Merge branch 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / ethernet / sun / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targeted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98
99 #include <net/checksum.h>
100
101 #include <linux/atomic.h>
102 #include <asm/io.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
105
106 #define cas_page_map(x)      kmap_atomic((x))
107 #define cas_page_unmap(x)    kunmap_atomic((x))
108 #define CAS_NCPUS            num_online_cpus()
109
110 #define cas_skb_release(x)  netif_rx(x)
111
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
116
117 #include "cassini.h"
118
119 #define USE_TX_COMPWB      /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
121 #define USE_RX_BLANK       /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
123
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125  * also, we need to make cp->lock finer-grained.
126  */
127 #undef  USE_PCI_INTB
128 #undef  USE_PCI_INTC
129 #undef  USE_PCI_INTD
130 #undef  USE_QOS
131
132 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
133
134 /* rx processing options */
135 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
138 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
139 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
140
141 #define DRV_MODULE_NAME         "cassini"
142 #define DRV_MODULE_VERSION      "1.6"
143 #define DRV_MODULE_RELDATE      "21 May 2008"
144
145 #define CAS_DEF_MSG_ENABLE        \
146         (NETIF_MSG_DRV          | \
147          NETIF_MSG_PROBE        | \
148          NETIF_MSG_LINK         | \
149          NETIF_MSG_TIMER        | \
150          NETIF_MSG_IFDOWN       | \
151          NETIF_MSG_IFUP         | \
152          NETIF_MSG_RX_ERR       | \
153          NETIF_MSG_TX_ERR)
154
155 /* length of time before we decide the hardware is borked,
156  * and dev->tx_timeout() should be called to fix the problem
157  */
158 #define CAS_TX_TIMEOUT                  (HZ)
159 #define CAS_LINK_TIMEOUT                (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT           (1)
161
162 /* timeout values for state changing. these specify the number
163  * of 10us delays to be used before giving up.
164  */
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES     5000
167
168 /* specify a minimum frame size to deal with some fifo issues
169  * max mtu == 2 * page size - ethernet header - 64 - swivel =
170  *            2 * page_size - 0x50
171  */
172 #define CAS_MIN_FRAME                   97
173 #define CAS_1000MB_MIN_FRAME            255
174 #define CAS_MIN_MTU                     60
175 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
176
177 #if 1
178 /*
179  * Eliminate these and use separate atomic counters for each, to
180  * avoid a race condition.
181  */
182 #else
183 #define CAS_RESET_MTU                   1
184 #define CAS_RESET_ALL                   2
185 #define CAS_RESET_SPARE                 3
186 #endif
187
188 static char version[] __devinitdata =
189         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
190
191 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode;
193
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug, int, 0);
199 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode, int, 0);
201 MODULE_PARM_DESC(link_mode, "default link mode");
202
203 /*
204  * Work around for a PCS bug in which the link goes down due to the chip
205  * being confused and never showing a link status of "up."
206  */
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 /*
209  * Value in seconds, for user input.
210  */
211 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
212 module_param(linkdown_timeout, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
215
216 /*
217  * value in 'ticks' (units used by jiffies). Set when we init the
218  * module because 'HZ' in actually a function call on some flavors of
219  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220  */
221 static int link_transition_timeout;
222
223
224
225 static u16 link_modes[] __devinitdata = {
226         BMCR_ANENABLE,                   /* 0 : autoneg */
227         0,                               /* 1 : 10bt half duplex */
228         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
229         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
230         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
231         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
232 };
233
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
235         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
236           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
237         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
238           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239         { 0, }
240 };
241
242 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
243
244 static void cas_set_link_modes(struct cas *cp);
245
246 static inline void cas_lock_tx(struct cas *cp)
247 {
248         int i;
249
250         for (i = 0; i < N_TX_RINGS; i++)
251                 spin_lock(&cp->tx_lock[i]);
252 }
253
254 static inline void cas_lock_all(struct cas *cp)
255 {
256         spin_lock_irq(&cp->lock);
257         cas_lock_tx(cp);
258 }
259
260 /* WTZ: QA was finding deadlock problems with the previous
261  * versions after long test runs with multiple cards per machine.
262  * See if replacing cas_lock_all with safer versions helps. The
263  * symptoms QA is reporting match those we'd expect if interrupts
264  * aren't being properly restored, and we fixed a previous deadlock
265  * with similar symptoms by using save/restore versions in other
266  * places.
267  */
268 #define cas_lock_all_save(cp, flags) \
269 do { \
270         struct cas *xxxcp = (cp); \
271         spin_lock_irqsave(&xxxcp->lock, flags); \
272         cas_lock_tx(xxxcp); \
273 } while (0)
274
275 static inline void cas_unlock_tx(struct cas *cp)
276 {
277         int i;
278
279         for (i = N_TX_RINGS; i > 0; i--)
280                 spin_unlock(&cp->tx_lock[i - 1]);
281 }
282
283 static inline void cas_unlock_all(struct cas *cp)
284 {
285         cas_unlock_tx(cp);
286         spin_unlock_irq(&cp->lock);
287 }
288
289 #define cas_unlock_all_restore(cp, flags) \
290 do { \
291         struct cas *xxxcp = (cp); \
292         cas_unlock_tx(xxxcp); \
293         spin_unlock_irqrestore(&xxxcp->lock, flags); \
294 } while (0)
295
296 static void cas_disable_irq(struct cas *cp, const int ring)
297 {
298         /* Make sure we won't get any more interrupts */
299         if (ring == 0) {
300                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
301                 return;
302         }
303
304         /* disable completion interrupts and selectively mask */
305         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
306                 switch (ring) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
308 #ifdef USE_PCI_INTB
309                 case 1:
310 #endif
311 #ifdef USE_PCI_INTC
312                 case 2:
313 #endif
314 #ifdef USE_PCI_INTD
315                 case 3:
316 #endif
317                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
318                                cp->regs + REG_PLUS_INTRN_MASK(ring));
319                         break;
320 #endif
321                 default:
322                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
323                                REG_PLUS_INTRN_MASK(ring));
324                         break;
325                 }
326         }
327 }
328
329 static inline void cas_mask_intr(struct cas *cp)
330 {
331         int i;
332
333         for (i = 0; i < N_RX_COMP_RINGS; i++)
334                 cas_disable_irq(cp, i);
335 }
336
337 static void cas_enable_irq(struct cas *cp, const int ring)
338 {
339         if (ring == 0) { /* all but TX_DONE */
340                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
341                 return;
342         }
343
344         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
345                 switch (ring) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
347 #ifdef USE_PCI_INTB
348                 case 1:
349 #endif
350 #ifdef USE_PCI_INTC
351                 case 2:
352 #endif
353 #ifdef USE_PCI_INTD
354                 case 3:
355 #endif
356                         writel(INTRN_MASK_RX_EN, cp->regs +
357                                REG_PLUS_INTRN_MASK(ring));
358                         break;
359 #endif
360                 default:
361                         break;
362                 }
363         }
364 }
365
366 static inline void cas_unmask_intr(struct cas *cp)
367 {
368         int i;
369
370         for (i = 0; i < N_RX_COMP_RINGS; i++)
371                 cas_enable_irq(cp, i);
372 }
373
374 static inline void cas_entropy_gather(struct cas *cp)
375 {
376 #ifdef USE_ENTROPY_DEV
377         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
378                 return;
379
380         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
381                             readl(cp->regs + REG_ENTROPY_IV),
382                             sizeof(uint64_t)*8);
383 #endif
384 }
385
386 static inline void cas_entropy_reset(struct cas *cp)
387 {
388 #ifdef USE_ENTROPY_DEV
389         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
390                 return;
391
392         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
393                cp->regs + REG_BIM_LOCAL_DEV_EN);
394         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
395         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
396
397         /* if we read back 0x0, we don't have an entropy device */
398         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
399                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
400 #endif
401 }
402
403 /* access to the phy. the following assumes that we've initialized the MIF to
404  * be in frame rather than bit-bang mode
405  */
406 static u16 cas_phy_read(struct cas *cp, int reg)
407 {
408         u32 cmd;
409         int limit = STOP_TRIES_PHY;
410
411         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
412         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
413         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
414         cmd |= MIF_FRAME_TURN_AROUND_MSB;
415         writel(cmd, cp->regs + REG_MIF_FRAME);
416
417         /* poll for completion */
418         while (limit-- > 0) {
419                 udelay(10);
420                 cmd = readl(cp->regs + REG_MIF_FRAME);
421                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
422                         return cmd & MIF_FRAME_DATA_MASK;
423         }
424         return 0xFFFF; /* -1 */
425 }
426
427 static int cas_phy_write(struct cas *cp, int reg, u16 val)
428 {
429         int limit = STOP_TRIES_PHY;
430         u32 cmd;
431
432         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
433         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
434         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
435         cmd |= MIF_FRAME_TURN_AROUND_MSB;
436         cmd |= val & MIF_FRAME_DATA_MASK;
437         writel(cmd, cp->regs + REG_MIF_FRAME);
438
439         /* poll for completion */
440         while (limit-- > 0) {
441                 udelay(10);
442                 cmd = readl(cp->regs + REG_MIF_FRAME);
443                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
444                         return 0;
445         }
446         return -1;
447 }
448
449 static void cas_phy_powerup(struct cas *cp)
450 {
451         u16 ctl = cas_phy_read(cp, MII_BMCR);
452
453         if ((ctl & BMCR_PDOWN) == 0)
454                 return;
455         ctl &= ~BMCR_PDOWN;
456         cas_phy_write(cp, MII_BMCR, ctl);
457 }
458
459 static void cas_phy_powerdown(struct cas *cp)
460 {
461         u16 ctl = cas_phy_read(cp, MII_BMCR);
462
463         if (ctl & BMCR_PDOWN)
464                 return;
465         ctl |= BMCR_PDOWN;
466         cas_phy_write(cp, MII_BMCR, ctl);
467 }
468
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas *cp, cas_page_t *page)
471 {
472         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
473                        PCI_DMA_FROMDEVICE);
474         __free_pages(page->buffer, cp->page_order);
475         kfree(page);
476         return 0;
477 }
478
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y)       ((x)->used += (y))
481 #define RX_USED_SET(x, y)       ((x)->used  = (y))
482 #else
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
485 #endif
486
487 /* local page allocation routines for the receive buffers. jumbo pages
488  * require at least 8K contiguous and 8K aligned buffers.
489  */
490 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
491 {
492         cas_page_t *page;
493
494         page = kmalloc(sizeof(cas_page_t), flags);
495         if (!page)
496                 return NULL;
497
498         INIT_LIST_HEAD(&page->list);
499         RX_USED_SET(page, 0);
500         page->buffer = alloc_pages(flags, cp->page_order);
501         if (!page->buffer)
502                 goto page_err;
503         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
504                                       cp->page_size, PCI_DMA_FROMDEVICE);
505         return page;
506
507 page_err:
508         kfree(page);
509         return NULL;
510 }
511
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas *cp)
514 {
515         spin_lock(&cp->rx_inuse_lock);
516         INIT_LIST_HEAD(&cp->rx_inuse_list);
517         spin_unlock(&cp->rx_inuse_lock);
518
519         spin_lock(&cp->rx_spare_lock);
520         INIT_LIST_HEAD(&cp->rx_spare_list);
521         cp->rx_spares_needed = RX_SPARE_COUNT;
522         spin_unlock(&cp->rx_spare_lock);
523 }
524
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas *cp)
527 {
528         struct list_head list, *elem, *tmp;
529
530         /* free spare buffers */
531         INIT_LIST_HEAD(&list);
532         spin_lock(&cp->rx_spare_lock);
533         list_splice_init(&cp->rx_spare_list, &list);
534         spin_unlock(&cp->rx_spare_lock);
535         list_for_each_safe(elem, tmp, &list) {
536                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
537         }
538
539         INIT_LIST_HEAD(&list);
540 #if 1
541         /*
542          * Looks like Adrian had protected this with a different
543          * lock than used everywhere else to manipulate this list.
544          */
545         spin_lock(&cp->rx_inuse_lock);
546         list_splice_init(&cp->rx_inuse_list, &list);
547         spin_unlock(&cp->rx_inuse_lock);
548 #else
549         spin_lock(&cp->rx_spare_lock);
550         list_splice_init(&cp->rx_inuse_list, &list);
551         spin_unlock(&cp->rx_spare_lock);
552 #endif
553         list_for_each_safe(elem, tmp, &list) {
554                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
555         }
556 }
557
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
560 {
561         struct list_head list, *elem, *tmp;
562         int needed, i;
563
564         /* check inuse list. if we don't need any more free buffers,
565          * just free it
566          */
567
568         /* make a local copy of the list */
569         INIT_LIST_HEAD(&list);
570         spin_lock(&cp->rx_inuse_lock);
571         list_splice_init(&cp->rx_inuse_list, &list);
572         spin_unlock(&cp->rx_inuse_lock);
573
574         list_for_each_safe(elem, tmp, &list) {
575                 cas_page_t *page = list_entry(elem, cas_page_t, list);
576
577                 /*
578                  * With the lockless pagecache, cassini buffering scheme gets
579                  * slightly less accurate: we might find that a page has an
580                  * elevated reference count here, due to a speculative ref,
581                  * and skip it as in-use. Ideally we would be able to reclaim
582                  * it. However this would be such a rare case, it doesn't
583                  * matter too much as we should pick it up the next time round.
584                  *
585                  * Importantly, if we find that the page has a refcount of 1
586                  * here (our refcount), then we know it is definitely not inuse
587                  * so we can reuse it.
588                  */
589                 if (page_count(page->buffer) > 1)
590                         continue;
591
592                 list_del(elem);
593                 spin_lock(&cp->rx_spare_lock);
594                 if (cp->rx_spares_needed > 0) {
595                         list_add(elem, &cp->rx_spare_list);
596                         cp->rx_spares_needed--;
597                         spin_unlock(&cp->rx_spare_lock);
598                 } else {
599                         spin_unlock(&cp->rx_spare_lock);
600                         cas_page_free(cp, page);
601                 }
602         }
603
604         /* put any inuse buffers back on the list */
605         if (!list_empty(&list)) {
606                 spin_lock(&cp->rx_inuse_lock);
607                 list_splice(&list, &cp->rx_inuse_list);
608                 spin_unlock(&cp->rx_inuse_lock);
609         }
610
611         spin_lock(&cp->rx_spare_lock);
612         needed = cp->rx_spares_needed;
613         spin_unlock(&cp->rx_spare_lock);
614         if (!needed)
615                 return;
616
617         /* we still need spares, so try to allocate some */
618         INIT_LIST_HEAD(&list);
619         i = 0;
620         while (i < needed) {
621                 cas_page_t *spare = cas_page_alloc(cp, flags);
622                 if (!spare)
623                         break;
624                 list_add(&spare->list, &list);
625                 i++;
626         }
627
628         spin_lock(&cp->rx_spare_lock);
629         list_splice(&list, &cp->rx_spare_list);
630         cp->rx_spares_needed -= i;
631         spin_unlock(&cp->rx_spare_lock);
632 }
633
634 /* pull a page from the list. */
635 static cas_page_t *cas_page_dequeue(struct cas *cp)
636 {
637         struct list_head *entry;
638         int recover;
639
640         spin_lock(&cp->rx_spare_lock);
641         if (list_empty(&cp->rx_spare_list)) {
642                 /* try to do a quick recovery */
643                 spin_unlock(&cp->rx_spare_lock);
644                 cas_spare_recover(cp, GFP_ATOMIC);
645                 spin_lock(&cp->rx_spare_lock);
646                 if (list_empty(&cp->rx_spare_list)) {
647                         netif_err(cp, rx_err, cp->dev,
648                                   "no spare buffers available\n");
649                         spin_unlock(&cp->rx_spare_lock);
650                         return NULL;
651                 }
652         }
653
654         entry = cp->rx_spare_list.next;
655         list_del(entry);
656         recover = ++cp->rx_spares_needed;
657         spin_unlock(&cp->rx_spare_lock);
658
659         /* trigger the timer to do the recovery */
660         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
661 #if 1
662                 atomic_inc(&cp->reset_task_pending);
663                 atomic_inc(&cp->reset_task_pending_spare);
664                 schedule_work(&cp->reset_task);
665 #else
666                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
667                 schedule_work(&cp->reset_task);
668 #endif
669         }
670         return list_entry(entry, cas_page_t, list);
671 }
672
673
674 static void cas_mif_poll(struct cas *cp, const int enable)
675 {
676         u32 cfg;
677
678         cfg  = readl(cp->regs + REG_MIF_CFG);
679         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
680
681         if (cp->phy_type & CAS_PHY_MII_MDIO1)
682                 cfg |= MIF_CFG_PHY_SELECT;
683
684         /* poll and interrupt on link status change. */
685         if (enable) {
686                 cfg |= MIF_CFG_POLL_EN;
687                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
688                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
689         }
690         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
691                cp->regs + REG_MIF_MASK);
692         writel(cfg, cp->regs + REG_MIF_CFG);
693 }
694
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
697 {
698         u16 ctl;
699 #if 1
700         int lcntl;
701         int changed = 0;
702         int oldstate = cp->lstate;
703         int link_was_not_down = !(oldstate == link_down);
704 #endif
705         /* Setup link parameters */
706         if (!ep)
707                 goto start_aneg;
708         lcntl = cp->link_cntl;
709         if (ep->autoneg == AUTONEG_ENABLE)
710                 cp->link_cntl = BMCR_ANENABLE;
711         else {
712                 u32 speed = ethtool_cmd_speed(ep);
713                 cp->link_cntl = 0;
714                 if (speed == SPEED_100)
715                         cp->link_cntl |= BMCR_SPEED100;
716                 else if (speed == SPEED_1000)
717                         cp->link_cntl |= CAS_BMCR_SPEED1000;
718                 if (ep->duplex == DUPLEX_FULL)
719                         cp->link_cntl |= BMCR_FULLDPLX;
720         }
721 #if 1
722         changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725         if (cp->lstate == link_up) {
726                 netdev_info(cp->dev, "PCS link down\n");
727         } else {
728                 if (changed) {
729                         netdev_info(cp->dev, "link configuration changed\n");
730                 }
731         }
732         cp->lstate = link_down;
733         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734         if (!cp->hw_running)
735                 return;
736 #if 1
737         /*
738          * WTZ: If the old state was link_up, we turn off the carrier
739          * to replicate everything we do elsewhere on a link-down
740          * event when we were already in a link-up state..
