Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <net/ip6_checksum.h>
42
43 #include "qlge.h"
44
45 char qlge_driver_name[] = DRV_NAME;
46 const char qlge_driver_version[] = DRV_VERSION;
47
48 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
49 MODULE_DESCRIPTION(DRV_STRING " ");
50 MODULE_LICENSE("GPL");
51 MODULE_VERSION(DRV_VERSION);
52
53 static const u32 default_msg =
54     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
55 /* NETIF_MSG_TIMER |    */
56     NETIF_MSG_IFDOWN |
57     NETIF_MSG_IFUP |
58     NETIF_MSG_RX_ERR |
59     NETIF_MSG_TX_ERR |
60 /*  NETIF_MSG_TX_QUEUED | */
61 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
62 /* NETIF_MSG_PKTDATA | */
63     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
64
65 static int debug = 0x00007fff;  /* defaults above */
66 module_param(debug, int, 0);
67 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
68
69 #define MSIX_IRQ 0
70 #define MSI_IRQ 1
71 #define LEG_IRQ 2
72 static int irq_type = MSIX_IRQ;
73 module_param(irq_type, int, MSIX_IRQ);
74 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
75
76 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
77         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
217         if (status)
218                 return status;
219
220         status = ql_wait_cfg(qdev, bit);
221         if (status) {
222                 QPRINTK(qdev, IFUP, ERR,
223                         "Timed out waiting for CFG to come ready.\n");
224                 goto exit;
225         }
226
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         switch (type) {
252         case MAC_ADDR_TYPE_MULTI_MAC:
253         case MAC_ADDR_TYPE_CAM_MAC:
254                 {
255                         status =
256                             ql_wait_reg_rdy(qdev,
257                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
258                         if (status)
259                                 goto exit;
260                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
262                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263                         status =
264                             ql_wait_reg_rdy(qdev,
265                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
266                         if (status)
267                                 goto exit;
268                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269                         status =
270                             ql_wait_reg_rdy(qdev,
271                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
272                         if (status)
273                                 goto exit;
274                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
276                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277                         status =
278                             ql_wait_reg_rdy(qdev,
279                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
280                         if (status)
281                                 goto exit;
282                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
284                                 status =
285                                     ql_wait_reg_rdy(qdev,
286                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287                                 if (status)
288                                         goto exit;
289                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
291                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292                                 status =
293                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
294                                                     MAC_ADDR_MR, 0);
295                                 if (status)
296                                         goto exit;
297                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298                         }
299                         break;
300                 }
301         case MAC_ADDR_TYPE_VLAN:
302         case MAC_ADDR_TYPE_MULTI_FLTR:
303         default:
304                 QPRINTK(qdev, IFUP, CRIT,
305                         "Address type %d not yet supported.\n", type);
306                 status = -EPERM;
307         }
308 exit:
309         return status;
310 }
311
312 /* Set up a MAC, multicast or VLAN address for the
313  * inbound frame matching.
314  */
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316                                u16 index)
317 {
318         u32 offset = 0;
319         int status = 0;
320
321         switch (type) {
322         case MAC_ADDR_TYPE_MULTI_MAC:
323                 {
324                         u32 upper = (addr[0] << 8) | addr[1];
325                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
326                                         (addr[4] << 8) | (addr[5]);
327
328                         status =
329                                 ql_wait_reg_rdy(qdev,
330                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
331                         if (status)
332                                 goto exit;
333                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
334                                 (index << MAC_ADDR_IDX_SHIFT) |
335                                 type | MAC_ADDR_E);
336                         ql_write32(qdev, MAC_ADDR_DATA, lower);
337                         status =
338                                 ql_wait_reg_rdy(qdev,
339                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
340                         if (status)
341                                 goto exit;
342                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
343                                 (index << MAC_ADDR_IDX_SHIFT) |
344                                 type | MAC_ADDR_E);
345
346                         ql_write32(qdev, MAC_ADDR_DATA, upper);
347                         status =
348                                 ql_wait_reg_rdy(qdev,
349                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350                         if (status)
351                                 goto exit;
352                         break;
353                 }
354         case MAC_ADDR_TYPE_CAM_MAC:
355                 {
356                         u32 cam_output;
357                         u32 upper = (addr[0] << 8) | addr[1];
358                         u32 lower =
359                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
360                             (addr[5]);
361
362                         QPRINTK(qdev, IFUP, DEBUG,
363                                 "Adding %s address %pM"
364                                 " at index %d in the CAM.\n",
365                                 ((type ==
366                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
367                                  "UNICAST"), addr, index);
368
369                         status =
370                             ql_wait_reg_rdy(qdev,
371                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
372                         if (status)
373                                 goto exit;
374                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
375                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
376                                    type);       /* type */
377                         ql_write32(qdev, MAC_ADDR_DATA, lower);
378                         status =
379                             ql_wait_reg_rdy(qdev,
380                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
381                         if (status)
382                                 goto exit;
383                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
384                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
385                                    type);       /* type */
386                         ql_write32(qdev, MAC_ADDR_DATA, upper);
387                         status =
388                             ql_wait_reg_rdy(qdev,
389                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
390                         if (status)
391                                 goto exit;
392                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
393                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
394                                    type);       /* type */
395                         /* This field should also include the queue id
396                            and possibly the function id.  Right now we hardcode
397                            the route field to NIC core.
398                          */
399                         cam_output = (CAM_OUT_ROUTE_NIC |
400                                       (qdev->
401                                        func << CAM_OUT_FUNC_SHIFT) |
402                                         (0 << CAM_OUT_CQ_ID_SHIFT));
403                         if (qdev->vlgrp)
404                                 cam_output |= CAM_OUT_RV;
405                         /* route to NIC core */
406                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
407                         break;
408                 }
409         case MAC_ADDR_TYPE_VLAN:
410                 {
411                         u32 enable_bit = *((u32 *) &addr[0]);
412                         /* For VLAN, the addr actually holds a bit that
413                          * either enables or disables the vlan id we are
414                          * addressing. It's either MAC_ADDR_E on or off.
415                          * That's bit-27 we're talking about.
416                          */
417                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
418                                 (enable_bit ? "Adding" : "Removing"),
419                                 index, (enable_bit ? "to" : "from"));
420
421                         status =
422                             ql_wait_reg_rdy(qdev,
423                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
424                         if (status)
425                                 goto exit;
426                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
427                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
428                                    type |       /* type */
429                                    enable_bit); /* enable/disable */
430                         break;
431                 }
432         case MAC_ADDR_TYPE_MULTI_FLTR:
433         default:
434                 QPRINTK(qdev, IFUP, CRIT,
435                         "Address type %d not yet supported.\n", type);
436                 status = -EPERM;
437         }
438 exit:
439         return status;
440 }
441
442 /* Set or clear MAC address in hardware. We sometimes
443  * have to clear it to prevent wrong frame routing
444  * especially in a bonding environment.
445  */
446 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
447 {
448         int status;
449         char zero_mac_addr[ETH_ALEN];
450         char *addr;
451
452         if (set) {
453                 addr = &qdev->ndev->dev_addr[0];
454                 QPRINTK(qdev, IFUP, DEBUG,
455                         "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
456                         addr[0], addr[1], addr[2], addr[3],
457                         addr[4], addr[5]);
458         } else {
459                 memset(zero_mac_addr, 0, ETH_ALEN);
460                 addr = &zero_mac_addr[0];
461                 QPRINTK(qdev, IFUP, DEBUG,
462                                 "Clearing MAC address on %s\n",
463                                 qdev->ndev->name);
464         }
465         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
466         if (status)
467                 return status;
468         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
469                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
470         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
471         if (status)
472                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
473                         "address.\n");
474         return status;
475 }
476
477 void ql_link_on(struct ql_adapter *qdev)
478 {
479         QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
480                                  qdev->ndev->name);
481         netif_carrier_on(qdev->ndev);
482         ql_set_mac_addr(qdev, 1);
483 }
484
485 void ql_link_off(struct ql_adapter *qdev)
486 {
487         QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
488                                  qdev->ndev->name);
489         netif_carrier_off(qdev->ndev);
490         ql_set_mac_addr(qdev, 0);
491 }
492
493 /* Get a specific frame routing value from the CAM.
494  * Used for debug and reg dump.
495  */
496 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
497 {
498         int status = 0;
499
500         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
501         if (status)
502                 goto exit;
503
504         ql_write32(qdev, RT_IDX,
505                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
506         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
507         if (status)
508                 goto exit;
509         *value = ql_read32(qdev, RT_DATA);
510 exit:
511         return status;
512 }
513
514 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
515  * to route different frame types to various inbound queues.  We send broadcast/
516  * multicast/error frames to the default queue for slow handling,
517  * and CAM hit/RSS frames to the fast handling queues.
518  */
519 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
520                               int enable)
521 {
522         int status = -EINVAL; /* Return error if no mask match. */
523         u32 value = 0;
524
525         QPRINTK(qdev, IFUP, DEBUG,
526                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
527                 (enable ? "Adding" : "Removing"),
528                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
529                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
530                 ((index ==
531                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
532                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
533                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
534                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
535                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
536                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
537                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
538                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
539                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
540                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
541                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
542                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
543                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
544                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
545                 (enable ? "to" : "from"));
546
547         switch (mask) {
548         case RT_IDX_CAM_HIT:
549                 {
550                         value = RT_IDX_DST_CAM_Q |      /* dest */
551                             RT_IDX_TYPE_NICQ |  /* type */
552                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
553                         break;
554                 }
555         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
556                 {
557                         value = RT_IDX_DST_DFLT_Q |     /* dest */
558                             RT_IDX_TYPE_NICQ |  /* type */
559                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
560                         break;
561                 }
562         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
563                 {
564                         value = RT_IDX_DST_DFLT_Q |     /* dest */
565                             RT_IDX_TYPE_NICQ |  /* type */
566                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
567                         break;
568                 }
569         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
570                 {
571                         value = RT_IDX_DST_DFLT_Q |     /* dest */
572                             RT_IDX_TYPE_NICQ |  /* type */
573                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
574                         break;
575                 }
576         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
577                 {
578                         value = RT_IDX_DST_DFLT_Q |     /* dest */
579                             RT_IDX_TYPE_NICQ |  /* type */
580                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
581                         break;
582                 }
583         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
584                 {
585                         value = RT_IDX_DST_DFLT_Q |     /* dest */
586                             RT_IDX_TYPE_NICQ |  /* type */
587                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
588                         break;
589                 }
590         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
591                 {
592                         value = RT_IDX_DST_RSS |        /* dest */
593                             RT_IDX_TYPE_NICQ |  /* type */
594                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
595                         break;
596                 }
597         case 0:         /* Clear the E-bit on an entry. */
598                 {
599                         value = RT_IDX_DST_DFLT_Q |     /* dest */
600                             RT_IDX_TYPE_NICQ |  /* type */
601                             (index << RT_IDX_IDX_SHIFT);/* index */
602                         break;
603                 }
604         default:
605                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
606                         mask);
607                 status = -EPERM;
608                 goto exit;
609         }
610
611         if (value) {
612                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
613                 if (status)
614                         goto exit;
615                 value |= (enable ? RT_IDX_E : 0);
616                 ql_write32(qdev, RT_IDX, value);
617                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
618         }
619 exit:
620         return status;
621 }
622
623 static void ql_enable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
626 }
627
628 static void ql_disable_interrupts(struct ql_adapter *qdev)
629 {
630         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
631 }
632
633 /* If we're running with multiple MSI-X vectors then we enable on the fly.
634  * Otherwise, we may have multiple outstanding workers and don't want to
635  * enable until the last one finishes. In this case, the irq_cnt gets
636  * incremented everytime we queue a worker and decremented everytime
637  * a worker finishes.  Once it hits zero we enable the interrupt.
638  */
639 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
640 {
641         u32 var = 0;
642         unsigned long hw_flags = 0;
643         struct intr_context *ctx = qdev->intr_context + intr;
644
645         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
646                 /* Always enable if we're MSIX multi interrupts and
647                  * it's not the default (zeroeth) interrupt.
648                  */
649                 ql_write32(qdev, INTR_EN,
650                            ctx->intr_en_mask);
651                 var = ql_read32(qdev, STS);
652                 return var;
653         }
654
655         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
656         if (atomic_dec_and_test(&ctx->irq_cnt)) {
657                 ql_write32(qdev, INTR_EN,
658                            ctx->intr_en_mask);
659                 var = ql_read32(qdev, STS);
660         }
661         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
662         return var;
663 }
664
665 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
666 {
667         u32 var = 0;
668         struct intr_context *ctx;
669
670         /* HW disables for us if we're MSIX multi interrupts and
671          * it's not the default (zeroeth) interrupt.
672          */
673         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
674                 return 0;
675
676         ctx = qdev->intr_context + intr;
677         spin_lock(&qdev->hw_lock);
678         if (!atomic_read(&ctx->irq_cnt)) {
679                 ql_write32(qdev, INTR_EN,
680                 ctx->intr_dis_mask);
681                 var = ql_read32(qdev, STS);
682         }
683         atomic_inc(&ctx->irq_cnt);
684         spin_unlock(&qdev->hw_lock);
685         return var;
686 }
687
688 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
689 {
690         int i;
691         for (i = 0; i < qdev->intr_count; i++) {
692                 /* The enable call does a atomic_dec_and_test
693                  * and enables only if the result is zero.
694                  * So we precharge it here.
695                  */
696                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
697                         i == 0))
698                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
699                 ql_enable_completion_interrupt(qdev, i);
700         }
701
702 }
703
704 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
705 {
706         int status, i;
707         u16 csum = 0;
708         __le16 *flash = (__le16 *)&qdev->flash;
709
710         status = strncmp((char *)&qdev->flash, str, 4);
711         if (status) {
712                 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
713                 return  status;
714         }
715
716         for (i = 0; i < size; i++)
717                 csum += le16_to_cpu(*flash++);
718
719         if (csum)
720                 QPRINTK(qdev, IFUP, ERR,
721                         "Invalid flash checksum, csum = 0x%.04x.\n", csum);
722
723         return csum;
724 }
725
726 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
727 {
728         int status = 0;
729         /* wait for reg to come ready */
730         status = ql_wait_reg_rdy(qdev,
731                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
732         if (status)
733                 goto exit;
734         /* set up for reg read */
735         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
736         /* wait for reg to come ready */
737         status = ql_wait_reg_rdy(qdev,
738                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
739         if (status)
740                 goto exit;
741          /* This data is stored on flash as an array of
742          * __le32.  Since ql_read32() returns cpu endian
743          * we need to swap it back.
744          */
745         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
746 exit:
747         return status;
748 }
749
750 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
751 {
752         u32 i, size;
753         int status;
754         __le32 *p = (__le32 *)&qdev->flash;
755         u32 offset;
756         u8 mac_addr[6];
757
758         /* Get flash offset for function and adjust
759          * for dword access.
760          */
761         if (!qdev->port)
762                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
763         else
764                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
765
766         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
767                 return -ETIMEDOUT;
768
769         size = sizeof(struct flash_params_8000) / sizeof(u32);
770         for (i = 0; i < size; i++, p++) {
771                 status = ql_read_flash_word(qdev, i+offset, p);
772                 if (status) {
773                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
774                         goto exit;
775                 }
776         }
777
778         status = ql_validate_flash(qdev,
779                         sizeof(struct flash_params_8000) / sizeof(u16),
780                         "8000");
781         if (status) {
782                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
783                 status = -EINVAL;
784                 goto exit;
785         }
786
787         /* Extract either manufacturer or BOFM modified
788          * MAC address.
