Merge commit 'origin/master' into next
[pandora-kernel.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80         /* required last entry */
81         {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87  * resources shared between the NIC driver, MPI firmware,
88  * FCOE firmware and the FC driver.
89  */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92         u32 sem_bits = 0;
93
94         switch (sem_mask) {
95         case SEM_XGMAC0_MASK:
96                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97                 break;
98         case SEM_XGMAC1_MASK:
99                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100                 break;
101         case SEM_ICB_MASK:
102                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103                 break;
104         case SEM_MAC_ADDR_MASK:
105                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106                 break;
107         case SEM_FLASH_MASK:
108                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109                 break;
110         case SEM_PROBE_MASK:
111                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112                 break;
113         case SEM_RT_IDX_MASK:
114                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115                 break;
116         case SEM_PROC_REG_MASK:
117                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118                 break;
119         default:
120                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121                 return -EINVAL;
122         }
123
124         ql_write32(qdev, SEM, sem_bits | sem_mask);
125         return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130         unsigned int wait_count = 30;
131         do {
132                 if (!ql_sem_trylock(qdev, sem_mask))
133                         return 0;
134                 udelay(100);
135         } while (--wait_count);
136         return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141         ql_write32(qdev, SEM, sem_mask);
142         ql_read32(qdev, SEM);   /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146  * in a given register.  It is used mostly by the initialize
147  * process, but is also used in kernel thread API such as
148  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149  */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152         u32 temp;
153         int count = UDELAY_COUNT;
154
155         while (count) {
156                 temp = ql_read32(qdev, reg);
157
158                 /* check for errors */
159                 if (temp & err_bit) {
160                         QPRINTK(qdev, PROBE, ALERT,
161                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
162                                 reg, temp);
163                         return -EIO;
164                 } else if (temp & bit)
165                         return 0;
166                 udelay(UDELAY_DELAY);
167                 count--;
168         }
169         QPRINTK(qdev, PROBE, ALERT,
170                 "Timed out waiting for reg %x to come ready.\n", reg);
171         return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175  * to the chip. This function waits for an operation to complete.
176  */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179         int count = UDELAY_COUNT;
180         u32 temp;
181
182         while (count) {
183                 temp = ql_read32(qdev, CFG);
184                 if (temp & CFG_LE)
185                         return -EIO;
186                 if (!(temp & bit))
187                         return 0;
188                 udelay(UDELAY_DELAY);
189                 count--;
190         }
191         return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196  * sets address, triggers download, waits for completion.
197  */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199                  u16 q_id)
200 {
201         u64 map;
202         int status = 0;
203         int direction;
204         u32 mask;
205         u32 value;
206
207         direction =
208             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209             PCI_DMA_FROMDEVICE;
210
211         map = pci_map_single(qdev->pdev, ptr, size, direction);
212         if (pci_dma_mapping_error(qdev->pdev, map)) {
213                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214                 return -ENOMEM;
215         }
216
217         status = ql_wait_cfg(qdev, bit);
218         if (status) {
219                 QPRINTK(qdev, IFUP, ERR,
220                         "Timed out waiting for CFG to come ready.\n");
221                 goto exit;
222         }
223
224         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225         if (status)
226                 goto exit;
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
230
231         mask = CFG_Q_MASK | (bit << 16);
232         value = bit | (q_id << CFG_Q_SHIFT);
233         ql_write32(qdev, CFG, (mask | value));
234
235         /*
236          * Wait for the bit to clear after signaling hw.
237          */
238         status = ql_wait_cfg(qdev, bit);
239 exit:
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         switch (type) {
252         case MAC_ADDR_TYPE_MULTI_MAC:
253         case MAC_ADDR_TYPE_CAM_MAC:
254                 {
255                         status =
256                             ql_wait_reg_rdy(qdev,
257                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
258                         if (status)
259                                 goto exit;
260                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
262                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263                         status =
264                             ql_wait_reg_rdy(qdev,
265                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
266                         if (status)
267                                 goto exit;
268                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269                         status =
270                             ql_wait_reg_rdy(qdev,
271                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
272                         if (status)
273                                 goto exit;
274                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
276                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277                         status =
278                             ql_wait_reg_rdy(qdev,
279                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
280                         if (status)
281                                 goto exit;
282                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
284                                 status =
285                                     ql_wait_reg_rdy(qdev,
286                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287                                 if (status)
288                                         goto exit;
289                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
291                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292                                 status =
293                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
294                                                     MAC_ADDR_MR, 0);
295                                 if (status)
296                                         goto exit;
297                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
298                         }
299                         break;
300                 }
301         case MAC_ADDR_TYPE_VLAN:
302         case MAC_ADDR_TYPE_MULTI_FLTR:
303         default:
304                 QPRINTK(qdev, IFUP, CRIT,
305                         "Address type %d not yet supported.\n", type);
306                 status = -EPERM;
307         }
308 exit:
309         return status;
310 }
311
312 /* Set up a MAC, multicast or VLAN address for the
313  * inbound frame matching.
314  */
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316                                u16 index)
317 {
318         u32 offset = 0;
319         int status = 0;
320
321         switch (type) {
322         case MAC_ADDR_TYPE_MULTI_MAC:
323         case MAC_ADDR_TYPE_CAM_MAC:
324                 {
325                         u32 cam_output;
326                         u32 upper = (addr[0] << 8) | addr[1];
327                         u32 lower =
328                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
329                             (addr[5]);
330
331                         QPRINTK(qdev, IFUP, DEBUG,
332                                 "Adding %s address %pM"
333                                 " at index %d in the CAM.\n",
334                                 ((type ==
335                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
336                                  "UNICAST"), addr, index);
337
338                         status =
339                             ql_wait_reg_rdy(qdev,
340                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
341                         if (status)
342                                 goto exit;
343                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
345                                    type);       /* type */
346                         ql_write32(qdev, MAC_ADDR_DATA, lower);
347                         status =
348                             ql_wait_reg_rdy(qdev,
349                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350                         if (status)
351                                 goto exit;
352                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
354                                    type);       /* type */
355                         ql_write32(qdev, MAC_ADDR_DATA, upper);
356                         status =
357                             ql_wait_reg_rdy(qdev,
358                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359                         if (status)
360                                 goto exit;
361                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
362                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
363                                    type);       /* type */
364                         /* This field should also include the queue id
365                            and possibly the function id.  Right now we hardcode
366                            the route field to NIC core.
367                          */
368                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
369                                 cam_output = (CAM_OUT_ROUTE_NIC |
370                                               (qdev->
371                                                func << CAM_OUT_FUNC_SHIFT) |
372                                               (qdev->
373                                                rss_ring_first_cq_id <<
374                                                CAM_OUT_CQ_ID_SHIFT));
375                                 if (qdev->vlgrp)
376                                         cam_output |= CAM_OUT_RV;
377                                 /* route to NIC core */
378                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
379                         }
380                         break;
381                 }
382         case MAC_ADDR_TYPE_VLAN:
383                 {
384                         u32 enable_bit = *((u32 *) &addr[0]);
385                         /* For VLAN, the addr actually holds a bit that
386                          * either enables or disables the vlan id we are
387                          * addressing. It's either MAC_ADDR_E on or off.
388                          * That's bit-27 we're talking about.
389                          */
390                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391                                 (enable_bit ? "Adding" : "Removing"),
392                                 index, (enable_bit ? "to" : "from"));
393
394                         status =
395                             ql_wait_reg_rdy(qdev,
396                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
397                         if (status)
398                                 goto exit;
399                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
401                                    type |       /* type */
402                                    enable_bit); /* enable/disable */
403                         break;
404                 }
405         case MAC_ADDR_TYPE_MULTI_FLTR:
406         default:
407                 QPRINTK(qdev, IFUP, CRIT,
408                         "Address type %d not yet supported.\n", type);
409                 status = -EPERM;
410         }
411 exit:
412         return status;
413 }
414
415 /* Get a specific frame routing value from the CAM.
416  * Used for debug and reg dump.
417  */
418 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
419 {
420         int status = 0;
421
422         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
423         if (status)
424                 goto exit;
425
426         ql_write32(qdev, RT_IDX,
427                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
428         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
429         if (status)
430                 goto exit;
431         *value = ql_read32(qdev, RT_DATA);
432 exit:
433         return status;
434 }
435
436 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
437  * to route different frame types to various inbound queues.  We send broadcast/
438  * multicast/error frames to the default queue for slow handling,
439  * and CAM hit/RSS frames to the fast handling queues.
440  */
441 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
442                               int enable)
443 {
444         int status = -EINVAL; /* Return error if no mask match. */
445         u32 value = 0;
446
447         QPRINTK(qdev, IFUP, DEBUG,
448                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449                 (enable ? "Adding" : "Removing"),
450                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
452                 ((index ==
453                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467                 (enable ? "to" : "from"));
468
469         switch (mask) {
470         case RT_IDX_CAM_HIT:
471                 {
472                         value = RT_IDX_DST_CAM_Q |      /* dest */
473                             RT_IDX_TYPE_NICQ |  /* type */
474                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
475                         break;
476                 }
477         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
478                 {
479                         value = RT_IDX_DST_DFLT_Q |     /* dest */
480                             RT_IDX_TYPE_NICQ |  /* type */
481                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
482                         break;
483                 }
484         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
485                 {
486                         value = RT_IDX_DST_DFLT_Q |     /* dest */
487                             RT_IDX_TYPE_NICQ |  /* type */
488                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
489                         break;
490                 }
491         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
492                 {
493                         value = RT_IDX_DST_DFLT_Q |     /* dest */
494                             RT_IDX_TYPE_NICQ |  /* type */
495                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
496                         break;
497                 }
498         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
499                 {
500                         value = RT_IDX_DST_CAM_Q |      /* dest */
501                             RT_IDX_TYPE_NICQ |  /* type */
502                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
503                         break;
504                 }
505         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
506                 {
507                         value = RT_IDX_DST_CAM_Q |      /* dest */
508                             RT_IDX_TYPE_NICQ |  /* type */
509                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
510                         break;
511                 }
512         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
513                 {
514                         value = RT_IDX_DST_RSS |        /* dest */
515                             RT_IDX_TYPE_NICQ |  /* type */
516                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
517                         break;
518                 }
519         case 0:         /* Clear the E-bit on an entry. */
520                 {
521                         value = RT_IDX_DST_DFLT_Q |     /* dest */
522                             RT_IDX_TYPE_NICQ |  /* type */
523                             (index << RT_IDX_IDX_SHIFT);/* index */
524                         break;
525                 }
526         default:
527                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
528                         mask);
529                 status = -EPERM;
530                 goto exit;
531         }
532
533         if (value) {
534                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
535                 if (status)
536                         goto exit;
537                 value |= (enable ? RT_IDX_E : 0);
538                 ql_write32(qdev, RT_IDX, value);
539                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
540         }
541 exit:
542         return status;
543 }
544
545 static void ql_enable_interrupts(struct ql_adapter *qdev)
546 {
547         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
548 }
549
550 static void ql_disable_interrupts(struct ql_adapter *qdev)
551 {
552         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
553 }
554
555 /* If we're running with multiple MSI-X vectors then we enable on the fly.
556  * Otherwise, we may have multiple outstanding workers and don't want to
557  * enable until the last one finishes. In this case, the irq_cnt gets
558  * incremented everytime we queue a worker and decremented everytime
559  * a worker finishes.  Once it hits zero we enable the interrupt.
560  */
561 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
562 {
563         u32 var = 0;
564         unsigned long hw_flags = 0;
565         struct intr_context *ctx = qdev->intr_context + intr;
566
567         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568                 /* Always enable if we're MSIX multi interrupts and
569                  * it's not the default (zeroeth) interrupt.
570                  */
571                 ql_write32(qdev, INTR_EN,
572                            ctx->intr_en_mask);
573                 var = ql_read32(qdev, STS);
574                 return var;
575         }
576
577         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578         if (atomic_dec_and_test(&ctx->irq_cnt)) {
579                 ql_write32(qdev, INTR_EN,
580                            ctx->intr_en_mask);
581                 var = ql_read32(qdev, STS);
582         }
583         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
584         return var;
585 }
586
587 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
588 {
589         u32 var = 0;
590         struct intr_context *ctx;
591
592         /* HW disables for us if we're MSIX multi interrupts and
593          * it's not the default (zeroeth) interrupt.
594          */
595         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596                 return 0;
597
598         ctx = qdev->intr_context + intr;
599         spin_lock(&qdev->hw_lock);
600         if (!atomic_read(&ctx->irq_cnt)) {
601                 ql_write32(qdev, INTR_EN,
602                 ctx->intr_dis_mask);
603                 var = ql_read32(qdev, STS);
604         }
605         atomic_inc(&ctx->irq_cnt);
606         spin_unlock(&qdev->hw_lock);
607         return var;
608 }
609
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
611 {
612         int i;
613         for (i = 0; i < qdev->intr_count; i++) {
614                 /* The enable call does a atomic_dec_and_test
615                  * and enables only if the result is zero.
616                  * So we precharge it here.
617                  */
618                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619                         i == 0))
620                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621                 ql_enable_completion_interrupt(qdev, i);
622         }
623
624 }
625
626 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
627 {
628         int status, i;
629         u16 csum = 0;
630         __le16 *flash = (__le16 *)&qdev->flash;
631
632         status = strncmp((char *)&qdev->flash, str, 4);
633         if (status) {
634                 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
635                 return  status;
636         }
637
638         for (i = 0; i < size; i++)
639                 csum += le16_to_cpu(*flash++);
640
641         if (csum)
642                 QPRINTK(qdev, IFUP, ERR,
643                         "Invalid flash checksum, csum = 0x%.04x.\n", csum);
644
645         return csum;
646 }
647
648 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
649 {
650         int status = 0;
651         /* wait for reg to come ready */
652         status = ql_wait_reg_rdy(qdev,
653                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
654         if (status)
655                 goto exit;
656         /* set up for reg read */
657         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
658         /* wait for reg to come ready */
659         status = ql_wait_reg_rdy(qdev,
660                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
661         if (status)
662                 goto exit;
663          /* This data is stored on flash as an array of
664          * __le32.  Since ql_read32() returns cpu endian
665          * we need to swap it back.
666          */
667         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
668 exit:
669         return status;
670 }
671
672 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
673 {
674         u32 i, size;
675         int status;
676         __le32 *p = (__le32 *)&qdev->flash;
677         u32 offset;
678         u8 mac_addr[6];
679
680         /* Get flash offset for function and adjust
681          * for dword access.
682          */
683         if (!qdev->port)
684                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
685         else
686                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
687
688         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
689                 return -ETIMEDOUT;
690
691         size = sizeof(struct flash_params_8000) / sizeof(u32);
692         for (i = 0; i < size; i++, p++) {
693                 status = ql_read_flash_word(qdev, i+offset, p);
694                 if (status) {
695                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
696                         goto exit;
697                 }
698         }
699
700         status = ql_validate_flash(qdev,
701                         sizeof(struct flash_params_8000) / sizeof(u16),
702                         "8000");
703         if (status) {
704                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
705                 status = -EINVAL;
706                 goto exit;
707         }
708
709         /* Extract either manufacturer or BOFM modified
710          * MAC address.
