Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit.  Without NAPI, the packet(s) will be handled
48  *  immediately.  Both methods will start at the last known empty
49  *  descriptor, and process every subsequent descriptor until there
50  *  are none left with data (NAPI will stop after a set number of
51  *  packets to give time to other tasks, but will eventually
52  *  process all the packets).  The data arrives inside a
53  *  pre-allocated skb, and so after the skb is passed up to the
54  *  stack, a new skb must be allocated, and the address field in
55  *  the buffer descriptor must be updated to indicate this new
56  *  skb.
57  *
58  *  When the kernel requests that a packet be transmitted, the
59  *  driver starts where it left off last time, and points the
60  *  descriptor at the buffer which was passed in.  The driver
61  *  then informs the DMA engine that there are packets ready to
62  *  be transmitted.  Once the controller is finished transmitting
63  *  the packet, an interrupt may be triggered (under the same
64  *  conditions as for reception, but depending on the TXF bit).
65  *  The driver then cleans up the buffer.
66  */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 #ifdef CONFIG_GFAR_NAPI
105 #define RECEIVE(x) netif_receive_skb(x)
106 #else
107 #define RECEIVE(x) netif_rx(x)
108 #endif
109
110 const char gfar_driver_name[] = "Gianfar Ethernet";
111 const char gfar_driver_version[] = "1.3";
112
113 static int gfar_enet_open(struct net_device *dev);
114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115 static void gfar_timeout(struct net_device *dev);
116 static int gfar_close(struct net_device *dev);
117 struct sk_buff *gfar_new_skb(struct net_device *dev);
118 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
119                 struct sk_buff *skb);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 static void gfar_configure_serdes(struct net_device *dev);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct napi_struct *napi, int budget);
136 #endif
137 #ifdef CONFIG_NET_POLL_CONTROLLER
138 static void gfar_netpoll(struct net_device *dev);
139 #endif
140 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
141 static int gfar_clean_tx_ring(struct net_device *dev);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144                                 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
149
150 extern const struct ethtool_ops gfar_ethtool_ops;
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
158 {
159         return (priv->vlan_enable || priv->rx_csum_enable);
160 }
161
162 /* Set up the ethernet device structure, private data,
163  * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
165 {
166         u32 tempval;
167         struct net_device *dev = NULL;
168         struct gfar_private *priv = NULL;
169         struct gianfar_platform_data *einfo;
170         struct resource *r;
171         int err = 0;
172         DECLARE_MAC_BUF(mac);
173
174         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
175
176         if (NULL == einfo) {
177                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
178                        pdev->id);
179
180                 return -ENODEV;
181         }
182
183         /* Create an ethernet device instance */
184         dev = alloc_etherdev(sizeof (*priv));
185
186         if (NULL == dev)
187                 return -ENOMEM;
188
189         priv = netdev_priv(dev);
190         priv->dev = dev;
191
192         /* Set the info in the priv to the current info */
193         priv->einfo = einfo;
194
195         /* fill out IRQ fields */
196         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
197                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
198                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
199                 priv->interruptError = platform_get_irq_byname(pdev, "error");
200                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
201                         goto regs_fail;
202         } else {
203                 priv->interruptTransmit = platform_get_irq(pdev, 0);
204                 if (priv->interruptTransmit < 0)
205                         goto regs_fail;
206         }
207
208         /* get a pointer to the register memory */
209         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
210         priv->regs = ioremap(r->start, sizeof (struct gfar));
211
212         if (NULL == priv->regs) {
213                 err = -ENOMEM;
214                 goto regs_fail;
215         }
216
217         spin_lock_init(&priv->txlock);
218         spin_lock_init(&priv->rxlock);
219
220         platform_set_drvdata(pdev, dev);
221
222         /* Stop the DMA engine now, in case it was running before */
223         /* (The firmware could have used it, and left it running). */
224         /* To do this, we write Graceful Receive Stop and Graceful */
225         /* Transmit Stop, and then wait until the corresponding bits */
226         /* in IEVENT indicate the stops have completed. */
227         tempval = gfar_read(&priv->regs->dmactrl);
228         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
229         gfar_write(&priv->regs->dmactrl, tempval);
230
231         tempval = gfar_read(&priv->regs->dmactrl);
232         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
233         gfar_write(&priv->regs->dmactrl, tempval);
234
235         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
236                 cpu_relax();
237
238         /* Reset MAC layer */
239         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
240
241         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
242         gfar_write(&priv->regs->maccfg1, tempval);
243
244         /* Initialize MACCFG2. */
245         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
246
247         /* Initialize ECNTRL */
248         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
249
250         /* Copy the station address into the dev structure, */
251         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
252
253         /* Set the dev->base_addr to the gfar reg region */
254         dev->base_addr = (unsigned long) (priv->regs);
255
256         SET_NETDEV_DEV(dev, &pdev->dev);
257
258         /* Fill in the dev structure */
259         dev->open = gfar_enet_open;
260         dev->hard_start_xmit = gfar_start_xmit;
261         dev->tx_timeout = gfar_timeout;
262         dev->watchdog_timeo = TX_TIMEOUT;
263 #ifdef CONFIG_GFAR_NAPI
264         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
265 #endif
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267         dev->poll_controller = gfar_netpoll;
268 #endif
269         dev->stop = gfar_close;
270         dev->change_mtu = gfar_change_mtu;
271         dev->mtu = 1500;
272         dev->set_multicast_list = gfar_set_multi;
273
274         dev->ethtool_ops = &gfar_ethtool_ops;
275
276         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
277                 priv->rx_csum_enable = 1;
278                 dev->features |= NETIF_F_IP_CSUM;
279         } else
280                 priv->rx_csum_enable = 0;
281
282         priv->vlgrp = NULL;
283
284         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
285                 dev->vlan_rx_register = gfar_vlan_rx_register;
286
287                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
288
289                 priv->vlan_enable = 1;
290         }
291
292         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
293                 priv->extended_hash = 1;
294                 priv->hash_width = 9;
295
296                 priv->hash_regs[0] = &priv->regs->igaddr0;
297                 priv->hash_regs[1] = &priv->regs->igaddr1;
298                 priv->hash_regs[2] = &priv->regs->igaddr2;
299                 priv->hash_regs[3] = &priv->regs->igaddr3;
300                 priv->hash_regs[4] = &priv->regs->igaddr4;
301                 priv->hash_regs[5] = &priv->regs->igaddr5;
302                 priv->hash_regs[6] = &priv->regs->igaddr6;
303                 priv->hash_regs[7] = &priv->regs->igaddr7;
304                 priv->hash_regs[8] = &priv->regs->gaddr0;
305                 priv->hash_regs[9] = &priv->regs->gaddr1;
306                 priv->hash_regs[10] = &priv->regs->gaddr2;
307                 priv->hash_regs[11] = &priv->regs->gaddr3;
308                 priv->hash_regs[12] = &priv->regs->gaddr4;
309                 priv->hash_regs[13] = &priv->regs->gaddr5;
310                 priv->hash_regs[14] = &priv->regs->gaddr6;
311                 priv->hash_regs[15] = &priv->regs->gaddr7;
312
313         } else {
314                 priv->extended_hash = 0;
315                 priv->hash_width = 8;
316
317                 priv->hash_regs[0] = &priv->regs->gaddr0;
318                 priv->hash_regs[1] = &priv->regs->gaddr1;
319                 priv->hash_regs[2] = &priv->regs->gaddr2;
320                 priv->hash_regs[3] = &priv->regs->gaddr3;
321                 priv->hash_regs[4] = &priv->regs->gaddr4;
322                 priv->hash_regs[5] = &priv->regs->gaddr5;
323                 priv->hash_regs[6] = &priv->regs->gaddr6;
324                 priv->hash_regs[7] = &priv->regs->gaddr7;
325         }
326
327         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
328                 priv->padding = DEFAULT_PADDING;
329         else
330                 priv->padding = 0;
331
332         if (dev->features & NETIF_F_IP_CSUM)
333                 dev->hard_header_len += GMAC_FCB_LEN;
334
335         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
336         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
337         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
338
339         priv->txcoalescing = DEFAULT_TX_COALESCE;
340         priv->txcount = DEFAULT_TXCOUNT;
341         priv->txtime = DEFAULT_TXTIME;
342         priv->rxcoalescing = DEFAULT_RX_COALESCE;
343         priv->rxcount = DEFAULT_RXCOUNT;
344         priv->rxtime = DEFAULT_RXTIME;
345
346         /* Enable most messages by default */
347         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
348
349         err = register_netdev(dev);
350
351         if (err) {
352                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
353                                 dev->name);
354                 goto register_fail;
355         }
356
357         /* Create all the sysfs files */
358         gfar_init_sysfs(dev);
359
360         /* Print out the device info */
361         printk(KERN_INFO DEVICE_NAME "%s\n",
362                dev->name, print_mac(mac, dev->dev_addr));
363
364         /* Even more device info helps when determining which kernel */
365         /* provided which set of benchmarks. */
366 #ifdef CONFIG_GFAR_NAPI
367         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
368 #else
369         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
370 #endif
371         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
372                dev->name, priv->rx_ring_size, priv->tx_ring_size);
373
374         return 0;
375
376 register_fail:
377         iounmap(priv->regs);
378 regs_fail:
379         free_netdev(dev);
380         return err;
381 }
382
383 static int gfar_remove(struct platform_device *pdev)
384 {
385         struct net_device *dev = platform_get_drvdata(pdev);
386         struct gfar_private *priv = netdev_priv(dev);
387
388         platform_set_drvdata(pdev, NULL);
389
390         iounmap(priv->regs);
391         free_netdev(dev);
392
393         return 0;
394 }
395
396
397 /* Reads the controller's registers to determine what interface
398  * connects it to the PHY.
