Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #define DEBUG
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
102
103 #include "gianfar.h"
104 #include "fsl_pq_mdio.h"
105
106 #define TX_TIMEOUT      (1*HZ)
107 #undef BRIEF_GFAR_ERRORS
108 #undef VERBOSE_GFAR_ERRORS
109
110 const char gfar_driver_name[] = "Gianfar Ethernet";
111 const char gfar_driver_version[] = "1.3";
112
113 static int gfar_enet_open(struct net_device *dev);
114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115 static void gfar_reset_task(struct work_struct *work);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev);
119 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
120                 struct sk_buff *skb);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll(struct napi_struct *napi, int budget);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
138 #endif
139 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
140 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
141 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
142                               int amount_pull);
143 void gfar_halt(struct net_device *dev);
144 static void gfar_halt_nodisable(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148                                   const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156                             dma_addr_t buf)
157 {
158         u32 lstatus;
159
160         bdp->bufPtr = buf;
161
162         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164                 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166         eieio();
167
168         bdp->lstatus = lstatus;
169 }
170
171 static int gfar_init_bds(struct net_device *ndev)
172 {
173         struct gfar_private *priv = netdev_priv(ndev);
174         struct gfar_priv_tx_q *tx_queue = NULL;
175         struct gfar_priv_rx_q *rx_queue = NULL;
176         struct txbd8 *txbdp;
177         struct rxbd8 *rxbdp;
178         int i, j;
179
180         for (i = 0; i < priv->num_tx_queues; i++) {
181                 tx_queue = priv->tx_queue[i];
182                 /* Initialize some variables in our dev structure */
183                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
184                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
185                 tx_queue->cur_tx = tx_queue->tx_bd_base;
186                 tx_queue->skb_curtx = 0;
187                 tx_queue->skb_dirtytx = 0;
188
189                 /* Initialize Transmit Descriptor Ring */
190                 txbdp = tx_queue->tx_bd_base;
191                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
192                         txbdp->lstatus = 0;
193                         txbdp->bufPtr = 0;
194                         txbdp++;
195                 }
196
197                 /* Set the last descriptor in the ring to indicate wrap */
198                 txbdp--;
199                 txbdp->status |= TXBD_WRAP;
200         }
201
202         for (i = 0; i < priv->num_rx_queues; i++) {
203                 rx_queue = priv->rx_queue[i];
204                 rx_queue->cur_rx = rx_queue->rx_bd_base;
205                 rx_queue->skb_currx = 0;
206                 rxbdp = rx_queue->rx_bd_base;
207
208                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
209                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
210
211                         if (skb) {
212                                 gfar_init_rxbdp(rx_queue, rxbdp,
213                                                 rxbdp->bufPtr);
214                         } else {
215                                 skb = gfar_new_skb(ndev);
216                                 if (!skb) {
217                                         netdev_err(ndev, "Can't allocate RX buffers\n");
218                                         goto err_rxalloc_fail;
219                                 }
220                                 rx_queue->rx_skbuff[j] = skb;
221
222                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
223                         }
224
225                         rxbdp++;
226                 }
227
228         }
229
230         return 0;
231
232 err_rxalloc_fail:
233         free_skb_resources(priv);
234         return -ENOMEM;
235 }
236
237 static int gfar_alloc_skb_resources(struct net_device *ndev)
238 {
239         void *vaddr;
240         dma_addr_t addr;
241         int i, j, k;
242         struct gfar_private *priv = netdev_priv(ndev);
243         struct device *dev = &priv->ofdev->dev;
244         struct gfar_priv_tx_q *tx_queue = NULL;
245         struct gfar_priv_rx_q *rx_queue = NULL;
246
247         priv->total_tx_ring_size = 0;
248         for (i = 0; i < priv->num_tx_queues; i++)
249                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
250
251         priv->total_rx_ring_size = 0;
252         for (i = 0; i < priv->num_rx_queues; i++)
253                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
254
255         /* Allocate memory for the buffer descriptors */
256         vaddr = dma_alloc_coherent(dev,
257                         sizeof(struct txbd8) * priv->total_tx_ring_size +
258                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
259                         &addr, GFP_KERNEL);
260         if (!vaddr) {
261                 netif_err(priv, ifup, ndev,
262                           "Could not allocate buffer descriptors!\n");
263                 return -ENOMEM;
264         }
265
266         for (i = 0; i < priv->num_tx_queues; i++) {
267                 tx_queue = priv->tx_queue[i];
268                 tx_queue->tx_bd_base = vaddr;
269                 tx_queue->tx_bd_dma_base = addr;
270                 tx_queue->dev = ndev;
271                 /* enet DMA only understands physical addresses */
272                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274         }
275
276         /* Start the rx descriptor ring where the tx ring leaves off */
277         for (i = 0; i < priv->num_rx_queues; i++) {
278                 rx_queue = priv->rx_queue[i];
279                 rx_queue->rx_bd_base = vaddr;
280                 rx_queue->rx_bd_dma_base = addr;
281                 rx_queue->dev = ndev;
282                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284         }
285
286         /* Setup the skbuff rings */
287         for (i = 0; i < priv->num_tx_queues; i++) {
288                 tx_queue = priv->tx_queue[i];
289                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290                                   tx_queue->tx_ring_size, GFP_KERNEL);
291                 if (!tx_queue->tx_skbuff) {
292                         netif_err(priv, ifup, ndev,
293                                   "Could not allocate tx_skbuff\n");
294                         goto cleanup;
295                 }
296
297                 for (k = 0; k < tx_queue->tx_ring_size; k++)
298                         tx_queue->tx_skbuff[k] = NULL;
299         }
300
301         for (i = 0; i < priv->num_rx_queues; i++) {
302                 rx_queue = priv->rx_queue[i];
303                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304                                   rx_queue->rx_ring_size, GFP_KERNEL);
305
306                 if (!rx_queue->rx_skbuff) {
307                         netif_err(priv, ifup, ndev,
308                                   "Could not allocate rx_skbuff\n");
309                         goto cleanup;
310                 }
311
312                 for (j = 0; j < rx_queue->rx_ring_size; j++)
313                         rx_queue->rx_skbuff[j] = NULL;
314         }
315
316         if (gfar_init_bds(ndev))
317                 goto cleanup;
318
319         return 0;
320
321 cleanup:
322         free_skb_resources(priv);
323         return -ENOMEM;
324 }
325
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
327 {
328         struct gfar __iomem *regs = priv->gfargrp[0].regs;
329         u32 __iomem *baddr;
330         int i;
331
332         baddr = &regs->tbase0;
333         for(i = 0; i < priv->num_tx_queues; i++) {
334                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335                 baddr   += 2;
336         }
337
338         baddr = &regs->rbase0;
339         for(i = 0; i < priv->num_rx_queues; i++) {
340                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341                 baddr   += 2;
342         }
343 }
344
345 static void gfar_init_mac(struct net_device *ndev)
346 {
347         struct gfar_private *priv = netdev_priv(ndev);
348         struct gfar __iomem *regs = priv->gfargrp[0].regs;
349         u32 rctrl = 0;
350         u32 tctrl = 0;
351         u32 attrs = 0;
352
353         /* write the tx/rx base registers */
354         gfar_init_tx_rx_base(priv);
355
356         /* Configure the coalescing support */
357         gfar_configure_coalescing(priv, 0xFF, 0xFF);
358
359         if (priv->rx_filer_enable) {
360                 rctrl |= RCTRL_FILREN;
361                 /* Program the RIR0 reg with the required distribution */
362                 gfar_write(&regs->rir0, DEFAULT_RIR0);
363         }
364
365         if (ndev->features & NETIF_F_RXCSUM)
366                 rctrl |= RCTRL_CHECKSUMMING;
367
368         if (priv->extended_hash) {
369                 rctrl |= RCTRL_EXTHASH;
370
371                 gfar_clear_exact_match(ndev);
372                 rctrl |= RCTRL_EMEN;
373         }
374
375         if (priv->padding) {
376                 rctrl &= ~RCTRL_PAL_MASK;
377                 rctrl |= RCTRL_PADDING(priv->padding);
378         }
379
380         /* Insert receive time stamps into padding alignment bytes */
381         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
382                 rctrl &= ~RCTRL_PAL_MASK;
383                 rctrl |= RCTRL_PADDING(8);
384                 priv->padding = 8;
385         }
386
387         /* Enable HW time stamping if requested from user space */
388         if (priv->hwts_rx_en)
389                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
390
391         if (ndev->features & NETIF_F_HW_VLAN_RX)
392                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
393
394         /* Init rctrl based on our settings */
395         gfar_write(&regs->rctrl, rctrl);
396
397         if (ndev->features & NETIF_F_IP_CSUM)
398                 tctrl |= TCTRL_INIT_CSUM;
399
400         tctrl |= TCTRL_TXSCHED_PRIO;
401
402         gfar_write(&regs->tctrl, tctrl);
403
404         /* Set the extraction length and index */
405         attrs = ATTRELI_EL(priv->rx_stash_size) |
406                 ATTRELI_EI(priv->rx_stash_index);
407
408         gfar_write(&regs->attreli, attrs);
409
410         /* Start with defaults, and add stashing or locking
411          * depending on the approprate variables */
412         attrs = ATTR_INIT_SETTINGS;
413
414         if (priv->bd_stash_en)
415                 attrs |= ATTR_BDSTASH;
416
417         if (priv->rx_stash_size != 0)
418                 attrs |= ATTR_BUFSTASH;
419
420         gfar_write(&regs->attr, attrs);
421
422         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425 }
426
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428 {
429         struct gfar_private *priv = netdev_priv(dev);
430         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
431         unsigned long tx_packets = 0, tx_bytes = 0;
432         int i = 0;
433
434         for (i = 0; i < priv->num_rx_queues; i++) {
435                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
436                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
437                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
438         }
439
440         dev->stats.rx_packets = rx_packets;
441         dev->stats.rx_bytes = rx_bytes;
442         dev->stats.rx_dropped = rx_dropped;
443
444         for (i = 0; i < priv->num_tx_queues; i++) {
445                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
446                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
447         }
448
449         dev->stats.tx_bytes = tx_bytes;
450         dev->stats.tx_packets = tx_packets;
451
452         return &dev->stats;
453 }
454
455 static const struct net_device_ops gfar_netdev_ops = {
456         .ndo_open = gfar_enet_open,
457         .ndo_start_xmit = gfar_start_xmit,
458         .ndo_stop = gfar_close,
459         .ndo_change_mtu = gfar_change_mtu,
460         .ndo_set_features = gfar_set_features,
461         .ndo_set_multicast_list = gfar_set_multi,
462         .ndo_tx_timeout = gfar_timeout,
463         .ndo_do_ioctl = gfar_ioctl,
464         .ndo_get_stats = gfar_get_stats,
465         .ndo_set_mac_address = eth_mac_addr,
466         .ndo_validate_addr = eth_validate_addr,
467 #ifdef CONFIG_NET_POLL_CONTROLLER
468         .ndo_poll_controller = gfar_netpoll,
469 #endif
470 };
471
472 void lock_rx_qs(struct gfar_private *priv)
473 {
474         int i = 0x0;
475
476         for (i = 0; i < priv->num_rx_queues; i++)
477                 spin_lock(&priv->rx_queue[i]->rxlock);
478 }
479
480 void lock_tx_qs(struct gfar_private *priv)
481 {
482         int i = 0x0;
483
484         for (i = 0; i < priv->num_tx_queues; i++)
485                 spin_lock(&priv->tx_queue[i]->txlock);
486 }
487
488 void unlock_rx_qs(struct gfar_private *priv)
489 {
490         int i = 0x0;
491
492         for (i = 0; i < priv->num_rx_queues; i++)
493                 spin_unlock(&priv->rx_queue[i]->rxlock);
494 }
495
496 void unlock_tx_qs(struct gfar_private *priv)
497 {
498         int i = 0x0;
499
500         for (i = 0; i < priv->num_tx_queues; i++)
501                 spin_unlock(&priv->tx_queue[i]->txlock);
502 }
503
504 static bool gfar_is_vlan_on(struct gfar_private *priv)
505 {
506         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
507                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
508 }
509
510 /* Returns 1 if incoming frames use an FCB */
511 static inline int gfar_uses_fcb(struct gfar_private *priv)
512 {
513         return gfar_is_vlan_on(priv) ||
514                 (priv->ndev->features & NETIF_F_RXCSUM) ||
515                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
516 }
517
518 static void free_tx_pointers(struct gfar_private *priv)
519 {
520         int i = 0;
521
522         for (i = 0; i < priv->num_tx_queues; i++)
523                 kfree(priv->tx_queue[i]);
524 }
525
526 static void free_rx_pointers(struct gfar_private *priv)
527 {
528         int i = 0;
529
530         for (i = 0; i < priv->num_rx_queues; i++)
531                 kfree(priv->rx_queue[i]);
532 }
533
534 static void unmap_group_regs(struct gfar_private *priv)
535 {
536         int i = 0;
537
538         for (i = 0; i < MAXGROUPS; i++)
539                 if (priv->gfargrp[i].regs)
540                         iounmap(priv->gfargrp[i].regs);
541 }
542
543 static void disable_napi(struct gfar_private *priv)
544 {
545         int i = 0;
546
547         for (i = 0; i < priv->num_grps; i++)
548                 napi_disable(&priv->gfargrp[i].napi);
549 }
550
551 static void enable_napi(struct gfar_private *priv)
552 {
553         int i = 0;
554
555         for (i = 0; i < priv->num_grps; i++)
556                 napi_enable(&priv->gfargrp[i].napi);
557 }
558
559 static int gfar_parse_group(struct device_node *np,
560                 struct gfar_private *priv, const char *model)
