igb: cleanup "todo" code found in igb_ethtool.c
[pandora-kernel.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 enum {NETDEV_STATS, IGB_STATS};
41
42 struct igb_stats {
43         char stat_string[ETH_GSTRING_LEN];
44         int type;
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(m)             IGB_STATS, \
50                                 FIELD_SIZEOF(struct igb_adapter, m), \
51                                 offsetof(struct igb_adapter, m)
52 #define IGB_NETDEV_STAT(m)      NETDEV_STATS, \
53                                 FIELD_SIZEOF(struct net_device, m), \
54                                 offsetof(struct net_device, m)
55
56 static const struct igb_stats igb_gstrings_stats[] = {
57         { "rx_packets", IGB_STAT(stats.gprc) },
58         { "tx_packets", IGB_STAT(stats.gptc) },
59         { "rx_bytes", IGB_STAT(stats.gorc) },
60         { "tx_bytes", IGB_STAT(stats.gotc) },
61         { "rx_broadcast", IGB_STAT(stats.bprc) },
62         { "tx_broadcast", IGB_STAT(stats.bptc) },
63         { "rx_multicast", IGB_STAT(stats.mprc) },
64         { "tx_multicast", IGB_STAT(stats.mptc) },
65         { "rx_errors", IGB_NETDEV_STAT(stats.rx_errors) },
66         { "tx_errors", IGB_NETDEV_STAT(stats.tx_errors) },
67         { "tx_dropped", IGB_NETDEV_STAT(stats.tx_dropped) },
68         { "multicast", IGB_STAT(stats.mprc) },
69         { "collisions", IGB_STAT(stats.colc) },
70         { "rx_length_errors", IGB_NETDEV_STAT(stats.rx_length_errors) },
71         { "rx_over_errors", IGB_NETDEV_STAT(stats.rx_over_errors) },
72         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
73         { "rx_frame_errors", IGB_NETDEV_STAT(stats.rx_frame_errors) },
74         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
75         { "rx_queue_drop_packet_count", IGB_NETDEV_STAT(stats.rx_fifo_errors) },
76         { "rx_missed_errors", IGB_STAT(stats.mpc) },
77         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
78         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
79         { "tx_fifo_errors", IGB_NETDEV_STAT(stats.tx_fifo_errors) },
80         { "tx_heartbeat_errors", IGB_NETDEV_STAT(stats.tx_heartbeat_errors) },
81         { "tx_window_errors", IGB_STAT(stats.latecol) },
82         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
83         { "tx_deferred_ok", IGB_STAT(stats.dc) },
84         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
85         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
86         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
87         { "rx_long_length_errors", IGB_STAT(stats.roc) },
88         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
89         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
90         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
91         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
92         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
93         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
94         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
95         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
96         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
97         { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
98         { "tx_smbus", IGB_STAT(stats.mgptc) },
99         { "rx_smbus", IGB_STAT(stats.mgprc) },
100         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
101 };
102
103 #define IGB_QUEUE_STATS_LEN \
104         (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
105           (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
106          ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
107           (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
108 #define IGB_GLOBAL_STATS_LEN    \
109         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
110 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
111 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
112         "Register test  (offline)", "Eeprom test    (offline)",
113         "Interrupt test (offline)", "Loopback test  (offline)",
114         "Link test   (on/offline)"
115 };
116 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
117
118 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
119 {
120         struct igb_adapter *adapter = netdev_priv(netdev);
121         struct e1000_hw *hw = &adapter->hw;
122
123         if (hw->phy.media_type == e1000_media_type_copper) {
124
125                 ecmd->supported = (SUPPORTED_10baseT_Half |
126                                    SUPPORTED_10baseT_Full |
127                                    SUPPORTED_100baseT_Half |
128                                    SUPPORTED_100baseT_Full |
129                                    SUPPORTED_1000baseT_Full|
130                                    SUPPORTED_Autoneg |
131                                    SUPPORTED_TP);
132                 ecmd->advertising = ADVERTISED_TP;
133
134                 if (hw->mac.autoneg == 1) {
135                         ecmd->advertising |= ADVERTISED_Autoneg;
136                         /* the e1000 autoneg seems to match ethtool nicely */
137                         ecmd->advertising |= hw->phy.autoneg_advertised;
138                 }
139
140                 ecmd->port = PORT_TP;
141                 ecmd->phy_address = hw->phy.addr;
142         } else {
143                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
144                                      SUPPORTED_FIBRE |
145                                      SUPPORTED_Autoneg);
146
147                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
148                                      ADVERTISED_FIBRE |
149                                      ADVERTISED_Autoneg);
150
151                 ecmd->port = PORT_FIBRE;
152         }
153
154         ecmd->transceiver = XCVR_INTERNAL;
155
156         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
157
158                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
159                                         &adapter->link_speed,
160                                         &adapter->link_duplex);
161                 ecmd->speed = adapter->link_speed;
162
163                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ecmd->speed = -1;
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176         return 0;
177 }
178
179 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
180 {
181         struct igb_adapter *adapter = netdev_priv(netdev);
182         struct e1000_hw *hw = &adapter->hw;
183
184         /* When SoL/IDER sessions are active, autoneg/speed/duplex
185          * cannot be changed */
186         if (igb_check_reset_block(hw)) {
187                 dev_err(&adapter->pdev->dev, "Cannot change link "
188                         "characteristics when SoL/IDER is active.\n");
189                 return -EINVAL;
190         }
191
192         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
193                 msleep(1);
194
195         if (ecmd->autoneg == AUTONEG_ENABLE) {
196                 hw->mac.autoneg = 1;
197                 hw->phy.autoneg_advertised = ecmd->advertising |
198                                              ADVERTISED_TP |
199                                              ADVERTISED_Autoneg;
200                 ecmd->advertising = hw->phy.autoneg_advertised;
201                 if (adapter->fc_autoneg)
202                         hw->fc.requested_mode = e1000_fc_default;
203         } else {
204                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
205                         clear_bit(__IGB_RESETTING, &adapter->state);
206                         return -EINVAL;
207                 }
208         }
209
210         /* reset the link */
211         if (netif_running(adapter->netdev)) {
212                 igb_down(adapter);
213                 igb_up(adapter);
214         } else
215                 igb_reset(adapter);
216
217         clear_bit(__IGB_RESETTING, &adapter->state);
218         return 0;
219 }
220
221 static void igb_get_pauseparam(struct net_device *netdev,
222                                struct ethtool_pauseparam *pause)
223 {
224         struct igb_adapter *adapter = netdev_priv(netdev);
225         struct e1000_hw *hw = &adapter->hw;
226
227         pause->autoneg =
228                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
229
230         if (hw->fc.current_mode == e1000_fc_rx_pause)
231                 pause->rx_pause = 1;
232         else if (hw->fc.current_mode == e1000_fc_tx_pause)
233                 pause->tx_pause = 1;
234         else if (hw->fc.current_mode == e1000_fc_full) {
235                 pause->rx_pause = 1;
236                 pause->tx_pause = 1;
237         }
238 }
239
240 static int igb_set_pauseparam(struct net_device *netdev,
241                               struct ethtool_pauseparam *pause)
242 {
243         struct igb_adapter *adapter = netdev_priv(netdev);
244         struct e1000_hw *hw = &adapter->hw;
245         int retval = 0;
246
247         adapter->fc_autoneg = pause->autoneg;
248
249         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
250                 msleep(1);
251
252         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
253                 hw->fc.requested_mode = e1000_fc_default;
254                 if (netif_running(adapter->netdev)) {
255                         igb_down(adapter);
256                         igb_up(adapter);
257                 } else
258                         igb_reset(adapter);
259         } else {
260                 if (pause->rx_pause && pause->tx_pause)
261                         hw->fc.requested_mode = e1000_fc_full;
262                 else if (pause->rx_pause && !pause->tx_pause)
263                         hw->fc.requested_mode = e1000_fc_rx_pause;
264                 else if (!pause->rx_pause && pause->tx_pause)
265                         hw->fc.requested_mode = e1000_fc_tx_pause;
266                 else if (!pause->rx_pause && !pause->tx_pause)
267                         hw->fc.requested_mode = e1000_fc_none;
268
269                 hw->fc.current_mode = hw->fc.requested_mode;
270
271                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
