_dma);
239                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
240                                     rr->rx_ring_dma);
241                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
242                                     rr->tx_ring_dma);
243                 unregister_netdev(dev);
244                 iounmap(rr->regs);
245                 free_netdev(dev);
246                 pci_release_regions(pdev);
247                 pci_disable_device(pdev);
248                 pci_set_drvdata(pdev, NULL);
249         }
250 }
251
252
253 /*
254  * Commands are considered to be slow, thus there is no reason to
255  * inline this.
256  */
257 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
258 {
259         struct rr_regs __iomem *regs;
260         u32 idx;
261
262         regs = rrpriv->regs;
263         /*
264          * This is temporary - it will go away in the final version.
265          * We probably also want to make this function inline.
266          */
267         if (readl(&regs->HostCtrl) & NIC_HALTED){
268                 printk("issuing command for halted NIC, code 0x%x, "
269                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
270                 if (readl(&regs->Mode) & FATAL_ERR)
271                         printk("error codes Fail1 %02x, Fail2 %02x\n",
272                                readl(&regs->Fail1), readl(&regs->Fail2));
273         }
274
275         idx = rrpriv->info->cmd_ctrl.pi;
276
277         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
278         wmb();
279
280         idx = (idx - 1) % CMD_RING_ENTRIES;
281         rrpriv->info->cmd_ctrl.pi = idx;
282         wmb();
283
284         if (readl(&regs->Mode) & FATAL_ERR)
285                 printk("error code %02x\n", readl(&regs->Fail1));
286 }
287
288
289 /*
290  * Reset the board in a sensible manner. The NIC is already halted
291  * when we get here and a spin-lock is held.
292  */
293 static int rr_reset(struct net_device *dev)
294 {
295         struct rr_private *rrpriv;
296         struct rr_regs __iomem *regs;
297         u32 start_pc;
298         int i;
299
300         rrpriv = netdev_priv(dev);
301         regs = rrpriv->regs;
302
303         rr_load_firmware(dev);
304
305         writel(0x01000000, &regs->TX_state);
306         writel(0xff800000, &regs->RX_state);
307         writel(0, &regs->AssistState);
308         writel(CLEAR_INTA, &regs->LocalCtrl);
309         writel(0x01, &regs->BrkPt);
310         writel(0, &regs->Timer);
311         writel(0, &regs->TimerRef);
312         writel(RESET_DMA, &regs->DmaReadState);
313         writel(RESET_DMA, &regs->DmaWriteState);
314         writel(0, &regs->DmaWriteHostHi);
315         writel(0, &regs->DmaWriteHostLo);
316         writel(0, &regs->DmaReadHostHi);
317         writel(0, &regs->DmaReadHostLo);
318         writel(0, &regs->DmaReadLen);
319         writel(0, &regs->DmaWriteLen);
320         writel(0, &regs->DmaWriteLcl);
321         writel(0, &regs->DmaWriteIPchecksum);
322         writel(0, &regs->DmaReadLcl);
323         writel(0, &regs->DmaReadIPchecksum);
324         writel(0, &regs->PciState);
325 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
326         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
327 #elif (BITS_PER_LONG == 64)
328         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
329 #else
330         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
331 #endif
332
333 #if 0
334         /*
335          * Don't worry, this is just black magic.
336          */
337         writel(0xdf000, &regs->RxBase);
338         writel(0xdf000, &regs->RxPrd);
339         writel(0xdf000, &regs->RxCon);
340         writel(0xce000, &regs->TxBase);
341         writel(0xce000, &regs->TxPrd);
342         writel(0xce000, &regs->TxCon);
343         writel(0, &regs->RxIndPro);
344         writel(0, &regs->RxIndCon);
345         writel(0, &regs->RxIndRef);
346         writel(0, &regs->TxIndPro);
347         writel(0, &regs->TxIndCon);
348         writel(0, &regs->TxIndRef);
349         writel(0xcc000, &regs->pad10[0]);
350         writel(0, &regs->DrCmndPro);
351         writel(0, &regs->DrCmndCon);
352         writel(0, &regs->DwCmndPro);
353         writel(0, &regs->DwCmndCon);
354         writel(0, &regs->DwCmndRef);
355         writel(0, &regs->DrDataPro);
356         writel(0, &regs->DrDataCon);
357         writel(0, &regs->DrDataRef);
358         writel(0, &regs->DwDataPro);
359         writel(0, &regs->DwDataCon);
360         writel(0, &regs->DwDataRef);
361 #endif
362
363         writel(0xffffffff, &regs->MbEvent);
364         writel(0, &regs->Event);
365
366         writel(0, &regs->TxPi);
367         writel(0, &regs->IpRxPi);
368
369         writel(0, &regs->EvtCon);
370         writel(0, &regs->EvtPrd);
371
372         rrpriv->info->evt_ctrl.pi = 0;
373
374         for (i = 0; i < CMD_RING_ENTRIES; i++)
375                 writel(0, &regs->CmdRing[i]);
376
377 /*
378  * Why 32 ? is this not cache line size dependent?
379  */
380         writel(RBURST_64|WBURST_64, &regs->PciState);
381         wmb();
382
383         start_pc = rr_read_eeprom_word(rrpriv,
384                         offsetof(struct eeprom, rncd_info.FwStart));
385
386 #if (DEBUG > 1)
387         printk("%s: Executing firmware at address 0x%06x\n",
388                dev->name, start_pc);
389 #endif
390
391         writel(start_pc + 0x800, &regs->Pc);
392         wmb();
393         udelay(5);
394
395         writel(start_pc, &regs->Pc);
396         wmb();
397
398         return 0;
399 }
400
401
402 /*
403  * Read a string from the EEPROM.