789          */
790         if (qdev->flash.flash_params_8000.data_type1 == 2)
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr1,
793                         qdev->ndev->addr_len);
794         else
795                 memcpy(mac_addr,
796                         qdev->flash.flash_params_8000.mac_addr,
797                         qdev->ndev->addr_len);
798
799         if (!is_valid_ether_addr(mac_addr)) {
800                 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
801                 status = -EINVAL;
802                 goto exit;
803         }
804
805         memcpy(qdev->ndev->dev_addr,
806                 mac_addr,
807                 qdev->ndev->addr_len);
808
809 exit:
810         ql_sem_unlock(qdev, SEM_FLASH_MASK);
811         return status;
812 }
813
814 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
815 {
816         int i;
817         int status;
818         __le32 *p = (__le32 *)&qdev->flash;
819         u32 offset = 0;
820         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
821
822         /* Second function's parameters follow the first
823          * function's.
824          */
825         if (qdev->port)
826                 offset = size;
827
828         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
829                 return -ETIMEDOUT;
830
831         for (i = 0; i < size; i++, p++) {
832                 status = ql_read_flash_word(qdev, i+offset, p);
833                 if (status) {
834                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
835                         goto exit;
836                 }
837
838         }
839
840         status = ql_validate_flash(qdev,
841                         sizeof(struct flash_params_8012) / sizeof(u16),
842                         "8012");
843         if (status) {
844                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
845                 status = -EINVAL;
846                 goto exit;
847         }
848
849         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
850                 status = -EINVAL;
851                 goto exit;
852         }
853
854         memcpy(qdev->ndev->dev_addr,
855                 qdev->flash.flash_params_8012.mac_addr,
856                 qdev->ndev->addr_len);
857
858 exit:
859         ql_sem_unlock(qdev, SEM_FLASH_MASK);
860         return status;
861 }
862
863 /* xgmac register are located behind the xgmac_addr and xgmac_data
864  * register pair.  Each read/write requires us to wait for the ready
865  * bit before reading/writing the data.
866  */
867 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
868 {
869         int status;
870         /* wait for reg to come ready */
871         status = ql_wait_reg_rdy(qdev,
872                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873         if (status)
874                 return status;
875         /* write the data to the data reg */
876         ql_write32(qdev, XGMAC_DATA, data);
877         /* trigger the write */
878         ql_write32(qdev, XGMAC_ADDR, reg);
879         return status;
880 }
881
882 /* xgmac register are located behind the xgmac_addr and xgmac_data
883  * register pair.  Each read/write requires us to wait for the ready
884  * bit before reading/writing the data.
885  */
886 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
887 {
888         int status = 0;
889         /* wait for reg to come ready */
890         status = ql_wait_reg_rdy(qdev,
891                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
892         if (status)
893                 goto exit;
894         /* set up for reg read */
895         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
896         /* wait for reg to come ready */
897         status = ql_wait_reg_rdy(qdev,
898                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
899         if (status)
900                 goto exit;
901         /* get the data */
902         *data = ql_read32(qdev, XGMAC_DATA);
903 exit:
904         return status;
905 }
906
907 /* This is used for reading the 64-bit statistics regs. */
908 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
909 {
910         int status = 0;
911         u32 hi = 0;
912         u32 lo = 0;
913
914         status = ql_read_xgmac_reg(qdev, reg, &lo);
915         if (status)
916                 goto exit;
917
918         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
919         if (status)
920                 goto exit;
921
922         *data = (u64) lo | ((u64) hi << 32);
923
924 exit:
925         return status;
926 }
927
928 static int ql_8000_port_initialize(struct ql_adapter *qdev)
929 {
930         int status;
931         /*
932          * Get MPI firmware version for driver banner
933          * and ethool info.
934          */
935         status = ql_mb_about_fw(qdev);
936         if (status)
937                 goto exit;
938         status = ql_mb_get_fw_state(qdev);
939         if (status)
940                 goto exit;
941         /* Wake up a worker to get/set the TX/RX frame sizes. */
942         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
943 exit:
944         return status;
945 }
946
947 /* Take the MAC Core out of reset.
948  * Enable statistics counting.
949  * Take the transmitter/receiver out of reset.
950  * This functionality may be done in the MPI firmware at a
951  * later date.
952  */
953 static int ql_8012_port_initialize(struct ql_adapter *qdev)
954 {
955         int status = 0;
956         u32 data;
957
958         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
959                 /* Another function has the semaphore, so
960                  * wait for the port init bit to come ready.
961                  */
962                 QPRINTK(qdev, LINK, INFO,
963                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
964                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
965                 if (status) {
966                         QPRINTK(qdev, LINK, CRIT,
967                                 "Port initialize timed out.\n");
968                 }
969                 return status;
970         }
971
972         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
973         /* Set the core reset. */
974         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
975         if (status)
976                 goto end;
977         data |= GLOBAL_CFG_RESET;
978         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
979         if (status)
980                 goto end;
981
982         /* Clear the core reset and turn on jumbo for receiver. */
983         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
984         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
985         data |= GLOBAL_CFG_TX_STAT_EN;
986         data |= GLOBAL_CFG_RX_STAT_EN;
987         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
988         if (status)
989                 goto end;
990
991         /* Enable transmitter, and clear it's reset. */
992         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
993         if (status)
994                 goto end;
995         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
996         data |= TX_CFG_EN;      /* Enable the transmitter. */
997         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
998         if (status)
999                 goto end;
1000
1001         /* Enable receiver and clear it's reset. */
1002         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1003         if (status)
1004                 goto end;
1005         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1006         data |= RX_CFG_EN;      /* Enable the receiver. */
1007         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1008         if (status)
1009                 goto end;
1010
1011         /* Turn on jumbo. */
1012         status =
1013             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1014         if (status)
1015                 goto end;
1016         status =
1017             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1018         if (status)
1019                 goto end;
1020
1021         /* Signal to the world that the port is enabled.        */
1022         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1023 end:
1024         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1025         return status;
1026 }
1027
1028 /* Get the next large buffer. */
1029 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1030 {
1031         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1032         rx_ring->lbq_curr_idx++;
1033         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1034                 rx_ring->lbq_curr_idx = 0;
1035         rx_ring->lbq_free_cnt++;
1036         return lbq_desc;
1037 }
1038
1039 /* Get the next small buffer. */
1040 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1041 {
1042         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1043         rx_ring->sbq_curr_idx++;
1044         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1045                 rx_ring->sbq_curr_idx = 0;
1046         rx_ring->sbq_free_cnt++;
1047         return sbq_desc;
1048 }
1049
1050 /* Update an rx ring index. */
1051 static void ql_update_cq(struct rx_ring *rx_ring)
1052 {
1053         rx_ring->cnsmr_idx++;
1054         rx_ring->curr_entry++;
1055         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1056                 rx_ring->cnsmr_idx = 0;
1057                 rx_ring->curr_entry = rx_ring->cq_base;
1058         }
1059 }
1060
1061 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1062 {
1063         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1064 }
1065
1066 /* Process (refill) a large buffer queue. */
1067 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1068 {
1069         u32 clean_idx = rx_ring->lbq_clean_idx;
1070         u32 start_idx = clean_idx;
1071         struct bq_desc *lbq_desc;
1072         u64 map;
1073         int i;
1074
1075         while (rx_ring->lbq_free_cnt > 16) {
1076                 for (i = 0; i < 16; i++) {
1077                         QPRINTK(qdev, RX_STATUS, DEBUG,
1078                                 "lbq: try cleaning clean_idx = %d.\n",
1079                                 clean_idx);
1080                         lbq_desc = &rx_ring->lbq[clean_idx];
1081                         if (lbq_desc->p.lbq_page == NULL) {
1082                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1083                                         "lbq: getting new page for index %d.\n",
1084                                         lbq_desc->index);
1085                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1086                                 if (lbq_desc->p.lbq_page == NULL) {
1087                                         rx_ring->lbq_clean_idx = clean_idx;
1088                                         QPRINTK(qdev, RX_STATUS, ERR,
1089                                                 "Couldn't get a page.\n");
1090                                         return;
1091                                 }
1092                                 map = pci_map_page(qdev->pdev,
1093                                                    lbq_desc->p.lbq_page,
1094                                                    0, PAGE_SIZE,
1095                                                    PCI_DMA_FROMDEVICE);
1096                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1097                                         rx_ring->lbq_clean_idx = clean_idx;
1098                                         put_page(lbq_desc->p.lbq_page);
1099                                         lbq_desc->p.lbq_page = NULL;
1100                                         QPRINTK(qdev, RX_STATUS, ERR,
1101                                                 "PCI mapping failed.\n");
1102                                         return;
1103                                 }
1104                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1105                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1106                                 *lbq_desc->addr = cpu_to_le64(map);
1107                         }
1108                         clean_idx++;
1109                         if (clean_idx == rx_ring->lbq_len)
1110                                 clean_idx = 0;
1111                 }
1112
1113                 rx_ring->lbq_clean_idx = clean_idx;
1114                 rx_ring->lbq_prod_idx += 16;
1115                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1116                         rx_ring->lbq_prod_idx = 0;
1117                 rx_ring->lbq_free_cnt -= 16;
1118         }
1119
1120         if (start_idx != clean_idx) {
1121                 QPRINTK(qdev, RX_STATUS, DEBUG,
1122                         "lbq: updating prod idx = %d.\n",
1123                         rx_ring->lbq_prod_idx);
1124                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1125                                 rx_ring->lbq_prod_idx_db_reg);
1126         }
1127 }
1128
1129 /* Process (refill) a small buffer queue. */
1130 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1131 {
1132         u32 clean_idx = rx_ring->sbq_clean_idx;
1133         u32 start_idx = clean_idx;
1134         struct bq_desc *sbq_desc;
1135         u64 map;
1136         int i;
1137
1138         while (rx_ring->sbq_free_cnt > 16) {
1139                 for (i = 0; i < 16; i++) {
1140                         sbq_desc = &rx_ring->sbq[clean_idx];
1141                         QPRINTK(qdev, RX_STATUS, DEBUG,
1142                                 "sbq: try cleaning clean_idx = %d.\n",
1143                                 clean_idx);
1144                         if (sbq_desc->p.skb == NULL) {
1145                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1146                                         "sbq: getting new skb for index %d.\n",
1147                                         sbq_desc->index);
1148                                 sbq_desc->p.skb =
1149                                     netdev_alloc_skb(qdev->ndev,
1150                                                      rx_ring->sbq_buf_size);
1151                                 if (sbq_desc->p.skb == NULL) {
1152                                         QPRINTK(qdev, PROBE, ERR,
1153                                                 "Couldn't get an skb.\n");
1154                                         rx_ring->sbq_clean_idx = clean_idx;
1155                                         return;
1156                                 }
1157                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1158                                 map = pci_map_single(qdev->pdev,
1159                                                      sbq_desc->p.skb->data,
1160                                                      rx_ring->sbq_buf_size /
1161                                                      2, PCI_DMA_FROMDEVICE);
1162                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1163                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1164                                         rx_ring->sbq_clean_idx = clean_idx;
1165                                         dev_kfree_skb_any(sbq_desc->p.skb);
1166                                         sbq_desc->p.skb = NULL;
1167                                         return;
1168                                 }
1169                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1170                                 pci_unmap_len_set(sbq_desc, maplen,
1171                                                   rx_ring->sbq_buf_size / 2);
1172                                 *sbq_desc->addr = cpu_to_le64(map);
1173                         }
1174
1175                         clean_idx++;
1176                         if (clean_idx == rx_ring->sbq_len)
1177                                 clean_idx = 0;
1178                 }
1179                 rx_ring->sbq_clean_idx = clean_idx;
1180                 rx_ring->sbq_prod_idx += 16;
1181                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1182                         rx_ring->sbq_prod_idx = 0;
1183                 rx_ring->sbq_free_cnt -= 16;
1184         }
1185
1186         if (start_idx != clean_idx) {
1187                 QPRINTK(qdev, RX_STATUS, DEBUG,
1188                         "sbq: updating prod idx = %d.\n",
1189                         rx_ring->sbq_prod_idx);
1190                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1191                                 rx_ring->sbq_prod_idx_db_reg);
1192         }
1193 }
1194
1195 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1196                                     struct rx_ring *rx_ring)
1197 {
1198         ql_update_sbq(qdev, rx_ring);
1199         ql_update_lbq(qdev, rx_ring);
1200 }
1201
1202 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1203  * fails at some stage, or from the interrupt when a tx completes.
1204  */
1205 static void ql_unmap_send(struct ql_adapter *qdev,
1206                           struct tx_ring_desc *tx_ring_desc, int mapped)
1207 {
1208         int i;
1209         for (i = 0; i < mapped; i++) {
1210                 if (i == 0 || (i == 7 && mapped > 7)) {
1211                         /*
1212                          * Unmap the skb->data area, or the
1213                          * external sglist (AKA the Outbound
1214                          * Address List (OAL)).
1215                          * If its the zeroeth element, then it's
1216                          * the skb->data area.  If it's the 7th
1217                          * element and there is more than 6 frags,
1218                          * then its an OAL.
1219                          */
1220                         if (i == 7) {
1221                                 QPRINTK(qdev, TX_DONE, DEBUG,
1222                                         "unmapping OAL area.\n");
1223                         }
1224                         pci_unmap_single(qdev->pdev,
1225                                          pci_unmap_addr(&tx_ring_desc->map[i],
1226                                                         mapaddr),
1227                                          pci_unmap_len(&tx_ring_desc->map[i],
1228                                                        maplen),
1229                                          PCI_DMA_TODEVICE);
1230                 } else {
1231                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1232                                 i);
1233                         pci_unmap_page(qdev->pdev,
1234                                        pci_unmap_addr(&tx_ring_desc->map[i],
1235                                                       mapaddr),
1236                                        pci_unmap_len(&tx_ring_desc->map[i],
1237                                                      maplen), PCI_DMA_TODEVICE);
1238                 }
1239         }
1240
1241 }
1242
1243 /* Map the buffers for this transmit.  This will return
1244  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1245  */
1246 static int ql_map_send(struct ql_adapter *qdev,
1247                        struct ob_mac_iocb_req *mac_iocb_ptr,
1248                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1249 {
1250         int len = skb_headlen(skb);
1251         dma_addr_t map;
1252         int frag_idx, err, map_idx = 0;
1253         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1254         int frag_cnt = skb_shinfo(skb)->nr_frags;
1255
1256         if (frag_cnt) {
1257                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1258         }
1259         /*
1260          * Map the skb buffer first.
1261          */
1262         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1263
1264         err = pci_dma_mapping_error(qdev->pdev, map);
1265         if (err) {
1266                 QPRINTK(qdev, TX_QUEUED, ERR,
1267                         "PCI mapping failed with error: %d\n", err);
1268
1269                 return NETDEV_TX_BUSY;
1270         }
1271
1272         tbd->len = cpu_to_le32(len);
1273         tbd->addr = cpu_to_le64(map);
1274         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1275         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1276         map_idx++;
1277
1278         /*
1279          * This loop fills the remainder of the 8 address descriptors
1280          * in the IOCB.  If there are more than 7 fragments, then the
1281          * eighth address desc will point to an external list (OAL).