561 {
562         u32 *queue_mask;
563
564         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
565         if (!priv->gfargrp[priv->num_grps].regs)
566                 return -ENOMEM;
567
568         priv->gfargrp[priv->num_grps].interruptTransmit =
569                         irq_of_parse_and_map(np, 0);
570
571         /* If we aren't the FEC we have multiple interrupts */
572         if (model && strcasecmp(model, "FEC")) {
573                 priv->gfargrp[priv->num_grps].interruptReceive =
574                         irq_of_parse_and_map(np, 1);
575                 priv->gfargrp[priv->num_grps].interruptError =
576                         irq_of_parse_and_map(np,2);
577                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
578                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
579                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
580                         return -EINVAL;
581         }
582
583         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
584         priv->gfargrp[priv->num_grps].priv = priv;
585         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
586         if(priv->mode == MQ_MG_MODE) {
587                 queue_mask = (u32 *)of_get_property(np,
588                                         "fsl,rx-bit-map", NULL);
589                 priv->gfargrp[priv->num_grps].rx_bit_map =
590                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
591                 queue_mask = (u32 *)of_get_property(np,
592                                         "fsl,tx-bit-map", NULL);
593                 priv->gfargrp[priv->num_grps].tx_bit_map =
594                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
595         } else {
596                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
597                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
598         }
599         priv->num_grps++;
600
601         return 0;
602 }
603
604 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
605 {
606         const char *model;
607         const char *ctype;
608         const void *mac_addr;
609         int err = 0, i;
610         struct net_device *dev = NULL;
611         struct gfar_private *priv = NULL;
612         struct device_node *np = ofdev->dev.of_node;
613         struct device_node *child = NULL;
614         const u32 *stash;
615         const u32 *stash_len;
616         const u32 *stash_idx;
617         unsigned int num_tx_qs, num_rx_qs;
618         u32 *tx_queues, *rx_queues;
619
620         if (!np || !of_device_is_available(np))
621                 return -ENODEV;
622
623         /* parse the num of tx and rx queues */
624         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
625         num_tx_qs = tx_queues ? *tx_queues : 1;
626
627         if (num_tx_qs > MAX_TX_QS) {
628                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629                        num_tx_qs, MAX_TX_QS);
630                 pr_err("Cannot do alloc_etherdev, aborting\n");
631                 return -EINVAL;
632         }
633
634         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
635         num_rx_qs = rx_queues ? *rx_queues : 1;
636
637         if (num_rx_qs > MAX_RX_QS) {
638                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639                        num_rx_qs, MAX_RX_QS);
640                 pr_err("Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
645         dev = *pdev;
646         if (NULL == dev)
647                 return -ENOMEM;
648
649         priv = netdev_priv(dev);
650         priv->node = ofdev->dev.of_node;
651         priv->ndev = dev;
652
653         priv->num_tx_queues = num_tx_qs;
654         netif_set_real_num_rx_queues(dev, num_rx_qs);
655         priv->num_rx_queues = num_rx_qs;
656         priv->num_grps = 0x0;
657
658         /* Init Rx queue filer rule set linked list*/
659         INIT_LIST_HEAD(&priv->rx_list.list);
660         priv->rx_list.count = 0;
661         mutex_init(&priv->rx_queue_access);
662
663         model = of_get_property(np, "model", NULL);
664
665         for (i = 0; i < MAXGROUPS; i++)
666                 priv->gfargrp[i].regs = NULL;
667
668         /* Parse and initialize group specific information */
669         if (of_device_is_compatible(np, "fsl,etsec2")) {
670                 priv->mode = MQ_MG_MODE;
671                 for_each_child_of_node(np, child) {
672                         err = gfar_parse_group(child, priv, model);
673                         if (err)
674                                 goto err_grp_init;
675                 }
676         } else {
677                 priv->mode = SQ_SG_MODE;
678                 err = gfar_parse_group(np, priv, model);
679                 if(err)
680                         goto err_grp_init;
681         }
682
683         for (i = 0; i < priv->num_tx_queues; i++)
684                priv->tx_queue[i] = NULL;
685         for (i = 0; i < priv->num_rx_queues; i++)
686                 priv->rx_queue[i] = NULL;
687
688         for (i = 0; i < priv->num_tx_queues; i++) {
689                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
690                                             GFP_KERNEL);
691                 if (!priv->tx_queue[i]) {
692                         err = -ENOMEM;
693                         goto tx_alloc_failed;
694                 }
695                 priv->tx_queue[i]->tx_skbuff = NULL;
696                 priv->tx_queue[i]->qindex = i;
697                 priv->tx_queue[i]->dev = dev;
698                 spin_lock_init(&(priv->tx_queue[i]->txlock));
699         }
700
701         for (i = 0; i < priv->num_rx_queues; i++) {
702                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
703                                             GFP_KERNEL);
704                 if (!priv->rx_queue[i]) {
705                         err = -ENOMEM;
706                         goto rx_alloc_failed;
707                 }
708                 priv->rx_queue[i]->rx_skbuff = NULL;
709                 priv->rx_queue[i]->qindex = i;
710                 priv->rx_queue[i]->dev = dev;
711                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
712         }
713
714
715         stash = of_get_property(np, "bd-stash", NULL);
716
717         if (stash) {
718                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
719                 priv->bd_stash_en = 1;
720         }
721
722         stash_len = of_get_property(np, "rx-stash-len", NULL);
723
724         if (stash_len)
725                 priv->rx_stash_size = *stash_len;
726
727         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
728
729         if (stash_idx)
730                 priv->rx_stash_index = *stash_idx;
731
732         if (stash_len || stash_idx)
733                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
734
735         mac_addr = of_get_mac_address(np);
736         if (mac_addr)
737                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
738
739         if (model && !strcasecmp(model, "TSEC"))
740                 priv->device_flags =
741                         FSL_GIANFAR_DEV_HAS_GIGABIT |
742                         FSL_GIANFAR_DEV_HAS_COALESCE |
743                         FSL_GIANFAR_DEV_HAS_RMON |
744                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
745         if (model && !strcasecmp(model, "eTSEC"))
746                 priv->device_flags =
747                         FSL_GIANFAR_DEV_HAS_GIGABIT |
748                         FSL_GIANFAR_DEV_HAS_COALESCE |
749                         FSL_GIANFAR_DEV_HAS_RMON |
750                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
751                         FSL_GIANFAR_DEV_HAS_PADDING |
752                         FSL_GIANFAR_DEV_HAS_CSUM |
753                         FSL_GIANFAR_DEV_HAS_VLAN |
754                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
755                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
756                         FSL_GIANFAR_DEV_HAS_TIMER;
757
758         ctype = of_get_property(np, "phy-connection-type", NULL);
759
760         /* We only care about rgmii-id.  The rest are autodetected */
761         if (ctype && !strcmp(ctype, "rgmii-id"))
762                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
763         else
764                 priv->interface = PHY_INTERFACE_MODE_MII;
765
766         if (of_get_property(np, "fsl,magic-packet", NULL))
767                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
768
769         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
770
771         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
772         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
773
774         return 0;
775
776 rx_alloc_failed:
777         free_rx_pointers(priv);
778 tx_alloc_failed:
779         free_tx_pointers(priv);
780 err_grp_init:
781         unmap_group_regs(priv);
782         free_netdev(dev);
783         return err;
784 }
785
786 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
787                         struct ifreq *ifr, int cmd)
788 {
789         struct hwtstamp_config config;
790         struct gfar_private *priv = netdev_priv(netdev);
791
792         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
793                 return -EFAULT;
794
795         /* reserved for future extensions */
796         if (config.flags)
797                 return -EINVAL;
798
799         switch (config.tx_type) {
800         case HWTSTAMP_TX_OFF:
801                 priv->hwts_tx_en = 0;
802                 break;
803         case HWTSTAMP_TX_ON:
804                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
805                         return -ERANGE;
806                 priv->hwts_tx_en = 1;
807                 break;
808         default:
809                 return -ERANGE;
810         }
811
812         switch (config.rx_filter) {
813         case HWTSTAMP_FILTER_NONE:
814                 if (priv->hwts_rx_en) {
815                         stop_gfar(netdev);
816                         priv->hwts_rx_en = 0;
817                         startup_gfar(netdev);
818                 }
819                 break;
820         default:
821                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
822                         return -ERANGE;
823                 if (!priv->hwts_rx_en) {
824                         stop_gfar(netdev);
825                         priv->hwts_rx_en = 1;
826                         startup_gfar(netdev);
827                 }
828                 config.rx_filter = HWTSTAMP_FILTER_ALL;
829                 break;
830         }
831
832         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
833                 -EFAULT : 0;
834 }
835
836 /* Ioctl MII Interface */
837 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
838 {
839         struct gfar_private *priv = netdev_priv(dev);
840
841         if (!netif_running(dev))
842                 return -EINVAL;
843
844         if (cmd == SIOCSHWTSTAMP)
845                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
846
847         if (!priv->phydev)
848                 return -ENODEV;
849
850         return phy_mii_ioctl(priv->phydev, rq, cmd);
851 }
852
853 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
854 {
855         unsigned int new_bit_map = 0x0;
856         int mask = 0x1 << (max_qs - 1), i;
857         for (i = 0; i < max_qs; i++) {
858                 if (bit_map & mask)
859                         new_bit_map = new_bit_map + (1 << i);
860                 mask = mask >> 0x1;
861         }
862         return new_bit_map;
863 }
864
865 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
866                                    u32 class)
867 {
868         u32 rqfpr = FPR_FILER_MASK;
869         u32 rqfcr = 0x0;
870
871         rqfar--;
872         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
873         priv->ftp_rqfpr[rqfar] = rqfpr;
874         priv->ftp_rqfcr[rqfar] = rqfcr;
875         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
876
877         rqfar--;
878         rqfcr = RQFCR_CMP_NOMATCH;
879         priv->ftp_rqfpr[rqfar] = rqfpr;
880         priv->ftp_rqfcr[rqfar] = rqfcr;
881         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
882
883         rqfar--;
884         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
885         rqfpr = class;
886         priv->ftp_rqfcr[rqfar] = rqfcr;
887         priv->ftp_rqfpr[rqfar] = rqfpr;
888         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
889
890         rqfar--;
891         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
892         rqfpr = class;
893         priv->ftp_rqfcr[rqfar] = rqfcr;
894         priv->ftp_rqfpr[rqfar] = rqfpr;
895         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
896
897         return rqfar;
898 }
899
900 static void gfar_init_filer_table(struct gfar_private *priv)
901 {
902         int i = 0x0;
903         u32 rqfar = MAX_FILER_IDX;
904         u32 rqfcr = 0x0;
905         u32 rqfpr = FPR_FILER_MASK;
906
907         /* Default rule */
908         rqfcr = RQFCR_CMP_MATCH;
909         priv->ftp_rqfcr[rqfar] = rqfcr;
910         priv->ftp_rqfpr[rqfar] = rqfpr;
911         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
916         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
917         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
918         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
919
920         /* cur_filer_idx indicated the first non-masked rule */
921         priv->cur_filer_idx = rqfar;
922
923         /* Rest are masked rules */
924         rqfcr = RQFCR_CMP_NOMATCH;
925         for (i = 0; i < rqfar; i++) {
926                 priv->ftp_rqfcr[i] = rqfcr;
927                 priv->ftp_rqfpr[i] = rqfpr;
928                 gfar_write_filer(priv, i, rqfcr, rqfpr);
929         }
930 }
931
932 static void gfar_detect_errata(struct gfar_private *priv)
933 {
934         struct device *dev = &priv->ofdev->dev;
935         unsigned int pvr = mfspr(SPRN_PVR);
936         unsigned int svr = mfspr(SPRN_SVR);
937         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
938         unsigned int rev = svr & 0xffff;
939
940         /* MPC8313 Rev 2.0 and higher; All MPC837x */
941         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
942                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943                 priv->errata |= GFAR_ERRATA_74;
944
945         /* MPC8313 and MPC837x all rev */
946         if ((pvr == 0x80850010 && mod == 0x80b0) ||
947                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948                 priv->errata |= GFAR_ERRATA_76;
949
950         /* MPC8313 and MPC837x all rev */
951         if ((pvr == 0x80850010 && mod == 0x80b0) ||
952                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_A002;
954
955         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
956         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
957                         (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
958                 priv->errata |= GFAR_ERRATA_12;
959
960         if (priv->errata)
961                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
962                          priv->errata);
963 }
964
965 /* Set up the ethernet device structure, private data,
