Merge branch 'num_rx_queues' of git://kernel.ubuntu.com/rtg/net-2.6
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95 #include <linux/phy_fixed.h>
96 #include <linux/of.h>
97
98 #include "gianfar.h"
99 #include "fsl_pq_mdio.h"
100
101 #define TX_TIMEOUT      (1*HZ)
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 const char gfar_driver_name[] = "Gianfar Ethernet";
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                 struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct of_device *ofdev,
125                 const struct of_device_id *match);
126 static int gfar_remove(struct of_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138                               int amount_pull);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140                                 struct vlan_group *grp);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153                             dma_addr_t buf)
154 {
155         u32 lstatus;
156
157         bdp->bufPtr = buf;
158
159         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161                 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163         eieio();
164
165         bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170         struct gfar_private *priv = netdev_priv(ndev);
171         struct gfar_priv_tx_q *tx_queue = NULL;
172         struct gfar_priv_rx_q *rx_queue = NULL;
173         struct txbd8 *txbdp;
174         struct rxbd8 *rxbdp;
175         int i, j;
176
177         for (i = 0; i < priv->num_tx_queues; i++) {
178                 tx_queue = priv->tx_queue[i];
179                 /* Initialize some variables in our dev structure */
180                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182                 tx_queue->cur_tx = tx_queue->tx_bd_base;
183                 tx_queue->skb_curtx = 0;
184                 tx_queue->skb_dirtytx = 0;
185
186                 /* Initialize Transmit Descriptor Ring */
187                 txbdp = tx_queue->tx_bd_base;
188                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189                         txbdp->lstatus = 0;
190                         txbdp->bufPtr = 0;
191                         txbdp++;
192                 }
193
194                 /* Set the last descriptor in the ring to indicate wrap */
195                 txbdp--;
196                 txbdp->status |= TXBD_WRAP;
197         }
198
199         for (i = 0; i < priv->num_rx_queues; i++) {
200                 rx_queue = priv->rx_queue[i];
201                 rx_queue->cur_rx = rx_queue->rx_bd_base;
202                 rx_queue->skb_currx = 0;
203                 rxbdp = rx_queue->rx_bd_base;
204
205                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208                         if (skb) {
209                                 gfar_init_rxbdp(rx_queue, rxbdp,
210                                                 rxbdp->bufPtr);
211                         } else {
212                                 skb = gfar_new_skb(ndev);
213                                 if (!skb) {
214                                         pr_err("%s: Can't allocate RX buffers\n",
215                                                         ndev->name);
216                                         goto err_rxalloc_fail;
217                                 }
218                                 rx_queue->rx_skbuff[j] = skb;
219
220                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221                         }
222
223                         rxbdp++;
224                 }
225
226         }
227
228         return 0;
229
230 err_rxalloc_fail:
231         free_skb_resources(priv);
232         return -ENOMEM;
233 }
234
235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237         void *vaddr;
238         dma_addr_t addr;
239         int i, j, k;
240         struct gfar_private *priv = netdev_priv(ndev);
241         struct device *dev = &priv->ofdev->dev;
242         struct gfar_priv_tx_q *tx_queue = NULL;
243         struct gfar_priv_rx_q *rx_queue = NULL;
244
245         priv->total_tx_ring_size = 0;
246         for (i = 0; i < priv->num_tx_queues; i++)
247                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249         priv->total_rx_ring_size = 0;
250         for (i = 0; i < priv->num_rx_queues; i++)
251                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253         /* Allocate memory for the buffer descriptors */
254         vaddr = dma_alloc_coherent(dev,
255                         sizeof(struct txbd8) * priv->total_tx_ring_size +
256                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
257                         &addr, GFP_KERNEL);
258         if (!vaddr) {
259                 if (netif_msg_ifup(priv))
260                         pr_err("%s: Could not allocate buffer descriptors!\n",
261                                ndev->name);
262                 return -ENOMEM;
263         }
264
265         for (i = 0; i < priv->num_tx_queues; i++) {
266                 tx_queue = priv->tx_queue[i];
267                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268                 tx_queue->tx_bd_dma_base = addr;
269                 tx_queue->dev = ndev;
270                 /* enet DMA only understands physical addresses */
271                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273         }
274
275         /* Start the rx descriptor ring where the tx ring leaves off */
276         for (i = 0; i < priv->num_rx_queues; i++) {
277                 rx_queue = priv->rx_queue[i];
278                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279                 rx_queue->rx_bd_dma_base = addr;
280                 rx_queue->dev = ndev;
281                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283         }
284
285         /* Setup the skbuff rings */
286         for (i = 0; i < priv->num_tx_queues; i++) {
287                 tx_queue = priv->tx_queue[i];
288                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289                                   tx_queue->tx_ring_size, GFP_KERNEL);
290                 if (!tx_queue->tx_skbuff) {
291                         if (netif_msg_ifup(priv))
292                                 pr_err("%s: Could not allocate tx_skbuff\n",
293                                                 ndev->name);
294                         goto cleanup;
295                 }
296
297                 for (k = 0; k < tx_queue->tx_ring_size; k++)
298                         tx_queue->tx_skbuff[k] = NULL;
299         }
300
301         for (i = 0; i < priv->num_rx_queues; i++) {
302                 rx_queue = priv->rx_queue[i];
303                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304                                   rx_queue->rx_ring_size, GFP_KERNEL);
305
306                 if (!rx_queue->rx_skbuff) {
307                         if (netif_msg_ifup(priv))
308                                 pr_err("%s: Could not allocate rx_skbuff\n",
309                                        ndev->name);
310                         goto cleanup;
311                 }
312
313                 for (j = 0; j < rx_queue->rx_ring_size; j++)
314                         rx_queue->rx_skbuff[j] = NULL;
315         }
316
317         if (gfar_init_bds(ndev))
318                 goto cleanup;
319
320         return 0;
321
322 cleanup:
323         free_skb_resources(priv);
324         return -ENOMEM;
325 }
326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 {
329         struct gfar __iomem *regs = priv->gfargrp[0].regs;
330         u32 __iomem *baddr;
331         int i;
332
333         baddr = &regs->tbase0;
334         for(i = 0; i < priv->num_tx_queues; i++) {
335                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336                 baddr   += 2;
337         }
338
339         baddr = &regs->rbase0;
340         for(i = 0; i < priv->num_rx_queues; i++) {
341                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342                 baddr   += 2;
343         }
344 }
345
346 static void gfar_init_mac(struct net_device *ndev)
347 {
348         struct gfar_private *priv = netdev_priv(ndev);
349         struct gfar __iomem *regs = priv->gfargrp[0].regs;
350         u32 rctrl = 0;
351         u32 tctrl = 0;
352         u32 attrs = 0;
353
354         /* write the tx/rx base registers */
355         gfar_init_tx_rx_base(priv);
356
357         /* Configure the coalescing support */
358         gfar_configure_coalescing(priv, 0xFF, 0xFF);
359
360         if (priv->rx_filer_enable) {
361                 rctrl |= RCTRL_FILREN;
362                 /* Program the RIR0 reg with the required distribution */
363                 gfar_write(&regs->rir0, DEFAULT_RIR0);
364         }
365
366         if (priv->rx_csum_enable)
367                 rctrl |= RCTRL_CHECKSUMMING;
368
369         if (priv->extended_hash) {
370                 rctrl |= RCTRL_EXTHASH;
371
372                 gfar_clear_exact_match(ndev);
373                 rctrl |= RCTRL_EMEN;
374         }
375
376         if (priv->padding) {
377                 rctrl &= ~RCTRL_PAL_MASK;
378                 rctrl |= RCTRL_PADDING(priv->padding);
379         }
380
381         /* Insert receive time stamps into padding alignment bytes */
382         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
383                 rctrl &= ~RCTRL_PAL_MASK;
384                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE | RCTRL_PADDING(8);
385                 priv->padding = 8;
386         }
387
388         /* keep vlan related bits if it's enabled */
389         if (priv->vlgrp) {
390                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391                 tctrl |= TCTRL_VLINS;
392         }
393
394         /* Init rctrl based on our settings */
395         gfar_write(&regs->rctrl, rctrl);
396
397         if (ndev->features & NETIF_F_IP_CSUM)
398                 tctrl |= TCTRL_INIT_CSUM;
399
400         tctrl |= TCTRL_TXSCHED_PRIO;
401
402         gfar_write(&regs->tctrl, tctrl);
403
404         /* Set the extraction length and index */
405         attrs = ATTRELI_EL(priv->rx_stash_size) |
406                 ATTRELI_EI(priv->rx_stash_index);
407
408         gfar_write(&regs->attreli, attrs);
409
410         /* Start with defaults, and add stashing or locking
411          * depending on the approprate variables */
412         attrs = ATTR_INIT_SETTINGS;
413
414         if (priv->bd_stash_en)
415                 attrs |= ATTR_BDSTASH;
416
417         if (priv->rx_stash_size != 0)
418                 attrs |= ATTR_BUFSTASH;
419
420         gfar_write(&regs->attr, attrs);
421
422         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425 }
426
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428 {
429         struct gfar_private *priv = netdev_priv(dev);
430         struct netdev_queue *txq;
431         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
432         unsigned long tx_packets = 0, tx_bytes = 0;
433         int i = 0;
434
435         for (i = 0; i < priv->num_rx_queues; i++) {
436                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
437                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
438                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
439         }
440
441         dev->stats.rx_packets = rx_packets;
442         dev->stats.rx_bytes = rx_bytes;
443         dev->stats.rx_dropped = rx_dropped;
444
445         for (i = 0; i < priv->num_tx_queues; i++) {
446                 txq = netdev_get_tx_queue(dev, i);
447                 tx_bytes += txq->tx_bytes;
448                 tx_packets += txq->tx_packets;
449         }
450
451         dev->stats.tx_bytes = tx_bytes;
452         dev->stats.tx_packets = tx_packets;
453
454         return &dev->stats;
455 }
456
457 static const struct net_device_ops gfar_netdev_ops = {
458         .ndo_open = gfar_enet_open,
459         .ndo_start_xmit = gfar_start_xmit,
460         .ndo_stop = gfar_close,
461         .ndo_change_mtu = gfar_change_mtu,
462         .ndo_set_multicast_list = gfar_set_multi,
463         .ndo_tx_timeout = gfar_timeout,
464         .ndo_do_ioctl = gfar_ioctl,
465         .ndo_get_stats = gfar_get_stats,
466         .ndo_vlan_rx_register = gfar_vlan_rx_register,
467         .ndo_set_mac_address = eth_mac_addr,
468         .ndo_validate_addr = eth_validate_addr,
469 #ifdef CONFIG_NET_POLL_CONTROLLER
470         .ndo_poll_controller = gfar_netpoll,
471 #endif
472 };
473
474 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
475 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
476
477 void lock_rx_qs(struct gfar_private *priv)
478 {
479         int i = 0x0;
480
481         for (i = 0; i < priv->num_rx_queues; i++)
482                 spin_lock(&priv->rx_queue[i]->rxlock);
483 }
484
485 void lock_tx_qs(struct gfar_private *priv)
486 {
487         int i = 0x0;
488
489         for (i = 0; i < priv->num_tx_queues; i++)
490                 spin_lock(&priv->tx_queue[i]->txlock);
491 }
492
493 void unlock_rx_qs(struct gfar_private *priv)
494 {
495         int i = 0x0;
496
497         for (i = 0; i < priv->num_rx_queues; i++)
498                 spin_unlock(&priv->rx_queue[i]->rxlock);
499 }
500
501 void unlock_tx_qs(struct gfar_private *priv)
502 {
503         int i = 0x0;
504
505         for (i = 0; i < priv->num_tx_queues; i++)
506                 spin_unlock(&priv->tx_queue[i]->txlock);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512         return priv->vlgrp || priv->rx_csum_enable ||
513                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
514 }
515
516 static void free_tx_pointers(struct gfar_private *priv)
517 {
518         int i = 0;
519
520         for (i = 0; i < priv->num_tx_queues; i++)
521                 kfree(priv->tx_queue[i]);
522 }
523
524 static void free_rx_pointers(struct gfar_private *priv)
525 {
526         int i = 0;
527
528         for (i = 0; i < priv->num_rx_queues; i++)
529                 kfree(priv->rx_queue[i]);
530 }
531
532 static void unmap_group_regs(struct gfar_private *priv)
533 {
534         int i = 0;
535
536         for (i = 0; i < MAXGROUPS; i++)
537                 if (priv->gfargrp[i].regs)
538                         iounmap(priv->gfargrp[i].regs);
539 }
540
541 static void disable_napi(struct gfar_private *priv)
542 {
543         int i = 0;
544
545         for (i = 0; i < priv->num_grps; i++)
546                 napi_disable(&priv->gfargrp[i].napi);
547 }
548
549 static void enable_napi(struct gfar_private *priv)
550 {
551         int i = 0;
552
553         for (i = 0; i < priv->num_grps; i++)
554                 napi_enable(&priv->gfargrp[i].napi);
555 }
556
557 static int gfar_parse_group(struct device_node *np,
558                 struct gfar_private *priv, const char *model)
559 {
560         u32 *queue_mask;
561
562         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
563         if (!priv->gfargrp[priv->num_grps].regs)
564                 return -ENOMEM;
565
566         priv->gfargrp[priv->num_grps].interruptTransmit =
567                         irq_of_parse_and_map(np, 0);
568
569         /* If we aren't the FEC we have multiple interrupts */
570         if (model && strcasecmp(model, "FEC")) {