711          */
712         if (qdev->flash.flash_params_8000.data_type1 == 2)
713                 memcpy(mac_addr,
714                         qdev->flash.flash_params_8000.mac_addr1,
715                         qdev->ndev->addr_len);
716         else
717                 memcpy(mac_addr,
718                         qdev->flash.flash_params_8000.mac_addr,
719                         qdev->ndev->addr_len);
720
721         if (!is_valid_ether_addr(mac_addr)) {
722                 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
723                 status = -EINVAL;
724                 goto exit;
725         }
726
727         memcpy(qdev->ndev->dev_addr,
728                 mac_addr,
729                 qdev->ndev->addr_len);
730
731 exit:
732         ql_sem_unlock(qdev, SEM_FLASH_MASK);
733         return status;
734 }
735
736 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
737 {
738         int i;
739         int status;
740         __le32 *p = (__le32 *)&qdev->flash;
741         u32 offset = 0;
742         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
743
744         /* Second function's parameters follow the first
745          * function's.
746          */
747         if (qdev->port)
748                 offset = size;
749
750         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
751                 return -ETIMEDOUT;
752
753         for (i = 0; i < size; i++, p++) {
754                 status = ql_read_flash_word(qdev, i+offset, p);
755                 if (status) {
756                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
757                         goto exit;
758                 }
759
760         }
761
762         status = ql_validate_flash(qdev,
763                         sizeof(struct flash_params_8012) / sizeof(u16),
764                         "8012");
765         if (status) {
766                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
767                 status = -EINVAL;
768                 goto exit;
769         }
770
771         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
772                 status = -EINVAL;
773                 goto exit;
774         }
775
776         memcpy(qdev->ndev->dev_addr,
777                 qdev->flash.flash_params_8012.mac_addr,
778                 qdev->ndev->addr_len);
779
780 exit:
781         ql_sem_unlock(qdev, SEM_FLASH_MASK);
782         return status;
783 }
784
785 /* xgmac register are located behind the xgmac_addr and xgmac_data
786  * register pair.  Each read/write requires us to wait for the ready
787  * bit before reading/writing the data.
788  */
789 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
790 {
791         int status;
792         /* wait for reg to come ready */
793         status = ql_wait_reg_rdy(qdev,
794                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
795         if (status)
796                 return status;
797         /* write the data to the data reg */
798         ql_write32(qdev, XGMAC_DATA, data);
799         /* trigger the write */
800         ql_write32(qdev, XGMAC_ADDR, reg);
801         return status;
802 }
803
804 /* xgmac register are located behind the xgmac_addr and xgmac_data
805  * register pair.  Each read/write requires us to wait for the ready
806  * bit before reading/writing the data.
807  */
808 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
809 {
810         int status = 0;
811         /* wait for reg to come ready */
812         status = ql_wait_reg_rdy(qdev,
813                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
814         if (status)
815                 goto exit;
816         /* set up for reg read */
817         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
818         /* wait for reg to come ready */
819         status = ql_wait_reg_rdy(qdev,
820                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
821         if (status)
822                 goto exit;
823         /* get the data */
824         *data = ql_read32(qdev, XGMAC_DATA);
825 exit:
826         return status;
827 }
828
829 /* This is used for reading the 64-bit statistics regs. */
830 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
831 {
832         int status = 0;
833         u32 hi = 0;
834         u32 lo = 0;
835
836         status = ql_read_xgmac_reg(qdev, reg, &lo);
837         if (status)
838                 goto exit;
839
840         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
841         if (status)
842                 goto exit;
843
844         *data = (u64) lo | ((u64) hi << 32);
845
846 exit:
847         return status;
848 }
849
850 static int ql_8000_port_initialize(struct ql_adapter *qdev)
851 {
852         int status;
853         /*
854          * Get MPI firmware version for driver banner
855          * and ethool info.
856          */
857         status = ql_mb_about_fw(qdev);
858         if (status)
859                 goto exit;
860         status = ql_mb_get_fw_state(qdev);
861         if (status)
862                 goto exit;
863         /* Wake up a worker to get/set the TX/RX frame sizes. */
864         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
865 exit:
866         return status;
867 }
868
869 /* Take the MAC Core out of reset.
870  * Enable statistics counting.
871  * Take the transmitter/receiver out of reset.
872  * This functionality may be done in the MPI firmware at a
873  * later date.
874  */
875 static int ql_8012_port_initialize(struct ql_adapter *qdev)
876 {
877         int status = 0;
878         u32 data;
879
880         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
881                 /* Another function has the semaphore, so
882                  * wait for the port init bit to come ready.
883                  */
884                 QPRINTK(qdev, LINK, INFO,
885                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
886                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
887                 if (status) {
888                         QPRINTK(qdev, LINK, CRIT,
889                                 "Port initialize timed out.\n");
890                 }
891                 return status;
892         }
893
894         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
895         /* Set the core reset. */
896         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
897         if (status)
898                 goto end;
899         data |= GLOBAL_CFG_RESET;
900         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
901         if (status)
902                 goto end;
903
904         /* Clear the core reset and turn on jumbo for receiver. */
905         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
906         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
907         data |= GLOBAL_CFG_TX_STAT_EN;
908         data |= GLOBAL_CFG_RX_STAT_EN;
909         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
910         if (status)
911                 goto end;
912
913         /* Enable transmitter, and clear it's reset. */
914         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
915         if (status)
916                 goto end;
917         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
918         data |= TX_CFG_EN;      /* Enable the transmitter. */
919         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
920         if (status)
921                 goto end;
922
923         /* Enable receiver and clear it's reset. */
924         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
925         if (status)
926                 goto end;
927         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
928         data |= RX_CFG_EN;      /* Enable the receiver. */
929         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
930         if (status)
931                 goto end;
932
933         /* Turn on jumbo. */
934         status =
935             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
936         if (status)
937                 goto end;
938         status =
939             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
940         if (status)
941                 goto end;
942
943         /* Signal to the world that the port is enabled.        */
944         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
945 end:
946         ql_sem_unlock(qdev, qdev->xg_sem_mask);
947         return status;
948 }
949
950 /* Get the next large buffer. */
951 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
952 {
953         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
954         rx_ring->lbq_curr_idx++;
955         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
956                 rx_ring->lbq_curr_idx = 0;
957         rx_ring->lbq_free_cnt++;
958         return lbq_desc;
959 }
960
961 /* Get the next small buffer. */
962 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
963 {
964         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
965         rx_ring->sbq_curr_idx++;
966         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
967                 rx_ring->sbq_curr_idx = 0;
968         rx_ring->sbq_free_cnt++;
969         return sbq_desc;
970 }
971
972 /* Update an rx ring index. */
973 static void ql_update_cq(struct rx_ring *rx_ring)
974 {
975         rx_ring->cnsmr_idx++;
976         rx_ring->curr_entry++;
977         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
978                 rx_ring->cnsmr_idx = 0;
979                 rx_ring->curr_entry = rx_ring->cq_base;
980         }
981 }
982
983 static void ql_write_cq_idx(struct rx_ring *rx_ring)
984 {
985         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
986 }
987
988 /* Process (refill) a large buffer queue. */
989 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
990 {
991         u32 clean_idx = rx_ring->lbq_clean_idx;
992         u32 start_idx = clean_idx;
993         struct bq_desc *lbq_desc;
994         u64 map;
995         int i;
996
997         while (rx_ring->lbq_free_cnt > 16) {
998                 for (i = 0; i < 16; i++) {
999                         QPRINTK(qdev, RX_STATUS, DEBUG,
1000                                 "lbq: try cleaning clean_idx = %d.\n",
1001                                 clean_idx);
1002                         lbq_desc = &rx_ring->lbq[clean_idx];
1003                         if (lbq_desc->p.lbq_page == NULL) {
1004                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1005                                         "lbq: getting new page for index %d.\n",
1006                                         lbq_desc->index);
1007                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1008                                 if (lbq_desc->p.lbq_page == NULL) {
1009                                         rx_ring->lbq_clean_idx = clean_idx;
1010                                         QPRINTK(qdev, RX_STATUS, ERR,
1011                                                 "Couldn't get a page.\n");
1012                                         return;
1013                                 }
1014                                 map = pci_map_page(qdev->pdev,
1015                                                    lbq_desc->p.lbq_page,
1016                                                    0, PAGE_SIZE,
1017                                                    PCI_DMA_FROMDEVICE);
1018                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1019                                         rx_ring->lbq_clean_idx = clean_idx;
1020                                         put_page(lbq_desc->p.lbq_page);
1021                                         lbq_desc->p.lbq_page = NULL;
1022                                         QPRINTK(qdev, RX_STATUS, ERR,
1023                                                 "PCI mapping failed.\n");
1024                                         return;
1025                                 }
1026                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1027                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1028                                 *lbq_desc->addr = cpu_to_le64(map);
1029                         }
1030                         clean_idx++;
1031                         if (clean_idx == rx_ring->lbq_len)
1032                                 clean_idx = 0;
1033                 }
1034
1035                 rx_ring->lbq_clean_idx = clean_idx;
1036                 rx_ring->lbq_prod_idx += 16;
1037                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1038                         rx_ring->lbq_prod_idx = 0;
1039                 rx_ring->lbq_free_cnt -= 16;
1040         }
1041
1042         if (start_idx != clean_idx) {
1043                 QPRINTK(qdev, RX_STATUS, DEBUG,
1044                         "lbq: updating prod idx = %d.\n",
1045                         rx_ring->lbq_prod_idx);
1046                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1047                                 rx_ring->lbq_prod_idx_db_reg);
1048         }
1049 }
1050
1051 /* Process (refill) a small buffer queue. */
1052 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1053 {
1054         u32 clean_idx = rx_ring->sbq_clean_idx;
1055         u32 start_idx = clean_idx;
1056         struct bq_desc *sbq_desc;
1057         u64 map;
1058         int i;
1059
1060         while (rx_ring->sbq_free_cnt > 16) {
1061                 for (i = 0; i < 16; i++) {
1062                         sbq_desc = &rx_ring->sbq[clean_idx];
1063                         QPRINTK(qdev, RX_STATUS, DEBUG,
1064                                 "sbq: try cleaning clean_idx = %d.\n",
1065                                 clean_idx);
1066                         if (sbq_desc->p.skb == NULL) {
1067                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1068                                         "sbq: getting new skb for index %d.\n",
1069                                         sbq_desc->index);
1070                                 sbq_desc->p.skb =
1071                                     netdev_alloc_skb(qdev->ndev,
1072                                                      rx_ring->sbq_buf_size);
1073                                 if (sbq_desc->p.skb == NULL) {
1074                                         QPRINTK(qdev, PROBE, ERR,
1075                                                 "Couldn't get an skb.\n");
1076                                         rx_ring->sbq_clean_idx = clean_idx;
1077                                         return;
1078                                 }
1079                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1080                                 map = pci_map_single(qdev->pdev,
1081                                                      sbq_desc->p.skb->data,
1082                                                      rx_ring->sbq_buf_size /
1083                                                      2, PCI_DMA_FROMDEVICE);
1084                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1085                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1086                                         rx_ring->sbq_clean_idx = clean_idx;
1087                                         dev_kfree_skb_any(sbq_desc->p.skb);
1088                                         sbq_desc->p.skb = NULL;
1089                                         return;
1090                                 }
1091                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1092                                 pci_unmap_len_set(sbq_desc, maplen,
1093                                                   rx_ring->sbq_buf_size / 2);
1094                                 *sbq_desc->addr = cpu_to_le64(map);
1095                         }
1096
1097                         clean_idx++;
1098                         if (clean_idx == rx_ring->sbq_len)
1099                                 clean_idx = 0;
1100                 }
1101                 rx_ring->sbq_clean_idx = clean_idx;
1102                 rx_ring->sbq_prod_idx += 16;
1103                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1104                         rx_ring->sbq_prod_idx = 0;
1105                 rx_ring->sbq_free_cnt -= 16;
1106         }
1107
1108         if (start_idx != clean_idx) {
1109                 QPRINTK(qdev, RX_STATUS, DEBUG,
1110                         "sbq: updating prod idx = %d.\n",
1111                         rx_ring->sbq_prod_idx);
1112                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1113                                 rx_ring->sbq_prod_idx_db_reg);
1114         }
1115 }
1116
1117 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1118                                     struct rx_ring *rx_ring)
1119 {
1120         ql_update_sbq(qdev, rx_ring);
1121         ql_update_lbq(qdev, rx_ring);
1122 }
1123
1124 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1125  * fails at some stage, or from the interrupt when a tx completes.
1126  */
1127 static void ql_unmap_send(struct ql_adapter *qdev,
1128                           struct tx_ring_desc *tx_ring_desc, int mapped)
1129 {
1130         int i;
1131         for (i = 0; i < mapped; i++) {
1132                 if (i == 0 || (i == 7 && mapped > 7)) {
1133                         /*
1134                          * Unmap the skb->data area, or the
1135                          * external sglist (AKA the Outbound
1136                          * Address List (OAL)).
1137                          * If its the zeroeth element, then it's
1138                          * the skb->data area.  If it's the 7th
1139                          * element and there is more than 6 frags,
1140                          * then its an OAL.
1141                          */
1142                         if (i == 7) {
1143                                 QPRINTK(qdev, TX_DONE, DEBUG,
1144                                         "unmapping OAL area.\n");
1145                         }
1146                         pci_unmap_single(qdev->pdev,
1147                                          pci_unmap_addr(&tx_ring_desc->map[i],
1148                                                         mapaddr),
1149                                          pci_unmap_len(&tx_ring_desc->map[i],
1150                                                        maplen),
1151                                          PCI_DMA_TODEVICE);
1152                 } else {
1153                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1154                                 i);
1155                         pci_unmap_page(qdev->pdev,
1156                                        pci_unmap_addr(&tx_ring_desc->map[i],
1157                                                       mapaddr),
1158                                        pci_unmap_len(&tx_ring_desc->map[i],
1159                                                      maplen), PCI_DMA_TODEVICE);
1160                 }
1161         }
1162
1163 }
1164
1165 /* Map the buffers for this transmit.  This will return
1166  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1167  */
1168 static int ql_map_send(struct ql_adapter *qdev,
1169                        struct ob_mac_iocb_req *mac_iocb_ptr,
1170                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1171 {
1172         int len = skb_headlen(skb);
1173         dma_addr_t map;
1174         int frag_idx, err, map_idx = 0;
1175         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1176         int frag_cnt = skb_shinfo(skb)->nr_frags;
1177
1178         if (frag_cnt) {
1179                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1180         }
1181         /*
1182          * Map the skb buffer first.
1183          */
1184         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1185
1186         err = pci_dma_mapping_error(qdev->pdev, map);
1187         if (err) {
1188                 QPRINTK(qdev, TX_QUEUED, ERR,
1189                         "PCI mapping failed with error: %d\n", err);
1190
1191                 return NETDEV_TX_BUSY;
1192         }
1193
1194         tbd->len = cpu_to_le32(len);
1195         tbd->addr = cpu_to_le64(map);
1196         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1197         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1198         map_idx++;
1199
1200         /*
1201          * This loop fills the remainder of the 8 address descriptors
1202          * in the IOCB.  If there are more than 7 fragments, then the
1203          * eighth address desc will point to an external list (OAL).
1204          * When this happens, the remainder of the frags will be stored
1205          * in this list.