1282          * When this happens, the remainder of the frags will be stored
1283          * in this list.
1284          */
1285         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1286                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1287                 tbd++;
1288                 if (frag_idx == 6 && frag_cnt > 7) {
1289                         /* Let's tack on an sglist.
1290                          * Our control block will now
1291                          * look like this:
1292                          * iocb->seg[0] = skb->data
1293                          * iocb->seg[1] = frag[0]
1294                          * iocb->seg[2] = frag[1]
1295                          * iocb->seg[3] = frag[2]
1296                          * iocb->seg[4] = frag[3]
1297                          * iocb->seg[5] = frag[4]
1298                          * iocb->seg[6] = frag[5]
1299                          * iocb->seg[7] = ptr to OAL (external sglist)
1300                          * oal->seg[0] = frag[6]
1301                          * oal->seg[1] = frag[7]
1302                          * oal->seg[2] = frag[8]
1303                          * oal->seg[3] = frag[9]
1304                          * oal->seg[4] = frag[10]
1305                          *      etc...
1306                          */
1307                         /* Tack on the OAL in the eighth segment of IOCB. */
1308                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1309                                              sizeof(struct oal),
1310                                              PCI_DMA_TODEVICE);
1311                         err = pci_dma_mapping_error(qdev->pdev, map);
1312                         if (err) {
1313                                 QPRINTK(qdev, TX_QUEUED, ERR,
1314                                         "PCI mapping outbound address list with error: %d\n",
1315                                         err);
1316                                 goto map_error;
1317                         }
1318
1319                         tbd->addr = cpu_to_le64(map);
1320                         /*
1321                          * The length is the number of fragments
1322                          * that remain to be mapped times the length
1323                          * of our sglist (OAL).
1324                          */
1325                         tbd->len =
1326                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1327                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1328                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1329                                            map);
1330                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1331                                           sizeof(struct oal));
1332                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1333                         map_idx++;
1334                 }
1335
1336                 map =
1337                     pci_map_page(qdev->pdev, frag->page,
1338                                  frag->page_offset, frag->size,
1339                                  PCI_DMA_TODEVICE);
1340
1341                 err = pci_dma_mapping_error(qdev->pdev, map);
1342                 if (err) {
1343                         QPRINTK(qdev, TX_QUEUED, ERR,
1344                                 "PCI mapping frags failed with error: %d.\n",
1345                                 err);
1346                         goto map_error;
1347                 }
1348
1349                 tbd->addr = cpu_to_le64(map);
1350                 tbd->len = cpu_to_le32(frag->size);
1351                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1352                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1353                                   frag->size);
1354
1355         }
1356         /* Save the number of segments we've mapped. */
1357         tx_ring_desc->map_cnt = map_idx;
1358         /* Terminate the last segment. */
1359         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1360         return NETDEV_TX_OK;
1361
1362 map_error:
1363         /*
1364          * If the first frag mapping failed, then i will be zero.
1365          * This causes the unmap of the skb->data area.  Otherwise
1366          * we pass in the number of frags that mapped successfully
1367          * so they can be umapped.
1368          */
1369         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1370         return NETDEV_TX_BUSY;
1371 }
1372
1373 static void ql_realign_skb(struct sk_buff *skb, int len)
1374 {
1375         void *temp_addr = skb->data;
1376
1377         /* Undo the skb_reserve(skb,32) we did before
1378          * giving to hardware, and realign data on
1379          * a 2-byte boundary.
1380          */
1381         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1382         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1383         skb_copy_to_linear_data(skb, temp_addr,
1384                 (unsigned int)len);
1385 }
1386
1387 /*
1388  * This function builds an skb for the given inbound
1389  * completion.  It will be rewritten for readability in the near
1390  * future, but for not it works well.
1391  */
1392 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1393                                        struct rx_ring *rx_ring,
1394                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1395 {
1396         struct bq_desc *lbq_desc;
1397         struct bq_desc *sbq_desc;
1398         struct sk_buff *skb = NULL;
1399         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1400        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1401
1402         /*
1403          * Handle the header buffer if present.
1404          */
1405         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1406             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1407                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1408                 /*
1409                  * Headers fit nicely into a small buffer.
1410                  */
1411                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1412                 pci_unmap_single(qdev->pdev,
1413                                 pci_unmap_addr(sbq_desc, mapaddr),
1414                                 pci_unmap_len(sbq_desc, maplen),
1415                                 PCI_DMA_FROMDEVICE);
1416                 skb = sbq_desc->p.skb;
1417                 ql_realign_skb(skb, hdr_len);
1418                 skb_put(skb, hdr_len);
1419                 sbq_desc->p.skb = NULL;
1420         }
1421
1422         /*
1423          * Handle the data buffer(s).
1424          */
1425         if (unlikely(!length)) {        /* Is there data too? */
1426                 QPRINTK(qdev, RX_STATUS, DEBUG,
1427                         "No Data buffer in this packet.\n");
1428                 return skb;
1429         }
1430
1431         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1432                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1433                         QPRINTK(qdev, RX_STATUS, DEBUG,
1434                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1435                         /*
1436                          * Data is less than small buffer size so it's
1437                          * stuffed in a small buffer.
1438                          * For this case we append the data
1439                          * from the "data" small buffer to the "header" small
1440                          * buffer.
1441                          */
1442                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1443                         pci_dma_sync_single_for_cpu(qdev->pdev,
1444                                                     pci_unmap_addr
1445                                                     (sbq_desc, mapaddr),
1446                                                     pci_unmap_len
1447                                                     (sbq_desc, maplen),
1448                                                     PCI_DMA_FROMDEVICE);
1449                         memcpy(skb_put(skb, length),
1450                                sbq_desc->p.skb->data, length);
1451                         pci_dma_sync_single_for_device(qdev->pdev,
1452                                                        pci_unmap_addr
1453                                                        (sbq_desc,
1454                                                         mapaddr),
1455                                                        pci_unmap_len
1456                                                        (sbq_desc,
1457                                                         maplen),
1458                                                        PCI_DMA_FROMDEVICE);
1459                 } else {
1460                         QPRINTK(qdev, RX_STATUS, DEBUG,
1461                                 "%d bytes in a single small buffer.\n", length);
1462                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1463                         skb = sbq_desc->p.skb;
1464                         ql_realign_skb(skb, length);
1465                         skb_put(skb, length);
1466                         pci_unmap_single(qdev->pdev,
1467                                          pci_unmap_addr(sbq_desc,
1468                                                         mapaddr),
1469                                          pci_unmap_len(sbq_desc,
1470                                                        maplen),
1471                                          PCI_DMA_FROMDEVICE);
1472                         sbq_desc->p.skb = NULL;
1473                 }
1474         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1475                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1476                         QPRINTK(qdev, RX_STATUS, DEBUG,
1477                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1478                         /*
1479                          * The data is in a single large buffer.  We
1480                          * chain it to the header buffer's skb and let
1481                          * it rip.
1482                          */
1483                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1484                         pci_unmap_page(qdev->pdev,
1485                                        pci_unmap_addr(lbq_desc,
1486                                                       mapaddr),
1487                                        pci_unmap_len(lbq_desc, maplen),
1488                                        PCI_DMA_FROMDEVICE);
1489                         QPRINTK(qdev, RX_STATUS, DEBUG,
1490                                 "Chaining page to skb.\n");
1491                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1492                                            0, length);
1493                         skb->len += length;
1494                         skb->data_len += length;
1495                         skb->truesize += length;
1496                         lbq_desc->p.lbq_page = NULL;
1497                 } else {
1498                         /*
1499                          * The headers and data are in a single large buffer. We
1500                          * copy it to a new skb and let it go. This can happen with
1501                          * jumbo mtu on a non-TCP/UDP frame.
1502                          */
1503                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1504                         skb = netdev_alloc_skb(qdev->ndev, length);
1505                         if (skb == NULL) {
1506                                 QPRINTK(qdev, PROBE, DEBUG,
1507                                         "No skb available, drop the packet.\n");
1508                                 return NULL;
1509                         }
1510                         pci_unmap_page(qdev->pdev,
1511                                        pci_unmap_addr(lbq_desc,
1512                                                       mapaddr),
1513                                        pci_unmap_len(lbq_desc, maplen),
1514                                        PCI_DMA_FROMDEVICE);
1515                         skb_reserve(skb, NET_IP_ALIGN);
1516                         QPRINTK(qdev, RX_STATUS, DEBUG,
1517                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1518                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1519                                            0, length);
1520                         skb->len += length;
1521                         skb->data_len += length;
1522                         skb->truesize += length;
1523                         length -= length;
1524                         lbq_desc->p.lbq_page = NULL;
1525                         __pskb_pull_tail(skb,
1526                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1527                                 VLAN_ETH_HLEN : ETH_HLEN);
1528                 }
1529         } else {
1530                 /*
1531                  * The data is in a chain of large buffers
1532                  * pointed to by a small buffer.  We loop
1533                  * thru and chain them to the our small header
1534                  * buffer's skb.
1535                  * frags:  There are 18 max frags and our small
1536                  *         buffer will hold 32 of them. The thing is,
1537                  *         we'll use 3 max for our 9000 byte jumbo
1538                  *         frames.  If the MTU goes up we could
1539                  *          eventually be in trouble.
1540                  */
1541                 int size, offset, i = 0;
1542                 __le64 *bq, bq_array[8];
1543                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1544                 pci_unmap_single(qdev->pdev,
1545                                  pci_unmap_addr(sbq_desc, mapaddr),
1546                                  pci_unmap_len(sbq_desc, maplen),
1547                                  PCI_DMA_FROMDEVICE);
1548                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1549                         /*
1550                          * This is an non TCP/UDP IP frame, so
1551                          * the headers aren't split into a small
1552                          * buffer.  We have to use the small buffer
1553                          * that contains our sg list as our skb to
1554                          * send upstairs. Copy the sg list here to
1555                          * a local buffer and use it to find the
1556                          * pages to chain.
1557                          */
1558                         QPRINTK(qdev, RX_STATUS, DEBUG,
1559                                 "%d bytes of headers & data in chain of large.\n", length);
1560                         skb = sbq_desc->p.skb;
1561                         bq = &bq_array[0];
1562                         memcpy(bq, skb->data, sizeof(bq_array));
1563                         sbq_desc->p.skb = NULL;
1564                         skb_reserve(skb, NET_IP_ALIGN);
1565                 } else {
1566                         QPRINTK(qdev, RX_STATUS, DEBUG,
1567                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1568                         bq = (__le64 *)sbq_desc->p.skb->data;
1569                 }
1570                 while (length > 0) {
1571                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1572                         pci_unmap_page(qdev->pdev,
1573                                        pci_unmap_addr(lbq_desc,
1574                                                       mapaddr),
1575                                        pci_unmap_len(lbq_desc,
1576                                                      maplen),
1577                                        PCI_DMA_FROMDEVICE);
1578                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1579                         offset = 0;
1580
1581                         QPRINTK(qdev, RX_STATUS, DEBUG,
1582                                 "Adding page %d to skb for %d bytes.\n",
1583                                 i, size);
1584                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1585                                            offset, size);
1586                         skb->len += size;
1587                         skb->data_len += size;
1588                         skb->truesize += size;
1589                         length -= size;
1590                         lbq_desc->p.lbq_page = NULL;
1591                         bq++;
1592                         i++;
1593                 }
1594                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1595                                 VLAN_ETH_HLEN : ETH_HLEN);
1596         }
1597         return skb;
1598 }
1599
1600 /* Process an inbound completion from an rx ring. */
1601 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1602                                    struct rx_ring *rx_ring,
1603                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1604 {
1605         struct net_device *ndev = qdev->ndev;
1606         struct sk_buff *skb = NULL;
1607         u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1608                         IB_MAC_IOCB_RSP_VLAN_MASK)
1609
1610         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1611
1612         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1613         if (unlikely(!skb)) {
1614                 QPRINTK(qdev, RX_STATUS, DEBUG,
1615                         "No skb available, drop packet.\n");
1616                 return;
1617         }
1618
1619         /* Frame error, so drop the packet. */
1620         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1621                 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1622                                         ib_mac_rsp->flags2);
1623                 dev_kfree_skb_any(skb);
1624                 return;
1625         }
1626
1627         /* The max framesize filter on this chip is set higher than
1628          * MTU since FCoE uses 2k frames.
1629          */
1630         if (skb->len > ndev->mtu + ETH_HLEN) {
1631                 dev_kfree_skb_any(skb);
1632                 return;
1633         }
1634
1635         prefetch(skb->data);
1636         skb->dev = ndev;
1637         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1638                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1639                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1640                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1641                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1642                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1643                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1644                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1645         }
1646         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1647                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1648         }
1649
1650         skb->protocol = eth_type_trans(skb, ndev);
1651         skb->ip_summed = CHECKSUM_NONE;
1652
1653         /* If rx checksum is on, and there are no
1654          * csum or frame errors.