571                 priv->gfargrp[priv->num_grps].interruptReceive =
572                         irq_of_parse_and_map(np, 1);
573                 priv->gfargrp[priv->num_grps].interruptError =
574                         irq_of_parse_and_map(np,2);
575                 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
576                         priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
577                         priv->gfargrp[priv->num_grps].interruptError < 0) {
578                         return -EINVAL;
579                 }
580         }
581
582         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
583         priv->gfargrp[priv->num_grps].priv = priv;
584         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
585         if(priv->mode == MQ_MG_MODE) {
586                 queue_mask = (u32 *)of_get_property(np,
587                                         "fsl,rx-bit-map", NULL);
588                 priv->gfargrp[priv->num_grps].rx_bit_map =
589                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
590                 queue_mask = (u32 *)of_get_property(np,
591                                         "fsl,tx-bit-map", NULL);
592                 priv->gfargrp[priv->num_grps].tx_bit_map =
593                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
594         } else {
595                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
596                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
597         }
598         priv->num_grps++;
599
600         return 0;
601 }
602
603 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
604 {
605         const char *model;
606         const char *ctype;
607         const void *mac_addr;
608         int err = 0, i;
609         struct net_device *dev = NULL;
610         struct gfar_private *priv = NULL;
611         struct device_node *np = ofdev->dev.of_node;
612         struct device_node *child = NULL;
613         const u32 *stash;
614         const u32 *stash_len;
615         const u32 *stash_idx;
616         unsigned int num_tx_qs, num_rx_qs;
617         u32 *tx_queues, *rx_queues;
618
619         if (!np || !of_device_is_available(np))
620                 return -ENODEV;
621
622         /* parse the num of tx and rx queues */
623         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
624         num_tx_qs = tx_queues ? *tx_queues : 1;
625
626         if (num_tx_qs > MAX_TX_QS) {
627                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
628                                 num_tx_qs, MAX_TX_QS);
629                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
630                 return -EINVAL;
631         }
632
633         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
634         num_rx_qs = rx_queues ? *rx_queues : 1;
635
636         if (num_rx_qs > MAX_RX_QS) {
637                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
638                                 num_tx_qs, MAX_TX_QS);
639                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
640                 return -EINVAL;
641         }
642
643         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
644         dev = *pdev;
645         if (NULL == dev)
646                 return -ENOMEM;
647
648         priv = netdev_priv(dev);
649         priv->node = ofdev->dev.of_node;
650         priv->ndev = dev;
651
652         dev->num_tx_queues = num_tx_qs;
653         dev->real_num_tx_queues = num_tx_qs;
654         priv->num_tx_queues = num_tx_qs;
655         priv->num_rx_queues = num_rx_qs;
656         priv->num_grps = 0x0;
657
658         model = of_get_property(np, "model", NULL);
659
660         for (i = 0; i < MAXGROUPS; i++)
661                 priv->gfargrp[i].regs = NULL;
662
663         /* Parse and initialize group specific information */
664         if (of_device_is_compatible(np, "fsl,etsec2")) {
665                 priv->mode = MQ_MG_MODE;
666                 for_each_child_of_node(np, child) {
667                         err = gfar_parse_group(child, priv, model);
668                         if (err)
669                                 goto err_grp_init;
670                 }
671         } else {
672                 priv->mode = SQ_SG_MODE;
673                 err = gfar_parse_group(np, priv, model);
674                 if(err)
675                         goto err_grp_init;
676         }
677
678         for (i = 0; i < priv->num_tx_queues; i++)
679                priv->tx_queue[i] = NULL;
680         for (i = 0; i < priv->num_rx_queues; i++)
681                 priv->rx_queue[i] = NULL;
682
683         for (i = 0; i < priv->num_tx_queues; i++) {
684                 priv->tx_queue[i] =  (struct gfar_priv_tx_q *)kzalloc(
685                                 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
686                 if (!priv->tx_queue[i]) {
687                         err = -ENOMEM;
688                         goto tx_alloc_failed;
689                 }
690                 priv->tx_queue[i]->tx_skbuff = NULL;
691                 priv->tx_queue[i]->qindex = i;
692                 priv->tx_queue[i]->dev = dev;
693                 spin_lock_init(&(priv->tx_queue[i]->txlock));
694         }
695
696         for (i = 0; i < priv->num_rx_queues; i++) {
697                 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kzalloc(
698                                         sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
699                 if (!priv->rx_queue[i]) {
700                         err = -ENOMEM;
701                         goto rx_alloc_failed;
702                 }
703                 priv->rx_queue[i]->rx_skbuff = NULL;
704                 priv->rx_queue[i]->qindex = i;
705                 priv->rx_queue[i]->dev = dev;
706                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
707         }
708
709
710         stash = of_get_property(np, "bd-stash", NULL);
711
712         if (stash) {
713                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
714                 priv->bd_stash_en = 1;
715         }
716
717         stash_len = of_get_property(np, "rx-stash-len", NULL);
718
719         if (stash_len)
720                 priv->rx_stash_size = *stash_len;
721
722         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
723
724         if (stash_idx)
725                 priv->rx_stash_index = *stash_idx;
726
727         if (stash_len || stash_idx)
728                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
729
730         mac_addr = of_get_mac_address(np);
731         if (mac_addr)
732                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
733
734         if (model && !strcasecmp(model, "TSEC"))
735                 priv->device_flags =
736                         FSL_GIANFAR_DEV_HAS_GIGABIT |
737                         FSL_GIANFAR_DEV_HAS_COALESCE |
738                         FSL_GIANFAR_DEV_HAS_RMON |
739                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
740         if (model && !strcasecmp(model, "eTSEC"))
741                 priv->device_flags =
742                         FSL_GIANFAR_DEV_HAS_GIGABIT |
743                         FSL_GIANFAR_DEV_HAS_COALESCE |
744                         FSL_GIANFAR_DEV_HAS_RMON |
745                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
746                         FSL_GIANFAR_DEV_HAS_PADDING |
747                         FSL_GIANFAR_DEV_HAS_CSUM |
748                         FSL_GIANFAR_DEV_HAS_VLAN |
749                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
750                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
751
752         ctype = of_get_property(np, "phy-connection-type", NULL);
753
754         /* We only care about rgmii-id.  The rest are autodetected */
755         if (ctype && !strcmp(ctype, "rgmii-id"))
756                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
757         else
758                 priv->interface = PHY_INTERFACE_MODE_MII;
759
760         if (of_get_property(np, "fsl,magic-packet", NULL))
761                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
762
763         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
764
765         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
766         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
767
768         return 0;
769
770 rx_alloc_failed:
771         free_rx_pointers(priv);
772 tx_alloc_failed:
773         free_tx_pointers(priv);
774 err_grp_init:
775         unmap_group_regs(priv);
776         free_netdev(dev);
777         return err;
778 }
779
780 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
781                         struct ifreq *ifr, int cmd)
782 {
783         struct hwtstamp_config config;
784         struct gfar_private *priv = netdev_priv(netdev);
785
786         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
787                 return -EFAULT;
788
789         /* reserved for future extensions */
790         if (config.flags)
791                 return -EINVAL;
792
793         switch (config.tx_type) {
794         case HWTSTAMP_TX_OFF:
795                 priv->hwts_tx_en = 0;
796                 break;
797         case HWTSTAMP_TX_ON:
798                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
799                         return -ERANGE;
800                 priv->hwts_tx_en = 1;
801                 break;
802         default:
803                 return -ERANGE;
804         }
805
806         switch (config.rx_filter) {
807         case HWTSTAMP_FILTER_NONE:
808                 priv->hwts_rx_en = 0;
809                 break;
810         default:
811                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
812                         return -ERANGE;
813                 priv->hwts_rx_en = 1;
814                 config.rx_filter = HWTSTAMP_FILTER_ALL;
815                 break;
816         }
817
818         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
819                 -EFAULT : 0;
820 }
821
822 /* Ioctl MII Interface */
823 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
824 {
825         struct gfar_private *priv = netdev_priv(dev);
826
827         if (!netif_running(dev))
828                 return -EINVAL;
829
830         if (cmd == SIOCSHWTSTAMP)
831                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
832
833         if (!priv->phydev)
834                 return -ENODEV;
835
836         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
837 }
838
839 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
840 {
841         unsigned int new_bit_map = 0x0;
842         int mask = 0x1 << (max_qs - 1), i;
843         for (i = 0; i < max_qs; i++) {
844                 if (bit_map & mask)
845                         new_bit_map = new_bit_map + (1 << i);
846                 mask = mask >> 0x1;
847         }
848         return new_bit_map;
849 }
850
851 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
852                                    u32 class)
853 {
854         u32 rqfpr = FPR_FILER_MASK;
855         u32 rqfcr = 0x0;
856
857         rqfar--;
858         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
859         ftp_rqfpr[rqfar] = rqfpr;
860         ftp_rqfcr[rqfar] = rqfcr;
861         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
862
863         rqfar--;
864         rqfcr = RQFCR_CMP_NOMATCH;
865         ftp_rqfpr[rqfar] = rqfpr;
866         ftp_rqfcr[rqfar] = rqfcr;
867         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
868
869         rqfar--;
870         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
871         rqfpr = class;
872         ftp_rqfcr[rqfar] = rqfcr;
873         ftp_rqfpr[rqfar] = rqfpr;
874         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
875
876         rqfar--;
877         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
878         rqfpr = class;
879         ftp_rqfcr[rqfar] = rqfcr;
880         ftp_rqfpr[rqfar] = rqfpr;
881         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882
883         return rqfar;
884 }
885
886 static void gfar_init_filer_table(struct gfar_private *priv)
887 {
888         int i = 0x0;
889         u32 rqfar = MAX_FILER_IDX;
890         u32 rqfcr = 0x0;
891         u32 rqfpr = FPR_FILER_MASK;
892
893         /* Default rule */
894         rqfcr = RQFCR_CMP_MATCH;
895         ftp_rqfcr[rqfar] = rqfcr;
896         ftp_rqfpr[rqfar] = rqfpr;
897         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
898
899         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
900         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
901         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
902         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
903         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
904         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
905
906         /* cur_filer_idx indicated the fisrt non-masked rule */
907         priv->cur_filer_idx = rqfar;
908
909         /* Rest are masked rules */
910         rqfcr = RQFCR_CMP_NOMATCH;
911         for (i = 0; i < rqfar; i++) {
912                 ftp_rqfcr[i] = rqfcr;
913                 ftp_rqfpr[i] = rqfpr;
914                 gfar_write_filer(priv, i, rqfcr, rqfpr);
915         }
916 }
917
918 /* Set up the ethernet device structure, private data,
919  * and anything else we need before we start */
920 static int gfar_probe(struct of_device *ofdev,
921                 const struct of_device_id *match)
922 {
923         u32 tempval;
924         struct net_device *dev = NULL;
925         struct gfar_private *priv = NULL;
926         struct gfar __iomem *regs = NULL;
927         int err = 0, i, grp_idx = 0;
928         int len_devname;
929         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
930         u32 isrg = 0;
931         u32 __iomem *baddr;
932
933         err = gfar_of_init(ofdev, &dev);
934
935         if (err)
936                 return err;
937
938         priv = netdev_priv(dev);
939         priv->ndev = dev;
940         priv->ofdev = ofdev;
941         priv->node = ofdev->dev.of_node;
942         SET_NETDEV_DEV(dev, &ofdev->dev);
943
944         spin_lock_init(&priv->bflock);
945         INIT_WORK(&priv->reset_task, gfar_reset_task);
946
947         dev_set_drvdata(&ofdev->dev, priv);
948         regs = priv->gfargrp[0].regs;
949
950         /* Stop the DMA engine now, in case it was running before */
951         /* (The firmware could have used it, and left it running). */
952         gfar_halt(dev);
953
954         /* Reset MAC layer */
955         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
956
957         /* We need to delay at least 3 TX clocks */
958         udelay(2);
959
960         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
961         gfar_write(&regs->maccfg1, tempval);
962
963         /* Initialize MACCFG2. */
964         gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
965
966         /* Initialize ECNTRL */
967         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
968
969         /* Set the dev->base_addr to the gfar reg region */
970         dev->base_addr = (unsigned long) regs;
971
972         SET_NETDEV_DEV(dev, &ofdev->dev);
973