741          */
742         if (oldstate == link_up)
743                 netif_carrier_off(cp->dev);
744         if (changed  && link_was_not_down) {
745                 /*
746                  * WTZ: This branch will simply schedule a full reset after
747                  * we explicitly changed link modes in an ioctl. See if this
748                  * fixes the link-problems we were having for forced mode.
749                  */
750                 atomic_inc(&cp->reset_task_pending);
751                 atomic_inc(&cp->reset_task_pending_all);
752                 schedule_work(&cp->reset_task);
753                 cp->timer_ticks = 0;
754                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755                 return;
756         }
757 #endif
758         if (cp->phy_type & CAS_PHY_SERDES) {
759                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
760
761                 if (cp->link_cntl & BMCR_ANENABLE) {
762                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763                         cp->lstate = link_aneg;
764                 } else {
765                         if (cp->link_cntl & BMCR_FULLDPLX)
766                                 val |= PCS_MII_CTRL_DUPLEX;
767                         val &= ~PCS_MII_AUTONEG_EN;
768                         cp->lstate = link_force_ok;
769                 }
770                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771                 writel(val, cp->regs + REG_PCS_MII_CTRL);
772
773         } else {
774                 cas_mif_poll(cp, 0);
775                 ctl = cas_phy_read(cp, MII_BMCR);
776                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778                 ctl |= cp->link_cntl;
779                 if (ctl & BMCR_ANENABLE) {
780                         ctl |= BMCR_ANRESTART;
781                         cp->lstate = link_aneg;
782                 } else {
783                         cp->lstate = link_force_ok;
784                 }
785                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786                 cas_phy_write(cp, MII_BMCR, ctl);
787                 cas_mif_poll(cp, 1);
788         }
789
790         cp->timer_ticks = 0;
791         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
792 }
793
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
796 {
797         int limit = STOP_TRIES_PHY;
798         u16 val;
799
800         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801         udelay(100);
802         while (--limit) {
803                 val = cas_phy_read(cp, MII_BMCR);
804                 if ((val & BMCR_RESET) == 0)
805                         break;
806                 udelay(10);
807         }
808         return limit <= 0;
809 }
810
811 static int cas_saturn_firmware_init(struct cas *cp)
812 {
813         const struct firmware *fw;
814         const char fw_name[] = "sun/cassini.bin";
815         int err;
816
817         if (PHY_NS_DP83065 != cp->phy_id)
818                 return 0;
819
820         err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821         if (err) {
822                 pr_err("Failed to load firmware \"%s\"\n",
823                        fw_name);
824                 return err;
825         }
826         if (fw->size < 2) {
827                 pr_err("bogus length %zu in \"%s\"\n",
828                        fw->size, fw_name);
829                 err = -EINVAL;
830                 goto out;
831         }
832         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
833         cp->fw_size = fw->size - 2;
834         cp->fw_data = vmalloc(cp->fw_size);
835         if (!cp->fw_data) {
836                 err = -ENOMEM;
837                 goto out;
838         }
839         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
840 out:
841         release_firmware(fw);
842         return err;
843 }
844
845 static void cas_saturn_firmware_load(struct cas *cp)
846 {
847         int i;
848
849         cas_phy_powerdown(cp);
850
851         /* expanded memory access mode */
852         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
853
854         /* pointer configuration for new firmware */
855         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
856         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
857         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
858         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
859         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
860         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
861         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
862         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
863
864         /* download new firmware */
865         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
866         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
867         for (i = 0; i < cp->fw_size; i++)
868                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
869
870         /* enable firmware */
871         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
872         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
873 }
874
875
876 /* phy initialization */
877 static void cas_phy_init(struct cas *cp)
878 {
879         u16 val;
880
881         /* if we're in MII/GMII mode, set up phy */
882         if (CAS_PHY_MII(cp->phy_type)) {
883                 writel(PCS_DATAPATH_MODE_MII,
884                        cp->regs + REG_PCS_DATAPATH_MODE);
885
886                 cas_mif_poll(cp, 0);
887                 cas_reset_mii_phy(cp); /* take out of isolate mode */
888
889                 if (PHY_LUCENT_B0 == cp->phy_id) {
890                         /* workaround link up/down issue with lucent */
891                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
892                         cas_phy_write(cp, MII_BMCR, 0x00f1);
893                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
894
895                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
896                         /* workarounds for broadcom phy */
897                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
898                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
899                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
900                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
901                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
902                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
903                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
904                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
905                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
906                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
907                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
908
909                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
910                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
911                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
912                         if (val & 0x0080) {
913                                 /* link workaround */
914                                 cas_phy_write(cp, BROADCOM_MII_REG4,
915                                               val & ~0x0080);
916                         }
917
918                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
919                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
920                                SATURN_PCFG_FSI : 0x0,
921                                cp->regs + REG_SATURN_PCFG);
922
923                         /* load firmware to address 10Mbps auto-negotiation
924                          * issue. NOTE: this will need to be changed if the
925                          * default firmware gets fixed.
926                          */
927                         if (PHY_NS_DP83065 == cp->phy_id) {
928                                 cas_saturn_firmware_load(cp);
929                         }
930                         cas_phy_powerup(cp);
931                 }
932
933                 /* advertise capabilities */
934                 val = cas_phy_read(cp, MII_BMCR);
935                 val &= ~BMCR_ANENABLE;
936                 cas_phy_write(cp, MII_BMCR, val);
937                 udelay(10);
938
939                 cas_phy_write(cp, MII_ADVERTISE,
940                               cas_phy_read(cp, MII_ADVERTISE) |
941                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
942                                ADVERTISE_100HALF | ADVERTISE_100FULL |
943                                CAS_ADVERTISE_PAUSE |
944                                CAS_ADVERTISE_ASYM_PAUSE));
945
946                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
947                         /* make sure that we don't advertise half
948                          * duplex to avoid a chip issue
949                          */
950                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
951                         val &= ~CAS_ADVERTISE_1000HALF;
952                         val |= CAS_ADVERTISE_1000FULL;
953                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
954                 }
955
956         } else {
957                 /* reset pcs for serdes */
958                 u32 val;
959                 int limit;
960
961                 writel(PCS_DATAPATH_MODE_SERDES,
962                        cp->regs + REG_PCS_DATAPATH_MODE);
963
964                 /* enable serdes pins on saturn */
965                 if (cp->cas_flags & CAS_FLAG_SATURN)
966                         writel(0, cp->regs + REG_SATURN_PCFG);
967
968                 /* Reset PCS unit. */
969                 val = readl(cp->regs + REG_PCS_MII_CTRL);
970                 val |= PCS_MII_RESET;
971                 writel(val, cp->regs + REG_PCS_MII_CTRL);
972
973                 limit = STOP_TRIES;
974                 while (--limit > 0) {
975                         udelay(10);
976                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
977                              PCS_MII_RESET) == 0)
978                                 break;
979                 }
980                 if (limit <= 0)
981                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
982                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
983
984                 /* Make sure PCS is disabled while changing advertisement
985                  * configuration.
986                  */
987                 writel(0x0, cp->regs + REG_PCS_CFG);
988
989                 /* Advertise all capabilities except half-duplex. */
990                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
991                 val &= ~PCS_MII_ADVERT_HD;
992                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
993                         PCS_MII_ADVERT_ASYM_PAUSE);
994                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
995
996                 /* enable PCS */
997                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
998
999                 /* pcs workaround: enable sync detect */
1000                 writel(PCS_SERDES_CTRL_SYNCD_EN,
1001                        cp->regs + REG_PCS_SERDES_CTRL);
1002         }
1003 }
1004
1005
1006 static int cas_pcs_link_check(struct cas *cp)
1007 {
1008         u32 stat, state_machine;
1009         int retval = 0;
1010
1011         /* The link status bit latches on zero, so you must
1012          * read it twice in such a case to see a transition
1013          * to the link being up.
1014          */
1015         stat = readl(cp->regs + REG_PCS_MII_STATUS);
1016         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1017                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018
1019         /* The remote-fault indication is only valid
1020          * when autoneg has completed.
1021          */
1022         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1023                      PCS_MII_STATUS_REMOTE_FAULT)) ==
1024             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1025                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1026
1027         /* work around link detection issue by querying the PCS state
1028          * machine directly.
1029          */
1030         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1031         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1032                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1033         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1034                 stat |= PCS_MII_STATUS_LINK_STATUS;
1035         }
1036
1037         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1038                 if (cp->lstate != link_up) {
1039                         if (cp->opened) {
1040                                 cp->lstate = link_up;
1041                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1042
1043                                 cas_set_link_modes(cp);
1044                                 netif_carrier_on(cp->dev);
1045                         }
1046                 }
1047         } else if (cp->lstate == link_up) {
1048                 cp->lstate = link_down;
1049                 if (link_transition_timeout != 0 &&
1050                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1051                     !cp->link_transition_jiffies_valid) {
1052                         /*
1053                          * force a reset, as a workaround for the
1054                          * link-failure problem. May want to move this to a
1055                          * point a bit earlier in the sequence. If we had
1056                          * generated a reset a short time ago, we'll wait for
1057                          * the link timer to check the status until a
1058                          * timer expires (link_transistion_jiffies_valid is
1059                          * true when the timer is running.)  Instead of using
1060                          * a system timer, we just do a check whenever the
1061                          * link timer is running - this clears the flag after
1062                          * a suitable delay.
1063                          */
1064                         retval = 1;
1065                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066                         cp->link_transition_jiffies = jiffies;
1067                         cp->link_transition_jiffies_valid = 1;
1068                 } else {
1069                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1070                 }
1071                 netif_carrier_off(cp->dev);
1072                 if (cp->opened)
1073                         netif_info(cp, link, cp->dev, "PCS link down\n");
1074
1075                 /* Cassini only: if you force a mode, there can be
1076                  * sync problems on link down. to fix that, the following
1077                  * things need to be checked:
1078                  * 1) read serialink state register
1079                  * 2) read pcs status register to verify link down.
1080                  * 3) if link down and serial link == 0x03, then you need
1081                  *    to global reset the chip.
1082                  */
1083                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1084                         /* should check to see if we're in a forced mode */
1085                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1086                         if (stat == 0x03)
1087                                 return 1;
1088                 }
1089         } else if (cp->lstate == link_down) {
1090                 if (link_transition_timeout != 0 &&
1091                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1092                     !cp->link_transition_jiffies_valid) {
1093                         /* force a reset, as a workaround for the
1094                          * link-failure problem.  May want to move
1095                          * this to a point a bit earlier in the
1096                          * sequence.
1097                          */
1098                         retval = 1;
1099                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1100                         cp->link_transition_jiffies = jiffies;
1101                         cp->link_transition_jiffies_valid = 1;
1102                 } else {
1103                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1104                 }
1105         }
1106
1107         return retval;
1108 }
1109
1110 static int cas_pcs_interrupt(struct net_device *dev,
1111                              struct cas *cp, u32 status)
1112 {
1113         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1114
1115         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1116                 return 0;
1117         return cas_pcs_link_check(cp);
1118 }
1119
1120 static int cas_txmac_interrupt(struct net_device *dev,
1121                                struct cas *cp, u32 status)
1122 {
1123         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1124
1125         if (!txmac_stat)
1126                 return 0;
1127
1128         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1129                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1130
1131         /* Defer timer expiration is quite normal,
1132          * don't even log the event.
1133          */
1134         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1135             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1136                 return 0;
1137
1138         spin_lock(&cp->stat_lock[0]);
1139         if (txmac_stat & MAC_TX_UNDERRUN) {
1140                 netdev_err(dev, "TX MAC xmit underrun\n");
1141                 cp->net_stats[0].tx_fifo_errors++;
1142         }
1143
1144         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1145                 netdev_err(dev, "TX MAC max packet size error\n");
1146                 cp->net_stats[0].tx_errors++;
1147         }
1148
1149         /* The rest are all cases of one of the 16-bit TX
1150          * counters expiring.
1151          */
1152         if (txmac_stat & MAC_TX_COLL_NORMAL)
1153                 cp->net_stats[0].collisions += 0x10000;
1154
1155         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1156                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1157                 cp->net_stats[0].collisions += 0x10000;
1158         }
1159
1160         if (txmac_stat & MAC_TX_COLL_LATE) {
1161                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1162                 cp->net_stats[0].collisions += 0x10000;
1163         }
1164         spin_unlock(&cp->stat_lock[0]);
1165
1166         /* We do not keep track of MAC_TX_COLL_FIRST and
1167          * MAC_TX_PEAK_ATTEMPTS events.
1168          */
1169         return 0;
1170 }
1171
1172 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 {
1174         cas_hp_inst_t *inst;
1175         u32 val;
1176         int i;
1177
1178         i = 0;
1179         while ((inst = firmware) && inst->note) {
1180                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181
1182                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1183                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1184                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185
1186                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1187                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1188                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1189                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1190                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1191                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1192                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1193                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194
1195                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1196                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1197                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1198                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1199                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1200                 ++firmware;
1201                 ++i;
1202         }
1203 }
1204
1205 static void cas_init_rx_dma(struct cas *cp)
1206 {
1207         u64 desc_dma = cp->block_dvma;
1208         u32 val;
1209         int i, size;
1210
1211         /* rx free descriptors */
1212         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1213         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1214         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1215         if ((N_RX_DESC_RINGS > 1) &&
1216             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1217                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1218         writel(val, cp->regs + REG_RX_CFG);
1219
1220         val = (unsigned long) cp->init_rxds[0] -
1221                 (unsigned long) cp->init_block;
1222         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1223         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1224         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225
1226         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1227                 /* rx desc 2 is for IPSEC packets. however,
1228                  * we don't it that for that purpose.
1229                  */
1230                 val = (unsigned long) cp->init_rxds[1] -
1231                         (unsigned long) cp->init_block;
1232                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1233                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1234                        REG_PLUS_RX_DB1_LOW);
1235                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1236                        REG_PLUS_RX_KICK1);
1237         }
1238
1239         /* rx completion registers */
1240         val = (unsigned long) cp->init_rxcs[0] -
1241                 (unsigned long) cp->init_block;
1242         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1243         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244
1245         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1246                 /* rx comp 2-4 */
1247                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1248                         val = (unsigned long) cp->init_rxcs[i] -
1249                                 (unsigned long) cp->init_block;
1250                         writel((desc_dma + val) >> 32, cp->regs +
1251                                REG_PLUS_RX_CBN_HI(i));
1252                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1253                                REG_PLUS_RX_CBN_LOW(i));
1254                 }
1255         }
1256
1257         /* read selective clear regs to prevent spurious interrupts
1258          * on reset because complete == kick.
1259          * selective clear set up to prevent interrupts on resets
1260          */
1261         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1262         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1263         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1264                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1265                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266
1267                 /* 2 is different from 3 and 4 */
1268                 if (N_RX_COMP_RINGS > 1)
1269                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1270                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271
1272                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1273                         writel(INTR_RX_DONE_ALT,
1274                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1275         }
1276
1277         /* set up pause thresholds */
1278         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1279                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1280         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1281                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1282         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283
1284         /* zero out dma reassembly buffers */
1285         for (i = 0; i < 64; i++) {
1286                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1287                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1288                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1289                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1290         }
1291
1292         /* make sure address register is 0 for normal operation */
1293         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1294         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295
1296         /* interrupt mitigation */
1297 #ifdef USE_RX_BLANK
1298         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1299         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1300         writel(val, cp->regs + REG_RX_BLANK);
1301 #else
1302         writel(0x0, cp->regs + REG_RX_BLANK);
1303 #endif
1304
1305         /* interrupt generation as a function of low water marks for
1306          * free desc and completion entries. these are used to trigger
1307          * housekeeping for rx descs. we don't use the free interrupt
1308          * as it's not very useful
1309          */
1310         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1312         writel(val, cp->regs + REG_RX_AE_THRESH);
1313         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1314                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1315                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1316         }
1317
1318         /* Random early detect registers. useful for congestion avoidance.
1319          * this should be tunable.