966  * and anything else we need before we start */
967 static int gfar_probe(struct platform_device *ofdev)
968 {
969         u32 tempval;
970         struct net_device *dev = NULL;
971         struct gfar_private *priv = NULL;
972         struct gfar __iomem *regs = NULL;
973         int err = 0, i, grp_idx = 0;
974         int len_devname;
975         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
976         u32 isrg = 0;
977         u32 __iomem *baddr;
978
979         err = gfar_of_init(ofdev, &dev);
980
981         if (err)
982                 return err;
983
984         priv = netdev_priv(dev);
985         priv->ndev = dev;
986         priv->ofdev = ofdev;
987         priv->node = ofdev->dev.of_node;
988         SET_NETDEV_DEV(dev, &ofdev->dev);
989
990         spin_lock_init(&priv->bflock);
991         INIT_WORK(&priv->reset_task, gfar_reset_task);
992
993         dev_set_drvdata(&ofdev->dev, priv);
994         regs = priv->gfargrp[0].regs;
995
996         gfar_detect_errata(priv);
997
998         /* Stop the DMA engine now, in case it was running before */
999         /* (The firmware could have used it, and left it running). */
1000         gfar_halt(dev);
1001
1002         /* Reset MAC layer */
1003         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1004
1005         /* We need to delay at least 3 TX clocks */
1006         udelay(2);
1007
1008         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1009         gfar_write(&regs->maccfg1, tempval);
1010
1011         /* Initialize MACCFG2. */
1012         tempval = MACCFG2_INIT_SETTINGS;
1013         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1014                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1015         gfar_write(&regs->maccfg2, tempval);
1016
1017         /* Initialize ECNTRL */
1018         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1019
1020         /* Set the dev->base_addr to the gfar reg region */
1021         dev->base_addr = (unsigned long) regs;
1022
1023         SET_NETDEV_DEV(dev, &ofdev->dev);
1024
1025         /* Fill in the dev structure */
1026         dev->watchdog_timeo = TX_TIMEOUT;
1027         dev->mtu = 1500;
1028         dev->netdev_ops = &gfar_netdev_ops;
1029         dev->ethtool_ops = &gfar_ethtool_ops;
1030
1031         /* Register for napi ...We are registering NAPI for each grp */
1032         for (i = 0; i < priv->num_grps; i++)
1033                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1034
1035         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037                         NETIF_F_RXCSUM;
1038                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039                         NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040         }
1041
1042         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045         }
1046
1047         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048                 priv->extended_hash = 1;
1049                 priv->hash_width = 9;
1050
1051                 priv->hash_regs[0] = &regs->igaddr0;
1052                 priv->hash_regs[1] = &regs->igaddr1;
1053                 priv->hash_regs[2] = &regs->igaddr2;
1054                 priv->hash_regs[3] = &regs->igaddr3;
1055                 priv->hash_regs[4] = &regs->igaddr4;
1056                 priv->hash_regs[5] = &regs->igaddr5;
1057                 priv->hash_regs[6] = &regs->igaddr6;
1058                 priv->hash_regs[7] = &regs->igaddr7;
1059                 priv->hash_regs[8] = &regs->gaddr0;
1060                 priv->hash_regs[9] = &regs->gaddr1;
1061                 priv->hash_regs[10] = &regs->gaddr2;
1062                 priv->hash_regs[11] = &regs->gaddr3;
1063                 priv->hash_regs[12] = &regs->gaddr4;
1064                 priv->hash_regs[13] = &regs->gaddr5;
1065                 priv->hash_regs[14] = &regs->gaddr6;
1066                 priv->hash_regs[15] = &regs->gaddr7;
1067
1068         } else {
1069                 priv->extended_hash = 0;
1070                 priv->hash_width = 8;
1071
1072                 priv->hash_regs[0] = &regs->gaddr0;
1073                 priv->hash_regs[1] = &regs->gaddr1;
1074                 priv->hash_regs[2] = &regs->gaddr2;
1075                 priv->hash_regs[3] = &regs->gaddr3;
1076                 priv->hash_regs[4] = &regs->gaddr4;
1077                 priv->hash_regs[5] = &regs->gaddr5;
1078                 priv->hash_regs[6] = &regs->gaddr6;
1079                 priv->hash_regs[7] = &regs->gaddr7;
1080         }
1081
1082         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083                 priv->padding = DEFAULT_PADDING;
1084         else
1085                 priv->padding = 0;
1086
1087         if (dev->features & NETIF_F_IP_CSUM ||
1088                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089                 dev->hard_header_len += GMAC_FCB_LEN;
1090
1091         /* Program the isrg regs only if number of grps > 1 */
1092         if (priv->num_grps > 1) {
1093                 baddr = &regs->isrg0;
1094                 for (i = 0; i < priv->num_grps; i++) {
1095                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097                         gfar_write(baddr, isrg);
1098                         baddr++;
1099                         isrg = 0x0;
1100                 }
1101         }
1102
1103         /* Need to reverse the bit maps as  bit_map's MSB is q0
1104          * but, for_each_set_bit parses from right to left, which
1105          * basically reverses the queue numbers */
1106         for (i = 0; i< priv->num_grps; i++) {
1107                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1108                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1109                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1110                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1111         }
1112
1113         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1114          * also assign queues to groups */
1115         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1116                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1117                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1118                                 priv->num_rx_queues) {
1119                         priv->gfargrp[grp_idx].num_rx_queues++;
1120                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1121                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1122                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1123                 }
1124                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1125                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1126                                 priv->num_tx_queues) {
1127                         priv->gfargrp[grp_idx].num_tx_queues++;
1128                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1129                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1130                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1131                 }
1132                 priv->gfargrp[grp_idx].rstat = rstat;
1133                 priv->gfargrp[grp_idx].tstat = tstat;
1134                 rstat = tstat =0;
1135         }
1136
1137         gfar_write(&regs->rqueue, rqueue);
1138         gfar_write(&regs->tqueue, tqueue);
1139
1140         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1141
1142         /* Initializing some of the rx/tx queue level parameters */
1143         for (i = 0; i < priv->num_tx_queues; i++) {
1144                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1145                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1146                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1147                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1148         }
1149
1150         for (i = 0; i < priv->num_rx_queues; i++) {
1151                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1152                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1153                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1154         }
1155
1156         /* always enable rx filer*/
1157         priv->rx_filer_enable = 1;
1158         /* Enable most messages by default */
1159         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1160
1161         /* Carrier starts down, phylib will bring it up */
1162         netif_carrier_off(dev);
1163
1164         err = register_netdev(dev);
1165
1166         if (err) {
1167                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1168                 goto register_fail;
1169         }
1170
1171         device_init_wakeup(&dev->dev,
1172                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1173
1174         /* fill out IRQ number and name fields */
1175         len_devname = strlen(dev->name);
1176         for (i = 0; i < priv->num_grps; i++) {
1177                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1178                                 len_devname);
1179                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1180                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1181                                 "_g", sizeof("_g"));
1182                         priv->gfargrp[i].int_name_tx[
1183                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1184                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1185                                 priv->gfargrp[i].int_name_tx)],
1186                                 "_tx", sizeof("_tx") + 1);
1187
1188                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1189                                         len_devname);
1190                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1191                                         "_g", sizeof("_g"));
1192                         priv->gfargrp[i].int_name_rx[
1193                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1194                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1195                                 priv->gfargrp[i].int_name_rx)],
1196                                 "_rx", sizeof("_rx") + 1);
1197
1198                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1199                                         len_devname);
1200                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1201                                 "_g", sizeof("_g"));
1202                         priv->gfargrp[i].int_name_er[strlen(
1203                                         priv->gfargrp[i].int_name_er)] = i+48;
1204                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1205                                 priv->gfargrp[i].int_name_er)],
1206                                 "_er", sizeof("_er") + 1);
1207                 } else
1208                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1209         }
1210
1211         /* Initialize the filer table */
1212         gfar_init_filer_table(priv);
1213
1214         /* Create all the sysfs files */
1215         gfar_init_sysfs(dev);
1216
1217         /* Print out the device info */
1218         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1219
1220         /* Even more device info helps when determining which kernel */
1221         /* provided which set of benchmarks. */
1222         netdev_info(dev, "Running with NAPI enabled\n");
1223         for (i = 0; i < priv->num_rx_queues; i++)
1224                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1225                             i, priv->rx_queue[i]->rx_ring_size);
1226         for(i = 0; i < priv->num_tx_queues; i++)
1227                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1228                             i, priv->tx_queue[i]->tx_ring_size);
1229
1230         return 0;
1231
1232 register_fail:
1233         unmap_group_regs(priv);
1234         free_tx_pointers(priv);
1235         free_rx_pointers(priv);
1236         if (priv->phy_node)
1237                 of_node_put(priv->phy_node);
1238         if (priv->tbi_node)
1239                 of_node_put(priv->tbi_node);
1240         free_netdev(dev);
1241         return err;
1242 }
1243
1244 static int gfar_remove(struct platform_device *ofdev)
1245 {
1246         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1247
1248         if (priv->phy_node)
1249                 of_node_put(priv->phy_node);
1250         if (priv->tbi_node)
1251                 of_node_put(priv->tbi_node);
1252
1253         dev_set_drvdata(&ofdev->dev, NULL);
1254
1255         unregister_netdev(priv->ndev);
1256         unmap_group_regs(priv);
1257         free_netdev(priv->ndev);
1258
1259         return 0;
1260 }
1261
1262 #ifdef CONFIG_PM
1263
1264 static int gfar_suspend(struct device *dev)
1265 {
1266         struct gfar_private *priv = dev_get_drvdata(dev);
1267         struct net_device *ndev = priv->ndev;
1268         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269         unsigned long flags;
1270         u32 tempval;
1271
1272         int magic_packet = priv->wol_en &&
1273                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1274
1275         netif_device_detach(ndev);
1276
1277         if (netif_running(ndev)) {
1278
1279                 local_irq_save(flags);
1280                 lock_tx_qs(priv);
1281                 lock_rx_qs(priv);
1282
1283                 gfar_halt_nodisable(ndev);
1284
1285                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286                 tempval = gfar_read(&regs->maccfg1);
1287
1288                 tempval &= ~MACCFG1_TX_EN;
1289
1290                 if (!magic_packet)
1291                         tempval &= ~MACCFG1_RX_EN;
1292
1293                 gfar_write(&regs->maccfg1, tempval);
1294
1295                 unlock_rx_qs(priv);
1296                 unlock_tx_qs(priv);
1297                 local_irq_restore(flags);
1298
1299                 disable_napi(priv);
1300
1301                 if (magic_packet) {
1302                         /* Enable interrupt on Magic Packet */
1303                         gfar_write(&regs->imask, IMASK_MAG);
1304
1305                         /* Enable Magic Packet mode */
1306                         tempval = gfar_read(&regs->maccfg2);
1307                         tempval |= MACCFG2_MPEN;
1308                         gfar_write(&regs->maccfg2, tempval);
1309                 } else {
1310                         phy_stop(priv->phydev);
1311                 }
1312         }
1313
1314         return 0;
1315 }
1316
1317 static int gfar_resume(struct device *dev)
1318 {
1319         struct gfar_private *priv = dev_get_drvdata(dev);
1320         struct net_device *ndev = priv->ndev;
1321         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322         unsigned long flags;
1323         u32 tempval;
1324         int magic_packet = priv->wol_en &&
1325                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1326
1327         if (!netif_running(ndev)) {
1328                 netif_device_attach(ndev);
1329                 return 0;
1330         }
1331
1332         if (!magic_packet && priv->phydev)
1333                 phy_start(priv->phydev);
1334
1335         /* Disable Magic Packet mode, in case something
1336          * else woke us up.