1206          */
1207         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1208                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1209                 tbd++;
1210                 if (frag_idx == 6 && frag_cnt > 7) {
1211                         /* Let's tack on an sglist.
1212                          * Our control block will now
1213                          * look like this:
1214                          * iocb->seg[0] = skb->data
1215                          * iocb->seg[1] = frag[0]
1216                          * iocb->seg[2] = frag[1]
1217                          * iocb->seg[3] = frag[2]
1218                          * iocb->seg[4] = frag[3]
1219                          * iocb->seg[5] = frag[4]
1220                          * iocb->seg[6] = frag[5]
1221                          * iocb->seg[7] = ptr to OAL (external sglist)
1222                          * oal->seg[0] = frag[6]
1223                          * oal->seg[1] = frag[7]
1224                          * oal->seg[2] = frag[8]
1225                          * oal->seg[3] = frag[9]
1226                          * oal->seg[4] = frag[10]
1227                          *      etc...
1228                          */
1229                         /* Tack on the OAL in the eighth segment of IOCB. */
1230                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1231                                              sizeof(struct oal),
1232                                              PCI_DMA_TODEVICE);
1233                         err = pci_dma_mapping_error(qdev->pdev, map);
1234                         if (err) {
1235                                 QPRINTK(qdev, TX_QUEUED, ERR,
1236                                         "PCI mapping outbound address list with error: %d\n",
1237                                         err);
1238                                 goto map_error;
1239                         }
1240
1241                         tbd->addr = cpu_to_le64(map);
1242                         /*
1243                          * The length is the number of fragments
1244                          * that remain to be mapped times the length
1245                          * of our sglist (OAL).
1246                          */
1247                         tbd->len =
1248                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1249                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1250                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1251                                            map);
1252                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1253                                           sizeof(struct oal));
1254                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1255                         map_idx++;
1256                 }
1257
1258                 map =
1259                     pci_map_page(qdev->pdev, frag->page,
1260                                  frag->page_offset, frag->size,
1261                                  PCI_DMA_TODEVICE);
1262
1263                 err = pci_dma_mapping_error(qdev->pdev, map);
1264                 if (err) {
1265                         QPRINTK(qdev, TX_QUEUED, ERR,
1266                                 "PCI mapping frags failed with error: %d.\n",
1267                                 err);
1268                         goto map_error;
1269                 }
1270
1271                 tbd->addr = cpu_to_le64(map);
1272                 tbd->len = cpu_to_le32(frag->size);
1273                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1274                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1275                                   frag->size);
1276
1277         }
1278         /* Save the number of segments we've mapped. */
1279         tx_ring_desc->map_cnt = map_idx;
1280         /* Terminate the last segment. */
1281         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1282         return NETDEV_TX_OK;
1283
1284 map_error:
1285         /*
1286          * If the first frag mapping failed, then i will be zero.
1287          * This causes the unmap of the skb->data area.  Otherwise
1288          * we pass in the number of frags that mapped successfully
1289          * so they can be umapped.
1290          */
1291         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1292         return NETDEV_TX_BUSY;
1293 }
1294
1295 static void ql_realign_skb(struct sk_buff *skb, int len)
1296 {
1297         void *temp_addr = skb->data;
1298
1299         /* Undo the skb_reserve(skb,32) we did before
1300          * giving to hardware, and realign data on
1301          * a 2-byte boundary.
1302          */
1303         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1304         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1305         skb_copy_to_linear_data(skb, temp_addr,
1306                 (unsigned int)len);
1307 }
1308
1309 /*
1310  * This function builds an skb for the given inbound
1311  * completion.  It will be rewritten for readability in the near
1312  * future, but for not it works well.
1313  */
1314 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1315                                        struct rx_ring *rx_ring,
1316                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1317 {
1318         struct bq_desc *lbq_desc;
1319         struct bq_desc *sbq_desc;
1320         struct sk_buff *skb = NULL;
1321         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1322        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1323
1324         /*
1325          * Handle the header buffer if present.
1326          */
1327         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1328             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1329                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1330                 /*
1331                  * Headers fit nicely into a small buffer.
1332                  */
1333                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1334                 pci_unmap_single(qdev->pdev,
1335                                 pci_unmap_addr(sbq_desc, mapaddr),
1336                                 pci_unmap_len(sbq_desc, maplen),
1337                                 PCI_DMA_FROMDEVICE);
1338                 skb = sbq_desc->p.skb;
1339                 ql_realign_skb(skb, hdr_len);
1340                 skb_put(skb, hdr_len);
1341                 sbq_desc->p.skb = NULL;
1342         }
1343
1344         /*
1345          * Handle the data buffer(s).
1346          */
1347         if (unlikely(!length)) {        /* Is there data too? */
1348                 QPRINTK(qdev, RX_STATUS, DEBUG,
1349                         "No Data buffer in this packet.\n");
1350                 return skb;
1351         }
1352
1353         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1354                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1355                         QPRINTK(qdev, RX_STATUS, DEBUG,
1356                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1357                         /*
1358                          * Data is less than small buffer size so it's
1359                          * stuffed in a small buffer.
1360                          * For this case we append the data
1361                          * from the "data" small buffer to the "header" small
1362                          * buffer.
1363                          */
1364                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1365                         pci_dma_sync_single_for_cpu(qdev->pdev,
1366                                                     pci_unmap_addr
1367                                                     (sbq_desc, mapaddr),
1368                                                     pci_unmap_len
1369                                                     (sbq_desc, maplen),
1370                                                     PCI_DMA_FROMDEVICE);
1371                         memcpy(skb_put(skb, length),
1372                                sbq_desc->p.skb->data, length);
1373                         pci_dma_sync_single_for_device(qdev->pdev,
1374                                                        pci_unmap_addr
1375                                                        (sbq_desc,
1376                                                         mapaddr),
1377                                                        pci_unmap_len
1378                                                        (sbq_desc,
1379                                                         maplen),
1380                                                        PCI_DMA_FROMDEVICE);
1381                 } else {
1382                         QPRINTK(qdev, RX_STATUS, DEBUG,
1383                                 "%d bytes in a single small buffer.\n", length);
1384                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1385                         skb = sbq_desc->p.skb;
1386                         ql_realign_skb(skb, length);
1387                         skb_put(skb, length);
1388                         pci_unmap_single(qdev->pdev,
1389                                          pci_unmap_addr(sbq_desc,
1390                                                         mapaddr),
1391                                          pci_unmap_len(sbq_desc,
1392                                                        maplen),
1393                                          PCI_DMA_FROMDEVICE);
1394                         sbq_desc->p.skb = NULL;
1395                 }
1396         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1397                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1398                         QPRINTK(qdev, RX_STATUS, DEBUG,
1399                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1400                         /*
1401                          * The data is in a single large buffer.  We
1402                          * chain it to the header buffer's skb and let
1403                          * it rip.
1404                          */
1405                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1406                         pci_unmap_page(qdev->pdev,
1407                                        pci_unmap_addr(lbq_desc,
1408                                                       mapaddr),
1409                                        pci_unmap_len(lbq_desc, maplen),
1410                                        PCI_DMA_FROMDEVICE);
1411                         QPRINTK(qdev, RX_STATUS, DEBUG,
1412                                 "Chaining page to skb.\n");
1413                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1414                                            0, length);
1415                         skb->len += length;
1416                         skb->data_len += length;
1417                         skb->truesize += length;
1418                         lbq_desc->p.lbq_page = NULL;
1419                 } else {
1420                         /*
1421                          * The headers and data are in a single large buffer. We
1422                          * copy it to a new skb and let it go. This can happen with
1423                          * jumbo mtu on a non-TCP/UDP frame.
1424                          */
1425                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1426                         skb = netdev_alloc_skb(qdev->ndev, length);
1427                         if (skb == NULL) {
1428                                 QPRINTK(qdev, PROBE, DEBUG,
1429                                         "No skb available, drop the packet.\n");
1430                                 return NULL;
1431                         }
1432                         pci_unmap_page(qdev->pdev,
1433                                        pci_unmap_addr(lbq_desc,
1434                                                       mapaddr),
1435                                        pci_unmap_len(lbq_desc, maplen),
1436                                        PCI_DMA_FROMDEVICE);
1437                         skb_reserve(skb, NET_IP_ALIGN);
1438                         QPRINTK(qdev, RX_STATUS, DEBUG,
1439                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1440                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1441                                            0, length);
1442                         skb->len += length;
1443                         skb->data_len += length;
1444                         skb->truesize += length;
1445                         length -= length;
1446                         lbq_desc->p.lbq_page = NULL;
1447                         __pskb_pull_tail(skb,
1448                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1449                                 VLAN_ETH_HLEN : ETH_HLEN);
1450                 }
1451         } else {
1452                 /*
1453                  * The data is in a chain of large buffers
1454                  * pointed to by a small buffer.  We loop
1455                  * thru and chain them to the our small header
1456                  * buffer's skb.
1457                  * frags:  There are 18 max frags and our small
1458                  *         buffer will hold 32 of them. The thing is,
1459                  *         we'll use 3 max for our 9000 byte jumbo
1460                  *         frames.  If the MTU goes up we could
1461                  *          eventually be in trouble.
1462                  */
1463                 int size, offset, i = 0;
1464                 __le64 *bq, bq_array[8];
1465                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1466                 pci_unmap_single(qdev->pdev,
1467                                  pci_unmap_addr(sbq_desc, mapaddr),
1468                                  pci_unmap_len(sbq_desc, maplen),
1469                                  PCI_DMA_FROMDEVICE);
1470                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1471                         /*
1472                          * This is an non TCP/UDP IP frame, so
1473                          * the headers aren't split into a small
1474                          * buffer.  We have to use the small buffer
1475                          * that contains our sg list as our skb to
1476                          * send upstairs. Copy the sg list here to
1477                          * a local buffer and use it to find the
1478                          * pages to chain.
1479                          */
1480                         QPRINTK(qdev, RX_STATUS, DEBUG,
1481                                 "%d bytes of headers & data in chain of large.\n", length);
1482                         skb = sbq_desc->p.skb;
1483                         bq = &bq_array[0];
1484                         memcpy(bq, skb->data, sizeof(bq_array));
1485                         sbq_desc->p.skb = NULL;
1486                         skb_reserve(skb, NET_IP_ALIGN);
1487                 } else {
1488                         QPRINTK(qdev, RX_STATUS, DEBUG,
1489                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1490                         bq = (__le64 *)sbq_desc->p.skb->data;
1491                 }
1492                 while (length > 0) {
1493                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1494                         pci_unmap_page(qdev->pdev,
1495                                        pci_unmap_addr(lbq_desc,
1496                                                       mapaddr),
1497                                        pci_unmap_len(lbq_desc,
1498                                                      maplen),
1499                                        PCI_DMA_FROMDEVICE);
1500                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1501                         offset = 0;
1502
1503                         QPRINTK(qdev, RX_STATUS, DEBUG,
1504                                 "Adding page %d to skb for %d bytes.\n",
1505                                 i, size);
1506                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1507                                            offset, size);
1508                         skb->len += size;
1509                         skb->data_len += size;
1510                         skb->truesize += size;
1511                         length -= size;
1512                         lbq_desc->p.lbq_page = NULL;
1513                         bq++;
1514                         i++;
1515                 }
1516                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1517                                 VLAN_ETH_HLEN : ETH_HLEN);
1518         }
1519         return skb;
1520 }
1521
1522 /* Process an inbound completion from an rx ring. */
1523 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1524                                    struct rx_ring *rx_ring,
1525                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1526 {
1527         struct net_device *ndev = qdev->ndev;
1528         struct sk_buff *skb = NULL;
1529         u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1530                         IB_MAC_IOCB_RSP_VLAN_MASK)
1531
1532         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1533
1534         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1535         if (unlikely(!skb)) {
1536                 QPRINTK(qdev, RX_STATUS, DEBUG,
1537                         "No skb available, drop packet.\n");
1538                 return;
1539         }
1540
1541         /* Frame error, so drop the packet. */
1542         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1543                 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1544                                         ib_mac_rsp->flags2);
1545                 dev_kfree_skb_any(skb);
1546                 return;
1547         }
1548
1549         /* The max framesize filter on this chip is set higher than
1550          * MTU since FCoE uses 2k frames.
1551          */
1552         if (skb->len > ndev->mtu + ETH_HLEN) {
1553                 dev_kfree_skb_any(skb);
1554                 return;
1555         }
1556
1557         prefetch(skb->data);
1558         skb->dev = ndev;
1559         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1560                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1561                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1562                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1563                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1564                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1565                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1566                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1567         }
1568         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1569                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1570         }
1571
1572         skb->protocol = eth_type_trans(skb, ndev);
1573         skb->ip_summed = CHECKSUM_NONE;
1574
1575         /* If rx checksum is on, and there are no
1576          * csum or frame errors.