399  */
400 static phy_interface_t gfar_get_interface(struct net_device *dev)
401 {
402         struct gfar_private *priv = netdev_priv(dev);
403         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
404
405         if (ecntrl & ECNTRL_SGMII_MODE)
406                 return PHY_INTERFACE_MODE_SGMII;
407
408         if (ecntrl & ECNTRL_TBI_MODE) {
409                 if (ecntrl & ECNTRL_REDUCED_MODE)
410                         return PHY_INTERFACE_MODE_RTBI;
411                 else
412                         return PHY_INTERFACE_MODE_TBI;
413         }
414
415         if (ecntrl & ECNTRL_REDUCED_MODE) {
416                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
417                         return PHY_INTERFACE_MODE_RMII;
418                 else {
419                         phy_interface_t interface = priv->einfo->interface;
420
421                         /*
422                          * This isn't autodetected right now, so it must
423                          * be set by the device tree or platform code.
424                          */
425                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
426                                 return PHY_INTERFACE_MODE_RGMII_ID;
427
428                         return PHY_INTERFACE_MODE_RGMII;
429                 }
430         }
431
432         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
433                 return PHY_INTERFACE_MODE_GMII;
434
435         return PHY_INTERFACE_MODE_MII;
436 }
437
438
439 /* Initializes driver's PHY state, and attaches to the PHY.
440  * Returns 0 on success.
441  */
442 static int init_phy(struct net_device *dev)
443 {
444         struct gfar_private *priv = netdev_priv(dev);
445         uint gigabit_support =
446                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
447                 SUPPORTED_1000baseT_Full : 0;
448         struct phy_device *phydev;
449         char phy_id[BUS_ID_SIZE];
450         phy_interface_t interface;
451
452         priv->oldlink = 0;
453         priv->oldspeed = 0;
454         priv->oldduplex = -1;
455
456         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
457
458         interface = gfar_get_interface(dev);
459
460         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
461
462         if (interface == PHY_INTERFACE_MODE_SGMII)
463                 gfar_configure_serdes(dev);
464
465         if (IS_ERR(phydev)) {
466                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
467                 return PTR_ERR(phydev);
468         }
469
470         /* Remove any features not supported by the controller */
471         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
472         phydev->advertising = phydev->supported;
473
474         priv->phydev = phydev;
475
476         return 0;
477 }
478
479 /*
480  * Initialize TBI PHY interface for communicating with the
481  * SERDES lynx PHY on the chip.  We communicate with this PHY
482  * through the MDIO bus on each controller, treating it as a
483  * "normal" PHY at the address found in the TBIPA register.  We assume
484  * that the TBIPA register is valid.  Either the MDIO bus code will set
485  * it to a value that doesn't conflict with other PHYs on the bus, or the
486  * value doesn't matter, as there are no other PHYs on the bus.
487  */
488 static void gfar_configure_serdes(struct net_device *dev)
489 {
490         struct gfar_private *priv = netdev_priv(dev);
491         struct gfar_mii __iomem *regs =
492                         (void __iomem *)&priv->regs->gfar_mii_regs;
493         int tbipa = gfar_read(&priv->regs->tbipa);
494
495         /* Single clk mode, mii mode off(for serdes communication) */
496         gfar_local_mdio_write(regs, tbipa, MII_TBICON, TBICON_CLK_SELECT);
497
498         gfar_local_mdio_write(regs, tbipa, MII_ADVERTISE,
499                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
500                         ADVERTISE_1000XPSE_ASYM);
501
502         gfar_local_mdio_write(regs, tbipa, MII_BMCR, BMCR_ANENABLE |
503                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
504 }
505
506 static void init_registers(struct net_device *dev)
507 {
508         struct gfar_private *priv = netdev_priv(dev);
509
510         /* Clear IEVENT */
511         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
512
513         /* Initialize IMASK */
514         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
515
516         /* Init hash registers to zero */
517         gfar_write(&priv->regs->igaddr0, 0);
518         gfar_write(&priv->regs->igaddr1, 0);
519         gfar_write(&priv->regs->igaddr2, 0);
520         gfar_write(&priv->regs->igaddr3, 0);
521         gfar_write(&priv->regs->igaddr4, 0);
522         gfar_write(&priv->regs->igaddr5, 0);
523         gfar_write(&priv->regs->igaddr6, 0);
524         gfar_write(&priv->regs->igaddr7, 0);
525
526         gfar_write(&priv->regs->gaddr0, 0);
527         gfar_write(&priv->regs->gaddr1, 0);
528         gfar_write(&priv->regs->gaddr2, 0);
529         gfar_write(&priv->regs->gaddr3, 0);
530         gfar_write(&priv->regs->gaddr4, 0);
531         gfar_write(&priv->regs->gaddr5, 0);
532         gfar_write(&priv->regs->gaddr6, 0);
533         gfar_write(&priv->regs->gaddr7, 0);
534
535         /* Zero out the rmon mib registers if it has them */
536         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
537                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
538
539                 /* Mask off the CAM interrupts */
540                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
541                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
542         }
543
544         /* Initialize the max receive buffer length */
545         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
546
547         /* Initialize the Minimum Frame Length Register */
548         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
549 }
550
551
552 /* Halt the receive and transmit queues */
553 void gfar_halt(struct net_device *dev)
554 {
555         struct gfar_private *priv = netdev_priv(dev);
556         struct gfar __iomem *regs = priv->regs;
557         u32 tempval;
558
559         /* Mask all interrupts */
560         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
561
562         /* Clear all interrupts */
563         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
564
565         /* Stop the DMA, and wait for it to stop */
566         tempval = gfar_read(&priv->regs->dmactrl);
567         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
568             != (DMACTRL_GRS | DMACTRL_GTS)) {
569                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
570                 gfar_write(&priv->regs->dmactrl, tempval);
571
572                 while (!(gfar_read(&priv->regs->ievent) &
573                          (IEVENT_GRSC | IEVENT_GTSC)))
574                         cpu_relax();
575         }
576
577         /* Disable Rx and Tx */
578         tempval = gfar_read(&regs->maccfg1);
579         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
580         gfar_write(&regs->maccfg1, tempval);
581 }
582
583 void stop_gfar(struct net_device *dev)
584 {
585         struct gfar_private *priv = netdev_priv(dev);
586         struct gfar __iomem *regs = priv->regs;
587         unsigned long flags;
588
589         phy_stop(priv->phydev);
590
591         /* Lock it down */
592         spin_lock_irqsave(&priv->txlock, flags);
593         spin_lock(&priv->rxlock);
594
595         gfar_halt(dev);
596
597         spin_unlock(&priv->rxlock);
598         spin_unlock_irqrestore(&priv->txlock, flags);
599
600         /* Free the IRQs */
601         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
602                 free_irq(priv->interruptError, dev);
603                 free_irq(priv->interruptTransmit, dev);
604                 free_irq(priv->interruptReceive, dev);
605         } else {
606                 free_irq(priv->interruptTransmit, dev);
607         }
608
609         free_skb_resources(priv);
610
611         dma_free_coherent(&dev->dev,
612                         sizeof(struct txbd8)*priv->tx_ring_size
613                         + sizeof(struct rxbd8)*priv->rx_ring_size,
614                         priv->tx_bd_base,
615                         gfar_read(&regs->tbase0));
616 }
617
618 /* If there are any tx skbs or rx skbs still around, free them.