1337          */
1338         local_irq_save(flags);
1339         lock_tx_qs(priv);
1340         lock_rx_qs(priv);
1341
1342         tempval = gfar_read(&regs->maccfg2);
1343         tempval &= ~MACCFG2_MPEN;
1344         gfar_write(&regs->maccfg2, tempval);
1345
1346         gfar_start(ndev);
1347
1348         unlock_rx_qs(priv);
1349         unlock_tx_qs(priv);
1350         local_irq_restore(flags);
1351
1352         netif_device_attach(ndev);
1353
1354         enable_napi(priv);
1355
1356         return 0;
1357 }
1358
1359 static int gfar_restore(struct device *dev)
1360 {
1361         struct gfar_private *priv = dev_get_drvdata(dev);
1362         struct net_device *ndev = priv->ndev;
1363
1364         if (!netif_running(ndev))
1365                 return 0;
1366
1367         gfar_init_bds(ndev);
1368         init_registers(ndev);
1369         gfar_set_mac_address(ndev);
1370         gfar_init_mac(ndev);
1371         gfar_start(ndev);
1372
1373         priv->oldlink = 0;
1374         priv->oldspeed = 0;
1375         priv->oldduplex = -1;
1376
1377         if (priv->phydev)
1378                 phy_start(priv->phydev);
1379
1380         netif_device_attach(ndev);
1381         enable_napi(priv);
1382
1383         return 0;
1384 }
1385
1386 static struct dev_pm_ops gfar_pm_ops = {
1387         .suspend = gfar_suspend,
1388         .resume = gfar_resume,
1389         .freeze = gfar_suspend,
1390         .thaw = gfar_resume,
1391         .restore = gfar_restore,
1392 };
1393
1394 #define GFAR_PM_OPS (&gfar_pm_ops)
1395
1396 #else
1397
1398 #define GFAR_PM_OPS NULL
1399
1400 #endif
1401
1402 /* Reads the controller's registers to determine what interface
1403  * connects it to the PHY.
1404  */
1405 static phy_interface_t gfar_get_interface(struct net_device *dev)
1406 {
1407         struct gfar_private *priv = netdev_priv(dev);
1408         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1409         u32 ecntrl;
1410
1411         ecntrl = gfar_read(&regs->ecntrl);
1412
1413         if (ecntrl & ECNTRL_SGMII_MODE)
1414                 return PHY_INTERFACE_MODE_SGMII;
1415
1416         if (ecntrl & ECNTRL_TBI_MODE) {
1417                 if (ecntrl & ECNTRL_REDUCED_MODE)
1418                         return PHY_INTERFACE_MODE_RTBI;
1419                 else
1420                         return PHY_INTERFACE_MODE_TBI;
1421         }
1422
1423         if (ecntrl & ECNTRL_REDUCED_MODE) {
1424                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1425                         return PHY_INTERFACE_MODE_RMII;
1426                 else {
1427                         phy_interface_t interface = priv->interface;
1428
1429                         /*
1430                          * This isn't autodetected right now, so it must
1431                          * be set by the device tree or platform code.
1432                          */
1433                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1434                                 return PHY_INTERFACE_MODE_RGMII_ID;
1435
1436                         return PHY_INTERFACE_MODE_RGMII;
1437                 }
1438         }
1439
1440         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1441                 return PHY_INTERFACE_MODE_GMII;
1442
1443         return PHY_INTERFACE_MODE_MII;
1444 }
1445
1446
1447 /* Initializes driver's PHY state, and attaches to the PHY.
1448  * Returns 0 on success.
1449  */
1450 static int init_phy(struct net_device *dev)
1451 {
1452         struct gfar_private *priv = netdev_priv(dev);
1453         uint gigabit_support =
1454                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1455                 SUPPORTED_1000baseT_Full : 0;
1456         phy_interface_t interface;
1457
1458         priv->oldlink = 0;
1459         priv->oldspeed = 0;
1460         priv->oldduplex = -1;
1461
1462         interface = gfar_get_interface(dev);
1463
1464         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1465                                       interface);
1466         if (!priv->phydev)
1467                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1468                                                          interface);
1469         if (!priv->phydev) {
1470                 dev_err(&dev->dev, "could not attach to PHY\n");
1471                 return -ENODEV;
1472         }
1473
1474         if (interface == PHY_INTERFACE_MODE_SGMII)
1475                 gfar_configure_serdes(dev);
1476
1477         /* Remove any features not supported by the controller */
1478         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1479         priv->phydev->advertising = priv->phydev->supported;
1480
1481         return 0;
1482 }
1483
1484 /*
1485  * Initialize TBI PHY interface for communicating with the
1486  * SERDES lynx PHY on the chip.  We communicate with this PHY
1487  * through the MDIO bus on each controller, treating it as a
1488  * "normal" PHY at the address found in the TBIPA register.  We assume
1489  * that the TBIPA register is valid.  Either the MDIO bus code will set
1490  * it to a value that doesn't conflict with other PHYs on the bus, or the
1491  * value doesn't matter, as there are no other PHYs on the bus.
1492  */
1493 static void gfar_configure_serdes(struct net_device *dev)
1494 {
1495         struct gfar_private *priv = netdev_priv(dev);
1496         struct phy_device *tbiphy;
1497
1498         if (!priv->tbi_node) {
1499                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1500                                     "device tree specify a tbi-handle\n");
1501                 return;
1502         }
1503
1504         tbiphy = of_phy_find_device(priv->tbi_node);
1505         if (!tbiphy) {
1506                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1507                 return;
1508         }
1509
1510         /*
1511          * If the link is already up, we must already be ok, and don't need to
1512          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1513          * everything for us?  Resetting it takes the link down and requires
1514          * several seconds for it to come back.
1515          */
1516         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1517                 return;
1518
1519         /* Single clk mode, mii mode off(for serdes communication) */
1520         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1521
1522         phy_write(tbiphy, MII_ADVERTISE,
1523                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1524                         ADVERTISE_1000XPSE_ASYM);
1525
1526         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1527                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1528 }
1529
1530 static void init_registers(struct net_device *dev)
1531 {
1532         struct gfar_private *priv = netdev_priv(dev);
1533         struct gfar __iomem *regs = NULL;
1534         int i = 0;
1535
1536         for (i = 0; i < priv->num_grps; i++) {
1537                 regs = priv->gfargrp[i].regs;
1538                 /* Clear IEVENT */
1539                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1540
1541                 /* Initialize IMASK */
1542                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1543         }
1544
1545         regs = priv->gfargrp[0].regs;
1546         /* Init hash registers to zero */
1547         gfar_write(&regs->igaddr0, 0);
1548         gfar_write(&regs->igaddr1, 0);
1549         gfar_write(&regs->igaddr2, 0);
1550         gfar_write(&regs->igaddr3, 0);
1551         gfar_write(&regs->igaddr4, 0);
1552         gfar_write(&regs->igaddr5, 0);
1553         gfar_write(&regs->igaddr6, 0);
1554         gfar_write(&regs->igaddr7, 0);
1555
1556         gfar_write(&regs->gaddr0, 0);
1557         gfar_write(&regs->gaddr1, 0);
1558         gfar_write(&regs->gaddr2, 0);
1559         gfar_write(&regs->gaddr3, 0);
1560         gfar_write(&regs->gaddr4, 0);
1561         gfar_write(&regs->gaddr5, 0);
1562         gfar_write(&regs->gaddr6, 0);
1563         gfar_write(&regs->gaddr7, 0);
1564
1565         /* Zero out the rmon mib registers if it has them */
1566         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1567                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1568
1569                 /* Mask off the CAM interrupts */
1570                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1571                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1572         }
1573
1574         /* Initialize the max receive buffer length */
1575         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1576
1577         /* Initialize the Minimum Frame Length Register */
1578         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1579 }
1580
1581 static int __gfar_is_rx_idle(struct gfar_private *priv)
1582 {
1583         u32 res;
1584
1585         /*
1586          * Normaly TSEC should not hang on GRS commands, so we should
1587          * actually wait for IEVENT_GRSC flag.
1588          */
1589         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1590                 return 0;
1591
1592         /*
1593          * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595          * and the Rx can be safely reset.
1596          */
1597         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1598         res &= 0x7f807f80;
1599         if ((res & 0xffff) == (res >> 16))
1600                 return 1;
1601
1602         return 0;
1603 }
1604
1605 /* Halt the receive and transmit queues */
1606 static void gfar_halt_nodisable(struct net_device *dev)
1607 {
1608         struct gfar_private *priv = netdev_priv(dev);
1609         struct gfar __iomem *regs = NULL;
1610         u32 tempval;
1611         int i = 0;
1612
1613         for (i = 0; i < priv->num_grps; i++) {
1614                 regs = priv->gfargrp[i].regs;
1615                 /* Mask all interrupts */
1616                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1617
1618                 /* Clear all interrupts */
1619                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1620         }
1621
1622         regs = priv->gfargrp[0].regs;
1623         /* Stop the DMA, and wait for it to stop */
1624         tempval = gfar_read(&regs->dmactrl);
1625         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1626             != (DMACTRL_GRS | DMACTRL_GTS)) {
1627                 int ret;
1628
1629                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1630                 gfar_write(&regs->dmactrl, tempval);
1631
1632                 do {
1633                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1634                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1635                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1636                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1637                                 ret = __gfar_is_rx_idle(priv);
1638                 } while (!ret);
1639         }
1640 }
1641
1642 /* Halt the receive and transmit queues */
1643 void gfar_halt(struct net_device *dev)
1644 {
1645         struct gfar_private *priv = netdev_priv(dev);
1646         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647         u32 tempval;
1648
1649         gfar_halt_nodisable(dev);
1650
1651         /* Disable Rx and Tx */
1652         tempval = gfar_read(&regs->maccfg1);
1653         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1654         gfar_write(&regs->maccfg1, tempval);
1655 }
1656
1657 static void free_grp_irqs(struct gfar_priv_grp *grp)
1658 {
1659         free_irq(grp->interruptError, grp);
1660         free_irq(grp->interruptTransmit, grp);
1661         free_irq(grp->interruptReceive, grp);
1662 }
1663
1664 void stop_gfar(struct net_device *dev)
1665 {
1666         struct gfar_private *priv = netdev_priv(dev);
1667         unsigned long flags;
1668         int i;
1669
1670         phy_stop(priv->phydev);
1671
1672
1673         /* Lock it down */
1674         local_irq_save(flags);
1675         lock_tx_qs(priv);
1676         lock_rx_qs(priv);
1677
1678         gfar_halt(dev);
1679
1680         unlock_rx_qs(priv);
1681         unlock_tx_qs(priv);
1682         local_irq_restore(flags);
1683
1684         /* Free the IRQs */
1685         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1686                 for (i = 0; i < priv->num_grps; i++)
1687                         free_grp_irqs(&priv->gfargrp[i]);
1688         } else {
1689                 for (i = 0; i < priv->num_grps; i++)
1690                         free_irq(priv->gfargrp[i].interruptTransmit,
1691                                         &priv->gfargrp[i]);
1692         }
1693
1694         free_skb_resources(priv);
1695 }
1696
1697 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1698 {
1699         struct txbd8 *txbdp;
1700         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1701         int i, j;
1702
1703         txbdp = tx_queue->tx_bd_base;
1704
1705         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1706                 if (!tx_queue->tx_skbuff[i])
1707                         continue;
1708
1709                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1710                                 txbdp->length, DMA_TO_DEVICE);
1711                 txbdp->lstatus = 0;
1712                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1713                                 j++) {
1714                         txbdp++;
1715                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1716                                         txbdp->length, DMA_TO_DEVICE);
1717                 }
1718                 txbdp++;
1719                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1720                 tx_queue->tx_skbuff[i] = NULL;
1721         }
1722         kfree(tx_queue->tx_skbuff);
1723 }
1724
1725 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1726 {
1727         struct rxbd8 *rxbdp;
1728         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1729         int i;
1730
1731         rxbdp = rx_queue->rx_bd_base;
1732
1733         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1734                 if (rx_queue->rx_skbuff[i]) {
1735                         dma_unmap_single(&priv->ofdev->dev,
1736                                         rxbdp->bufPtr, priv->rx_buffer_size,
1737                                         DMA_FROM_DEVICE);
1738                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1739                         rx_queue->rx_skbuff[i] = NULL;
1740                 }
1741                 rxbdp->lstatus = 0;
1742                 rxbdp->bufPtr = 0;
1743                 rxbdp++;
1744         }
1745         kfree(rx_queue->rx_skbuff);
1746 }
1747
1748 /* If there are any tx skbs or rx skbs still around, free them.