1577          */
1578         if (qdev->rx_csum &&
1579                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1580                 /* TCP frame. */
1581                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1582                         QPRINTK(qdev, RX_STATUS, DEBUG,
1583                                         "TCP checksum done!\n");
1584                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1585                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1586                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1587                 /* Unfragmented ipv4 UDP frame. */
1588                         struct iphdr *iph = (struct iphdr *) skb->data;
1589                         if (!(iph->frag_off &
1590                                 cpu_to_be16(IP_MF|IP_OFFSET))) {
1591                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1592                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1593                                                 "TCP checksum done!\n");
1594                         }
1595                 }
1596         }
1597
1598         qdev->stats.rx_packets++;
1599         qdev->stats.rx_bytes += skb->len;
1600         skb_record_rx_queue(skb,
1601                 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1602         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1603                 if (qdev->vlgrp &&
1604                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1605                         (vlan_id != 0))
1606                         vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1607                                 vlan_id, skb);
1608                 else
1609                         napi_gro_receive(&rx_ring->napi, skb);
1610         } else {
1611                 if (qdev->vlgrp &&
1612                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1613                         (vlan_id != 0))
1614                         vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1615                 else
1616                         netif_receive_skb(skb);
1617         }
1618 }
1619
1620 /* Process an outbound completion from an rx ring. */
1621 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1622                                    struct ob_mac_iocb_rsp *mac_rsp)
1623 {
1624         struct tx_ring *tx_ring;
1625         struct tx_ring_desc *tx_ring_desc;
1626
1627         QL_DUMP_OB_MAC_RSP(mac_rsp);
1628         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1629         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1630         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1631         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1632         qdev->stats.tx_packets++;
1633         dev_kfree_skb(tx_ring_desc->skb);
1634         tx_ring_desc->skb = NULL;
1635
1636         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1637                                         OB_MAC_IOCB_RSP_S |
1638                                         OB_MAC_IOCB_RSP_L |
1639                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1640                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1641                         QPRINTK(qdev, TX_DONE, WARNING,
1642                                 "Total descriptor length did not match transfer length.\n");
1643                 }
1644                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1645                         QPRINTK(qdev, TX_DONE, WARNING,
1646                                 "Frame too short to be legal, not sent.\n");
1647                 }
1648                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1649                         QPRINTK(qdev, TX_DONE, WARNING,
1650                                 "Frame too long, but sent anyway.\n");
1651                 }
1652                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1653                         QPRINTK(qdev, TX_DONE, WARNING,
1654                                 "PCI backplane error. Frame not sent.\n");
1655                 }
1656         }
1657         atomic_inc(&tx_ring->tx_count);
1658 }
1659
1660 /* Fire up a handler to reset the MPI processor. */
1661 void ql_queue_fw_error(struct ql_adapter *qdev)
1662 {
1663         netif_carrier_off(qdev->ndev);
1664         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1665 }
1666
1667 void ql_queue_asic_error(struct ql_adapter *qdev)
1668 {
1669         netif_carrier_off(qdev->ndev);
1670         ql_disable_interrupts(qdev);
1671         /* Clear adapter up bit to signal the recovery
1672          * process that it shouldn't kill the reset worker
1673          * thread
1674          */
1675         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1676         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1677 }
1678
1679 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1680                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1681 {
1682         switch (ib_ae_rsp->event) {
1683         case MGMT_ERR_EVENT:
1684                 QPRINTK(qdev, RX_ERR, ERR,
1685                         "Management Processor Fatal Error.\n");
1686                 ql_queue_fw_error(qdev);
1687                 return;
1688
1689         case CAM_LOOKUP_ERR_EVENT:
1690                 QPRINTK(qdev, LINK, ERR,
1691                         "Multiple CAM hits lookup occurred.\n");
1692                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1693                 ql_queue_asic_error(qdev);
1694                 return;
1695
1696         case SOFT_ECC_ERROR_EVENT:
1697                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1698                 ql_queue_asic_error(qdev);
1699                 break;
1700
1701         case PCI_ERR_ANON_BUF_RD:
1702                 QPRINTK(qdev, RX_ERR, ERR,
1703                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1704                         ib_ae_rsp->q_id);
1705                 ql_queue_asic_error(qdev);
1706                 break;
1707
1708         default:
1709                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1710                         ib_ae_rsp->event);
1711                 ql_queue_asic_error(qdev);
1712                 break;
1713         }
1714 }
1715
1716 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1717 {
1718         struct ql_adapter *qdev = rx_ring->qdev;
1719         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1720         struct ob_mac_iocb_rsp *net_rsp = NULL;
1721         int count = 0;
1722
1723         struct tx_ring *tx_ring;
1724         /* While there are entries in the completion queue. */
1725         while (prod != rx_ring->cnsmr_idx) {
1726
1727                 QPRINTK(qdev, RX_STATUS, DEBUG,
1728                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1729                         prod, rx_ring->cnsmr_idx);
1730
1731                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1732                 rmb();
1733                 switch (net_rsp->opcode) {
1734
1735                 case OPCODE_OB_MAC_TSO_IOCB:
1736                 case OPCODE_OB_MAC_IOCB:
1737                         ql_process_mac_tx_intr(qdev, net_rsp);
1738                         break;
1739                 default:
1740                         QPRINTK(qdev, RX_STATUS, DEBUG,
1741                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1742                                 net_rsp->opcode);
1743                 }
1744                 count++;
1745                 ql_update_cq(rx_ring);
1746                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1747         }
1748         ql_write_cq_idx(rx_ring);
1749         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1750         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1751                                         net_rsp != NULL) {
1752                 if (atomic_read(&tx_ring->queue_stopped) &&
1753                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1754                         /*
1755                          * The queue got stopped because the tx_ring was full.
1756                          * Wake it up, because it's now at least 25% empty.
1757                          */
1758                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1759         }
1760
1761         return count;
1762 }
1763
1764 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1765 {
1766         struct ql_adapter *qdev = rx_ring->qdev;
1767         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1768         struct ql_net_rsp_iocb *net_rsp;
1769         int count = 0;
1770
1771         /* While there are entries in the completion queue. */
1772         while (prod != rx_ring->cnsmr_idx) {
1773
1774                 QPRINTK(qdev, RX_STATUS, DEBUG,
1775                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1776                         prod, rx_ring->cnsmr_idx);
1777
1778                 net_rsp = rx_ring->curr_entry;
1779                 rmb();
1780                 switch (net_rsp->opcode) {
1781                 case OPCODE_IB_MAC_IOCB:
1782                         ql_process_mac_rx_intr(qdev, rx_ring,
1783                                                (struct ib_mac_iocb_rsp *)
1784                                                net_rsp);
1785                         break;
1786
1787                 case OPCODE_IB_AE_IOCB:
1788                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1789                                                 net_rsp);
1790                         break;
1791                 default:
1792                         {
1793                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1794                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1795                                         net_rsp->opcode);
1796                         }
1797                 }
1798                 count++;
1799                 ql_update_cq(rx_ring);
1800                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1801                 if (count == budget)
1802                         break;
1803         }
1804         ql_update_buffer_queues(qdev, rx_ring);
1805         ql_write_cq_idx(rx_ring);
1806         return count;
1807 }
1808
1809 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1810 {
1811         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1812         struct ql_adapter *qdev = rx_ring->qdev;
1813         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1814
1815         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1816                 rx_ring->cq_id);
1817
1818         if (work_done < budget) {
1819                 napi_complete(napi);
1820                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1821         }
1822         return work_done;
1823 }
1824
1825 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1826 {
1827         struct ql_adapter *qdev = netdev_priv(ndev);
1828
1829         qdev->vlgrp = grp;
1830         if (grp) {
1831                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1832                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1833                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1834         } else {
1835                 QPRINTK(qdev, IFUP, DEBUG,
1836                         "Turning off VLAN in NIC_RCV_CFG.\n");
1837                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1838         }
1839 }
1840
1841 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1842 {
1843         struct ql_adapter *qdev = netdev_priv(ndev);
1844         u32 enable_bit = MAC_ADDR_E;
1845         int status;
1846
1847         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1848         if (status)
1849                 return;
1850         spin_lock(&qdev->hw_lock);
1851         if (ql_set_mac_addr_reg
1852             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1853                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1854         }
1855         spin_unlock(&qdev->hw_lock);
1856         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1857 }
1858
1859 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1860 {
1861         struct ql_adapter *qdev = netdev_priv(ndev);
1862         u32 enable_bit = 0;
1863         int status;
1864
1865         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1866         if (status)
1867                 return;
1868
1869         spin_lock(&qdev->hw_lock);
1870         if (ql_set_mac_addr_reg
1871             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1872                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1873         }
1874         spin_unlock(&qdev->hw_lock);
1875         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1876
1877 }
1878
1879 /* Worker thread to process a given rx_ring that is dedicated
1880  * to outbound completions.
1881  */
1882 static void ql_tx_clean(struct work_struct *work)
1883 {
1884         struct rx_ring *rx_ring =
1885             container_of(work, struct rx_ring, rx_work.work);
1886         ql_clean_outbound_rx_ring(rx_ring);
1887         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1888
1889 }
1890
1891 /* Worker thread to process a given rx_ring that is dedicated
1892  * to inbound completions.
1893  */
1894 static void ql_rx_clean(struct work_struct *work)
1895 {
1896         struct rx_ring *rx_ring =
1897             container_of(work, struct rx_ring, rx_work.work);
1898         ql_clean_inbound_rx_ring(rx_ring, 64);
1899         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1900 }
1901
1902 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1903 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1904 {
1905         struct rx_ring *rx_ring = dev_id;
1906         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1907                               &rx_ring->rx_work, 0);
1908         return IRQ_HANDLED;
1909 }
1910
1911 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1912 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1913 {
1914         struct rx_ring *rx_ring = dev_id;
1915         napi_schedule(&rx_ring->napi);
1916         return IRQ_HANDLED;
1917 }
1918
1919 /* This handles a fatal error, MPI activity, and the default
1920  * rx_ring in an MSI-X multiple vector environment.
1921  * In MSI/Legacy environment it also process the rest of
1922  * the rx_rings.
1923  */
1924 static irqreturn_t qlge_isr(int irq, void *dev_id)
1925 {
1926         struct rx_ring *rx_ring = dev_id;
1927         struct ql_adapter *qdev = rx_ring->qdev;
1928         struct intr_context *intr_context = &qdev->intr_context[0];
1929         u32 var;
1930         int i;
1931         int work_done = 0;
1932
1933         spin_lock(&qdev->hw_lock);
1934         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1935                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1936                 spin_unlock(&qdev->hw_lock);
1937                 return IRQ_NONE;
1938         }
1939         spin_unlock(&qdev->hw_lock);
1940
1941         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1942
1943         /*
1944          * Check for fatal error.
1945          */
1946         if (var & STS_FE) {
1947                 ql_queue_asic_error(qdev);
1948                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1949                 var = ql_read32(qdev, ERR_STS);
1950                 QPRINTK(qdev, INTR, ERR,
1951                         "Resetting chip. Error Status Register = 0x%x\n", var);
1952                 return IRQ_HANDLED;
1953         }
1954
1955         /*
1956          * Check MPI processor activity.
1957          */
1958         if (var & STS_PI) {
1959                 /*
1960                  * We've got an async event or mailbox completion.
1961                  * Handle it and clear the source of the interrupt.
1962                  */
1963                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1964                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1965                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1966                                       &qdev->mpi_work, 0);
1967                 work_done++;
1968         }
1969
1970         /*
1971          * Check the default queue and wake handler if active.
1972          */
1973         rx_ring = &qdev->rx_ring[0];
1974         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1975                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1976                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1977                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1978                                       &rx_ring->rx_work, 0);
1979                 work_done++;
1980         }
1981
1982         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1983                 /*
1984                  * Start the DPC for each active queue.
1985                  */
1986                 for (i = 1; i < qdev->rx_ring_count; i++) {
1987                         rx_ring = &qdev->rx_ring[i];
1988                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1989                             rx_ring->cnsmr_idx) {
1990                                 QPRINTK(qdev, INTR, INFO,
1991                                         "Waking handler for rx_ring[%d].\n", i);
1992                                 ql_disable_completion_interrupt(qdev,
1993                                                                 intr_context->
1994                                                                 intr);
1995                                 if (i < qdev->rss_ring_first_cq_id)
1996                                         queue_delayed_work_on(rx_ring->cpu,
1997                                                               qdev->q_workqueue,
1998                                                               &rx_ring->rx_work,
1999                                                               0);
2000                                 else
2001                                         napi_schedule(&rx_ring->napi);
2002                                 work_done++;
2003                         }
2004                 }
2005         }
2006         ql_enable_completion_interrupt(qdev, intr_context->intr);
2007         return work_done ? IRQ_HANDLED : IRQ_NONE;
2008 }
2009
2010 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2011 {
2012
2013         if (skb_is_gso(skb)) {
2014                 int err;
2015                 if (skb_header_cloned(skb)) {
2016                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2017                         if (err)
2018                                 return err;
2019                 }
2020
2021                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2022                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2023                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2024                 mac_iocb_ptr->total_hdrs_len =
2025                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2026                 mac_iocb_ptr->net_trans_offset =
2027                     cpu_to_le16(skb_network_offset(skb) |
2028                                 skb_transport_offset(skb)
2029                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2030                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2031                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2032                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2033                         struct iphdr *iph = ip_hdr(skb);
2034                         iph->check = 0;
2035                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2036                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2037                                                                  iph->daddr, 0,
2038                                                                  IPPROTO_TCP,
2039                                                                  0);
2040                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2041                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2042                         tcp_hdr(skb)->check =
2043                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2044                                              &ipv6_hdr(skb)->daddr,
2045                                              0, IPPROTO_TCP, 0);
2046                 }
2047                 return 1;
2048         }
2049         return 0;
2050 }
2051
2052 static void ql_hw_csum_setup(struct sk_buff *skb,
2053                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2054 {
2055         int len;
2056         struct iphdr *iph = ip_hdr(skb);
2057         __sum16 *check;
2058         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2059         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2060         mac_iocb_ptr->net_trans_offset =
2061                 cpu_to_le16(skb_network_offset(skb) |
2062                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2063
2064         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2065         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2066         if (likely(iph->protocol == IPPROTO_TCP)) {
2067                 check = &(tcp_hdr(skb)->check);
2068                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2069                 mac_iocb_ptr->total_hdrs_len =
2070                     cpu_to_le16(skb_transport_offset(skb) +
2071                                 (tcp_hdr(skb)->doff << 2));
2072         } else {
2073                 check = &(udp_hdr(skb)->check);
2074                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2075                 mac_iocb_ptr->total_hdrs_len =
2076                     cpu_to_le16(skb_transport_offset(skb) +
2077                                 sizeof(struct udphdr));
2078         }
2079         *check = ~csum_tcpudp_magic(iph->saddr,
2080                                     iph->daddr, len, iph->protocol, 0);
2081 }
2082
2083 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2084 {
2085         struct tx_ring_desc *tx_ring_desc;
2086         struct ob_mac_iocb_req *mac_iocb_ptr;
2087         struct ql_adapter *qdev = netdev_priv(ndev);
2088         int tso;
2089         struct tx_ring *tx_ring;
2090         u32 tx_ring_idx = (u32) skb->queue_mapping;
2091
2092         tx_ring = &qdev->tx_ring[tx_ring_idx];
2093
2094         if (skb_padto(skb, ETH_ZLEN))
2095                 return NETDEV_TX_OK;
2096
2097         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2098                 QPRINTK(qdev, TX_QUEUED, INFO,
2099                         "%s: shutting down tx queue %d du to lack of resources.\n",
2100                         __func__, tx_ring_idx);
2101                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2102                 atomic_inc(&tx_ring->queue_stopped);
2103                 return NETDEV_TX_BUSY;
2104         }
2105         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2106         mac_iocb_ptr = tx_ring_desc->queue_entry;
2107         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
2108
2109         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2110         mac_iocb_ptr->tid = tx_ring_desc->index;
2111         /* We use the upper 32-bits to store the tx queue for this IO.
2112          * When we get the completion we can use it to establish the context.