1655          */
1656         if (qdev->rx_csum &&
1657                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1658                 /* TCP frame. */
1659                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1660                         QPRINTK(qdev, RX_STATUS, DEBUG,
1661                                         "TCP checksum done!\n");
1662                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1663                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1664                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1665                 /* Unfragmented ipv4 UDP frame. */
1666                         struct iphdr *iph = (struct iphdr *) skb->data;
1667                         if (!(iph->frag_off &
1668                                 cpu_to_be16(IP_MF|IP_OFFSET))) {
1669                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1670                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1671                                                 "TCP checksum done!\n");
1672                         }
1673                 }
1674         }
1675
1676         ndev->stats.rx_packets++;
1677         ndev->stats.rx_bytes += skb->len;
1678         skb_record_rx_queue(skb, rx_ring->cq_id);
1679         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1680                 if (qdev->vlgrp &&
1681                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1682                         (vlan_id != 0))
1683                         vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1684                                 vlan_id, skb);
1685                 else
1686                         napi_gro_receive(&rx_ring->napi, skb);
1687         } else {
1688                 if (qdev->vlgrp &&
1689                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1690                         (vlan_id != 0))
1691                         vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1692                 else
1693                         netif_receive_skb(skb);
1694         }
1695 }
1696
1697 /* Process an outbound completion from an rx ring. */
1698 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1699                                    struct ob_mac_iocb_rsp *mac_rsp)
1700 {
1701         struct net_device *ndev = qdev->ndev;
1702         struct tx_ring *tx_ring;
1703         struct tx_ring_desc *tx_ring_desc;
1704
1705         QL_DUMP_OB_MAC_RSP(mac_rsp);
1706         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1707         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1708         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1709         ndev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1710         ndev->stats.tx_packets++;
1711         dev_kfree_skb(tx_ring_desc->skb);
1712         tx_ring_desc->skb = NULL;
1713
1714         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1715                                         OB_MAC_IOCB_RSP_S |
1716                                         OB_MAC_IOCB_RSP_L |
1717                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1718                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1719                         QPRINTK(qdev, TX_DONE, WARNING,
1720                                 "Total descriptor length did not match transfer length.\n");
1721                 }
1722                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1723                         QPRINTK(qdev, TX_DONE, WARNING,
1724                                 "Frame too short to be legal, not sent.\n");
1725                 }
1726                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1727                         QPRINTK(qdev, TX_DONE, WARNING,
1728                                 "Frame too long, but sent anyway.\n");
1729                 }
1730                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1731                         QPRINTK(qdev, TX_DONE, WARNING,
1732                                 "PCI backplane error. Frame not sent.\n");
1733                 }
1734         }
1735         atomic_inc(&tx_ring->tx_count);
1736 }
1737
1738 /* Fire up a handler to reset the MPI processor. */
1739 void ql_queue_fw_error(struct ql_adapter *qdev)
1740 {
1741         ql_link_off(qdev);
1742         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1743 }
1744
1745 void ql_queue_asic_error(struct ql_adapter *qdev)
1746 {
1747         ql_link_off(qdev);
1748         ql_disable_interrupts(qdev);
1749         /* Clear adapter up bit to signal the recovery
1750          * process that it shouldn't kill the reset worker
1751          * thread
1752          */
1753         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1754         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1755 }
1756
1757 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1758                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1759 {
1760         switch (ib_ae_rsp->event) {
1761         case MGMT_ERR_EVENT:
1762                 QPRINTK(qdev, RX_ERR, ERR,
1763                         "Management Processor Fatal Error.\n");
1764                 ql_queue_fw_error(qdev);
1765                 return;
1766
1767         case CAM_LOOKUP_ERR_EVENT:
1768                 QPRINTK(qdev, LINK, ERR,
1769                         "Multiple CAM hits lookup occurred.\n");
1770                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1771                 ql_queue_asic_error(qdev);
1772                 return;
1773
1774         case SOFT_ECC_ERROR_EVENT:
1775                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1776                 ql_queue_asic_error(qdev);
1777                 break;
1778
1779         case PCI_ERR_ANON_BUF_RD:
1780                 QPRINTK(qdev, RX_ERR, ERR,
1781                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1782                         ib_ae_rsp->q_id);
1783                 ql_queue_asic_error(qdev);
1784                 break;
1785
1786         default:
1787                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1788                         ib_ae_rsp->event);
1789                 ql_queue_asic_error(qdev);
1790                 break;
1791         }
1792 }
1793
1794 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1795 {
1796         struct ql_adapter *qdev = rx_ring->qdev;
1797         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1798         struct ob_mac_iocb_rsp *net_rsp = NULL;
1799         int count = 0;
1800
1801         struct tx_ring *tx_ring;
1802         /* While there are entries in the completion queue. */
1803         while (prod != rx_ring->cnsmr_idx) {
1804
1805                 QPRINTK(qdev, RX_STATUS, DEBUG,
1806                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1807                         prod, rx_ring->cnsmr_idx);
1808
1809                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1810                 rmb();
1811                 switch (net_rsp->opcode) {
1812
1813                 case OPCODE_OB_MAC_TSO_IOCB:
1814                 case OPCODE_OB_MAC_IOCB:
1815                         ql_process_mac_tx_intr(qdev, net_rsp);
1816                         break;
1817                 default:
1818                         QPRINTK(qdev, RX_STATUS, DEBUG,
1819                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1820                                 net_rsp->opcode);
1821                 }
1822                 count++;
1823                 ql_update_cq(rx_ring);
1824                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1825         }
1826         ql_write_cq_idx(rx_ring);
1827         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1828         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1829                                         net_rsp != NULL) {
1830                 if (atomic_read(&tx_ring->queue_stopped) &&
1831                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1832                         /*
1833                          * The queue got stopped because the tx_ring was full.
1834                          * Wake it up, because it's now at least 25% empty.
1835                          */
1836                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1837         }
1838
1839         return count;
1840 }
1841
1842 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1843 {
1844         struct ql_adapter *qdev = rx_ring->qdev;
1845         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1846         struct ql_net_rsp_iocb *net_rsp;
1847         int count = 0;
1848
1849         /* While there are entries in the completion queue. */
1850         while (prod != rx_ring->cnsmr_idx) {
1851
1852                 QPRINTK(qdev, RX_STATUS, DEBUG,
1853                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1854                         prod, rx_ring->cnsmr_idx);
1855
1856                 net_rsp = rx_ring->curr_entry;
1857                 rmb();
1858                 switch (net_rsp->opcode) {
1859                 case OPCODE_IB_MAC_IOCB:
1860                         ql_process_mac_rx_intr(qdev, rx_ring,
1861                                                (struct ib_mac_iocb_rsp *)
1862                                                net_rsp);
1863                         break;
1864
1865                 case OPCODE_IB_AE_IOCB:
1866                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1867                                                 net_rsp);
1868                         break;
1869                 default:
1870                         {
1871                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1872                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1873                                         net_rsp->opcode);
1874                         }
1875                 }
1876                 count++;
1877                 ql_update_cq(rx_ring);
1878                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1879                 if (count == budget)
1880                         break;
1881         }
1882         ql_update_buffer_queues(qdev, rx_ring);
1883         ql_write_cq_idx(rx_ring);
1884         return count;
1885 }
1886
1887 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1888 {
1889         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1890         struct ql_adapter *qdev = rx_ring->qdev;
1891         struct rx_ring *trx_ring;
1892         int i, work_done = 0;
1893         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
1894
1895         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1896                 rx_ring->cq_id);
1897
1898         /* Service the TX rings first.  They start
1899          * right after the RSS rings. */
1900         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1901                 trx_ring = &qdev->rx_ring[i];
1902                 /* If this TX completion ring belongs to this vector and
1903                  * it's not empty then service it.
1904                  */
1905                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1906                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1907                                         trx_ring->cnsmr_idx)) {
1908                         QPRINTK(qdev, INTR, DEBUG,
1909                                 "%s: Servicing TX completion ring %d.\n",
1910                                 __func__, trx_ring->cq_id);
1911                         ql_clean_outbound_rx_ring(trx_ring);
1912                 }
1913         }
1914
1915         /*
1916          * Now service the RSS ring if it's active.
1917          */
1918         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1919                                         rx_ring->cnsmr_idx) {
1920                 QPRINTK(qdev, INTR, DEBUG,
1921                         "%s: Servicing RX completion ring %d.\n",
1922                         __func__, rx_ring->cq_id);
1923                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1924         }
1925
1926         if (work_done < budget) {
1927                 napi_complete(napi);
1928                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1929         }
1930         return work_done;
1931 }
1932
1933 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1934 {
1935         struct ql_adapter *qdev = netdev_priv(ndev);
1936
1937         qdev->vlgrp = grp;
1938         if (grp) {
1939                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1940                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1941                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1942         } else {
1943                 QPRINTK(qdev, IFUP, DEBUG,
1944                         "Turning off VLAN in NIC_RCV_CFG.\n");
1945                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1946         }
1947 }
1948
1949 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1950 {
1951         struct ql_adapter *qdev = netdev_priv(ndev);
1952         u32 enable_bit = MAC_ADDR_E;
1953         int status;
1954
1955         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1956         if (status)
1957                 return;
1958         if (ql_set_mac_addr_reg
1959             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1960                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1961         }
1962         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1963 }
1964
1965 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1966 {
1967         struct ql_adapter *qdev = netdev_priv(ndev);
1968         u32 enable_bit = 0;
1969         int status;
1970
1971         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1972         if (status)
1973                 return;
1974
1975         if (ql_set_mac_addr_reg
1976             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1977                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1978         }
1979         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1980
1981 }
1982
1983 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1984 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1985 {
1986         struct rx_ring *rx_ring = dev_id;
1987         napi_schedule(&rx_ring->napi);
1988         return IRQ_HANDLED;
1989 }
1990
1991 /* This handles a fatal error, MPI activity, and the default
1992  * rx_ring in an MSI-X multiple vector environment.
1993  * In MSI/Legacy environment it also process the rest of
1994  * the rx_rings.
1995  */
1996 static irqreturn_t qlge_isr(int irq, void *dev_id)
1997 {
1998         struct rx_ring *rx_ring = dev_id;
1999         struct ql_adapter *qdev = rx_ring->qdev;
2000         struct intr_context *intr_context = &qdev->intr_context[0];
2001         u32 var;
2002         int work_done = 0;
2003
2004         spin_lock(&qdev->hw_lock);
2005         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2006                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
2007                 spin_unlock(&qdev->hw_lock);
2008                 return IRQ_NONE;
2009         }
2010         spin_unlock(&qdev->hw_lock);
2011
2012         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2013
2014         /*
2015          * Check for fatal error.
2016          */
2017         if (var & STS_FE) {
2018                 ql_queue_asic_error(qdev);
2019                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2020                 var = ql_read32(qdev, ERR_STS);
2021                 QPRINTK(qdev, INTR, ERR,
2022                         "Resetting chip. Error Status Register = 0x%x\n", var);
2023                 return IRQ_HANDLED;
2024         }
2025
2026         /*
2027          * Check MPI processor activity.
2028          */
2029         if ((var & STS_PI) &&
2030                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2031                 /*
2032                  * We've got an async event or mailbox completion.
2033                  * Handle it and clear the source of the interrupt.
2034                  */
2035                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2036                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2037                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2038                 queue_delayed_work_on(smp_processor_id(),
2039                                 qdev->workqueue, &qdev->mpi_work, 0);
2040                 work_done++;
2041         }
2042
2043         /*
2044          * Get the bit-mask that shows the active queues for this
2045          * pass.  Compare it to the queues that this irq services
2046          * and call napi if there's a match.
2047          */
2048         var = ql_read32(qdev, ISR1);
2049         if (var & intr_context->irq_mask) {
2050                                 QPRINTK(qdev, INTR, INFO,
2051                         "Waking handler for rx_ring[0].\n");
2052                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2053                                         napi_schedule(&rx_ring->napi);
2054                                 work_done++;
2055                         }
2056         ql_enable_completion_interrupt(qdev, intr_context->intr);
2057         return work_done ? IRQ_HANDLED : IRQ_NONE;
2058 }
2059
2060 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2061 {
2062
2063         if (skb_is_gso(skb)) {
2064                 int err;
2065                 if (skb_header_cloned(skb)) {
2066                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2067                         if (err)
2068                                 return err;
2069                 }
2070
2071                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2072                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2073                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2074                 mac_iocb_ptr->total_hdrs_len =
2075                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2076                 mac_iocb_ptr->net_trans_offset =
2077                     cpu_to_le16(skb_network_offset(skb) |
2078                                 skb_transport_offset(skb)
2079                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2080                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2081                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2082                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2083                         struct iphdr *iph = ip_hdr(skb);
2084                         iph->check = 0;
2085                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2086                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2087                                                                  iph->daddr, 0,
2088                                                                  IPPROTO_TCP,
2089                                                                  0);
2090                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2091                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2092                         tcp_hdr(skb)->check =
2093                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2094                                              &ipv6_hdr(skb)->daddr,
2095                                              0, IPPROTO_TCP, 0);
2096                 }
2097                 return 1;
2098         }
2099         return 0;
2100 }
2101
2102 static void ql_hw_csum_setup(struct sk_buff *skb,
2103                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2104 {
2105         int len;
2106         struct iphdr *iph = ip_hdr(skb);
2107         __sum16 *check;
2108         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2109         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2110         mac_iocb_ptr->net_trans_offset =
2111                 cpu_to_le16(skb_network_offset(skb) |
2112                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2113
2114         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2115         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2116         if (likely(iph->protocol == IPPROTO_TCP)) {
2117                 check = &(tcp_hdr(skb)->check);
2118                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2119                 mac_iocb_ptr->total_hdrs_len =
2120                     cpu_to_le16(skb_transport_offset(skb) +
2121                                 (tcp_hdr(skb)->doff << 2));
2122         } else {
2123                 check = &(udp_hdr(skb)->check);
2124                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2125                 mac_iocb_ptr->total_hdrs_len =
2126                     cpu_to_le16(skb_transport_offset(skb) +
2127                                 sizeof(struct udphdr));
2128         }
2129         *check = ~csum_tcpudp_magic(iph->saddr,
2130                                     iph->daddr, len, iph->protocol, 0);
2131 }
2132
2133 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2134 {
2135         struct tx_ring_desc *tx_ring_desc;
2136         struct ob_mac_iocb_req *mac_iocb_ptr;
2137         struct ql_adapter *qdev = netdev_priv(ndev);
2138         int tso;
2139         struct tx_ring *tx_ring;
2140         u32 tx_ring_idx = (u32) skb->queue_mapping;
2141
2142         tx_ring = &qdev->tx_ring[tx_ring_idx];
2143
2144         if (skb_padto(skb, ETH_ZLEN))
2145                 return NETDEV_TX_OK;
2146
2147         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2148                 QPRINTK(qdev, TX_QUEUED, INFO,
2149                         "%s: shutting down tx queue %d du to lack of resources.\n",
2150                         __func__, tx_ring_idx);
2151                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2152                 atomic_inc(&tx_ring->queue_stopped);
2153                 return NETDEV_TX_BUSY;
2154         }
2155         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2156         mac_iocb_ptr = tx_ring_desc->queue_entry;
2157         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2158
2159         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2160         mac_iocb_ptr->tid = tx_ring_desc->index;
2161         /* We use the upper 32-bits to store the tx queue for this IO.
2162          * When we get the completion we can use it to establish the context.