1320          */
1321         writel(0x0, cp->regs + REG_RX_RED);
1322
1323         /* receive page sizes. default == 2K (0x800) */
1324         val = 0;
1325         if (cp->page_size == 0x1000)
1326                 val = 0x1;
1327         else if (cp->page_size == 0x2000)
1328                 val = 0x2;
1329         else if (cp->page_size == 0x4000)
1330                 val = 0x3;
1331
1332         /* round mtu + offset. constrain to page size. */
1333         size = cp->dev->mtu + 64;
1334         if (size > cp->page_size)
1335                 size = cp->page_size;
1336
1337         if (size <= 0x400)
1338                 i = 0x0;
1339         else if (size <= 0x800)
1340                 i = 0x1;
1341         else if (size <= 0x1000)
1342                 i = 0x2;
1343         else
1344                 i = 0x3;
1345
1346         cp->mtu_stride = 1 << (i + 10);
1347         val  = CAS_BASE(RX_PAGE_SIZE, val);
1348         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1349         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1350         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1351         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352
1353         /* enable the header parser if desired */
1354         if (CAS_HP_FIRMWARE == cas_prog_null)
1355                 return;
1356
1357         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1358         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1359         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1360         writel(val, cp->regs + REG_HP_CFG);
1361 }
1362
1363 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 {
1365         memset(rxc, 0, sizeof(*rxc));
1366         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1367 }
1368
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370  * flipping is protected by the fact that the chip will not
1371  * hand back the same page index while it's being processed.
1372  */
1373 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 {
1375         cas_page_t *page = cp->rx_pages[1][index];
1376         cas_page_t *new;
1377
1378         if (page_count(page->buffer) == 1)
1379                 return page;
1380
1381         new = cas_page_dequeue(cp);
1382         if (new) {
1383                 spin_lock(&cp->rx_inuse_lock);
1384                 list_add(&page->list, &cp->rx_inuse_list);
1385                 spin_unlock(&cp->rx_inuse_lock);
1386         }
1387         return new;
1388 }
1389
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1392                                  const int index)
1393 {
1394         cas_page_t **page0 = cp->rx_pages[0];
1395         cas_page_t **page1 = cp->rx_pages[1];
1396
1397         /* swap if buffer is in use */
1398         if (page_count(page0[index]->buffer) > 1) {
1399                 cas_page_t *new = cas_page_spare(cp, index);
1400                 if (new) {
1401                         page1[index] = page0[index];
1402                         page0[index] = new;
1403                 }
1404         }
1405         RX_USED_SET(page0[index], 0);
1406         return page0[index];
1407 }
1408
1409 static void cas_clean_rxds(struct cas *cp)
1410 {
1411         /* only clean ring 0 as ring 1 is used for spare buffers */
1412         struct cas_rx_desc *rxd = cp->init_rxds[0];
1413         int i, size;
1414
1415         /* release all rx flows */
1416         for (i = 0; i < N_RX_FLOWS; i++) {
1417                 struct sk_buff *skb;
1418                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1419                         cas_skb_release(skb);
1420                 }
1421         }
1422
1423         /* initialize descriptors */
1424         size = RX_DESC_RINGN_SIZE(0);
1425         for (i = 0; i < size; i++) {
1426                 cas_page_t *page = cas_page_swap(cp, 0, i);
1427                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1428                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1429                                             CAS_BASE(RX_INDEX_RING, 0));
1430         }
1431
1432         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1433         cp->rx_last[0] = 0;
1434         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1435 }
1436
1437 static void cas_clean_rxcs(struct cas *cp)
1438 {
1439         int i, j;
1440
1441         /* take ownership of rx comp descriptors */
1442         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1443         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1444         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1445                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1446                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1447                         cas_rxc_init(rxc + j);
1448                 }
1449         }
1450 }
1451
1452 #if 0
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454  * so we do the following.
1455  *
1456  * If any part of the reset goes wrong, we return 1 and that causes the
1457  * whole chip to be reset.
1458  */
1459 static int cas_rxmac_reset(struct cas *cp)
1460 {
1461         struct net_device *dev = cp->dev;
1462         int limit;
1463         u32 val;
1464
1465         /* First, reset MAC RX. */
1466         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1467         for (limit = 0; limit < STOP_TRIES; limit++) {
1468                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1469                         break;
1470                 udelay(10);
1471         }
1472         if (limit == STOP_TRIES) {
1473                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1474                 return 1;
1475         }
1476
1477         /* Second, disable RX DMA. */
1478         writel(0, cp->regs + REG_RX_CFG);
1479         for (limit = 0; limit < STOP_TRIES; limit++) {
1480                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1481                         break;
1482                 udelay(10);
1483         }
1484         if (limit == STOP_TRIES) {
1485                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1486                 return 1;
1487         }
1488
1489         mdelay(5);
1490
1491         /* Execute RX reset command. */
1492         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1493         for (limit = 0; limit < STOP_TRIES; limit++) {
1494                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1495                         break;
1496                 udelay(10);
1497         }
1498         if (limit == STOP_TRIES) {
1499                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1500                 return 1;
1501         }
1502
1503         /* reset driver rx state */
1504         cas_clean_rxds(cp);
1505         cas_clean_rxcs(cp);
1506
1507         /* Now, reprogram the rest of RX unit. */
1508         cas_init_rx_dma(cp);
1509
1510         /* re-enable */
1511         val = readl(cp->regs + REG_RX_CFG);
1512         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1513         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1514         val = readl(cp->regs + REG_MAC_RX_CFG);
1515         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1516         return 0;
1517 }
1518 #endif
1519
1520 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1521                                u32 status)
1522 {
1523         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1524
1525         if (!stat)
1526                 return 0;
1527
1528         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1529
1530         /* these are all rollovers */
1531         spin_lock(&cp->stat_lock[0]);
1532         if (stat & MAC_RX_ALIGN_ERR)
1533                 cp->net_stats[0].rx_frame_errors += 0x10000;
1534
1535         if (stat & MAC_RX_CRC_ERR)
1536                 cp->net_stats[0].rx_crc_errors += 0x10000;
1537
1538         if (stat & MAC_RX_LEN_ERR)
1539                 cp->net_stats[0].rx_length_errors += 0x10000;
1540
1541         if (stat & MAC_RX_OVERFLOW) {
1542                 cp->net_stats[0].rx_over_errors++;
1543                 cp->net_stats[0].rx_fifo_errors++;
1544         }
1545
1546         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1547          * events.
1548          */
1549         spin_unlock(&cp->stat_lock[0]);
1550         return 0;
1551 }
1552
1553 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1554                              u32 status)
1555 {
1556         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1557
1558         if (!stat)
1559                 return 0;
1560
1561         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1562                      "mac interrupt, stat: 0x%x\n", stat);
1563
1564         /* This interrupt is just for pause frame and pause
1565          * tracking.  It is useful for diagnostics and debug
1566          * but probably by default we will mask these events.
1567          */
1568         if (stat & MAC_CTRL_PAUSE_STATE)
1569                 cp->pause_entered++;
1570
1571         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1572                 cp->pause_last_time_recvd = (stat >> 16);
1573
1574         return 0;
1575 }
1576
1577
1578 /* Must be invoked under cp->lock. */
1579 static inline int cas_mdio_link_not_up(struct cas *cp)
1580 {
1581         u16 val;
1582
1583         switch (cp->lstate) {
1584         case link_force_ret:
1585                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1586                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1587                 cp->timer_ticks = 5;
1588                 cp->lstate = link_force_ok;
1589                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1590                 break;
1591
1592         case link_aneg:
1593                 val = cas_phy_read(cp, MII_BMCR);
1594
1595                 /* Try forced modes. we try things in the following order:
1596                  * 1000 full -> 100 full/half -> 10 half
1597                  */
1598                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1599                 val |= BMCR_FULLDPLX;
1600                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1601                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1602                 cas_phy_write(cp, MII_BMCR, val);
1603                 cp->timer_ticks = 5;
1604                 cp->lstate = link_force_try;
1605                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1606                 break;
1607
1608         case link_force_try:
1609                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1610                 val = cas_phy_read(cp, MII_BMCR);
1611                 cp->timer_ticks = 5;
1612                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1613                         val &= ~CAS_BMCR_SPEED1000;
1614                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1615                         cas_phy_write(cp, MII_BMCR, val);
1616                         break;
1617                 }
1618
1619                 if (val & BMCR_SPEED100) {
1620                         if (val & BMCR_FULLDPLX) /* fd failed */
1621                                 val &= ~BMCR_FULLDPLX;
1622                         else { /* 100Mbps failed */
1623                                 val &= ~BMCR_SPEED100;
1624                         }
1625                         cas_phy_write(cp, MII_BMCR, val);
1626                         break;
1627                 }
1628         default:
1629                 break;
1630         }
1631         return 0;
1632 }
1633
1634
1635 /* must be invoked with cp->lock held */
1636 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1637 {
1638         int restart;
1639
1640         if (bmsr & BMSR_LSTATUS) {
1641                 /* Ok, here we got a link. If we had it due to a forced
1642                  * fallback, and we were configured for autoneg, we
1643                  * retry a short autoneg pass. If you know your hub is
1644                  * broken, use ethtool ;)
1645                  */
1646                 if ((cp->lstate == link_force_try) &&
1647                     (cp->link_cntl & BMCR_ANENABLE)) {
1648                         cp->lstate = link_force_ret;
1649                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1650                         cas_mif_poll(cp, 0);
1651                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1652                         cp->timer_ticks = 5;
1653                         if (cp->opened)
1654                                 netif_info(cp, link, cp->dev,
1655                                            "Got link after fallback, retrying autoneg once...\n");
1656                         cas_phy_write(cp, MII_BMCR,
1657                                       cp->link_fcntl | BMCR_ANENABLE |
1658                                       BMCR_ANRESTART);
1659                         cas_mif_poll(cp, 1);
1660
1661                 } else if (cp->lstate != link_up) {
1662                         cp->lstate = link_up;
1663                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1664
1665                         if (cp->opened) {
1666                                 cas_set_link_modes(cp);
1667                                 netif_carrier_on(cp->dev);
1668                         }
1669                 }
1670                 return 0;
1671         }
1672
1673         /* link not up. if the link was previously up, we restart the
1674          * whole process
1675          */
1676         restart = 0;
1677         if (cp->lstate == link_up) {
1678                 cp->lstate = link_down;
1679                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1680
1681                 netif_carrier_off(cp->dev);
1682                 if (cp->opened)
1683                         netif_info(cp, link, cp->dev, "Link down\n");
1684                 restart = 1;
1685
1686         } else if (++cp->timer_ticks > 10)
1687                 cas_mdio_link_not_up(cp);
1688
1689         return restart;
1690 }
1691
1692 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1693                              u32 status)
1694 {
1695         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1696         u16 bmsr;
1697
1698         /* check for a link change */
1699         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1700                 return 0;
1701
1702         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1703         return cas_mii_link_check(cp, bmsr);
1704 }
1705
1706 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1707                              u32 status)
1708 {
1709         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1710
1711         if (!stat)
1712                 return 0;
1713
1714         netdev_err(dev, "PCI error [%04x:%04x]",
1715                    stat, readl(cp->regs + REG_BIM_DIAG));
1716
1717         /* cassini+ has this reserved */
1718         if ((stat & PCI_ERR_BADACK) &&
1719             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1720                 pr_cont(" <No ACK64# during ABS64 cycle>");
1721
1722         if (stat & PCI_ERR_DTRTO)
1723                 pr_cont(" <Delayed transaction timeout>");
1724         if (stat & PCI_ERR_OTHER)
1725                 pr_cont(" <other>");
1726         if (stat & PCI_ERR_BIM_DMA_WRITE)
1727                 pr_cont(" <BIM DMA 0 write req>");
1728         if (stat & PCI_ERR_BIM_DMA_READ)
1729                 pr_cont(" <BIM DMA 0 read req>");
1730         pr_cont("\n");
1731
1732         if (stat & PCI_ERR_OTHER) {
1733                 u16 cfg;
1734
1735                 /* Interrogate PCI config space for the
1736                  * true cause.
1737                  */
1738                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1739                 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1740                 if (cfg & PCI_STATUS_PARITY)
1741                         netdev_err(dev, "PCI parity error detected\n");
1742                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1743                         netdev_err(dev, "PCI target abort\n");
1744                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1745                         netdev_err(dev, "PCI master acks target abort\n");
1746                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1747                         netdev_err(dev, "PCI master abort\n");
1748                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1749                         netdev_err(dev, "PCI system error SERR#\n");
1750                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1751                         netdev_err(dev, "PCI parity error\n");
1752
1753                 /* Write the error bits back to clear them. */
1754                 cfg &= (PCI_STATUS_PARITY |
1755                         PCI_STATUS_SIG_TARGET_ABORT |
1756                         PCI_STATUS_REC_TARGET_ABORT |
1757                         PCI_STATUS_REC_MASTER_ABORT |
1758                         PCI_STATUS_SIG_SYSTEM_ERROR |
1759                         PCI_STATUS_DETECTED_PARITY);
1760                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1761         }
1762
1763         /* For all PCI errors, we should reset the chip. */
1764         return 1;
1765 }
1766
1767 /* All non-normal interrupt conditions get serviced here.
1768  * Returns non-zero if we should just exit the interrupt
1769  * handler right now (ie. if we reset the card which invalidates
1770  * all of the other original irq status bits).