619  * Then free tx_skbuff and rx_skbuff */
620 static void free_skb_resources(struct gfar_private *priv)
621 {
622         struct rxbd8 *rxbdp;
623         struct txbd8 *txbdp;
624         int i;
625
626         /* Go through all the buffer descriptors and free their data buffers */
627         txbdp = priv->tx_bd_base;
628
629         for (i = 0; i < priv->tx_ring_size; i++) {
630
631                 if (priv->tx_skbuff[i]) {
632                         dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
633                                         txbdp->length,
634                                         DMA_TO_DEVICE);
635                         dev_kfree_skb_any(priv->tx_skbuff[i]);
636                         priv->tx_skbuff[i] = NULL;
637                 }
638         }
639
640         kfree(priv->tx_skbuff);
641
642         rxbdp = priv->rx_bd_base;
643
644         /* rx_skbuff is not guaranteed to be allocated, so only
645          * free it and its contents if it is allocated */
646         if(priv->rx_skbuff != NULL) {
647                 for (i = 0; i < priv->rx_ring_size; i++) {
648                         if (priv->rx_skbuff[i]) {
649                                 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
650                                                 priv->rx_buffer_size,
651                                                 DMA_FROM_DEVICE);
652
653                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
654                                 priv->rx_skbuff[i] = NULL;
655                         }
656
657                         rxbdp->status = 0;
658                         rxbdp->length = 0;
659                         rxbdp->bufPtr = 0;
660
661                         rxbdp++;
662                 }
663
664                 kfree(priv->rx_skbuff);
665         }
666 }
667
668 void gfar_start(struct net_device *dev)
669 {
670         struct gfar_private *priv = netdev_priv(dev);
671         struct gfar __iomem *regs = priv->regs;
672         u32 tempval;
673
674         /* Enable Rx and Tx in MACCFG1 */
675         tempval = gfar_read(&regs->maccfg1);
676         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
677         gfar_write(&regs->maccfg1, tempval);
678
679         /* Initialize DMACTRL to have WWR and WOP */
680         tempval = gfar_read(&priv->regs->dmactrl);
681         tempval |= DMACTRL_INIT_SETTINGS;
682         gfar_write(&priv->regs->dmactrl, tempval);
683
684         /* Make sure we aren't stopped */
685         tempval = gfar_read(&priv->regs->dmactrl);
686         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
687         gfar_write(&priv->regs->dmactrl, tempval);
688
689         /* Clear THLT/RHLT, so that the DMA starts polling now */
690         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
691         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
692
693         /* Unmask the interrupts we look for */
694         gfar_write(&regs->imask, IMASK_DEFAULT);
695 }
696
697 /* Bring the controller up and running */
698 int startup_gfar(struct net_device *dev)
699 {
700         struct txbd8 *txbdp;
701         struct rxbd8 *rxbdp;
702         dma_addr_t addr = 0;
703         unsigned long vaddr;
704         int i;
705         struct gfar_private *priv = netdev_priv(dev);
706         struct gfar __iomem *regs = priv->regs;
707         int err = 0;
708         u32 rctrl = 0;
709         u32 attrs = 0;
710
711         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
712
713         /* Allocate memory for the buffer descriptors */
714         vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
715                         sizeof (struct txbd8) * priv->tx_ring_size +
716                         sizeof (struct rxbd8) * priv->rx_ring_size,
717                         &addr, GFP_KERNEL);
718
719         if (vaddr == 0) {
720                 if (netif_msg_ifup(priv))
721                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
722                                         dev->name);
723                 return -ENOMEM;
724         }
725
726         priv->tx_bd_base = (struct txbd8 *) vaddr;
727
728         /* enet DMA only understands physical addresses */
729         gfar_write(&regs->tbase0, addr);
730
731         /* Start the rx descriptor ring where the tx ring leaves off */
732         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
733         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
734         priv->rx_bd_base = (struct rxbd8 *) vaddr;
735         gfar_write(&regs->rbase0, addr);
736
737         /* Setup the skbuff rings */
738         priv->tx_skbuff =
739             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
740                                         priv->tx_ring_size, GFP_KERNEL);
741
742         if (NULL == priv->tx_skbuff) {
743                 if (netif_msg_ifup(priv))
744                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
745                                         dev->name);
746                 err = -ENOMEM;
747                 goto tx_skb_fail;
748         }
749
750         for (i = 0; i < priv->tx_ring_size; i++)
751                 priv->tx_skbuff[i] = NULL;
752
753         priv->rx_skbuff =
754             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
755                                         priv->rx_ring_size, GFP_KERNEL);
756
757         if (NULL == priv->rx_skbuff) {
758                 if (netif_msg_ifup(priv))
759                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
760                                         dev->name);
761                 err = -ENOMEM;
762                 goto rx_skb_fail;
763         }
764
765         for (i = 0; i < priv->rx_ring_size; i++)
766                 priv->rx_skbuff[i] = NULL;
767
768         /* Initialize some variables in our dev structure */
769         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
770         priv->cur_rx = priv->rx_bd_base;
771         priv->skb_curtx = priv->skb_dirtytx = 0;
772         priv->skb_currx = 0;
773
774         /* Initialize Transmit Descriptor Ring */
775         txbdp = priv->tx_bd_base;
776         for (i = 0; i < priv->tx_ring_size; i++) {
777                 txbdp->status = 0;
778                 txbdp->length = 0;
779                 txbdp->bufPtr = 0;
780                 txbdp++;
781         }
782
783         /* Set the last descriptor in the ring to indicate wrap */
784         txbdp--;
785         txbdp->status |= TXBD_WRAP;
786
787         rxbdp = priv->rx_bd_base;
788         for (i = 0; i < priv->rx_ring_size; i++) {
789                 struct sk_buff *skb;
790
791                 skb = gfar_new_skb(dev);
792
793                 if (!skb) {
794                         printk(KERN_ERR "%s: Can't allocate RX buffers\n",
795                                         dev->name);
796
797                         goto err_rxalloc_fail;
798                 }
799
800                 priv->rx_skbuff[i] = skb;
801
802                 gfar_new_rxbdp(dev, rxbdp, skb);
803
804                 rxbdp++;
805         }
806
807         /* Set the last descriptor in the ring to wrap */
808         rxbdp--;
809         rxbdp->status |= RXBD_WRAP;
810
811         /* If the device has multiple interrupts, register for
812          * them.  Otherwise, only register for the one */
813         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
814                 /* Install our interrupt handlers for Error,
815                  * Transmit, and Receive */
816                 if (request_irq(priv->interruptError, gfar_error,
817                                 0, "enet_error", dev) < 0) {
818                         if (netif_msg_intr(priv))
819                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
820                                         dev->name, priv->interruptError);
821
822                         err = -1;
823                         goto err_irq_fail;
824                 }
825
826                 if (request_irq(priv->interruptTransmit, gfar_transmit,
827                                 0, "enet_tx", dev) < 0) {
828                         if (netif_msg_intr(priv))
829                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
830                                         dev->name, priv->interruptTransmit);
831
832                         err = -1;
833
834                         goto tx_irq_fail;
835                 }
836
837                 if (request_irq(priv->interruptReceive, gfar_receive,
838                                 0, "enet_rx", dev) < 0) {
839                         if (netif_msg_intr(priv))
840                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