2163          */
2164         mac_iocb_ptr->txq_idx = tx_ring_idx;
2165         tx_ring_desc->skb = skb;
2166
2167         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2168
2169         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2170                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2171                         vlan_tx_tag_get(skb));
2172                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2173                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2174         }
2175         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2176         if (tso < 0) {
2177                 dev_kfree_skb_any(skb);
2178                 return NETDEV_TX_OK;
2179         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2180                 ql_hw_csum_setup(skb,
2181                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2182         }
2183         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2184                         NETDEV_TX_OK) {
2185                 QPRINTK(qdev, TX_QUEUED, ERR,
2186                                 "Could not map the segments.\n");
2187                 return NETDEV_TX_BUSY;
2188         }
2189         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2190         tx_ring->prod_idx++;
2191         if (tx_ring->prod_idx == tx_ring->wq_len)
2192                 tx_ring->prod_idx = 0;
2193         wmb();
2194
2195         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2196         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2197                 tx_ring->prod_idx, skb->len);
2198
2199         atomic_dec(&tx_ring->tx_count);
2200         return NETDEV_TX_OK;
2201 }
2202
2203 static void ql_free_shadow_space(struct ql_adapter *qdev)
2204 {
2205         if (qdev->rx_ring_shadow_reg_area) {
2206                 pci_free_consistent(qdev->pdev,
2207                                     PAGE_SIZE,
2208                                     qdev->rx_ring_shadow_reg_area,
2209                                     qdev->rx_ring_shadow_reg_dma);
2210                 qdev->rx_ring_shadow_reg_area = NULL;
2211         }
2212         if (qdev->tx_ring_shadow_reg_area) {
2213                 pci_free_consistent(qdev->pdev,
2214                                     PAGE_SIZE,
2215                                     qdev->tx_ring_shadow_reg_area,
2216                                     qdev->tx_ring_shadow_reg_dma);
2217                 qdev->tx_ring_shadow_reg_area = NULL;
2218         }
2219 }
2220
2221 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2222 {
2223         qdev->rx_ring_shadow_reg_area =
2224             pci_alloc_consistent(qdev->pdev,
2225                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2226         if (qdev->rx_ring_shadow_reg_area == NULL) {
2227                 QPRINTK(qdev, IFUP, ERR,
2228                         "Allocation of RX shadow space failed.\n");
2229                 return -ENOMEM;
2230         }
2231         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2232         qdev->tx_ring_shadow_reg_area =
2233             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2234                                  &qdev->tx_ring_shadow_reg_dma);
2235         if (qdev->tx_ring_shadow_reg_area == NULL) {
2236                 QPRINTK(qdev, IFUP, ERR,
2237                         "Allocation of TX shadow space failed.\n");
2238                 goto err_wqp_sh_area;
2239         }
2240         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2241         return 0;
2242
2243 err_wqp_sh_area:
2244         pci_free_consistent(qdev->pdev,
2245                             PAGE_SIZE,
2246                             qdev->rx_ring_shadow_reg_area,
2247                             qdev->rx_ring_shadow_reg_dma);
2248         return -ENOMEM;
2249 }
2250
2251 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2252 {
2253         struct tx_ring_desc *tx_ring_desc;
2254         int i;
2255         struct ob_mac_iocb_req *mac_iocb_ptr;
2256
2257         mac_iocb_ptr = tx_ring->wq_base;
2258         tx_ring_desc = tx_ring->q;
2259         for (i = 0; i < tx_ring->wq_len; i++) {
2260                 tx_ring_desc->index = i;
2261                 tx_ring_desc->skb = NULL;
2262                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2263                 mac_iocb_ptr++;
2264                 tx_ring_desc++;
2265         }
2266         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2267         atomic_set(&tx_ring->queue_stopped, 0);
2268 }
2269
2270 static void ql_free_tx_resources(struct ql_adapter *qdev,
2271                                  struct tx_ring *tx_ring)
2272 {
2273         if (tx_ring->wq_base) {
2274                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2275                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2276                 tx_ring->wq_base = NULL;
2277         }
2278         kfree(tx_ring->q);
2279         tx_ring->q = NULL;
2280 }
2281
2282 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2283                                  struct tx_ring *tx_ring)
2284 {
2285         tx_ring->wq_base =
2286             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2287                                  &tx_ring->wq_base_dma);
2288
2289         if ((tx_ring->wq_base == NULL)
2290                 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2291                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2292                 return -ENOMEM;
2293         }
2294         tx_ring->q =
2295             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2296         if (tx_ring->q == NULL)
2297                 goto err;
2298
2299         return 0;
2300 err:
2301         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2302                             tx_ring->wq_base, tx_ring->wq_base_dma);
2303         return -ENOMEM;
2304 }
2305
2306 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2307 {
2308         int i;
2309         struct bq_desc *lbq_desc;
2310
2311         for (i = 0; i < rx_ring->lbq_len; i++) {
2312                 lbq_desc = &rx_ring->lbq[i];
2313                 if (lbq_desc->p.lbq_page) {
2314                         pci_unmap_page(qdev->pdev,
2315                                        pci_unmap_addr(lbq_desc, mapaddr),
2316                                        pci_unmap_len(lbq_desc, maplen),
2317                                        PCI_DMA_FROMDEVICE);
2318
2319                         put_page(lbq_desc->p.lbq_page);
2320                         lbq_desc->p.lbq_page = NULL;
2321                 }
2322         }
2323 }
2324
2325 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2326 {
2327         int i;
2328         struct bq_desc *sbq_desc;
2329
2330         for (i = 0; i < rx_ring->sbq_len; i++) {
2331                 sbq_desc = &rx_ring->sbq[i];
2332                 if (sbq_desc == NULL) {
2333                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2334                         return;
2335                 }
2336                 if (sbq_desc->p.skb) {
2337                         pci_unmap_single(qdev->pdev,
2338                                          pci_unmap_addr(sbq_desc, mapaddr),
2339                                          pci_unmap_len(sbq_desc, maplen),
2340                                          PCI_DMA_FROMDEVICE);
2341                         dev_kfree_skb(sbq_desc->p.skb);
2342                         sbq_desc->p.skb = NULL;
2343                 }
2344         }
2345 }
2346
2347 /* Free all large and small rx buffers associated
2348  * with the completion queues for this device.
2349  */
2350 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2351 {
2352         int i;
2353         struct rx_ring *rx_ring;
2354
2355         for (i = 0; i < qdev->rx_ring_count; i++) {
2356                 rx_ring = &qdev->rx_ring[i];
2357                 if (rx_ring->lbq)
2358                         ql_free_lbq_buffers(qdev, rx_ring);
2359                 if (rx_ring->sbq)
2360                         ql_free_sbq_buffers(qdev, rx_ring);
2361         }
2362 }
2363
2364 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2365 {
2366         struct rx_ring *rx_ring;
2367         int i;
2368
2369         for (i = 0; i < qdev->rx_ring_count; i++) {
2370                 rx_ring = &qdev->rx_ring[i];
2371                 if (rx_ring->type != TX_Q)
2372                         ql_update_buffer_queues(qdev, rx_ring);
2373         }
2374 }
2375
2376 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2377                                 struct rx_ring *rx_ring)
2378 {
2379         int i;
2380         struct bq_desc *lbq_desc;
2381         __le64 *bq = rx_ring->lbq_base;
2382
2383         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2384         for (i = 0; i < rx_ring->lbq_len; i++) {
2385                 lbq_desc = &rx_ring->lbq[i];
2386                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2387                 lbq_desc->index = i;
2388                 lbq_desc->addr = bq;
2389                 bq++;
2390         }
2391 }
2392
2393 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2394                                 struct rx_ring *rx_ring)
2395 {
2396         int i;
2397         struct bq_desc *sbq_desc;
2398         __le64 *bq = rx_ring->sbq_base;
2399
2400         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2401         for (i = 0; i < rx_ring->sbq_len; i++) {
2402                 sbq_desc = &rx_ring->sbq[i];
2403                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2404                 sbq_desc->index = i;
2405                 sbq_desc->addr = bq;
2406                 bq++;
2407         }
2408 }
2409
2410 static void ql_free_rx_resources(struct ql_adapter *qdev,
2411                                  struct rx_ring *rx_ring)
2412 {
2413         /* Free the small buffer queue. */
2414         if (rx_ring->sbq_base) {
2415                 pci_free_consistent(qdev->pdev,
2416                                     rx_ring->sbq_size,
2417                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2418                 rx_ring->sbq_base = NULL;
2419         }
2420
2421         /* Free the small buffer queue control blocks. */
2422         kfree(rx_ring->sbq);
2423         rx_ring->sbq = NULL;
2424
2425         /* Free the large buffer queue. */
2426         if (rx_ring->lbq_base) {
2427                 pci_free_consistent(qdev->pdev,
2428                                     rx_ring->lbq_size,
2429                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2430                 rx_ring->lbq_base = NULL;
2431         }
2432
2433         /* Free the large buffer queue control blocks. */
2434         kfree(rx_ring->lbq);
2435         rx_ring->lbq = NULL;
2436
2437         /* Free the rx queue. */
2438         if (rx_ring->cq_base) {
2439                 pci_free_consistent(qdev->pdev,
2440                                     rx_ring->cq_size,
2441                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2442                 rx_ring->cq_base = NULL;
2443         }
2444 }
2445
2446 /* Allocate queues and buffers for this completions queue based
2447  * on the values in the parameter structure. */
2448 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2449                                  struct rx_ring *rx_ring)
2450 {
2451
2452         /*
2453          * Allocate the completion queue for this rx_ring.
2454          */
2455         rx_ring->cq_base =
2456             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2457                                  &rx_ring->cq_base_dma);
2458
2459         if (rx_ring->cq_base == NULL) {
2460                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2461                 return -ENOMEM;
2462         }
2463
2464         if (rx_ring->sbq_len) {
2465                 /*
2466                  * Allocate small buffer queue.
2467                  */
2468                 rx_ring->sbq_base =
2469                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2470                                          &rx_ring->sbq_base_dma);
2471
2472                 if (rx_ring->sbq_base == NULL) {
2473                         QPRINTK(qdev, IFUP, ERR,
2474                                 "Small buffer queue allocation failed.\n");
2475                         goto err_mem;
2476                 }
2477
2478                 /*
2479                  * Allocate small buffer queue control blocks.
2480                  */
2481                 rx_ring->sbq =
2482                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2483                             GFP_KERNEL);
2484                 if (rx_ring->sbq == NULL) {
2485                         QPRINTK(qdev, IFUP, ERR,
2486                                 "Small buffer queue control block allocation failed.\n");
2487                         goto err_mem;
2488                 }
2489
2490                 ql_init_sbq_ring(qdev, rx_ring);
2491         }
2492
2493         if (rx_ring->lbq_len) {
2494                 /*
2495                  * Allocate large buffer queue.
2496                  */
2497                 rx_ring->lbq_base =
2498                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2499                                          &rx_ring->lbq_base_dma);
2500
2501                 if (rx_ring->lbq_base == NULL) {
2502                         QPRINTK(qdev, IFUP, ERR,
2503                                 "Large buffer queue allocation failed.\n");
2504                         goto err_mem;
2505                 }
2506                 /*
2507                  * Allocate large buffer queue control blocks.
2508                  */
2509                 rx_ring->lbq =
2510                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2511                             GFP_KERNEL);
2512                 if (rx_ring->lbq == NULL) {
2513                         QPRINTK(qdev, IFUP, ERR,
2514                                 "Large buffer queue control block allocation failed.\n");
2515                         goto err_mem;
2516                 }
2517
2518                 ql_init_lbq_ring(qdev, rx_ring);
2519         }
2520
2521         return 0;
2522
2523 err_mem:
2524         ql_free_rx_resources(qdev, rx_ring);
2525         return -ENOMEM;
2526 }
2527
2528 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2529 {
2530         struct tx_ring *tx_ring;
2531         struct tx_ring_desc *tx_ring_desc;
2532         int i, j;
2533
2534         /*
2535          * Loop through all queues and free
2536          * any resources.
2537          */
2538         for (j = 0; j < qdev->tx_ring_count; j++) {
2539                 tx_ring = &qdev->tx_ring[j];
2540                 for (i = 0; i < tx_ring->wq_len; i++) {
2541                         tx_ring_desc = &tx_ring->q[i];
2542                         if (tx_ring_desc && tx_ring_desc->skb) {
2543                                 QPRINTK(qdev, IFDOWN, ERR,
2544                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2545                                         tx_ring_desc->skb, j,
2546                                         tx_ring_desc->index);
2547                                 ql_unmap_send(qdev, tx_ring_desc,
2548                                               tx_ring_desc->map_cnt);
2549                                 dev_kfree_skb(tx_ring_desc->skb);
2550                                 tx_ring_desc->skb = NULL;
2551                         }
2552                 }
2553         }
2554 }
2555
2556 static void ql_free_mem_resources(struct ql_adapter *qdev)
2557 {
2558         int i;
2559
2560         for (i = 0; i < qdev->tx_ring_count; i++)
2561                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2562         for (i = 0; i < qdev->rx_ring_count; i++)
2563                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2564         ql_free_shadow_space(qdev);
2565 }
2566
2567 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2568 {
2569         int i;
2570
2571         /* Allocate space for our shadow registers and such. */
2572         if (ql_alloc_shadow_space(qdev))
2573                 return -ENOMEM;
2574
2575         for (i = 0; i < qdev->rx_ring_count; i++) {
2576                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2577                         QPRINTK(qdev, IFUP, ERR,
2578                                 "RX resource allocation failed.\n");
2579                         goto err_mem;
2580                 }
2581         }
2582         /* Allocate tx queue resources */
2583         for (i = 0; i < qdev->tx_ring_count; i++) {
2584                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2585                         QPRINTK(qdev, IFUP, ERR,
2586                                 "TX resource allocation failed.\n");
2587                         goto err_mem;
2588                 }
2589         }
2590         return 0;
2591
2592 err_mem:
2593         ql_free_mem_resources(qdev);
2594         return -ENOMEM;
2595 }
2596
2597 /* Set up the rx ring control block and pass it to the chip.
2598  * The control block is defined as
2599  * "Completion Queue Initialization Control Block", or cqicb.
2600  */
2601 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2602 {
2603         struct cqicb *cqicb = &rx_ring->cqicb;
2604         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2605                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2606         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2607                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2608         void __iomem *doorbell_area =
2609             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2610         int err = 0;
2611         u16 bq_len;
2612         u64 tmp;
2613         __le64 *base_indirect_ptr;
2614         int page_entries;
2615
2616         /* Set up the shadow registers for this ring. */
2617         rx_ring->prod_idx_sh_reg = shadow_reg;
2618         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2619         shadow_reg += sizeof(u64);
2620         shadow_reg_dma += sizeof(u64);
2621         rx_ring->lbq_base_indirect = shadow_reg;
2622         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2623         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2624         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2625         rx_ring->sbq_base_indirect = shadow_reg;
2626         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2627
2628         /* PCI doorbell mem area + 0x00 for consumer index register */
2629         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2630         rx_ring->cnsmr_idx = 0;
2631         rx_ring->curr_entry = rx_ring->cq_base;
2632
2633         /* PCI doorbell mem area + 0x04 for valid register */
2634         rx_ring->valid_db_reg = doorbell_area + 0x04;
2635
2636         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2637         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2638
2639         /* PCI doorbell mem area + 0x1c */
2640         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2641
2642         memset((void *)cqicb, 0, sizeof(struct cqicb));
2643         cqicb->msix_vect = rx_ring->irq;
2644
2645         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2646         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2647
2648         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2649
2650         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2651
2652         /*
2653          * Set up the control block load flags.
2654          */
2655         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2656             FLAGS_LV |          /* Load MSI-X vector */
2657             FLAGS_LI;           /* Load irq delay values */
2658         if (rx_ring->lbq_len) {
2659                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2660                 tmp = (u64)rx_ring->lbq_base_dma;
2661                 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2662                 page_entries = 0;
2663                 do {
2664                         *base_indirect_ptr = cpu_to_le64(tmp);
2665                         tmp += DB_PAGE_SIZE;
2666                         base_indirect_ptr++;
2667                         page_entries++;
2668                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2669                 cqicb->lbq_addr =
2670                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2671                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2672                         (u16) rx_ring->lbq_buf_size;
2673                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2674                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2675                         (u16) rx_ring->lbq_len;
2676                 cqicb->lbq_len = cpu_to_le16(bq_len);
2677                 rx_ring->lbq_prod_idx = 0;
2678                 rx_ring->lbq_curr_idx = 0;
2679                 rx_ring->lbq_clean_idx = 0;
2680                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2681         }
2682         if (rx_ring->sbq_len) {
2683                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2684                 tmp = (u64)rx_ring->sbq_base_dma;
2685                 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2686                 page_entries = 0;
2687                 do {
2688                         *base_indirect_ptr = cpu_to_le64(tmp);
2689                         tmp += DB_PAGE_SIZE;
2690                         base_indirect_ptr++;
2691                         page_entries++;
2692                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2693                 cqicb->sbq_addr =
2694                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2695                 cqicb->sbq_buf_size =
2696                     cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2697                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2698                         (u16) rx_ring->sbq_len;
2699                 cqicb->sbq_len = cpu_to_le16(bq_len);
2700                 rx_ring->sbq_prod_idx = 0;
2701                 rx_ring->sbq_curr_idx = 0;
2702                 rx_ring->sbq_clean_idx = 0;
2703                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2704         }
2705         switch (rx_ring->type) {
2706         case TX_Q:
2707                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2708                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2709                 break;
2710         case RX_Q:
2711                 /* Inbound completion handling rx_rings run in
2712                  * separate NAPI contexts.