974         /* Fill in the dev structure */
975         dev->watchdog_timeo = TX_TIMEOUT;
976         dev->mtu = 1500;
977         dev->netdev_ops = &gfar_netdev_ops;
978         dev->ethtool_ops = &gfar_ethtool_ops;
979
980         /* Register for napi ...We are registering NAPI for each grp */
981         for (i = 0; i < priv->num_grps; i++)
982                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
983
984         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
985                 priv->rx_csum_enable = 1;
986                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
987         } else
988                 priv->rx_csum_enable = 0;
989
990         priv->vlgrp = NULL;
991
992         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
993                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
994
995         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
996                 priv->extended_hash = 1;
997                 priv->hash_width = 9;
998
999                 priv->hash_regs[0] = &regs->igaddr0;
1000                 priv->hash_regs[1] = &regs->igaddr1;
1001                 priv->hash_regs[2] = &regs->igaddr2;
1002                 priv->hash_regs[3] = &regs->igaddr3;
1003                 priv->hash_regs[4] = &regs->igaddr4;
1004                 priv->hash_regs[5] = &regs->igaddr5;
1005                 priv->hash_regs[6] = &regs->igaddr6;
1006                 priv->hash_regs[7] = &regs->igaddr7;
1007                 priv->hash_regs[8] = &regs->gaddr0;
1008                 priv->hash_regs[9] = &regs->gaddr1;
1009                 priv->hash_regs[10] = &regs->gaddr2;
1010                 priv->hash_regs[11] = &regs->gaddr3;
1011                 priv->hash_regs[12] = &regs->gaddr4;
1012                 priv->hash_regs[13] = &regs->gaddr5;
1013                 priv->hash_regs[14] = &regs->gaddr6;
1014                 priv->hash_regs[15] = &regs->gaddr7;
1015
1016         } else {
1017                 priv->extended_hash = 0;
1018                 priv->hash_width = 8;
1019
1020                 priv->hash_regs[0] = &regs->gaddr0;
1021                 priv->hash_regs[1] = &regs->gaddr1;
1022                 priv->hash_regs[2] = &regs->gaddr2;
1023                 priv->hash_regs[3] = &regs->gaddr3;
1024                 priv->hash_regs[4] = &regs->gaddr4;
1025                 priv->hash_regs[5] = &regs->gaddr5;
1026                 priv->hash_regs[6] = &regs->gaddr6;
1027                 priv->hash_regs[7] = &regs->gaddr7;
1028         }
1029
1030         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1031                 priv->padding = DEFAULT_PADDING;
1032         else
1033                 priv->padding = 0;
1034
1035         if (dev->features & NETIF_F_IP_CSUM ||
1036                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1037                 dev->hard_header_len += GMAC_FCB_LEN;
1038
1039         /* Program the isrg regs only if number of grps > 1 */
1040         if (priv->num_grps > 1) {
1041                 baddr = &regs->isrg0;
1042                 for (i = 0; i < priv->num_grps; i++) {
1043                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1044                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1045                         gfar_write(baddr, isrg);
1046                         baddr++;
1047                         isrg = 0x0;
1048                 }
1049         }
1050
1051         /* Need to reverse the bit maps as  bit_map's MSB is q0
1052          * but, for_each_set_bit parses from right to left, which
1053          * basically reverses the queue numbers */
1054         for (i = 0; i< priv->num_grps; i++) {
1055                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1056                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1057                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1058                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1059         }
1060
1061         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1062          * also assign queues to groups */
1063         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1064                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1065                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1066                                 priv->num_rx_queues) {
1067                         priv->gfargrp[grp_idx].num_rx_queues++;
1068                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1069                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1070                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1071                 }
1072                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1073                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1074                                 priv->num_tx_queues) {
1075                         priv->gfargrp[grp_idx].num_tx_queues++;
1076                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1077                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1078                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1079                 }
1080                 priv->gfargrp[grp_idx].rstat = rstat;
1081                 priv->gfargrp[grp_idx].tstat = tstat;
1082                 rstat = tstat =0;
1083         }
1084
1085         gfar_write(&regs->rqueue, rqueue);
1086         gfar_write(&regs->tqueue, tqueue);
1087
1088         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1089
1090         /* Initializing some of the rx/tx queue level parameters */
1091         for (i = 0; i < priv->num_tx_queues; i++) {
1092                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1093                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1094                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1095                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1096         }
1097
1098         for (i = 0; i < priv->num_rx_queues; i++) {
1099                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1100                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1101                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1102         }
1103
1104         /* enable filer if using multiple RX queues*/
1105         if(priv->num_rx_queues > 1)
1106                 priv->rx_filer_enable = 1;
1107         /* Enable most messages by default */
1108         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1109
1110         /* Carrier starts down, phylib will bring it up */
1111         netif_carrier_off(dev);
1112
1113         err = register_netdev(dev);
1114
1115         if (err) {
1116                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1117                                 dev->name);
1118                 goto register_fail;
1119         }
1120
1121         device_init_wakeup(&dev->dev,
1122                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1123
1124         /* fill out IRQ number and name fields */
1125         len_devname = strlen(dev->name);
1126         for (i = 0; i < priv->num_grps; i++) {
1127                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1128                                 len_devname);
1129                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1130                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1131                                 "_g", sizeof("_g"));
1132                         priv->gfargrp[i].int_name_tx[
1133                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1134                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1135                                 priv->gfargrp[i].int_name_tx)],
1136                                 "_tx", sizeof("_tx") + 1);
1137
1138                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1139                                         len_devname);
1140                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1141                                         "_g", sizeof("_g"));
1142                         priv->gfargrp[i].int_name_rx[
1143                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1144                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1145                                 priv->gfargrp[i].int_name_rx)],
1146                                 "_rx", sizeof("_rx") + 1);
1147
1148                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1149                                         len_devname);
1150                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1151                                 "_g", sizeof("_g"));
1152                         priv->gfargrp[i].int_name_er[strlen(
1153                                         priv->gfargrp[i].int_name_er)] = i+48;
1154                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1155                                 priv->gfargrp[i].int_name_er)],
1156                                 "_er", sizeof("_er") + 1);
1157                 } else
1158                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1159         }
1160
1161         /* Initialize the filer table */
1162         gfar_init_filer_table(priv);
1163
1164         /* Create all the sysfs files */
1165         gfar_init_sysfs(dev);
1166
1167         /* Print out the device info */
1168         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1169
1170         /* Even more device info helps when determining which kernel */
1171         /* provided which set of benchmarks. */
1172         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1173         for (i = 0; i < priv->num_rx_queues; i++)
1174                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1175                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1176         for(i = 0; i < priv->num_tx_queues; i++)
1177                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1178                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1179
1180         return 0;
1181
1182 register_fail:
1183         unmap_group_regs(priv);
1184         free_tx_pointers(priv);
1185         free_rx_pointers(priv);
1186         if (priv->phy_node)
1187                 of_node_put(priv->phy_node);
1188         if (priv->tbi_node)
1189                 of_node_put(priv->tbi_node);
1190         free_netdev(dev);
1191         return err;
1192 }
1193
1194 static int gfar_remove(struct of_device *ofdev)
1195 {
1196         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1197
1198         if (priv->phy_node)
1199                 of_node_put(priv->phy_node);
1200         if (priv->tbi_node)
1201                 of_node_put(priv->tbi_node);
1202
1203         dev_set_drvdata(&ofdev->dev, NULL);
1204
1205         unregister_netdev(priv->ndev);
1206         unmap_group_regs(priv);
1207         free_netdev(priv->ndev);
1208
1209         return 0;
1210 }
1211
1212 #ifdef CONFIG_PM
1213
1214 static int gfar_suspend(struct device *dev)
1215 {
1216         struct gfar_private *priv = dev_get_drvdata(dev);
1217         struct net_device *ndev = priv->ndev;
1218         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1219         unsigned long flags;
1220         u32 tempval;
1221
1222         int magic_packet = priv->wol_en &&
1223                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1224
1225         netif_device_detach(ndev);
1226
1227         if (netif_running(ndev)) {
1228
1229                 local_irq_save(flags);
1230                 lock_tx_qs(priv);
1231                 lock_rx_qs(priv);
1232
1233                 gfar_halt_nodisable(ndev);
1234
1235                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1236                 tempval = gfar_read(&regs->maccfg1);
1237
1238                 tempval &= ~MACCFG1_TX_EN;
1239
1240                 if (!magic_packet)
1241                         tempval &= ~MACCFG1_RX_EN;
1242
1243                 gfar_write(&regs->maccfg1, tempval);
1244
1245                 unlock_rx_qs(priv);
1246                 unlock_tx_qs(priv);
1247                 local_irq_restore(flags);
1248
1249                 disable_napi(priv);
1250
1251                 if (magic_packet) {
1252                         /* Enable interrupt on Magic Packet */
1253                         gfar_write(&regs->imask, IMASK_MAG);
1254
1255                         /* Enable Magic Packet mode */
1256                         tempval = gfar_read(&regs->maccfg2);
1257                         tempval |= MACCFG2_MPEN;
1258                         gfar_write(&regs->maccfg2, tempval);
1259                 } else {
1260                         phy_stop(priv->phydev);
1261                 }
1262         }
1263
1264         return 0;
1265 }
1266
1267 static int gfar_resume(struct device *dev)
1268 {
1269         struct gfar_private *priv = dev_get_drvdata(dev);
1270         struct net_device *ndev = priv->ndev;
1271         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1272         unsigned long flags;
1273         u32 tempval;
1274         int magic_packet = priv->wol_en &&
1275                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1276
1277         if (!netif_running(ndev)) {
1278                 netif_device_attach(ndev);
1279                 return 0;
1280         }
1281
1282         if (!magic_packet && priv->phydev)
1283                 phy_start(priv->phydev);
1284
1285         /* Disable Magic Packet mode, in case something
1286          * else woke us up.
1287          */
1288         local_irq_save(flags);
1289         lock_tx_qs(priv);
1290         lock_rx_qs(priv);
1291
1292         tempval = gfar_read(&regs->maccfg2);
1293         tempval &= ~MACCFG2_MPEN;
1294         gfar_write(&regs->maccfg2, tempval);
1295
1296         gfar_start(ndev);
1297
1298         unlock_rx_qs(priv);
1299         unlock_tx_qs(priv);
1300         local_irq_restore(flags);
1301
1302         netif_device_attach(ndev);
1303
1304         enable_napi(priv);
1305
1306         return 0;
1307 }
1308
1309 static int gfar_restore(struct device *dev)
1310 {
1311         struct gfar_private *priv = dev_get_drvdata(dev);
1312         struct net_device *ndev = priv->ndev;
1313
1314         if (!netif_running(ndev))
1315                 return 0;
1316
1317         gfar_init_bds(ndev);
1318         init_registers(ndev);
1319         gfar_set_mac_address(ndev);
1320         gfar_init_mac(ndev);
1321         gfar_start(ndev);
1322
1323         priv->oldlink = 0;
1324         priv->oldspeed = 0;
1325         priv->oldduplex = -1;
1326
1327         if (priv->phydev)
1328                 phy_start(priv->phydev);
1329
1330         netif_device_attach(ndev);
1331         enable_napi(priv);
1332
1333         return 0;
1334 }
1335
1336 static struct dev_pm_ops gfar_pm_ops = {
1337         .suspend = gfar_suspend,
1338         .resume = gfar_resume,
1339         .freeze = gfar_suspend,
1340         .thaw = gfar_resume,
1341         .restore = gfar_restore,
1342 };
1343
1344 #define GFAR_PM_OPS (&gfar_pm_ops)
1345
1346 #else
1347
1348 #define GFAR_PM_OPS NULL
1349
1350 #endif
1351
1352 /* Reads the controller's registers to determine what interface
1353  * connects it to the PHY.