1771  */
1772 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1773                             u32 status)
1774 {
1775         if (status & INTR_RX_TAG_ERROR) {
1776                 /* corrupt RX tag framing */
1777                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1778                              "corrupt rx tag framing\n");
1779                 spin_lock(&cp->stat_lock[0]);
1780                 cp->net_stats[0].rx_errors++;
1781                 spin_unlock(&cp->stat_lock[0]);
1782                 goto do_reset;
1783         }
1784
1785         if (status & INTR_RX_LEN_MISMATCH) {
1786                 /* length mismatch. */
1787                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1788                              "length mismatch for rx frame\n");
1789                 spin_lock(&cp->stat_lock[0]);
1790                 cp->net_stats[0].rx_errors++;
1791                 spin_unlock(&cp->stat_lock[0]);
1792                 goto do_reset;
1793         }
1794
1795         if (status & INTR_PCS_STATUS) {
1796                 if (cas_pcs_interrupt(dev, cp, status))
1797                         goto do_reset;
1798         }
1799
1800         if (status & INTR_TX_MAC_STATUS) {
1801                 if (cas_txmac_interrupt(dev, cp, status))
1802                         goto do_reset;
1803         }
1804
1805         if (status & INTR_RX_MAC_STATUS) {
1806                 if (cas_rxmac_interrupt(dev, cp, status))
1807                         goto do_reset;
1808         }
1809
1810         if (status & INTR_MAC_CTRL_STATUS) {
1811                 if (cas_mac_interrupt(dev, cp, status))
1812                         goto do_reset;
1813         }
1814
1815         if (status & INTR_MIF_STATUS) {
1816                 if (cas_mif_interrupt(dev, cp, status))
1817                         goto do_reset;
1818         }
1819
1820         if (status & INTR_PCI_ERROR_STATUS) {
1821                 if (cas_pci_interrupt(dev, cp, status))
1822                         goto do_reset;
1823         }
1824         return 0;
1825
1826 do_reset:
1827 #if 1
1828         atomic_inc(&cp->reset_task_pending);
1829         atomic_inc(&cp->reset_task_pending_all);
1830         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1831         schedule_work(&cp->reset_task);
1832 #else
1833         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1834         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1835         schedule_work(&cp->reset_task);
1836 #endif
1837         return 1;
1838 }
1839
1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1841  *       determining whether to do a netif_stop/wakeup
1842  */
1843 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1844 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1845 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1846                                   const int len)
1847 {
1848         unsigned long off = addr + len;
1849
1850         if (CAS_TABORT(cp) == 1)
1851                 return 0;
1852         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1853                 return 0;
1854         return TX_TARGET_ABORT_LEN;
1855 }
1856
1857 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 {
1859         struct cas_tx_desc *txds;
1860         struct sk_buff **skbs;
1861         struct net_device *dev = cp->dev;
1862         int entry, count;
1863
1864         spin_lock(&cp->tx_lock[ring]);
1865         txds = cp->init_txds[ring];
1866         skbs = cp->tx_skbs[ring];
1867         entry = cp->tx_old[ring];
1868
1869         count = TX_BUFF_COUNT(ring, entry, limit);
1870         while (entry != limit) {
1871                 struct sk_buff *skb = skbs[entry];
1872                 dma_addr_t daddr;
1873                 u32 dlen;
1874                 int frag;
1875
1876                 if (!skb) {
1877                         /* this should never occur */
1878                         entry = TX_DESC_NEXT(ring, entry);
1879                         continue;
1880                 }
1881
1882                 /* however, we might get only a partial skb release. */
1883                 count -= skb_shinfo(skb)->nr_frags +
1884                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1885                 if (count < 0)
1886                         break;
1887
1888                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1889                              "tx[%d] done, slot %d\n", ring, entry);
1890
1891                 skbs[entry] = NULL;
1892                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1893
1894                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1895                         struct cas_tx_desc *txd = txds + entry;
1896
1897                         daddr = le64_to_cpu(txd->buffer);
1898                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1899                                        le64_to_cpu(txd->control));
1900                         pci_unmap_page(cp->pdev, daddr, dlen,
1901                                        PCI_DMA_TODEVICE);
1902                         entry = TX_DESC_NEXT(ring, entry);
1903
1904                         /* tiny buffer may follow */
1905                         if (cp->tx_tiny_use[ring][entry].used) {
1906                                 cp->tx_tiny_use[ring][entry].used = 0;
1907                                 entry = TX_DESC_NEXT(ring, entry);
1908                         }
1909                 }
1910
1911                 spin_lock(&cp->stat_lock[ring]);
1912                 cp->net_stats[ring].tx_packets++;
1913                 cp->net_stats[ring].tx_bytes += skb->len;
1914                 spin_unlock(&cp->stat_lock[ring]);
1915                 dev_kfree_skb_irq(skb);
1916         }
1917         cp->tx_old[ring] = entry;
1918
1919         /* this is wrong for multiple tx rings. the net device needs
1920          * multiple queues for this to do the right thing.  we wait
1921          * for 2*packets to be available when using tiny buffers
1922          */
1923         if (netif_queue_stopped(dev) &&
1924             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1925                 netif_wake_queue(dev);
1926         spin_unlock(&cp->tx_lock[ring]);
1927 }
1928
1929 static void cas_tx(struct net_device *dev, struct cas *cp,
1930                    u32 status)
1931 {
1932         int limit, ring;
1933 #ifdef USE_TX_COMPWB
1934         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1935 #endif
1936         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1937                      "tx interrupt, status: 0x%x, %llx\n",
1938                      status, (unsigned long long)compwb);
1939         /* process all the rings */
1940         for (ring = 0; ring < N_TX_RINGS; ring++) {
1941 #ifdef USE_TX_COMPWB
1942                 /* use the completion writeback registers */
1943                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1944                         CAS_VAL(TX_COMPWB_LSB, compwb);
1945                 compwb = TX_COMPWB_NEXT(compwb);
1946 #else
1947                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1948 #endif
1949                 if (cp->tx_old[ring] != limit)
1950                         cas_tx_ringN(cp, ring, limit);
1951         }
1952 }
1953
1954
1955 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1956                               int entry, const u64 *words,
1957                               struct sk_buff **skbref)
1958 {
1959         int dlen, hlen, len, i, alloclen;
1960         int off, swivel = RX_SWIVEL_OFF_VAL;
1961         struct cas_page *page;
1962         struct sk_buff *skb;
1963         void *addr, *crcaddr;
1964         __sum16 csum;
1965         char *p;
1966
1967         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1968         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1969         len  = hlen + dlen;
1970
1971         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1972                 alloclen = len;
1973         else
1974                 alloclen = max(hlen, RX_COPY_MIN);
1975
1976         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1977         if (skb == NULL)
1978                 return -1;
1979
1980         *skbref = skb;
1981         skb_reserve(skb, swivel);
1982
1983         p = skb->data;
1984         addr = crcaddr = NULL;
1985         if (hlen) { /* always copy header pages */
1986                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1987                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1988                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1989                         swivel;
1990
1991                 i = hlen;
1992                 if (!dlen) /* attach FCS */
1993                         i += cp->crc_size;
1994                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1995                                     PCI_DMA_FROMDEVICE);
1996                 addr = cas_page_map(page->buffer);
1997                 memcpy(p, addr + off, i);
1998                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1999                                     PCI_DMA_FROMDEVICE);
2000                 cas_page_unmap(addr);
2001                 RX_USED_ADD(page, 0x100);
2002                 p += hlen;
2003                 swivel = 0;
2004         }
2005
2006
2007         if (alloclen < (hlen + dlen)) {
2008                 skb_frag_t *frag = skb_shinfo(skb)->frags;
2009
2010                 /* normal or jumbo packets. we use frags */
2011                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2012                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2013                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2014
2015                 hlen = min(cp->page_size - off, dlen);
2016                 if (hlen < 0) {
2017                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2018                                      "rx page overflow: %d\n", hlen);
2019                         dev_kfree_skb_irq(skb);
2020                         return -1;
2021                 }
2022                 i = hlen;
2023                 if (i == dlen)  /* attach FCS */
2024                         i += cp->crc_size;
2025                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2026                                     PCI_DMA_FROMDEVICE);
2027
2028                 /* make sure we always copy a header */
2029                 swivel = 0;
2030                 if (p == (char *) skb->data) { /* not split */
2031                         addr = cas_page_map(page->buffer);
2032                         memcpy(p, addr + off, RX_COPY_MIN);
2033                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2034                                         PCI_DMA_FROMDEVICE);
2035                         cas_page_unmap(addr);
2036                         off += RX_COPY_MIN;
2037                         swivel = RX_COPY_MIN;
2038                         RX_USED_ADD(page, cp->mtu_stride);
2039                 } else {
2040                         RX_USED_ADD(page, hlen);
2041                 }
2042                 skb_put(skb, alloclen);
2043
2044                 skb_shinfo(skb)->nr_frags++;
2045                 skb->data_len += hlen - swivel;
2046                 skb->truesize += hlen - swivel;
2047                 skb->len      += hlen - swivel;
2048
2049                 __skb_frag_set_page(frag, page->buffer);
2050                 __skb_frag_ref(frag);
2051                 frag->page_offset = off;
2052                 skb_frag_size_set(frag, hlen - swivel);
2053
2054                 /* any more data? */
2055                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2056                         hlen = dlen;
2057                         off = 0;
2058
2059                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2060                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2061                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2062                                             hlen + cp->crc_size,
2063                                             PCI_DMA_FROMDEVICE);
2064                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2065                                             hlen + cp->crc_size,
2066                                             PCI_DMA_FROMDEVICE);
2067
2068                         skb_shinfo(skb)->nr_frags++;
2069                         skb->data_len += hlen;
2070                         skb->len      += hlen;
2071                         frag++;
2072
2073                         __skb_frag_set_page(frag, page->buffer);
2074                         __skb_frag_ref(frag);
2075                         frag->page_offset = 0;
2076                         skb_frag_size_set(frag, hlen);
2077                         RX_USED_ADD(page, hlen + cp->crc_size);
2078                 }
2079
2080                 if (cp->crc_size) {
2081                         addr = cas_page_map(page->buffer);
2082                         crcaddr  = addr + off + hlen;
2083                 }
2084
2085         } else {
2086                 /* copying packet */
2087                 if (!dlen)
2088                         goto end_copy_pkt;
2089
2090                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2091                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2092                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2093                 hlen = min(cp->page_size - off, dlen);
2094                 if (hlen < 0) {
2095                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2096                                      "rx page overflow: %d\n", hlen);
2097                         dev_kfree_skb_irq(skb);
2098                         return -1;
2099                 }
2100                 i = hlen;
2101                 if (i == dlen) /* attach FCS */
2102                         i += cp->crc_size;
2103                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2104                                     PCI_DMA_FROMDEVICE);
2105                 addr = cas_page_map(page->buffer);
2106                 memcpy(p, addr + off, i);
2107                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2108                                     PCI_DMA_FROMDEVICE);
2109                 cas_page_unmap(addr);
2110                 if (p == (char *) skb->data) /* not split */
2111                         RX_USED_ADD(page, cp->mtu_stride);
2112                 else
2113                         RX_USED_ADD(page, i);
2114
2115                 /* any more data? */
2116                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2117                         p += hlen;
2118                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2119                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2120                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2121                                             dlen + cp->crc_size,
2122                                             PCI_DMA_FROMDEVICE);
2123                         addr = cas_page_map(page->buffer);
2124                         memcpy(p, addr, dlen + cp->crc_size);
2125                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2126                                             dlen + cp->crc_size,
2127                                             PCI_DMA_FROMDEVICE);
2128                         cas_page_unmap(addr);
2129                         RX_USED_ADD(page, dlen + cp->crc_size);
2130                 }
2131 end_copy_pkt:
2132                 if (cp->crc_size) {
2133                         addr    = NULL;
2134                         crcaddr = skb->data + alloclen;
2135                 }
2136                 skb_put(skb, alloclen);
2137         }
2138
2139         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2140         if (cp->crc_size) {
2141                 /* checksum includes FCS. strip it out. */
2142                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2143                                               csum_unfold(csum)));
2144                 if (addr)
2145                         cas_page_unmap(addr);
2146         }
2147         skb->protocol = eth_type_trans(skb, cp->dev);
2148         if (skb->protocol == htons(ETH_P_IP)) {
2149                 skb->csum = csum_unfold(~csum);
2150                 skb->ip_summed = CHECKSUM_COMPLETE;
2151         } else
2152                 skb_checksum_none_assert(skb);
2153         return len;
2154 }
2155
2156
2157 /* we can handle up to 64 rx flows at a time. we do the same thing
2158  * as nonreassm except that we batch up the buffers.
2159  * NOTE: we currently just treat each flow as a bunch of packets that
2160  *       we pass up. a better way would be to coalesce the packets
2161  *       into a jumbo packet. to do that, we need to do the following:
2162  *       1) the first packet will have a clean split between header and
2163  *          data. save both.
2164  *       2) each time the next flow packet comes in, extend the
2165  *          data length and merge the checksums.
2166  *       3) on flow release, fix up the header.
2167  *       4) make sure the higher layer doesn't care.
2168  * because packets get coalesced, we shouldn't run into fragment count
2169  * issues.
2170  */
2171 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2172                                    struct sk_buff *skb)
2173 {
2174         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2175         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2176
2177         /* this is protected at a higher layer, so no need to
2178          * do any additional locking here. stick the buffer
2179          * at the end.
2180          */
2181         __skb_queue_tail(flow, skb);
2182         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2183                 while ((skb = __skb_dequeue(flow))) {
2184                         cas_skb_release(skb);
2185                 }
2186         }
2187 }
2188
2189 /* put rx descriptor back on ring. if a buffer is in use by a higher
2190  * layer, this will need to put in a replacement.
2191  */
2192 static void cas_post_page(struct cas *cp, const int ring, const int index)
2193 {
2194         cas_page_t *new;
2195         int entry;
2196
2197         entry = cp->rx_old[ring];
2198
2199         new = cas_page_swap(cp, ring, index);
2200         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2201         cp->init_rxds[ring][entry].index  =
2202                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2203                             CAS_BASE(RX_INDEX_RING, ring));
2204
2205         entry = RX_DESC_ENTRY(ring, entry + 1);
2206         cp->rx_old[ring] = entry;
2207
2208         if (entry % 4)
2209                 return;
2210
2211         if (ring == 0)
2212                 writel(entry, cp->regs + REG_RX_KICK);
2213         else if ((N_RX_DESC_RINGS > 1) &&
2214                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2215                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2216 }
2217
2218
2219 /* only when things are bad */
2220 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2221 {
2222         unsigned int entry, last, count, released;
2223         int cluster;
2224         cas_page_t **page = cp->rx_pages[ring];
2225
2226         entry = cp->rx_old[ring];
2227
2228         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2229                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2230
2231         cluster = -1;
2232         count = entry & 0x3;
2233         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2234         released = 0;
2235         while (entry != last) {
2236                 /* make a new buffer if it's still in use */
2237                 if (page_count(page[entry]->buffer) > 1) {
2238                         cas_page_t *new = cas_page_dequeue(cp);
2239                         if (!new) {
2240                                 /* let the timer know that we need to
2241                                  * do this again
2242                                  */
2243                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2244                                 if (!timer_pending(&cp->link_timer))
2245                                         mod_timer(&cp->link_timer, jiffies +
2246                                                   CAS_LINK_FAST_TIMEOUT);
2247                                 cp->rx_old[ring]  = entry;
2248                                 cp->rx_last[ring] = num ? num - released : 0;
2249                                 return -ENOMEM;
2250                         }
2251                         spin_lock(&cp->rx_inuse_lock);
2252                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2253                         spin_unlock(&cp->rx_inuse_lock);
2254                         cp->init_rxds[ring][entry].buffer =
2255                                 cpu_to_le64(new->dma_addr);
2256                         page[entry] = new;
2257
2258                 }
2259
2260                 if (++count == 4) {
2261                         cluster = entry;
2262                         count = 0;
2263                 }
2264                 released++;
2265                 entry = RX_DESC_ENTRY(ring, entry + 1);
2266         }
2267         cp->rx_old[ring] = entry;
2268
2269         if (cluster < 0)
2270                 return 0;
2271
2272         if (ring == 0)
2273                 writel(cluster, cp->regs + REG_RX_KICK);
2274         else if ((N_RX_DESC_RINGS > 1) &&
2275                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2276                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2277         return 0;
2278 }
2279
2280
2281 /* process a completion ring. packets are set up in three basic ways:
2282  * small packets: should be copied header + data in single buffer.
2283  * large packets: header and data in a single buffer.
2284  * split packets: header in a separate buffer from data.
2285  *                data may be in multiple pages. data may be > 256
2286  *                bytes but in a single page.
2287  *
2288  * NOTE: RX page posting is done in this routine as well. while there's
2289  *       the capability of using multiple RX completion rings, it isn't
2290  *       really worthwhile due to the fact that the page posting will
2291  *       force serialization on the single descriptor ring.
2292  */
2293 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2294 {
2295         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2296         int entry, drops;
2297         int npackets = 0;
2298
2299         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2300                      "rx[%d] interrupt, done: %d/%d\n",
2301                      ring,
2302                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2303
2304         entry = cp->rx_new[ring];
2305         drops = 0;
2306         while (1) {
2307                 struct cas_rx_comp *rxc = rxcs + entry;
2308                 struct sk_buff *uninitialized_var(skb);
2309                 int type, len;
2310                 u64 words[4];
2311                 int i, dring;
2312
2313                 words[0] = le64_to_cpu(rxc->word1);
2314                 words[1] = le64_to_cpu(rxc->word2);
2315                 words[2] = le64_to_cpu(rxc->word3);
2316                 words[3] = le64_to_cpu(rxc->word4);
2317
2318                 /* don't touch if still owned by hw */
2319                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2320                 if (type == 0)
2321                         break;
2322
2323                 /* hw hasn't cleared the zero bit yet */
2324                 if (words[3] & RX_COMP4_ZERO) {
2325                         break;
2326                 }
2327
2328                 /* get info on the packet */
2329                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2330                         spin_lock(&cp->stat_lock[ring]);
2331                         cp->net_stats[ring].rx_errors++;
2332                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2333                                 cp->net_stats[ring].rx_length_errors++;
2334                         if (words[3] & RX_COMP4_BAD)
2335                                 cp->net_stats[ring].rx_crc_errors++;
2336                         spin_unlock(&cp->stat_lock[ring]);
2337
2338                         /* We'll just return it to Cassini. */
2339                 drop_it:
2340                         spin_lock(&cp->stat_lock[ring]);
2341                         ++cp->net_stats[ring].rx_dropped;
2342                         spin_unlock(&cp->stat_lock[ring]);
2343                         goto next;
2344                 }
2345
2346                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2347                 if (len < 0) {
2348                         ++drops;
2349                         goto drop_it;
2350                 }
2351
2352                 /* see if it's a flow re-assembly or not. the driver
2353                  * itself handles release back up.
2354                  */
2355                 if (RX_DONT_BATCH || (type == 0x2)) {
2356                         /* non-reassm: these always get released */
2357                         cas_skb_release(skb);
2358                 } else {
2359                         cas_rx_flow_pkt(cp, words, skb);
2360                 }
2361
2362                 spin_lock(&cp->stat_lock[ring]);
2363                 cp->net_stats[ring].rx_packets++;
2364                 cp->net_stats[ring].rx_bytes += len;
2365                 spin_unlock(&cp->stat_lock[ring]);
2366
2367         next:
2368                 npackets++;
2369
2370                 /* should it be released? */
2371                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2372                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2373                         dring = CAS_VAL(RX_INDEX_RING, i);
2374                         i = CAS_VAL(RX_INDEX_NUM, i);
2375                         cas_post_page(cp, dring, i);
2376                 }
2377
2378                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2379                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2380                         dring = CAS_VAL(RX_INDEX_RING, i);
2381                         i = CAS_VAL(RX_INDEX_NUM, i);
2382                         cas_post_page(cp, dring, i);
2383                 }
2384
2385                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2386                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2387                         dring = CAS_VAL(RX_INDEX_RING, i);
2388                         i = CAS_VAL(RX_INDEX_NUM, i);
2389                         cas_post_page(cp, dring, i);
2390                 }
2391
2392                 /* skip to the next entry */
2393                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2394                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2395 #ifdef USE_NAPI
2396                 if (budget && (npackets >= budget))
2397                         break;
2398 #endif
2399         }
2400         cp->rx_new[ring] = entry;
2401
2402         if (drops)
2403                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2404         return npackets;
2405 }
2406
2407
2408 /* put completion entries back on the ring */
2409 static void cas_post_rxcs_ringN(struct net_device *dev,
2410                                 struct cas *cp, int ring)
2411 {
2412         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2413         int last, entry;
2414
2415         last = cp->rx_cur[ring];
2416         entry = cp->rx_new[ring];
2417         netif_printk(cp, intr, KERN_DEBUG, dev,
2418                      "rxc[%d] interrupt, done: %d/%d\n",
2419                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2420
2421         /* zero and re-mark descriptors */
2422         while (last != entry) {
2423                 cas_rxc_init(rxc + last);
2424                 last = RX_COMP_ENTRY(ring, last + 1);
2425         }
2426         cp->rx_cur[ring] = last;
2427
2428         if (ring == 0)
2429                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2430         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2431                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2432 }
2433
2434
2435
2436 /* cassini can use all four PCI interrupts for the completion ring.