272                           igb_force_mac_fc(hw) : igb_setup_link(hw));
273         }
274
275         clear_bit(__IGB_RESETTING, &adapter->state);
276         return retval;
277 }
278
279 static u32 igb_get_rx_csum(struct net_device *netdev)
280 {
281         struct igb_adapter *adapter = netdev_priv(netdev);
282         return !!(adapter->rx_ring[0].flags & IGB_RING_FLAG_RX_CSUM);
283 }
284
285 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
286 {
287         struct igb_adapter *adapter = netdev_priv(netdev);
288         int i;
289
290         for (i = 0; i < adapter->num_rx_queues; i++) {
291                 if (data)
292                         adapter->rx_ring[i].flags |= IGB_RING_FLAG_RX_CSUM;
293                 else
294                         adapter->rx_ring[i].flags &= ~IGB_RING_FLAG_RX_CSUM;
295         }
296
297         return 0;
298 }
299
300 static u32 igb_get_tx_csum(struct net_device *netdev)
301 {
302         return (netdev->features & NETIF_F_IP_CSUM) != 0;
303 }
304
305 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
306 {
307         struct igb_adapter *adapter = netdev_priv(netdev);
308
309         if (data) {
310                 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
311                 if (adapter->hw.mac.type == e1000_82576)
312                         netdev->features |= NETIF_F_SCTP_CSUM;
313         } else {
314                 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
315                                       NETIF_F_SCTP_CSUM);
316         }
317
318         return 0;
319 }
320
321 static int igb_set_tso(struct net_device *netdev, u32 data)
322 {
323         struct igb_adapter *adapter = netdev_priv(netdev);
324
325         if (data) {
326                 netdev->features |= NETIF_F_TSO;
327                 netdev->features |= NETIF_F_TSO6;
328         } else {
329                 netdev->features &= ~NETIF_F_TSO;
330                 netdev->features &= ~NETIF_F_TSO6;
331         }
332
333         dev_info(&adapter->pdev->dev, "TSO is %s\n",
334                  data ? "Enabled" : "Disabled");
335         return 0;
336 }
337
338 static u32 igb_get_msglevel(struct net_device *netdev)
339 {
340         struct igb_adapter *adapter = netdev_priv(netdev);
341         return adapter->msg_enable;
342 }
343
344 static void igb_set_msglevel(struct net_device *netdev, u32 data)
345 {
346         struct igb_adapter *adapter = netdev_priv(netdev);
347         adapter->msg_enable = data;
348 }
349
350 static int igb_get_regs_len(struct net_device *netdev)
351 {
352 #define IGB_REGS_LEN 551
353         return IGB_REGS_LEN * sizeof(u32);
354 }
355
356 static void igb_get_regs(struct net_device *netdev,
357                          struct ethtool_regs *regs, void *p)
358 {
359         struct igb_adapter *adapter = netdev_priv(netdev);
360         struct e1000_hw *hw = &adapter->hw;
361         u32 *regs_buff = p;
362         u8 i;
363
364         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
365
366         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
367
368         /* General Registers */
369         regs_buff[0] = rd32(E1000_CTRL);
370         regs_buff[1] = rd32(E1000_STATUS);
371         regs_buff[2] = rd32(E1000_CTRL_EXT);
372         regs_buff[3] = rd32(E1000_MDIC);
373         regs_buff[4] = rd32(E1000_SCTL);
374         regs_buff[5] = rd32(E1000_CONNSW);
375         regs_buff[6] = rd32(E1000_VET);
376         regs_buff[7] = rd32(E1000_LEDCTL);
377         regs_buff[8] = rd32(E1000_PBA);
378         regs_buff[9] = rd32(E1000_PBS);
379         regs_buff[10] = rd32(E1000_FRTIMER);
380         regs_buff[11] = rd32(E1000_TCPTIMER);
381
382         /* NVM Register */
383         regs_buff[12] = rd32(E1000_EECD);
384
385         /* Interrupt */
386         /* Reading EICS for EICR because they read the
387          * same but EICS does not clear on read */
388         regs_buff[13] = rd32(E1000_EICS);
389         regs_buff[14] = rd32(E1000_EICS);
390         regs_buff[15] = rd32(E1000_EIMS);
391         regs_buff[16] = rd32(E1000_EIMC);
392         regs_buff[17] = rd32(E1000_EIAC);
393         regs_buff[18] = rd32(E1000_EIAM);
394         /* Reading ICS for ICR because they read the
395          * same but ICS does not clear on read */
396         regs_buff[19] = rd32(E1000_ICS);
397         regs_buff[20] = rd32(E1000_ICS);
398         regs_buff[21] = rd32(E1000_IMS);
399         regs_buff[22] = rd32(E1000_IMC);
400         regs_buff[23] = rd32(E1000_IAC);
401         regs_buff[24] = rd32(E1000_IAM);
402         regs_buff[25] = rd32(E1000_IMIRVP);
403
404         /* Flow Control */
405         regs_buff[26] = rd32(E1000_FCAL);
406         regs_buff[27] = rd32(E1000_FCAH);
407         regs_buff[28] = rd32(E1000_FCTTV);
408         regs_buff[29] = rd32(E1000_FCRTL);
409         regs_buff[30] = rd32(E1000_FCRTH);
410         regs_buff[31] = rd32(E1000_FCRTV);
411
412         /* Receive */
413         regs_buff[32] = rd32(E1000_RCTL);
414         regs_buff[33] = rd32(E1000_RXCSUM);
415         regs_buff[34] = rd32(E1000_RLPML);
416         regs_buff[35] = rd32(E1000_RFCTL);
417         regs_buff[36] = rd32(E1000_MRQC);
418         regs_buff[37] = rd32(E1000_VT_CTL);
419
420         /* Transmit */
421         regs_buff[38] = rd32(E1000_TCTL);
422         regs_buff[39] = rd32(E1000_TCTL_EXT);
423         regs_buff[40] = rd32(E1000_TIPG);
424         regs_buff[41] = rd32(E1000_DTXCTL);
425
426         /* Wake Up */
427         regs_buff[42] = rd32(E1000_WUC);
428         regs_buff[43] = rd32(E1000_WUFC);
429         regs_buff[44] = rd32(E1000_WUS);
430         regs_buff[45] = rd32(E1000_IPAV);
431         regs_buff[46] = rd32(E1000_WUPL);
432
433         /* MAC */
434         regs_buff[47] = rd32(E1000_PCS_CFG0);
435         regs_buff[48] = rd32(E1000_PCS_LCTL);
436         regs_buff[49] = rd32(E1000_PCS_LSTAT);
437         regs_buff[50] = rd32(E1000_PCS_ANADV);
438         regs_buff[51] = rd32(E1000_PCS_LPAB);
439         regs_buff[52] = rd32(E1000_PCS_NPTX);
440         regs_buff[53] = rd32(E1000_PCS_LPABNP);
441
442         /* Statistics */
443         regs_buff[54] = adapter->stats.crcerrs;
444         regs_buff[55] = adapter->stats.algnerrc;
445         regs_buff[56] = adapter->stats.symerrs;
446         regs_buff[57] = adapter->stats.rxerrc;
447         regs_buff[58] = adapter->stats.mpc;
448         regs_buff[59] = adapter->stats.scc;
449         regs_buff[60] = adapter->stats.ecol;
450         regs_buff[61] = adapter->stats.mcc;
451         regs_buff[62] = adapter->stats.latecol;
452         regs_buff[63] = adapter->stats.colc;
453         regs_buff[64] = adapter->stats.dc;
454         regs_buff[65] = adapter->stats.tncrs;
455         regs_buff[66] = adapter->stats.sec;
456         regs_buff[67] = adapter->stats.htdpmc;
457         regs_buff[68] = adapter->stats.rlec;
458         regs_buff[69] = adapter->stats.xonrxc;
459         regs_buff[70] = adapter->stats.xontxc;
460         regs_buff[71] = adapter->stats.xoffrxc;
461         regs_buff[72] = adapter->stats.xofftxc;
462         regs_buff[73] = adapter->stats.fcruc;
463         regs_buff[74] = adapter->stats.prc64;
464         regs_buff[75] = adapter->stats.prc127;
465         regs_buff[76] = adapter->stats.prc255;
466         regs_buff[77] = adapter->stats.prc511;
467         regs_buff[78] = adapter->stats.prc1023;
468         regs_buff[79] = adapter->stats.prc1522;
469         regs_buff[80] = adapter->stats.gprc;
470         regs_buff[81] = adapter->stats.bprc;
471         regs_buff[82] = adapter->stats.mprc;
472         regs_buff[83] = adapter->stats.gptc;
473         regs_buff[84] = adapter->stats.gorc;
474         regs_buff[86] = adapter->stats.gotc;
475         regs_buff[88] = adapter->stats.rnbc;
476         regs_buff[89] = adapter->stats.ruc;
477         regs_buff[90] = adapter->stats.rfc;
478         regs_buff[91] = adapter->stats.roc;
479         regs_buff[92] = adapter->stats.rjc;
480         regs_buff[93] = adapter->stats.mgprc;
481         regs_buff[94] = adapter->stats.mgpdc;
482         regs_buff[95] = adapter->stats.mgptc;
483         regs_buff[96] = adapter->stats.tor;
484         regs_buff[98] = adapter->stats.tot;
485         regs_buff[100] = adapter->stats.tpr;
486         regs_buff[101] = adapter->stats.tpt;
487         regs_buff[102] = adapter->stats.ptc64;
488         regs_buff[103] = adapter->stats.ptc127;
489         regs_buff[104] = adapter->stats.ptc255;
490         regs_buff[105] = adapter->stats.ptc511;
491         regs_buff[106] = adapter->stats.ptc1023;
492         regs_buff[107] = adapter->stats.ptc1522;
493         regs_buff[108] = adapter->stats.mptc;
494         regs_buff[109] = adapter->stats.bptc;
495         regs_buff[110] = adapter->stats.tsctc;
496         regs_buff[111] = adapter->stats.iac;
497         regs_buff[112] = adapter->stats.rpthc;
498         regs_buff[113] = adapter->stats.hgptc;
499         regs_buff[114] = adapter->stats.hgorc;
500         regs_buff[116] = adapter->stats.hgotc;
501         regs_buff[118] = adapter->stats.lenerrs;
502         regs_buff[119] = adapter->stats.scvpc;
503         regs_buff[120] = adapter->stats.hrmpc;
504
505         for (i = 0; i < 4; i++)
506                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
507         for (i = 0; i < 4; i++)
508                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
509         for (i = 0; i < 4; i++)
510                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
511         for (i = 0; i < 4; i++)
512                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
513         for (i = 0; i < 4; i++)
514                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
515         for (i = 0; i < 4; i++)
516                 regs_buff[141 + i] = rd32(E1000_RDH(i));
517         for (i = 0; i < 4; i++)
518                 regs_buff[145 + i] = rd32(E1000_RDT(i));
519         for (i = 0; i < 4; i++)
520                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
521
522         for (i = 0; i < 10; i++)
523                 regs_buff[153 + i] = rd32(E1000_EITR(i));
524         for (i = 0; i < 8; i++)
525                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