1354  */
1355 static phy_interface_t gfar_get_interface(struct net_device *dev)
1356 {
1357         struct gfar_private *priv = netdev_priv(dev);
1358         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1359         u32 ecntrl;
1360
1361         ecntrl = gfar_read(&regs->ecntrl);
1362
1363         if (ecntrl & ECNTRL_SGMII_MODE)
1364                 return PHY_INTERFACE_MODE_SGMII;
1365
1366         if (ecntrl & ECNTRL_TBI_MODE) {
1367                 if (ecntrl & ECNTRL_REDUCED_MODE)
1368                         return PHY_INTERFACE_MODE_RTBI;
1369                 else
1370                         return PHY_INTERFACE_MODE_TBI;
1371         }
1372
1373         if (ecntrl & ECNTRL_REDUCED_MODE) {
1374                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1375                         return PHY_INTERFACE_MODE_RMII;
1376                 else {
1377                         phy_interface_t interface = priv->interface;
1378
1379                         /*
1380                          * This isn't autodetected right now, so it must
1381                          * be set by the device tree or platform code.
1382                          */
1383                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1384                                 return PHY_INTERFACE_MODE_RGMII_ID;
1385
1386                         return PHY_INTERFACE_MODE_RGMII;
1387                 }
1388         }
1389
1390         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1391                 return PHY_INTERFACE_MODE_GMII;
1392
1393         return PHY_INTERFACE_MODE_MII;
1394 }
1395
1396
1397 /* Initializes driver's PHY state, and attaches to the PHY.
1398  * Returns 0 on success.
1399  */
1400 static int init_phy(struct net_device *dev)
1401 {
1402         struct gfar_private *priv = netdev_priv(dev);
1403         uint gigabit_support =
1404                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1405                 SUPPORTED_1000baseT_Full : 0;
1406         phy_interface_t interface;
1407
1408         priv->oldlink = 0;
1409         priv->oldspeed = 0;
1410         priv->oldduplex = -1;
1411
1412         interface = gfar_get_interface(dev);
1413
1414         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1415                                       interface);
1416         if (!priv->phydev)
1417                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1418                                                          interface);
1419         if (!priv->phydev) {
1420                 dev_err(&dev->dev, "could not attach to PHY\n");
1421                 return -ENODEV;
1422         }
1423
1424         if (interface == PHY_INTERFACE_MODE_SGMII)
1425                 gfar_configure_serdes(dev);
1426
1427         /* Remove any features not supported by the controller */
1428         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1429         priv->phydev->advertising = priv->phydev->supported;
1430
1431         return 0;
1432 }
1433
1434 /*
1435  * Initialize TBI PHY interface for communicating with the
1436  * SERDES lynx PHY on the chip.  We communicate with this PHY
1437  * through the MDIO bus on each controller, treating it as a
1438  * "normal" PHY at the address found in the TBIPA register.  We assume
1439  * that the TBIPA register is valid.  Either the MDIO bus code will set
1440  * it to a value that doesn't conflict with other PHYs on the bus, or the
1441  * value doesn't matter, as there are no other PHYs on the bus.
1442  */
1443 static void gfar_configure_serdes(struct net_device *dev)
1444 {
1445         struct gfar_private *priv = netdev_priv(dev);
1446         struct phy_device *tbiphy;
1447
1448         if (!priv->tbi_node) {
1449                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1450                                     "device tree specify a tbi-handle\n");
1451                 return;
1452         }
1453
1454         tbiphy = of_phy_find_device(priv->tbi_node);
1455         if (!tbiphy) {
1456                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1457                 return;
1458         }
1459
1460         /*
1461          * If the link is already up, we must already be ok, and don't need to
1462          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1463          * everything for us?  Resetting it takes the link down and requires
1464          * several seconds for it to come back.
1465          */
1466         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1467                 return;
1468
1469         /* Single clk mode, mii mode off(for serdes communication) */
1470         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1471
1472         phy_write(tbiphy, MII_ADVERTISE,
1473                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1474                         ADVERTISE_1000XPSE_ASYM);
1475
1476         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1477                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1478 }
1479
1480 static void init_registers(struct net_device *dev)
1481 {
1482         struct gfar_private *priv = netdev_priv(dev);
1483         struct gfar __iomem *regs = NULL;
1484         int i = 0;
1485
1486         for (i = 0; i < priv->num_grps; i++) {
1487                 regs = priv->gfargrp[i].regs;
1488                 /* Clear IEVENT */
1489                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1490
1491                 /* Initialize IMASK */
1492                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1493         }
1494
1495         regs = priv->gfargrp[0].regs;
1496         /* Init hash registers to zero */
1497         gfar_write(&regs->igaddr0, 0);
1498         gfar_write(&regs->igaddr1, 0);
1499         gfar_write(&regs->igaddr2, 0);
1500         gfar_write(&regs->igaddr3, 0);
1501         gfar_write(&regs->igaddr4, 0);
1502         gfar_write(&regs->igaddr5, 0);
1503         gfar_write(&regs->igaddr6, 0);
1504         gfar_write(&regs->igaddr7, 0);
1505
1506         gfar_write(&regs->gaddr0, 0);
1507         gfar_write(&regs->gaddr1, 0);
1508         gfar_write(&regs->gaddr2, 0);
1509         gfar_write(&regs->gaddr3, 0);
1510         gfar_write(&regs->gaddr4, 0);
1511         gfar_write(&regs->gaddr5, 0);
1512         gfar_write(&regs->gaddr6, 0);
1513         gfar_write(&regs->gaddr7, 0);
1514
1515         /* Zero out the rmon mib registers if it has them */
1516         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1517                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1518
1519                 /* Mask off the CAM interrupts */
1520                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1521                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1522         }
1523
1524         /* Initialize the max receive buffer length */
1525         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1526
1527         /* Initialize the Minimum Frame Length Register */
1528         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1529 }
1530
1531
1532 /* Halt the receive and transmit queues */
1533 static void gfar_halt_nodisable(struct net_device *dev)
1534 {
1535         struct gfar_private *priv = netdev_priv(dev);
1536         struct gfar __iomem *regs = NULL;
1537         u32 tempval;
1538         int i = 0;
1539
1540         for (i = 0; i < priv->num_grps; i++) {
1541                 regs = priv->gfargrp[i].regs;
1542                 /* Mask all interrupts */
1543                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1544
1545                 /* Clear all interrupts */
1546                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1547         }
1548
1549         regs = priv->gfargrp[0].regs;
1550         /* Stop the DMA, and wait for it to stop */
1551         tempval = gfar_read(&regs->dmactrl);
1552         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1553             != (DMACTRL_GRS | DMACTRL_GTS)) {
1554                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1555                 gfar_write(&regs->dmactrl, tempval);
1556
1557                 spin_event_timeout(((gfar_read(&regs->ievent) &
1558                          (IEVENT_GRSC | IEVENT_GTSC)) ==
1559                          (IEVENT_GRSC | IEVENT_GTSC)), -1, 0);
1560         }
1561 }
1562
1563 /* Halt the receive and transmit queues */
1564 void gfar_halt(struct net_device *dev)
1565 {
1566         struct gfar_private *priv = netdev_priv(dev);
1567         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1568         u32 tempval;
1569
1570         gfar_halt_nodisable(dev);
1571
1572         /* Disable Rx and Tx */
1573         tempval = gfar_read(&regs->maccfg1);
1574         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1575         gfar_write(&regs->maccfg1, tempval);
1576 }
1577
1578 static void free_grp_irqs(struct gfar_priv_grp *grp)
1579 {
1580         free_irq(grp->interruptError, grp);
1581         free_irq(grp->interruptTransmit, grp);
1582         free_irq(grp->interruptReceive, grp);
1583 }
1584
1585 void stop_gfar(struct net_device *dev)
1586 {
1587         struct gfar_private *priv = netdev_priv(dev);
1588         unsigned long flags;
1589         int i;
1590
1591         phy_stop(priv->phydev);
1592
1593
1594         /* Lock it down */
1595         local_irq_save(flags);
1596         lock_tx_qs(priv);
1597         lock_rx_qs(priv);
1598
1599         gfar_halt(dev);
1600
1601         unlock_rx_qs(priv);
1602         unlock_tx_qs(priv);
1603         local_irq_restore(flags);
1604
1605         /* Free the IRQs */
1606         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1607                 for (i = 0; i < priv->num_grps; i++)
1608                         free_grp_irqs(&priv->gfargrp[i]);
1609         } else {
1610                 for (i = 0; i < priv->num_grps; i++)
1611                         free_irq(priv->gfargrp[i].interruptTransmit,
1612                                         &priv->gfargrp[i]);
1613         }
1614
1615         free_skb_resources(priv);
1616 }
1617
1618 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1619 {
1620         struct txbd8 *txbdp;
1621         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1622         int i, j;
1623
1624         txbdp = tx_queue->tx_bd_base;
1625
1626         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1627                 if (!tx_queue->tx_skbuff[i])
1628                         continue;
1629
1630                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1631                                 txbdp->length, DMA_TO_DEVICE);
1632                 txbdp->lstatus = 0;
1633                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1634                                 j++) {
1635                         txbdp++;
1636                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1637                                         txbdp->length, DMA_TO_DEVICE);
1638                 }
1639                 txbdp++;
1640                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1641                 tx_queue->tx_skbuff[i] = NULL;
1642         }
1643         kfree(tx_queue->tx_skbuff);
1644 }
1645
1646 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1647 {
1648         struct rxbd8 *rxbdp;
1649         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1650         int i;
1651
1652         rxbdp = rx_queue->rx_bd_base;
1653
1654         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1655                 if (rx_queue->rx_skbuff[i]) {
1656                         dma_unmap_single(&priv->ofdev->dev,
1657                                         rxbdp->bufPtr, priv->rx_buffer_size,
1658                                         DMA_FROM_DEVICE);
1659                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1660                         rx_queue->rx_skbuff[i] = NULL;
1661                 }
1662                 rxbdp->lstatus = 0;
1663                 rxbdp->bufPtr = 0;
1664                 rxbdp++;
1665         }
1666         kfree(rx_queue->rx_skbuff);
1667 }
1668
1669 /* If there are any tx skbs or rx skbs still around, free them.