1749  * Then free tx_skbuff and rx_skbuff */
1750 static void free_skb_resources(struct gfar_private *priv)
1751 {
1752         struct gfar_priv_tx_q *tx_queue = NULL;
1753         struct gfar_priv_rx_q *rx_queue = NULL;
1754         int i;
1755
1756         /* Go through all the buffer descriptors and free their data buffers */
1757         for (i = 0; i < priv->num_tx_queues; i++) {
1758                 tx_queue = priv->tx_queue[i];
1759                 if(tx_queue->tx_skbuff)
1760                         free_skb_tx_queue(tx_queue);
1761         }
1762
1763         for (i = 0; i < priv->num_rx_queues; i++) {
1764                 rx_queue = priv->rx_queue[i];
1765                 if(rx_queue->rx_skbuff)
1766                         free_skb_rx_queue(rx_queue);
1767         }
1768
1769         dma_free_coherent(&priv->ofdev->dev,
1770                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1771                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1772                         priv->tx_queue[0]->tx_bd_base,
1773                         priv->tx_queue[0]->tx_bd_dma_base);
1774         skb_queue_purge(&priv->rx_recycle);
1775 }
1776
1777 void gfar_start(struct net_device *dev)
1778 {
1779         struct gfar_private *priv = netdev_priv(dev);
1780         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1781         u32 tempval;
1782         int i = 0;
1783
1784         /* Enable Rx and Tx in MACCFG1 */
1785         tempval = gfar_read(&regs->maccfg1);
1786         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1787         gfar_write(&regs->maccfg1, tempval);
1788
1789         /* Initialize DMACTRL to have WWR and WOP */
1790         tempval = gfar_read(&regs->dmactrl);
1791         tempval |= DMACTRL_INIT_SETTINGS;
1792         gfar_write(&regs->dmactrl, tempval);
1793
1794         /* Make sure we aren't stopped */
1795         tempval = gfar_read(&regs->dmactrl);
1796         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1797         gfar_write(&regs->dmactrl, tempval);
1798
1799         for (i = 0; i < priv->num_grps; i++) {
1800                 regs = priv->gfargrp[i].regs;
1801                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1802                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1803                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1804                 /* Unmask the interrupts we look for */
1805                 gfar_write(&regs->imask, IMASK_DEFAULT);
1806         }
1807
1808         dev->trans_start = jiffies; /* prevent tx timeout */
1809 }
1810
1811 void gfar_configure_coalescing(struct gfar_private *priv,
1812         unsigned long tx_mask, unsigned long rx_mask)
1813 {
1814         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1815         u32 __iomem *baddr;
1816         int i = 0;
1817
1818         /* Backward compatible case ---- even if we enable
1819          * multiple queues, there's only single reg to program
1820          */
1821         gfar_write(&regs->txic, 0);
1822         if(likely(priv->tx_queue[0]->txcoalescing))
1823                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1824
1825         gfar_write(&regs->rxic, 0);
1826         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1827                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1828
1829         if (priv->mode == MQ_MG_MODE) {
1830                 baddr = &regs->txic0;
1831                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1832                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1833                                 gfar_write(baddr + i, 0);
1834                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1835                         }
1836                 }
1837
1838                 baddr = &regs->rxic0;
1839                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1840                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1841                                 gfar_write(baddr + i, 0);
1842                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1843                         }
1844                 }
1845         }
1846 }
1847
1848 static int register_grp_irqs(struct gfar_priv_grp *grp)
1849 {
1850         struct gfar_private *priv = grp->priv;
1851         struct net_device *dev = priv->ndev;
1852         int err;
1853
1854         /* If the device has multiple interrupts, register for
1855          * them.  Otherwise, only register for the one */
1856         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1857                 /* Install our interrupt handlers for Error,
1858                  * Transmit, and Receive */
1859                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1860                                 grp->int_name_er,grp)) < 0) {
1861                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1862                                   grp->interruptError);
1863
1864                         goto err_irq_fail;
1865                 }
1866
1867                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1868                                 0, grp->int_name_tx, grp)) < 0) {
1869                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870                                   grp->interruptTransmit);
1871                         goto tx_irq_fail;
1872                 }
1873
1874                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1875                                 grp->int_name_rx, grp)) < 0) {
1876                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1877                                   grp->interruptReceive);
1878                         goto rx_irq_fail;
1879                 }
1880         } else {
1881                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882                                 grp->int_name_tx, grp)) < 0) {
1883                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884                                   grp->interruptTransmit);
1885                         goto err_irq_fail;
1886                 }
1887         }
1888
1889         return 0;
1890
1891 rx_irq_fail:
1892         free_irq(grp->interruptTransmit, grp);
1893 tx_irq_fail:
1894         free_irq(grp->interruptError, grp);
1895 err_irq_fail:
1896         return err;
1897
1898 }
1899
1900 /* Bring the controller up and running */
1901 int startup_gfar(struct net_device *ndev)
1902 {
1903         struct gfar_private *priv = netdev_priv(ndev);
1904         struct gfar __iomem *regs = NULL;
1905         int err, i, j;
1906
1907         for (i = 0; i < priv->num_grps; i++) {
1908                 regs= priv->gfargrp[i].regs;
1909                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1910         }
1911
1912         regs= priv->gfargrp[0].regs;
1913         err = gfar_alloc_skb_resources(ndev);
1914         if (err)
1915                 return err;
1916
1917         gfar_init_mac(ndev);
1918
1919         for (i = 0; i < priv->num_grps; i++) {
1920                 err = register_grp_irqs(&priv->gfargrp[i]);
1921                 if (err) {
1922                         for (j = 0; j < i; j++)
1923                                 free_grp_irqs(&priv->gfargrp[j]);
1924                         goto irq_fail;
1925                 }
1926         }
1927
1928         /* Start the controller */
1929         gfar_start(ndev);
1930
1931         phy_start(priv->phydev);
1932
1933         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1934
1935         return 0;
1936
1937 irq_fail:
1938         free_skb_resources(priv);
1939         return err;
1940 }
1941
1942 /* Called when something needs to use the ethernet device */
1943 /* Returns 0 for success. */
1944 static int gfar_enet_open(struct net_device *dev)
1945 {
1946         struct gfar_private *priv = netdev_priv(dev);
1947         int err;
1948
1949         enable_napi(priv);
1950
1951         skb_queue_head_init(&priv->rx_recycle);
1952
1953         /* Initialize a bunch of registers */
1954         init_registers(dev);
1955
1956         gfar_set_mac_address(dev);
1957
1958         err = init_phy(dev);
1959
1960         if (err) {
1961                 disable_napi(priv);
1962                 return err;
1963         }
1964
1965         err = startup_gfar(dev);
1966         if (err) {
1967                 disable_napi(priv);
1968                 return err;
1969         }
1970
1971         netif_tx_start_all_queues(dev);
1972
1973         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1974
1975         return err;
1976 }
1977
1978 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1979 {
1980         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1981
1982         memset(fcb, 0, GMAC_FCB_LEN);
1983
1984         return fcb;
1985 }
1986
1987 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1988 {
1989         u8 flags = 0;
1990
1991         /* If we're here, it's a IP packet with a TCP or UDP
1992          * payload.  We set it to checksum, using a pseudo-header
1993          * we provide
1994          */
1995         flags = TXFCB_DEFAULT;
1996
1997         /* Tell the controller what the protocol is */
1998         /* And provide the already calculated phcs */
1999         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2000                 flags |= TXFCB_UDP;
2001                 fcb->phcs = udp_hdr(skb)->check;
2002         } else
2003                 fcb->phcs = tcp_hdr(skb)->check;
2004
2005         /* l3os is the distance between the start of the
2006          * frame (skb->data) and the start of the IP hdr.
2007          * l4os is the distance between the start of the
2008          * l3 hdr and the l4 hdr */
2009         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2010         fcb->l4os = skb_network_header_len(skb);
2011
2012         fcb->flags = flags;
2013 }
2014
2015 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2016 {
2017         fcb->flags |= TXFCB_VLN;
2018         fcb->vlctl = vlan_tx_tag_get(skb);
2019 }
2020
2021 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2022                                struct txbd8 *base, int ring_size)
2023 {
2024         struct txbd8 *new_bd = bdp + stride;
2025
2026         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2027 }
2028
2029 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2030                 int ring_size)
2031 {
2032         return skip_txbd(bdp, 1, base, ring_size);
2033 }
2034
2035 /* This is called by the kernel when a frame is ready for transmission. */
2036 /* It is pointed to by the dev->hard_start_xmit function pointer */
2037 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2038 {
2039         struct gfar_private *priv = netdev_priv(dev);
2040         struct gfar_priv_tx_q *tx_queue = NULL;
2041         struct netdev_queue *txq;
2042         struct gfar __iomem *regs = NULL;
2043         struct txfcb *fcb = NULL;
2044         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2045         u32 lstatus;
2046         int i, rq = 0, do_tstamp = 0;
2047         u32 bufaddr;
2048         unsigned long flags;
2049         unsigned int nr_frags, nr_txbds, length;
2050
2051         /*
2052          * TOE=1 frames larger than 2500 bytes may see excess delays
2053          * before start of transmission.
2054          */
2055         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2056                         skb->ip_summed == CHECKSUM_PARTIAL &&
2057                         skb->len > 2500)) {
2058                 int ret;
2059
2060                 ret = skb_checksum_help(skb);
2061                 if (ret)
2062                         return ret;
2063         }
2064
2065         rq = skb->queue_mapping;
2066         tx_queue = priv->tx_queue[rq];
2067         txq = netdev_get_tx_queue(dev, rq);
2068         base = tx_queue->tx_bd_base;
2069         regs = tx_queue->grp->regs;
2070
2071         /* check if time stamp should be generated */
2072         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2073                      priv->hwts_tx_en))
2074                 do_tstamp = 1;
2075
2076         /* make space for additional header when fcb is needed */
2077         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2078                         vlan_tx_tag_present(skb) ||
2079                         unlikely(do_tstamp)) &&
2080                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
2081                 struct sk_buff *skb_new;
2082
2083                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2084                 if (!skb_new) {
2085                         dev->stats.tx_errors++;
2086                         kfree_skb(skb);
2087                         return NETDEV_TX_OK;
2088                 }
2089                 kfree_skb(skb);
2090                 skb = skb_new;
2091         }
2092
2093         /* total number of fragments in the SKB */
2094         nr_frags = skb_shinfo(skb)->nr_frags;
2095
2096         /* calculate the required number of TxBDs for this skb */
2097         if (unlikely(do_tstamp))
2098                 nr_txbds = nr_frags + 2;
2099         else
2100                 nr_txbds = nr_frags + 1;
2101
2102         /* check if there is space to queue this packet */
2103         if (nr_txbds > tx_queue->num_txbdfree) {
2104                 /* no space, stop the queue */
2105                 netif_tx_stop_queue(txq);
2106                 dev->stats.tx_fifo_errors++;
2107                 return NETDEV_TX_BUSY;
2108         }
2109
2110         /* Update transmit stats */
2111         tx_queue->stats.tx_bytes += skb->len;
2112         tx_queue->stats.tx_packets++;
2113
2114         txbdp = txbdp_start = tx_queue->cur_tx;
2115         lstatus = txbdp->lstatus;
2116
2117         /* Time stamp insertion requires one additional TxBD */
2118         if (unlikely(do_tstamp))
2119                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2120                                 tx_queue->tx_ring_size);
2121
2122         if (nr_frags == 0) {
2123                 if (unlikely(do_tstamp))
2124                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2125                                         TXBD_INTERRUPT);
2126                 else
2127                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2128         } else {
2129                 /* Place the fragment addresses and lengths into the TxBDs */
2130                 for (i = 0; i < nr_frags; i++) {
2131                         /* Point at the next BD, wrapping as needed */
2132                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2133
2134                         length = skb_shinfo(skb)->frags[i].size;
2135
2136                         lstatus = txbdp->lstatus | length |
2137                                 BD_LFLAG(TXBD_READY);
2138
2139                         /* Handle the last BD specially */
2140                         if (i == nr_frags - 1)
2141                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2142
2143                         bufaddr = dma_map_page(&priv->ofdev->dev,
2144                                         skb_shinfo(skb)->frags[i].page,
2145                                         skb_shinfo(skb)->frags[i].page_offset,
2146                                         length,
2147                                         DMA_TO_DEVICE);
2148
2149                         /* set the TxBD length and buffer pointer */
2150                         txbdp->bufPtr = bufaddr;
2151                         txbdp->lstatus = lstatus;
2152                 }
2153
2154                 lstatus = txbdp_start->lstatus;
2155         }
2156
2157         /* Set up checksumming */
2158         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2159                 fcb = gfar_add_fcb(skb);
2160                 /* as specified by errata */
2161                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2162                              && ((unsigned long)fcb % 0x20) > 0x18)) {
2163                         __skb_pull(skb, GMAC_FCB_LEN);
2164                         skb_checksum_help(skb);
2165                 } else {
2166                         lstatus |= BD_LFLAG(TXBD_TOE);
2167                         gfar_tx_checksum(skb, fcb);
2168                 }
2169         }
2170
2171         if (vlan_tx_tag_present(skb)) {
2172                 if (unlikely(NULL == fcb)) {
2173                         fcb = gfar_add_fcb(skb);
2174                         lstatus |= BD_LFLAG(TXBD_TOE);
2175                 }
2176
2177                 gfar_tx_vlan(skb, fcb);
2178         }
2179
2180         /* Setup tx hardware time stamping if requested */
2181         if (unlikely(do_tstamp)) {
2182                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2183                 if (fcb == NULL)
2184                         fcb = gfar_add_fcb(skb);
2185                 fcb->ptp = 1;
2186                 lstatus |= BD_LFLAG(TXBD_TOE);
2187         }
2188
2189         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2190                         skb_headlen(skb), DMA_TO_DEVICE);
2191
2192         /*
2193          * If time stamping is requested one additional TxBD must be set up. The
2194          * first TxBD points to the FCB and must have a data length of
2195          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2196          * the full frame length.