404  */
405 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
406                                 unsigned long offset,
407                                 unsigned char *buf,
408                                 unsigned long length)
409 {
410         struct rr_regs __iomem *regs = rrpriv->regs;
411         u32 misc, io, host, i;
412
413         io = readl(&regs->ExtIo);
414         writel(0, &regs->ExtIo);
415         misc = readl(&regs->LocalCtrl);
416         writel(0, &regs->LocalCtrl);
417         host = readl(&regs->HostCtrl);
418         writel(host | HALT_NIC, &regs->HostCtrl);
419         mb();
420
421         for (i = 0; i < length; i++){
422                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
423                 mb();
424                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
425                 mb();
426         }
427
428         writel(host, &regs->HostCtrl);
429         writel(misc, &regs->LocalCtrl);
430         writel(io, &regs->ExtIo);
431         mb();
432         return i;
433 }
434
435
436 /*
437  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438  * it to our CPU byte-order.
439  */
440 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
441                             size_t offset)
442 {
443         __be32 word;
444
445         if ((rr_read_eeprom(rrpriv, offset,
446                             (unsigned char *)&word, 4) == 4))
447                 return be32_to_cpu(word);
448         return 0;
449 }
450
451
452 /*
453  * Write a string to the EEPROM.
454  *
455  * This is only called when the firmware is not running.
456  */
457 static unsigned int write_eeprom(struct rr_private *rrpriv,
458                                  unsigned long offset,
459                                  unsigned char *buf,
460                                  unsigned long length)
461 {
462         struct rr_regs __iomem *regs = rrpriv->regs;
463         u32 misc, io, data, i, j, ready, error = 0;
464
465         io = readl(&regs->ExtIo);
466         writel(0, &regs->ExtIo);
467         misc = readl(&regs->LocalCtrl);
468         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
469         mb();
470
471         for (i = 0; i < length; i++){
472                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
473                 mb();
474                 data = buf[i] << 24;
475                 /*
476                  * Only try to write the data if it is not the same
477                  * value already.
478                  */
479                 if ((readl(&regs->WinData) & 0xff000000) != data){
480                         writel(data, &regs->WinData);
481                         ready = 0;
482                         j = 0;
483                         mb();
484                         while(!ready){
485                                 udelay(20);
486                                 if ((readl(&regs->WinData) & 0xff000000) ==
487                                     data)
488                                         ready = 1;
489                                 mb();
490                                 if (j++ > 5000){
491                                         printk("data mismatch: %08x, "
492                                                "WinData %08x\n", data,
493                                                readl(&regs->WinData));
494                                         ready = 1;
495                                         error = 1;
496                                 }
497                         }
498                 }
499         }
500
501         writel(misc, &regs->LocalCtrl);
502         writel(io, &regs->ExtIo);
503         mb();
504
505         return error;
506 }
507
508
509 static int __devinit rr_init(struct net_device *dev)
510 {
511         struct rr_private *rrpriv;
512         struct rr_regs __iomem *regs;
513         u32 sram_size, rev;
514
515         rrpriv = netdev_priv(dev);
516         regs = rrpriv->regs;
517
518         rev = readl(&regs->FwRev);
519         rrpriv->fw_rev = rev;
520         if (rev > 0x00020024)
521                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
522                        ((rev >> 8) & 0xff), (rev & 0xff));
523         else if (rev >= 0x00020000) {
524                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
525                        "later is recommended)\n", (rev >> 16),
526                        ((rev >> 8) & 0xff), (rev & 0xff));
527         }else{
528                 printk("  Firmware revision too old: %i.%i.%i, please "
529                        "upgrade to 2.0.37 or later.\n",
530                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
531         }
532
533 #if (DEBUG > 2)
534         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
535 #endif
536
537         /*
538          * Read the hardware address from the eeprom.  The HW address
539          * is not really necessary for HIPPI but awfully convenient.
540          * The pointer arithmetic to put it in dev_addr is ugly, but
541          * Donald Becker does it this way for the GigE version of this
542          * card and it's shorter and more portable than any
543          * other method I've seen.  -VAL
544          */
545
546         *(__be16 *)(dev->dev_addr) =
547           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
548         *(__be32 *)(dev->dev_addr+2) =
549           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
550
551         printk("  MAC: %pM\n", dev->dev_addr);
552
553         sram_size = rr_read_eeprom_word(rrpriv, 8);
554         printk("  SRAM size 0x%06x\n", sram_size);
555
556         return 0;
557 }
558
559
560 static int rr_init1(struct net_device *dev)
561 {
562         struct rr_private *rrpriv;
563         struct rr_regs __iomem *regs;
564         unsigned long myjif, flags;
565         struct cmd cmd;
566         u32 hostctrl;
567         int ecode = 0;
568         short i;
569
570         rrpriv = netdev_priv(dev);
571         regs = rrpriv->regs;
572
573         spin_lock_irqsave(&rrpriv->lock, flags);
574
575         hostctrl = readl(&regs->HostCtrl);
576         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
577         wmb();
578
579         if (hostctrl & PARITY_ERR){
580                 printk("%s: Parity error halting NIC - this is serious!\n",
581                        dev->name);
582                 spin_unlock_irqrestore(&rrpriv->lock, flags);
583                 ecode = -EFAULT;
584                 goto error;
585         }
586
587         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
588         set_infoaddr(regs, rrpriv->info_dma);
589
590         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
591         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
592         rrpriv->info->evt_ctrl.mode = 0;
593         rrpriv->info->evt_ctrl.pi = 0;
594         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
595
596         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
597         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
598         rrpriv->info->cmd_ctrl.mode = 0;
599         rrpriv->info->cmd_ctrl.pi = 15;
600
601         for (i = 0; i < CMD_RING_ENTRIES; i++) {
602                 writel(0, &regs->CmdRing[i]);
603         }
604
605         for (i = 0; i < TX_RING_ENTRIES; i++) {
606                 rrpriv->tx_ring[i].size = 0;
607                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
608                 rrpriv->tx_skbuff[i] = NULL;
609         }
610         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
611         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
612         rrpriv->info->tx_ctrl.mode = 0;
613         rrpriv->info->tx_ctrl.pi = 0;
614         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
615
616         /*
617          * Set dirty_tx before we start receiving interrupts, otherwise
618          * the interrupt handler might think it is supposed to process
619          * tx ints before we are up and running, which may cause a null
620          * pointer access in the int handler.