841                                                 dev->name, priv->interruptReceive);
842
843                         err = -1;
844                         goto rx_irq_fail;
845                 }
846         } else {
847                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
848                                 0, "gfar_interrupt", dev) < 0) {
849                         if (netif_msg_intr(priv))
850                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
851                                         dev->name, priv->interruptError);
852
853                         err = -1;
854                         goto err_irq_fail;
855                 }
856         }
857
858         phy_start(priv->phydev);
859
860         /* Configure the coalescing support */
861         if (priv->txcoalescing)
862                 gfar_write(&regs->txic,
863                            mk_ic_value(priv->txcount, priv->txtime));
864         else
865                 gfar_write(&regs->txic, 0);
866
867         if (priv->rxcoalescing)
868                 gfar_write(&regs->rxic,
869                            mk_ic_value(priv->rxcount, priv->rxtime));
870         else
871                 gfar_write(&regs->rxic, 0);
872
873         if (priv->rx_csum_enable)
874                 rctrl |= RCTRL_CHECKSUMMING;
875
876         if (priv->extended_hash) {
877                 rctrl |= RCTRL_EXTHASH;
878
879                 gfar_clear_exact_match(dev);
880                 rctrl |= RCTRL_EMEN;
881         }
882
883         if (priv->vlan_enable)
884                 rctrl |= RCTRL_VLAN;
885
886         if (priv->padding) {
887                 rctrl &= ~RCTRL_PAL_MASK;
888                 rctrl |= RCTRL_PADDING(priv->padding);
889         }
890
891         /* Init rctrl based on our settings */
892         gfar_write(&priv->regs->rctrl, rctrl);
893
894         if (dev->features & NETIF_F_IP_CSUM)
895                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
896
897         /* Set the extraction length and index */
898         attrs = ATTRELI_EL(priv->rx_stash_size) |
899                 ATTRELI_EI(priv->rx_stash_index);
900
901         gfar_write(&priv->regs->attreli, attrs);
902
903         /* Start with defaults, and add stashing or locking
904          * depending on the approprate variables */
905         attrs = ATTR_INIT_SETTINGS;
906
907         if (priv->bd_stash_en)
908                 attrs |= ATTR_BDSTASH;
909
910         if (priv->rx_stash_size != 0)
911                 attrs |= ATTR_BUFSTASH;
912
913         gfar_write(&priv->regs->attr, attrs);
914
915         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
916         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
917         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
918
919         /* Start the controller */
920         gfar_start(dev);
921
922         return 0;
923
924 rx_irq_fail:
925         free_irq(priv->interruptTransmit, dev);
926 tx_irq_fail:
927         free_irq(priv->interruptError, dev);
928 err_irq_fail:
929 err_rxalloc_fail:       
930 rx_skb_fail:
931         free_skb_resources(priv);
932 tx_skb_fail:
933         dma_free_coherent(&dev->dev,
934                         sizeof(struct txbd8)*priv->tx_ring_size
935                         + sizeof(struct rxbd8)*priv->rx_ring_size,
936                         priv->tx_bd_base,
937                         gfar_read(&regs->tbase0));
938
939         return err;
940 }
941
942 /* Called when something needs to use the ethernet device */
943 /* Returns 0 for success. */
944 static int gfar_enet_open(struct net_device *dev)
945 {
946 #ifdef CONFIG_GFAR_NAPI
947         struct gfar_private *priv = netdev_priv(dev);
948 #endif
949         int err;
950
951 #ifdef CONFIG_GFAR_NAPI
952         napi_enable(&priv->napi);
953 #endif
954
955         /* Initialize a bunch of registers */
956         init_registers(dev);
957
958         gfar_set_mac_address(dev);
959
960         err = init_phy(dev);
961
962         if(err) {
963 #ifdef CONFIG_GFAR_NAPI
964                 napi_disable(&priv->napi);
965 #endif
966                 return err;
967         }
968
969         err = startup_gfar(dev);
970         if (err) {
971 #ifdef CONFIG_GFAR_NAPI
972                 napi_disable(&priv->napi);
973 #endif
974                 return err;
975         }
976
977         netif_start_queue(dev);
978
979         return err;
980 }
981
982 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
983 {
984         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
985
986         memset(fcb, 0, GMAC_FCB_LEN);
987
988         return fcb;
989 }
990
991 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
992 {
993         u8 flags = 0;
994
995         /* If we're here, it's a IP packet with a TCP or UDP
996          * payload.  We set it to checksum, using a pseudo-header
997          * we provide
998          */
999         flags = TXFCB_DEFAULT;
1000
1001         /* Tell the controller what the protocol is */
1002         /* And provide the already calculated phcs */
1003         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1004                 flags |= TXFCB_UDP;
1005                 fcb->phcs = udp_hdr(skb)->check;
1006         } else
1007                 fcb->phcs = tcp_hdr(skb)->check;
1008
1009         /* l3os is the distance between the start of the
1010          * frame (skb->data) and the start of the IP hdr.
1011          * l4os is the distance between the start of the
1012          * l3 hdr and the l4 hdr */
1013         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1014         fcb->l4os = skb_network_header_len(skb);
1015
1016         fcb->flags = flags;
1017 }
1018
1019 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1020 {
1021         fcb->flags |= TXFCB_VLN;
1022         fcb->vlctl = vlan_tx_tag_get(skb);
1023 }
1024
1025 /* This is called by the kernel when a frame is ready for transmission. */
1026 /* It is pointed to by the dev->hard_start_xmit function pointer */
1027 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1028 {
1029         struct gfar_private *priv = netdev_priv(dev);
1030         struct txfcb *fcb = NULL;
1031         struct txbd8 *txbdp;
1032         u16 status;
1033         unsigned long flags;
1034
1035         /* Update transmit stats */
1036         dev->stats.tx_bytes += skb->len;
1037
1038         /* Lock priv now */
1039         spin_lock_irqsave(&priv->txlock, flags);
1040
1041         /* Point at the first free tx descriptor */
1042         txbdp = priv->cur_tx;
1043
1044         /* Clear all but the WRAP status flags */
1045         status = txbdp->status & TXBD_WRAP;
1046
1047         /* Set up checksumming */
1048         if (likely((dev->features & NETIF_F_IP_CSUM)
1049                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1050                 fcb = gfar_add_fcb(skb, txbdp);
1051                 status |= TXBD_TOE;
1052                 gfar_tx_checksum(skb, fcb);
1053         }
1054
1055         if (priv->vlan_enable &&
1056                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1057                 if (unlikely(NULL == fcb)) {
1058                         fcb = gfar_add_fcb(skb, txbdp);
1059                         status |= TXBD_TOE;
1060                 }
1061
1062                 gfar_tx_vlan(skb, fcb);
1063         }
1064
1065         /* Set buffer length and pointer */
1066         txbdp->length = skb->len;
1067         txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1068                         skb->len, DMA_TO_DEVICE);
1069
1070         /* Save the skb pointer so we can free it later */
1071         priv->tx_skbuff[priv->skb_curtx] = skb;
1072
1073         /* Update the current skb pointer (wrapping if this was the last) */
1074         priv->skb_curtx =
1075             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1076
1077         /* Flag the BD as interrupt-causing */
1078         status |= TXBD_INTERRUPT;
1079
1080         /* Flag the BD as ready to go, last in frame, and  */
1081         /* in need of CRC */
1082         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1083
1084         dev->trans_start = jiffies;
1085
1086         /* The powerpc-specific eieio() is used, as wmb() has too strong
1087          * semantics (it requires synchronization between cacheable and
1088          * uncacheable mappings, which eieio doesn't provide and which we
1089          * don't need), thus requiring a more expensive sync instruction.  At
1090          * some point, the set of architecture-independent barrier functions
1091          * should be expanded to include weaker barriers.