1670  * Then free tx_skbuff and rx_skbuff */
1671 static void free_skb_resources(struct gfar_private *priv)
1672 {
1673         struct gfar_priv_tx_q *tx_queue = NULL;
1674         struct gfar_priv_rx_q *rx_queue = NULL;
1675         int i;
1676
1677         /* Go through all the buffer descriptors and free their data buffers */
1678         for (i = 0; i < priv->num_tx_queues; i++) {
1679                 tx_queue = priv->tx_queue[i];
1680                 if(tx_queue->tx_skbuff)
1681                         free_skb_tx_queue(tx_queue);
1682         }
1683
1684         for (i = 0; i < priv->num_rx_queues; i++) {
1685                 rx_queue = priv->rx_queue[i];
1686                 if(rx_queue->rx_skbuff)
1687                         free_skb_rx_queue(rx_queue);
1688         }
1689
1690         dma_free_coherent(&priv->ofdev->dev,
1691                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1692                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1693                         priv->tx_queue[0]->tx_bd_base,
1694                         priv->tx_queue[0]->tx_bd_dma_base);
1695         skb_queue_purge(&priv->rx_recycle);
1696 }
1697
1698 void gfar_start(struct net_device *dev)
1699 {
1700         struct gfar_private *priv = netdev_priv(dev);
1701         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1702         u32 tempval;
1703         int i = 0;
1704
1705         /* Enable Rx and Tx in MACCFG1 */
1706         tempval = gfar_read(&regs->maccfg1);
1707         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1708         gfar_write(&regs->maccfg1, tempval);
1709
1710         /* Initialize DMACTRL to have WWR and WOP */
1711         tempval = gfar_read(&regs->dmactrl);
1712         tempval |= DMACTRL_INIT_SETTINGS;
1713         gfar_write(&regs->dmactrl, tempval);
1714
1715         /* Make sure we aren't stopped */
1716         tempval = gfar_read(&regs->dmactrl);
1717         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1718         gfar_write(&regs->dmactrl, tempval);
1719
1720         for (i = 0; i < priv->num_grps; i++) {
1721                 regs = priv->gfargrp[i].regs;
1722                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1723                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1724                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1725                 /* Unmask the interrupts we look for */
1726                 gfar_write(&regs->imask, IMASK_DEFAULT);
1727         }
1728
1729         dev->trans_start = jiffies; /* prevent tx timeout */
1730 }
1731
1732 void gfar_configure_coalescing(struct gfar_private *priv,
1733         unsigned long tx_mask, unsigned long rx_mask)
1734 {
1735         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1736         u32 __iomem *baddr;
1737         int i = 0;
1738
1739         /* Backward compatible case ---- even if we enable
1740          * multiple queues, there's only single reg to program
1741          */
1742         gfar_write(&regs->txic, 0);
1743         if(likely(priv->tx_queue[0]->txcoalescing))
1744                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1745
1746         gfar_write(&regs->rxic, 0);
1747         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1748                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1749
1750         if (priv->mode == MQ_MG_MODE) {
1751                 baddr = &regs->txic0;
1752                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1753                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1754                                 gfar_write(baddr + i, 0);
1755                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1756                         }
1757                 }
1758
1759                 baddr = &regs->rxic0;
1760                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1761                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1762                                 gfar_write(baddr + i, 0);
1763                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1764                         }
1765                 }
1766         }
1767 }
1768
1769 static int register_grp_irqs(struct gfar_priv_grp *grp)
1770 {
1771         struct gfar_private *priv = grp->priv;
1772         struct net_device *dev = priv->ndev;
1773         int err;
1774
1775         /* If the device has multiple interrupts, register for
1776          * them.  Otherwise, only register for the one */
1777         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1778                 /* Install our interrupt handlers for Error,
1779                  * Transmit, and Receive */
1780                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1781                                 grp->int_name_er,grp)) < 0) {
1782                         if (netif_msg_intr(priv))
1783                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1784                                         dev->name, grp->interruptError);
1785
1786                                 goto err_irq_fail;
1787                 }
1788
1789                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1790                                 0, grp->int_name_tx, grp)) < 0) {
1791                         if (netif_msg_intr(priv))
1792                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1793                                         dev->name, grp->interruptTransmit);
1794                         goto tx_irq_fail;
1795                 }
1796
1797                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1798                                 grp->int_name_rx, grp)) < 0) {
1799                         if (netif_msg_intr(priv))
1800                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1801                                         dev->name, grp->interruptReceive);
1802                         goto rx_irq_fail;
1803                 }
1804         } else {
1805                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1806                                 grp->int_name_tx, grp)) < 0) {
1807                         if (netif_msg_intr(priv))
1808                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1809                                         dev->name, grp->interruptTransmit);
1810                         goto err_irq_fail;
1811                 }
1812         }
1813
1814         return 0;
1815
1816 rx_irq_fail:
1817         free_irq(grp->interruptTransmit, grp);
1818 tx_irq_fail:
1819         free_irq(grp->interruptError, grp);
1820 err_irq_fail:
1821         return err;
1822
1823 }
1824
1825 /* Bring the controller up and running */
1826 int startup_gfar(struct net_device *ndev)
1827 {
1828         struct gfar_private *priv = netdev_priv(ndev);
1829         struct gfar __iomem *regs = NULL;
1830         int err, i, j;
1831
1832         for (i = 0; i < priv->num_grps; i++) {
1833                 regs= priv->gfargrp[i].regs;
1834                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1835         }
1836
1837         regs= priv->gfargrp[0].regs;
1838         err = gfar_alloc_skb_resources(ndev);
1839         if (err)
1840                 return err;
1841
1842         gfar_init_mac(ndev);
1843
1844         for (i = 0; i < priv->num_grps; i++) {
1845                 err = register_grp_irqs(&priv->gfargrp[i]);
1846                 if (err) {
1847                         for (j = 0; j < i; j++)
1848                                 free_grp_irqs(&priv->gfargrp[j]);
1849                                 goto irq_fail;
1850                 }
1851         }
1852
1853         /* Start the controller */
1854         gfar_start(ndev);
1855
1856         phy_start(priv->phydev);
1857
1858         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1859
1860         return 0;
1861
1862 irq_fail:
1863         free_skb_resources(priv);
1864         return err;
1865 }
1866
1867 /* Called when something needs to use the ethernet device */
1868 /* Returns 0 for success. */
1869 static int gfar_enet_open(struct net_device *dev)
1870 {
1871         struct gfar_private *priv = netdev_priv(dev);
1872         int err;
1873
1874         enable_napi(priv);
1875
1876         skb_queue_head_init(&priv->rx_recycle);
1877
1878         /* Initialize a bunch of registers */
1879         init_registers(dev);
1880
1881         gfar_set_mac_address(dev);
1882
1883         err = init_phy(dev);
1884
1885         if (err) {
1886                 disable_napi(priv);
1887                 return err;
1888         }
1889
1890         err = startup_gfar(dev);
1891         if (err) {
1892                 disable_napi(priv);
1893                 return err;
1894         }
1895
1896         netif_tx_start_all_queues(dev);
1897
1898         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1899
1900         return err;
1901 }
1902
1903 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1904 {
1905         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1906
1907         memset(fcb, 0, GMAC_FCB_LEN);
1908
1909         return fcb;
1910 }
1911
1912 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1913 {
1914         u8 flags = 0;
1915
1916         /* If we're here, it's a IP packet with a TCP or UDP
1917          * payload.  We set it to checksum, using a pseudo-header
1918          * we provide
1919          */
1920         flags = TXFCB_DEFAULT;
1921
1922         /* Tell the controller what the protocol is */
1923         /* And provide the already calculated phcs */
1924         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1925                 flags |= TXFCB_UDP;
1926                 fcb->phcs = udp_hdr(skb)->check;
1927         } else
1928                 fcb->phcs = tcp_hdr(skb)->check;
1929
1930         /* l3os is the distance between the start of the
1931          * frame (skb->data) and the start of the IP hdr.
1932          * l4os is the distance between the start of the
1933          * l3 hdr and the l4 hdr */
1934         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1935         fcb->l4os = skb_network_header_len(skb);
1936
1937         fcb->flags = flags;
1938 }
1939
1940 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1941 {
1942         fcb->flags |= TXFCB_VLN;
1943         fcb->vlctl = vlan_tx_tag_get(skb);
1944 }
1945
1946 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1947                                struct txbd8 *base, int ring_size)
1948 {
1949         struct txbd8 *new_bd = bdp + stride;
1950
1951         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1952 }
1953
1954 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1955                 int ring_size)
1956 {
1957         return skip_txbd(bdp, 1, base, ring_size);
1958 }
1959
1960 /* This is called by the kernel when a frame is ready for transmission. */
1961 /* It is pointed to by the dev->hard_start_xmit function pointer */
1962 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1963 {
1964         struct gfar_private *priv = netdev_priv(dev);
1965         struct gfar_priv_tx_q *tx_queue = NULL;
1966         struct netdev_queue *txq;
1967         struct gfar __iomem *regs = NULL;
1968         struct txfcb *fcb = NULL;
1969         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1970         u32 lstatus;
1971         int i, rq = 0, do_tstamp = 0;
1972         u32 bufaddr;
1973         unsigned long flags;
1974         unsigned int nr_frags, nr_txbds, length;
1975         union skb_shared_tx *shtx;
1976
1977         rq = skb->queue_mapping;
1978         tx_queue = priv->tx_queue[rq];
1979         txq = netdev_get_tx_queue(dev, rq);
1980         base = tx_queue->tx_bd_base;
1981         regs = tx_queue->grp->regs;
1982         shtx = skb_tx(skb);
1983
1984         /* check if time stamp should be generated */
1985         if (unlikely(shtx->hardware && priv->hwts_tx_en))
1986                 do_tstamp = 1;
1987
1988         /* make space for additional header when fcb is needed */
1989         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1990                         (priv->vlgrp && vlan_tx_tag_present(skb)) ||
1991                         unlikely(do_tstamp)) &&
1992                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1993                 struct sk_buff *skb_new;
1994
1995                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1996                 if (!skb_new) {
1997                         dev->stats.tx_errors++;
1998                         kfree_skb(skb);
1999                         return NETDEV_TX_OK;
2000                 }
2001                 kfree_skb(skb);
2002                 skb = skb_new;
2003         }
2004
2005         /* total number of fragments in the SKB */
2006         nr_frags = skb_shinfo(skb)->nr_frags;
2007
2008         /* calculate the required number of TxBDs for this skb */
2009         if (unlikely(do_tstamp))
2010                 nr_txbds = nr_frags + 2;
2011         else
2012                 nr_txbds = nr_frags + 1;
2013
2014         /* check if there is space to queue this packet */
2015         if (nr_txbds > tx_queue->num_txbdfree) {
2016                 /* no space, stop the queue */
2017                 netif_tx_stop_queue(txq);
2018                 dev->stats.tx_fifo_errors++;
2019                 return NETDEV_TX_BUSY;
2020         }
2021
2022         /* Update transmit stats */
2023         txq->tx_bytes += skb->len;
2024         txq->tx_packets ++;
2025
2026         txbdp = txbdp_start = tx_queue->cur_tx;
2027         lstatus = txbdp->lstatus;
2028
2029         /* Time stamp insertion requires one additional TxBD */
2030         if (unlikely(do_tstamp))
2031                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2032                                 tx_queue->tx_ring_size);
2033
2034         if (nr_frags == 0) {
2035                 if (unlikely(do_tstamp))
2036                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2037                                         TXBD_INTERRUPT);
2038                 else
2039                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2040         } else {
2041                 /* Place the fragment addresses and lengths into the TxBDs */
2042                 for (i = 0; i < nr_frags; i++) {
2043                         /* Point at the next BD, wrapping as needed */
2044                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2045
2046                         length = skb_shinfo(skb)->frags[i].size;
2047
2048                         lstatus = txbdp->lstatus | length |
2049                                 BD_LFLAG(TXBD_READY);
2050
2051                         /* Handle the last BD specially */
2052                         if (i == nr_frags - 1)
2053                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2054
2055                         bufaddr = dma_map_page(&priv->ofdev->dev,
2056                                         skb_shinfo(skb)->frags[i].page,
2057                                         skb_shinfo(skb)->frags[i].page_offset,
2058                                         length,
2059                                         DMA_TO_DEVICE);
2060
2061                         /* set the TxBD length and buffer pointer */
2062                         txbdp->bufPtr = bufaddr;
2063                         txbdp->lstatus = lstatus;
2064                 }
2065
2066                 lstatus = txbdp_start->lstatus;
2067         }
2068
2069         /* Set up checksumming */
2070         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2071                 fcb = gfar_add_fcb(skb);
2072                 lstatus |= BD_LFLAG(TXBD_TOE);
2073                 gfar_tx_checksum(skb, fcb);
2074         }
2075
2076         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2077                 if (unlikely(NULL == fcb)) {
2078                         fcb = gfar_add_fcb(skb);
2079                         lstatus |= BD_LFLAG(TXBD_TOE);
2080                 }
2081
2082                 gfar_tx_vlan(skb, fcb);
2083         }
2084
2085         /* Setup tx hardware time stamping if requested */
2086         if (unlikely(do_tstamp)) {
2087                 shtx->in_progress = 1;
2088                 if (fcb == NULL)
2089                         fcb = gfar_add_fcb(skb);
2090                 fcb->ptp = 1;
2091                 lstatus |= BD_LFLAG(TXBD_TOE);
2092         }
2093
2094         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2095                         skb_headlen(skb), DMA_TO_DEVICE);
2096
2097         /*
2098          * If time stamping is requested one additional TxBD must be set up. The
2099          * first TxBD points to the FCB and must have a data length of
2100          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2101          * the full frame length.