526         for (i = 0; i < 8; i++)
527                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
528         for (i = 0; i < 16; i++)
529                 regs_buff[179 + i] = rd32(E1000_RAL(i));
530         for (i = 0; i < 16; i++)
531                 regs_buff[195 + i] = rd32(E1000_RAH(i));
532
533         for (i = 0; i < 4; i++)
534                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
537         for (i = 0; i < 4; i++)
538                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
539         for (i = 0; i < 4; i++)
540                 regs_buff[223 + i] = rd32(E1000_TDH(i));
541         for (i = 0; i < 4; i++)
542                 regs_buff[227 + i] = rd32(E1000_TDT(i));
543         for (i = 0; i < 4; i++)
544                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
545         for (i = 0; i < 4; i++)
546                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
547         for (i = 0; i < 4; i++)
548                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
549         for (i = 0; i < 4; i++)
550                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
551
552         for (i = 0; i < 4; i++)
553                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
554         for (i = 0; i < 4; i++)
555                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
556         for (i = 0; i < 32; i++)
557                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
558         for (i = 0; i < 128; i++)
559                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
560         for (i = 0; i < 128; i++)
561                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
562         for (i = 0; i < 4; i++)
563                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
564
565         regs_buff[547] = rd32(E1000_TDFH);
566         regs_buff[548] = rd32(E1000_TDFT);
567         regs_buff[549] = rd32(E1000_TDFHS);
568         regs_buff[550] = rd32(E1000_TDFPC);
569
570 }
571
572 static int igb_get_eeprom_len(struct net_device *netdev)
573 {
574         struct igb_adapter *adapter = netdev_priv(netdev);
575         return adapter->hw.nvm.word_size * 2;
576 }
577
578 static int igb_get_eeprom(struct net_device *netdev,
579                           struct ethtool_eeprom *eeprom, u8 *bytes)
580 {
581         struct igb_adapter *adapter = netdev_priv(netdev);
582         struct e1000_hw *hw = &adapter->hw;
583         u16 *eeprom_buff;
584         int first_word, last_word;
585         int ret_val = 0;
586         u16 i;
587
588         if (eeprom->len == 0)
589                 return -EINVAL;
590
591         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
592
593         first_word = eeprom->offset >> 1;
594         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
595
596         eeprom_buff = kmalloc(sizeof(u16) *
597                         (last_word - first_word + 1), GFP_KERNEL);
598         if (!eeprom_buff)
599                 return -ENOMEM;
600
601         if (hw->nvm.type == e1000_nvm_eeprom_spi)
602                 ret_val = hw->nvm.ops.read(hw, first_word,
603                                             last_word - first_word + 1,
604                                             eeprom_buff);
605         else {
606                 for (i = 0; i < last_word - first_word + 1; i++) {
607                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
608                                                     &eeprom_buff[i]);
609                         if (ret_val)
610                                 break;
611                 }
612         }
613
614         /* Device's eeprom is always little-endian, word addressable */
615         for (i = 0; i < last_word - first_word + 1; i++)
616                 le16_to_cpus(&eeprom_buff[i]);
617
618         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
619                         eeprom->len);
620         kfree(eeprom_buff);
621
622         return ret_val;
623 }
624
625 static int igb_set_eeprom(struct net_device *netdev,
626                           struct ethtool_eeprom *eeprom, u8 *bytes)
627 {
628         struct igb_adapter *adapter = netdev_priv(netdev);
629         struct e1000_hw *hw = &adapter->hw;
630         u16 *eeprom_buff;
631         void *ptr;
632         int max_len, first_word, last_word, ret_val = 0;
633         u16 i;
634
635         if (eeprom->len == 0)
636                 return -EOPNOTSUPP;
637
638         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
639                 return -EFAULT;
640
641         max_len = hw->nvm.word_size * 2;
642
643         first_word = eeprom->offset >> 1;
644         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
645         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
646         if (!eeprom_buff)
647                 return -ENOMEM;
648
649         ptr = (void *)eeprom_buff;
650
651         if (eeprom->offset & 1) {
652                 /* need read/modify/write of first changed EEPROM word */
653                 /* only the second byte of the word is being modified */
654                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
655                                             &eeprom_buff[0]);
656                 ptr++;
657         }
658         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
659                 /* need read/modify/write of last changed EEPROM word */
660                 /* only the first byte of the word is being modified */
661                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
662                                    &eeprom_buff[last_word - first_word]);
663         }
664
665         /* Device's eeprom is always little-endian, word addressable */
666         for (i = 0; i < last_word - first_word + 1; i++)
667                 le16_to_cpus(&eeprom_buff[i]);
668
669         memcpy(ptr, bytes, eeprom->len);
670
671         for (i = 0; i < last_word - first_word + 1; i++)
672                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
673
674         ret_val = hw->nvm.ops.write(hw, first_word,
675                                      last_word - first_word + 1, eeprom_buff);
676
677         /* Update the checksum over the first part of the EEPROM if needed
678          * and flush shadow RAM for 82573 controllers */
679         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
680                 igb_update_nvm_checksum(hw);
681
682         kfree(eeprom_buff);
683         return ret_val;
684 }
685
686 static void igb_get_drvinfo(struct net_device *netdev,
687                             struct ethtool_drvinfo *drvinfo)
688 {
689         struct igb_adapter *adapter = netdev_priv(netdev);
690         char firmware_version[32];
691         u16 eeprom_data;
692
693         strncpy(drvinfo->driver,  igb_driver_name, 32);
694         strncpy(drvinfo->version, igb_driver_version, 32);
695
696         /* EEPROM image version # is reported as firmware version # for
697          * 82575 controllers */
698         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
699         sprintf(firmware_version, "%d.%d-%d",
700                 (eeprom_data & 0xF000) >> 12,
701                 (eeprom_data & 0x0FF0) >> 4,
702                 eeprom_data & 0x000F);
703
704         strncpy(drvinfo->fw_version, firmware_version, 32);
705         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
706         drvinfo->n_stats = IGB_STATS_LEN;
707         drvinfo->testinfo_len = IGB_TEST_LEN;
708         drvinfo->regdump_len = igb_get_regs_len(netdev);
709         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
710 }
711
712 static void igb_get_ringparam(struct net_device *netdev,
713                               struct ethtool_ringparam *ring)
714 {
715         struct igb_adapter *adapter = netdev_priv(netdev);
716
717         ring->rx_max_pending = IGB_MAX_RXD;
718         ring->tx_max_pending = IGB_MAX_TXD;
719         ring->rx_mini_max_pending = 0;
720         ring->rx_jumbo_max_pending = 0;
721         ring->rx_pending = adapter->rx_ring_count;
722         ring->tx_pending = adapter->tx_ring_count;
723         ring->rx_mini_pending = 0;
724         ring->rx_jumbo_pending = 0;
725 }
726
727 static int igb_set_ringparam(struct net_device *netdev,
728                              struct ethtool_ringparam *ring)
729 {
730         struct igb_adapter *adapter = netdev_priv(netdev);
731         struct igb_ring *temp_ring;
732         int i, err = 0;
733         u32 new_rx_count, new_tx_count;
734
735         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
736                 return -EINVAL;
737
738         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
739         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
740         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
741
742         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
743         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
744         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
745
746         if ((new_tx_count == adapter->tx_ring_count) &&
747             (new_rx_count == adapter->rx_ring_count)) {
748                 /* nothing to do */
749                 return 0;
750         }
751
752         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
753                 msleep(1);
754
755         if (!netif_running(adapter->netdev)) {
756                 for (i = 0; i < adapter->num_tx_queues; i++)
757                         adapter->tx_ring[i].count = new_tx_count;
758                 for (i = 0; i < adapter->num_rx_queues; i++)
759                         adapter->rx_ring[i].count = new_rx_count;
760                 adapter->tx_ring_count = new_tx_count;
761                 adapter->rx_ring_count = new_rx_count;
762                 goto clear_reset;
763         }
764
765         if (adapter->num_tx_queues > adapter->num_rx_queues)
766                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
767         else
768                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
769
770         if (!temp_ring) {
771                 err = -ENOMEM;
772                 goto clear_reset;
773         }
774
775         igb_down(adapter);
776
777         /*