2437  * rings 3 and 4 are identical
2438  */
2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2440 static inline void cas_handle_irqN(struct net_device *dev,
2441                                    struct cas *cp, const u32 status,
2442                                    const int ring)
2443 {
2444         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2445                 cas_post_rxcs_ringN(dev, cp, ring);
2446 }
2447
2448 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2449 {
2450         struct net_device *dev = dev_id;
2451         struct cas *cp = netdev_priv(dev);
2452         unsigned long flags;
2453         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2454         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2455
2456         /* check for shared irq */
2457         if (status == 0)
2458                 return IRQ_NONE;
2459
2460         spin_lock_irqsave(&cp->lock, flags);
2461         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2462 #ifdef USE_NAPI
2463                 cas_mask_intr(cp);
2464                 napi_schedule(&cp->napi);
2465 #else
2466                 cas_rx_ringN(cp, ring, 0);
2467 #endif
2468                 status &= ~INTR_RX_DONE_ALT;
2469         }
2470
2471         if (status)
2472                 cas_handle_irqN(dev, cp, status, ring);
2473         spin_unlock_irqrestore(&cp->lock, flags);
2474         return IRQ_HANDLED;
2475 }
2476 #endif
2477
2478 #ifdef USE_PCI_INTB
2479 /* everything but rx packets */
2480 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2481 {
2482         if (status & INTR_RX_BUF_UNAVAIL_1) {
2483                 /* Frame arrived, no free RX buffers available.
2484                  * NOTE: we can get this on a link transition. */
2485                 cas_post_rxds_ringN(cp, 1, 0);
2486                 spin_lock(&cp->stat_lock[1]);
2487                 cp->net_stats[1].rx_dropped++;
2488                 spin_unlock(&cp->stat_lock[1]);
2489         }
2490
2491         if (status & INTR_RX_BUF_AE_1)
2492                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2493                                     RX_AE_FREEN_VAL(1));
2494
2495         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2496                 cas_post_rxcs_ringN(cp, 1);
2497 }
2498
2499 /* ring 2 handles a few more events than 3 and 4 */
2500 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2501 {
2502         struct net_device *dev = dev_id;
2503         struct cas *cp = netdev_priv(dev);
2504         unsigned long flags;
2505         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2506
2507         /* check for shared interrupt */
2508         if (status == 0)
2509                 return IRQ_NONE;
2510
2511         spin_lock_irqsave(&cp->lock, flags);
2512         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2513 #ifdef USE_NAPI
2514                 cas_mask_intr(cp);
2515                 napi_schedule(&cp->napi);
2516 #else
2517                 cas_rx_ringN(cp, 1, 0);
2518 #endif
2519                 status &= ~INTR_RX_DONE_ALT;
2520         }
2521         if (status)
2522                 cas_handle_irq1(cp, status);
2523         spin_unlock_irqrestore(&cp->lock, flags);
2524         return IRQ_HANDLED;
2525 }
2526 #endif
2527
2528 static inline void cas_handle_irq(struct net_device *dev,
2529                                   struct cas *cp, const u32 status)
2530 {
2531         /* housekeeping interrupts */
2532         if (status & INTR_ERROR_MASK)
2533                 cas_abnormal_irq(dev, cp, status);
2534
2535         if (status & INTR_RX_BUF_UNAVAIL) {
2536                 /* Frame arrived, no free RX buffers available.
2537                  * NOTE: we can get this on a link transition.
2538                  */
2539                 cas_post_rxds_ringN(cp, 0, 0);
2540                 spin_lock(&cp->stat_lock[0]);
2541                 cp->net_stats[0].rx_dropped++;
2542                 spin_unlock(&cp->stat_lock[0]);
2543         } else if (status & INTR_RX_BUF_AE) {
2544                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2545                                     RX_AE_FREEN_VAL(0));
2546         }
2547
2548         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2549                 cas_post_rxcs_ringN(dev, cp, 0);
2550 }
2551
2552 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2553 {
2554         struct net_device *dev = dev_id;
2555         struct cas *cp = netdev_priv(dev);
2556         unsigned long flags;
2557         u32 status = readl(cp->regs + REG_INTR_STATUS);
2558
2559         if (status == 0)
2560                 return IRQ_NONE;
2561
2562         spin_lock_irqsave(&cp->lock, flags);
2563         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2564                 cas_tx(dev, cp, status);
2565                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2566         }
2567
2568         if (status & INTR_RX_DONE) {
2569 #ifdef USE_NAPI
2570                 cas_mask_intr(cp);
2571                 napi_schedule(&cp->napi);
2572 #else
2573                 cas_rx_ringN(cp, 0, 0);
2574 #endif
2575                 status &= ~INTR_RX_DONE;
2576         }
2577
2578         if (status)
2579                 cas_handle_irq(dev, cp, status);
2580         spin_unlock_irqrestore(&cp->lock, flags);
2581         return IRQ_HANDLED;
2582 }
2583
2584
2585 #ifdef USE_NAPI
2586 static int cas_poll(struct napi_struct *napi, int budget)
2587 {
2588         struct cas *cp = container_of(napi, struct cas, napi);
2589         struct net_device *dev = cp->dev;
2590         int i, enable_intr, credits;
2591         u32 status = readl(cp->regs + REG_INTR_STATUS);
2592         unsigned long flags;
2593
2594         spin_lock_irqsave(&cp->lock, flags);
2595         cas_tx(dev, cp, status);
2596         spin_unlock_irqrestore(&cp->lock, flags);
2597
2598         /* NAPI rx packets. we spread the credits across all of the
2599          * rxc rings
2600          *
2601          * to make sure we're fair with the work we loop through each
2602          * ring N_RX_COMP_RING times with a request of
2603          * budget / N_RX_COMP_RINGS
2604          */
2605         enable_intr = 1;
2606         credits = 0;
2607         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2608                 int j;
2609                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2610                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2611                         if (credits >= budget) {
2612                                 enable_intr = 0;
2613                                 goto rx_comp;
2614                         }
2615                 }
2616         }
2617
2618 rx_comp:
2619         /* final rx completion */
2620         spin_lock_irqsave(&cp->lock, flags);
2621         if (status)
2622                 cas_handle_irq(dev, cp, status);
2623
2624 #ifdef USE_PCI_INTB
2625         if (N_RX_COMP_RINGS > 1) {
2626                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2627                 if (status)
2628                         cas_handle_irq1(dev, cp, status);
2629         }
2630 #endif
2631
2632 #ifdef USE_PCI_INTC
2633         if (N_RX_COMP_RINGS > 2) {
2634                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2635                 if (status)
2636                         cas_handle_irqN(dev, cp, status, 2);
2637         }
2638 #endif
2639
2640 #ifdef USE_PCI_INTD
2641         if (N_RX_COMP_RINGS > 3) {
2642                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2643                 if (status)
2644                         cas_handle_irqN(dev, cp, status, 3);
2645         }
2646 #endif
2647         spin_unlock_irqrestore(&cp->lock, flags);
2648         if (enable_intr) {
2649                 napi_complete(napi);
2650                 cas_unmask_intr(cp);
2651         }
2652         return credits;
2653 }
2654 #endif
2655
2656 #ifdef CONFIG_NET_POLL_CONTROLLER
2657 static void cas_netpoll(struct net_device *dev)
2658 {
2659         struct cas *cp = netdev_priv(dev);
2660
2661         cas_disable_irq(cp, 0);
2662         cas_interrupt(cp->pdev->irq, dev);
2663         cas_enable_irq(cp, 0);
2664
2665 #ifdef USE_PCI_INTB
2666         if (N_RX_COMP_RINGS > 1) {
2667                 /* cas_interrupt1(); */
2668         }
2669 #endif
2670 #ifdef USE_PCI_INTC
2671         if (N_RX_COMP_RINGS > 2) {
2672                 /* cas_interruptN(); */
2673         }
2674 #endif
2675 #ifdef USE_PCI_INTD
2676         if (N_RX_COMP_RINGS > 3) {
2677                 /* cas_interruptN(); */
2678         }
2679 #endif
2680 }
2681 #endif
2682
2683 static void cas_tx_timeout(struct net_device *dev)
2684 {
2685         struct cas *cp = netdev_priv(dev);
2686
2687         netdev_err(dev, "transmit timed out, resetting\n");
2688         if (!cp->hw_running) {
2689                 netdev_err(dev, "hrm.. hw not running!\n");
2690                 return;
2691         }
2692
2693         netdev_err(dev, "MIF_STATE[%08x]\n",
2694                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2695
2696         netdev_err(dev, "MAC_STATE[%08x]\n",
2697                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2698
2699         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2700                    readl(cp->regs + REG_TX_CFG),
2701                    readl(cp->regs + REG_MAC_TX_STATUS),
2702                    readl(cp->regs + REG_MAC_TX_CFG),
2703                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2704                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2705                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2706                    readl(cp->regs + REG_TX_SM_1),
2707                    readl(cp->regs + REG_TX_SM_2));
2708
2709         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2710                    readl(cp->regs + REG_RX_CFG),
2711                    readl(cp->regs + REG_MAC_RX_STATUS),
2712                    readl(cp->regs + REG_MAC_RX_CFG));
2713
2714         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2715                    readl(cp->regs + REG_HP_STATE_MACHINE),
2716                    readl(cp->regs + REG_HP_STATUS0),
2717                    readl(cp->regs + REG_HP_STATUS1),
2718                    readl(cp->regs + REG_HP_STATUS2));
2719
2720 #if 1
2721         atomic_inc(&cp->reset_task_pending);
2722         atomic_inc(&cp->reset_task_pending_all);
2723         schedule_work(&cp->reset_task);
2724 #else
2725         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2726         schedule_work(&cp->reset_task);
2727 #endif
2728 }
2729
2730 static inline int cas_intme(int ring, int entry)
2731 {
2732         /* Algorithm: IRQ every 1/2 of descriptors. */
2733         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2734                 return 1;
2735         return 0;
2736 }
2737
2738
2739 static void cas_write_txd(struct cas *cp, int ring, int entry,
2740                           dma_addr_t mapping, int len, u64 ctrl, int last)
2741 {
2742         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2743
2744         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2745         if (cas_intme(ring, entry))
2746                 ctrl |= TX_DESC_INTME;
2747         if (last)
2748                 ctrl |= TX_DESC_EOF;
2749         txd->control = cpu_to_le64(ctrl);
2750         txd->buffer = cpu_to_le64(mapping);
2751 }
2752
2753 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2754                                 const int entry)
2755 {
2756         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2757 }
2758
2759 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2760                                      const int entry, const int tentry)
2761 {
2762         cp->tx_tiny_use[ring][tentry].nbufs++;
2763         cp->tx_tiny_use[ring][entry].used = 1;
2764         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2765 }
2766
2767 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2768                                     struct sk_buff *skb)
2769 {
2770         struct net_device *dev = cp->dev;
2771         int entry, nr_frags, frag, tabort, tentry;
2772         dma_addr_t mapping;
2773         unsigned long flags;
2774         u64 ctrl;
2775         u32 len;
2776
2777         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2778
2779         /* This is a hard error, log it. */
2780         if (TX_BUFFS_AVAIL(cp, ring) <=
2781             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2782                 netif_stop_queue(dev);
2783                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2784                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2785                 return 1;
2786         }
2787
2788         ctrl = 0;
2789         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2790                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2791                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2792
2793                 ctrl =  TX_DESC_CSUM_EN |
2794                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2795                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2796         }
2797
2798         entry = cp->tx_new[ring];
2799         cp->tx_skbs[ring][entry] = skb;
2800
2801         nr_frags = skb_shinfo(skb)->nr_frags;
2802         len = skb_headlen(skb);
2803         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2804                                offset_in_page(skb->data), len,
2805                                PCI_DMA_TODEVICE);
2806
2807         tentry = entry;
2808         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2809         if (unlikely(tabort)) {
2810                 /* NOTE: len is always >  tabort */
2811                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2812                               ctrl | TX_DESC_SOF, 0);
2813                 entry = TX_DESC_NEXT(ring, entry);
2814
2815                 skb_copy_from_linear_data_offset(skb, len - tabort,
2816                               tx_tiny_buf(cp, ring, entry), tabort);
2817                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2818                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2819                               (nr_frags == 0));
2820         } else {
2821                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2822                               TX_DESC_SOF, (nr_frags == 0));
2823         }
2824         entry = TX_DESC_NEXT(ring, entry);
2825
2826         for (frag = 0; frag < nr_frags; frag++) {
2827                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2828
2829                 len = skb_frag_size(fragp);
2830                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2831                                            DMA_TO_DEVICE);
2832
2833                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2834                 if (unlikely(tabort)) {
2835                         void *addr;
2836
2837                         /* NOTE: len is always > tabort */
2838                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2839                                       ctrl, 0);
2840                         entry = TX_DESC_NEXT(ring, entry);
2841
2842                         addr = cas_page_map(skb_frag_page(fragp));
2843                         memcpy(tx_tiny_buf(cp, ring, entry),
2844                                addr + fragp->page_offset + len - tabort,
2845                                tabort);
2846                         cas_page_unmap(addr);
2847                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2848                         len     = tabort;
2849                 }
2850
2851                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2852                               (frag + 1 == nr_frags));
2853                 entry = TX_DESC_NEXT(ring, entry);
2854         }
2855
2856         cp->tx_new[ring] = entry;
2857         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2858                 netif_stop_queue(dev);
2859
2860         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2861                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2862                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2863         writel(entry, cp->regs + REG_TX_KICKN(ring));
2864         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2865         return 0;
2866 }
2867
2868 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2869 {
2870         struct cas *cp = netdev_priv(dev);
2871
2872         /* this is only used as a load-balancing hint, so it doesn't
2873          * need to be SMP safe
2874          */
2875         static int ring;
2876
2877         if (skb_padto(skb, cp->min_frame_size))
2878                 return NETDEV_TX_OK;
2879
2880         /* XXX: we need some higher-level QoS hooks to steer packets to
2881          *      individual queues.
2882          */
2883         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2884                 return NETDEV_TX_BUSY;
2885         return NETDEV_TX_OK;
2886 }
2887
2888 static void cas_init_tx_dma(struct cas *cp)
2889 {
2890         u64 desc_dma = cp->block_dvma;
2891         unsigned long off;
2892         u32 val;
2893         int i;
2894
2895         /* set up tx completion writeback registers. must be 8-byte aligned */
2896 #ifdef USE_TX_COMPWB
2897         off = offsetof(struct cas_init_block, tx_compwb);
2898         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2899         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2900 #endif
2901
2902         /* enable completion writebacks, enable paced mode,
2903          * disable read pipe, and disable pre-interrupt compwbs
2904          */
2905         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2906                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2907                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2908                 TX_CFG_INTR_COMPWB_DIS;
2909
2910         /* write out tx ring info and tx desc bases */
2911         for (i = 0; i < MAX_TX_RINGS; i++) {
2912                 off = (unsigned long) cp->init_txds[i] -
2913                         (unsigned long) cp->init_block;
2914
2915                 val |= CAS_TX_RINGN_BASE(i);
2916                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2917                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2918                        REG_TX_DBN_LOW(i));
2919                 /* don't zero out the kick register here as the system
2920                  * will wedge
2921                  */
2922         }
2923         writel(val, cp->regs + REG_TX_CFG);
2924
2925         /* program max burst sizes. these numbers should be different
2926          * if doing QoS.