2197          */
2198         if (unlikely(do_tstamp)) {
2199                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2200                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2201                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2202                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2203         } else {
2204                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2205         }
2206
2207         /*
2208          * We can work in parallel with gfar_clean_tx_ring(), except
2209          * when modifying num_txbdfree. Note that we didn't grab the lock
2210          * when we were reading the num_txbdfree and checking for available
2211          * space, that's because outside of this function it can only grow,
2212          * and once we've got needed space, it cannot suddenly disappear.
2213          *
2214          * The lock also protects us from gfar_error(), which can modify
2215          * regs->tstat and thus retrigger the transfers, which is why we
2216          * also must grab the lock before setting ready bit for the first
2217          * to be transmitted BD.
2218          */
2219         spin_lock_irqsave(&tx_queue->txlock, flags);
2220
2221         /*
2222          * The powerpc-specific eieio() is used, as wmb() has too strong
2223          * semantics (it requires synchronization between cacheable and
2224          * uncacheable mappings, which eieio doesn't provide and which we
2225          * don't need), thus requiring a more expensive sync instruction.  At
2226          * some point, the set of architecture-independent barrier functions
2227          * should be expanded to include weaker barriers.
2228          */
2229         eieio();
2230
2231         txbdp_start->lstatus = lstatus;
2232
2233         eieio(); /* force lstatus write before tx_skbuff */
2234
2235         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2236
2237         /* Update the current skb pointer to the next entry we will use
2238          * (wrapping if necessary) */
2239         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2240                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2241
2242         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2243
2244         /* reduce TxBD free count */
2245         tx_queue->num_txbdfree -= (nr_txbds);
2246
2247         /* If the next BD still needs to be cleaned up, then the bds
2248            are full.  We need to tell the kernel to stop sending us stuff. */
2249         if (!tx_queue->num_txbdfree) {
2250                 netif_tx_stop_queue(txq);
2251
2252                 dev->stats.tx_fifo_errors++;
2253         }
2254
2255         /* Tell the DMA to go go go */
2256         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2257
2258         /* Unlock priv */
2259         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2260
2261         return NETDEV_TX_OK;
2262 }
2263
2264 /* Stops the kernel queue, and halts the controller */
2265 static int gfar_close(struct net_device *dev)
2266 {
2267         struct gfar_private *priv = netdev_priv(dev);
2268
2269         disable_napi(priv);
2270
2271         cancel_work_sync(&priv->reset_task);
2272         stop_gfar(dev);
2273
2274         /* Disconnect from the PHY */
2275         phy_disconnect(priv->phydev);
2276         priv->phydev = NULL;
2277
2278         netif_tx_stop_all_queues(dev);
2279
2280         return 0;
2281 }
2282
2283 /* Changes the mac address if the controller is not running. */
2284 static int gfar_set_mac_address(struct net_device *dev)
2285 {
2286         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2287
2288         return 0;
2289 }
2290
2291 /* Check if rx parser should be activated */
2292 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2293 {
2294         struct gfar __iomem *regs;
2295         u32 tempval;
2296
2297         regs = priv->gfargrp[0].regs;
2298
2299         tempval = gfar_read(&regs->rctrl);
2300         /* If parse is no longer required, then disable parser */
2301         if (tempval & RCTRL_REQ_PARSER)
2302                 tempval |= RCTRL_PRSDEP_INIT;
2303         else
2304                 tempval &= ~RCTRL_PRSDEP_INIT;
2305         gfar_write(&regs->rctrl, tempval);
2306 }
2307
2308 /* Enables and disables VLAN insertion/extraction */
2309 void gfar_vlan_mode(struct net_device *dev, u32 features)
2310 {
2311         struct gfar_private *priv = netdev_priv(dev);
2312         struct gfar __iomem *regs = NULL;
2313         unsigned long flags;
2314         u32 tempval;
2315
2316         regs = priv->gfargrp[0].regs;
2317         local_irq_save(flags);
2318         lock_rx_qs(priv);
2319
2320         if (features & NETIF_F_HW_VLAN_TX) {
2321                 /* Enable VLAN tag insertion */
2322                 tempval = gfar_read(&regs->tctrl);
2323                 tempval |= TCTRL_VLINS;
2324                 gfar_write(&regs->tctrl, tempval);
2325         } else {
2326                 /* Disable VLAN tag insertion */
2327                 tempval = gfar_read(&regs->tctrl);
2328                 tempval &= ~TCTRL_VLINS;
2329                 gfar_write(&regs->tctrl, tempval);
2330         }
2331
2332         if (features & NETIF_F_HW_VLAN_RX) {
2333                 /* Enable VLAN tag extraction */
2334                 tempval = gfar_read(&regs->rctrl);
2335                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2336                 gfar_write(&regs->rctrl, tempval);
2337         } else {
2338                 /* Disable VLAN tag extraction */
2339                 tempval = gfar_read(&regs->rctrl);
2340                 tempval &= ~RCTRL_VLEX;
2341                 gfar_write(&regs->rctrl, tempval);
2342
2343                 gfar_check_rx_parser_mode(priv);
2344         }
2345
2346         gfar_change_mtu(dev, dev->mtu);
2347
2348         unlock_rx_qs(priv);
2349         local_irq_restore(flags);
2350 }
2351
2352 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2353 {
2354         int tempsize, tempval;
2355         struct gfar_private *priv = netdev_priv(dev);
2356         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2357         int oldsize = priv->rx_buffer_size;
2358         int frame_size = new_mtu + ETH_HLEN;
2359
2360         if (gfar_is_vlan_on(priv))
2361                 frame_size += VLAN_HLEN;
2362
2363         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2364                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2365                 return -EINVAL;
2366         }
2367
2368         if (gfar_uses_fcb(priv))
2369                 frame_size += GMAC_FCB_LEN;
2370
2371         frame_size += priv->padding;
2372
2373         tempsize =
2374             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2375             INCREMENTAL_BUFFER_SIZE;
2376
2377         /* Only stop and start the controller if it isn't already
2378          * stopped, and we changed something */
2379         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2380                 stop_gfar(dev);
2381
2382         priv->rx_buffer_size = tempsize;
2383
2384         dev->mtu = new_mtu;
2385
2386         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2387         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2388
2389         /* If the mtu is larger than the max size for standard
2390          * ethernet frames (ie, a jumbo frame), then set maccfg2
2391          * to allow huge frames, and to check the length */
2392         tempval = gfar_read(&regs->maccfg2);
2393
2394         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2395                         gfar_has_errata(priv, GFAR_ERRATA_74))
2396                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2397         else
2398                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2399
2400         gfar_write(&regs->maccfg2, tempval);
2401
2402         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2403                 startup_gfar(dev);
2404
2405         return 0;
2406 }
2407
2408 /* gfar_reset_task gets scheduled when a packet has not been
2409  * transmitted after a set amount of time.
2410  * For now, assume that clearing out all the structures, and
2411  * starting over will fix the problem.
2412  */
2413 static void gfar_reset_task(struct work_struct *work)
2414 {
2415         struct gfar_private *priv = container_of(work, struct gfar_private,
2416                         reset_task);
2417         struct net_device *dev = priv->ndev;
2418
2419         if (dev->flags & IFF_UP) {
2420                 netif_tx_stop_all_queues(dev);
2421                 stop_gfar(dev);
2422                 startup_gfar(dev);
2423                 netif_tx_start_all_queues(dev);
2424         }
2425
2426         netif_tx_schedule_all(dev);
2427 }
2428
2429 static void gfar_timeout(struct net_device *dev)
2430 {
2431         struct gfar_private *priv = netdev_priv(dev);
2432
2433         dev->stats.tx_errors++;
2434         schedule_work(&priv->reset_task);
2435 }
2436
2437 static void gfar_align_skb(struct sk_buff *skb)
2438 {
2439         /* We need the data buffer to be aligned properly.  We will reserve
2440          * as many bytes as needed to align the data properly
2441          */
2442         skb_reserve(skb, RXBUF_ALIGNMENT -
2443                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2444 }
2445
2446 /* Interrupt Handler for Transmit complete */
2447 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2448 {
2449         struct net_device *dev = tx_queue->dev;
2450         struct gfar_private *priv = netdev_priv(dev);
2451         struct gfar_priv_rx_q *rx_queue = NULL;
2452         struct txbd8 *bdp, *next = NULL;
2453         struct txbd8 *lbdp = NULL;
2454         struct txbd8 *base = tx_queue->tx_bd_base;
2455         struct sk_buff *skb;
2456         int skb_dirtytx;
2457         int tx_ring_size = tx_queue->tx_ring_size;
2458         int frags = 0, nr_txbds = 0;
2459         int i;
2460         int howmany = 0;
2461         u32 lstatus;
2462         size_t buflen;
2463
2464         rx_queue = priv->rx_queue[tx_queue->qindex];
2465         bdp = tx_queue->dirty_tx;
2466         skb_dirtytx = tx_queue->skb_dirtytx;
2467
2468         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2469                 unsigned long flags;
2470
2471                 frags = skb_shinfo(skb)->nr_frags;
2472
2473                 /*
2474                  * When time stamping, one additional TxBD must be freed.
2475                  * Also, we need to dma_unmap_single() the TxPAL.
2476                  */
2477                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2478                         nr_txbds = frags + 2;
2479                 else
2480                         nr_txbds = frags + 1;
2481
2482                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2483
2484                 lstatus = lbdp->lstatus;
2485
2486                 /* Only clean completed frames */
2487                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2488                                 (lstatus & BD_LENGTH_MASK))
2489                         break;
2490
2491                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2492                         next = next_txbd(bdp, base, tx_ring_size);
2493                         buflen = next->length + GMAC_FCB_LEN;
2494                 } else
2495                         buflen = bdp->length;
2496
2497                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2498                                 buflen, DMA_TO_DEVICE);
2499
2500                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2501                         struct skb_shared_hwtstamps shhwtstamps;
2502                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2503                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2504                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2505                         skb_tstamp_tx(skb, &shhwtstamps);
2506                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2507                         bdp = next;
2508                 }
2509
2510                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511                 bdp = next_txbd(bdp, base, tx_ring_size);
2512
2513                 for (i = 0; i < frags; i++) {
2514                         dma_unmap_page(&priv->ofdev->dev,
2515                                         bdp->bufPtr,
2516                                         bdp->length,
2517                                         DMA_TO_DEVICE);
2518                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2519                         bdp = next_txbd(bdp, base, tx_ring_size);
2520                 }
2521
2522                 /*
2523                  * If there's room in the queue (limit it to rx_buffer_size)
2524                  * we add this skb back into the pool, if it's the right size
2525                  */
2526                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2527                                 skb_recycle_check(skb, priv->rx_buffer_size +
2528                                         RXBUF_ALIGNMENT)) {
2529                         gfar_align_skb(skb);
2530                         skb_queue_head(&priv->rx_recycle, skb);
2531                 } else
2532                         dev_kfree_skb_any(skb);
2533
2534                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2535
2536                 skb_dirtytx = (skb_dirtytx + 1) &
2537                         TX_RING_MOD_MASK(tx_ring_size);
2538
2539                 howmany++;
2540                 spin_lock_irqsave(&tx_queue->txlock, flags);
2541                 tx_queue->num_txbdfree += nr_txbds;
2542                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2543         }
2544
2545         /* If we freed a buffer, we can restart transmission, if necessary */
2546         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2547                 netif_wake_subqueue(dev, tx_queue->qindex);
2548
2549         /* Update dirty indicators */
2550         tx_queue->skb_dirtytx = skb_dirtytx;
2551         tx_queue->dirty_tx = bdp;
2552
2553         return howmany;
2554 }
2555
2556 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2557 {
2558         unsigned long flags;
2559
2560         spin_lock_irqsave(&gfargrp->grplock, flags);
2561         if (napi_schedule_prep(&gfargrp->napi)) {
2562                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2563                 __napi_schedule(&gfargrp->napi);
2564         } else {
2565                 /*
2566                  * Clear IEVENT, so interrupts aren't called again
2567                  * because of the packets that have already arrived.