2113          */
2114         mac_iocb_ptr->txq_idx = tx_ring_idx;
2115         tx_ring_desc->skb = skb;
2116
2117         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2118
2119         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2120                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2121                         vlan_tx_tag_get(skb));
2122                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2123                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2124         }
2125         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2126         if (tso < 0) {
2127                 dev_kfree_skb_any(skb);
2128                 return NETDEV_TX_OK;
2129         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2130                 ql_hw_csum_setup(skb,
2131                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2132         }
2133         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2134                         NETDEV_TX_OK) {
2135                 QPRINTK(qdev, TX_QUEUED, ERR,
2136                                 "Could not map the segments.\n");
2137                 return NETDEV_TX_BUSY;
2138         }
2139         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2140         tx_ring->prod_idx++;
2141         if (tx_ring->prod_idx == tx_ring->wq_len)
2142                 tx_ring->prod_idx = 0;
2143         wmb();
2144
2145         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2146         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2147                 tx_ring->prod_idx, skb->len);
2148
2149         atomic_dec(&tx_ring->tx_count);
2150         return NETDEV_TX_OK;
2151 }
2152
2153 static void ql_free_shadow_space(struct ql_adapter *qdev)
2154 {
2155         if (qdev->rx_ring_shadow_reg_area) {
2156                 pci_free_consistent(qdev->pdev,
2157                                     PAGE_SIZE,
2158                                     qdev->rx_ring_shadow_reg_area,
2159                                     qdev->rx_ring_shadow_reg_dma);
2160                 qdev->rx_ring_shadow_reg_area = NULL;
2161         }
2162         if (qdev->tx_ring_shadow_reg_area) {
2163                 pci_free_consistent(qdev->pdev,
2164                                     PAGE_SIZE,
2165                                     qdev->tx_ring_shadow_reg_area,
2166                                     qdev->tx_ring_shadow_reg_dma);
2167                 qdev->tx_ring_shadow_reg_area = NULL;
2168         }
2169 }
2170
2171 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2172 {
2173         qdev->rx_ring_shadow_reg_area =
2174             pci_alloc_consistent(qdev->pdev,
2175                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2176         if (qdev->rx_ring_shadow_reg_area == NULL) {
2177                 QPRINTK(qdev, IFUP, ERR,
2178                         "Allocation of RX shadow space failed.\n");
2179                 return -ENOMEM;
2180         }
2181         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2182         qdev->tx_ring_shadow_reg_area =
2183             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2184                                  &qdev->tx_ring_shadow_reg_dma);
2185         if (qdev->tx_ring_shadow_reg_area == NULL) {
2186                 QPRINTK(qdev, IFUP, ERR,
2187                         "Allocation of TX shadow space failed.\n");
2188                 goto err_wqp_sh_area;
2189         }
2190         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2191         return 0;
2192
2193 err_wqp_sh_area:
2194         pci_free_consistent(qdev->pdev,
2195                             PAGE_SIZE,
2196                             qdev->rx_ring_shadow_reg_area,
2197                             qdev->rx_ring_shadow_reg_dma);
2198         return -ENOMEM;
2199 }
2200
2201 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2202 {
2203         struct tx_ring_desc *tx_ring_desc;
2204         int i;
2205         struct ob_mac_iocb_req *mac_iocb_ptr;
2206
2207         mac_iocb_ptr = tx_ring->wq_base;
2208         tx_ring_desc = tx_ring->q;
2209         for (i = 0; i < tx_ring->wq_len; i++) {
2210                 tx_ring_desc->index = i;
2211                 tx_ring_desc->skb = NULL;
2212                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2213                 mac_iocb_ptr++;
2214                 tx_ring_desc++;
2215         }
2216         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2217         atomic_set(&tx_ring->queue_stopped, 0);
2218 }
2219
2220 static void ql_free_tx_resources(struct ql_adapter *qdev,
2221                                  struct tx_ring *tx_ring)
2222 {
2223         if (tx_ring->wq_base) {
2224                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2225                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2226                 tx_ring->wq_base = NULL;
2227         }
2228         kfree(tx_ring->q);
2229         tx_ring->q = NULL;
2230 }
2231
2232 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2233                                  struct tx_ring *tx_ring)
2234 {
2235         tx_ring->wq_base =
2236             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2237                                  &tx_ring->wq_base_dma);
2238
2239         if ((tx_ring->wq_base == NULL)
2240                 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2241                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2242                 return -ENOMEM;
2243         }
2244         tx_ring->q =
2245             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2246         if (tx_ring->q == NULL)
2247                 goto err;
2248
2249         return 0;
2250 err:
2251         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2252                             tx_ring->wq_base, tx_ring->wq_base_dma);
2253         return -ENOMEM;
2254 }
2255
2256 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2257 {
2258         int i;
2259         struct bq_desc *lbq_desc;
2260
2261         for (i = 0; i < rx_ring->lbq_len; i++) {
2262                 lbq_desc = &rx_ring->lbq[i];
2263                 if (lbq_desc->p.lbq_page) {
2264                         pci_unmap_page(qdev->pdev,
2265                                        pci_unmap_addr(lbq_desc, mapaddr),
2266                                        pci_unmap_len(lbq_desc, maplen),
2267                                        PCI_DMA_FROMDEVICE);
2268
2269                         put_page(lbq_desc->p.lbq_page);
2270                         lbq_desc->p.lbq_page = NULL;
2271                 }
2272         }
2273 }
2274
2275 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2276 {
2277         int i;
2278         struct bq_desc *sbq_desc;
2279
2280         for (i = 0; i < rx_ring->sbq_len; i++) {
2281                 sbq_desc = &rx_ring->sbq[i];
2282                 if (sbq_desc == NULL) {
2283                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2284                         return;
2285                 }
2286                 if (sbq_desc->p.skb) {
2287                         pci_unmap_single(qdev->pdev,
2288                                          pci_unmap_addr(sbq_desc, mapaddr),
2289                                          pci_unmap_len(sbq_desc, maplen),
2290                                          PCI_DMA_FROMDEVICE);
2291                         dev_kfree_skb(sbq_desc->p.skb);
2292                         sbq_desc->p.skb = NULL;
2293                 }
2294         }
2295 }
2296
2297 /* Free all large and small rx buffers associated
2298  * with the completion queues for this device.
2299  */
2300 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2301 {
2302         int i;
2303         struct rx_ring *rx_ring;
2304
2305         for (i = 0; i < qdev->rx_ring_count; i++) {
2306                 rx_ring = &qdev->rx_ring[i];
2307                 if (rx_ring->lbq)
2308                         ql_free_lbq_buffers(qdev, rx_ring);
2309                 if (rx_ring->sbq)
2310                         ql_free_sbq_buffers(qdev, rx_ring);
2311         }
2312 }
2313
2314 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2315 {
2316         struct rx_ring *rx_ring;
2317         int i;
2318
2319         for (i = 0; i < qdev->rx_ring_count; i++) {
2320                 rx_ring = &qdev->rx_ring[i];
2321                 if (rx_ring->type != TX_Q)
2322                         ql_update_buffer_queues(qdev, rx_ring);
2323         }
2324 }
2325
2326 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2327                                 struct rx_ring *rx_ring)
2328 {
2329         int i;
2330         struct bq_desc *lbq_desc;
2331         __le64 *bq = rx_ring->lbq_base;
2332
2333         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2334         for (i = 0; i < rx_ring->lbq_len; i++) {
2335                 lbq_desc = &rx_ring->lbq[i];
2336                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2337                 lbq_desc->index = i;
2338                 lbq_desc->addr = bq;
2339                 bq++;
2340         }
2341 }
2342
2343 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2344                                 struct rx_ring *rx_ring)
2345 {
2346         int i;
2347         struct bq_desc *sbq_desc;
2348         __le64 *bq = rx_ring->sbq_base;
2349
2350         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2351         for (i = 0; i < rx_ring->sbq_len; i++) {
2352                 sbq_desc = &rx_ring->sbq[i];
2353                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2354                 sbq_desc->index = i;
2355                 sbq_desc->addr = bq;
2356                 bq++;
2357         }
2358 }
2359
2360 static void ql_free_rx_resources(struct ql_adapter *qdev,
2361                                  struct rx_ring *rx_ring)
2362 {
2363         /* Free the small buffer queue. */
2364         if (rx_ring->sbq_base) {
2365                 pci_free_consistent(qdev->pdev,
2366                                     rx_ring->sbq_size,
2367                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2368                 rx_ring->sbq_base = NULL;
2369         }
2370
2371         /* Free the small buffer queue control blocks. */
2372         kfree(rx_ring->sbq);
2373         rx_ring->sbq = NULL;
2374
2375         /* Free the large buffer queue. */
2376         if (rx_ring->lbq_base) {
2377                 pci_free_consistent(qdev->pdev,
2378                                     rx_ring->lbq_size,
2379                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2380                 rx_ring->lbq_base = NULL;
2381         }
2382
2383         /* Free the large buffer queue control blocks. */
2384         kfree(rx_ring->lbq);
2385         rx_ring->lbq = NULL;
2386
2387         /* Free the rx queue. */
2388         if (rx_ring->cq_base) {
2389                 pci_free_consistent(qdev->pdev,
2390                                     rx_ring->cq_size,
2391                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2392                 rx_ring->cq_base = NULL;
2393         }
2394 }
2395
2396 /* Allocate queues and buffers for this completions queue based
2397  * on the values in the parameter structure. */
2398 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2399                                  struct rx_ring *rx_ring)
2400 {
2401
2402         /*
2403          * Allocate the completion queue for this rx_ring.
2404          */
2405         rx_ring->cq_base =
2406             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2407                                  &rx_ring->cq_base_dma);
2408
2409         if (rx_ring->cq_base == NULL) {
2410                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2411                 return -ENOMEM;
2412         }
2413
2414         if (rx_ring->sbq_len) {
2415                 /*
2416                  * Allocate small buffer queue.
2417                  */
2418                 rx_ring->sbq_base =
2419                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2420                                          &rx_ring->sbq_base_dma);
2421
2422                 if (rx_ring->sbq_base == NULL) {
2423                         QPRINTK(qdev, IFUP, ERR,
2424                                 "Small buffer queue allocation failed.\n");
2425                         goto err_mem;
2426                 }
2427
2428                 /*
2429                  * Allocate small buffer queue control blocks.
2430                  */
2431                 rx_ring->sbq =
2432                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2433                             GFP_KERNEL);
2434                 if (rx_ring->sbq == NULL) {
2435                         QPRINTK(qdev, IFUP, ERR,
2436                                 "Small buffer queue control block allocation failed.\n");
2437                         goto err_mem;
2438                 }
2439
2440                 ql_init_sbq_ring(qdev, rx_ring);
2441         }
2442
2443         if (rx_ring->lbq_len) {
2444                 /*
2445                  * Allocate large buffer queue.
2446                  */
2447                 rx_ring->lbq_base =
2448                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2449                                          &rx_ring->lbq_base_dma);
2450
2451                 if (rx_ring->lbq_base == NULL) {
2452                         QPRINTK(qdev, IFUP, ERR,
2453                                 "Large buffer queue allocation failed.\n");
2454                         goto err_mem;
2455                 }
2456                 /*
2457                  * Allocate large buffer queue control blocks.
2458                  */
2459                 rx_ring->lbq =
2460                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2461                             GFP_KERNEL);
2462                 if (rx_ring->lbq == NULL) {
2463                         QPRINTK(qdev, IFUP, ERR,
2464                                 "Large buffer queue control block allocation failed.\n");
2465                         goto err_mem;
2466                 }
2467
2468                 ql_init_lbq_ring(qdev, rx_ring);
2469         }
2470
2471         return 0;
2472
2473 err_mem:
2474         ql_free_rx_resources(qdev, rx_ring);
2475         return -ENOMEM;
2476 }
2477
2478 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2479 {
2480         struct tx_ring *tx_ring;
2481         struct tx_ring_desc *tx_ring_desc;
2482         int i, j;
2483
2484         /*
2485          * Loop through all queues and free
2486          * any resources.
2487          */
2488         for (j = 0; j < qdev->tx_ring_count; j++) {
2489                 tx_ring = &qdev->tx_ring[j];
2490                 for (i = 0; i < tx_ring->wq_len; i++) {
2491                         tx_ring_desc = &tx_ring->q[i];
2492                         if (tx_ring_desc && tx_ring_desc->skb) {
2493                                 QPRINTK(qdev, IFDOWN, ERR,
2494                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2495                                         tx_ring_desc->skb, j,
2496                                         tx_ring_desc->index);
2497                                 ql_unmap_send(qdev, tx_ring_desc,
2498                                               tx_ring_desc->map_cnt);
2499                                 dev_kfree_skb(tx_ring_desc->skb);
2500                                 tx_ring_desc->skb = NULL;
2501                         }
2502                 }
2503         }
2504 }
2505
2506 static void ql_free_mem_resources(struct ql_adapter *qdev)
2507 {
2508         int i;
2509
2510         for (i = 0; i < qdev->tx_ring_count; i++)
2511                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2512         for (i = 0; i < qdev->rx_ring_count; i++)
2513                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2514         ql_free_shadow_space(qdev);
2515 }
2516
2517 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2518 {
2519         int i;
2520
2521         /* Allocate space for our shadow registers and such. */
2522         if (ql_alloc_shadow_space(qdev))
2523                 return -ENOMEM;
2524
2525         for (i = 0; i < qdev->rx_ring_count; i++) {
2526                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2527                         QPRINTK(qdev, IFUP, ERR,
2528                                 "RX resource allocation failed.\n");
2529                         goto err_mem;
2530                 }
2531         }
2532         /* Allocate tx queue resources */
2533         for (i = 0; i < qdev->tx_ring_count; i++) {
2534                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2535                         QPRINTK(qdev, IFUP, ERR,
2536                                 "TX resource allocation failed.\n");
2537                         goto err_mem;
2538                 }
2539         }
2540         return 0;
2541
2542 err_mem:
2543         ql_free_mem_resources(qdev);
2544         return -ENOMEM;
2545 }
2546
2547 /* Set up the rx ring control block and pass it to the chip.
2548  * The control block is defined as
2549  * "Completion Queue Initialization Control Block", or cqicb.
2550  */
2551 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2552 {
2553         struct cqicb *cqicb = &rx_ring->cqicb;
2554         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2555                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2556         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2557                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2558         void __iomem *doorbell_area =
2559             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2560         int err = 0;
2561         u16 bq_len;
2562         u64 tmp;
2563         __le64 *base_indirect_ptr;
2564         int page_entries;
2565
2566         /* Set up the shadow registers for this ring. */
2567         rx_ring->prod_idx_sh_reg = shadow_reg;
2568         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2569         shadow_reg += sizeof(u64);
2570         shadow_reg_dma += sizeof(u64);
2571         rx_ring->lbq_base_indirect = shadow_reg;
2572         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2573         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2574         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2575         rx_ring->sbq_base_indirect = shadow_reg;
2576         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2577
2578         /* PCI doorbell mem area + 0x00 for consumer index register */
2579         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2580         rx_ring->cnsmr_idx = 0;
2581         rx_ring->curr_entry = rx_ring->cq_base;
2582
2583         /* PCI doorbell mem area + 0x04 for valid register */
2584         rx_ring->valid_db_reg = doorbell_area + 0x04;
2585
2586         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2587         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2588
2589         /* PCI doorbell mem area + 0x1c */
2590         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2591
2592         memset((void *)cqicb, 0, sizeof(struct cqicb));
2593         cqicb->msix_vect = rx_ring->irq;
2594
2595         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2596         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2597
2598         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2599
2600         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2601
2602         /*
2603          * Set up the control block load flags.
2604          */
2605         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2606             FLAGS_LV |          /* Load MSI-X vector */
2607             FLAGS_LI;           /* Load irq delay values */
2608         if (rx_ring->lbq_len) {
2609                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2610                 tmp = (u64)rx_ring->lbq_base_dma;;
2611                 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2612                 page_entries = 0;
2613                 do {
2614                         *base_indirect_ptr = cpu_to_le64(tmp);
2615                         tmp += DB_PAGE_SIZE;
2616                         base_indirect_ptr++;
2617                         page_entries++;
2618                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2619                 cqicb->lbq_addr =
2620                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2621                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2622                         (u16) rx_ring->lbq_buf_size;
2623                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2624                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2625                         (u16) rx_ring->lbq_len;
2626                 cqicb->lbq_len = cpu_to_le16(bq_len);
2627                 rx_ring->lbq_prod_idx = 0;
2628                 rx_ring->lbq_curr_idx = 0;
2629                 rx_ring->lbq_clean_idx = 0;
2630                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2631         }
2632         if (rx_ring->sbq_len) {
2633                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2634                 tmp = (u64)rx_ring->sbq_base_dma;;
2635                 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2636                 page_entries = 0;
2637                 do {
2638                         *base_indirect_ptr = cpu_to_le64(tmp);
2639                         tmp += DB_PAGE_SIZE;
2640                         base_indirect_ptr++;
2641                         page_entries++;
2642                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2643                 cqicb->sbq_addr =
2644                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2645                 cqicb->sbq_buf_size =
2646                     cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2647                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2648                         (u16) rx_ring->sbq_len;
2649                 cqicb->sbq_len = cpu_to_le16(bq_len);
2650                 rx_ring->sbq_prod_idx = 0;
2651                 rx_ring->sbq_curr_idx = 0;
2652                 rx_ring->sbq_clean_idx = 0;
2653                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2654         }
2655         switch (rx_ring->type) {
2656         case TX_Q:
2657                 /* If there's only one interrupt, then we use
2658                  * worker threads to process the outbound
2659                  * completion handling rx_rings. We do this so
2660                  * they can be run on multiple CPUs. There is
2661                  * room to play with this more where we would only
2662                  * run in a worker if there are more than x number
2663                  * of outbound completions on the queue and more
2664                  * than one queue active.  Some threshold that
2665                  * would indicate a benefit in spite of the cost
2666                  * of a context switch.