2927          */
2928 #ifdef USE_QOS
2929         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2930         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2931         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2932         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2933 #else
2934         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2935         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2936         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2937         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2938 #endif
2939 }
2940
2941 /* Must be invoked under cp->lock. */
2942 static inline void cas_init_dma(struct cas *cp)
2943 {
2944         cas_init_tx_dma(cp);
2945         cas_init_rx_dma(cp);
2946 }
2947
2948 static void cas_process_mc_list(struct cas *cp)
2949 {
2950         u16 hash_table[16];
2951         u32 crc;
2952         struct netdev_hw_addr *ha;
2953         int i = 1;
2954
2955         memset(hash_table, 0, sizeof(hash_table));
2956         netdev_for_each_mc_addr(ha, cp->dev) {
2957                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2958                         /* use the alternate mac address registers for the
2959                          * first 15 multicast addresses
2960                          */
2961                         writel((ha->addr[4] << 8) | ha->addr[5],
2962                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2963                         writel((ha->addr[2] << 8) | ha->addr[3],
2964                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2965                         writel((ha->addr[0] << 8) | ha->addr[1],
2966                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2967                         i++;
2968                 }
2969                 else {
2970                         /* use hw hash table for the next series of
2971                          * multicast addresses
2972                          */
2973                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2974                         crc >>= 24;
2975                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2976                 }
2977         }
2978         for (i = 0; i < 16; i++)
2979                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2980 }
2981
2982 /* Must be invoked under cp->lock. */
2983 static u32 cas_setup_multicast(struct cas *cp)
2984 {
2985         u32 rxcfg = 0;
2986         int i;
2987
2988         if (cp->dev->flags & IFF_PROMISC) {
2989                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2990
2991         } else if (cp->dev->flags & IFF_ALLMULTI) {
2992                 for (i=0; i < 16; i++)
2993                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2994                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2995
2996         } else {
2997                 cas_process_mc_list(cp);
2998                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2999         }
3000
3001         return rxcfg;
3002 }
3003
3004 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3005 static void cas_clear_mac_err(struct cas *cp)
3006 {
3007         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3008         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3009         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3010         writel(0, cp->regs + REG_MAC_COLL_LATE);
3011         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3012         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3013         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3014         writel(0, cp->regs + REG_MAC_LEN_ERR);
3015         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3016         writel(0, cp->regs + REG_MAC_FCS_ERR);
3017         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3018 }
3019
3020
3021 static void cas_mac_reset(struct cas *cp)
3022 {
3023         int i;
3024
3025         /* do both TX and RX reset */
3026         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3027         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3028
3029         /* wait for TX */
3030         i = STOP_TRIES;
3031         while (i-- > 0) {
3032                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3033                         break;
3034                 udelay(10);
3035         }
3036
3037         /* wait for RX */
3038         i = STOP_TRIES;
3039         while (i-- > 0) {
3040                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3041                         break;
3042                 udelay(10);
3043         }
3044
3045         if (readl(cp->regs + REG_MAC_TX_RESET) |
3046             readl(cp->regs + REG_MAC_RX_RESET))
3047                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3048                            readl(cp->regs + REG_MAC_TX_RESET),
3049                            readl(cp->regs + REG_MAC_RX_RESET),
3050                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3051 }
3052
3053
3054 /* Must be invoked under cp->lock. */
3055 static void cas_init_mac(struct cas *cp)
3056 {
3057         unsigned char *e = &cp->dev->dev_addr[0];
3058         int i;
3059         cas_mac_reset(cp);
3060
3061         /* setup core arbitration weight register */
3062         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3063
3064         /* XXX Use pci_dma_burst_advice() */
3065 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3066         /* set the infinite burst register for chips that don't have
3067          * pci issues.
3068          */
3069         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3070                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3071 #endif
3072
3073         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3074
3075         writel(0x00, cp->regs + REG_MAC_IPG0);
3076         writel(0x08, cp->regs + REG_MAC_IPG1);
3077         writel(0x04, cp->regs + REG_MAC_IPG2);
3078
3079         /* change later for 802.3z */
3080         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3081
3082         /* min frame + FCS */
3083         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3084
3085         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3086          * specify the maximum frame size to prevent RX tag errors on
3087          * oversized frames.
3088          */
3089         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3090                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3091                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3092                cp->regs + REG_MAC_FRAMESIZE_MAX);
3093
3094         /* NOTE: crc_size is used as a surrogate for half-duplex.
3095          * workaround saturn half-duplex issue by increasing preamble
3096          * size to 65 bytes.
3097          */
3098         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3099                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3100         else
3101                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3102         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3103         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3104         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3105
3106         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3107
3108         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3109         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3110         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3111         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3112         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3113
3114         /* setup mac address in perfect filter array */
3115         for (i = 0; i < 45; i++)
3116                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3117
3118         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3119         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3120         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3121
3122         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3123         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3124         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3125
3126         cp->mac_rx_cfg = cas_setup_multicast(cp);
3127
3128         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3129         cas_clear_mac_err(cp);
3130         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3131
3132         /* Setup MAC interrupts.  We want to get all of the interesting
3133          * counter expiration events, but we do not want to hear about
3134          * normal rx/tx as the DMA engine tells us that.
3135          */
3136         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3137         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3138
3139         /* Don't enable even the PAUSE interrupts for now, we
3140          * make no use of those events other than to record them.
3141          */
3142         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3143 }
3144
3145 /* Must be invoked under cp->lock. */
3146 static void cas_init_pause_thresholds(struct cas *cp)
3147 {
3148         /* Calculate pause thresholds.  Setting the OFF threshold to the
3149          * full RX fifo size effectively disables PAUSE generation
3150          */
3151         if (cp->rx_fifo_size <= (2 * 1024)) {
3152                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3153         } else {
3154                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3155                 if (max_frame * 3 > cp->rx_fifo_size) {
3156                         cp->rx_pause_off = 7104;
3157                         cp->rx_pause_on  = 960;
3158                 } else {
3159                         int off = (cp->rx_fifo_size - (max_frame * 2));
3160                         int on = off - max_frame;
3161                         cp->rx_pause_off = off;
3162                         cp->rx_pause_on = on;
3163                 }
3164         }
3165 }
3166
3167 static int cas_vpd_match(const void __iomem *p, const char *str)
3168 {
3169         int len = strlen(str) + 1;
3170         int i;
3171
3172         for (i = 0; i < len; i++) {
3173                 if (readb(p + i) != str[i])
3174                         return 0;
3175         }
3176         return 1;
3177 }
3178
3179
3180 /* get the mac address by reading the vpd information in the rom.
3181  * also get the phy type and determine if there's an entropy generator.
3182  * NOTE: this is a bit convoluted for the following reasons:
3183  *  1) vpd info has order-dependent mac addresses for multinic cards
3184  *  2) the only way to determine the nic order is to use the slot
3185  *     number.
3186  *  3) fiber cards don't have bridges, so their slot numbers don't
3187  *     mean anything.
3188  *  4) we don't actually know we have a fiber card until after
3189  *     the mac addresses are parsed.
3190  */
3191 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3192                             const int offset)
3193 {
3194         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3195         void __iomem *base, *kstart;
3196         int i, len;
3197         int found = 0;
3198 #define VPD_FOUND_MAC        0x01
3199 #define VPD_FOUND_PHY        0x02
3200
3201         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3202         int mac_off  = 0;
3203
3204 #if defined(CONFIG_SPARC)
3205         const unsigned char *addr;
3206 #endif
3207
3208         /* give us access to the PROM */
3209         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3210                cp->regs + REG_BIM_LOCAL_DEV_EN);
3211
3212         /* check for an expansion rom */
3213         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3214                 goto use_random_mac_addr;
3215
3216         /* search for beginning of vpd */
3217         base = NULL;
3218         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3219                 /* check for PCIR */
3220                 if ((readb(p + i + 0) == 0x50) &&
3221                     (readb(p + i + 1) == 0x43) &&
3222                     (readb(p + i + 2) == 0x49) &&
3223                     (readb(p + i + 3) == 0x52)) {
3224                         base = p + (readb(p + i + 8) |
3225                                     (readb(p + i + 9) << 8));
3226                         break;
3227                 }
3228         }
3229
3230         if (!base || (readb(base) != 0x82))
3231                 goto use_random_mac_addr;
3232
3233         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3234         while (i < EXPANSION_ROM_SIZE) {
3235                 if (readb(base + i) != 0x90) /* no vpd found */
3236                         goto use_random_mac_addr;
3237
3238                 /* found a vpd field */
3239                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3240
3241                 /* extract keywords */
3242                 kstart = base + i + 3;
3243                 p = kstart;
3244                 while ((p - kstart) < len) {
3245                         int klen = readb(p + 2);
3246                         int j;
3247                         char type;
3248
3249                         p += 3;
3250
3251                         /* look for the following things:
3252                          * -- correct length == 29
3253                          * 3 (type) + 2 (size) +
3254                          * 18 (strlen("local-mac-address") + 1) +
3255                          * 6 (mac addr)
3256                          * -- VPD Instance 'I'
3257                          * -- VPD Type Bytes 'B'
3258                          * -- VPD data length == 6
3259                          * -- property string == local-mac-address
3260                          *
3261                          * -- correct length == 24
3262                          * 3 (type) + 2 (size) +
3263                          * 12 (strlen("entropy-dev") + 1) +
3264                          * 7 (strlen("vms110") + 1)
3265                          * -- VPD Instance 'I'
3266                          * -- VPD Type String 'B'
3267                          * -- VPD data length == 7
3268                          * -- property string == entropy-dev
3269                          *
3270                          * -- correct length == 18
3271                          * 3 (type) + 2 (size) +
3272                          * 9 (strlen("phy-type") + 1) +
3273                          * 4 (strlen("pcs") + 1)
3274                          * -- VPD Instance 'I'
3275                          * -- VPD Type String 'S'
3276                          * -- VPD data length == 4
3277                          * -- property string == phy-type
3278                          *
3279                          * -- correct length == 23
3280                          * 3 (type) + 2 (size) +
3281                          * 14 (strlen("phy-interface") + 1) +
3282                          * 4 (strlen("pcs") + 1)
3283                          * -- VPD Instance 'I'
3284                          * -- VPD Type String 'S'
3285                          * -- VPD data length == 4
3286                          * -- property string == phy-interface
3287                          */
3288                         if (readb(p) != 'I')
3289                                 goto next;
3290
3291                         /* finally, check string and length */
3292                         type = readb(p + 3);
3293                         if (type == 'B') {
3294                                 if ((klen == 29) && readb(p + 4) == 6 &&
3295                                     cas_vpd_match(p + 5,
3296                                                   "local-mac-address")) {
3297                                         if (mac_off++ > offset)
3298                                                 goto next;
3299
3300                                         /* set mac address */
3301                                         for (j = 0; j < 6; j++)
3302                                                 dev_addr[j] =
3303                                                         readb(p + 23 + j);
3304                                         goto found_mac;
3305                                 }
3306                         }
3307
3308                         if (type != 'S')
3309                                 goto next;
3310
3311 #ifdef USE_ENTROPY_DEV
3312                         if ((klen == 24) &&
3313                             cas_vpd_match(p + 5, "entropy-dev") &&
3314                             cas_vpd_match(p + 17, "vms110")) {
3315                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3316                                 goto next;
3317                         }
3318 #endif
3319
3320                         if (found & VPD_FOUND_PHY)
3321                                 goto next;
3322
3323                         if ((klen == 18) && readb(p + 4) == 4 &&
3324                             cas_vpd_match(p + 5, "phy-type")) {
3325                                 if (cas_vpd_match(p + 14, "pcs")) {
3326                                         phy_type = CAS_PHY_SERDES;
3327                                         goto found_phy;
3328                                 }
3329                         }
3330
3331                         if ((klen == 23) && readb(p + 4) == 4 &&
3332                             cas_vpd_match(p + 5, "phy-interface")) {
3333                                 if (cas_vpd_match(p + 19, "pcs")) {
3334                                         phy_type = CAS_PHY_SERDES;
3335                                         goto found_phy;
3336                                 }
3337                         }
3338 found_mac:
3339                         found |= VPD_FOUND_MAC;
3340                         goto next;
3341
3342 found_phy:
3343                         found |= VPD_FOUND_PHY;
3344
3345 next:
3346                         p += klen;
3347                 }
3348                 i += len + 3;
3349         }
3350
3351 use_random_mac_addr:
3352         if (found & VPD_FOUND_MAC)
3353                 goto done;
3354
3355 #if defined(CONFIG_SPARC)
3356         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3357         if (addr != NULL) {
3358                 memcpy(dev_addr, addr, 6);
3359                 goto done;
3360         }
3361 #endif
3362
3363         /* Sun MAC prefix then 3 random bytes. */
3364         pr_info("MAC address not found in ROM VPD\n");
3365         dev_addr[0] = 0x08;
3366         dev_addr[1] = 0x00;
3367         dev_addr[2] = 0x20;
3368         get_random_bytes(dev_addr + 3, 3);
3369
3370 done:
3371         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3372         return phy_type;
3373 }
3374
3375 /* check pci invariants */
3376 static void cas_check_pci_invariants(struct cas *cp)
3377 {
3378         struct pci_dev *pdev = cp->pdev;
3379
3380         cp->cas_flags = 0;
3381         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3382             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3383                 if (pdev->revision >= CAS_ID_REVPLUS)
3384                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3385                 if (pdev->revision < CAS_ID_REVPLUS02u)
3386                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3387
3388                 /* Original Cassini supports HW CSUM, but it's not
3389                  * enabled by default as it can trigger TX hangs.
3390                  */
3391                 if (pdev->revision < CAS_ID_REV2)
3392                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3393         } else {
3394                 /* Only sun has original cassini chips.  */
3395                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3396
3397                 /* We use a flag because the same phy might be externally
3398                  * connected.
3399                  */
3400                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3401                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3402                         cp->cas_flags |= CAS_FLAG_SATURN;
3403         }
3404 }
3405
3406
3407 static int cas_check_invariants(struct cas *cp)
3408 {
3409         struct pci_dev *pdev = cp->pdev;
3410         u32 cfg;
3411         int i;
3412
3413         /* get page size for rx buffers. */
3414         cp->page_order = 0;
3415 #ifdef USE_PAGE_ORDER
3416         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3417                 /* see if we can allocate larger pages */
3418                 struct page *page = alloc_pages(GFP_ATOMIC,
3419                                                 CAS_JUMBO_PAGE_SHIFT -
3420                                                 PAGE_SHIFT);
3421                 if (page) {
3422                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3423                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3424                 } else {
3425                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3426                 }
3427         }
3428 #endif
3429         cp->page_size = (PAGE_SIZE << cp->page_order);
3430
3431         /* Fetch the FIFO configurations. */
3432         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3433         cp->rx_fifo_size = RX_FIFO_SIZE;
3434
3435         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3436          * they're both connected.
3437          */
3438         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3439                                         PCI_SLOT(pdev->devfn));
3440         if (cp->phy_type & CAS_PHY_SERDES) {
3441                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3442                 return 0; /* no more checking needed */
3443         }
3444
3445         /* MII */
3446         cfg = readl(cp->regs + REG_MIF_CFG);
3447         if (cfg & MIF_CFG_MDIO_1) {
3448                 cp->phy_type = CAS_PHY_MII_MDIO1;
3449         } else if (cfg & MIF_CFG_MDIO_0) {
3450                 cp->phy_type = CAS_PHY_MII_MDIO0;
3451         }
3452
3453         cas_mif_poll(cp, 0);
3454         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3455
3456         for (i = 0; i < 32; i++) {
3457                 u32 phy_id;
3458                 int j;
3459
3460                 for (j = 0; j < 3; j++) {
3461                         cp->phy_addr = i;
3462                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3463                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3464                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3465                                 cp->phy_id = phy_id;
3466                                 goto done;
3467                         }
3468                 }
3469         }
3470         pr_err("MII phy did not respond [%08x]\n",
3471                readl(cp->regs + REG_MIF_STATE_MACHINE));
3472         return -1;
3473
3474 done:
3475         /* see if we can do gigabit */
3476         cfg = cas_phy_read(cp, MII_BMSR);
3477         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3478             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3479                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3480         return 0;
3481 }
3482
3483 /* Must be invoked under cp->lock. */
3484 static inline void cas_start_dma(struct cas *cp)
3485 {
3486         int i;
3487         u32 val;
3488         int txfailed = 0;
3489
3490         /* enable dma */
3491         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3492         writel(val, cp->regs + REG_TX_CFG);
3493         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3494         writel(val, cp->regs + REG_RX_CFG);
3495
3496         /* enable the mac */
3497         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3498         writel(val, cp->regs + REG_MAC_TX_CFG);
3499         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3500         writel(val, cp->regs + REG_MAC_RX_CFG);
3501
3502         i = STOP_TRIES;
3503         while (i-- > 0) {
3504                 val = readl(cp->regs + REG_MAC_TX_CFG);
3505                 if ((val & MAC_TX_CFG_EN))
3506                         break;
3507                 udelay(10);
3508         }
3509         if (i < 0) txfailed = 1;
3510         i = STOP_TRIES;
3511         while (i-- > 0) {
3512                 val = readl(cp->regs + REG_MAC_RX_CFG);
3513                 if ((val & MAC_RX_CFG_EN)) {
3514                         if (txfailed) {
3515                                 netdev_err(cp->dev,
3516                                            "enabling mac failed [tx:%08x:%08x]\n",
3517                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3518                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3519                         }
3520                         goto enable_rx_done;
3521                 }
3522                 udelay(10);
3523         }
3524         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3525                    (txfailed ? "tx,rx" : "rx"),
3526                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3527                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3528
3529 enable_rx_done:
3530         cas_unmask_intr(cp); /* enable interrupts */
3531         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3532         writel(0, cp->regs + REG_RX_COMP_TAIL);
3533
3534         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3535                 if (N_RX_DESC_RINGS > 1)
3536                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3537                                cp->regs + REG_PLUS_RX_KICK1);
3538
3539                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3540                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3541         }
3542 }
3543
3544 /* Must be invoked under cp->lock. */
3545 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3546                                    int *pause)
3547 {
3548         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3549         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3550         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3551         if (val & PCS_MII_LPA_ASYM_PAUSE)
3552                 *pause |= 0x10;
3553         *spd = 1000;
3554 }
3555
3556 /* Must be invoked under cp->lock. */
3557 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3558                                    int *pause)
3559 {
3560         u32 val;
3561
3562         *fd = 0;
3563         *spd = 10;
3564         *pause = 0;
3565
3566         /* use GMII registers */
3567         val = cas_phy_read(cp, MII_LPA);
3568         if (val & CAS_LPA_PAUSE)
3569                 *pause = 0x01;
3570
3571         if (val & CAS_LPA_ASYM_PAUSE)
3572                 *pause |= 0x10;
3573
3574         if (val & LPA_DUPLEX)
3575                 *fd = 1;
3576         if (val & LPA_100)
3577                 *spd = 100;
3578
3579         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3580                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3581                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3582                         *spd = 1000;
3583                 if (val & CAS_LPA_1000FULL)
3584                         *fd = 1;
3585         }
3586 }
3587
3588 /* A link-up condition has occurred, initialize and enable the
3589  * rest of the chip.