621          */
622         rrpriv->tx_full = 0;
623         rrpriv->cur_rx = 0;
624         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
625
626         rr_reset(dev);
627
628         /* Tuning values */
629         writel(0x5000, &regs->ConRetry);
630         writel(0x100, &regs->ConRetryTmr);
631         writel(0x500000, &regs->ConTmout);
632         writel(0x60, &regs->IntrTmr);
633         writel(0x500000, &regs->TxDataMvTimeout);
634         writel(0x200000, &regs->RxDataMvTimeout);
635         writel(0x80, &regs->WriteDmaThresh);
636         writel(0x80, &regs->ReadDmaThresh);
637
638         rrpriv->fw_running = 0;
639         wmb();
640
641         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
642         writel(hostctrl, &regs->HostCtrl);
643         wmb();
644
645         spin_unlock_irqrestore(&rrpriv->lock, flags);
646
647         for (i = 0; i < RX_RING_ENTRIES; i++) {
648                 struct sk_buff *skb;
649                 dma_addr_t addr;
650
651                 rrpriv->rx_ring[i].mode = 0;
652                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
653                 if (!skb) {
654                         printk(KERN_WARNING "%s: Unable to allocate memory "
655                                "for receive ring - halting NIC\n", dev->name);
656                         ecode = -ENOMEM;
657                         goto error;
658                 }
659                 rrpriv->rx_skbuff[i] = skb;
660                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
661                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
662                 /*
663                  * Sanity test to see if we conflict with the DMA
664                  * limitations of the Roadrunner.
665                  */
666                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
667                         printk("skb alloc error\n");
668
669                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
670                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
671         }
672
673         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
674         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
675         rrpriv->rx_ctrl[4].mode = 8;
676         rrpriv->rx_ctrl[4].pi = 0;
677         wmb();
678         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
679
680         udelay(1000);
681
682         /*
683          * Now start the FirmWare.
684          */
685         cmd.code = C_START_FW;
686         cmd.ring = 0;
687         cmd.index = 0;
688
689         rr_issue_cmd(rrpriv, &cmd);
690
691         /*
692          * Give the FirmWare time to chew on the `get running' command.
693          */
694         myjif = jiffies + 5 * HZ;
695         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
696                 cpu_relax();
697
698         netif_start_queue(dev);
699
700         return ecode;
701
702  error:
703         /*
704          * We might have gotten here because we are out of memory,
705          * make sure we release everything we allocated before failing
706          */
707         for (i = 0; i < RX_RING_ENTRIES; i++) {
708                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
709
710                 if (skb) {
711                         pci_unmap_single(rrpriv->pci_dev,
712                                          rrpriv->rx_ring[i].addr.addrlo,
713                                          dev->mtu + HIPPI_HLEN,
714                                          PCI_DMA_FROMDEVICE);
715                         rrpriv->rx_ring[i].size = 0;
716                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
717                         dev_kfree_skb(skb);
718                         rrpriv->rx_skbuff[i] = NULL;
719                 }
720         }
721         return ecode;
722 }
723
724
725 /*
726  * All events are considered to be slow (RX/TX ints do not generate
727  * events) and are handled here, outside the main interrupt handler,
728  * to reduce the size of the handler.
729  */
730 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
731 {
732         struct rr_private *rrpriv;
733         struct rr_regs __iomem *regs;
734         u32 tmp;
735
736         rrpriv = netdev_priv(dev);
737         regs = rrpriv->regs;
738
739         while (prodidx != eidx){
740                 switch (rrpriv->evt_ring[eidx].code){
741                 case E_NIC_UP:
742                         tmp = readl(&regs->FwRev);
743                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
744                                "up and running\n", dev->name,
745                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
746                         rrpriv->fw_running = 1;
747                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
748                         wmb();
749                         break;
750                 case E_LINK_ON:
751                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
752                         break;
753                 case E_LINK_OFF:
754                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
755                         break;
756                 case E_RX_IDLE:
757                         printk(KERN_WARNING "%s: RX data not moving\n",
758                                dev->name);
759                         goto drop;
760                 case E_WATCHDOG:
761                         printk(KERN_INFO "%s: The watchdog is here to see "
762                                "us\n", dev->name);
763                         break;
764                 case E_INTERN_ERR:
765                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
766                                dev->name);
767                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
768                                &regs->HostCtrl);
769                         wmb();
770                         break;
771                 case E_HOST_ERR:
772                         printk(KERN_ERR "%s: Host software error\n",
773                                dev->name);
774                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
775                                &regs->HostCtrl);
776                         wmb();
777                         break;
778                 /*
779                  * TX events.