2102          */
2103         if (unlikely(do_tstamp)) {
2104                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2105                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2106                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2107                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2108         } else {
2109                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2110         }
2111
2112         /*
2113          * We can work in parallel with gfar_clean_tx_ring(), except
2114          * when modifying num_txbdfree. Note that we didn't grab the lock
2115          * when we were reading the num_txbdfree and checking for available
2116          * space, that's because outside of this function it can only grow,
2117          * and once we've got needed space, it cannot suddenly disappear.
2118          *
2119          * The lock also protects us from gfar_error(), which can modify
2120          * regs->tstat and thus retrigger the transfers, which is why we
2121          * also must grab the lock before setting ready bit for the first
2122          * to be transmitted BD.
2123          */
2124         spin_lock_irqsave(&tx_queue->txlock, flags);
2125
2126         /*
2127          * The powerpc-specific eieio() is used, as wmb() has too strong
2128          * semantics (it requires synchronization between cacheable and
2129          * uncacheable mappings, which eieio doesn't provide and which we
2130          * don't need), thus requiring a more expensive sync instruction.  At
2131          * some point, the set of architecture-independent barrier functions
2132          * should be expanded to include weaker barriers.
2133          */
2134         eieio();
2135
2136         txbdp_start->lstatus = lstatus;
2137
2138         eieio(); /* force lstatus write before tx_skbuff */
2139
2140         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2141
2142         /* Update the current skb pointer to the next entry we will use
2143          * (wrapping if necessary) */
2144         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2145                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2146
2147         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2148
2149         /* reduce TxBD free count */
2150         tx_queue->num_txbdfree -= (nr_txbds);
2151
2152         /* If the next BD still needs to be cleaned up, then the bds
2153            are full.  We need to tell the kernel to stop sending us stuff. */
2154         if (!tx_queue->num_txbdfree) {
2155                 netif_tx_stop_queue(txq);
2156
2157                 dev->stats.tx_fifo_errors++;
2158         }
2159
2160         /* Tell the DMA to go go go */
2161         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2162
2163         /* Unlock priv */
2164         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2165
2166         return NETDEV_TX_OK;
2167 }
2168
2169 /* Stops the kernel queue, and halts the controller */
2170 static int gfar_close(struct net_device *dev)
2171 {
2172         struct gfar_private *priv = netdev_priv(dev);
2173
2174         disable_napi(priv);
2175
2176         cancel_work_sync(&priv->reset_task);
2177         stop_gfar(dev);
2178
2179         /* Disconnect from the PHY */
2180         phy_disconnect(priv->phydev);
2181         priv->phydev = NULL;
2182
2183         netif_tx_stop_all_queues(dev);
2184
2185         return 0;
2186 }
2187
2188 /* Changes the mac address if the controller is not running. */
2189 static int gfar_set_mac_address(struct net_device *dev)
2190 {
2191         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2192
2193         return 0;
2194 }
2195
2196
2197 /* Enables and disables VLAN insertion/extraction */
2198 static void gfar_vlan_rx_register(struct net_device *dev,
2199                 struct vlan_group *grp)
2200 {
2201         struct gfar_private *priv = netdev_priv(dev);
2202         struct gfar __iomem *regs = NULL;
2203         unsigned long flags;
2204         u32 tempval;
2205
2206         regs = priv->gfargrp[0].regs;
2207         local_irq_save(flags);
2208         lock_rx_qs(priv);
2209
2210         priv->vlgrp = grp;
2211
2212         if (grp) {
2213                 /* Enable VLAN tag insertion */
2214                 tempval = gfar_read(&regs->tctrl);
2215                 tempval |= TCTRL_VLINS;
2216
2217                 gfar_write(&regs->tctrl, tempval);
2218
2219                 /* Enable VLAN tag extraction */
2220                 tempval = gfar_read(&regs->rctrl);
2221                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2222                 gfar_write(&regs->rctrl, tempval);
2223         } else {
2224                 /* Disable VLAN tag insertion */
2225                 tempval = gfar_read(&regs->tctrl);
2226                 tempval &= ~TCTRL_VLINS;
2227                 gfar_write(&regs->tctrl, tempval);
2228
2229                 /* Disable VLAN tag extraction */
2230                 tempval = gfar_read(&regs->rctrl);
2231                 tempval &= ~RCTRL_VLEX;
2232                 /* If parse is no longer required, then disable parser */
2233                 if (tempval & RCTRL_REQ_PARSER)
2234                         tempval |= RCTRL_PRSDEP_INIT;
2235                 else
2236                         tempval &= ~RCTRL_PRSDEP_INIT;
2237                 gfar_write(&regs->rctrl, tempval);
2238         }
2239
2240         gfar_change_mtu(dev, dev->mtu);
2241
2242         unlock_rx_qs(priv);
2243         local_irq_restore(flags);
2244 }
2245
2246 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2247 {
2248         int tempsize, tempval;
2249         struct gfar_private *priv = netdev_priv(dev);
2250         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2251         int oldsize = priv->rx_buffer_size;
2252         int frame_size = new_mtu + ETH_HLEN;
2253
2254         if (priv->vlgrp)
2255                 frame_size += VLAN_HLEN;
2256
2257         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2258                 if (netif_msg_drv(priv))
2259                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2260                                         dev->name);
2261                 return -EINVAL;
2262         }
2263
2264         if (gfar_uses_fcb(priv))
2265                 frame_size += GMAC_FCB_LEN;
2266
2267         frame_size += priv->padding;
2268
2269         tempsize =
2270             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2271             INCREMENTAL_BUFFER_SIZE;
2272
2273         /* Only stop and start the controller if it isn't already
2274          * stopped, and we changed something */
2275         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2276                 stop_gfar(dev);
2277
2278         priv->rx_buffer_size = tempsize;
2279
2280         dev->mtu = new_mtu;
2281
2282         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2283         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2284
2285         /* If the mtu is larger than the max size for standard
2286          * ethernet frames (ie, a jumbo frame), then set maccfg2
2287          * to allow huge frames, and to check the length */
2288         tempval = gfar_read(&regs->maccfg2);
2289
2290         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2291                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2292         else
2293                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2294
2295         gfar_write(&regs->maccfg2, tempval);
2296
2297         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2298                 startup_gfar(dev);
2299
2300         return 0;
2301 }
2302
2303 /* gfar_reset_task gets scheduled when a packet has not been
2304  * transmitted after a set amount of time.
2305  * For now, assume that clearing out all the structures, and
2306  * starting over will fix the problem.
2307  */
2308 static void gfar_reset_task(struct work_struct *work)
2309 {
2310         struct gfar_private *priv = container_of(work, struct gfar_private,
2311                         reset_task);
2312         struct net_device *dev = priv->ndev;
2313
2314         if (dev->flags & IFF_UP) {
2315                 netif_tx_stop_all_queues(dev);
2316                 stop_gfar(dev);
2317                 startup_gfar(dev);
2318                 netif_tx_start_all_queues(dev);
2319         }
2320
2321         netif_tx_schedule_all(dev);
2322 }
2323
2324 static void gfar_timeout(struct net_device *dev)
2325 {
2326         struct gfar_private *priv = netdev_priv(dev);
2327
2328         dev->stats.tx_errors++;
2329         schedule_work(&priv->reset_task);
2330 }
2331
2332 /* Interrupt Handler for Transmit complete */
2333 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2334 {
2335         struct net_device *dev = tx_queue->dev;
2336         struct gfar_private *priv = netdev_priv(dev);
2337         struct gfar_priv_rx_q *rx_queue = NULL;
2338         struct txbd8 *bdp, *next = NULL;
2339         struct txbd8 *lbdp = NULL;
2340         struct txbd8 *base = tx_queue->tx_bd_base;
2341         struct sk_buff *skb;
2342         int skb_dirtytx;
2343         int tx_ring_size = tx_queue->tx_ring_size;
2344         int frags = 0, nr_txbds = 0;
2345         int i;
2346         int howmany = 0;
2347         u32 lstatus;
2348         size_t buflen;
2349         union skb_shared_tx *shtx;
2350
2351         rx_queue = priv->rx_queue[tx_queue->qindex];
2352         bdp = tx_queue->dirty_tx;
2353         skb_dirtytx = tx_queue->skb_dirtytx;
2354
2355         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2356                 unsigned long flags;
2357
2358                 frags = skb_shinfo(skb)->nr_frags;
2359
2360                 /*
2361                  * When time stamping, one additional TxBD must be freed.
2362                  * Also, we need to dma_unmap_single() the TxPAL.
2363                  */
2364                 shtx = skb_tx(skb);
2365                 if (unlikely(shtx->in_progress))
2366                         nr_txbds = frags + 2;
2367                 else
2368                         nr_txbds = frags + 1;
2369
2370                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2371
2372                 lstatus = lbdp->lstatus;
2373
2374                 /* Only clean completed frames */
2375                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2376                                 (lstatus & BD_LENGTH_MASK))
2377                         break;
2378
2379                 if (unlikely(shtx->in_progress)) {
2380                         next = next_txbd(bdp, base, tx_ring_size);
2381                         buflen = next->length + GMAC_FCB_LEN;
2382                 } else
2383                         buflen = bdp->length;
2384
2385                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2386                                 buflen, DMA_TO_DEVICE);
2387
2388                 if (unlikely(shtx->in_progress)) {
2389                         struct skb_shared_hwtstamps shhwtstamps;
2390                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2391                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2392                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2393                         skb_tstamp_tx(skb, &shhwtstamps);
2394                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2395                         bdp = next;
2396                 }
2397
2398                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2399                 bdp = next_txbd(bdp, base, tx_ring_size);
2400
2401                 for (i = 0; i < frags; i++) {
2402                         dma_unmap_page(&priv->ofdev->dev,
2403                                         bdp->bufPtr,
2404                                         bdp->length,
2405                                         DMA_TO_DEVICE);
2406                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2407                         bdp = next_txbd(bdp, base, tx_ring_size);
2408                 }
2409
2410                 /*
2411                  * If there's room in the queue (limit it to rx_buffer_size)
2412                  * we add this skb back into the pool, if it's the right size
2413                  */
2414                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2415                                 skb_recycle_check(skb, priv->rx_buffer_size +
2416                                         RXBUF_ALIGNMENT))
2417                         __skb_queue_head(&priv->rx_recycle, skb);
2418                 else
2419                         dev_kfree_skb_any(skb);
2420
2421                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2422
2423                 skb_dirtytx = (skb_dirtytx + 1) &
2424                         TX_RING_MOD_MASK(tx_ring_size);
2425
2426                 howmany++;
2427                 spin_lock_irqsave(&tx_queue->txlock, flags);
2428                 tx_queue->num_txbdfree += nr_txbds;
2429                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2430         }
2431
2432         /* If we freed a buffer, we can restart transmission, if necessary */
2433         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2434                 netif_wake_subqueue(dev, tx_queue->qindex);
2435
2436         /* Update dirty indicators */
2437         tx_queue->skb_dirtytx = skb_dirtytx;
2438         tx_queue->dirty_tx = bdp;
2439
2440         return howmany;
2441 }
2442
2443 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2444 {
2445         unsigned long flags;
2446
2447         spin_lock_irqsave(&gfargrp->grplock, flags);
2448         if (napi_schedule_prep(&gfargrp->napi)) {
2449                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2450                 __napi_schedule(&gfargrp->napi);
2451         } else {
2452                 /*
2453                  * Clear IEVENT, so interrupts aren't called again
2454                  * because of the packets that have already arrived.