1092          */
1093
1094         eieio();
1095         txbdp->status = status;
1096
1097         /* If this was the last BD in the ring, the next one */
1098         /* is at the beginning of the ring */
1099         if (txbdp->status & TXBD_WRAP)
1100                 txbdp = priv->tx_bd_base;
1101         else
1102                 txbdp++;
1103
1104         /* If the next BD still needs to be cleaned up, then the bds
1105            are full.  We need to tell the kernel to stop sending us stuff. */
1106         if (txbdp == priv->dirty_tx) {
1107                 netif_stop_queue(dev);
1108
1109                 dev->stats.tx_fifo_errors++;
1110         }
1111
1112         /* Update the current txbd to the next one */
1113         priv->cur_tx = txbdp;
1114
1115         /* Tell the DMA to go go go */
1116         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1117
1118         /* Unlock priv */
1119         spin_unlock_irqrestore(&priv->txlock, flags);
1120
1121         return 0;
1122 }
1123
1124 /* Stops the kernel queue, and halts the controller */
1125 static int gfar_close(struct net_device *dev)
1126 {
1127         struct gfar_private *priv = netdev_priv(dev);
1128
1129 #ifdef CONFIG_GFAR_NAPI
1130         napi_disable(&priv->napi);
1131 #endif
1132
1133         stop_gfar(dev);
1134
1135         /* Disconnect from the PHY */
1136         phy_disconnect(priv->phydev);
1137         priv->phydev = NULL;
1138
1139         netif_stop_queue(dev);
1140
1141         return 0;
1142 }
1143
1144 /* Changes the mac address if the controller is not running. */
1145 static int gfar_set_mac_address(struct net_device *dev)
1146 {
1147         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1148
1149         return 0;
1150 }
1151
1152
1153 /* Enables and disables VLAN insertion/extraction */
1154 static void gfar_vlan_rx_register(struct net_device *dev,
1155                 struct vlan_group *grp)
1156 {
1157         struct gfar_private *priv = netdev_priv(dev);
1158         unsigned long flags;
1159         u32 tempval;
1160
1161         spin_lock_irqsave(&priv->rxlock, flags);
1162
1163         priv->vlgrp = grp;
1164
1165         if (grp) {
1166                 /* Enable VLAN tag insertion */
1167                 tempval = gfar_read(&priv->regs->tctrl);
1168                 tempval |= TCTRL_VLINS;
1169
1170                 gfar_write(&priv->regs->tctrl, tempval);
1171
1172                 /* Enable VLAN tag extraction */
1173                 tempval = gfar_read(&priv->regs->rctrl);
1174                 tempval |= RCTRL_VLEX;
1175                 gfar_write(&priv->regs->rctrl, tempval);
1176         } else {
1177                 /* Disable VLAN tag insertion */
1178                 tempval = gfar_read(&priv->regs->tctrl);
1179                 tempval &= ~TCTRL_VLINS;
1180                 gfar_write(&priv->regs->tctrl, tempval);
1181
1182                 /* Disable VLAN tag extraction */
1183                 tempval = gfar_read(&priv->regs->rctrl);
1184                 tempval &= ~RCTRL_VLEX;
1185                 gfar_write(&priv->regs->rctrl, tempval);
1186         }
1187
1188         spin_unlock_irqrestore(&priv->rxlock, flags);
1189 }
1190
1191 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1192 {
1193         int tempsize, tempval;
1194         struct gfar_private *priv = netdev_priv(dev);
1195         int oldsize = priv->rx_buffer_size;
1196         int frame_size = new_mtu + ETH_HLEN;
1197
1198         if (priv->vlan_enable)
1199                 frame_size += VLAN_HLEN;
1200
1201         if (gfar_uses_fcb(priv))
1202                 frame_size += GMAC_FCB_LEN;
1203
1204         frame_size += priv->padding;
1205
1206         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1207                 if (netif_msg_drv(priv))
1208                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1209                                         dev->name);
1210                 return -EINVAL;
1211         }
1212
1213         tempsize =
1214             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1215             INCREMENTAL_BUFFER_SIZE;
1216
1217         /* Only stop and start the controller if it isn't already
1218          * stopped, and we changed something */
1219         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1220                 stop_gfar(dev);
1221
1222         priv->rx_buffer_size = tempsize;
1223
1224         dev->mtu = new_mtu;
1225
1226         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1227         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1228
1229         /* If the mtu is larger than the max size for standard
1230          * ethernet frames (ie, a jumbo frame), then set maccfg2
1231          * to allow huge frames, and to check the length */
1232         tempval = gfar_read(&priv->regs->maccfg2);
1233
1234         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1235                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1236         else
1237                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1238
1239         gfar_write(&priv->regs->maccfg2, tempval);
1240
1241         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1242                 startup_gfar(dev);
1243
1244         return 0;
1245 }
1246
1247 /* gfar_timeout gets called when a packet has not been
1248  * transmitted after a set amount of time.
1249  * For now, assume that clearing out all the structures, and
1250  * starting over will fix the problem. */
1251 static void gfar_timeout(struct net_device *dev)
1252 {
1253         dev->stats.tx_errors++;
1254
1255         if (dev->flags & IFF_UP) {
1256                 stop_gfar(dev);
1257                 startup_gfar(dev);
1258         }
1259
1260         netif_schedule(dev);
1261 }
1262
1263 /* Interrupt Handler for Transmit complete */
1264 static int gfar_clean_tx_ring(struct net_device *dev)
1265 {
1266         struct txbd8 *bdp;
1267         struct gfar_private *priv = netdev_priv(dev);
1268         int howmany = 0;
1269
1270         bdp = priv->dirty_tx;
1271         while ((bdp->status & TXBD_READY) == 0) {
1272                 /* If dirty_tx and cur_tx are the same, then either the */
1273                 /* ring is empty or full now (it could only be full in the beginning, */
1274                 /* obviously).  If it is empty, we are done. */
1275                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1276                         break;
1277
1278                 howmany++;
1279
1280                 /* Deferred means some collisions occurred during transmit, */
1281                 /* but we eventually sent the packet. */
1282                 if (bdp->status & TXBD_DEF)
1283                         dev->stats.collisions++;
1284
1285                 /* Free the sk buffer associated with this TxBD */
1286                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1287
1288                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1289                 priv->skb_dirtytx =
1290                     (priv->skb_dirtytx +
1291                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1292
1293                 /* Clean BD length for empty detection */
1294                 bdp->length = 0;
1295
1296                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1297                 if (bdp->status & TXBD_WRAP)
1298                         bdp = priv->tx_bd_base;
1299                 else
1300                         bdp++;
1301
1302                 /* Move dirty_tx to be the next bd */
1303                 priv->dirty_tx = bdp;
1304
1305                 /* We freed a buffer, so now we can restart transmission */
1306                 if (netif_queue_stopped(dev))
1307                         netif_wake_queue(dev);
1308         } /* while ((bdp->status & TXBD_READY) == 0) */
1309
1310         dev->stats.tx_packets += howmany;
1311
1312         return howmany;
1313 }
1314
1315 /* Interrupt Handler for Transmit complete */
1316 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1317 {
1318         struct net_device *dev = (struct net_device *) dev_id;
1319         struct gfar_private *priv = netdev_priv(dev);
1320
1321         /* Clear IEVENT */
1322         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1323
1324         /* Lock priv */
1325         spin_lock(&priv->txlock);
1326
1327         gfar_clean_tx_ring(dev);
1328
1329         /* If we are coalescing the interrupts, reset the timer */
1330         /* Otherwise, clear it */
1331         if (likely(priv->txcoalescing)) {
1332                 gfar_write(&priv->regs->txic, 0);
1333                 gfar_write(&priv->regs->txic,
1334                            mk_ic_value(priv->txcount, priv->txtime));
1335         }
1336
1337         spin_unlock(&priv->txlock);
1338
1339         return IRQ_HANDLED;
1340 }
1341
1342 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1343                 struct sk_buff *skb)
1344 {
1345         struct gfar_private *priv = netdev_priv(dev);
1346         u32 * status_len = (u32 *)bdp;
1347         u16 flags;
1348
1349         bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1350                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1351
1352         flags = RXBD_EMPTY | RXBD_INTERRUPT;
1353
1354         if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1355                 flags |= RXBD_WRAP;
1356
1357         eieio();
1358
1359         *status_len = (u32)flags << 16;
1360 }
1361
1362
1363 struct sk_buff * gfar_new_skb(struct net_device *dev)
1364 {
1365         unsigned int alignamount;
1366         struct gfar_private *priv = netdev_priv(dev);
1367         struct sk_buff *skb = NULL;
1368
1369         /* We have to allocate the skb, so keep trying till we succeed */
1370         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1371
1372         if (!skb)
1373                 return NULL;
1374
1375         alignamount = RXBUF_ALIGNMENT -
1376                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1377
1378         /* We need the data buffer to be aligned properly.  We will reserve
1379          * as many bytes as needed to align the data properly
1380          */
1381         skb_reserve(skb, alignamount);
1382
1383         return skb;
1384 }
1385
1386 static inline void count_errors(unsigned short status, struct net_device *dev)
1387 {
1388         struct gfar_private *priv = netdev_priv(dev);
1389         struct net_device_stats *stats = &dev->stats;