780                  */
781                 case E_CON_REJ:
782                         printk(KERN_WARNING "%s: Connection rejected\n",
783                                dev->name);
784                         dev->stats.tx_aborted_errors++;
785                         break;
786                 case E_CON_TMOUT:
787                         printk(KERN_WARNING "%s: Connection timeout\n",
788                                dev->name);
789                         break;
790                 case E_DISC_ERR:
791                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
792                                dev->name);
793                         dev->stats.tx_aborted_errors++;
794                         break;
795                 case E_INT_PRTY:
796                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
797                                dev->name);
798                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
799                                &regs->HostCtrl);
800                         wmb();
801                         break;
802                 case E_TX_IDLE:
803                         printk(KERN_WARNING "%s: Transmitter idle\n",
804                                dev->name);
805                         break;
806                 case E_TX_LINK_DROP:
807                         printk(KERN_WARNING "%s: Link lost during transmit\n",
808                                dev->name);
809                         dev->stats.tx_aborted_errors++;
810                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
811                                &regs->HostCtrl);
812                         wmb();
813                         break;
814                 case E_TX_INV_RNG:
815                         printk(KERN_ERR "%s: Invalid send ring block\n",
816                                dev->name);
817                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
818                                &regs->HostCtrl);
819                         wmb();
820                         break;
821                 case E_TX_INV_BUF:
822                         printk(KERN_ERR "%s: Invalid send buffer address\n",
823                                dev->name);
824                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
825                                &regs->HostCtrl);
826                         wmb();
827                         break;
828                 case E_TX_INV_DSC:
829                         printk(KERN_ERR "%s: Invalid descriptor address\n",
830                                dev->name);
831                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
832                                &regs->HostCtrl);
833                         wmb();
834                         break;
835                 /*
836                  * RX events.
837                  */
838                 case E_RX_RNG_OUT:
839                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
840                         break;
841
842                 case E_RX_PAR_ERR:
843                         printk(KERN_WARNING "%s: Receive parity error\n",
844                                dev->name);
845                         goto drop;
846                 case E_RX_LLRC_ERR:
847                         printk(KERN_WARNING "%s: Receive LLRC error\n",
848                                dev->name);
849                         goto drop;
850                 case E_PKT_LN_ERR:
851                         printk(KERN_WARNING "%s: Receive packet length "
852                                "error\n", dev->name);
853                         goto drop;
854                 case E_DTA_CKSM_ERR:
855                         printk(KERN_WARNING "%s: Data checksum error\n",
856                                dev->name);
857                         goto drop;
858                 case E_SHT_BST:
859                         printk(KERN_WARNING "%s: Unexpected short burst "
860                                "error\n", dev->name);
861                         goto drop;
862                 case E_STATE_ERR:
863                         printk(KERN_WARNING "%s: Recv. state transition"
864                                " error\n", dev->name);
865                         goto drop;
866                 case E_UNEXP_DATA:
867                         printk(KERN_WARNING "%s: Unexpected data error\n",
868                                dev->name);
869                         goto drop;
870                 case E_LST_LNK_ERR:
871                         printk(KERN_WARNING "%s: Link lost error\n",
872                                dev->name);
873                         goto drop;
874                 case E_FRM_ERR:
875                         printk(KERN_WARNING "%s: Framming Error\n",
876                                dev->name);
877                         goto drop;
878                 case E_FLG_SYN_ERR:
879                         printk(KERN_WARNING "%s: Flag sync. lost during "
880                                "packet\n", dev->name);
881                         goto drop;
882                 case E_RX_INV_BUF:
883                         printk(KERN_ERR "%s: Invalid receive buffer "
884                                "address\n", dev->name);
885                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
886                                &regs->HostCtrl);
887                         wmb();
888                         break;
889                 case E_RX_INV_DSC:
890                         printk(KERN_ERR "%s: Invalid receive descriptor "
891                                "address\n", dev->name);
892                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
893                                &regs->HostCtrl);
894                         wmb();
895                         break;
896                 case E_RNG_BLK:
897                         printk(KERN_ERR "%s: Invalid ring block\n",
898                                dev->name);
899                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
900                                &regs->HostCtrl);
901                         wmb();
902                         break;
903                 drop:
904                         /* Label packet to be dropped.
905                          * Actual dropping occurs in rx
906                          * handling.
907                          *
908                          * The index of packet we get to drop is
909                          * the index of the packet following
910                          * the bad packet. -kbf
911                          */
912                         {
913                                 u16 index = rrpriv->evt_ring[eidx].index;
914                                 index = (index + (RX_RING_ENTRIES - 1)) %
915                                         RX_RING_ENTRIES;
916                                 rrpriv->rx_ring[index].mode |=
917                                         (PACKET_BAD | PACKET_END);
918                         }
919                         break;
920                 default:
921                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
922                                dev->name, rrpriv->evt_ring[eidx].code);
923                 }
924                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
925         }
926
927         rrpriv->info->evt_ctrl.pi = eidx;
928         wmb();
929         return eidx;
930 }
931
932
933 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
934 {
935         struct rr_private *rrpriv = netdev_priv(dev);
936         struct rr_regs __iomem *regs = rrpriv->regs;
937
938         do {
939                 struct rx_desc *desc;
940                 u32 pkt_len;
941
942                 desc = &(rrpriv->rx_ring[index]);
943                 pkt_len = desc->size;
944 #if (DEBUG > 2)
945                 printk("index %i, rxlimit %i\n", index, rxlimit);
946                 printk("len %x, mode %x\n", pkt_len, desc->mode);
947 #endif
948                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
949                         dev->stats.rx_dropped++;
950                         goto defer;