3590  *
3591  * Must be invoked under cp->lock.
3592  */
3593 static void cas_set_link_modes(struct cas *cp)
3594 {
3595         u32 val;
3596         int full_duplex, speed, pause;
3597
3598         full_duplex = 0;
3599         speed = 10;
3600         pause = 0;
3601
3602         if (CAS_PHY_MII(cp->phy_type)) {
3603                 cas_mif_poll(cp, 0);
3604                 val = cas_phy_read(cp, MII_BMCR);
3605                 if (val & BMCR_ANENABLE) {
3606                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3607                                                &pause);
3608                 } else {
3609                         if (val & BMCR_FULLDPLX)
3610                                 full_duplex = 1;
3611
3612                         if (val & BMCR_SPEED100)
3613                                 speed = 100;
3614                         else if (val & CAS_BMCR_SPEED1000)
3615                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3616                                         1000 : 100;
3617                 }
3618                 cas_mif_poll(cp, 1);
3619
3620         } else {
3621                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3622                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3623                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3624                         if (val & PCS_MII_CTRL_DUPLEX)
3625                                 full_duplex = 1;
3626                 }
3627         }
3628
3629         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3630                    speed, full_duplex ? "full" : "half");
3631
3632         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3633         if (CAS_PHY_MII(cp->phy_type)) {
3634                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3635                 if (!full_duplex)
3636                         val |= MAC_XIF_DISABLE_ECHO;
3637         }
3638         if (full_duplex)
3639                 val |= MAC_XIF_FDPLX_LED;
3640         if (speed == 1000)
3641                 val |= MAC_XIF_GMII_MODE;
3642         writel(val, cp->regs + REG_MAC_XIF_CFG);
3643
3644         /* deal with carrier and collision detect. */
3645         val = MAC_TX_CFG_IPG_EN;
3646         if (full_duplex) {
3647                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3648                 val |= MAC_TX_CFG_IGNORE_COLL;
3649         } else {
3650 #ifndef USE_CSMA_CD_PROTO
3651                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3652                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3653 #endif
3654         }
3655         /* val now set up for REG_MAC_TX_CFG */
3656
3657         /* If gigabit and half-duplex, enable carrier extension
3658          * mode.  increase slot time to 512 bytes as well.
3659          * else, disable it and make sure slot time is 64 bytes.
3660          * also activate checksum bug workaround
3661          */
3662         if ((speed == 1000) && !full_duplex) {
3663                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3664                        cp->regs + REG_MAC_TX_CFG);
3665
3666                 val = readl(cp->regs + REG_MAC_RX_CFG);
3667                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3668                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3669                        cp->regs + REG_MAC_RX_CFG);
3670
3671                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3672
3673                 cp->crc_size = 4;
3674                 /* minimum size gigabit frame at half duplex */
3675                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3676
3677         } else {
3678                 writel(val, cp->regs + REG_MAC_TX_CFG);
3679
3680                 /* checksum bug workaround. don't strip FCS when in
3681                  * half-duplex mode
3682                  */
3683                 val = readl(cp->regs + REG_MAC_RX_CFG);
3684                 if (full_duplex) {
3685                         val |= MAC_RX_CFG_STRIP_FCS;
3686                         cp->crc_size = 0;
3687                         cp->min_frame_size = CAS_MIN_MTU;
3688                 } else {
3689                         val &= ~MAC_RX_CFG_STRIP_FCS;
3690                         cp->crc_size = 4;
3691                         cp->min_frame_size = CAS_MIN_FRAME;
3692                 }
3693                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3694                        cp->regs + REG_MAC_RX_CFG);
3695                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3696         }
3697
3698         if (netif_msg_link(cp)) {
3699                 if (pause & 0x01) {
3700                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3701                                     cp->rx_fifo_size,
3702                                     cp->rx_pause_off,
3703                                     cp->rx_pause_on);
3704                 } else if (pause & 0x10) {
3705                         netdev_info(cp->dev, "TX pause enabled\n");
3706                 } else {
3707                         netdev_info(cp->dev, "Pause is disabled\n");
3708                 }
3709         }
3710
3711         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3712         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3713         if (pause) { /* symmetric or asymmetric pause */
3714                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3715                 if (pause & 0x01) { /* symmetric pause */
3716                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3717                 }
3718         }
3719         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3720         cas_start_dma(cp);
3721 }
3722
3723 /* Must be invoked under cp->lock. */
3724 static void cas_init_hw(struct cas *cp, int restart_link)
3725 {
3726         if (restart_link)
3727                 cas_phy_init(cp);
3728
3729         cas_init_pause_thresholds(cp);
3730         cas_init_mac(cp);
3731         cas_init_dma(cp);
3732
3733         if (restart_link) {
3734                 /* Default aneg parameters */
3735                 cp->timer_ticks = 0;
3736                 cas_begin_auto_negotiation(cp, NULL);
3737         } else if (cp->lstate == link_up) {
3738                 cas_set_link_modes(cp);
3739                 netif_carrier_on(cp->dev);
3740         }
3741 }
3742
3743 /* Must be invoked under cp->lock. on earlier cassini boards,
3744  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3745  * let it settle out, and then restore pci state.
3746  */
3747 static void cas_hard_reset(struct cas *cp)
3748 {
3749         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3750         udelay(20);
3751         pci_restore_state(cp->pdev);
3752 }
3753
3754
3755 static void cas_global_reset(struct cas *cp, int blkflag)
3756 {
3757         int limit;
3758
3759         /* issue a global reset. don't use RSTOUT. */
3760         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3761                 /* For PCS, when the blkflag is set, we should set the
3762                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3763                  * the last autonegotiation from being cleared.  We'll
3764                  * need some special handling if the chip is set into a
3765                  * loopback mode.
3766                  */
3767                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3768                        cp->regs + REG_SW_RESET);
3769         } else {
3770                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3771         }
3772
3773         /* need to wait at least 3ms before polling register */
3774         mdelay(3);
3775
3776         limit = STOP_TRIES;
3777         while (limit-- > 0) {
3778                 u32 val = readl(cp->regs + REG_SW_RESET);
3779                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3780                         goto done;
3781                 udelay(10);
3782         }
3783         netdev_err(cp->dev, "sw reset failed\n");
3784
3785 done:
3786         /* enable various BIM interrupts */
3787         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3788                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3789
3790         /* clear out pci error status mask for handled errors.
3791          * we don't deal with DMA counter overflows as they happen
3792          * all the time.
3793          */
3794         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3795                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3796                                PCI_ERR_BIM_DMA_READ), cp->regs +
3797                REG_PCI_ERR_STATUS_MASK);
3798
3799         /* set up for MII by default to address mac rx reset timeout
3800          * issue
3801          */
3802         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3803 }
3804
3805 static void cas_reset(struct cas *cp, int blkflag)
3806 {
3807         u32 val;
3808
3809         cas_mask_intr(cp);
3810         cas_global_reset(cp, blkflag);
3811         cas_mac_reset(cp);
3812         cas_entropy_reset(cp);
3813
3814         /* disable dma engines. */
3815         val = readl(cp->regs + REG_TX_CFG);
3816         val &= ~TX_CFG_DMA_EN;
3817         writel(val, cp->regs + REG_TX_CFG);
3818
3819         val = readl(cp->regs + REG_RX_CFG);
3820         val &= ~RX_CFG_DMA_EN;
3821         writel(val, cp->regs + REG_RX_CFG);
3822
3823         /* program header parser */
3824         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3825             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3826                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3827         } else {
3828                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3829         }
3830
3831         /* clear out error registers */
3832         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3833         cas_clear_mac_err(cp);
3834         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3835 }
3836
3837 /* Shut down the chip, must be called with pm_mutex held.  */
3838 static void cas_shutdown(struct cas *cp)
3839 {
3840         unsigned long flags;
3841
3842         /* Make us not-running to avoid timers respawning */
3843         cp->hw_running = 0;
3844
3845         del_timer_sync(&cp->link_timer);
3846
3847         /* Stop the reset task */
3848 #if 0
3849         while (atomic_read(&cp->reset_task_pending_mtu) ||
3850                atomic_read(&cp->reset_task_pending_spare) ||
3851                atomic_read(&cp->reset_task_pending_all))
3852                 schedule();
3853
3854 #else
3855         while (atomic_read(&cp->reset_task_pending))
3856                 schedule();
3857 #endif
3858         /* Actually stop the chip */
3859         cas_lock_all_save(cp, flags);
3860         cas_reset(cp, 0);
3861         if (cp->cas_flags & CAS_FLAG_SATURN)
3862                 cas_phy_powerdown(cp);
3863         cas_unlock_all_restore(cp, flags);
3864 }
3865
3866 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3867 {
3868         struct cas *cp = netdev_priv(dev);
3869
3870         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3871                 return -EINVAL;
3872
3873         dev->mtu = new_mtu;
3874         if (!netif_running(dev) || !netif_device_present(dev))
3875                 return 0;
3876
3877         /* let the reset task handle it */
3878 #if 1
3879         atomic_inc(&cp->reset_task_pending);
3880         if ((cp->phy_type & CAS_PHY_SERDES)) {
3881                 atomic_inc(&cp->reset_task_pending_all);
3882         } else {
3883                 atomic_inc(&cp->reset_task_pending_mtu);
3884         }
3885         schedule_work(&cp->reset_task);
3886 #else
3887         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3888                    CAS_RESET_ALL : CAS_RESET_MTU);
3889         pr_err("reset called in cas_change_mtu\n");
3890         schedule_work(&cp->reset_task);
3891 #endif
3892
3893         flush_work_sync(&cp->reset_task);
3894         return 0;
3895 }
3896
3897 static void cas_clean_txd(struct cas *cp, int ring)
3898 {
3899         struct cas_tx_desc *txd = cp->init_txds[ring];
3900         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3901         u64 daddr, dlen;
3902         int i, size;
3903
3904         size = TX_DESC_RINGN_SIZE(ring);
3905         for (i = 0; i < size; i++) {
3906                 int frag;
3907
3908                 if (skbs[i] == NULL)
3909                         continue;
3910
3911                 skb = skbs[i];
3912                 skbs[i] = NULL;
3913
3914                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3915                         int ent = i & (size - 1);
3916
3917                         /* first buffer is never a tiny buffer and so
3918                          * needs to be unmapped.
3919                          */
3920                         daddr = le64_to_cpu(txd[ent].buffer);
3921                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3922                                          le64_to_cpu(txd[ent].control));
3923                         pci_unmap_page(cp->pdev, daddr, dlen,
3924                                        PCI_DMA_TODEVICE);
3925
3926                         if (frag != skb_shinfo(skb)->nr_frags) {
3927                                 i++;
3928
3929                                 /* next buffer might by a tiny buffer.
3930                                  * skip past it.
3931                                  */
3932                                 ent = i & (size - 1);
3933                                 if (cp->tx_tiny_use[ring][ent].used)
3934                                         i++;
3935                         }
3936                 }
3937                 dev_kfree_skb_any(skb);
3938         }
3939
3940         /* zero out tiny buf usage */
3941         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3942 }
3943
3944 /* freed on close */
3945 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3946 {
3947         cas_page_t **page = cp->rx_pages[ring];
3948         int i, size;
3949
3950         size = RX_DESC_RINGN_SIZE(ring);
3951         for (i = 0; i < size; i++) {
3952                 if (page[i]) {
3953                         cas_page_free(cp, page[i]);
3954                         page[i] = NULL;
3955                 }
3956         }
3957 }
3958
3959 static void cas_free_rxds(struct cas *cp)
3960 {
3961         int i;
3962
3963         for (i = 0; i < N_RX_DESC_RINGS; i++)
3964                 cas_free_rx_desc(cp, i);
3965 }
3966
3967 /* Must be invoked under cp->lock. */
3968 static void cas_clean_rings(struct cas *cp)
3969 {
3970         int i;
3971
3972         /* need to clean all tx rings */
3973         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3974         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3975         for (i = 0; i < N_TX_RINGS; i++)
3976                 cas_clean_txd(cp, i);
3977
3978         /* zero out init block */
3979         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3980         cas_clean_rxds(cp);
3981         cas_clean_rxcs(cp);
3982 }
3983
3984 /* allocated on open */
3985 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3986 {
3987         cas_page_t **page = cp->rx_pages[ring];
3988         int size, i = 0;
3989
3990         size = RX_DESC_RINGN_SIZE(ring);
3991         for (i = 0; i < size; i++) {
3992                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3993                         return -1;
3994         }
3995         return 0;
3996 }
3997
3998 static int cas_alloc_rxds(struct cas *cp)
3999 {
4000         int i;
4001
4002         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4003                 if (cas_alloc_rx_desc(cp, i) < 0) {
4004                         cas_free_rxds(cp);
4005                         return -1;
4006                 }
4007         }
4008         return 0;
4009 }
4010
4011 static void cas_reset_task(struct work_struct *work)
4012 {
4013         struct cas *cp = container_of(work, struct cas, reset_task);
4014 #if 0
4015         int pending = atomic_read(&cp->reset_task_pending);
4016 #else
4017         int pending_all = atomic_read(&cp->reset_task_pending_all);
4018         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4019         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4020
4021         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4022                 /* We can have more tasks scheduled than actually
4023                  * needed.
4024                  */
4025                 atomic_dec(&cp->reset_task_pending);
4026                 return;
4027         }
4028 #endif
4029         /* The link went down, we reset the ring, but keep
4030          * DMA stopped. Use this function for reset
4031          * on error as well.
4032          */
4033         if (cp->hw_running) {
4034                 unsigned long flags;
4035
4036                 /* Make sure we don't get interrupts or tx packets */
4037                 netif_device_detach(cp->dev);
4038                 cas_lock_all_save(cp, flags);
4039
4040                 if (cp->opened) {
4041                         /* We call cas_spare_recover when we call cas_open.
4042                          * but we do not initialize the lists cas_spare_recover
4043                          * uses until cas_open is called.
4044                          */
4045                         cas_spare_recover(cp, GFP_ATOMIC);
4046                 }
4047 #if 1
4048                 /* test => only pending_spare set */
4049                 if (!pending_all && !pending_mtu)
4050                         goto done;
4051 #else
4052                 if (pending == CAS_RESET_SPARE)
4053                         goto done;
4054 #endif
4055                 /* when pending == CAS_RESET_ALL, the following
4056                  * call to cas_init_hw will restart auto negotiation.
4057                  * Setting the second argument of cas_reset to
4058                  * !(pending == CAS_RESET_ALL) will set this argument
4059                  * to 1 (avoiding reinitializing the PHY for the normal
4060                  * PCS case) when auto negotiation is not restarted.
4061                  */
4062 #if 1
4063                 cas_reset(cp, !(pending_all > 0));
4064                 if (cp->opened)
4065                         cas_clean_rings(cp);
4066                 cas_init_hw(cp, (pending_all > 0));
4067 #else
4068                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4069                 if (cp->opened)
4070                         cas_clean_rings(cp);
4071                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4072 #endif
4073
4074 done:
4075                 cas_unlock_all_restore(cp, flags);
4076                 netif_device_attach(cp->dev);
4077         }
4078 #if 1
4079         atomic_sub(pending_all, &cp->reset_task_pending_all);
4080         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4081         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4082         atomic_dec(&cp->reset_task_pending);
4083 #else
4084         atomic_set(&cp->reset_task_pending, 0);
4085 #endif
4086 }
4087
4088 static void cas_link_timer(unsigned long data)
4089 {
4090         struct cas *cp = (struct cas *) data;
4091         int mask, pending = 0, reset = 0;
4092         unsigned long flags;
4093
4094         if (link_transition_timeout != 0 &&
4095             cp->link_transition_jiffies_valid &&
4096             ((jiffies - cp->link_transition_jiffies) >
4097               (link_transition_timeout))) {
4098                 /* One-second counter so link-down workaround doesn't
4099                  * cause resets to occur so fast as to fool the switch
4100                  * into thinking the link is down.
4101                  */
4102                 cp->link_transition_jiffies_valid = 0;
4103         }
4104
4105         if (!cp->hw_running)
4106                 return;
4107
4108         spin_lock_irqsave(&cp->lock, flags);
4109         cas_lock_tx(cp);
4110         cas_entropy_gather(cp);
4111
4112         /* If the link task is still pending, we just
4113          * reschedule the link timer
4114          */
4115 #if 1
4116         if (atomic_read(&cp->reset_task_pending_all) ||
4117             atomic_read(&cp->reset_task_pending_spare) ||
4118             atomic_read(&cp->reset_task_pending_mtu))
4119                 goto done;
4120 #else
4121         if (atomic_read(&cp->reset_task_pending))
4122                 goto done;
4123 #endif
4124
4125         /* check for rx cleaning */
4126         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4127                 int i, rmask;
4128
4129                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4130                         rmask = CAS_FLAG_RXD_POST(i);
4131                         if ((mask & rmask) == 0)
4132                                 continue;
4133
4134                         /* post_rxds will do a mod_timer */
4135                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4136                                 pending = 1;
4137                                 continue;
4138                         }
4139                         cp->cas_flags &= ~rmask;
4140                 }
4141         }
4142
4143         if (CAS_PHY_MII(cp->phy_type)) {
4144                 u16 bmsr;
4145                 cas_mif_poll(cp, 0);
4146                 bmsr = cas_phy_read(cp, MII_BMSR);
4147                 /* WTZ: Solaris driver reads this twice, but that
4148                  * may be due to the PCS case and the use of a
4149                  * common implementation. Read it twice here to be
4150                  * safe.