2713                  */
2714                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2715                                64);
2716                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2717                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2718                 break;
2719         default:
2720                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2721                         rx_ring->type);
2722         }
2723         QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2724         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2725                            CFG_LCQ, rx_ring->cq_id);
2726         if (err) {
2727                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2728                 return err;
2729         }
2730         return err;
2731 }
2732
2733 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2734 {
2735         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2736         void __iomem *doorbell_area =
2737             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2738         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2739             (tx_ring->wq_id * sizeof(u64));
2740         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2741             (tx_ring->wq_id * sizeof(u64));
2742         int err = 0;
2743
2744         /*
2745          * Assign doorbell registers for this tx_ring.
2746          */
2747         /* TX PCI doorbell mem area for tx producer index */
2748         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2749         tx_ring->prod_idx = 0;
2750         /* TX PCI doorbell mem area + 0x04 */
2751         tx_ring->valid_db_reg = doorbell_area + 0x04;
2752
2753         /*
2754          * Assign shadow registers for this tx_ring.
2755          */
2756         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2757         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2758
2759         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2760         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2761                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2762         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2763         wqicb->rid = 0;
2764         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2765
2766         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2767
2768         ql_init_tx_ring(qdev, tx_ring);
2769
2770         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
2771                            (u16) tx_ring->wq_id);
2772         if (err) {
2773                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2774                 return err;
2775         }
2776         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2777         return err;
2778 }
2779
2780 static void ql_disable_msix(struct ql_adapter *qdev)
2781 {
2782         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2783                 pci_disable_msix(qdev->pdev);
2784                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2785                 kfree(qdev->msi_x_entry);
2786                 qdev->msi_x_entry = NULL;
2787         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2788                 pci_disable_msi(qdev->pdev);
2789                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2790         }
2791 }
2792
2793 /* We start by trying to get the number of vectors
2794  * stored in qdev->intr_count. If we don't get that
2795  * many then we reduce the count and try again.
2796  */
2797 static void ql_enable_msix(struct ql_adapter *qdev)
2798 {
2799         int i, err;
2800
2801         /* Get the MSIX vectors. */
2802         if (irq_type == MSIX_IRQ) {
2803                 /* Try to alloc space for the msix struct,
2804                  * if it fails then go to MSI/legacy.
2805                  */
2806                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
2807                                             sizeof(struct msix_entry),
2808                                             GFP_KERNEL);
2809                 if (!qdev->msi_x_entry) {
2810                         irq_type = MSI_IRQ;
2811                         goto msi;
2812                 }
2813
2814                 for (i = 0; i < qdev->intr_count; i++)
2815                         qdev->msi_x_entry[i].entry = i;
2816
2817                 /* Loop to get our vectors.  We start with
2818                  * what we want and settle for what we get.
2819                  */
2820                 do {
2821                         err = pci_enable_msix(qdev->pdev,
2822                                 qdev->msi_x_entry, qdev->intr_count);
2823                         if (err > 0)
2824                                 qdev->intr_count = err;
2825                 } while (err > 0);
2826
2827                 if (err < 0) {
2828                         kfree(qdev->msi_x_entry);
2829                         qdev->msi_x_entry = NULL;
2830                         QPRINTK(qdev, IFUP, WARNING,
2831                                 "MSI-X Enable failed, trying MSI.\n");
2832                         qdev->intr_count = 1;
2833                         irq_type = MSI_IRQ;
2834                 } else if (err == 0) {
2835                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2836                         QPRINTK(qdev, IFUP, INFO,
2837                                 "MSI-X Enabled, got %d vectors.\n",
2838                                 qdev->intr_count);
2839                         return;
2840                 }
2841         }
2842 msi:
2843         qdev->intr_count = 1;
2844         if (irq_type == MSI_IRQ) {
2845                 if (!pci_enable_msi(qdev->pdev)) {
2846                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2847                         QPRINTK(qdev, IFUP, INFO,
2848                                 "Running with MSI interrupts.\n");
2849                         return;
2850                 }
2851         }
2852         irq_type = LEG_IRQ;
2853         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2854 }
2855
2856 /* Each vector services 1 RSS ring and and 1 or more
2857  * TX completion rings.  This function loops through
2858  * the TX completion rings and assigns the vector that
2859  * will service it.  An example would be if there are
2860  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2861  * This would mean that vector 0 would service RSS ring 0
2862  * and TX competion rings 0,1,2 and 3.  Vector 1 would
2863  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2864  */
2865 static void ql_set_tx_vect(struct ql_adapter *qdev)
2866 {
2867         int i, j, vect;
2868         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2869
2870         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2871                 /* Assign irq vectors to TX rx_rings.*/
2872                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2873                                          i < qdev->rx_ring_count; i++) {
2874                         if (j == tx_rings_per_vector) {
2875                                 vect++;
2876                                 j = 0;
2877                         }
2878                         qdev->rx_ring[i].irq = vect;
2879                         j++;
2880                 }
2881         } else {
2882                 /* For single vector all rings have an irq
2883                  * of zero.
2884                  */
2885                 for (i = 0; i < qdev->rx_ring_count; i++)
2886                         qdev->rx_ring[i].irq = 0;
2887         }
2888 }
2889
2890 /* Set the interrupt mask for this vector.  Each vector
2891  * will service 1 RSS ring and 1 or more TX completion
2892  * rings.  This function sets up a bit mask per vector
2893  * that indicates which rings it services.
2894  */
2895 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2896 {
2897         int j, vect = ctx->intr;
2898         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2899
2900         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2901                 /* Add the RSS ring serviced by this vector
2902                  * to the mask.
2903                  */
2904                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2905                 /* Add the TX ring(s) serviced by this vector
2906                  * to the mask. */
2907                 for (j = 0; j < tx_rings_per_vector; j++) {
2908                         ctx->irq_mask |=
2909                         (1 << qdev->rx_ring[qdev->rss_ring_count +
2910                         (vect * tx_rings_per_vector) + j].cq_id);
2911                 }
2912         } else {
2913                 /* For single vector we just shift each queue's
2914                  * ID into the mask.
2915                  */
2916                 for (j = 0; j < qdev->rx_ring_count; j++)
2917                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2918         }
2919 }
2920
2921 /*
2922  * Here we build the intr_context structures based on
2923  * our rx_ring count and intr vector count.
2924  * The intr_context structure is used to hook each vector
2925  * to possibly different handlers.
2926  */
2927 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2928 {
2929         int i = 0;
2930         struct intr_context *intr_context = &qdev->intr_context[0];
2931
2932         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2933                 /* Each rx_ring has it's
2934                  * own intr_context since we have separate
2935                  * vectors for each queue.
2936                  */
2937                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2938                         qdev->rx_ring[i].irq = i;
2939                         intr_context->intr = i;
2940                         intr_context->qdev = qdev;
2941                         /* Set up this vector's bit-mask that indicates
2942                          * which queues it services.
2943                          */
2944                         ql_set_irq_mask(qdev, intr_context);
2945                         /*
2946                          * We set up each vectors enable/disable/read bits so
2947                          * there's no bit/mask calculations in the critical path.
2948                          */
2949                         intr_context->intr_en_mask =
2950                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2951                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2952                             | i;
2953                         intr_context->intr_dis_mask =
2954                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2955                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2956                             INTR_EN_IHD | i;
2957                         intr_context->intr_read_mask =
2958                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2959                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2960                             i;
2961                         if (i == 0) {
2962                                 /* The first vector/queue handles
2963                                  * broadcast/multicast, fatal errors,
2964                                  * and firmware events.  This in addition
2965                                  * to normal inbound NAPI processing.
2966                                  */
2967                                 intr_context->handler = qlge_isr;
2968                                 sprintf(intr_context->name, "%s-rx-%d",
2969                                         qdev->ndev->name, i);
2970                         } else {
2971                                 /*
2972                                  * Inbound queues handle unicast frames only.
2973                                  */
2974                                 intr_context->handler = qlge_msix_rx_isr;
2975                                 sprintf(intr_context->name, "%s-rx-%d",
2976                                         qdev->ndev->name, i);
2977                         }
2978                 }
2979         } else {
2980                 /*
2981                  * All rx_rings use the same intr_context since
2982                  * there is only one vector.
2983                  */
2984                 intr_context->intr = 0;
2985                 intr_context->qdev = qdev;
2986                 /*
2987                  * We set up each vectors enable/disable/read bits so
2988                  * there's no bit/mask calculations in the critical path.
2989                  */
2990                 intr_context->intr_en_mask =
2991                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2992                 intr_context->intr_dis_mask =
2993                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2994                     INTR_EN_TYPE_DISABLE;
2995                 intr_context->intr_read_mask =
2996                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2997                 /*
2998                  * Single interrupt means one handler for all rings.
2999                  */
3000                 intr_context->handler = qlge_isr;
3001                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3002                 /* Set up this vector's bit-mask that indicates
3003                  * which queues it services. In this case there is
3004                  * a single vector so it will service all RSS and
3005                  * TX completion rings.
3006                  */
3007                 ql_set_irq_mask(qdev, intr_context);
3008         }
3009         /* Tell the TX completion rings which MSIx vector
3010          * they will be using.
3011          */
3012         ql_set_tx_vect(qdev);
3013 }
3014
3015 static void ql_free_irq(struct ql_adapter *qdev)
3016 {
3017         int i;
3018         struct intr_context *intr_context = &qdev->intr_context[0];
3019
3020         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3021                 if (intr_context->hooked) {
3022                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3023                                 free_irq(qdev->msi_x_entry[i].vector,
3024                                          &qdev->rx_ring[i]);
3025                                 QPRINTK(qdev, IFDOWN, DEBUG,
3026                                         "freeing msix interrupt %d.\n", i);
3027                         } else {
3028                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3029                                 QPRINTK(qdev, IFDOWN, DEBUG,
3030                                         "freeing msi interrupt %d.\n", i);
3031                         }
3032                 }
3033         }
3034         ql_disable_msix(qdev);
3035 }
3036
3037 static int ql_request_irq(struct ql_adapter *qdev)
3038 {
3039         int i;
3040         int status = 0;
3041         struct pci_dev *pdev = qdev->pdev;
3042         struct intr_context *intr_context = &qdev->intr_context[0];
3043
3044         ql_resolve_queues_to_irqs(qdev);
3045
3046         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3047                 atomic_set(&intr_context->irq_cnt, 0);
3048                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3049                         status = request_irq(qdev->msi_x_entry[i].vector,
3050                                              intr_context->handler,
3051                                              0,
3052                                              intr_context->name,
3053                                              &qdev->rx_ring[i]);
3054                         if (status) {
3055                                 QPRINTK(qdev, IFUP, ERR,
3056                                         "Failed request for MSIX interrupt %d.\n",
3057                                         i);
3058                                 goto err_irq;
3059                         } else {
3060                                 QPRINTK(qdev, IFUP, DEBUG,
3061                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3062                                         i,
3063                                         qdev->rx_ring[i].type ==
3064                                         DEFAULT_Q ? "DEFAULT_Q" : "",
3065                                         qdev->rx_ring[i].type ==
3066                                         TX_Q ? "TX_Q" : "",
3067                                         qdev->rx_ring[i].type ==
3068                                         RX_Q ? "RX_Q" : "", intr_context->name);
3069                         }
3070                 } else {
3071                         QPRINTK(qdev, IFUP, DEBUG,
3072                                 "trying msi or legacy interrupts.\n");
3073                         QPRINTK(qdev, IFUP, DEBUG,
3074                                 "%s: irq = %d.\n", __func__, pdev->irq);
3075                         QPRINTK(qdev, IFUP, DEBUG,
3076                                 "%s: context->name = %s.\n", __func__,
3077                                intr_context->name);
3078                         QPRINTK(qdev, IFUP, DEBUG,
3079                                 "%s: dev_id = 0x%p.\n", __func__,
3080                                &qdev->rx_ring[0]);
3081                         status =
3082                             request_irq(pdev->irq, qlge_isr,
3083                                         test_bit(QL_MSI_ENABLED,
3084                                                  &qdev->
3085                                                  flags) ? 0 : IRQF_SHARED,
3086                                         intr_context->name, &qdev->rx_ring[0]);
3087                         if (status)
3088                                 goto err_irq;
3089
3090                         QPRINTK(qdev, IFUP, ERR,
3091                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3092                                 i,
3093                                 qdev->rx_ring[0].type ==
3094                                 DEFAULT_Q ? "DEFAULT_Q" : "",
3095                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3096                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3097                                 intr_context->name);
3098                 }
3099                 intr_context->hooked = 1;
3100         }
3101         return status;
3102 err_irq:
3103         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3104         ql_free_irq(qdev);
3105         return status;
3106 }
3107
3108 static int ql_start_rss(struct ql_adapter *qdev)
3109 {
3110         u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3111                                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
3112                                 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
3113                                 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
3114                                 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
3115                                 0xbe, 0xac, 0x01, 0xfa};
3116         struct ricb *ricb = &qdev->ricb;
3117         int status = 0;
3118         int i;
3119         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3120
3121         memset((void *)ricb, 0, sizeof(*ricb));
3122
3123         ricb->base_cq = RSS_L4K;
3124         ricb->flags =
3125                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3126         ricb->mask = cpu_to_le16((u16)(0x3ff));
3127
3128         /*
3129          * Fill out the Indirection Table.
3130          */
3131         for (i = 0; i < 1024; i++)
3132                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3133
3134         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3135         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3136
3137         QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
3138
3139         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3140         if (status) {
3141                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3142                 return status;
3143         }
3144         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
3145         return status;
3146 }
3147
3148 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3149 {
3150         int i, status = 0;
3151
3152         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3153         if (status)
3154                 return status;
3155         /* Clear all the entries in the routing table. */
3156         for (i = 0; i < 16; i++) {
3157                 status = ql_set_routing_reg(qdev, i, 0, 0);
3158                 if (status) {
3159                         QPRINTK(qdev, IFUP, ERR,
3160                                 "Failed to init routing register for CAM "
3161                                 "packets.\n");
3162                         break;
3163                 }
3164         }
3165         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3166         return status;
3167 }
3168
3169 /* Initialize the frame-to-queue routing. */
3170 static int ql_route_initialize(struct ql_adapter *qdev)
3171 {
3172         int status = 0;
3173
3174         /* Clear all the entries in the routing table. */
3175         status = ql_clear_routing_entries(qdev);
3176         if (status)
3177                 return status;
3178
3179         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3180         if (status)
3181                 return status;
3182
3183         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3184         if (status) {
3185                 QPRINTK(qdev, IFUP, ERR,
3186                         "Failed to init routing register for error packets.\n");
3187                 goto exit;
3188         }
3189         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3190         if (status) {
3191                 QPRINTK(qdev, IFUP, ERR,
3192                         "Failed to init routing register for broadcast packets.\n");
3193                 goto exit;
3194         }
3195         /* If we have more than one inbound queue, then turn on RSS in the
3196          * routing block.
3197          */
3198         if (qdev->rss_ring_count > 1) {
3199                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3200                                         RT_IDX_RSS_MATCH, 1);
3201                 if (status) {
3202                         QPRINTK(qdev, IFUP, ERR,
3203                                 "Failed to init routing register for MATCH RSS packets.\n");
3204                         goto exit;
3205                 }
3206         }
3207
3208         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3209                                     RT_IDX_CAM_HIT, 1);
3210         if (status)
3211                 QPRINTK(qdev, IFUP, ERR,
3212                         "Failed to init routing register for CAM packets.\n");
3213 exit:
3214         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3215         return status;
3216 }
3217
3218 int ql_cam_route_initialize(struct ql_adapter *qdev)
3219 {
3220         int status, set;
3221
3222         /* If check if the link is up and use to
3223          * determine if we are setting or clearing
3224          * the MAC address in the CAM.