1390         struct gfar_extra_stats *estats = &priv->extra_stats;
1391
1392         /* If the packet was truncated, none of the other errors
1393          * matter */
1394         if (status & RXBD_TRUNCATED) {
1395                 stats->rx_length_errors++;
1396
1397                 estats->rx_trunc++;
1398
1399                 return;
1400         }
1401         /* Count the errors, if there were any */
1402         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1403                 stats->rx_length_errors++;
1404
1405                 if (status & RXBD_LARGE)
1406                         estats->rx_large++;
1407                 else
1408                         estats->rx_short++;
1409         }
1410         if (status & RXBD_NONOCTET) {
1411                 stats->rx_frame_errors++;
1412                 estats->rx_nonoctet++;
1413         }
1414         if (status & RXBD_CRCERR) {
1415                 estats->rx_crcerr++;
1416                 stats->rx_crc_errors++;
1417         }
1418         if (status & RXBD_OVERRUN) {
1419                 estats->rx_overrun++;
1420                 stats->rx_crc_errors++;
1421         }
1422 }
1423
1424 irqreturn_t gfar_receive(int irq, void *dev_id)
1425 {
1426         struct net_device *dev = (struct net_device *) dev_id;
1427         struct gfar_private *priv = netdev_priv(dev);
1428 #ifdef CONFIG_GFAR_NAPI
1429         u32 tempval;
1430 #else
1431         unsigned long flags;
1432 #endif
1433
1434         /* support NAPI */
1435 #ifdef CONFIG_GFAR_NAPI
1436         /* Clear IEVENT, so interrupts aren't called again
1437          * because of the packets that have already arrived */
1438         gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1439
1440         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1441                 tempval = gfar_read(&priv->regs->imask);
1442                 tempval &= IMASK_RTX_DISABLED;
1443                 gfar_write(&priv->regs->imask, tempval);
1444
1445                 __netif_rx_schedule(dev, &priv->napi);
1446         } else {
1447                 if (netif_msg_rx_err(priv))
1448                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1449                                 dev->name, gfar_read(&priv->regs->ievent),
1450                                 gfar_read(&priv->regs->imask));
1451         }
1452 #else
1453         /* Clear IEVENT, so rx interrupt isn't called again
1454          * because of this interrupt */
1455         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1456
1457         spin_lock_irqsave(&priv->rxlock, flags);
1458         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1459
1460         /* If we are coalescing interrupts, update the timer */
1461         /* Otherwise, clear it */
1462         if (likely(priv->rxcoalescing)) {
1463                 gfar_write(&priv->regs->rxic, 0);
1464                 gfar_write(&priv->regs->rxic,
1465                            mk_ic_value(priv->rxcount, priv->rxtime));
1466         }
1467
1468         spin_unlock_irqrestore(&priv->rxlock, flags);
1469 #endif
1470
1471         return IRQ_HANDLED;
1472 }
1473
1474 static inline int gfar_rx_vlan(struct sk_buff *skb,
1475                 struct vlan_group *vlgrp, unsigned short vlctl)
1476 {
1477 #ifdef CONFIG_GFAR_NAPI
1478         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1479 #else
1480         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1481 #endif
1482 }
1483
1484 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1485 {
1486         /* If valid headers were found, and valid sums
1487          * were verified, then we tell the kernel that no
1488          * checksumming is necessary.  Otherwise, it is */
1489         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1490                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1491         else
1492                 skb->ip_summed = CHECKSUM_NONE;
1493 }
1494
1495
1496 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1497 {
1498         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1499
1500         /* Remove the FCB from the skb */
1501         skb_pull(skb, GMAC_FCB_LEN);
1502
1503         return fcb;
1504 }
1505
1506 /* gfar_process_frame() -- handle one incoming packet if skb
1507  * isn't NULL.  */
1508 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1509                 int length)
1510 {
1511         struct gfar_private *priv = netdev_priv(dev);
1512         struct rxfcb *fcb = NULL;
1513
1514         if (NULL == skb) {
1515                 if (netif_msg_rx_err(priv))
1516                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1517                 dev->stats.rx_dropped++;
1518                 priv->extra_stats.rx_skbmissing++;
1519         } else {
1520                 int ret;
1521
1522                 /* Prep the skb for the packet */
1523                 skb_put(skb, length);
1524
1525                 /* Grab the FCB if there is one */
1526                 if (gfar_uses_fcb(priv))
1527                         fcb = gfar_get_fcb(skb);
1528
1529                 /* Remove the padded bytes, if there are any */
1530                 if (priv->padding)
1531                         skb_pull(skb, priv->padding);
1532
1533                 if (priv->rx_csum_enable)
1534                         gfar_rx_checksum(skb, fcb);
1535
1536                 /* Tell the skb what kind of packet this is */
1537                 skb->protocol = eth_type_trans(skb, dev);
1538
1539                 /* Send the packet up the stack */
1540                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1541                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1542                 else
1543                         ret = RECEIVE(skb);
1544
1545                 if (NET_RX_DROP == ret)
1546                         priv->extra_stats.kernel_dropped++;
1547         }
1548
1549         return 0;
1550 }
1551
1552 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1553  *   until the budget/quota has been reached. Returns the number
1554  *   of frames handled
1555  */
1556 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1557 {
1558         struct rxbd8 *bdp;
1559         struct sk_buff *skb;
1560         u16 pkt_len;
1561         int howmany = 0;
1562         struct gfar_private *priv = netdev_priv(dev);
1563
1564         /* Get the first full descriptor */
1565         bdp = priv->cur_rx;
1566
1567         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1568                 struct sk_buff *newskb;
1569                 rmb();
1570
1571                 /* Add another skb for the future */
1572                 newskb = gfar_new_skb(dev);
1573
1574                 skb = priv->rx_skbuff[priv->skb_currx];
1575
1576                 /* We drop the frame if we failed to allocate a new buffer */
1577                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1578                                  bdp->status & RXBD_ERR)) {
1579                         count_errors(bdp->status, dev);
1580
1581                         if (unlikely(!newskb))
1582                                 newskb = skb;
1583
1584                         if (skb) {
1585                                 dma_unmap_single(&priv->dev->dev,
1586                                                 bdp->bufPtr,
1587                                                 priv->rx_buffer_size,
1588                                                 DMA_FROM_DEVICE);
1589
1590                                 dev_kfree_skb_any(skb);
1591                         }
1592                 } else {
1593                         /* Increment the number of packets */
1594                         dev->stats.rx_packets++;
1595                         howmany++;
1596
1597                         /* Remove the FCS from the packet length */
1598                         pkt_len = bdp->length - 4;
1599
1600                         gfar_process_frame(dev, skb, pkt_len);
1601
1602                         dev->stats.rx_bytes += pkt_len;
1603                 }
1604
1605                 dev->last_rx = jiffies;
1606
1607                 priv->rx_skbuff[priv->skb_currx] = newskb;
1608
1609                 /* Setup the new bdp */
1610                 gfar_new_rxbdp(dev, bdp, newskb);
1611
1612                 /* Update to the next pointer */
1613                 if (bdp->status & RXBD_WRAP)
1614                         bdp = priv->rx_bd_base;
1615                 else
1616                         bdp++;
1617
1618                 /* update to point at the next skb */
1619                 priv->skb_currx =
1620                     (priv->skb_currx + 1) &
1621                     RX_RING_MOD_MASK(priv->rx_ring_size);
1622         }
1623
1624         /* Update the current rxbd pointer to be the next one */
1625         priv->cur_rx = bdp;
1626
1627         return howmany;
1628 }
1629
1630 #ifdef CONFIG_GFAR_NAPI
1631 static int gfar_poll(struct napi_struct *napi, int budget)
1632 {
1633         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1634         struct net_device *dev = priv->dev;
1635         int howmany;
1636         unsigned long flags;
1637
1638         /* If we fail to get the lock, don't bother with the TX BDs */
1639         if (spin_trylock_irqsave(&priv->txlock, flags)) {
1640                 gfar_clean_tx_ring(dev);
1641                 spin_unlock_irqrestore(&priv->txlock, flags);
1642         }
1643
1644         howmany = gfar_clean_rx_ring(dev, budget);
1645
1646         if (howmany < budget) {
1647                 netif_rx_complete(dev, napi);
1648
1649                 /* Clear the halt bit in RSTAT */
1650                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1651
1652                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1653
1654                 /* If we are coalescing interrupts, update the timer */
1655                 /* Otherwise, clear it */
1656                 if (likely(priv->rxcoalescing)) {
1657                         gfar_write(&priv->regs->rxic, 0);
1658                         gfar_write(&priv->regs->rxic,
1659                                    mk_ic_value(priv->rxcount, priv->rxtime));
1660                 }
1661         }
1662
1663         return howmany;
1664 }
1665 #endif
1666
1667 #ifdef CONFIG_NET_POLL_CONTROLLER
1668 /*
1669  * Polling 'interrupt' - used by things like netconsole to send skbs
1670  * without having to re-enable interrupts. It's not called while
1671  * the interrupt routine is executing.