2568                  */
2569                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2570         }
2571         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2572
2573 }
2574
2575 /* Interrupt Handler for Transmit complete */
2576 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2577 {
2578         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2579         return IRQ_HANDLED;
2580 }
2581
2582 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2583                 struct sk_buff *skb)
2584 {
2585         struct net_device *dev = rx_queue->dev;
2586         struct gfar_private *priv = netdev_priv(dev);
2587         dma_addr_t buf;
2588
2589         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2590                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2591         gfar_init_rxbdp(rx_queue, bdp, buf);
2592 }
2593
2594 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2595 {
2596         struct gfar_private *priv = netdev_priv(dev);
2597         struct sk_buff *skb = NULL;
2598
2599         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2600         if (!skb)
2601                 return NULL;
2602
2603         gfar_align_skb(skb);
2604
2605         return skb;
2606 }
2607
2608 struct sk_buff * gfar_new_skb(struct net_device *dev)
2609 {
2610         struct gfar_private *priv = netdev_priv(dev);
2611         struct sk_buff *skb = NULL;
2612
2613         skb = skb_dequeue(&priv->rx_recycle);
2614         if (!skb)
2615                 skb = gfar_alloc_skb(dev);
2616
2617         return skb;
2618 }
2619
2620 static inline void count_errors(unsigned short status, struct net_device *dev)
2621 {
2622         struct gfar_private *priv = netdev_priv(dev);
2623         struct net_device_stats *stats = &dev->stats;
2624         struct gfar_extra_stats *estats = &priv->extra_stats;
2625
2626         /* If the packet was truncated, none of the other errors
2627          * matter */
2628         if (status & RXBD_TRUNCATED) {
2629                 stats->rx_length_errors++;
2630
2631                 estats->rx_trunc++;
2632
2633                 return;
2634         }
2635         /* Count the errors, if there were any */
2636         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2637                 stats->rx_length_errors++;
2638
2639                 if (status & RXBD_LARGE)
2640                         estats->rx_large++;
2641                 else
2642                         estats->rx_short++;
2643         }
2644         if (status & RXBD_NONOCTET) {
2645                 stats->rx_frame_errors++;
2646                 estats->rx_nonoctet++;
2647         }
2648         if (status & RXBD_CRCERR) {
2649                 estats->rx_crcerr++;
2650                 stats->rx_crc_errors++;
2651         }
2652         if (status & RXBD_OVERRUN) {
2653                 estats->rx_overrun++;
2654                 stats->rx_crc_errors++;
2655         }
2656 }
2657
2658 irqreturn_t gfar_receive(int irq, void *grp_id)
2659 {
2660         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2661         return IRQ_HANDLED;
2662 }
2663
2664 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2665 {
2666         /* If valid headers were found, and valid sums
2667          * were verified, then we tell the kernel that no
2668          * checksumming is necessary.  Otherwise, it is */
2669         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2670                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2671         else
2672                 skb_checksum_none_assert(skb);
2673 }
2674
2675
2676 /* gfar_process_frame() -- handle one incoming packet if skb
2677  * isn't NULL.  */
2678 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2679                               int amount_pull)
2680 {
2681         struct gfar_private *priv = netdev_priv(dev);
2682         struct rxfcb *fcb = NULL;
2683
2684         int ret;
2685
2686         /* fcb is at the beginning if exists */
2687         fcb = (struct rxfcb *)skb->data;
2688
2689         /* Remove the FCB from the skb */
2690         /* Remove the padded bytes, if there are any */
2691         if (amount_pull) {
2692                 skb_record_rx_queue(skb, fcb->rq);
2693                 skb_pull(skb, amount_pull);
2694         }
2695
2696         /* Get receive timestamp from the skb */
2697         if (priv->hwts_rx_en) {
2698                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2699                 u64 *ns = (u64 *) skb->data;
2700                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2701                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2702         }
2703
2704         if (priv->padding)
2705                 skb_pull(skb, priv->padding);
2706
2707         if (dev->features & NETIF_F_RXCSUM)
2708                 gfar_rx_checksum(skb, fcb);
2709
2710         /* Tell the skb what kind of packet this is */
2711         skb->protocol = eth_type_trans(skb, dev);
2712
2713         /* Set vlan tag */
2714         if (fcb->flags & RXFCB_VLN)
2715                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2716
2717         /* Send the packet up the stack */
2718         ret = netif_receive_skb(skb);
2719
2720         if (NET_RX_DROP == ret)
2721                 priv->extra_stats.kernel_dropped++;
2722
2723         return 0;
2724 }
2725
2726 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2727  *   until the budget/quota has been reached. Returns the number
2728  *   of frames handled
2729  */
2730 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2731 {
2732         struct net_device *dev = rx_queue->dev;
2733         struct rxbd8 *bdp, *base;
2734         struct sk_buff *skb;
2735         int pkt_len;
2736         int amount_pull;
2737         int howmany = 0;
2738         struct gfar_private *priv = netdev_priv(dev);
2739
2740         /* Get the first full descriptor */
2741         bdp = rx_queue->cur_rx;
2742         base = rx_queue->rx_bd_base;
2743
2744         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2745
2746         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2747                 struct sk_buff *newskb;
2748                 rmb();
2749
2750                 /* Add another skb for the future */
2751                 newskb = gfar_new_skb(dev);
2752
2753                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2754
2755                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2756                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2757
2758                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2759                                 bdp->length > priv->rx_buffer_size))
2760                         bdp->status = RXBD_LARGE;
2761
2762                 /* We drop the frame if we failed to allocate a new buffer */
2763                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2764                                  bdp->status & RXBD_ERR)) {
2765                         count_errors(bdp->status, dev);
2766
2767                         if (unlikely(!newskb))
2768                                 newskb = skb;
2769                         else if (skb)
2770                                 skb_queue_head(&priv->rx_recycle, skb);
2771                 } else {
2772                         /* Increment the number of packets */
2773                         rx_queue->stats.rx_packets++;
2774                         howmany++;
2775
2776                         if (likely(skb)) {
2777                                 pkt_len = bdp->length - ETH_FCS_LEN;
2778                                 /* Remove the FCS from the packet length */
2779                                 skb_put(skb, pkt_len);
2780                                 rx_queue->stats.rx_bytes += pkt_len;
2781                                 skb_record_rx_queue(skb, rx_queue->qindex);
2782                                 gfar_process_frame(dev, skb, amount_pull);
2783
2784                         } else {
2785                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2786                                 rx_queue->stats.rx_dropped++;
2787                                 priv->extra_stats.rx_skbmissing++;
2788                         }
2789
2790                 }
2791
2792                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2793
2794                 /* Setup the new bdp */
2795                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2796
2797                 /* Update to the next pointer */
2798                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2799
2800                 /* update to point at the next skb */
2801                 rx_queue->skb_currx =
2802                     (rx_queue->skb_currx + 1) &
2803                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2804         }
2805
2806         /* Update the current rxbd pointer to be the next one */
2807         rx_queue->cur_rx = bdp;
2808
2809         return howmany;
2810 }
2811
2812 static int gfar_poll(struct napi_struct *napi, int budget)
2813 {
2814         struct gfar_priv_grp *gfargrp = container_of(napi,
2815                         struct gfar_priv_grp, napi);
2816         struct gfar_private *priv = gfargrp->priv;
2817         struct gfar __iomem *regs = gfargrp->regs;
2818         struct gfar_priv_tx_q *tx_queue = NULL;
2819         struct gfar_priv_rx_q *rx_queue = NULL;
2820         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2821         int tx_cleaned = 0, i, left_over_budget = budget;
2822         unsigned long serviced_queues = 0;
2823         int num_queues = 0;
2824
2825         num_queues = gfargrp->num_rx_queues;
2826         budget_per_queue = budget/num_queues;
2827
2828         /* Clear IEVENT, so interrupts aren't called again
2829          * because of the packets that have already arrived */
2830         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2831
2832         while (num_queues && left_over_budget) {
2833
2834                 budget_per_queue = left_over_budget/num_queues;
2835                 left_over_budget = 0;
2836
2837                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2838                         if (test_bit(i, &serviced_queues))
2839                                 continue;
2840                         rx_queue = priv->rx_queue[i];
2841                         tx_queue = priv->tx_queue[rx_queue->qindex];
2842
2843                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2844                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2845                                                         budget_per_queue);
2846                         rx_cleaned += rx_cleaned_per_queue;
2847                         if(rx_cleaned_per_queue < budget_per_queue) {
2848                                 left_over_budget = left_over_budget +
2849                                         (budget_per_queue - rx_cleaned_per_queue);
2850                                 set_bit(i, &serviced_queues);
2851                                 num_queues--;
2852                         }
2853                 }
2854         }
2855
2856         if (tx_cleaned)
2857                 return budget;
2858
2859         if (rx_cleaned < budget) {
2860                 napi_complete(napi);
2861
2862                 /* Clear the halt bit in RSTAT */
2863                 gfar_write(&regs->rstat, gfargrp->rstat);
2864
2865                 gfar_write(&regs->imask, IMASK_DEFAULT);
2866
2867                 /* If we are coalescing interrupts, update the timer */
2868                 /* Otherwise, clear it */
2869                 gfar_configure_coalescing(priv,
2870                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2871         }
2872
2873         return rx_cleaned;
2874 }
2875
2876 #ifdef CONFIG_NET_POLL_CONTROLLER
2877 /*
2878  * Polling 'interrupt' - used by things like netconsole to send skbs
2879  * without having to re-enable interrupts. It's not called while
2880  * the interrupt routine is executing.
2881  */
2882 static void gfar_netpoll(struct net_device *dev)
2883 {
2884         struct gfar_private *priv = netdev_priv(dev);
2885         int i = 0;
2886
2887         /* If the device has multiple interrupts, run tx/rx */
2888         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2889                 for (i = 0; i < priv->num_grps; i++) {
2890                         disable_irq(priv->gfargrp[i].interruptTransmit);
2891                         disable_irq(priv->gfargrp[i].interruptReceive);
2892                         disable_irq(priv->gfargrp[i].interruptError);
2893                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2894                                                 &priv->gfargrp[i]);
2895                         enable_irq(priv->gfargrp[i].interruptError);
2896                         enable_irq(priv->gfargrp[i].interruptReceive);
2897                         enable_irq(priv->gfargrp[i].interruptTransmit);
2898                 }
2899         } else {
2900                 for (i = 0; i < priv->num_grps; i++) {
2901                         disable_irq(priv->gfargrp[i].interruptTransmit);
2902                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2903                                                 &priv->gfargrp[i]);
2904                         enable_irq(priv->gfargrp[i].interruptTransmit);
2905                 }
2906         }
2907 }
2908 #endif
2909
2910 /* The interrupt handler for devices with one interrupt */
2911 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2912 {
2913         struct gfar_priv_grp *gfargrp = grp_id;
2914
2915         /* Save ievent for future reference */
2916         u32 events = gfar_read(&gfargrp->regs->ievent);
2917
2918         /* Check for reception */
2919         if (events & IEVENT_RX_MASK)
2920                 gfar_receive(irq, grp_id);
2921
2922         /* Check for transmit completion */
2923         if (events & IEVENT_TX_MASK)
2924                 gfar_transmit(irq, grp_id);
2925
2926         /* Check for errors */
2927         if (events & IEVENT_ERR_MASK)
2928                 gfar_error(irq, grp_id);
2929
2930         return IRQ_HANDLED;
2931 }
2932
2933 /* Called every time the controller might need to be made
2934  * aware of new link state.  The PHY code conveys this
2935  * information through variables in the phydev structure, and this
2936  * function converts those variables into the appropriate
2937  * register values, and can bring down the device if needed.