951                 }
952
953                 if (pkt_len > 0){
954                         struct sk_buff *skb, *rx_skb;
955
956                         rx_skb = rrpriv->rx_skbuff[index];
957
958                         if (pkt_len < PKT_COPY_THRESHOLD) {
959                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
960                                 if (skb == NULL){
961                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
962                                         dev->stats.rx_dropped++;
963                                         goto defer;
964                                 } else {
965                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
966                                                                     desc->addr.addrlo,
967                                                                     pkt_len,
968                                                                     PCI_DMA_FROMDEVICE);
969
970                                         memcpy(skb_put(skb, pkt_len),
971                                                rx_skb->data, pkt_len);
972
973                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
974                                                                        desc->addr.addrlo,
975                                                                        pkt_len,
976                                                                        PCI_DMA_FROMDEVICE);
977                                 }
978                         }else{
979                                 struct sk_buff *newskb;
980
981                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
982                                         GFP_ATOMIC);
983                                 if (newskb){
984                                         dma_addr_t addr;
985
986                                         pci_unmap_single(rrpriv->pci_dev,
987                                                 desc->addr.addrlo, dev->mtu +
988                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
989                                         skb = rx_skb;
990                                         skb_put(skb, pkt_len);
991                                         rrpriv->rx_skbuff[index] = newskb;
992                                         addr = pci_map_single(rrpriv->pci_dev,
993                                                 newskb->data,
994                                                 dev->mtu + HIPPI_HLEN,
995                                                 PCI_DMA_FROMDEVICE);
996                                         set_rraddr(&desc->addr, addr);
997                                 } else {
998                                         printk("%s: Out of memory, deferring "
999                                                "packet\n", dev->name);
1000                                         dev->stats.rx_dropped++;
1001                                         goto defer;
1002                                 }
1003                         }
1004                         skb->protocol = hippi_type_trans(skb, dev);
1005
1006                         netif_rx(skb);          /* send it up */
1007
1008                         dev->stats.rx_packets++;
1009                         dev->stats.rx_bytes += pkt_len;
1010                 }
1011         defer:
1012                 desc->mode = 0;
1013                 desc->size = dev->mtu + HIPPI_HLEN;
1014
1015                 if ((index & 7) == 7)
1016                         writel(index, &regs->IpRxPi);
1017
1018                 index = (index + 1) % RX_RING_ENTRIES;
1019         } while(index != rxlimit);
1020
1021         rrpriv->cur_rx = index;
1022         wmb();
1023 }
1024
1025
1026 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1027 {
1028         struct rr_private *rrpriv;
1029         struct rr_regs __iomem *regs;
1030         struct net_device *dev = (struct net_device *)dev_id;
1031         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1032
1033         rrpriv = netdev_priv(dev);
1034         regs = rrpriv->regs;
1035
1036         if (!(readl(&regs->HostCtrl) & RR_INT))
1037                 return IRQ_NONE;
1038
1039         spin_lock(&rrpriv->lock);
1040
1041         prodidx = readl(&regs->EvtPrd);
1042         txcsmr = (prodidx >> 8) & 0xff;
1043         rxlimit = (prodidx >> 16) & 0xff;
1044         prodidx &= 0xff;
1045
1046 #if (DEBUG > 2)
1047         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1048                prodidx, rrpriv->info->evt_ctrl.pi);
1049 #endif
1050         /*
1051          * Order here is important.  We must handle events
1052          * before doing anything else in order to catch
1053          * such things as LLRC errors, etc -kbf
1054          */
1055
1056         eidx = rrpriv->info->evt_ctrl.pi;
1057         if (prodidx != eidx)
1058                 eidx = rr_handle_event(dev, prodidx, eidx);
1059
1060         rxindex = rrpriv->cur_rx;
1061         if (rxindex != rxlimit)
1062                 rx_int(dev, rxlimit, rxindex);
1063
1064         txcon = rrpriv->dirty_tx;
1065         if (txcsmr != txcon) {
1066                 do {
1067                         /* Due to occational firmware TX producer/consumer out
1068                          * of sync. error need to check entry in ring -kbf
1069                          */
1070                         if(rrpriv->tx_skbuff[txcon]){
1071                                 struct tx_desc *desc;
1072                                 struct sk_buff *skb;
1073
1074                                 desc = &(rrpriv->tx_ring[txcon]);
1075                                 skb = rrpriv->tx_skbuff[txcon];
1076
1077                                 dev->stats.tx_packets++;
1078                                 dev->stats.tx_bytes += skb->len;
1079
1080                                 pci_unmap_single(rrpriv->pci_dev,
1081                                                  desc->addr.addrlo, skb->len,
1082                                                  PCI_DMA_TODEVICE);
1083                                 dev_kfree_skb_irq(skb);
1084
1085                                 rrpriv->tx_skbuff[txcon] = NULL;
1086                                 desc->size = 0;
1087                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1088                                 desc->mode = 0;
1089                         }
1090                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1091                 } while (txcsmr != txcon);
1092                 wmb();
1093
1094                 rrpriv->dirty_tx = txcon;
1095                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1096                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1097                      != rrpriv->dirty_tx)){
1098                         rrpriv->tx_full = 0;
1099                         netif_wake_queue(dev);
1100                 }
1101         }
1102
1103         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1104         writel(eidx, &regs->EvtCon);
1105         wmb();
1106
1107         spin_unlock(&rrpriv->lock);
1108         return IRQ_HANDLED;
1109 }
1110
1111 static inline void rr_raz_tx(struct rr_private *rrpriv,
1112                              struct net_device *dev)
1113 {
1114         int i;
1115
1116         for (i = 0; i < TX_RING_ENTRIES; i++) {
1117                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1118
1119                 if (skb) {
1120                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1121
1122                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1123                                 skb->len, PCI_DMA_TODEVICE);
1124                         desc->size = 0;
1125                         set_rraddr(&desc->addr, 0);
1126                         dev_kfree_skb(skb);
1127                         rrpriv->tx_skbuff[i] = NULL;
1128                 }
1129         }
1130 }
1131
1132
1133 static inline void rr_raz_rx(struct rr_private *rrpriv,
1134                              struct net_device *dev)
1135 {
1136         int i;
1137