778          * We can't just free everything and then setup again,
779          * because the ISRs in MSI-X mode get passed pointers
780          * to the tx and rx ring structs.
781          */
782         if (new_tx_count != adapter->tx_ring_count) {
783                 memcpy(temp_ring, adapter->tx_ring,
784                        adapter->num_tx_queues * sizeof(struct igb_ring));
785
786                 for (i = 0; i < adapter->num_tx_queues; i++) {
787                         temp_ring[i].count = new_tx_count;
788                         err = igb_setup_tx_resources(&temp_ring[i]);
789                         if (err) {
790                                 while (i) {
791                                         i--;
792                                         igb_free_tx_resources(&temp_ring[i]);
793                                 }
794                                 goto err_setup;
795                         }
796                 }
797
798                 for (i = 0; i < adapter->num_tx_queues; i++)
799                         igb_free_tx_resources(&adapter->tx_ring[i]);
800
801                 memcpy(adapter->tx_ring, temp_ring,
802                        adapter->num_tx_queues * sizeof(struct igb_ring));
803
804                 adapter->tx_ring_count = new_tx_count;
805         }
806
807         if (new_rx_count != adapter->rx_ring->count) {
808                 memcpy(temp_ring, adapter->rx_ring,
809                        adapter->num_rx_queues * sizeof(struct igb_ring));
810
811                 for (i = 0; i < adapter->num_rx_queues; i++) {
812                         temp_ring[i].count = new_rx_count;
813                         err = igb_setup_rx_resources(&temp_ring[i]);
814                         if (err) {
815                                 while (i) {
816                                         i--;
817                                         igb_free_rx_resources(&temp_ring[i]);
818                                 }
819                                 goto err_setup;
820                         }
821
822                 }
823
824                 for (i = 0; i < adapter->num_rx_queues; i++)
825                         igb_free_rx_resources(&adapter->rx_ring[i]);
826
827                 memcpy(adapter->rx_ring, temp_ring,
828                        adapter->num_rx_queues * sizeof(struct igb_ring));
829
830                 adapter->rx_ring_count = new_rx_count;
831         }
832 err_setup:
833         igb_up(adapter);
834         vfree(temp_ring);
835 clear_reset:
836         clear_bit(__IGB_RESETTING, &adapter->state);
837         return err;
838 }
839
840 /* ethtool register test data */
841 struct igb_reg_test {
842         u16 reg;
843         u16 reg_offset;
844         u16 array_len;
845         u16 test_type;
846         u32 mask;
847         u32 write;
848 };
849
850 /* In the hardware, registers are laid out either singly, in arrays
851  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
852  * most tests take place on arrays or single registers (handled
853  * as a single-element array) and special-case the tables.
854  * Table tests are always pattern tests.
855  *
856  * We also make provision for some required setup steps by specifying
857  * registers to be written without any read-back testing.
858  */
859
860 #define PATTERN_TEST    1
861 #define SET_READ_TEST   2
862 #define WRITE_NO_TEST   3
863 #define TABLE32_TEST    4
864 #define TABLE64_TEST_LO 5
865 #define TABLE64_TEST_HI 6
866
867 /* 82576 reg test */
868 static struct igb_reg_test reg_test_82576[] = {
869         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
870         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
871         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
872         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
873         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
874         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
875         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
876         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
877         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
879         /* Enable all RX queues before testing. */
880         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
881         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
882         /* RDH is read-only for 82576, only test RDT. */
883         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
885         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
886         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
887         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
888         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
889         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
890         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
891         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
892         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
893         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
894         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
895         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
896         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
897         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
898         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
899         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
900         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
901         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
902         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
903         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
904         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905         { 0, 0, 0, 0 }
906 };
907
908 /* 82575 register test */
909 static struct igb_reg_test reg_test_82575[] = {
910         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
912         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
913         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
914         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
915         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
916         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
917         /* Enable all four RX queues before testing. */
918         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
919         /* RDH is read-only for 82575, only test RDT. */
920         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
921         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
922         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
923         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
924         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
925         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
926         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
927         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
928         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
929         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
930         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
931         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
932         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
933         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
934         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
935         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
936         { 0, 0, 0, 0 }
937 };
938
939 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
940                              int reg, u32 mask, u32 write)
941 {
942         struct e1000_hw *hw = &adapter->hw;
943         u32 pat, val;
944         u32 _test[] =
945                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
946         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
947                 wr32(reg, (_test[pat] & write));
948                 val = rd32(reg);
949                 if (val != (_test[pat] & write & mask)) {
950                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
951                                 "failed: got 0x%08X expected 0x%08X\n",
952                                 reg, val, (_test[pat] & write & mask));
953                         *data = reg;
954                         return 1;
955                 }
956         }
957         return 0;
958 }
959
960 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
961                               int reg, u32 mask, u32 write)
962 {
963         struct e1000_hw *hw = &adapter->hw;
964         u32 val;
965         wr32(reg, write & mask);
966         val = rd32(reg);
967         if ((write & mask) != (val & mask)) {
968                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
969                         " got 0x%08X expected 0x%08X\n", reg,
970                         (val & mask), (write & mask));
971                 *data = reg;
972                 return 1;
973         }
974         return 0;
975 }
976
977 #define REG_PATTERN_TEST(reg, mask, write) \
978         do { \
979                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
980                         return 1; \
981         } while (0)
982
983 #define REG_SET_AND_CHECK(reg, mask, write) \
984         do { \
985                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
986                         return 1; \
987         } while (0)
988
989 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
990 {
991         struct e1000_hw *hw = &adapter->hw;
992         struct igb_reg_test *test;
993         u32 value, before, after;
994         u32 i, toggle;
995
996         toggle = 0x7FFFF3FF;
997
998         switch (adapter->hw.mac.type) {
999         case e1000_82576:
1000                 test = reg_test_82576;
1001                 break;
1002         default:
1003                 test = reg_test_82575;
1004                 break;
1005         }
1006
1007         /* Because the status register is such a special case,
1008          * we handle it separately from the rest of the register
1009          * tests.  Some bits are read-only, some toggle, and some
1010          * are writable on newer MACs.