2667                  * If there's more than one interrupt, then the
2668                  * outbound completions are processed in the ISR.
2669                  */
2670                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2671                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2672                 else {
2673                         /* With all debug warnings on we see a WARN_ON message
2674                          * when we free the skb in the interrupt context.
2675                          */
2676                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2677                 }
2678                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2679                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2680                 break;
2681         case DEFAULT_Q:
2682                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2683                 cqicb->irq_delay = 0;
2684                 cqicb->pkt_delay = 0;
2685                 break;
2686         case RX_Q:
2687                 /* Inbound completion handling rx_rings run in
2688                  * separate NAPI contexts.
2689                  */
2690                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2691                                64);
2692                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2693                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2694                 break;
2695         default:
2696                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2697                         rx_ring->type);
2698         }
2699         QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2700         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2701                            CFG_LCQ, rx_ring->cq_id);
2702         if (err) {
2703                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2704                 return err;
2705         }
2706         return err;
2707 }
2708
2709 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2710 {
2711         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2712         void __iomem *doorbell_area =
2713             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2714         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2715             (tx_ring->wq_id * sizeof(u64));
2716         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2717             (tx_ring->wq_id * sizeof(u64));
2718         int err = 0;
2719
2720         /*
2721          * Assign doorbell registers for this tx_ring.
2722          */
2723         /* TX PCI doorbell mem area for tx producer index */
2724         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2725         tx_ring->prod_idx = 0;
2726         /* TX PCI doorbell mem area + 0x04 */
2727         tx_ring->valid_db_reg = doorbell_area + 0x04;
2728
2729         /*
2730          * Assign shadow registers for this tx_ring.
2731          */
2732         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2733         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2734
2735         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2736         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2737                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2738         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2739         wqicb->rid = 0;
2740         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2741
2742         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2743
2744         ql_init_tx_ring(qdev, tx_ring);
2745
2746         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2747                            (u16) tx_ring->wq_id);
2748         if (err) {
2749                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2750                 return err;
2751         }
2752         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2753         return err;
2754 }
2755
2756 static void ql_disable_msix(struct ql_adapter *qdev)
2757 {
2758         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2759                 pci_disable_msix(qdev->pdev);
2760                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2761                 kfree(qdev->msi_x_entry);
2762                 qdev->msi_x_entry = NULL;
2763         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2764                 pci_disable_msi(qdev->pdev);
2765                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2766         }
2767 }
2768
2769 static void ql_enable_msix(struct ql_adapter *qdev)
2770 {
2771         int i;
2772
2773         qdev->intr_count = 1;
2774         /* Get the MSIX vectors. */
2775         if (irq_type == MSIX_IRQ) {
2776                 /* Try to alloc space for the msix struct,
2777                  * if it fails then go to MSI/legacy.
2778                  */
2779                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2780                                             sizeof(struct msix_entry),
2781                                             GFP_KERNEL);
2782                 if (!qdev->msi_x_entry) {
2783                         irq_type = MSI_IRQ;
2784                         goto msi;
2785                 }
2786
2787                 for (i = 0; i < qdev->rx_ring_count; i++)
2788                         qdev->msi_x_entry[i].entry = i;
2789
2790                 if (!pci_enable_msix
2791                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2792                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2793                         qdev->intr_count = qdev->rx_ring_count;
2794                         QPRINTK(qdev, IFUP, DEBUG,
2795                                 "MSI-X Enabled, got %d vectors.\n",
2796                                 qdev->intr_count);
2797                         return;
2798                 } else {
2799                         kfree(qdev->msi_x_entry);
2800                         qdev->msi_x_entry = NULL;
2801                         QPRINTK(qdev, IFUP, WARNING,
2802                                 "MSI-X Enable failed, trying MSI.\n");
2803                         irq_type = MSI_IRQ;
2804                 }
2805         }
2806 msi:
2807         if (irq_type == MSI_IRQ) {
2808                 if (!pci_enable_msi(qdev->pdev)) {
2809                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2810                         QPRINTK(qdev, IFUP, INFO,
2811                                 "Running with MSI interrupts.\n");
2812                         return;
2813                 }
2814         }
2815         irq_type = LEG_IRQ;
2816         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2817 }
2818
2819 /*
2820  * Here we build the intr_context structures based on
2821  * our rx_ring count and intr vector count.
2822  * The intr_context structure is used to hook each vector
2823  * to possibly different handlers.
2824  */
2825 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2826 {
2827         int i = 0;
2828         struct intr_context *intr_context = &qdev->intr_context[0];
2829
2830         ql_enable_msix(qdev);
2831
2832         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2833                 /* Each rx_ring has it's
2834                  * own intr_context since we have separate
2835                  * vectors for each queue.
2836                  * This only true when MSI-X is enabled.
2837                  */
2838                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2839                         qdev->rx_ring[i].irq = i;
2840                         intr_context->intr = i;
2841                         intr_context->qdev = qdev;
2842                         /*
2843                          * We set up each vectors enable/disable/read bits so
2844                          * there's no bit/mask calculations in the critical path.
2845                          */
2846                         intr_context->intr_en_mask =
2847                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2848                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2849                             | i;
2850                         intr_context->intr_dis_mask =
2851                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2852                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2853                             INTR_EN_IHD | i;
2854                         intr_context->intr_read_mask =
2855                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2856                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2857                             i;
2858
2859                         if (i == 0) {
2860                                 /*
2861                                  * Default queue handles bcast/mcast plus
2862                                  * async events.  Needs buffers.
2863                                  */
2864                                 intr_context->handler = qlge_isr;
2865                                 sprintf(intr_context->name, "%s-default-queue",
2866                                         qdev->ndev->name);
2867                         } else if (i < qdev->rss_ring_first_cq_id) {
2868                                 /*
2869                                  * Outbound queue is for outbound completions only.
2870                                  */
2871                                 intr_context->handler = qlge_msix_tx_isr;
2872                                 sprintf(intr_context->name, "%s-tx-%d",
2873                                         qdev->ndev->name, i);
2874                         } else {
2875                                 /*
2876                                  * Inbound queues handle unicast frames only.
2877                                  */
2878                                 intr_context->handler = qlge_msix_rx_isr;
2879                                 sprintf(intr_context->name, "%s-rx-%d",
2880                                         qdev->ndev->name, i);
2881                         }
2882                 }
2883         } else {
2884                 /*
2885                  * All rx_rings use the same intr_context since
2886                  * there is only one vector.
2887                  */
2888                 intr_context->intr = 0;
2889                 intr_context->qdev = qdev;
2890                 /*
2891                  * We set up each vectors enable/disable/read bits so
2892                  * there's no bit/mask calculations in the critical path.
2893                  */
2894                 intr_context->intr_en_mask =
2895                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2896                 intr_context->intr_dis_mask =
2897                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2898                     INTR_EN_TYPE_DISABLE;
2899                 intr_context->intr_read_mask =
2900                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2901                 /*
2902                  * Single interrupt means one handler for all rings.
2903                  */
2904                 intr_context->handler = qlge_isr;
2905                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2906                 for (i = 0; i < qdev->rx_ring_count; i++)
2907                         qdev->rx_ring[i].irq = 0;
2908         }
2909 }
2910
2911 static void ql_free_irq(struct ql_adapter *qdev)
2912 {
2913         int i;
2914         struct intr_context *intr_context = &qdev->intr_context[0];
2915
2916         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2917                 if (intr_context->hooked) {
2918                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2919                                 free_irq(qdev->msi_x_entry[i].vector,
2920                                          &qdev->rx_ring[i]);
2921                                 QPRINTK(qdev, IFDOWN, DEBUG,
2922                                         "freeing msix interrupt %d.\n", i);
2923                         } else {
2924                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2925                                 QPRINTK(qdev, IFDOWN, DEBUG,
2926                                         "freeing msi interrupt %d.\n", i);
2927                         }
2928                 }
2929         }
2930         ql_disable_msix(qdev);
2931 }
2932
2933 static int ql_request_irq(struct ql_adapter *qdev)
2934 {
2935         int i;
2936         int status = 0;
2937         struct pci_dev *pdev = qdev->pdev;
2938         struct intr_context *intr_context = &qdev->intr_context[0];
2939
2940         ql_resolve_queues_to_irqs(qdev);
2941
2942         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2943                 atomic_set(&intr_context->irq_cnt, 0);
2944                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2945                         status = request_irq(qdev->msi_x_entry[i].vector,
2946                                              intr_context->handler,
2947                                              0,
2948                                              intr_context->name,
2949                                              &qdev->rx_ring[i]);
2950                         if (status) {
2951                                 QPRINTK(qdev, IFUP, ERR,
2952                                         "Failed request for MSIX interrupt %d.\n",
2953                                         i);
2954                                 goto err_irq;
2955                         } else {
2956                                 QPRINTK(qdev, IFUP, DEBUG,
2957                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2958                                         i,
2959                                         qdev->rx_ring[i].type ==
2960                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2961                                         qdev->rx_ring[i].type ==
2962                                         TX_Q ? "TX_Q" : "",
2963                                         qdev->rx_ring[i].type ==
2964                                         RX_Q ? "RX_Q" : "", intr_context->name);
2965                         }
2966                 } else {
2967                         QPRINTK(qdev, IFUP, DEBUG,
2968                                 "trying msi or legacy interrupts.\n");
2969                         QPRINTK(qdev, IFUP, DEBUG,
2970                                 "%s: irq = %d.\n", __func__, pdev->irq);
2971                         QPRINTK(qdev, IFUP, DEBUG,
2972                                 "%s: context->name = %s.\n", __func__,
2973                                intr_context->name);
2974                         QPRINTK(qdev, IFUP, DEBUG,
2975                                 "%s: dev_id = 0x%p.\n", __func__,
2976                                &qdev->rx_ring[0]);
2977                         status =
2978                             request_irq(pdev->irq, qlge_isr,
2979                                         test_bit(QL_MSI_ENABLED,
2980                                                  &qdev->
2981                                                  flags) ? 0 : IRQF_SHARED,
2982                                         intr_context->name, &qdev->rx_ring[0]);
2983                         if (status)
2984                                 goto err_irq;
2985
2986                         QPRINTK(qdev, IFUP, ERR,
2987                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2988                                 i,
2989                                 qdev->rx_ring[0].type ==
2990                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2991                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2992                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2993                                 intr_context->name);
2994                 }
2995                 intr_context->hooked = 1;
2996         }
2997         return status;
2998 err_irq:
2999         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3000         ql_free_irq(qdev);
3001         return status;
3002 }
3003
3004 static int ql_start_rss(struct ql_adapter *qdev)
3005 {
3006         struct ricb *ricb = &qdev->ricb;
3007         int status = 0;
3008         int i;
3009         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3010
3011         memset((void *)ricb, 0, sizeof(ricb));
3012
3013         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
3014         ricb->flags =
3015             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3016              RSS_RT6);
3017         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3018
3019         /*
3020          * Fill out the Indirection Table.
3021          */
3022         for (i = 0; i < 256; i++)
3023                 hash_id[i] = i & (qdev->rss_ring_count - 1);
3024
3025         /*
3026          * Random values for the IPv6 and IPv4 Hash Keys.
3027          */
3028         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3029         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3030
3031         QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
3032
3033         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
3034         if (status) {
3035                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3036                 return status;
3037         }
3038         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
3039         return status;
3040 }
3041
3042 /* Initialize the frame-to-queue routing. */
3043 static int ql_route_initialize(struct ql_adapter *qdev)
3044 {
3045         int status = 0;
3046         int i;
3047
3048         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3049         if (status)
3050                 return status;
3051
3052         /* Clear all the entries in the routing table. */
3053         for (i = 0; i < 16; i++) {
3054                 status = ql_set_routing_reg(qdev, i, 0, 0);
3055                 if (status) {
3056                         QPRINTK(qdev, IFUP, ERR,
3057                                 "Failed to init routing register for CAM packets.\n");
3058                         goto exit;
3059                 }
3060         }
3061
3062         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3063         if (status) {
3064                 QPRINTK(qdev, IFUP, ERR,
3065                         "Failed to init routing register for error packets.\n");
3066                 goto exit;
3067         }
3068         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3069         if (status) {
3070                 QPRINTK(qdev, IFUP, ERR,
3071                         "Failed to init routing register for broadcast packets.\n");
3072                 goto exit;
3073         }
3074         /* If we have more than one inbound queue, then turn on RSS in the
3075          * routing block.
3076          */
3077         if (qdev->rss_ring_count > 1) {
3078                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3079                                         RT_IDX_RSS_MATCH, 1);
3080                 if (status) {
3081                         QPRINTK(qdev, IFUP, ERR,
3082                                 "Failed to init routing register for MATCH RSS packets.\n");
3083                         goto exit;
3084                 }
3085         }
3086
3087         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3088                                     RT_IDX_CAM_HIT, 1);
3089         if (status)
3090                 QPRINTK(qdev, IFUP, ERR,
3091                         "Failed to init routing register for CAM packets.\n");
3092 exit:
3093         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3094         return status;
3095 }
3096
3097 int ql_cam_route_initialize(struct ql_adapter *qdev)
3098 {
3099         int status;
3100
3101         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3102         if (status)
3103                 return status;
3104         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3105                              MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3106         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3107         if (status) {
3108                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3109                 return status;
3110         }
3111
3112         status = ql_route_initialize(qdev);
3113         if (status)
3114                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3115
3116         return status;
3117 }
3118
3119 static int ql_adapter_initialize(struct ql_adapter *qdev)
3120 {
3121         u32 value, mask;
3122         int i;
3123         int status = 0;
3124
3125         /*
3126          * Set up the System register to halt on errors.
3127          */
3128         value = SYS_EFE | SYS_FAE;
3129         mask = value << 16;
3130         ql_write32(qdev, SYS, mask | value);
3131
3132         /* Set the default queue, and VLAN behavior. */
3133         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3134         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3135         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3136
3137         /* Set the MPI interrupt to enabled. */
3138         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3139
3140         /* Enable the function, set pagesize, enable error checking. */
3141         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3142             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3143
3144         /* Set/clear header splitting. */
3145         mask = FSC_VM_PAGESIZE_MASK |
3146             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3147         ql_write32(qdev, FSC, mask | value);
3148
3149         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3150                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3151
3152         /* Start up the rx queues. */
3153         for (i = 0; i < qdev->rx_ring_count; i++) {
3154                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3155                 if (status) {
3156                         QPRINTK(qdev, IFUP, ERR,
3157                                 "Failed to start rx ring[%d].\n", i);
3158                         return status;
3159                 }
3160         }
3161
3162         /* If there is more than one inbound completion queue
3163          * then download a RICB to configure RSS.