2455                  */
2456                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2457         }
2458         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2459
2460 }
2461
2462 /* Interrupt Handler for Transmit complete */
2463 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2464 {
2465         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2466         return IRQ_HANDLED;
2467 }
2468
2469 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2470                 struct sk_buff *skb)
2471 {
2472         struct net_device *dev = rx_queue->dev;
2473         struct gfar_private *priv = netdev_priv(dev);
2474         dma_addr_t buf;
2475
2476         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2477                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2478         gfar_init_rxbdp(rx_queue, bdp, buf);
2479 }
2480
2481
2482 struct sk_buff * gfar_new_skb(struct net_device *dev)
2483 {
2484         unsigned int alignamount;
2485         struct gfar_private *priv = netdev_priv(dev);
2486         struct sk_buff *skb = NULL;
2487
2488         skb = __skb_dequeue(&priv->rx_recycle);
2489         if (!skb)
2490                 skb = netdev_alloc_skb(dev,
2491                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2492
2493         if (!skb)
2494                 return NULL;
2495
2496         alignamount = RXBUF_ALIGNMENT -
2497                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2498
2499         /* We need the data buffer to be aligned properly.  We will reserve
2500          * as many bytes as needed to align the data properly
2501          */
2502         skb_reserve(skb, alignamount);
2503         GFAR_CB(skb)->alignamount = alignamount;
2504
2505         return skb;
2506 }
2507
2508 static inline void count_errors(unsigned short status, struct net_device *dev)
2509 {
2510         struct gfar_private *priv = netdev_priv(dev);
2511         struct net_device_stats *stats = &dev->stats;
2512         struct gfar_extra_stats *estats = &priv->extra_stats;
2513
2514         /* If the packet was truncated, none of the other errors
2515          * matter */
2516         if (status & RXBD_TRUNCATED) {
2517                 stats->rx_length_errors++;
2518
2519                 estats->rx_trunc++;
2520
2521                 return;
2522         }
2523         /* Count the errors, if there were any */
2524         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2525                 stats->rx_length_errors++;
2526
2527                 if (status & RXBD_LARGE)
2528                         estats->rx_large++;
2529                 else
2530                         estats->rx_short++;
2531         }
2532         if (status & RXBD_NONOCTET) {
2533                 stats->rx_frame_errors++;
2534                 estats->rx_nonoctet++;
2535         }
2536         if (status & RXBD_CRCERR) {
2537                 estats->rx_crcerr++;
2538                 stats->rx_crc_errors++;
2539         }
2540         if (status & RXBD_OVERRUN) {
2541                 estats->rx_overrun++;
2542                 stats->rx_crc_errors++;
2543         }
2544 }
2545
2546 irqreturn_t gfar_receive(int irq, void *grp_id)
2547 {
2548         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2549         return IRQ_HANDLED;
2550 }
2551
2552 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2553 {
2554         /* If valid headers were found, and valid sums
2555          * were verified, then we tell the kernel that no
2556          * checksumming is necessary.  Otherwise, it is */
2557         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2558                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2559         else
2560                 skb->ip_summed = CHECKSUM_NONE;
2561 }
2562
2563
2564 /* gfar_process_frame() -- handle one incoming packet if skb
2565  * isn't NULL.  */
2566 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2567                               int amount_pull)
2568 {
2569         struct gfar_private *priv = netdev_priv(dev);
2570         struct rxfcb *fcb = NULL;
2571
2572         int ret;
2573
2574         /* fcb is at the beginning if exists */
2575         fcb = (struct rxfcb *)skb->data;
2576
2577         /* Remove the FCB from the skb */
2578         /* Remove the padded bytes, if there are any */
2579         if (amount_pull) {
2580                 skb_record_rx_queue(skb, fcb->rq);
2581                 skb_pull(skb, amount_pull);
2582         }
2583
2584         /* Get receive timestamp from the skb */
2585         if (priv->hwts_rx_en) {
2586                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2587                 u64 *ns = (u64 *) skb->data;
2588                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2589                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2590         }
2591
2592         if (priv->padding)
2593                 skb_pull(skb, priv->padding);
2594
2595         if (priv->rx_csum_enable)
2596                 gfar_rx_checksum(skb, fcb);
2597
2598         /* Tell the skb what kind of packet this is */
2599         skb->protocol = eth_type_trans(skb, dev);
2600
2601         /* Send the packet up the stack */
2602         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2603                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2604         else
2605                 ret = netif_receive_skb(skb);
2606
2607         if (NET_RX_DROP == ret)
2608                 priv->extra_stats.kernel_dropped++;
2609
2610         return 0;
2611 }
2612
2613 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2614  *   until the budget/quota has been reached. Returns the number
2615  *   of frames handled
2616  */
2617 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2618 {
2619         struct net_device *dev = rx_queue->dev;
2620         struct rxbd8 *bdp, *base;
2621         struct sk_buff *skb;
2622         int pkt_len;
2623         int amount_pull;
2624         int howmany = 0;
2625         struct gfar_private *priv = netdev_priv(dev);
2626
2627         /* Get the first full descriptor */
2628         bdp = rx_queue->cur_rx;
2629         base = rx_queue->rx_bd_base;
2630
2631         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2632
2633         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2634                 struct sk_buff *newskb;
2635                 rmb();
2636
2637                 /* Add another skb for the future */
2638                 newskb = gfar_new_skb(dev);
2639
2640                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2641
2642                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2643                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2644
2645                 /* We drop the frame if we failed to allocate a new buffer */
2646                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2647                                  bdp->status & RXBD_ERR)) {
2648                         count_errors(bdp->status, dev);
2649
2650                         if (unlikely(!newskb))
2651                                 newskb = skb;
2652                         else if (skb) {
2653                                 /*
2654                                  * We need to un-reserve() the skb to what it
2655                                  * was before gfar_new_skb() re-aligned
2656                                  * it to an RXBUF_ALIGNMENT boundary
2657                                  * before we put the skb back on the
2658                                  * recycle list.
2659                                  */
2660                                 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2661                                 __skb_queue_head(&priv->rx_recycle, skb);
2662                         }
2663                 } else {
2664                         /* Increment the number of packets */
2665                         rx_queue->stats.rx_packets++;
2666                         howmany++;
2667
2668                         if (likely(skb)) {
2669                                 pkt_len = bdp->length - ETH_FCS_LEN;
2670                                 /* Remove the FCS from the packet length */
2671                                 skb_put(skb, pkt_len);
2672                                 rx_queue->stats.rx_bytes += pkt_len;
2673                                 skb_record_rx_queue(skb, rx_queue->qindex);
2674                                 gfar_process_frame(dev, skb, amount_pull);
2675
2676                         } else {
2677                                 if (netif_msg_rx_err(priv))
2678                                         printk(KERN_WARNING
2679                                                "%s: Missing skb!\n", dev->name);
2680                                 rx_queue->stats.rx_dropped++;
2681                                 priv->extra_stats.rx_skbmissing++;
2682                         }
2683
2684                 }
2685
2686                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2687
2688                 /* Setup the new bdp */
2689                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2690
2691                 /* Update to the next pointer */
2692                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2693
2694                 /* update to point at the next skb */
2695                 rx_queue->skb_currx =
2696                     (rx_queue->skb_currx + 1) &
2697                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2698         }
2699
2700         /* Update the current rxbd pointer to be the next one */
2701         rx_queue->cur_rx = bdp;
2702
2703         return howmany;
2704 }
2705
2706 static int gfar_poll(struct napi_struct *napi, int budget)
2707 {
2708         struct gfar_priv_grp *gfargrp = container_of(napi,
2709                         struct gfar_priv_grp, napi);
2710         struct gfar_private *priv = gfargrp->priv;
2711         struct gfar __iomem *regs = gfargrp->regs;
2712         struct gfar_priv_tx_q *tx_queue = NULL;
2713         struct gfar_priv_rx_q *rx_queue = NULL;
2714         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2715         int tx_cleaned = 0, i, left_over_budget = budget;
2716         unsigned long serviced_queues = 0;
2717         int num_queues = 0;
2718
2719         num_queues = gfargrp->num_rx_queues;
2720         budget_per_queue = budget/num_queues;
2721
2722         /* Clear IEVENT, so interrupts aren't called again
2723          * because of the packets that have already arrived */
2724         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2725
2726         while (num_queues && left_over_budget) {
2727
2728                 budget_per_queue = left_over_budget/num_queues;
2729                 left_over_budget = 0;
2730
2731                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2732                         if (test_bit(i, &serviced_queues))
2733                                 continue;
2734                         rx_queue = priv->rx_queue[i];
2735                         tx_queue = priv->tx_queue[rx_queue->qindex];
2736
2737                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2738                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2739                                                         budget_per_queue);
2740                         rx_cleaned += rx_cleaned_per_queue;
2741                         if(rx_cleaned_per_queue < budget_per_queue) {
2742                                 left_over_budget = left_over_budget +
2743                                         (budget_per_queue - rx_cleaned_per_queue);
2744                                 set_bit(i, &serviced_queues);
2745                                 num_queues--;
2746                         }
2747                 }
2748         }
2749
2750         if (tx_cleaned)
2751                 return budget;
2752
2753         if (rx_cleaned < budget) {
2754                 napi_complete(napi);
2755
2756                 /* Clear the halt bit in RSTAT */
2757                 gfar_write(&regs->rstat, gfargrp->rstat);
2758
2759                 gfar_write(&regs->imask, IMASK_DEFAULT);
2760
2761                 /* If we are coalescing interrupts, update the timer */
2762                 /* Otherwise, clear it */
2763                 gfar_configure_coalescing(priv,
2764                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2765         }
2766
2767         return rx_cleaned;
2768 }
2769
2770 #ifdef CONFIG_NET_POLL_CONTROLLER
2771 /*
2772  * Polling 'interrupt' - used by things like netconsole to send skbs
2773  * without having to re-enable interrupts. It's not called while
2774  * the interrupt routine is executing.
2775  */
2776 static void gfar_netpoll(struct net_device *dev)
2777 {
2778         struct gfar_private *priv = netdev_priv(dev);
2779         int i = 0;
2780
2781         /* If the device has multiple interrupts, run tx/rx */
2782         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783                 for (i = 0; i < priv->num_grps; i++) {
2784                         disable_irq(priv->gfargrp[i].interruptTransmit);
2785                         disable_irq(priv->gfargrp[i].interruptReceive);
2786                         disable_irq(priv->gfargrp[i].interruptError);
2787                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2788                                                 &priv->gfargrp[i]);
2789                         enable_irq(priv->gfargrp[i].interruptError);
2790                         enable_irq(priv->gfargrp[i].interruptReceive);
2791                         enable_irq(priv->gfargrp[i].interruptTransmit);
2792                 }
2793         } else {
2794                 for (i = 0; i < priv->num_grps; i++) {
2795                         disable_irq(priv->gfargrp[i].interruptTransmit);
2796                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2797                                                 &priv->gfargrp[i]);
2798                         enable_irq(priv->gfargrp[i].interruptTransmit);
2799                 }
2800         }
2801 }
2802 #endif
2803
2804 /* The interrupt handler for devices with one interrupt */
2805 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2806 {
2807         struct gfar_priv_grp *gfargrp = grp_id;
2808
2809         /* Save ievent for future reference */
2810         u32 events = gfar_read(&gfargrp->regs->ievent);
2811
2812         /* Check for reception */
2813         if (events & IEVENT_RX_MASK)
2814                 gfar_receive(irq, grp_id);
2815
2816         /* Check for transmit completion */
2817         if (events & IEVENT_TX_MASK)
2818                 gfar_transmit(irq, grp_id);
2819
2820         /* Check for errors */
2821         if (events & IEVENT_ERR_MASK)
2822                 gfar_error(irq, grp_id);
2823
2824         return IRQ_HANDLED;
2825 }
2826
2827 /* Called every time the controller might need to be made
2828  * aware of new link state.  The PHY code conveys this
2829  * information through variables in the phydev structure, and this
2830  * function converts those variables into the appropriate
2831  * register values, and can bring down the device if needed.
2832  */
2833 static void adjust_link(struct net_device *dev)
2834 {
2835         struct gfar_private *priv = netdev_priv(dev);
2836         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2837         unsigned long flags;
2838         struct phy_device *phydev = priv->phydev;
2839         int new_state = 0;
2840
2841         local_irq_save(flags);
2842         lock_tx_qs(priv);
2843
2844         if (phydev->link) {
2845                 u32 tempval = gfar_read(&regs->maccfg2);
2846                 u32 ecntrl = gfar_read(&regs->ecntrl);
2847
2848                 /* Now we make sure that we can be in full duplex mode.