1011          */
1012         before = rd32(E1000_STATUS);
1013         value = (rd32(E1000_STATUS) & toggle);
1014         wr32(E1000_STATUS, toggle);
1015         after = rd32(E1000_STATUS) & toggle;
1016         if (value != after) {
1017                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1018                         "got: 0x%08X expected: 0x%08X\n", after, value);
1019                 *data = 1;
1020                 return 1;
1021         }
1022         /* restore previous status */
1023         wr32(E1000_STATUS, before);
1024
1025         /* Perform the remainder of the register test, looping through
1026          * the test table until we either fail or reach the null entry.
1027          */
1028         while (test->reg) {
1029                 for (i = 0; i < test->array_len; i++) {
1030                         switch (test->test_type) {
1031                         case PATTERN_TEST:
1032                                 REG_PATTERN_TEST(test->reg +
1033                                                 (i * test->reg_offset),
1034                                                 test->mask,
1035                                                 test->write);
1036                                 break;
1037                         case SET_READ_TEST:
1038                                 REG_SET_AND_CHECK(test->reg +
1039                                                 (i * test->reg_offset),
1040                                                 test->mask,
1041                                                 test->write);
1042                                 break;
1043                         case WRITE_NO_TEST:
1044                                 writel(test->write,
1045                                     (adapter->hw.hw_addr + test->reg)
1046                                         + (i * test->reg_offset));
1047                                 break;
1048                         case TABLE32_TEST:
1049                                 REG_PATTERN_TEST(test->reg + (i * 4),
1050                                                 test->mask,
1051                                                 test->write);
1052                                 break;
1053                         case TABLE64_TEST_LO:
1054                                 REG_PATTERN_TEST(test->reg + (i * 8),
1055                                                 test->mask,
1056                                                 test->write);
1057                                 break;
1058                         case TABLE64_TEST_HI:
1059                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1060                                                 test->mask,
1061                                                 test->write);
1062                                 break;
1063                         }
1064                 }
1065                 test++;
1066         }
1067
1068         *data = 0;
1069         return 0;
1070 }
1071
1072 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1073 {
1074         u16 temp;
1075         u16 checksum = 0;
1076         u16 i;
1077
1078         *data = 0;
1079         /* Read and add up the contents of the EEPROM */
1080         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1081                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1082                     < 0) {
1083                         *data = 1;
1084                         break;
1085                 }
1086                 checksum += temp;
1087         }
1088
1089         /* If Checksum is not Correct return error else test passed */
1090         if ((checksum != (u16) NVM_SUM) && !(*data))
1091                 *data = 2;
1092
1093         return *data;
1094 }
1095
1096 static irqreturn_t igb_test_intr(int irq, void *data)
1097 {
1098         struct net_device *netdev = (struct net_device *) data;
1099         struct igb_adapter *adapter = netdev_priv(netdev);
1100         struct e1000_hw *hw = &adapter->hw;
1101
1102         adapter->test_icr |= rd32(E1000_ICR);
1103
1104         return IRQ_HANDLED;
1105 }
1106
1107 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1108 {
1109         struct e1000_hw *hw = &adapter->hw;
1110         struct net_device *netdev = adapter->netdev;
1111         u32 mask, ics_mask, i = 0, shared_int = true;
1112         u32 irq = adapter->pdev->irq;
1113
1114         *data = 0;
1115
1116         /* Hook up test interrupt handler just for this test */
1117         if (adapter->msix_entries) {
1118                 if (request_irq(adapter->msix_entries[0].vector,
1119                                 &igb_test_intr, 0, netdev->name, adapter)) {
1120                         *data = 1;
1121                         return -1;
1122                 }
1123
1124         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1125                 shared_int = false;
1126                 if (request_irq(irq,
1127                                 &igb_test_intr, 0, netdev->name, adapter)) {
1128                         *data = 1;
1129                         return -1;
1130                 }
1131         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1132                                 netdev->name, adapter)) {
1133                 shared_int = false;
1134         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1135                  netdev->name, adapter)) {
1136                 *data = 1;
1137                 return -1;
1138         }
1139         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1140                 (shared_int ? "shared" : "unshared"));
1141         /* Disable all the interrupts */
1142         wr32(E1000_IMC, ~0);
1143         msleep(10);
1144
1145         /* Define all writable bits for ICS */
1146         switch (hw->mac.type) {
1147         case e1000_82575:
1148                 ics_mask = 0x37F47EDD;
1149                 break;
1150         case e1000_82576:
1151                 ics_mask = 0x77D4FBFD;
1152                 break;
1153         default:
1154                 ics_mask = 0x7FFFFFFF;
1155                 break;
1156         }
1157
1158         /* Test each interrupt */
1159         for (; i < 31; i++) {
1160                 /* Interrupt to test */
1161                 mask = 1 << i;
1162
1163                 if (!(mask & ics_mask))
1164                         continue;
1165
1166                 if (!shared_int) {
1167                         /* Disable the interrupt to be reported in
1168                          * the cause register and then force the same
1169                          * interrupt and see if one gets posted.  If
1170                          * an interrupt was posted to the bus, the
1171                          * test failed.
1172                          */
1173                         adapter->test_icr = 0;
1174
1175                         /* Flush any pending interrupts */
1176                         wr32(E1000_ICR, ~0);
1177
1178                         wr32(E1000_IMC, mask);
1179                         wr32(E1000_ICS, mask);
1180                         msleep(10);
1181
1182                         if (adapter->test_icr & mask) {
1183                                 *data = 3;
1184                                 break;
1185                         }
1186                 }
1187
1188                 /* Enable the interrupt to be reported in
1189                  * the cause register and then force the same
1190                  * interrupt and see if one gets posted.  If
1191                  * an interrupt was not posted to the bus, the
1192                  * test failed.
1193                  */
1194                 adapter->test_icr = 0;
1195
1196                 /* Flush any pending interrupts */
1197                 wr32(E1000_ICR, ~0);
1198
1199                 wr32(E1000_IMS, mask);
1200                 wr32(E1000_ICS, mask);
1201                 msleep(10);
1202
1203                 if (!(adapter->test_icr & mask)) {
1204                         *data = 4;
1205                         break;
1206                 }
1207
1208                 if (!shared_int) {
1209                         /* Disable the other interrupts to be reported in
1210                          * the cause register and then force the other
1211                          * interrupts and see if any get posted.  If
1212                          * an interrupt was posted to the bus, the
1213                          * test failed.