3164          */
3165         if (qdev->rss_ring_count > 1) {
3166                 status = ql_start_rss(qdev);
3167                 if (status) {
3168                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3169                         return status;
3170                 }
3171         }
3172
3173         /* Start up the tx queues. */
3174         for (i = 0; i < qdev->tx_ring_count; i++) {
3175                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3176                 if (status) {
3177                         QPRINTK(qdev, IFUP, ERR,
3178                                 "Failed to start tx ring[%d].\n", i);
3179                         return status;
3180                 }
3181         }
3182
3183         /* Initialize the port and set the max framesize. */
3184         status = qdev->nic_ops->port_initialize(qdev);
3185        if (status) {
3186               QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3187               return status;
3188        }
3189
3190         /* Set up the MAC address and frame routing filter. */
3191         status = ql_cam_route_initialize(qdev);
3192         if (status) {
3193                 QPRINTK(qdev, IFUP, ERR,
3194                                 "Failed to init CAM/Routing tables.\n");
3195                 return status;
3196         }
3197
3198         /* Start NAPI for the RSS queues. */
3199         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3200                 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3201                         i);
3202                 napi_enable(&qdev->rx_ring[i].napi);
3203         }
3204
3205         return status;
3206 }
3207
3208 /* Issue soft reset to chip. */
3209 static int ql_adapter_reset(struct ql_adapter *qdev)
3210 {
3211         u32 value;
3212         int status = 0;
3213         unsigned long end_jiffies = jiffies +
3214                 max((unsigned long)1, usecs_to_jiffies(30));
3215
3216         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3217
3218         do {
3219                 value = ql_read32(qdev, RST_FO);
3220                 if ((value & RST_FO_FR) == 0)
3221                         break;
3222                 cpu_relax();
3223         } while (time_before(jiffies, end_jiffies));
3224
3225         if (value & RST_FO_FR) {
3226                 QPRINTK(qdev, IFDOWN, ERR,
3227                         "ETIMEDOUT!!! errored out of resetting the chip!\n");
3228                 status = -ETIMEDOUT;
3229         }
3230
3231         return status;
3232 }
3233
3234 static void ql_display_dev_info(struct net_device *ndev)
3235 {
3236         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3237
3238         QPRINTK(qdev, PROBE, INFO,
3239                 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3240                 "XG Roll = %d, XG Rev = %d.\n",
3241                 qdev->func,
3242                 qdev->port,
3243                 qdev->chip_rev_id & 0x0000000f,
3244                 qdev->chip_rev_id >> 4 & 0x0000000f,
3245                 qdev->chip_rev_id >> 8 & 0x0000000f,
3246                 qdev->chip_rev_id >> 12 & 0x0000000f);
3247         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3248 }
3249
3250 static int ql_adapter_down(struct ql_adapter *qdev)
3251 {
3252         int i, status = 0;
3253         struct rx_ring *rx_ring;
3254
3255         netif_carrier_off(qdev->ndev);
3256
3257         /* Don't kill the reset worker thread if we
3258          * are in the process of recovery.
3259          */
3260         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3261                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3262         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3263         cancel_delayed_work_sync(&qdev->mpi_work);
3264         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3265         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3266
3267         /* The default queue at index 0 is always processed in
3268          * a workqueue.
3269          */
3270         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3271
3272         /* The rest of the rx_rings are processed in
3273          * a workqueue only if it's a single interrupt
3274          * environment (MSI/Legacy).
3275          */
3276         for (i = 1; i < qdev->rx_ring_count; i++) {
3277                 rx_ring = &qdev->rx_ring[i];
3278                 /* Only the RSS rings use NAPI on multi irq
3279                  * environment.  Outbound completion processing
3280                  * is done in interrupt context.
3281                  */
3282                 if (i >= qdev->rss_ring_first_cq_id) {
3283                         napi_disable(&rx_ring->napi);
3284                 } else {
3285                         cancel_delayed_work_sync(&rx_ring->rx_work);
3286                 }
3287         }
3288
3289         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3290
3291         ql_disable_interrupts(qdev);
3292
3293         ql_tx_ring_clean(qdev);
3294
3295         /* Call netif_napi_del() from common point.
3296          */
3297         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3298                 netif_napi_del(&qdev->rx_ring[i].napi);
3299
3300         ql_free_rx_buffers(qdev);
3301
3302         spin_lock(&qdev->hw_lock);
3303         status = ql_adapter_reset(qdev);
3304         if (status)
3305                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3306                         qdev->func);
3307         spin_unlock(&qdev->hw_lock);
3308         return status;
3309 }
3310
3311 static int ql_adapter_up(struct ql_adapter *qdev)
3312 {
3313         int err = 0;
3314
3315         err = ql_adapter_initialize(qdev);
3316         if (err) {
3317                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3318                 goto err_init;
3319         }
3320         set_bit(QL_ADAPTER_UP, &qdev->flags);
3321         ql_alloc_rx_buffers(qdev);
3322         if ((ql_read32(qdev, STS) & qdev->port_init))
3323                 netif_carrier_on(qdev->ndev);
3324         ql_enable_interrupts(qdev);
3325         ql_enable_all_completion_interrupts(qdev);
3326         netif_tx_start_all_queues(qdev->ndev);
3327
3328         return 0;
3329 err_init:
3330         ql_adapter_reset(qdev);
3331         return err;
3332 }
3333
3334 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3335 {
3336         ql_free_mem_resources(qdev);
3337         ql_free_irq(qdev);
3338 }
3339
3340 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3341 {
3342         int status = 0;
3343
3344         if (ql_alloc_mem_resources(qdev)) {
3345                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3346                 return -ENOMEM;
3347         }
3348         status = ql_request_irq(qdev);
3349         if (status)
3350                 goto err_irq;
3351         return status;
3352 err_irq:
3353         ql_free_mem_resources(qdev);
3354         return status;
3355 }
3356
3357 static int qlge_close(struct net_device *ndev)
3358 {
3359         struct ql_adapter *qdev = netdev_priv(ndev);
3360
3361         /*
3362          * Wait for device to recover from a reset.
3363          * (Rarely happens, but possible.)
3364          */
3365         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3366                 msleep(1);
3367         ql_adapter_down(qdev);
3368         ql_release_adapter_resources(qdev);
3369         return 0;
3370 }
3371
3372 static int ql_configure_rings(struct ql_adapter *qdev)
3373 {
3374         int i;
3375         struct rx_ring *rx_ring;
3376         struct tx_ring *tx_ring;
3377         int cpu_cnt = num_online_cpus();
3378
3379         /*
3380          * For each processor present we allocate one
3381          * rx_ring for outbound completions, and one
3382          * rx_ring for inbound completions.  Plus there is
3383          * always the one default queue.  For the CPU
3384          * counts we end up with the following rx_rings:
3385          * rx_ring count =
3386          *  one default queue +
3387          *  (CPU count * outbound completion rx_ring) +
3388          *  (CPU count * inbound (RSS) completion rx_ring)
3389          * To keep it simple we limit the total number of
3390          * queues to < 32, so we truncate CPU to 8.
3391          * This limitation can be removed when requested.
3392          */
3393
3394         if (cpu_cnt > MAX_CPUS)
3395                 cpu_cnt = MAX_CPUS;
3396
3397         /*
3398          * rx_ring[0] is always the default queue.
3399          */
3400         /* Allocate outbound completion ring for each CPU. */
3401         qdev->tx_ring_count = cpu_cnt;
3402         /* Allocate inbound completion (RSS) ring for each CPU. */
3403         qdev->rss_ring_count = cpu_cnt;
3404         /* cq_id for the first inbound ring handler. */
3405         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3406         /*
3407          * qdev->rx_ring_count:
3408          * Total number of rx_rings.  This includes the one
3409          * default queue, a number of outbound completion
3410          * handler rx_rings, and the number of inbound
3411          * completion handler rx_rings.
3412          */
3413         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3414
3415         for (i = 0; i < qdev->tx_ring_count; i++) {
3416                 tx_ring = &qdev->tx_ring[i];
3417                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3418                 tx_ring->qdev = qdev;
3419                 tx_ring->wq_id = i;
3420                 tx_ring->wq_len = qdev->tx_ring_size;
3421                 tx_ring->wq_size =
3422                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3423
3424                 /*
3425                  * The completion queue ID for the tx rings start
3426                  * immediately after the default Q ID, which is zero.
3427                  */
3428                 tx_ring->cq_id = i + 1;
3429         }
3430
3431         for (i = 0; i < qdev->rx_ring_count; i++) {
3432                 rx_ring = &qdev->rx_ring[i];
3433                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3434                 rx_ring->qdev = qdev;
3435                 rx_ring->cq_id = i;
3436                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3437                 if (i == 0) {   /* Default queue at index 0. */
3438                         /*
3439                          * Default queue handles bcast/mcast plus
3440                          * async events.  Needs buffers.
3441                          */
3442                         rx_ring->cq_len = qdev->rx_ring_size;
3443                         rx_ring->cq_size =
3444                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3445                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3446                         rx_ring->lbq_size =
3447                             rx_ring->lbq_len * sizeof(__le64);
3448                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3449                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3450                         rx_ring->sbq_size =
3451                             rx_ring->sbq_len * sizeof(__le64);
3452                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3453                         rx_ring->type = DEFAULT_Q;
3454                 } else if (i < qdev->rss_ring_first_cq_id) {
3455                         /*
3456                          * Outbound queue handles outbound completions only.
3457                          */
3458                         /* outbound cq is same size as tx_ring it services. */
3459                         rx_ring->cq_len = qdev->tx_ring_size;
3460                         rx_ring->cq_size =
3461                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3462                         rx_ring->lbq_len = 0;
3463                         rx_ring->lbq_size = 0;
3464                         rx_ring->lbq_buf_size = 0;
3465                         rx_ring->sbq_len = 0;
3466                         rx_ring->sbq_size = 0;
3467                         rx_ring->sbq_buf_size = 0;
3468                         rx_ring->type = TX_Q;
3469                 } else {        /* Inbound completions (RSS) queues */
3470                         /*
3471                          * Inbound queues handle unicast frames only.
3472                          */
3473                         rx_ring->cq_len = qdev->rx_ring_size;
3474                         rx_ring->cq_size =
3475                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3476                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3477                         rx_ring->lbq_size =
3478                             rx_ring->lbq_len * sizeof(__le64);
3479                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3480                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3481                         rx_ring->sbq_size =
3482                             rx_ring->sbq_len * sizeof(__le64);
3483                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3484                         rx_ring->type = RX_Q;
3485                 }
3486         }
3487         return 0;
3488 }
3489
3490 static int qlge_open(struct net_device *ndev)
3491 {
3492         int err = 0;
3493         struct ql_adapter *qdev = netdev_priv(ndev);
3494
3495         err = ql_configure_rings(qdev);
3496         if (err)
3497                 return err;
3498
3499         err = ql_get_adapter_resources(qdev);
3500         if (err)
3501                 goto error_up;
3502
3503         err = ql_adapter_up(qdev);
3504         if (err)
3505                 goto error_up;
3506
3507         return err;
3508
3509 error_up:
3510         ql_release_adapter_resources(qdev);
3511         return err;
3512 }
3513
3514 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3515 {
3516         struct ql_adapter *qdev = netdev_priv(ndev);
3517
3518         if (ndev->mtu == 1500 && new_mtu == 9000) {
3519                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3520                 queue_delayed_work(qdev->workqueue,
3521                                 &qdev->mpi_port_cfg_work, 0);
3522         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3523                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3524         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3525                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3526                 return 0;
3527         } else
3528                 return -EINVAL;
3529         ndev->mtu = new_mtu;
3530         return 0;
3531 }
3532
3533 static struct net_device_stats *qlge_get_stats(struct net_device
3534                                                *ndev)
3535 {
3536         struct ql_adapter *qdev = netdev_priv(ndev);
3537         return &qdev->stats;
3538 }
3539
3540 static void qlge_set_multicast_list(struct net_device *ndev)
3541 {
3542         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3543         struct dev_mc_list *mc_ptr;
3544         int i, status;
3545
3546         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3547         if (status)
3548                 return;
3549         spin_lock(&qdev->hw_lock);
3550         /*
3551          * Set or clear promiscuous mode if a
3552          * transition is taking place.
3553          */
3554         if (ndev->flags & IFF_PROMISC) {
3555                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3556                         if (ql_set_routing_reg
3557                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3558                                 QPRINTK(qdev, HW, ERR,
3559                                         "Failed to set promiscous mode.\n");
3560                         } else {
3561                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3562                         }
3563                 }
3564         } else {
3565                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3566                         if (ql_set_routing_reg
3567                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3568                                 QPRINTK(qdev, HW, ERR,
3569                                         "Failed to clear promiscous mode.\n");
3570                         } else {
3571                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3572                         }
3573                 }
3574         }
3575
3576         /*
3577          * Set or clear all multicast mode if a
3578          * transition is taking place.
3579          */
3580         if ((ndev->flags & IFF_ALLMULTI) ||
3581             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3582                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3583                         if (ql_set_routing_reg
3584                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3585                                 QPRINTK(qdev, HW, ERR,
3586                                         "Failed to set all-multi mode.\n");
3587                         } else {
3588                                 set_bit(QL_ALLMULTI, &qdev->flags);
3589                         }
3590                 }
3591         } else {
3592                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3593                         if (ql_set_routing_reg
3594                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3595                                 QPRINTK(qdev, HW, ERR,
3596                                         "Failed to clear all-multi mode.\n");
3597                         } else {
3598                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3599                         }
3600                 }
3601         }
3602
3603         if (ndev->mc_count) {
3604                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3605                 if (status)
3606                         goto exit;
3607                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3608                      i++, mc_ptr = mc_ptr->next)
3609                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3610                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3611                                 QPRINTK(qdev, HW, ERR,
3612                                         "Failed to loadmulticast address.\n");
3613                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3614                                 goto exit;
3615                         }
3616                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3617                 if (ql_set_routing_reg
3618                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3619                         QPRINTK(qdev, HW, ERR,
3620                                 "Failed to set multicast match mode.\n");
3621                 } else {
3622                         set_bit(QL_ALLMULTI, &qdev->flags);
3623                 }
3624         }
3625 exit:
3626         spin_unlock(&qdev->hw_lock);
3627         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3628 }
3629
3630 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3631 {
3632         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3633         struct sockaddr *addr = p;
3634         int status;
3635
3636         if (netif_running(ndev))
3637                 return -EBUSY;
3638
3639         if (!is_valid_ether_addr(addr->sa_data))
3640                 return -EADDRNOTAVAIL;
3641         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3642
3643         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3644         if (status)
3645                 return status;
3646         spin_lock(&qdev->hw_lock);
3647         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3648                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3649         spin_unlock(&qdev->hw_lock);
3650         if (status)
3651                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3652         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3653         return status;
3654 }
3655
3656 static void qlge_tx_timeout(struct net_device *ndev)
3657 {
3658         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3659         ql_queue_asic_error(qdev);
3660 }
3661
3662 static void ql_asic_reset_work(struct work_struct *work)
3663 {
3664         struct ql_adapter *qdev =
3665             container_of(work, struct ql_adapter, asic_reset_work.work);
3666         int status;
3667
3668         status = ql_adapter_down(qdev);
3669         if (status)
3670                 goto error;
3671
3672         status = ql_adapter_up(qdev);
3673         if (status)
3674                 goto error;
3675
3676         return;
3677 error:
3678         QPRINTK(qdev, IFUP, ALERT,
3679                 "Driver up/down cycle failed, closing device\n");
3680         rtnl_lock();
3681         set_bit(QL_ADAPTER_UP, &qdev->flags);
3682         dev_close(qdev->ndev);
3683         rtnl_unlock();
3684 }
3685
3686 static struct nic_operations qla8012_nic_ops = {
3687         .get_flash              = ql_get_8012_flash_params,
3688         .port_initialize        = ql_8012_port_initialize,
3689 };
3690
3691 static struct nic_operations qla8000_nic_ops = {
3692         .get_flash              = ql_get_8000_flash_params,
3693         .port_initialize        = ql_8000_port_initialize,
3694 };
3695
3696 /* Find the pcie function number for the other NIC
3697  * on this chip.  Since both NIC functions share a
3698  * common firmware we have the lowest enabled function
3699  * do any common work.  Examples would be resetting
3700  * after a fatal firmware error, or doing a firmware
3701  * coredump.