1672  */
1673 static void gfar_netpoll(struct net_device *dev)
1674 {
1675         struct gfar_private *priv = netdev_priv(dev);
1676
1677         /* If the device has multiple interrupts, run tx/rx */
1678         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1679                 disable_irq(priv->interruptTransmit);
1680                 disable_irq(priv->interruptReceive);
1681                 disable_irq(priv->interruptError);
1682                 gfar_interrupt(priv->interruptTransmit, dev);
1683                 enable_irq(priv->interruptError);
1684                 enable_irq(priv->interruptReceive);
1685                 enable_irq(priv->interruptTransmit);
1686         } else {
1687                 disable_irq(priv->interruptTransmit);
1688                 gfar_interrupt(priv->interruptTransmit, dev);
1689                 enable_irq(priv->interruptTransmit);
1690         }
1691 }
1692 #endif
1693
1694 /* The interrupt handler for devices with one interrupt */
1695 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1696 {
1697         struct net_device *dev = dev_id;
1698         struct gfar_private *priv = netdev_priv(dev);
1699
1700         /* Save ievent for future reference */
1701         u32 events = gfar_read(&priv->regs->ievent);
1702
1703         /* Check for reception */
1704         if (events & IEVENT_RX_MASK)
1705                 gfar_receive(irq, dev_id);
1706
1707         /* Check for transmit completion */
1708         if (events & IEVENT_TX_MASK)
1709                 gfar_transmit(irq, dev_id);
1710
1711         /* Check for errors */
1712         if (events & IEVENT_ERR_MASK)
1713                 gfar_error(irq, dev_id);
1714
1715         return IRQ_HANDLED;
1716 }
1717
1718 /* Called every time the controller might need to be made
1719  * aware of new link state.  The PHY code conveys this
1720  * information through variables in the phydev structure, and this
1721  * function converts those variables into the appropriate
1722  * register values, and can bring down the device if needed.
1723  */
1724 static void adjust_link(struct net_device *dev)
1725 {
1726         struct gfar_private *priv = netdev_priv(dev);
1727         struct gfar __iomem *regs = priv->regs;
1728         unsigned long flags;
1729         struct phy_device *phydev = priv->phydev;
1730         int new_state = 0;
1731
1732         spin_lock_irqsave(&priv->txlock, flags);
1733         if (phydev->link) {
1734                 u32 tempval = gfar_read(&regs->maccfg2);
1735                 u32 ecntrl = gfar_read(&regs->ecntrl);
1736
1737                 /* Now we make sure that we can be in full duplex mode.
1738                  * If not, we operate in half-duplex mode. */
1739                 if (phydev->duplex != priv->oldduplex) {
1740                         new_state = 1;
1741                         if (!(phydev->duplex))
1742                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1743                         else
1744                                 tempval |= MACCFG2_FULL_DUPLEX;
1745
1746                         priv->oldduplex = phydev->duplex;
1747                 }
1748
1749                 if (phydev->speed != priv->oldspeed) {
1750                         new_state = 1;
1751                         switch (phydev->speed) {
1752                         case 1000:
1753                                 tempval =
1754                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1755                                 break;
1756                         case 100:
1757                         case 10:
1758                                 tempval =
1759                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1760
1761                                 /* Reduced mode distinguishes
1762                                  * between 10 and 100 */
1763                                 if (phydev->speed == SPEED_100)
1764                                         ecntrl |= ECNTRL_R100;
1765                                 else
1766                                         ecntrl &= ~(ECNTRL_R100);
1767                                 break;
1768                         default:
1769                                 if (netif_msg_link(priv))
1770                                         printk(KERN_WARNING
1771                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1772                                                 dev->name, phydev->speed);
1773                                 break;
1774                         }
1775
1776                         priv->oldspeed = phydev->speed;
1777                 }
1778
1779                 gfar_write(&regs->maccfg2, tempval);
1780                 gfar_write(&regs->ecntrl, ecntrl);
1781
1782                 if (!priv->oldlink) {
1783                         new_state = 1;
1784                         priv->oldlink = 1;
1785                         netif_schedule(dev);
1786                 }
1787         } else if (priv->oldlink) {
1788                 new_state = 1;
1789                 priv->oldlink = 0;
1790                 priv->oldspeed = 0;
1791                 priv->oldduplex = -1;
1792         }
1793
1794         if (new_state && netif_msg_link(priv))
1795                 phy_print_status(phydev);
1796
1797         spin_unlock_irqrestore(&priv->txlock, flags);
1798 }
1799
1800 /* Update the hash table based on the current list of multicast
1801  * addresses we subscribe to.  Also, change the promiscuity of
1802  * the device based on the flags (this function is called
1803  * whenever dev->flags is changed */
1804 static void gfar_set_multi(struct net_device *dev)
1805 {
1806         struct dev_mc_list *mc_ptr;
1807         struct gfar_private *priv = netdev_priv(dev);
1808         struct gfar __iomem *regs = priv->regs;
1809         u32 tempval;
1810
1811         if(dev->flags & IFF_PROMISC) {
1812                 /* Set RCTRL to PROM */
1813                 tempval = gfar_read(&regs->rctrl);
1814                 tempval |= RCTRL_PROM;
1815                 gfar_write(&regs->rctrl, tempval);
1816         } else {
1817                 /* Set RCTRL to not PROM */
1818                 tempval = gfar_read(&regs->rctrl);
1819                 tempval &= ~(RCTRL_PROM);
1820                 gfar_write(&regs->rctrl, tempval);
1821         }
1822
1823         if(dev->flags & IFF_ALLMULTI) {
1824                 /* Set the hash to rx all multicast frames */
1825                 gfar_write(&regs->igaddr0, 0xffffffff);
1826                 gfar_write(&regs->igaddr1, 0xffffffff);
1827                 gfar_write(&regs->igaddr2, 0xffffffff);
1828                 gfar_write(&regs->igaddr3, 0xffffffff);
1829                 gfar_write(&regs->igaddr4, 0xffffffff);
1830                 gfar_write(&regs->igaddr5, 0xffffffff);
1831                 gfar_write(&regs->igaddr6, 0xffffffff);
1832                 gfar_write(&regs->igaddr7, 0xffffffff);
1833                 gfar_write(&regs->gaddr0, 0xffffffff);
1834                 gfar_write(&regs->gaddr1, 0xffffffff);
1835                 gfar_write(&regs->gaddr2, 0xffffffff);
1836                 gfar_write(&regs->gaddr3, 0xffffffff);
1837                 gfar_write(&regs->gaddr4, 0xffffffff);
1838                 gfar_write(&regs->gaddr5, 0xffffffff);
1839                 gfar_write(&regs->gaddr6, 0xffffffff);
1840                 gfar_write(&regs->gaddr7, 0xffffffff);
1841         } else {
1842                 int em_num;
1843                 int idx;
1844
1845                 /* zero out the hash */
1846                 gfar_write(&regs->igaddr0, 0x0);
1847                 gfar_write(&regs->igaddr1, 0x0);
1848                 gfar_write(&regs->igaddr2, 0x0);
1849                 gfar_write(&regs->igaddr3, 0x0);
1850                 gfar_write(&regs->igaddr4, 0x0);
1851                 gfar_write(&regs->igaddr5, 0x0);
1852                 gfar_write(&regs->igaddr6, 0x0);
1853                 gfar_write(&regs->igaddr7, 0x0);
1854                 gfar_write(&regs->gaddr0, 0x0);
1855                 gfar_write(&regs->gaddr1, 0x0);
1856                 gfar_write(&regs->gaddr2, 0x0);
1857                 gfar_write(&regs->gaddr3, 0x0);