1214                          */
1215                         adapter->test_icr = 0;
1216
1217                         /* Flush any pending interrupts */
1218                         wr32(E1000_ICR, ~0);
1219
1220                         wr32(E1000_IMC, ~mask);
1221                         wr32(E1000_ICS, ~mask);
1222                         msleep(10);
1223
1224                         if (adapter->test_icr & mask) {
1225                                 *data = 5;
1226                                 break;
1227                         }
1228                 }
1229         }
1230
1231         /* Disable all the interrupts */
1232         wr32(E1000_IMC, ~0);
1233         msleep(10);
1234
1235         /* Unhook test interrupt handler */
1236         if (adapter->msix_entries)
1237                 free_irq(adapter->msix_entries[0].vector, adapter);
1238         else
1239                 free_irq(irq, adapter);
1240
1241         return *data;
1242 }
1243
1244 static void igb_free_desc_rings(struct igb_adapter *adapter)
1245 {
1246         igb_free_tx_resources(&adapter->test_tx_ring);
1247         igb_free_rx_resources(&adapter->test_rx_ring);
1248 }
1249
1250 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1251 {
1252         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1253         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1254         struct e1000_hw *hw = &adapter->hw;
1255         int ret_val;
1256
1257         /* Setup Tx descriptor ring and Tx buffers */
1258         tx_ring->count = IGB_DEFAULT_TXD;
1259         tx_ring->pdev = adapter->pdev;
1260         tx_ring->netdev = adapter->netdev;
1261         tx_ring->reg_idx = adapter->vfs_allocated_count;
1262
1263         if (igb_setup_tx_resources(tx_ring)) {
1264                 ret_val = 1;
1265                 goto err_nomem;
1266         }
1267
1268         igb_setup_tctl(adapter);
1269         igb_configure_tx_ring(adapter, tx_ring);
1270
1271         /* Setup Rx descriptor ring and Rx buffers */
1272         rx_ring->count = IGB_DEFAULT_RXD;
1273         rx_ring->pdev = adapter->pdev;
1274         rx_ring->netdev = adapter->netdev;
1275         rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1276         rx_ring->reg_idx = adapter->vfs_allocated_count;
1277
1278         if (igb_setup_rx_resources(rx_ring)) {
1279                 ret_val = 3;
1280                 goto err_nomem;
1281         }
1282
1283         /* set the default queue to queue 0 of PF */
1284         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1285
1286         /* enable receive ring */
1287         igb_setup_rctl(adapter);
1288         igb_configure_rx_ring(adapter, rx_ring);
1289
1290         igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1291
1292         return 0;
1293
1294 err_nomem:
1295         igb_free_desc_rings(adapter);
1296         return ret_val;
1297 }
1298
1299 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1300 {
1301         struct e1000_hw *hw = &adapter->hw;
1302
1303         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1304         igb_write_phy_reg(hw, 29, 0x001F);
1305         igb_write_phy_reg(hw, 30, 0x8FFC);
1306         igb_write_phy_reg(hw, 29, 0x001A);
1307         igb_write_phy_reg(hw, 30, 0x8FF0);
1308 }
1309
1310 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1311 {
1312         struct e1000_hw *hw = &adapter->hw;
1313         u32 ctrl_reg = 0;
1314
1315         hw->mac.autoneg = false;
1316
1317         if (hw->phy.type == e1000_phy_m88) {
1318                 /* Auto-MDI/MDIX Off */
1319                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1320                 /* reset to update Auto-MDI/MDIX */
1321                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1322                 /* autoneg off */
1323                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1324         }
1325
1326         ctrl_reg = rd32(E1000_CTRL);
1327
1328         /* force 1000, set loopback */
1329         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1330
1331         /* Now set up the MAC to the same speed/duplex as the PHY. */
1332         ctrl_reg = rd32(E1000_CTRL);
1333         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1334         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1335                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1336                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1337                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1338                      E1000_CTRL_SLU);    /* Set link up enable bit */
1339
1340         if (hw->phy.type == e1000_phy_m88)
1341                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1342
1343         wr32(E1000_CTRL, ctrl_reg);
1344
1345         /* Disable the receiver on the PHY so when a cable is plugged in, the
1346          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1347          */
1348         if (hw->phy.type == e1000_phy_m88)
1349                 igb_phy_disable_receiver(adapter);
1350
1351         udelay(500);
1352
1353         return 0;
1354 }
1355
1356 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1357 {
1358         return igb_integrated_phy_loopback(adapter);
1359 }
1360
1361 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1362 {
1363         struct e1000_hw *hw = &adapter->hw;
1364         u32 reg;
1365
1366         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1367                 reg = rd32(E1000_RCTL);
1368                 reg |= E1000_RCTL_LBM_TCVR;
1369                 wr32(E1000_RCTL, reg);
1370
1371                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1372
1373                 reg = rd32(E1000_CTRL);
1374                 reg &= ~(E1000_CTRL_RFCE |
1375                          E1000_CTRL_TFCE |
1376                          E1000_CTRL_LRST);
1377                 reg |= E1000_CTRL_SLU |
1378                        E1000_CTRL_FD;
1379                 wr32(E1000_CTRL, reg);
1380
1381                 /* Unset switch control to serdes energy detect */
1382                 reg = rd32(E1000_CONNSW);
1383                 reg &= ~E1000_CONNSW_ENRGSRC;
1384                 wr32(E1000_CONNSW, reg);
1385
1386                 /* Set PCS register for forced speed */
1387                 reg = rd32(E1000_PCS_LCTL);
1388                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1389                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1390                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1391                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1392                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1393                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1394                 wr32(E1000_PCS_LCTL, reg);
1395
1396                 return 0;
1397         } else if (hw->phy.media_type == e1000_media_type_copper) {
1398                 return igb_set_phy_loopback(adapter);
1399         }
1400
1401         return 7;
1402 }
1403
1404 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1405 {
1406         struct e1000_hw *hw = &adapter->hw;
1407         u32 rctl;
1408         u16 phy_reg;
1409
1410         rctl = rd32(E1000_RCTL);
1411         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1412         wr32(E1000_RCTL, rctl);
1413
1414         hw->mac.autoneg = true;
1415         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1416         if (phy_reg & MII_CR_LOOPBACK) {
1417                 phy_reg &= ~MII_CR_LOOPBACK;
1418                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1419                 igb_phy_sw_reset(hw);
1420         }
1421 }
1422
1423 static void igb_create_lbtest_frame(struct sk_buff *skb,
1424                                     unsigned int frame_size)
1425 {
1426         memset(skb->data, 0xFF, frame_size);
1427         frame_size &= ~1;
1428         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1429         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1430         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1431 }
1432
1433 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1434 {
1435         frame_size &= ~1;
1436         if (*(skb->data + 3) == 0xFF)
1437                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1438                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1439                         return 0;
1440         return 13;
1441 }
1442
1443 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1444                                 struct igb_ring *tx_ring,
1445                                 unsigned int size)
1446 {
1447         union e1000_adv_rx_desc *rx_desc;
1448         struct igb_buffer *buffer_info;
1449         int rx_ntc, tx_ntc, count = 0;
1450         u32 staterr;
1451
1452         /* initialize next to clean and descriptor values */
1453         rx_ntc = rx_ring->next_to_clean;
1454         tx_ntc = tx_ring->next_to_clean;
1455         rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1456         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1457
1458         while (staterr & E1000_RXD_STAT_DD) {
1459                 /* check rx buffer */
1460                 buffer_info = &rx_ring->buffer_info[rx_ntc];
1461
1462                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1463                 pci_unmap_single(rx_ring->pdev,
1464                                  buffer_info->dma,
1465                                  rx_ring->rx_buffer_len,
1466                                  PCI_DMA_FROMDEVICE);
1467                 buffer_info->dma = 0;
1468
1469                 /* verify contents of skb */
1470                 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1471                         count++;
1472
1473                 /* unmap buffer on tx side */
1474                 buffer_info = &tx_ring->buffer_info[tx_ntc];
1475                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1476
1477                 /* increment rx/tx next to clean counters */
1478                 rx_ntc++;
1479                 if (rx_ntc == rx_ring->count)
1480                         rx_ntc = 0;
1481                 tx_ntc++;
1482                 if (tx_ntc == tx_ring->count)
1483                         tx_ntc = 0;
1484
1485                 /* fetch next descriptor */