3225          */
3226         set = ql_read32(qdev, STS);
3227         set &= qdev->port_link_up;
3228         status = ql_set_mac_addr(qdev, set);
3229         if (status) {
3230                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3231                 return status;
3232         }
3233
3234         status = ql_route_initialize(qdev);
3235         if (status)
3236                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3237
3238         return status;
3239 }
3240
3241 static int ql_adapter_initialize(struct ql_adapter *qdev)
3242 {
3243         u32 value, mask;
3244         int i;
3245         int status = 0;
3246
3247         /*
3248          * Set up the System register to halt on errors.
3249          */
3250         value = SYS_EFE | SYS_FAE;
3251         mask = value << 16;
3252         ql_write32(qdev, SYS, mask | value);
3253
3254         /* Set the default queue, and VLAN behavior. */
3255         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3256         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3257         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3258
3259         /* Set the MPI interrupt to enabled. */
3260         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3261
3262         /* Enable the function, set pagesize, enable error checking. */
3263         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3264             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3265
3266         /* Set/clear header splitting. */
3267         mask = FSC_VM_PAGESIZE_MASK |
3268             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3269         ql_write32(qdev, FSC, mask | value);
3270
3271         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3272                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3273
3274         /* Set RX packet routing to use port/pci function on which the
3275          * packet arrived on in addition to usual frame routing.
3276          * This is helpful on bonding where both interfaces can have
3277          * the same MAC address.
3278          */
3279         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3280
3281         /* Start up the rx queues. */
3282         for (i = 0; i < qdev->rx_ring_count; i++) {
3283                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3284                 if (status) {
3285                         QPRINTK(qdev, IFUP, ERR,
3286                                 "Failed to start rx ring[%d].\n", i);
3287                         return status;
3288                 }
3289         }
3290
3291         /* If there is more than one inbound completion queue
3292          * then download a RICB to configure RSS.
3293          */
3294         if (qdev->rss_ring_count > 1) {
3295                 status = ql_start_rss(qdev);
3296                 if (status) {
3297                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3298                         return status;
3299                 }
3300         }
3301
3302         /* Start up the tx queues. */
3303         for (i = 0; i < qdev->tx_ring_count; i++) {
3304                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3305                 if (status) {
3306                         QPRINTK(qdev, IFUP, ERR,
3307                                 "Failed to start tx ring[%d].\n", i);
3308                         return status;
3309                 }
3310         }
3311
3312         /* Initialize the port and set the max framesize. */
3313         status = qdev->nic_ops->port_initialize(qdev);
3314        if (status) {
3315               QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3316               return status;
3317        }
3318
3319         /* Set up the MAC address and frame routing filter. */
3320         status = ql_cam_route_initialize(qdev);
3321         if (status) {
3322                 QPRINTK(qdev, IFUP, ERR,
3323                                 "Failed to init CAM/Routing tables.\n");
3324                 return status;
3325         }
3326
3327         /* Start NAPI for the RSS queues. */
3328         for (i = 0; i < qdev->rss_ring_count; i++) {
3329                 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3330                         i);
3331                 napi_enable(&qdev->rx_ring[i].napi);
3332         }
3333
3334         return status;
3335 }
3336
3337 /* Issue soft reset to chip. */
3338 static int ql_adapter_reset(struct ql_adapter *qdev)
3339 {
3340         u32 value;
3341         int status = 0;
3342         unsigned long end_jiffies;
3343
3344         /* Clear all the entries in the routing table. */
3345         status = ql_clear_routing_entries(qdev);
3346         if (status) {
3347                 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3348                 return status;
3349         }
3350
3351         end_jiffies = jiffies +
3352                 max((unsigned long)1, usecs_to_jiffies(30));
3353
3354         /* Stop management traffic. */
3355         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3356
3357         /* Wait for the NIC and MGMNT FIFOs to empty. */
3358         ql_wait_fifo_empty(qdev);
3359
3360         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3361
3362         do {
3363                 value = ql_read32(qdev, RST_FO);
3364                 if ((value & RST_FO_FR) == 0)
3365                         break;
3366                 cpu_relax();
3367         } while (time_before(jiffies, end_jiffies));
3368
3369         if (value & RST_FO_FR) {
3370                 QPRINTK(qdev, IFDOWN, ERR,
3371                         "ETIMEDOUT!!! errored out of resetting the chip!\n");
3372                 status = -ETIMEDOUT;
3373         }
3374
3375         /* Resume management traffic. */
3376         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3377         return status;
3378 }
3379
3380 static void ql_display_dev_info(struct net_device *ndev)
3381 {
3382         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3383
3384         QPRINTK(qdev, PROBE, INFO,
3385                 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3386                 "XG Roll = %d, XG Rev = %d.\n",
3387                 qdev->func,
3388                 qdev->port,
3389                 qdev->chip_rev_id & 0x0000000f,
3390                 qdev->chip_rev_id >> 4 & 0x0000000f,
3391                 qdev->chip_rev_id >> 8 & 0x0000000f,
3392                 qdev->chip_rev_id >> 12 & 0x0000000f);
3393         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3394 }
3395
3396 static int ql_adapter_down(struct ql_adapter *qdev)
3397 {
3398         int i, status = 0;
3399
3400         ql_link_off(qdev);
3401
3402         /* Don't kill the reset worker thread if we
3403          * are in the process of recovery.
3404          */
3405         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3406                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3407         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3408         cancel_delayed_work_sync(&qdev->mpi_work);
3409         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3410         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3411
3412         for (i = 0; i < qdev->rss_ring_count; i++)
3413                 napi_disable(&qdev->rx_ring[i].napi);
3414
3415         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3416
3417         ql_disable_interrupts(qdev);
3418
3419         ql_tx_ring_clean(qdev);
3420
3421         /* Call netif_napi_del() from common point.
3422          */
3423         for (i = 0; i < qdev->rss_ring_count; i++)
3424                 netif_napi_del(&qdev->rx_ring[i].napi);
3425
3426         ql_free_rx_buffers(qdev);
3427
3428         status = ql_adapter_reset(qdev);
3429         if (status)
3430                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3431                         qdev->func);
3432         return status;
3433 }
3434
3435 static int ql_adapter_up(struct ql_adapter *qdev)
3436 {
3437         int err = 0;
3438
3439         err = ql_adapter_initialize(qdev);
3440         if (err) {
3441                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3442                 goto err_init;
3443         }
3444         set_bit(QL_ADAPTER_UP, &qdev->flags);
3445         ql_alloc_rx_buffers(qdev);
3446         /* If the port is initialized and the
3447          * link is up the turn on the carrier.
3448          */
3449         if ((ql_read32(qdev, STS) & qdev->port_init) &&
3450                         (ql_read32(qdev, STS) & qdev->port_link_up))
3451                 ql_link_on(qdev);
3452         ql_enable_interrupts(qdev);
3453         ql_enable_all_completion_interrupts(qdev);
3454         netif_tx_start_all_queues(qdev->ndev);
3455
3456         return 0;
3457 err_init:
3458         ql_adapter_reset(qdev);
3459         return err;
3460 }
3461
3462 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3463 {
3464         ql_free_mem_resources(qdev);
3465         ql_free_irq(qdev);
3466 }
3467
3468 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3469 {
3470         int status = 0;
3471
3472         if (ql_alloc_mem_resources(qdev)) {
3473                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3474                 return -ENOMEM;
3475         }
3476         status = ql_request_irq(qdev);
3477         return status;
3478 }
3479
3480 static int qlge_close(struct net_device *ndev)
3481 {
3482         struct ql_adapter *qdev = netdev_priv(ndev);
3483
3484         /*
3485          * Wait for device to recover from a reset.
3486          * (Rarely happens, but possible.)
3487          */
3488         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3489                 msleep(1);
3490         ql_adapter_down(qdev);
3491         ql_release_adapter_resources(qdev);
3492         return 0;
3493 }
3494
3495 static int ql_configure_rings(struct ql_adapter *qdev)
3496 {
3497         int i;
3498         struct rx_ring *rx_ring;
3499         struct tx_ring *tx_ring;
3500         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
3501
3502         /* In a perfect world we have one RSS ring for each CPU
3503          * and each has it's own vector.  To do that we ask for
3504          * cpu_cnt vectors.  ql_enable_msix() will adjust the
3505          * vector count to what we actually get.  We then
3506          * allocate an RSS ring for each.
3507          * Essentially, we are doing min(cpu_count, msix_vector_count).
3508          */
3509         qdev->intr_count = cpu_cnt;
3510         ql_enable_msix(qdev);
3511         /* Adjust the RSS ring count to the actual vector count. */
3512         qdev->rss_ring_count = qdev->intr_count;
3513         qdev->tx_ring_count = cpu_cnt;
3514         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
3515
3516         for (i = 0; i < qdev->tx_ring_count; i++) {
3517                 tx_ring = &qdev->tx_ring[i];
3518                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
3519                 tx_ring->qdev = qdev;
3520                 tx_ring->wq_id = i;
3521                 tx_ring->wq_len = qdev->tx_ring_size;
3522                 tx_ring->wq_size =
3523                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3524
3525                 /*
3526                  * The completion queue ID for the tx rings start
3527                  * immediately after the rss rings.
3528                  */
3529                 tx_ring->cq_id = qdev->rss_ring_count + i;
3530         }
3531
3532         for (i = 0; i < qdev->rx_ring_count; i++) {
3533                 rx_ring = &qdev->rx_ring[i];
3534                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
3535                 rx_ring->qdev = qdev;
3536                 rx_ring->cq_id = i;
3537                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3538                 if (i < qdev->rss_ring_count) {
3539                         /*
3540                          * Inbound (RSS) queues.
3541                          */
3542                         rx_ring->cq_len = qdev->rx_ring_size;
3543                         rx_ring->cq_size =
3544                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3545                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3546                         rx_ring->lbq_size =
3547                             rx_ring->lbq_len * sizeof(__le64);
3548                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3549                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3550                         rx_ring->sbq_size =
3551                             rx_ring->sbq_len * sizeof(__le64);
3552                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3553                         rx_ring->type = RX_Q;
3554                 } else {
3555                         /*
3556                          * Outbound queue handles outbound completions only.
3557                          */
3558                         /* outbound cq is same size as tx_ring it services. */
3559                         rx_ring->cq_len = qdev->tx_ring_size;
3560                         rx_ring->cq_size =
3561                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3562                         rx_ring->lbq_len = 0;
3563                         rx_ring->lbq_size = 0;
3564                         rx_ring->lbq_buf_size = 0;
3565                         rx_ring->sbq_len = 0;
3566                         rx_ring->sbq_size = 0;
3567                         rx_ring->sbq_buf_size = 0;
3568                         rx_ring->type = TX_Q;
3569                 }
3570         }
3571         return 0;
3572 }
3573
3574 static int qlge_open(struct net_device *ndev)
3575 {
3576         int err = 0;
3577         struct ql_adapter *qdev = netdev_priv(ndev);
3578
3579         err = ql_configure_rings(qdev);
3580         if (err)
3581                 return err;
3582
3583         err = ql_get_adapter_resources(qdev);
3584         if (err)
3585                 goto error_up;
3586
3587         err = ql_adapter_up(qdev);
3588         if (err)
3589                 goto error_up;
3590
3591         return err;
3592
3593 error_up:
3594         ql_release_adapter_resources(qdev);
3595         return err;
3596 }
3597
3598 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3599 {
3600         struct ql_adapter *qdev = netdev_priv(ndev);
3601
3602         if (ndev->mtu == 1500 && new_mtu == 9000) {
3603                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3604                 queue_delayed_work(qdev->workqueue,
3605                                 &qdev->mpi_port_cfg_work, 0);
3606         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3607                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3608         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3609                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3610                 return 0;
3611         } else
3612                 return -EINVAL;
3613         ndev->mtu = new_mtu;
3614         return 0;
3615 }
3616
3617 static struct net_device_stats *qlge_get_stats(struct net_device
3618                                                *ndev)
3619 {
3620         return &ndev->stats;
3621 }
3622
3623 static void qlge_set_multicast_list(struct net_device *ndev)
3624 {
3625         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3626         struct dev_mc_list *mc_ptr;
3627         int i, status;
3628
3629         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3630         if (status)
3631                 return;
3632         /*
3633          * Set or clear promiscuous mode if a
3634          * transition is taking place.
3635          */
3636         if (ndev->flags & IFF_PROMISC) {
3637                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3638                         if (ql_set_routing_reg
3639                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3640                                 QPRINTK(qdev, HW, ERR,
3641                                         "Failed to set promiscous mode.\n");
3642                         } else {
3643                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3644                         }
3645                 }
3646         } else {
3647                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3648                         if (ql_set_routing_reg
3649                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3650                                 QPRINTK(qdev, HW, ERR,
3651                                         "Failed to clear promiscous mode.\n");
3652                         } else {
3653                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3654                         }
3655                 }
3656         }
3657
3658         /*
3659          * Set or clear all multicast mode if a
3660          * transition is taking place.
3661          */
3662         if ((ndev->flags & IFF_ALLMULTI) ||
3663             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3664                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3665                         if (ql_set_routing_reg
3666                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3667                                 QPRINTK(qdev, HW, ERR,
3668                                         "Failed to set all-multi mode.\n");
3669                         } else {
3670                                 set_bit(QL_ALLMULTI, &qdev->flags);
3671                         }
3672                 }
3673         } else {
3674                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3675                         if (ql_set_routing_reg
3676                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3677                                 QPRINTK(qdev, HW, ERR,
3678                                         "Failed to clear all-multi mode.\n");
3679                         } else {
3680                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3681                         }
3682                 }
3683         }
3684
3685         if (ndev->mc_count) {
3686                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3687                 if (status)
3688                         goto exit;
3689                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3690                      i++, mc_ptr = mc_ptr->next)
3691                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3692                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3693                                 QPRINTK(qdev, HW, ERR,
3694                                         "Failed to loadmulticast address.\n");
3695                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3696                                 goto exit;
3697                         }
3698                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3699                 if (ql_set_routing_reg
3700                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3701                         QPRINTK(qdev, HW, ERR,
3702                                 "Failed to set multicast match mode.\n");
3703                 } else {
3704                         set_bit(QL_ALLMULTI, &qdev->flags);
3705                 }
3706         }
3707 exit:
3708         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3709 }
3710
3711 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3712 {
3713         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3714         struct sockaddr *addr = p;
3715         int status;
3716
3717         if (netif_running(ndev))
3718                 return -EBUSY;
3719
3720         if (!is_valid_ether_addr(addr->sa_data))
3721                 return -EADDRNOTAVAIL;
3722         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3723
3724         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3725         if (status)
3726                 return status;
3727         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3728                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3729         if (status)
3730                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3731         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3732         return status;
3733 }
3734
3735 static void qlge_tx_timeout(struct net_device *ndev)
3736 {
3737         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3738         ql_queue_asic_error(qdev);
3739 }
3740
3741 static void ql_asic_reset_work(struct work_struct *work)
3742 {
3743         struct ql_adapter *qdev =
3744             container_of(work, struct ql_adapter, asic_reset_work.work);
3745         int status;
3746         rtnl_lock();
3747         status = ql_adapter_down(qdev);
3748         if (status)
3749                 goto error;
3750
3751         status = ql_adapter_up(qdev);
3752         if (status)
3753                 goto error;
3754
3755         /* Restore rx mode. */
3756         clear_bit(QL_ALLMULTI, &qdev->flags);
3757         clear_bit(QL_PROMISCUOUS, &qdev->flags);
3758         qlge_set_multicast_list(qdev->ndev);
3759
3760         rtnl_unlock();
3761         return;
3762 error:
3763         QPRINTK(qdev, IFUP, ALERT,
3764                 "Driver up/down cycle failed, closing device\n");
3765
3766         set_bit(QL_ADAPTER_UP, &qdev->flags);
3767         dev_close(qdev->ndev);
3768         rtnl_unlock();
3769 }
3770
3771 static struct nic_operations qla8012_nic_ops = {
3772         .get_flash              = ql_get_8012_flash_params,
3773         .port_initialize        = ql_8012_port_initialize,
3774 };
3775
3776 static struct nic_operations qla8000_nic_ops = {
3777         .get_flash              = ql_get_8000_flash_params,
3778         .port_initialize        = ql_8000_port_initialize,
3779 };
3780
3781 /* Find the pcie function number for the other NIC
3782  * on this chip.  Since both NIC functions share a
3783  * common firmware we have the lowest enabled function
3784  * do any common work.  Examples would be resetting
3785  * after a fatal firmware error, or doing a firmware
3786  * coredump.