1138         for (i = 0; i < RX_RING_ENTRIES; i++) {
1139                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1140
1141                 if (skb) {
1142                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1143
1144                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1145                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1146                         desc->size = 0;
1147                         set_rraddr(&desc->addr, 0);
1148                         dev_kfree_skb(skb);
1149                         rrpriv->rx_skbuff[i] = NULL;
1150                 }
1151         }
1152 }
1153
1154 static void rr_timer(unsigned long data)
1155 {
1156         struct net_device *dev = (struct net_device *)data;
1157         struct rr_private *rrpriv = netdev_priv(dev);
1158         struct rr_regs __iomem *regs = rrpriv->regs;
1159         unsigned long flags;
1160
1161         if (readl(&regs->HostCtrl) & NIC_HALTED){
1162                 printk("%s: Restarting nic\n", dev->name);
1163                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1164                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1165                 wmb();
1166
1167                 rr_raz_tx(rrpriv, dev);
1168                 rr_raz_rx(rrpriv, dev);
1169
1170                 if (rr_init1(dev)) {
1171                         spin_lock_irqsave(&rrpriv->lock, flags);
1172                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1173                                &regs->HostCtrl);
1174                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1175                 }
1176         }
1177         rrpriv->timer.expires = RUN_AT(5*HZ);
1178         add_timer(&rrpriv->timer);
1179 }
1180
1181
1182 static int rr_open(struct net_device *dev)
1183 {
1184         struct rr_private *rrpriv = netdev_priv(dev);
1185         struct pci_dev *pdev = rrpriv->pci_dev;
1186         struct rr_regs __iomem *regs;
1187         int ecode = 0;
1188         unsigned long flags;
1189         dma_addr_t dma_addr;
1190
1191         regs = rrpriv->regs;
1192
1193         if (rrpriv->fw_rev < 0x00020000) {
1194                 printk(KERN_WARNING "%s: trying to configure device with "
1195                        "obsolete firmware\n", dev->name);
1196                 ecode = -EBUSY;
1197                 goto error;
1198         }
1199
1200         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1201                                                256 * sizeof(struct ring_ctrl),
1202                                                &dma_addr);
1203         if (!rrpriv->rx_ctrl) {
1204                 ecode = -ENOMEM;
1205                 goto error;
1206         }
1207         rrpriv->rx_ctrl_dma = dma_addr;
1208         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1209
1210         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1211                                             &dma_addr);
1212         if (!rrpriv->info) {
1213                 ecode = -ENOMEM;
1214                 goto error;
1215         }
1216         rrpriv->info_dma = dma_addr;
1217         memset(rrpriv->info, 0, sizeof(struct rr_info));
1218         wmb();
1219
1220         spin_lock_irqsave(&rrpriv->lock, flags);
1221         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1222         readl(&regs->HostCtrl);
1223         spin_unlock_irqrestore(&rrpriv->lock, flags);
1224
1225         if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1226                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1227                        dev->name, dev->irq);
1228                 ecode = -EAGAIN;
1229                 goto error;
1230         }
1231
1232         if ((ecode = rr_init1(dev)))
1233                 goto error;
1234
1235         /* Set the timer to switch to check for link beat and perhaps switch
1236            to an alternate media type. */
1237         init_timer(&rrpriv->timer);
1238         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1239         rrpriv->timer.data = (unsigned long)dev;
1240         rrpriv->timer.function = &rr_timer;               /* timer handler */
1241         add_timer(&rrpriv->timer);
1242
1243         netif_start_queue(dev);
1244
1245         return ecode;
1246
1247  error:
1248         spin_lock_irqsave(&rrpriv->lock, flags);
1249         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1250         spin_unlock_irqrestore(&rrpriv->lock, flags);
1251
1252         if (rrpriv->info) {
1253                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1254                                     rrpriv->info_dma);
1255                 rrpriv->info = NULL;
1256         }
1257         if (rrpriv->rx_ctrl) {
1258                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1259                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1260                 rrpriv->rx_ctrl = NULL;
1261         }
1262
1263         netif_stop_queue(dev);
1264
1265         return ecode;
1266 }
1267
1268
1269 static void rr_dump(struct net_device *dev)
1270 {
1271         struct rr_private *rrpriv;
1272         struct rr_regs __iomem *regs;
1273         u32 index, cons;
1274         short i;
1275         int len;
1276
1277         rrpriv = netdev_priv(dev);
1278         regs = rrpriv->regs;
1279
1280         printk("%s: dumping NIC TX rings\n", dev->name);
1281
1282         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1283                readl(&regs->RxPrd), readl(&regs->TxPrd),
1284                readl(&regs->EvtPrd), readl(&regs->TxPi),
1285                rrpriv->info->tx_ctrl.pi);
1286
1287         printk("Error code 0x%x\n", readl(&regs->Fail1));
1288
1289         index = (((readl(&regs->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1290         cons = rrpriv->dirty_tx;
1291         printk("TX ring index %i, TX consumer %i\n",
1292                index, cons);
1293
1294         if (rrpriv->tx_skbuff[index]){
1295                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1296                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1297                 for (i = 0; i < len; i++){
1298                         if (!(i & 7))
1299                                 printk("\n");
1300                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1301                 }
1302                 printk("\n");
1303         }
1304
1305         if (rrpriv->tx_skbuff[cons]){
1306                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1307                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1308                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1309                        rrpriv->tx_ring[cons].mode,
1310                        rrpriv->tx_ring[cons].size,
1311                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1312                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1313                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1314                 for (i = 0; i < len; i++){
1315                         if (!(i & 7))
1316                                 printk("\n");
1317                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1318                 }
1319                 printk("\n");
1320         }
1321
1322         printk("dumping TX ring info:\n");
1323         for (i = 0; i < TX_RING_ENTRIES; i++)
1324                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1325                        rrpriv->tx_ring[i].mode,
1326                        rrpriv->tx_ring[i].size,
1327                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1328
1329 }
1330
1331
1332 static int rr_close(struct net_device *dev)
1333 {
1334         struct rr_private *rrpriv;
1335         struct rr_regs __iomem *regs;
1336         unsigned long flags;
1337         u32 tmp;
1338         short i;
1339
1340         netif_stop_queue(dev);
1341
1342         rrpriv = netdev_priv(dev);
1343         regs = rrpriv->regs;
1344
1345         /*
1346          * Lock to make sure we are not cleaning up while another CPU
1347          * is handling interrupts.