1486                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1487                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1488         }
1489
1490         /* re-map buffers to ring, store next to clean values */
1491         igb_alloc_rx_buffers_adv(rx_ring, count);
1492         rx_ring->next_to_clean = rx_ntc;
1493         tx_ring->next_to_clean = tx_ntc;
1494
1495         return count;
1496 }
1497
1498 static int igb_run_loopback_test(struct igb_adapter *adapter)
1499 {
1500         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1501         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1502         int i, j, lc, good_cnt, ret_val = 0;
1503         unsigned int size = 1024;
1504         netdev_tx_t tx_ret_val;
1505         struct sk_buff *skb;
1506
1507         /* allocate test skb */
1508         skb = alloc_skb(size, GFP_KERNEL);
1509         if (!skb)
1510                 return 11;
1511
1512         /* place data into test skb */
1513         igb_create_lbtest_frame(skb, size);
1514         skb_put(skb, size);
1515
1516         /* Calculate the loop count based on the largest descriptor ring
1517          * The idea is to wrap the largest ring a number of times using 64
1518          * send/receive pairs during each loop
1519          */
1520
1521         if (rx_ring->count <= tx_ring->count)
1522                 lc = ((tx_ring->count / 64) * 2) + 1;
1523         else
1524                 lc = ((rx_ring->count / 64) * 2) + 1;
1525
1526         for (j = 0; j <= lc; j++) { /* loop count loop */
1527                 /* reset count of good packets */
1528                 good_cnt = 0;
1529
1530                 /* place 64 packets on the transmit queue*/
1531                 for (i = 0; i < 64; i++) {
1532                         skb_get(skb);
1533                         tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1534                         if (tx_ret_val == NETDEV_TX_OK)
1535                                 good_cnt++;
1536                 }
1537
1538                 if (good_cnt != 64) {
1539                         ret_val = 12;
1540                         break;
1541                 }
1542
1543                 /* allow 200 milliseconds for packets to go from tx to rx */
1544                 msleep(200);
1545
1546                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1547                 if (good_cnt != 64) {
1548                         ret_val = 13;
1549                         break;
1550                 }
1551         } /* end loop count loop */
1552
1553         /* free the original skb */
1554         kfree_skb(skb);
1555
1556         return ret_val;
1557 }
1558
1559 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1560 {
1561         /* PHY loopback cannot be performed if SoL/IDER
1562          * sessions are active */
1563         if (igb_check_reset_block(&adapter->hw)) {
1564                 dev_err(&adapter->pdev->dev,
1565                         "Cannot do PHY loopback test "
1566                         "when SoL/IDER is active.\n");
1567                 *data = 0;
1568                 goto out;
1569         }
1570         *data = igb_setup_desc_rings(adapter);
1571         if (*data)
1572                 goto out;
1573         *data = igb_setup_loopback_test(adapter);
1574         if (*data)
1575                 goto err_loopback;
1576         *data = igb_run_loopback_test(adapter);
1577         igb_loopback_cleanup(adapter);
1578
1579 err_loopback:
1580         igb_free_desc_rings(adapter);
1581 out:
1582         return *data;
1583 }
1584
1585 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         *data = 0;
1589         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1590                 int i = 0;
1591                 hw->mac.serdes_has_link = false;
1592
1593                 /* On some blade server designs, link establishment
1594                  * could take as long as 2-3 minutes */
1595                 do {
1596                         hw->mac.ops.check_for_link(&adapter->hw);
1597                         if (hw->mac.serdes_has_link)
1598                                 return *data;
1599                         msleep(20);
1600                 } while (i++ < 3750);
1601
1602                 *data = 1;
1603         } else {
1604                 hw->mac.ops.check_for_link(&adapter->hw);
1605                 if (hw->mac.autoneg)
1606                         msleep(4000);
1607
1608                 if (!(rd32(E1000_STATUS) &
1609                       E1000_STATUS_LU))
1610                         *data = 1;
1611         }
1612         return *data;
1613 }
1614
1615 static void igb_diag_test(struct net_device *netdev,
1616                           struct ethtool_test *eth_test, u64 *data)
1617 {
1618         struct igb_adapter *adapter = netdev_priv(netdev);
1619         u16 autoneg_advertised;
1620         u8 forced_speed_duplex, autoneg;
1621         bool if_running = netif_running(netdev);
1622
1623         set_bit(__IGB_TESTING, &adapter->state);
1624         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1625                 /* Offline tests */
1626
1627                 /* save speed, duplex, autoneg settings */
1628                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1629                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1630                 autoneg = adapter->hw.mac.autoneg;
1631
1632                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1633
1634                 /* Link test performed before hardware reset so autoneg doesn't
1635                  * interfere with test result */
1636                 if (igb_link_test(adapter, &data[4]))
1637                         eth_test->flags |= ETH_TEST_FL_FAILED;
1638
1639                 if (if_running)
1640                         /* indicate we're in test mode */
1641                         dev_close(netdev);
1642                 else
1643                         igb_reset(adapter);
1644
1645                 if (igb_reg_test(adapter, &data[0]))
1646                         eth_test->flags |= ETH_TEST_FL_FAILED;
1647
1648                 igb_reset(adapter);
1649                 if (igb_eeprom_test(adapter, &data[1]))
1650                         eth_test->flags |= ETH_TEST_FL_FAILED;
1651
1652                 igb_reset(adapter);
1653                 if (igb_intr_test(adapter, &data[2]))
1654                         eth_test->flags |= ETH_TEST_FL_FAILED;
1655
1656                 igb_reset(adapter);
1657                 if (igb_loopback_test(adapter, &data[3]))
1658                         eth_test->flags |= ETH_TEST_FL_FAILED;
1659
1660                 /* restore speed, duplex, autoneg settings */
1661                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1662                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1663                 adapter->hw.mac.autoneg = autoneg;
1664
1665                 /* force this routine to wait until autoneg complete/timeout */
1666                 adapter->hw.phy.autoneg_wait_to_complete = true;
1667                 igb_reset(adapter);
1668                 adapter->hw.phy.autoneg_wait_to_complete = false;
1669
1670                 clear_bit(__IGB_TESTING, &adapter->state);
1671                 if (if_running)
1672                         dev_open(netdev);
1673         } else {
1674                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1675                 /* Online tests */
1676                 if (igb_link_test(adapter, &data[4]))
1677                         eth_test->flags |= ETH_TEST_FL_FAILED;
1678
1679                 /* Online tests aren't run; pass by default */
1680                 data[0] = 0;
1681                 data[1] = 0;
1682                 data[2] = 0;
1683                 data[3] = 0;
1684
1685                 clear_bit(__IGB_TESTING, &adapter->state);
1686         }
1687         msleep_interruptible(4 * 1000);
1688 }
1689
1690 static int igb_wol_exclusion(struct igb_adapter *adapter,
1691                              struct ethtool_wolinfo *wol)
1692 {
1693         struct e1000_hw *hw = &adapter->hw;
1694         int retval = 1; /* fail by default */
1695
1696         switch (hw->device_id) {
1697         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1698                 /* WoL not supported */
1699                 wol->supported = 0;
1700                 break;
1701         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1702         case E1000_DEV_ID_82576_FIBER:
1703         case E1000_DEV_ID_82576_SERDES:
1704                 /* Wake events not supported on port B */
1705                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1706                         wol->supported = 0;
1707                         break;
1708                 }
1709                 /* return success for non excluded adapter ports */
1710                 retval = 0;
1711                 break;
1712         case E1000_DEV_ID_82576_QUAD_COPPER:
1713                 /* quad port adapters only support WoL on port A */
1714                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1715                         wol->supported = 0;
1716                         break;
1717                 }
1718                 /* return success for non excluded adapter ports */
1719                 retval = 0;
1720                 break;
1721         default:
1722                 /* dual port cards only support WoL on port A from now on
1723                  * unless it was enabled in the eeprom for port B
1724                  * so exclude FUNC_1 ports from having WoL enabled */
1725                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1726                     !adapter->eeprom_wol) {
1727                         wol->supported = 0;
1728                         break;
1729                 }
1730
1731                 retval = 0;
1732         }
1733
1734         return retval;
1735 }
1736
1737 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1738 {
1739         struct igb_adapter *adapter = netdev_priv(netdev);
1740
1741         wol->supported = WAKE_UCAST | WAKE_MCAST |
1742                          WAKE_BCAST | WAKE_MAGIC;
1743         wol->wolopts = 0;
1744
1745         /* this function will set ->supported = 0 and return 1 if wol is not
1746          * supported by this hardware */
1747         if (igb_wol_exclusion(adapter, wol) ||
1748             !device_can_wakeup(&adapter->pdev->dev))
1749                 return;