3787  */
3788 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3789 {
3790         int status = 0;
3791         u32 temp;
3792         u32 nic_func1, nic_func2;
3793
3794         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3795                         &temp);
3796         if (status)
3797                 return status;
3798
3799         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3800                         MPI_TEST_NIC_FUNC_MASK);
3801         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3802                         MPI_TEST_NIC_FUNC_MASK);
3803
3804         if (qdev->func == nic_func1)
3805                 qdev->alt_func = nic_func2;
3806         else if (qdev->func == nic_func2)
3807                 qdev->alt_func = nic_func1;
3808         else
3809                 status = -EIO;
3810
3811         return status;
3812 }
3813
3814 static int ql_get_board_info(struct ql_adapter *qdev)
3815 {
3816         int status;
3817         qdev->func =
3818             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3819         if (qdev->func > 3)
3820                 return -EIO;
3821
3822         status = ql_get_alt_pcie_func(qdev);
3823         if (status)
3824                 return status;
3825
3826         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3827         if (qdev->port) {
3828                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3829                 qdev->port_link_up = STS_PL1;
3830                 qdev->port_init = STS_PI1;
3831                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3832                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3833         } else {
3834                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3835                 qdev->port_link_up = STS_PL0;
3836                 qdev->port_init = STS_PI0;
3837                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3838                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3839         }
3840         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3841         qdev->device_id = qdev->pdev->device;
3842         if (qdev->device_id == QLGE_DEVICE_ID_8012)
3843                 qdev->nic_ops = &qla8012_nic_ops;
3844         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3845                 qdev->nic_ops = &qla8000_nic_ops;
3846         return status;
3847 }
3848
3849 static void ql_release_all(struct pci_dev *pdev)
3850 {
3851         struct net_device *ndev = pci_get_drvdata(pdev);
3852         struct ql_adapter *qdev = netdev_priv(ndev);
3853
3854         if (qdev->workqueue) {
3855                 destroy_workqueue(qdev->workqueue);
3856                 qdev->workqueue = NULL;
3857         }
3858
3859         if (qdev->reg_base)
3860                 iounmap(qdev->reg_base);
3861         if (qdev->doorbell_area)
3862                 iounmap(qdev->doorbell_area);
3863         pci_release_regions(pdev);
3864         pci_set_drvdata(pdev, NULL);
3865 }
3866
3867 static int __devinit ql_init_device(struct pci_dev *pdev,
3868                                     struct net_device *ndev, int cards_found)
3869 {
3870         struct ql_adapter *qdev = netdev_priv(ndev);
3871         int pos, err = 0;
3872         u16 val16;
3873
3874         memset((void *)qdev, 0, sizeof(*qdev));
3875         err = pci_enable_device(pdev);
3876         if (err) {
3877                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3878                 return err;
3879         }
3880
3881         qdev->ndev = ndev;
3882         qdev->pdev = pdev;
3883         pci_set_drvdata(pdev, ndev);
3884         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3885         if (pos <= 0) {
3886                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3887                         "aborting.\n");
3888                 return pos;
3889         } else {
3890                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3891                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3892                 val16 |= (PCI_EXP_DEVCTL_CERE |
3893                           PCI_EXP_DEVCTL_NFERE |
3894                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3895                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3896         }
3897
3898         err = pci_request_regions(pdev, DRV_NAME);
3899         if (err) {
3900                 dev_err(&pdev->dev, "PCI region request failed.\n");
3901                 return err;
3902         }
3903
3904         pci_set_master(pdev);
3905         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3906                 set_bit(QL_DMA64, &qdev->flags);
3907                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3908         } else {
3909                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3910                 if (!err)
3911                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3912         }
3913
3914         if (err) {
3915                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3916                 goto err_out;
3917         }
3918
3919         qdev->reg_base =
3920             ioremap_nocache(pci_resource_start(pdev, 1),
3921                             pci_resource_len(pdev, 1));
3922         if (!qdev->reg_base) {
3923                 dev_err(&pdev->dev, "Register mapping failed.\n");
3924                 err = -ENOMEM;
3925                 goto err_out;
3926         }
3927
3928         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3929         qdev->doorbell_area =
3930             ioremap_nocache(pci_resource_start(pdev, 3),
3931                             pci_resource_len(pdev, 3));
3932         if (!qdev->doorbell_area) {
3933                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3934                 err = -ENOMEM;
3935                 goto err_out;
3936         }
3937
3938         err = ql_get_board_info(qdev);
3939         if (err) {
3940                 dev_err(&pdev->dev, "Register access failed.\n");
3941                 err = -EIO;
3942                 goto err_out;
3943         }
3944         qdev->msg_enable = netif_msg_init(debug, default_msg);
3945         spin_lock_init(&qdev->hw_lock);
3946         spin_lock_init(&qdev->stats_lock);
3947
3948         /* make sure the EEPROM is good */
3949         err = qdev->nic_ops->get_flash(qdev);
3950         if (err) {
3951                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3952                 goto err_out;
3953         }
3954
3955         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3956
3957         /* Set up the default ring sizes. */
3958         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3959         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3960
3961         /* Set up the coalescing parameters. */
3962         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3963         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3964         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3965         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3966
3967         /*
3968          * Set up the operating parameters.
3969          */
3970         qdev->rx_csum = 1;
3971         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3972         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3973         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3974         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3975         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3976         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3977         init_completion(&qdev->ide_completion);
3978
3979         if (!cards_found) {
3980                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3981                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3982                          DRV_NAME, DRV_VERSION);
3983         }
3984         return 0;
3985 err_out:
3986         ql_release_all(pdev);
3987         pci_disable_device(pdev);
3988         return err;
3989 }
3990
3991
3992 static const struct net_device_ops qlge_netdev_ops = {
3993         .ndo_open               = qlge_open,
3994         .ndo_stop               = qlge_close,
3995         .ndo_start_xmit         = qlge_send,
3996         .ndo_change_mtu         = qlge_change_mtu,
3997         .ndo_get_stats          = qlge_get_stats,
3998         .ndo_set_multicast_list = qlge_set_multicast_list,
3999         .ndo_set_mac_address    = qlge_set_mac_address,
4000         .ndo_validate_addr      = eth_validate_addr,
4001         .ndo_tx_timeout         = qlge_tx_timeout,
4002         .ndo_vlan_rx_register   = ql_vlan_rx_register,
4003         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
4004         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
4005 };
4006
4007 static int __devinit qlge_probe(struct pci_dev *pdev,
4008                                 const struct pci_device_id *pci_entry)
4009 {
4010         struct net_device *ndev = NULL;
4011         struct ql_adapter *qdev = NULL;
4012         static int cards_found = 0;
4013         int err = 0;
4014
4015         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4016                         min(MAX_CPUS, (int)num_online_cpus()));
4017         if (!ndev)
4018                 return -ENOMEM;
4019
4020         err = ql_init_device(pdev, ndev, cards_found);
4021         if (err < 0) {
4022                 free_netdev(ndev);
4023                 return err;
4024         }
4025
4026         qdev = netdev_priv(ndev);
4027         SET_NETDEV_DEV(ndev, &pdev->dev);
4028         ndev->features = (0
4029                           | NETIF_F_IP_CSUM
4030                           | NETIF_F_SG
4031                           | NETIF_F_TSO
4032                           | NETIF_F_TSO6
4033                           | NETIF_F_TSO_ECN
4034                           | NETIF_F_HW_VLAN_TX
4035                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
4036         ndev->features |= NETIF_F_GRO;
4037
4038         if (test_bit(QL_DMA64, &qdev->flags))
4039                 ndev->features |= NETIF_F_HIGHDMA;
4040
4041         /*
4042          * Set up net_device structure.
4043          */
4044         ndev->tx_queue_len = qdev->tx_ring_size;
4045         ndev->irq = pdev->irq;
4046
4047         ndev->netdev_ops = &qlge_netdev_ops;
4048         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4049         ndev->watchdog_timeo = 10 * HZ;
4050
4051         err = register_netdev(ndev);
4052         if (err) {
4053                 dev_err(&pdev->dev, "net device registration failed.\n");
4054                 ql_release_all(pdev);
4055                 pci_disable_device(pdev);
4056                 return err;
4057         }
4058         ql_link_off(qdev);
4059         ql_display_dev_info(ndev);
4060         cards_found++;
4061         return 0;
4062 }
4063
4064 static void __devexit qlge_remove(struct pci_dev *pdev)
4065 {
4066         struct net_device *ndev = pci_get_drvdata(pdev);
4067         unregister_netdev(ndev);
4068         ql_release_all(pdev);
4069         pci_disable_device(pdev);
4070         free_netdev(ndev);
4071 }
4072
4073 /*
4074  * This callback is called by the PCI subsystem whenever
4075  * a PCI bus error is detected.
4076  */
4077 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4078                                                enum pci_channel_state state)
4079 {
4080         struct net_device *ndev = pci_get_drvdata(pdev);
4081         struct ql_adapter *qdev = netdev_priv(ndev);
4082
4083         netif_device_detach(ndev);
4084
4085         if (state == pci_channel_io_perm_failure)
4086                 return PCI_ERS_RESULT_DISCONNECT;
4087
4088         if (netif_running(ndev))
4089                 ql_adapter_down(qdev);
4090
4091         pci_disable_device(pdev);
4092
4093         /* Request a slot reset. */
4094         return PCI_ERS_RESULT_NEED_RESET;
4095 }
4096
4097 /*
4098  * This callback is called after the PCI buss has been reset.
4099  * Basically, this tries to restart the card from scratch.
4100  * This is a shortened version of the device probe/discovery code,
4101  * it resembles the first-half of the () routine.
4102  */
4103 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4104 {
4105         struct net_device *ndev = pci_get_drvdata(pdev);
4106         struct ql_adapter *qdev = netdev_priv(ndev);
4107
4108         if (pci_enable_device(pdev)) {
4109                 QPRINTK(qdev, IFUP, ERR,
4110                         "Cannot re-enable PCI device after reset.\n");
4111                 return PCI_ERS_RESULT_DISCONNECT;
4112         }
4113
4114         pci_set_master(pdev);
4115
4116         netif_carrier_off(ndev);
4117         ql_adapter_reset(qdev);
4118
4119         /* Make sure the EEPROM is good */
4120         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4121
4122         if (!is_valid_ether_addr(ndev->perm_addr)) {
4123                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4124                 return PCI_ERS_RESULT_DISCONNECT;
4125         }
4126
4127         return PCI_ERS_RESULT_RECOVERED;
4128 }
4129
4130 static void qlge_io_resume(struct pci_dev *pdev)
4131 {
4132         struct net_device *ndev = pci_get_drvdata(pdev);
4133         struct ql_adapter *qdev = netdev_priv(ndev);
4134
4135         pci_set_master(pdev);
4136
4137         if (netif_running(ndev)) {
4138                 if (ql_adapter_up(qdev)) {
4139                         QPRINTK(qdev, IFUP, ERR,
4140                                 "Device initialization failed after reset.\n");
4141                         return;
4142                 }
4143         }
4144
4145         netif_device_attach(ndev);
4146 }
4147
4148 static struct pci_error_handlers qlge_err_handler = {
4149         .error_detected = qlge_io_error_detected,
4150         .slot_reset = qlge_io_slot_reset,
4151         .resume = qlge_io_resume,
4152 };
4153
4154 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4155 {
4156         struct net_device *ndev = pci_get_drvdata(pdev);
4157         struct ql_adapter *qdev = netdev_priv(ndev);
4158         int err;
4159
4160         netif_device_detach(ndev);
4161
4162         if (netif_running(ndev)) {
4163                 err = ql_adapter_down(qdev);
4164                 if (!err)
4165                         return err;
4166         }
4167
4168         err = pci_save_state(pdev);
4169         if (err)
4170                 return err;
4171
4172         pci_disable_device(pdev);
4173
4174         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4175
4176         return 0;
4177 }
4178
4179 #ifdef CONFIG_PM
4180 static int qlge_resume(struct pci_dev *pdev)
4181 {
4182         struct net_device *ndev = pci_get_drvdata(pdev);
4183         struct ql_adapter *qdev = netdev_priv(ndev);
4184         int err;
4185
4186         pci_set_power_state(pdev, PCI_D0);
4187         pci_restore_state(pdev);
4188         err = pci_enable_device(pdev);
4189         if (err) {
4190                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4191                 return err;
4192         }
4193         pci_set_master(pdev);
4194
4195         pci_enable_wake(pdev, PCI_D3hot, 0);
4196         pci_enable_wake(pdev, PCI_D3cold, 0);
4197
4198         if (netif_running(ndev)) {
4199                 err = ql_adapter_up(qdev);
4200                 if (err)
4201                         return err;
4202         }
4203
4204         netif_device_attach(ndev);
4205
4206         return 0;
4207 }
4208 #endif /* CONFIG_PM */
4209
4210 static void qlge_shutdown(struct pci_dev *pdev)
4211 {
4212         qlge_suspend(pdev, PMSG_SUSPEND);
4213 }
4214
4215 static struct pci_driver qlge_driver = {
4216         .name = DRV_NAME,
4217         .id_table = qlge_pci_tbl,
4218         .probe = qlge_probe,
4219         .remove = __devexit_p(qlge_remove),
4220 #ifdef CONFIG_PM
4221         .suspend = qlge_suspend,
4222         .resume = qlge_resume,
4223 #endif
4224         .shutdown = qlge_shutdown,
4225         .err_handler = &qlge_err_handler
4226 };
4227
4228 static int __init qlge_init_module(void)
4229 {
4230         return pci_register_driver(&qlge_driver);
4231 }
4232
4233 static void __exit qlge_exit(void)
4234 {
4235         pci_unregister_driver(&qlge_driver);
4236 }
4237
4238 module_init(qlge_init_module);
4239 module_exit(qlge_exit);