1348          */
1349         spin_lock_irqsave(&rrpriv->lock, flags);
1350
1351         tmp = readl(&regs->HostCtrl);
1352         if (tmp & NIC_HALTED){
1353                 printk("%s: NIC already halted\n", dev->name);
1354                 rr_dump(dev);
1355         }else{
1356                 tmp |= HALT_NIC | RR_CLEAR_INT;
1357                 writel(tmp, &regs->HostCtrl);
1358                 readl(&regs->HostCtrl);
1359         }
1360
1361         rrpriv->fw_running = 0;
1362
1363         del_timer_sync(&rrpriv->timer);
1364
1365         writel(0, &regs->TxPi);
1366         writel(0, &regs->IpRxPi);
1367
1368         writel(0, &regs->EvtCon);
1369         writel(0, &regs->EvtPrd);
1370
1371         for (i = 0; i < CMD_RING_ENTRIES; i++)
1372                 writel(0, &regs->CmdRing[i]);
1373
1374         rrpriv->info->tx_ctrl.entries = 0;
1375         rrpriv->info->cmd_ctrl.pi = 0;
1376         rrpriv->info->evt_ctrl.pi = 0;
1377         rrpriv->rx_ctrl[4].entries = 0;
1378
1379         rr_raz_tx(rrpriv, dev);
1380         rr_raz_rx(rrpriv, dev);
1381
1382         pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1383                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1384         rrpriv->rx_ctrl = NULL;
1385
1386         pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1387                             rrpriv->info, rrpriv->info_dma);
1388         rrpriv->info = NULL;
1389
1390         free_irq(dev->irq, dev);
1391         spin_unlock_irqrestore(&rrpriv->lock, flags);
1392
1393         return 0;
1394 }
1395
1396
1397 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1398 {
1399         struct rr_private *rrpriv = netdev_priv(dev);
1400         struct rr_regs __iomem *regs = rrpriv->regs;
1401         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1402         struct ring_ctrl *txctrl;
1403         unsigned long flags;
1404         u32 index, len = skb->len;
1405         u32 *ifield;
1406         struct sk_buff *new_skb;
1407
1408         if (readl(&regs->Mode) & FATAL_ERR)
1409                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1410                        readl(&regs->Fail1), readl(&regs->Fail2));
1411
1412         /*
1413          * We probably need to deal with tbusy here to prevent overruns.
1414          */
1415
1416         if (skb_headroom(skb) < 8){
1417                 printk("incoming skb too small - reallocating\n");
1418                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1419                         dev_kfree_skb(skb);
1420                         netif_wake_queue(dev);
1421                         return -EBUSY;
1422                 }
1423                 skb_reserve(new_skb, 8);
1424                 skb_put(new_skb, len);
1425                 skb_copy_from_linear_data(skb, new_skb->data, len);
1426                 dev_kfree_skb(skb);
1427                 skb = new_skb;
1428         }
1429
1430         ifield = (u32 *)skb_push(skb, 8);
1431
1432         ifield[0] = 0;
1433         ifield[1] = hcb->ifield;
1434
1435         /*
1436          * We don't need the lock before we are actually going to start
1437          * fiddling with the control blocks.
1438          */
1439         spin_lock_irqsave(&rrpriv->lock, flags);
1440
1441         txctrl = &rrpriv->info->tx_ctrl;
1442
1443         index = txctrl->pi;
1444
1445         rrpriv->tx_skbuff[index] = skb;
1446         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1447                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1448         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1449         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1450         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1451         wmb();
1452         writel(txctrl->pi, &regs->TxPi);
1453
1454         if (txctrl->pi == rrpriv->dirty_tx){
1455                 rrpriv->tx_full = 1;
1456                 netif_stop_queue(dev);
1457         }
1458
1459         spin_unlock_irqrestore(&rrpriv->lock, flags);
1460
1461         dev->trans_start = jiffies;
1462         return 0;
1463 }
1464
1465
1466 /*
1467  * Read the firmware out of the EEPROM and put it into the SRAM
1468  * (or from user space - later)
1469  *
1470  * This operation requires the NIC to be halted and is performed with
1471  * interrupts disabled and with the spinlock hold.