2849                  * If not, we operate in half-duplex mode. */
2850                 if (phydev->duplex != priv->oldduplex) {
2851                         new_state = 1;
2852                         if (!(phydev->duplex))
2853                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2854                         else
2855                                 tempval |= MACCFG2_FULL_DUPLEX;
2856
2857                         priv->oldduplex = phydev->duplex;
2858                 }
2859
2860                 if (phydev->speed != priv->oldspeed) {
2861                         new_state = 1;
2862                         switch (phydev->speed) {
2863                         case 1000:
2864                                 tempval =
2865                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2866
2867                                 ecntrl &= ~(ECNTRL_R100);
2868                                 break;
2869                         case 100:
2870                         case 10:
2871                                 tempval =
2872                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2873
2874                                 /* Reduced mode distinguishes
2875                                  * between 10 and 100 */
2876                                 if (phydev->speed == SPEED_100)
2877                                         ecntrl |= ECNTRL_R100;
2878                                 else
2879                                         ecntrl &= ~(ECNTRL_R100);
2880                                 break;
2881                         default:
2882                                 if (netif_msg_link(priv))
2883                                         printk(KERN_WARNING
2884                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2885                                                 dev->name, phydev->speed);
2886                                 break;
2887                         }
2888
2889                         priv->oldspeed = phydev->speed;
2890                 }
2891
2892                 gfar_write(&regs->maccfg2, tempval);
2893                 gfar_write(&regs->ecntrl, ecntrl);
2894
2895                 if (!priv->oldlink) {
2896                         new_state = 1;
2897                         priv->oldlink = 1;
2898                 }
2899         } else if (priv->oldlink) {
2900                 new_state = 1;
2901                 priv->oldlink = 0;
2902                 priv->oldspeed = 0;
2903                 priv->oldduplex = -1;
2904         }
2905
2906         if (new_state && netif_msg_link(priv))
2907                 phy_print_status(phydev);
2908         unlock_tx_qs(priv);
2909         local_irq_restore(flags);
2910 }
2911
2912 /* Update the hash table based on the current list of multicast
2913  * addresses we subscribe to.  Also, change the promiscuity of
2914  * the device based on the flags (this function is called
2915  * whenever dev->flags is changed */
2916 static void gfar_set_multi(struct net_device *dev)
2917 {
2918         struct netdev_hw_addr *ha;
2919         struct gfar_private *priv = netdev_priv(dev);
2920         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2921         u32 tempval;
2922
2923         if (dev->flags & IFF_PROMISC) {
2924                 /* Set RCTRL to PROM */
2925                 tempval = gfar_read(&regs->rctrl);
2926                 tempval |= RCTRL_PROM;
2927                 gfar_write(&regs->rctrl, tempval);
2928         } else {
2929                 /* Set RCTRL to not PROM */
2930                 tempval = gfar_read(&regs->rctrl);
2931                 tempval &= ~(RCTRL_PROM);
2932                 gfar_write(&regs->rctrl, tempval);
2933         }
2934
2935         if (dev->flags & IFF_ALLMULTI) {
2936                 /* Set the hash to rx all multicast frames */
2937                 gfar_write(&regs->igaddr0, 0xffffffff);
2938                 gfar_write(&regs->igaddr1, 0xffffffff);
2939                 gfar_write(&regs->igaddr2, 0xffffffff);
2940                 gfar_write(&regs->igaddr3, 0xffffffff);
2941                 gfar_write(&regs->igaddr4, 0xffffffff);
2942                 gfar_write(&regs->igaddr5, 0xffffffff);
2943                 gfar_write(&regs->igaddr6, 0xffffffff);
2944                 gfar_write(&regs->igaddr7, 0xffffffff);
2945                 gfar_write(&regs->gaddr0, 0xffffffff);
2946                 gfar_write(&regs->gaddr1, 0xffffffff);
2947                 gfar_write(&regs->gaddr2, 0xffffffff);
2948                 gfar_write(&regs->gaddr3, 0xffffffff);
2949                 gfar_write(&regs->gaddr4, 0xffffffff);
2950                 gfar_write(&regs->gaddr5, 0xffffffff);
2951                 gfar_write(&regs->gaddr6, 0xffffffff);
2952                 gfar_write(&regs->gaddr7, 0xffffffff);
2953         } else {
2954                 int em_num;
2955                 int idx;
2956
2957                 /* zero out the hash */
2958                 gfar_write(&regs->igaddr0, 0x0);
2959                 gfar_write(&regs->igaddr1, 0x0);
2960                 gfar_write(&regs->igaddr2, 0x0);
2961                 gfar_write(&regs->igaddr3, 0x0);
2962                 gfar_write(&regs->igaddr4, 0x0);
2963                 gfar_write(&regs->igaddr5, 0x0);
2964                 gfar_write(&regs->igaddr6, 0x0);
2965                 gfar_write(&regs->igaddr7, 0x0);
2966                 gfar_write(&regs->gaddr0, 0x0);
2967                 gfar_write(&regs->gaddr1, 0x0);
2968                 gfar_write(&regs->gaddr2, 0x0);
2969                 gfar_write(&regs->gaddr3, 0x0);
2970                 gfar_write(&regs->gaddr4, 0x0);
2971                 gfar_write(&regs->gaddr5, 0x0);
2972                 gfar_write(&regs->gaddr6, 0x0);
2973                 gfar_write(&regs->gaddr7, 0x0);
2974
2975                 /* If we have extended hash tables, we need to
2976                  * clear the exact match registers to prepare for
2977                  * setting them */
2978                 if (priv->extended_hash) {
2979                         em_num = GFAR_EM_NUM + 1;
2980                         gfar_clear_exact_match(dev);
2981                         idx = 1;
2982                 } else {
2983                         idx = 0;
2984                         em_num = 0;
2985                 }
2986
2987                 if (netdev_mc_empty(dev))
2988                         return;
2989
2990                 /* Parse the list, and set the appropriate bits */
2991                 netdev_for_each_mc_addr(ha, dev) {
2992                         if (idx < em_num) {
2993                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
2994                                 idx++;
2995                         } else
2996                                 gfar_set_hash_for_addr(dev, ha->addr);
2997                 }
2998         }
2999 }
3000
3001
3002 /* Clears each of the exact match registers to zero, so they
3003  * don't interfere with normal reception */
3004 static void gfar_clear_exact_match(struct net_device *dev)
3005 {
3006         int idx;
3007         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3008
3009         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3010                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3011 }
3012
3013 /* Set the appropriate hash bit for the given addr */
3014 /* The algorithm works like so:
3015  * 1) Take the Destination Address (ie the multicast address), and
3016  * do a CRC on it (little endian), and reverse the bits of the
3017  * result.
3018  * 2) Use the 8 most significant bits as a hash into a 256-entry
3019  * table.  The table is controlled through 8 32-bit registers:
3020  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3021  * gaddr7.  This means that the 3 most significant bits in the
3022  * hash index which gaddr register to use, and the 5 other bits
3023  * indicate which bit (assuming an IBM numbering scheme, which
3024  * for PowerPC (tm) is usually the case) in the register holds
3025  * the entry. */
3026 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3027 {
3028         u32 tempval;
3029         struct gfar_private *priv = netdev_priv(dev);
3030         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3031         int width = priv->hash_width;
3032         u8 whichbit = (result >> (32 - width)) & 0x1f;
3033         u8 whichreg = result >> (32 - width + 5);
3034         u32 value = (1 << (31-whichbit));
3035
3036         tempval = gfar_read(priv->hash_regs[whichreg]);
3037         tempval |= value;
3038         gfar_write(priv->hash_regs[whichreg], tempval);
3039 }
3040
3041
3042 /* There are multiple MAC Address register pairs on some controllers
3043  * This function sets the numth pair to a given address
3044  */
3045 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3046 {
3047         struct gfar_private *priv = netdev_priv(dev);
3048         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3049         int idx;
3050         char tmpbuf[MAC_ADDR_LEN];
3051         u32 tempval;
3052         u32 __iomem *macptr = &regs->macstnaddr1;
3053
3054         macptr += num*2;
3055
3056         /* Now copy it into the mac registers backwards, cuz */
3057         /* little endian is silly */
3058         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3059                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3060
3061         gfar_write(macptr, *((u32 *) (tmpbuf)));
3062
3063         tempval = *((u32 *) (tmpbuf + 4));
3064
3065         gfar_write(macptr+1, tempval);
3066 }
3067
3068 /* GFAR error interrupt handler */
3069 static irqreturn_t gfar_error(int irq, void *grp_id)
3070 {
3071         struct gfar_priv_grp *gfargrp = grp_id;
3072         struct gfar __iomem *regs = gfargrp->regs;
3073         struct gfar_private *priv= gfargrp->priv;
3074         struct net_device *dev = priv->ndev;
3075
3076         /* Save ievent for future reference */
3077         u32 events = gfar_read(&regs->ievent);
3078
3079         /* Clear IEVENT */
3080         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3081
3082         /* Magic Packet is not an error. */
3083         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3084             (events & IEVENT_MAG))
3085                 events &= ~IEVENT_MAG;
3086
3087         /* Hmm... */
3088         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3089                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3090                        dev->name, events, gfar_read(&regs->imask));
3091
3092         /* Update the error counters */
3093         if (events & IEVENT_TXE) {
3094                 dev->stats.tx_errors++;
3095
3096                 if (events & IEVENT_LC)
3097                         dev->stats.tx_window_errors++;
3098                 if (events & IEVENT_CRL)
3099                         dev->stats.tx_aborted_errors++;
3100                 if (events & IEVENT_XFUN) {
3101                         unsigned long flags;
3102
3103                         if (netif_msg_tx_err(priv))
3104                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3105                                        "packet dropped.\n", dev->name);
3106                         dev->stats.tx_dropped++;
3107                         priv->extra_stats.tx_underrun++;
3108
3109                         local_irq_save(flags);
3110                         lock_tx_qs(priv);
3111
3112                         /* Reactivate the Tx Queues */
3113                         gfar_write(&regs->tstat, gfargrp->tstat);
3114
3115                         unlock_tx_qs(priv);
3116                         local_irq_restore(flags);
3117                 }
3118                 if (netif_msg_tx_err(priv))
3119                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3120         }
3121         if (events & IEVENT_BSY) {
3122                 dev->stats.rx_errors++;
3123                 priv->extra_stats.rx_bsy++;
3124
3125                 gfar_receive(irq, grp_id);
3126
3127                 if (netif_msg_rx_err(priv))
3128                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3129                                dev->name, gfar_read(&regs->rstat));
3130         }
3131         if (events & IEVENT_BABR) {
3132                 dev->stats.rx_errors++;
3133                 priv->extra_stats.rx_babr++;
3134
3135                 if (netif_msg_rx_err(priv))
3136                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3137         }
3138         if (events & IEVENT_EBERR) {
3139                 priv->extra_stats.eberr++;
3140                 if (netif_msg_rx_err(priv))
3141                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3142         }
3143         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3144                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3145
3146         if (events & IEVENT_BABT) {
3147                 priv->extra_stats.tx_babt++;
3148                 if (netif_msg_tx_err(priv))
3149                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3150         }
3151         return IRQ_HANDLED;
3152 }
3153
3154 static struct of_device_id gfar_match[] =
3155 {
3156         {
3157                 .type = "network",
3158                 .compatible = "gianfar",
3159         },
3160         {
3161                 .compatible = "fsl,etsec2",
3162         },
3163         {},
3164 };
3165 MODULE_DEVICE_TABLE(of, gfar_match);
3166
3167 /* Structure for a device driver */
3168 static struct of_platform_driver gfar_driver = {
3169         .driver = {
3170                 .name = "fsl-gianfar",
3171                 .owner = THIS_MODULE,
3172                 .pm = GFAR_PM_OPS,
3173                 .of_match_table = gfar_match,
3174         },
3175         .probe = gfar_probe,
3176         .remove = gfar_remove,
3177 };
3178
3179 static int __init gfar_init(void)
3180 {
3181         return of_register_platform_driver(&gfar_driver);
3182 }
3183
3184 static void __exit gfar_exit(void)
3185 {
3186         of_unregister_platform_driver(&gfar_driver);
3187 }
3188
3189 module_init(gfar_init);
3190 module_exit(gfar_exit);
3191