1750
1751         /* apply any specific unsupported masks here */
1752         switch (adapter->hw.device_id) {
1753         default:
1754                 break;
1755         }
1756
1757         if (adapter->wol & E1000_WUFC_EX)
1758                 wol->wolopts |= WAKE_UCAST;
1759         if (adapter->wol & E1000_WUFC_MC)
1760                 wol->wolopts |= WAKE_MCAST;
1761         if (adapter->wol & E1000_WUFC_BC)
1762                 wol->wolopts |= WAKE_BCAST;
1763         if (adapter->wol & E1000_WUFC_MAG)
1764                 wol->wolopts |= WAKE_MAGIC;
1765
1766         return;
1767 }
1768
1769 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1770 {
1771         struct igb_adapter *adapter = netdev_priv(netdev);
1772
1773         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1774                 return -EOPNOTSUPP;
1775
1776         if (igb_wol_exclusion(adapter, wol) ||
1777             !device_can_wakeup(&adapter->pdev->dev))
1778                 return wol->wolopts ? -EOPNOTSUPP : 0;
1779
1780         /* these settings will always override what we currently have */
1781         adapter->wol = 0;
1782
1783         if (wol->wolopts & WAKE_UCAST)
1784                 adapter->wol |= E1000_WUFC_EX;
1785         if (wol->wolopts & WAKE_MCAST)
1786                 adapter->wol |= E1000_WUFC_MC;
1787         if (wol->wolopts & WAKE_BCAST)
1788                 adapter->wol |= E1000_WUFC_BC;
1789         if (wol->wolopts & WAKE_MAGIC)
1790                 adapter->wol |= E1000_WUFC_MAG;
1791
1792         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1793
1794         return 0;
1795 }
1796
1797 /* bit defines for adapter->led_status */
1798 #define IGB_LED_ON              0
1799
1800 static int igb_phys_id(struct net_device *netdev, u32 data)
1801 {
1802         struct igb_adapter *adapter = netdev_priv(netdev);
1803         struct e1000_hw *hw = &adapter->hw;
1804
1805         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1806                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1807
1808         igb_blink_led(hw);
1809         msleep_interruptible(data * 1000);
1810
1811         igb_led_off(hw);
1812         clear_bit(IGB_LED_ON, &adapter->led_status);
1813         igb_cleanup_led(hw);
1814
1815         return 0;
1816 }
1817
1818 static int igb_set_coalesce(struct net_device *netdev,
1819                             struct ethtool_coalesce *ec)
1820 {
1821         struct igb_adapter *adapter = netdev_priv(netdev);
1822         int i;
1823
1824         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1825             ((ec->rx_coalesce_usecs > 3) &&
1826              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1827             (ec->rx_coalesce_usecs == 2))
1828                 return -EINVAL;
1829
1830         /* convert to rate of irq's per second */
1831         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1832                 adapter->itr_setting = ec->rx_coalesce_usecs;
1833                 adapter->itr = IGB_START_ITR;
1834         } else {
1835                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1836                 adapter->itr = adapter->itr_setting;
1837         }
1838
1839         for (i = 0; i < adapter->num_q_vectors; i++) {
1840                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1841                 q_vector->itr_val = adapter->itr;
1842                 q_vector->set_itr = 1;
1843         }
1844
1845         return 0;
1846 }
1847
1848 static int igb_get_coalesce(struct net_device *netdev,
1849                             struct ethtool_coalesce *ec)
1850 {
1851         struct igb_adapter *adapter = netdev_priv(netdev);
1852
1853         if (adapter->itr_setting <= 3)
1854                 ec->rx_coalesce_usecs = adapter->itr_setting;
1855         else
1856                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1857
1858         return 0;
1859 }
1860
1861
1862 static int igb_nway_reset(struct net_device *netdev)
1863 {
1864         struct igb_adapter *adapter = netdev_priv(netdev);
1865         if (netif_running(netdev))
1866                 igb_reinit_locked(adapter);
1867         return 0;
1868 }
1869
1870 static int igb_get_sset_count(struct net_device *netdev, int sset)
1871 {
1872         switch (sset) {
1873         case ETH_SS_STATS:
1874                 return IGB_STATS_LEN;
1875         case ETH_SS_TEST:
1876                 return IGB_TEST_LEN;
1877         default:
1878                 return -ENOTSUPP;
1879         }
1880 }
1881
1882 static void igb_get_ethtool_stats(struct net_device *netdev,
1883                                   struct ethtool_stats *stats, u64 *data)
1884 {
1885         struct igb_adapter *adapter = netdev_priv(netdev);
1886         u64 *queue_stat;
1887         int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1888         int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1889         int j;
1890         int i;
1891         char *p = NULL;
1892
1893         igb_update_stats(adapter);
1894         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1895                 switch (igb_gstrings_stats[i].type) {
1896                 case NETDEV_STATS:
1897                         p = (char *) netdev +
1898                                         igb_gstrings_stats[i].stat_offset;
1899                         break;
1900                 case IGB_STATS:
1901                         p = (char *) adapter +
1902                                         igb_gstrings_stats[i].stat_offset;
1903                         break;
1904                 }
1905
1906                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1907                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1908         }
1909         for (j = 0; j < adapter->num_tx_queues; j++) {
1910                 int k;
1911                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1912                 for (k = 0; k < stat_count_tx; k++)
1913                         data[i + k] = queue_stat[k];
1914                 i += k;
1915         }
1916         for (j = 0; j < adapter->num_rx_queues; j++) {
1917                 int k;
1918                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1919                 for (k = 0; k < stat_count_rx; k++)
1920                         data[i + k] = queue_stat[k];
1921                 i += k;
1922         }
1923 }
1924
1925 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1926 {
1927         struct igb_adapter *adapter = netdev_priv(netdev);
1928         u8 *p = data;
1929         int i;
1930
1931         switch (stringset) {
1932         case ETH_SS_TEST:
1933                 memcpy(data, *igb_gstrings_test,
1934                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1935                 break;
1936         case ETH_SS_STATS:
1937                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1938                         memcpy(p, igb_gstrings_stats[i].stat_string,
1939                                ETH_GSTRING_LEN);
1940                         p += ETH_GSTRING_LEN;
1941                 }
1942                 for (i = 0; i < adapter->num_tx_queues; i++) {
1943                         sprintf(p, "tx_queue_%u_packets", i);
1944                         p += ETH_GSTRING_LEN;
1945                         sprintf(p, "tx_queue_%u_bytes", i);
1946                         p += ETH_GSTRING_LEN;
1947                         sprintf(p, "tx_queue_%u_restart", i);
1948                         p += ETH_GSTRING_LEN;
1949                 }
1950                 for (i = 0; i < adapter->num_rx_queues; i++) {
1951                         sprintf(p, "rx_queue_%u_packets", i);
1952                         p += ETH_GSTRING_LEN;
1953                         sprintf(p, "rx_queue_%u_bytes", i);
1954                         p += ETH_GSTRING_LEN;
1955                         sprintf(p, "rx_queue_%u_drops", i);
1956                         p += ETH_GSTRING_LEN;
1957                         sprintf(p, "rx_queue_%u_csum_err", i);
1958                         p += ETH_GSTRING_LEN;
1959                         sprintf(p, "rx_queue_%u_alloc_failed", i);
1960                         p += ETH_GSTRING_LEN;
1961                 }
1962 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1963                 break;
1964         }
1965 }
1966
1967 static const struct ethtool_ops igb_ethtool_ops = {
1968         .get_settings           = igb_get_settings,
1969         .set_settings           = igb_set_settings,
1970         .get_drvinfo            = igb_get_drvinfo,
1971         .get_regs_len           = igb_get_regs_len,
1972         .get_regs               = igb_get_regs,
1973         .get_wol                = igb_get_wol,
1974         .set_wol                = igb_set_wol,
1975         .get_msglevel           = igb_get_msglevel,
1976         .set_msglevel           = igb_set_msglevel,
1977         .nway_reset             = igb_nway_reset,
1978         .get_link               = ethtool_op_get_link,
1979         .get_eeprom_len         = igb_get_eeprom_len,
1980         .get_eeprom             = igb_get_eeprom,
1981         .set_eeprom             = igb_set_eeprom,
1982         .get_ringparam          = igb_get_ringparam,
1983         .set_ringparam          = igb_set_ringparam,
1984         .get_pauseparam         = igb_get_pauseparam,
1985         .set_pauseparam         = igb_set_pauseparam,
1986         .get_rx_csum            = igb_get_rx_csum,
1987         .set_rx_csum            = igb_set_rx_csum,
1988         .get_tx_csum            = igb_get_tx_csum,
1989         .set_tx_csum            = igb_set_tx_csum,
1990         .get_sg                 = ethtool_op_get_sg,
1991         .set_sg                 = ethtool_op_set_sg,
1992         .get_tso                = ethtool_op_get_tso,
1993         .set_tso                = igb_set_tso,
1994         .self_test              = igb_diag_test,
1995         .get_strings            = igb_get_strings,
1996         .phys_id                = igb_phys_id,
1997         .get_sset_count         = igb_get_sset_count,
1998         .get_ethtool_stats      = igb_get_ethtool_stats,
1999         .get_coalesce           = igb_get_coalesce,
2000         .set_coalesce           = igb_set_coalesce,
2001 };
2002
2003 void igb_set_ethtool_ops(struct net_device *netdev)
2004 {
2005         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2006 }