3702  */
3703 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3704 {
3705         int status = 0;
3706         u32 temp;
3707         u32 nic_func1, nic_func2;
3708
3709         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3710                         &temp);
3711         if (status)
3712                 return status;
3713
3714         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3715                         MPI_TEST_NIC_FUNC_MASK);
3716         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3717                         MPI_TEST_NIC_FUNC_MASK);
3718
3719         if (qdev->func == nic_func1)
3720                 qdev->alt_func = nic_func2;
3721         else if (qdev->func == nic_func2)
3722                 qdev->alt_func = nic_func1;
3723         else
3724                 status = -EIO;
3725
3726         return status;
3727 }
3728
3729 static int ql_get_board_info(struct ql_adapter *qdev)
3730 {
3731         int status;
3732         qdev->func =
3733             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3734         if (qdev->func > 3)
3735                 return -EIO;
3736
3737         status = ql_get_alt_pcie_func(qdev);
3738         if (status)
3739                 return status;
3740
3741         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3742         if (qdev->port) {
3743                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3744                 qdev->port_link_up = STS_PL1;
3745                 qdev->port_init = STS_PI1;
3746                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3747                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3748         } else {
3749                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3750                 qdev->port_link_up = STS_PL0;
3751                 qdev->port_init = STS_PI0;
3752                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3753                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3754         }
3755         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3756         qdev->device_id = qdev->pdev->device;
3757         if (qdev->device_id == QLGE_DEVICE_ID_8012)
3758                 qdev->nic_ops = &qla8012_nic_ops;
3759         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3760                 qdev->nic_ops = &qla8000_nic_ops;
3761         return status;
3762 }
3763
3764 static void ql_release_all(struct pci_dev *pdev)
3765 {
3766         struct net_device *ndev = pci_get_drvdata(pdev);
3767         struct ql_adapter *qdev = netdev_priv(ndev);
3768
3769         if (qdev->workqueue) {
3770                 destroy_workqueue(qdev->workqueue);
3771                 qdev->workqueue = NULL;
3772         }
3773         if (qdev->q_workqueue) {
3774                 destroy_workqueue(qdev->q_workqueue);
3775                 qdev->q_workqueue = NULL;
3776         }
3777         if (qdev->reg_base)
3778                 iounmap(qdev->reg_base);
3779         if (qdev->doorbell_area)
3780                 iounmap(qdev->doorbell_area);
3781         pci_release_regions(pdev);
3782         pci_set_drvdata(pdev, NULL);
3783 }
3784
3785 static int __devinit ql_init_device(struct pci_dev *pdev,
3786                                     struct net_device *ndev, int cards_found)
3787 {
3788         struct ql_adapter *qdev = netdev_priv(ndev);
3789         int pos, err = 0;
3790         u16 val16;
3791
3792         memset((void *)qdev, 0, sizeof(qdev));
3793         err = pci_enable_device(pdev);
3794         if (err) {
3795                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3796                 return err;
3797         }
3798
3799         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3800         if (pos <= 0) {
3801                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3802                         "aborting.\n");
3803                 goto err_out;
3804         } else {
3805                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3806                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3807                 val16 |= (PCI_EXP_DEVCTL_CERE |
3808                           PCI_EXP_DEVCTL_NFERE |
3809                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3810                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3811         }
3812
3813         err = pci_request_regions(pdev, DRV_NAME);
3814         if (err) {
3815                 dev_err(&pdev->dev, "PCI region request failed.\n");
3816                 goto err_out;
3817         }
3818
3819         pci_set_master(pdev);
3820         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3821                 set_bit(QL_DMA64, &qdev->flags);
3822                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3823         } else {
3824                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3825                 if (!err)
3826                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3827         }
3828
3829         if (err) {
3830                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3831                 goto err_out;
3832         }
3833
3834         pci_set_drvdata(pdev, ndev);
3835         qdev->reg_base =
3836             ioremap_nocache(pci_resource_start(pdev, 1),
3837                             pci_resource_len(pdev, 1));
3838         if (!qdev->reg_base) {
3839                 dev_err(&pdev->dev, "Register mapping failed.\n");
3840                 err = -ENOMEM;
3841                 goto err_out;
3842         }
3843
3844         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3845         qdev->doorbell_area =
3846             ioremap_nocache(pci_resource_start(pdev, 3),
3847                             pci_resource_len(pdev, 3));
3848         if (!qdev->doorbell_area) {
3849                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3850                 err = -ENOMEM;
3851                 goto err_out;
3852         }
3853
3854         qdev->ndev = ndev;
3855         qdev->pdev = pdev;
3856         err = ql_get_board_info(qdev);
3857         if (err) {
3858                 dev_err(&pdev->dev, "Register access failed.\n");
3859                 err = -EIO;
3860                 goto err_out;
3861         }
3862         qdev->msg_enable = netif_msg_init(debug, default_msg);
3863         spin_lock_init(&qdev->hw_lock);
3864         spin_lock_init(&qdev->stats_lock);
3865
3866         /* make sure the EEPROM is good */
3867         err = qdev->nic_ops->get_flash(qdev);
3868         if (err) {
3869                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3870                 goto err_out;
3871         }
3872
3873         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3874
3875         /* Set up the default ring sizes. */
3876         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3877         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3878
3879         /* Set up the coalescing parameters. */
3880         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3881         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3882         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3883         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3884
3885         /*
3886          * Set up the operating parameters.
3887          */
3888         qdev->rx_csum = 1;
3889
3890         qdev->q_workqueue = create_workqueue(ndev->name);
3891         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3892         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3893         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3894         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3895         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3896         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3897         mutex_init(&qdev->mpi_mutex);
3898         init_completion(&qdev->ide_completion);
3899
3900         if (!cards_found) {
3901                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3902                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3903                          DRV_NAME, DRV_VERSION);
3904         }
3905         return 0;
3906 err_out:
3907         ql_release_all(pdev);
3908         pci_disable_device(pdev);
3909         return err;
3910 }
3911
3912
3913 static const struct net_device_ops qlge_netdev_ops = {
3914         .ndo_open               = qlge_open,
3915         .ndo_stop               = qlge_close,
3916         .ndo_start_xmit         = qlge_send,
3917         .ndo_change_mtu         = qlge_change_mtu,
3918         .ndo_get_stats          = qlge_get_stats,
3919         .ndo_set_multicast_list = qlge_set_multicast_list,
3920         .ndo_set_mac_address    = qlge_set_mac_address,
3921         .ndo_validate_addr      = eth_validate_addr,
3922         .ndo_tx_timeout         = qlge_tx_timeout,
3923         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3924         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3925         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3926 };
3927
3928 static int __devinit qlge_probe(struct pci_dev *pdev,
3929                                 const struct pci_device_id *pci_entry)
3930 {
3931         struct net_device *ndev = NULL;
3932         struct ql_adapter *qdev = NULL;
3933         static int cards_found = 0;
3934         int err = 0;
3935
3936         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3937                         min(MAX_CPUS, (int)num_online_cpus()));
3938         if (!ndev)
3939                 return -ENOMEM;
3940
3941         err = ql_init_device(pdev, ndev, cards_found);
3942         if (err < 0) {
3943                 free_netdev(ndev);
3944                 return err;
3945         }
3946
3947         qdev = netdev_priv(ndev);
3948         SET_NETDEV_DEV(ndev, &pdev->dev);
3949         ndev->features = (0
3950                           | NETIF_F_IP_CSUM
3951                           | NETIF_F_SG
3952                           | NETIF_F_TSO
3953                           | NETIF_F_TSO6
3954                           | NETIF_F_TSO_ECN
3955                           | NETIF_F_HW_VLAN_TX
3956                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3957         ndev->features |= NETIF_F_GRO;
3958
3959         if (test_bit(QL_DMA64, &qdev->flags))
3960                 ndev->features |= NETIF_F_HIGHDMA;
3961
3962         /*
3963          * Set up net_device structure.
3964          */
3965         ndev->tx_queue_len = qdev->tx_ring_size;
3966         ndev->irq = pdev->irq;
3967
3968         ndev->netdev_ops = &qlge_netdev_ops;
3969         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3970         ndev->watchdog_timeo = 10 * HZ;
3971
3972         err = register_netdev(ndev);
3973         if (err) {
3974                 dev_err(&pdev->dev, "net device registration failed.\n");
3975                 ql_release_all(pdev);
3976                 pci_disable_device(pdev);
3977                 return err;
3978         }
3979         netif_carrier_off(ndev);
3980         ql_display_dev_info(ndev);
3981         cards_found++;
3982         return 0;
3983 }
3984
3985 static void __devexit qlge_remove(struct pci_dev *pdev)
3986 {
3987         struct net_device *ndev = pci_get_drvdata(pdev);
3988         unregister_netdev(ndev);
3989         ql_release_all(pdev);
3990         pci_disable_device(pdev);
3991         free_netdev(ndev);
3992 }
3993
3994 /*
3995  * This callback is called by the PCI subsystem whenever
3996  * a PCI bus error is detected.
3997  */
3998 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3999                                                enum pci_channel_state state)
4000 {
4001         struct net_device *ndev = pci_get_drvdata(pdev);
4002         struct ql_adapter *qdev = netdev_priv(ndev);
4003
4004         if (netif_running(ndev))
4005                 ql_adapter_down(qdev);
4006
4007         pci_disable_device(pdev);
4008
4009         /* Request a slot reset. */
4010         return PCI_ERS_RESULT_NEED_RESET;
4011 }
4012
4013 /*
4014  * This callback is called after the PCI buss has been reset.
4015  * Basically, this tries to restart the card from scratch.
4016  * This is a shortened version of the device probe/discovery code,
4017  * it resembles the first-half of the () routine.
4018  */
4019 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4020 {
4021         struct net_device *ndev = pci_get_drvdata(pdev);
4022         struct ql_adapter *qdev = netdev_priv(ndev);
4023
4024         if (pci_enable_device(pdev)) {
4025                 QPRINTK(qdev, IFUP, ERR,
4026                         "Cannot re-enable PCI device after reset.\n");
4027                 return PCI_ERS_RESULT_DISCONNECT;
4028         }
4029
4030         pci_set_master(pdev);
4031
4032         netif_carrier_off(ndev);
4033         ql_adapter_reset(qdev);
4034
4035         /* Make sure the EEPROM is good */
4036         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4037
4038         if (!is_valid_ether_addr(ndev->perm_addr)) {
4039                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4040                 return PCI_ERS_RESULT_DISCONNECT;
4041         }
4042
4043         return PCI_ERS_RESULT_RECOVERED;
4044 }
4045
4046 static void qlge_io_resume(struct pci_dev *pdev)
4047 {
4048         struct net_device *ndev = pci_get_drvdata(pdev);
4049         struct ql_adapter *qdev = netdev_priv(ndev);
4050
4051         pci_set_master(pdev);
4052
4053         if (netif_running(ndev)) {
4054                 if (ql_adapter_up(qdev)) {
4055                         QPRINTK(qdev, IFUP, ERR,
4056                                 "Device initialization failed after reset.\n");
4057                         return;
4058                 }
4059         }
4060
4061         netif_device_attach(ndev);
4062 }
4063
4064 static struct pci_error_handlers qlge_err_handler = {
4065         .error_detected = qlge_io_error_detected,
4066         .slot_reset = qlge_io_slot_reset,
4067         .resume = qlge_io_resume,
4068 };
4069
4070 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4071 {
4072         struct net_device *ndev = pci_get_drvdata(pdev);
4073         struct ql_adapter *qdev = netdev_priv(ndev);
4074         int err;
4075
4076         netif_device_detach(ndev);
4077
4078         if (netif_running(ndev)) {
4079                 err = ql_adapter_down(qdev);
4080                 if (!err)
4081                         return err;
4082         }
4083
4084         err = pci_save_state(pdev);
4085         if (err)
4086                 return err;
4087
4088         pci_disable_device(pdev);
4089
4090         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4091
4092         return 0;
4093 }
4094
4095 #ifdef CONFIG_PM
4096 static int qlge_resume(struct pci_dev *pdev)
4097 {
4098         struct net_device *ndev = pci_get_drvdata(pdev);
4099         struct ql_adapter *qdev = netdev_priv(ndev);
4100         int err;
4101
4102         pci_set_power_state(pdev, PCI_D0);
4103         pci_restore_state(pdev);
4104         err = pci_enable_device(pdev);
4105         if (err) {
4106                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4107                 return err;
4108         }
4109         pci_set_master(pdev);
4110
4111         pci_enable_wake(pdev, PCI_D3hot, 0);
4112         pci_enable_wake(pdev, PCI_D3cold, 0);
4113
4114         if (netif_running(ndev)) {
4115                 err = ql_adapter_up(qdev);
4116                 if (err)
4117                         return err;
4118         }
4119
4120         netif_device_attach(ndev);
4121
4122         return 0;
4123 }
4124 #endif /* CONFIG_PM */
4125
4126 static void qlge_shutdown(struct pci_dev *pdev)
4127 {
4128         qlge_suspend(pdev, PMSG_SUSPEND);
4129 }
4130
4131 static struct pci_driver qlge_driver = {
4132         .name = DRV_NAME,
4133         .id_table = qlge_pci_tbl,
4134         .probe = qlge_probe,
4135         .remove = __devexit_p(qlge_remove),
4136 #ifdef CONFIG_PM
4137         .suspend = qlge_suspend,
4138         .resume = qlge_resume,
4139 #endif
4140         .shutdown = qlge_shutdown,
4141         .err_handler = &qlge_err_handler
4142 };
4143
4144 static int __init qlge_init_module(void)
4145 {
4146         return pci_register_driver(&qlge_driver);
4147 }
4148
4149 static void __exit qlge_exit(void)
4150 {
4151         pci_unregister_driver(&qlge_driver);
4152 }
4153
4154 module_init(qlge_init_module);
4155 module_exit(qlge_exit);