1858                 gfar_write(&regs->gaddr4, 0x0);
1859                 gfar_write(&regs->gaddr5, 0x0);
1860                 gfar_write(&regs->gaddr6, 0x0);
1861                 gfar_write(&regs->gaddr7, 0x0);
1862
1863                 /* If we have extended hash tables, we need to
1864                  * clear the exact match registers to prepare for
1865                  * setting them */
1866                 if (priv->extended_hash) {
1867                         em_num = GFAR_EM_NUM + 1;
1868                         gfar_clear_exact_match(dev);
1869                         idx = 1;
1870                 } else {
1871                         idx = 0;
1872                         em_num = 0;
1873                 }
1874
1875                 if(dev->mc_count == 0)
1876                         return;
1877
1878                 /* Parse the list, and set the appropriate bits */
1879                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1880                         if (idx < em_num) {
1881                                 gfar_set_mac_for_addr(dev, idx,
1882                                                 mc_ptr->dmi_addr);
1883                                 idx++;
1884                         } else
1885                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1886                 }
1887         }
1888
1889         return;
1890 }
1891
1892
1893 /* Clears each of the exact match registers to zero, so they
1894  * don't interfere with normal reception */
1895 static void gfar_clear_exact_match(struct net_device *dev)
1896 {
1897         int idx;
1898         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1899
1900         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1901                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1902 }
1903
1904 /* Set the appropriate hash bit for the given addr */
1905 /* The algorithm works like so:
1906  * 1) Take the Destination Address (ie the multicast address), and
1907  * do a CRC on it (little endian), and reverse the bits of the
1908  * result.
1909  * 2) Use the 8 most significant bits as a hash into a 256-entry
1910  * table.  The table is controlled through 8 32-bit registers:
1911  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1912  * gaddr7.  This means that the 3 most significant bits in the
1913  * hash index which gaddr register to use, and the 5 other bits
1914  * indicate which bit (assuming an IBM numbering scheme, which
1915  * for PowerPC (tm) is usually the case) in the register holds
1916  * the entry. */
1917 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1918 {
1919         u32 tempval;
1920         struct gfar_private *priv = netdev_priv(dev);
1921         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1922         int width = priv->hash_width;
1923         u8 whichbit = (result >> (32 - width)) & 0x1f;
1924         u8 whichreg = result >> (32 - width + 5);
1925         u32 value = (1 << (31-whichbit));
1926
1927         tempval = gfar_read(priv->hash_regs[whichreg]);
1928         tempval |= value;
1929         gfar_write(priv->hash_regs[whichreg], tempval);
1930
1931         return;
1932 }
1933
1934
1935 /* There are multiple MAC Address register pairs on some controllers
1936  * This function sets the numth pair to a given address
1937  */
1938 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1939 {
1940         struct gfar_private *priv = netdev_priv(dev);
1941         int idx;
1942         char tmpbuf[MAC_ADDR_LEN];
1943         u32 tempval;
1944         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1945
1946         macptr += num*2;
1947
1948         /* Now copy it into the mac registers backwards, cuz */
1949         /* little endian is silly */
1950         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1951                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1952
1953         gfar_write(macptr, *((u32 *) (tmpbuf)));
1954
1955         tempval = *((u32 *) (tmpbuf + 4));
1956
1957         gfar_write(macptr+1, tempval);
1958 }
1959
1960 /* GFAR error interrupt handler */
1961 static irqreturn_t gfar_error(int irq, void *dev_id)
1962 {
1963         struct net_device *dev = dev_id;
1964         struct gfar_private *priv = netdev_priv(dev);
1965
1966         /* Save ievent for future reference */
1967         u32 events = gfar_read(&priv->regs->ievent);
1968
1969         /* Clear IEVENT */
1970         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1971
1972         /* Hmm... */
1973         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1974                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1975                        dev->name, events, gfar_read(&priv->regs->imask));
1976
1977         /* Update the error counters */
1978         if (events & IEVENT_TXE) {
1979                 dev->stats.tx_errors++;
1980
1981                 if (events & IEVENT_LC)
1982                         dev->stats.tx_window_errors++;
1983                 if (events & IEVENT_CRL)
1984                         dev->stats.tx_aborted_errors++;
1985                 if (events & IEVENT_XFUN) {
1986                         if (netif_msg_tx_err(priv))
1987                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1988                                        "packet dropped.\n", dev->name);
1989                         dev->stats.tx_dropped++;
1990                         priv->extra_stats.tx_underrun++;
1991
1992                         /* Reactivate the Tx Queues */
1993                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1994                 }
1995                 if (netif_msg_tx_err(priv))
1996                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1997         }
1998         if (events & IEVENT_BSY) {
1999                 dev->stats.rx_errors++;
2000                 priv->extra_stats.rx_bsy++;
2001
2002                 gfar_receive(irq, dev_id);
2003
2004 #ifndef CONFIG_GFAR_NAPI
2005                 /* Clear the halt bit in RSTAT */
2006                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
2007 #endif
2008
2009                 if (netif_msg_rx_err(priv))
2010                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2011                                dev->name, gfar_read(&priv->regs->rstat));
2012         }
2013         if (events & IEVENT_BABR) {
2014                 dev->stats.rx_errors++;
2015                 priv->extra_stats.rx_babr++;
2016
2017                 if (netif_msg_rx_err(priv))
2018                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2019         }
2020         if (events & IEVENT_EBERR) {
2021                 priv->extra_stats.eberr++;
2022                 if (netif_msg_rx_err(priv))
2023                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
2024         }
2025         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2026                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2027
2028         if (events & IEVENT_BABT) {
2029                 priv->extra_stats.tx_babt++;
2030                 if (netif_msg_tx_err(priv))
2031                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2032         }
2033         return IRQ_HANDLED;
2034 }
2035
2036 /* work with hotplug and coldplug */
2037 MODULE_ALIAS("platform:fsl-gianfar");
2038
2039 /* Structure for a device driver */
2040 static struct platform_driver gfar_driver = {
2041         .probe = gfar_probe,
2042         .remove = gfar_remove,
2043         .driver = {
2044                 .name = "fsl-gianfar",
2045                 .owner = THIS_MODULE,
2046         },
2047 };
2048
2049 static int __init gfar_init(void)
2050 {
2051         int err = gfar_mdio_init();
2052
2053         if (err)
2054                 return err;
2055
2056         err = platform_driver_register(&gfar_driver);
2057
2058         if (err)
2059                 gfar_mdio_exit();
2060
2061         return err;
2062 }
2063
2064 static void __exit gfar_exit(void)
2065 {
2066         platform_driver_unregister(&gfar_driver);
2067         gfar_mdio_exit();
2068 }
2069
2070 module_init(gfar_init);
2071 module_exit(gfar_exit);
2072