2938  */
2939 static void adjust_link(struct net_device *dev)
2940 {
2941         struct gfar_private *priv = netdev_priv(dev);
2942         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2943         unsigned long flags;
2944         struct phy_device *phydev = priv->phydev;
2945         int new_state = 0;
2946
2947         local_irq_save(flags);
2948         lock_tx_qs(priv);
2949
2950         if (phydev->link) {
2951                 u32 tempval = gfar_read(&regs->maccfg2);
2952                 u32 ecntrl = gfar_read(&regs->ecntrl);
2953
2954                 /* Now we make sure that we can be in full duplex mode.
2955                  * If not, we operate in half-duplex mode. */
2956                 if (phydev->duplex != priv->oldduplex) {
2957                         new_state = 1;
2958                         if (!(phydev->duplex))
2959                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2960                         else
2961                                 tempval |= MACCFG2_FULL_DUPLEX;
2962
2963                         priv->oldduplex = phydev->duplex;
2964                 }
2965
2966                 if (phydev->speed != priv->oldspeed) {
2967                         new_state = 1;
2968                         switch (phydev->speed) {
2969                         case 1000:
2970                                 tempval =
2971                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2972
2973                                 ecntrl &= ~(ECNTRL_R100);
2974                                 break;
2975                         case 100:
2976                         case 10:
2977                                 tempval =
2978                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2979
2980                                 /* Reduced mode distinguishes
2981                                  * between 10 and 100 */
2982                                 if (phydev->speed == SPEED_100)
2983                                         ecntrl |= ECNTRL_R100;
2984                                 else
2985                                         ecntrl &= ~(ECNTRL_R100);
2986                                 break;
2987                         default:
2988                                 netif_warn(priv, link, dev,
2989                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
2990                                            phydev->speed);
2991                                 break;
2992                         }
2993
2994                         priv->oldspeed = phydev->speed;
2995                 }
2996
2997                 gfar_write(&regs->maccfg2, tempval);
2998                 gfar_write(&regs->ecntrl, ecntrl);
2999
3000                 if (!priv->oldlink) {
3001                         new_state = 1;
3002                         priv->oldlink = 1;
3003                 }
3004         } else if (priv->oldlink) {
3005                 new_state = 1;
3006                 priv->oldlink = 0;
3007                 priv->oldspeed = 0;
3008                 priv->oldduplex = -1;
3009         }
3010
3011         if (new_state && netif_msg_link(priv))
3012                 phy_print_status(phydev);
3013         unlock_tx_qs(priv);
3014         local_irq_restore(flags);
3015 }
3016
3017 /* Update the hash table based on the current list of multicast
3018  * addresses we subscribe to.  Also, change the promiscuity of
3019  * the device based on the flags (this function is called
3020  * whenever dev->flags is changed */
3021 static void gfar_set_multi(struct net_device *dev)
3022 {
3023         struct netdev_hw_addr *ha;
3024         struct gfar_private *priv = netdev_priv(dev);
3025         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3026         u32 tempval;
3027
3028         if (dev->flags & IFF_PROMISC) {
3029                 /* Set RCTRL to PROM */
3030                 tempval = gfar_read(&regs->rctrl);
3031                 tempval |= RCTRL_PROM;
3032                 gfar_write(&regs->rctrl, tempval);
3033         } else {
3034                 /* Set RCTRL to not PROM */
3035                 tempval = gfar_read(&regs->rctrl);
3036                 tempval &= ~(RCTRL_PROM);
3037                 gfar_write(&regs->rctrl, tempval);
3038         }
3039
3040         if (dev->flags & IFF_ALLMULTI) {
3041                 /* Set the hash to rx all multicast frames */
3042                 gfar_write(&regs->igaddr0, 0xffffffff);
3043                 gfar_write(&regs->igaddr1, 0xffffffff);
3044                 gfar_write(&regs->igaddr2, 0xffffffff);
3045                 gfar_write(&regs->igaddr3, 0xffffffff);
3046                 gfar_write(&regs->igaddr4, 0xffffffff);
3047                 gfar_write(&regs->igaddr5, 0xffffffff);
3048                 gfar_write(&regs->igaddr6, 0xffffffff);
3049                 gfar_write(&regs->igaddr7, 0xffffffff);
3050                 gfar_write(&regs->gaddr0, 0xffffffff);
3051                 gfar_write(&regs->gaddr1, 0xffffffff);
3052                 gfar_write(&regs->gaddr2, 0xffffffff);
3053                 gfar_write(&regs->gaddr3, 0xffffffff);
3054                 gfar_write(&regs->gaddr4, 0xffffffff);
3055                 gfar_write(&regs->gaddr5, 0xffffffff);
3056                 gfar_write(&regs->gaddr6, 0xffffffff);
3057                 gfar_write(&regs->gaddr7, 0xffffffff);
3058         } else {
3059                 int em_num;
3060                 int idx;
3061
3062                 /* zero out the hash */
3063                 gfar_write(&regs->igaddr0, 0x0);
3064                 gfar_write(&regs->igaddr1, 0x0);
3065                 gfar_write(&regs->igaddr2, 0x0);
3066                 gfar_write(&regs->igaddr3, 0x0);
3067                 gfar_write(&regs->igaddr4, 0x0);
3068                 gfar_write(&regs->igaddr5, 0x0);
3069                 gfar_write(&regs->igaddr6, 0x0);
3070                 gfar_write(&regs->igaddr7, 0x0);
3071                 gfar_write(&regs->gaddr0, 0x0);
3072                 gfar_write(&regs->gaddr1, 0x0);
3073                 gfar_write(&regs->gaddr2, 0x0);
3074                 gfar_write(&regs->gaddr3, 0x0);
3075                 gfar_write(&regs->gaddr4, 0x0);
3076                 gfar_write(&regs->gaddr5, 0x0);
3077                 gfar_write(&regs->gaddr6, 0x0);
3078                 gfar_write(&regs->gaddr7, 0x0);
3079
3080                 /* If we have extended hash tables, we need to
3081                  * clear the exact match registers to prepare for
3082                  * setting them */
3083                 if (priv->extended_hash) {
3084                         em_num = GFAR_EM_NUM + 1;
3085                         gfar_clear_exact_match(dev);
3086                         idx = 1;
3087                 } else {
3088                         idx = 0;
3089                         em_num = 0;
3090                 }
3091
3092                 if (netdev_mc_empty(dev))
3093                         return;
3094
3095                 /* Parse the list, and set the appropriate bits */
3096                 netdev_for_each_mc_addr(ha, dev) {
3097                         if (idx < em_num) {
3098                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3099                                 idx++;
3100                         } else
3101                                 gfar_set_hash_for_addr(dev, ha->addr);
3102                 }
3103         }
3104 }
3105
3106
3107 /* Clears each of the exact match registers to zero, so they
3108  * don't interfere with normal reception */
3109 static void gfar_clear_exact_match(struct net_device *dev)
3110 {
3111         int idx;
3112         static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3113
3114         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3115                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3116 }
3117
3118 /* Set the appropriate hash bit for the given addr */
3119 /* The algorithm works like so:
3120  * 1) Take the Destination Address (ie the multicast address), and
3121  * do a CRC on it (little endian), and reverse the bits of the
3122  * result.
3123  * 2) Use the 8 most significant bits as a hash into a 256-entry
3124  * table.  The table is controlled through 8 32-bit registers:
3125  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3126  * gaddr7.  This means that the 3 most significant bits in the
3127  * hash index which gaddr register to use, and the 5 other bits
3128  * indicate which bit (assuming an IBM numbering scheme, which
3129  * for PowerPC (tm) is usually the case) in the register holds
3130  * the entry. */
3131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3132 {
3133         u32 tempval;
3134         struct gfar_private *priv = netdev_priv(dev);
3135         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3136         int width = priv->hash_width;
3137         u8 whichbit = (result >> (32 - width)) & 0x1f;
3138         u8 whichreg = result >> (32 - width + 5);
3139         u32 value = (1 << (31-whichbit));
3140
3141         tempval = gfar_read(priv->hash_regs[whichreg]);
3142         tempval |= value;
3143         gfar_write(priv->hash_regs[whichreg], tempval);
3144 }
3145
3146
3147 /* There are multiple MAC Address register pairs on some controllers
3148  * This function sets the numth pair to a given address
3149  */
3150 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3151                                   const u8 *addr)
3152 {
3153         struct gfar_private *priv = netdev_priv(dev);
3154         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3155         int idx;
3156         char tmpbuf[MAC_ADDR_LEN];
3157         u32 tempval;
3158         u32 __iomem *macptr = &regs->macstnaddr1;
3159
3160         macptr += num*2;
3161
3162         /* Now copy it into the mac registers backwards, cuz */
3163         /* little endian is silly */
3164         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3165                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3166
3167         gfar_write(macptr, *((u32 *) (tmpbuf)));
3168
3169         tempval = *((u32 *) (tmpbuf + 4));
3170
3171         gfar_write(macptr+1, tempval);
3172 }
3173
3174 /* GFAR error interrupt handler */
3175 static irqreturn_t gfar_error(int irq, void *grp_id)
3176 {
3177         struct gfar_priv_grp *gfargrp = grp_id;
3178         struct gfar __iomem *regs = gfargrp->regs;
3179         struct gfar_private *priv= gfargrp->priv;
3180         struct net_device *dev = priv->ndev;
3181
3182         /* Save ievent for future reference */
3183         u32 events = gfar_read(&regs->ievent);
3184
3185         /* Clear IEVENT */
3186         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3187
3188         /* Magic Packet is not an error. */
3189         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3190             (events & IEVENT_MAG))
3191                 events &= ~IEVENT_MAG;
3192
3193         /* Hmm... */
3194         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3195                 netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3196                            events, gfar_read(&regs->imask));
3197
3198         /* Update the error counters */
3199         if (events & IEVENT_TXE) {
3200                 dev->stats.tx_errors++;
3201
3202                 if (events & IEVENT_LC)
3203                         dev->stats.tx_window_errors++;
3204                 if (events & IEVENT_CRL)
3205                         dev->stats.tx_aborted_errors++;
3206                 if (events & IEVENT_XFUN) {
3207                         unsigned long flags;
3208
3209                         netif_dbg(priv, tx_err, dev,
3210                                   "TX FIFO underrun, packet dropped\n");
3211                         dev->stats.tx_dropped++;
3212                         priv->extra_stats.tx_underrun++;
3213
3214                         local_irq_save(flags);
3215                         lock_tx_qs(priv);
3216
3217                         /* Reactivate the Tx Queues */
3218                         gfar_write(&regs->tstat, gfargrp->tstat);
3219
3220                         unlock_tx_qs(priv);
3221                         local_irq_restore(flags);
3222                 }
3223                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3224         }
3225         if (events & IEVENT_BSY) {
3226                 dev->stats.rx_errors++;
3227                 priv->extra_stats.rx_bsy++;
3228
3229                 gfar_receive(irq, grp_id);
3230
3231                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3232                           gfar_read(&regs->rstat));
3233         }
3234         if (events & IEVENT_BABR) {
3235                 dev->stats.rx_errors++;
3236                 priv->extra_stats.rx_babr++;
3237
3238                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3239         }
3240         if (events & IEVENT_EBERR) {
3241                 priv->extra_stats.eberr++;
3242                 netif_dbg(priv, rx_err, dev, "bus error\n");
3243         }
3244         if (events & IEVENT_RXC)
3245                 netif_dbg(priv, rx_status, dev, "control frame\n");
3246
3247         if (events & IEVENT_BABT) {
3248                 priv->extra_stats.tx_babt++;
3249                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3250         }
3251         return IRQ_HANDLED;
3252 }
3253
3254 static struct of_device_id gfar_match[] =
3255 {
3256         {
3257                 .type = "network",
3258                 .compatible = "gianfar",
3259         },
3260         {
3261                 .compatible = "fsl,etsec2",
3262         },
3263         {},
3264 };
3265 MODULE_DEVICE_TABLE(of, gfar_match);
3266
3267 /* Structure for a device driver */
3268 static struct platform_driver gfar_driver = {
3269         .driver = {
3270                 .name = "fsl-gianfar",
3271                 .owner = THIS_MODULE,
3272                 .pm = GFAR_PM_OPS,
3273                 .of_match_table = gfar_match,
3274         },
3275         .probe = gfar_probe,
3276         .remove = gfar_remove,
3277 };
3278
3279 static int __init gfar_init(void)
3280 {
3281         return platform_driver_register(&gfar_driver);
3282 }
3283
3284 static void __exit gfar_exit(void)
3285 {
3286         platform_driver_unregister(&gfar_driver);
3287 }
3288
3289 module_init(gfar_init);
3290 module_exit(gfar_exit);
3291