1472  */
1473 static int rr_load_firmware(struct net_device *dev)
1474 {
1475         struct rr_private *rrpriv;
1476         struct rr_regs __iomem *regs;
1477         size_t eptr, segptr;
1478         int i, j;
1479         u32 localctrl, sptr, len, tmp;
1480         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1481
1482         rrpriv = netdev_priv(dev);
1483         regs = rrpriv->regs;
1484
1485         if (dev->flags & IFF_UP)
1486                 return -EBUSY;
1487
1488         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1489                 printk("%s: Trying to load firmware to a running NIC.\n",
1490                        dev->name);
1491                 return -EBUSY;
1492         }
1493
1494         localctrl = readl(&regs->LocalCtrl);
1495         writel(0, &regs->LocalCtrl);
1496
1497         writel(0, &regs->EvtPrd);
1498         writel(0, &regs->RxPrd);
1499         writel(0, &regs->TxPrd);
1500
1501         /*
1502          * First wipe the entire SRAM, otherwise we might run into all
1503          * kinds of trouble ... sigh, this took almost all afternoon
1504          * to track down ;-(
1505          */
1506         io = readl(&regs->ExtIo);
1507         writel(0, &regs->ExtIo);
1508         sram_size = rr_read_eeprom_word(rrpriv, 8);
1509
1510         for (i = 200; i < sram_size / 4; i++){
1511                 writel(i * 4, &regs->WinBase);
1512                 mb();
1513                 writel(0, &regs->WinData);
1514                 mb();
1515         }
1516         writel(io, &regs->ExtIo);
1517         mb();
1518
1519         eptr = rr_read_eeprom_word(rrpriv,
1520                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1521         eptr = ((eptr & 0x1fffff) >> 3);
1522
1523         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1524         p2len = (p2len << 2);
1525         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1526         p2size = ((p2size & 0x1fffff) >> 3);
1527
1528         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1529                 printk("%s: eptr is invalid\n", dev->name);
1530                 goto out;
1531         }
1532
1533         revision = rr_read_eeprom_word(rrpriv,
1534                         offsetof(struct eeprom, manf.HeaderFmt));
1535
1536         if (revision != 1){
1537                 printk("%s: invalid firmware format (%i)\n",
1538                        dev->name, revision);
1539                 goto out;
1540         }
1541
1542         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1543         eptr +=4;
1544 #if (DEBUG > 1)
1545         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1546 #endif
1547
1548         for (i = 0; i < nr_seg; i++){
1549                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1550                 eptr += 4;
1551                 len = rr_read_eeprom_word(rrpriv, eptr);
1552                 eptr += 4;
1553                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1554                 segptr = ((segptr & 0x1fffff) >> 3);
1555                 eptr += 4;
1556 #if (DEBUG > 1)
1557                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1558                        dev->name, i, sptr, len, segptr);
1559 #endif
1560                 for (j = 0; j < len; j++){
1561                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1562                         writel(sptr, &regs->WinBase);
1563                         mb();
1564                         writel(tmp, &regs->WinData);
1565                         mb();
1566                         segptr += 4;
1567                         sptr += 4;
1568                 }
1569         }
1570
1571 out:
1572         writel(localctrl, &regs->LocalCtrl);
1573         mb();
1574         return 0;
1575 }
1576
1577
1578 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1579 {
1580         struct rr_private *rrpriv;
1581         unsigned char *image, *oldimage;
1582         unsigned long flags;
1583         unsigned int i;
1584         int error = -EOPNOTSUPP;
1585
1586         rrpriv = netdev_priv(dev);
1587
1588         switch(cmd){
1589         case SIOCRRGFW:
1590                 if (!capable(CAP_SYS_RAWIO)){
1591                         return -EPERM;
1592                 }
1593
1594                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1595                 if (!image){
1596                         printk(KERN_ERR "%s: Unable to allocate memory "
1597                                "for EEPROM image\n", dev->name);
1598                         return -ENOMEM;
1599                 }
1600
1601
1602                 if (rrpriv->fw_running){
1603                         printk("%s: Firmware already running\n", dev->name);
1604                         error = -EPERM;
1605                         goto gf_out;
1606                 }
1607
1608                 spin_lock_irqsave(&rrpriv->lock, flags);
1609                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1610                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1611                 if (i != EEPROM_BYTES){
1612                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1613                                dev->name);
1614                         error = -EFAULT;
1615                         goto gf_out;
1616                 }
1617                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1618                 if (error)
1619                         error = -EFAULT;
1620         gf_out:
1621                 kfree(image);
1622                 return error;
1623
1624         case SIOCRRPFW:
1625                 if (!capable(CAP_SYS_RAWIO)){
1626                         return -EPERM;
1627                 }
1628
1629                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1630                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1631                 if (!image || !oldimage) {
1632                         printk(KERN_ERR "%s: Unable to allocate memory "
1633                                "for EEPROM image\n", dev->name);
1634                         error = -ENOMEM;
1635                         goto wf_out;
1636                 }
1637
1638                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1639                 if (error) {
1640                         error = -EFAULT;
1641                         goto wf_out;
1642                 }
1643
1644                 if (rrpriv->fw_running){
1645                         printk("%s: Firmware already running\n", dev->name);
1646                         error = -EPERM;
1647                         goto wf_out;
1648                 }
1649
1650                 printk("%s: Updating EEPROM firmware\n", dev->name);
1651
1652                 spin_lock_irqsave(&rrpriv->lock, flags);
1653                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1654                 if (error)
1655                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1656                                dev->name);
1657
1658                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1659                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1660
1661                 if (i != EEPROM_BYTES)
1662                         printk(KERN_ERR "%s: Error reading back EEPROM "
1663                                "image\n", dev->name);
1664
1665                 error = memcmp(image, oldimage, EEPROM_BYTES);
1666                 if (error){
1667                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1668                                dev->name);
1669                         error = -EFAULT;
1670                 }
1671         wf_out:
1672                 kfree(oldimage);
1673                 kfree(image);
1674                 return error;
1675
1676         case SIOCRRID:
1677                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1678         default:
1679                 return error;
1680         }
1681 }
1682
1683 static struct pci_device_id rr_pci_tbl[] = {
1684         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1685                 PCI_ANY_ID, PCI_ANY_ID, },
1686         { 0,}
1687 };
1688 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1689
1690 static struct pci_driver rr_driver = {
1691         .name           = "rrunner",
1692         .id_table       = rr_pci_tbl,
1693         .probe          = rr_init_one,
1694         .remove         = __devexit_p(rr_remove_one),
1695 };
1696
1697 static int __init rr_init_module(void)
1698 {
1699         return pci_register_driver(&rr_driver);
1700 }
1701
1702 static void __exit rr_cleanup_module(void)
1703 {
1704         pci_unregister_driver(&rr_driver);
1705 }
1706
1707 module_init(rr_init_module);
1708 module_exit(rr_cleanup_module);
1709
1710 /*
1711  * Local variables:
1712  * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"
1713  * End:
1714  */