4151                  */
4152                 bmsr = cas_phy_read(cp, MII_BMSR);
4153                 cas_mif_poll(cp, 1);
4154                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4155                 reset = cas_mii_link_check(cp, bmsr);
4156         } else {
4157                 reset = cas_pcs_link_check(cp);
4158         }
4159
4160         if (reset)
4161                 goto done;
4162
4163         /* check for tx state machine confusion */
4164         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4165                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4166                 u32 wptr, rptr;
4167                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4168
4169                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4170                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4171                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4172                                      "tx err: MAC_STATE[%08x]\n", val);
4173                         reset = 1;
4174                         goto done;
4175                 }
4176
4177                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4178                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4179                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4180                 if ((val == 0) && (wptr != rptr)) {
4181                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4182                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4183                                      val, wptr, rptr);
4184                         reset = 1;
4185                 }
4186
4187                 if (reset)
4188                         cas_hard_reset(cp);
4189         }
4190
4191 done:
4192         if (reset) {
4193 #if 1
4194                 atomic_inc(&cp->reset_task_pending);
4195                 atomic_inc(&cp->reset_task_pending_all);
4196                 schedule_work(&cp->reset_task);
4197 #else
4198                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4199                 pr_err("reset called in cas_link_timer\n");
4200                 schedule_work(&cp->reset_task);
4201 #endif
4202         }
4203
4204         if (!pending)
4205                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4206         cas_unlock_tx(cp);
4207         spin_unlock_irqrestore(&cp->lock, flags);
4208 }
4209
4210 /* tiny buffers are used to avoid target abort issues with
4211  * older cassini's
4212  */
4213 static void cas_tx_tiny_free(struct cas *cp)
4214 {
4215         struct pci_dev *pdev = cp->pdev;
4216         int i;
4217
4218         for (i = 0; i < N_TX_RINGS; i++) {
4219                 if (!cp->tx_tiny_bufs[i])
4220                         continue;
4221
4222                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4223                                     cp->tx_tiny_bufs[i],
4224                                     cp->tx_tiny_dvma[i]);
4225                 cp->tx_tiny_bufs[i] = NULL;
4226         }
4227 }
4228
4229 static int cas_tx_tiny_alloc(struct cas *cp)
4230 {
4231         struct pci_dev *pdev = cp->pdev;
4232         int i;
4233
4234         for (i = 0; i < N_TX_RINGS; i++) {
4235                 cp->tx_tiny_bufs[i] =
4236                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4237                                              &cp->tx_tiny_dvma[i]);
4238                 if (!cp->tx_tiny_bufs[i]) {
4239                         cas_tx_tiny_free(cp);
4240                         return -1;
4241                 }
4242         }
4243         return 0;
4244 }
4245
4246
4247 static int cas_open(struct net_device *dev)
4248 {
4249         struct cas *cp = netdev_priv(dev);
4250         int hw_was_up, err;
4251         unsigned long flags;
4252
4253         mutex_lock(&cp->pm_mutex);
4254
4255         hw_was_up = cp->hw_running;
4256
4257         /* The power-management mutex protects the hw_running
4258          * etc. state so it is safe to do this bit without cp->lock
4259          */
4260         if (!cp->hw_running) {
4261                 /* Reset the chip */
4262                 cas_lock_all_save(cp, flags);
4263                 /* We set the second arg to cas_reset to zero
4264                  * because cas_init_hw below will have its second
4265                  * argument set to non-zero, which will force
4266                  * autonegotiation to start.
4267                  */
4268                 cas_reset(cp, 0);
4269                 cp->hw_running = 1;
4270                 cas_unlock_all_restore(cp, flags);
4271         }
4272
4273         err = -ENOMEM;
4274         if (cas_tx_tiny_alloc(cp) < 0)
4275                 goto err_unlock;
4276
4277         /* alloc rx descriptors */
4278         if (cas_alloc_rxds(cp) < 0)
4279                 goto err_tx_tiny;
4280
4281         /* allocate spares */
4282         cas_spare_init(cp);
4283         cas_spare_recover(cp, GFP_KERNEL);
4284
4285         /* We can now request the interrupt as we know it's masked
4286          * on the controller. cassini+ has up to 4 interrupts
4287          * that can be used, but you need to do explicit pci interrupt
4288          * mapping to expose them
4289          */
4290         if (request_irq(cp->pdev->irq, cas_interrupt,
4291                         IRQF_SHARED, dev->name, (void *) dev)) {
4292                 netdev_err(cp->dev, "failed to request irq !\n");
4293                 err = -EAGAIN;
4294                 goto err_spare;
4295         }
4296
4297 #ifdef USE_NAPI
4298         napi_enable(&cp->napi);
4299 #endif
4300         /* init hw */
4301         cas_lock_all_save(cp, flags);
4302         cas_clean_rings(cp);
4303         cas_init_hw(cp, !hw_was_up);
4304         cp->opened = 1;
4305         cas_unlock_all_restore(cp, flags);
4306
4307         netif_start_queue(dev);
4308         mutex_unlock(&cp->pm_mutex);
4309         return 0;
4310
4311 err_spare:
4312         cas_spare_free(cp);
4313         cas_free_rxds(cp);
4314 err_tx_tiny:
4315         cas_tx_tiny_free(cp);
4316 err_unlock:
4317         mutex_unlock(&cp->pm_mutex);
4318         return err;
4319 }
4320
4321 static int cas_close(struct net_device *dev)
4322 {
4323         unsigned long flags;
4324         struct cas *cp = netdev_priv(dev);
4325
4326 #ifdef USE_NAPI
4327         napi_disable(&cp->napi);
4328 #endif
4329         /* Make sure we don't get distracted by suspend/resume */
4330         mutex_lock(&cp->pm_mutex);
4331
4332         netif_stop_queue(dev);
4333
4334         /* Stop traffic, mark us closed */
4335         cas_lock_all_save(cp, flags);
4336         cp->opened = 0;
4337         cas_reset(cp, 0);
4338         cas_phy_init(cp);
4339         cas_begin_auto_negotiation(cp, NULL);
4340         cas_clean_rings(cp);
4341         cas_unlock_all_restore(cp, flags);
4342
4343         free_irq(cp->pdev->irq, (void *) dev);
4344         cas_spare_free(cp);
4345         cas_free_rxds(cp);
4346         cas_tx_tiny_free(cp);
4347         mutex_unlock(&cp->pm_mutex);
4348         return 0;
4349 }
4350
4351 static struct {
4352         const char name[ETH_GSTRING_LEN];
4353 } ethtool_cassini_statnames[] = {
4354         {"collisions"},
4355         {"rx_bytes"},
4356         {"rx_crc_errors"},
4357         {"rx_dropped"},
4358         {"rx_errors"},
4359         {"rx_fifo_errors"},
4360         {"rx_frame_errors"},
4361         {"rx_length_errors"},
4362         {"rx_over_errors"},
4363         {"rx_packets"},
4364         {"tx_aborted_errors"},
4365         {"tx_bytes"},
4366         {"tx_dropped"},
4367         {"tx_errors"},
4368         {"tx_fifo_errors"},
4369         {"tx_packets"}
4370 };
4371 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4372
4373 static struct {
4374         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4375 } ethtool_register_table[] = {
4376         {-MII_BMSR},
4377         {-MII_BMCR},
4378         {REG_CAWR},
4379         {REG_INF_BURST},
4380         {REG_BIM_CFG},
4381         {REG_RX_CFG},
4382         {REG_HP_CFG},
4383         {REG_MAC_TX_CFG},
4384         {REG_MAC_RX_CFG},
4385         {REG_MAC_CTRL_CFG},
4386         {REG_MAC_XIF_CFG},
4387         {REG_MIF_CFG},
4388         {REG_PCS_CFG},
4389         {REG_SATURN_PCFG},
4390         {REG_PCS_MII_STATUS},
4391         {REG_PCS_STATE_MACHINE},
4392         {REG_MAC_COLL_EXCESS},
4393         {REG_MAC_COLL_LATE}
4394 };
4395 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4396 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4397
4398 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4399 {
4400         u8 *p;
4401         int i;
4402         unsigned long flags;
4403
4404         spin_lock_irqsave(&cp->lock, flags);
4405         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4406                 u16 hval;
4407                 u32 val;
4408                 if (ethtool_register_table[i].offsets < 0) {
4409                         hval = cas_phy_read(cp,
4410                                     -ethtool_register_table[i].offsets);
4411                         val = hval;
4412                 } else {
4413                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4414                 }
4415                 memcpy(p, (u8 *)&val, sizeof(u32));
4416         }
4417         spin_unlock_irqrestore(&cp->lock, flags);
4418 }
4419
4420 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4421 {
4422         struct cas *cp = netdev_priv(dev);
4423         struct net_device_stats *stats = cp->net_stats;
4424         unsigned long flags;
4425         int i;
4426         unsigned long tmp;
4427
4428         /* we collate all of the stats into net_stats[N_TX_RING] */
4429         if (!cp->hw_running)
4430                 return stats + N_TX_RINGS;
4431
4432         /* collect outstanding stats */
4433         /* WTZ: the Cassini spec gives these as 16 bit counters but
4434          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4435          * in case the chip somehow puts any garbage in the other bits.
4436          * Also, counter usage didn't seem to mach what Adrian did
4437          * in the parts of the code that set these quantities. Made
4438          * that consistent.
4439          */
4440         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4441         stats[N_TX_RINGS].rx_crc_errors +=
4442           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4443         stats[N_TX_RINGS].rx_frame_errors +=
4444                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4445         stats[N_TX_RINGS].rx_length_errors +=
4446                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4447 #if 1
4448         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4449                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4450         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4451         stats[N_TX_RINGS].collisions +=
4452           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4453 #else
4454         stats[N_TX_RINGS].tx_aborted_errors +=
4455                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4456         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4457                 readl(cp->regs + REG_MAC_COLL_LATE);
4458 #endif
4459         cas_clear_mac_err(cp);
4460
4461         /* saved bits that are unique to ring 0 */
4462         spin_lock(&cp->stat_lock[0]);
4463         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4464         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4465         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4466         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4467         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4468         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4469         spin_unlock(&cp->stat_lock[0]);
4470
4471         for (i = 0; i < N_TX_RINGS; i++) {
4472                 spin_lock(&cp->stat_lock[i]);
4473                 stats[N_TX_RINGS].rx_length_errors +=
4474                         stats[i].rx_length_errors;
4475                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4476                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4477                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4478                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4479                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4480                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4481                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4482                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4483                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4484                 memset(stats + i, 0, sizeof(struct net_device_stats));
4485                 spin_unlock(&cp->stat_lock[i]);
4486         }
4487         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4488         return stats + N_TX_RINGS;
4489 }
4490
4491
4492 static void cas_set_multicast(struct net_device *dev)
4493 {
4494         struct cas *cp = netdev_priv(dev);
4495         u32 rxcfg, rxcfg_new;
4496         unsigned long flags;
4497         int limit = STOP_TRIES;
4498
4499         if (!cp->hw_running)
4500                 return;
4501
4502         spin_lock_irqsave(&cp->lock, flags);
4503         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4504
4505         /* disable RX MAC and wait for completion */
4506         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4507         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4508                 if (!limit--)
4509                         break;
4510                 udelay(10);
4511         }
4512
4513         /* disable hash filter and wait for completion */
4514         limit = STOP_TRIES;
4515         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4516         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4517         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4518                 if (!limit--)
4519                         break;
4520                 udelay(10);
4521         }
4522
4523         /* program hash filters */
4524         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4525         rxcfg |= rxcfg_new;
4526         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4527         spin_unlock_irqrestore(&cp->lock, flags);
4528 }
4529
4530 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4531 {
4532         struct cas *cp = netdev_priv(dev);
4533         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4534         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4535         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4536         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4537                 cp->casreg_len : CAS_MAX_REGS;
4538         info->n_stats = CAS_NUM_STAT_KEYS;
4539 }
4540
4541 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4542 {
4543         struct cas *cp = netdev_priv(dev);
4544         u16 bmcr;
4545         int full_duplex, speed, pause;
4546         unsigned long flags;
4547         enum link_state linkstate = link_up;
4548
4549         cmd->advertising = 0;
4550         cmd->supported = SUPPORTED_Autoneg;
4551         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4552                 cmd->supported |= SUPPORTED_1000baseT_Full;
4553                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4554         }
4555
4556         /* Record PHY settings if HW is on. */
4557         spin_lock_irqsave(&cp->lock, flags);
4558         bmcr = 0;
4559         linkstate = cp->lstate;
4560         if (CAS_PHY_MII(cp->phy_type)) {
4561                 cmd->port = PORT_MII;
4562                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4563                         XCVR_INTERNAL : XCVR_EXTERNAL;
4564                 cmd->phy_address = cp->phy_addr;
4565                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4566                         ADVERTISED_10baseT_Half |
4567                         ADVERTISED_10baseT_Full |
4568                         ADVERTISED_100baseT_Half |
4569                         ADVERTISED_100baseT_Full;
4570
4571                 cmd->supported |=
4572                         (SUPPORTED_10baseT_Half |
4573                          SUPPORTED_10baseT_Full |
4574                          SUPPORTED_100baseT_Half |
4575                          SUPPORTED_100baseT_Full |
4576                          SUPPORTED_TP | SUPPORTED_MII);
4577
4578                 if (cp->hw_running) {
4579                         cas_mif_poll(cp, 0);
4580                         bmcr = cas_phy_read(cp, MII_BMCR);
4581                         cas_read_mii_link_mode(cp, &full_duplex,
4582                                                &speed, &pause);
4583                         cas_mif_poll(cp, 1);
4584                 }
4585
4586         } else {
4587                 cmd->port = PORT_FIBRE;
4588                 cmd->transceiver = XCVR_INTERNAL;
4589                 cmd->phy_address = 0;
4590                 cmd->supported   |= SUPPORTED_FIBRE;
4591                 cmd->advertising |= ADVERTISED_FIBRE;
4592
4593                 if (cp->hw_running) {
4594                         /* pcs uses the same bits as mii */
4595                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4596                         cas_read_pcs_link_mode(cp, &full_duplex,
4597                                                &speed, &pause);
4598                 }
4599         }
4600         spin_unlock_irqrestore(&cp->lock, flags);
4601
4602         if (bmcr & BMCR_ANENABLE) {
4603                 cmd->advertising |= ADVERTISED_Autoneg;
4604                 cmd->autoneg = AUTONEG_ENABLE;
4605                 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4606                                             SPEED_10 :
4607                                             ((speed == 1000) ?
4608                                              SPEED_1000 : SPEED_100)));
4609                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4610         } else {
4611                 cmd->autoneg = AUTONEG_DISABLE;
4612                 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4613                                             SPEED_1000 :
4614                                             ((bmcr & BMCR_SPEED100) ?
4615                                              SPEED_100 : SPEED_10)));
4616                 cmd->duplex =
4617                         (bmcr & BMCR_FULLDPLX) ?
4618                         DUPLEX_FULL : DUPLEX_HALF;
4619         }
4620         if (linkstate != link_up) {
4621                 /* Force these to "unknown" if the link is not up and
4622                  * autonogotiation in enabled. We can set the link
4623                  * speed to 0, but not cmd->duplex,
4624                  * because its legal values are 0 and 1.  Ethtool will
4625                  * print the value reported in parentheses after the
4626                  * word "Unknown" for unrecognized values.
4627                  *
4628                  * If in forced mode, we report the speed and duplex
4629                  * settings that we configured.
4630                  */
4631                 if (cp->link_cntl & BMCR_ANENABLE) {
4632                         ethtool_cmd_speed_set(cmd, 0);
4633                         cmd->duplex = 0xff;
4634                 } else {
4635                         ethtool_cmd_speed_set(cmd, SPEED_10);
4636                         if (cp->link_cntl & BMCR_SPEED100) {
4637                                 ethtool_cmd_speed_set(cmd, SPEED_100);
4638                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4639                                 ethtool_cmd_speed_set(cmd, SPEED_1000);
4640                         }
4641                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4642                                 DUPLEX_FULL : DUPLEX_HALF;
4643                 }
4644         }
4645         return 0;
4646 }
4647
4648 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4649 {
4650         struct cas *cp = netdev_priv(dev);
4651         unsigned long flags;
4652         u32 speed = ethtool_cmd_speed(cmd);
4653
4654         /* Verify the settings we care about. */
4655         if (cmd->autoneg != AUTONEG_ENABLE &&
4656             cmd->autoneg != AUTONEG_DISABLE)
4657                 return -EINVAL;
4658
4659         if (cmd->autoneg == AUTONEG_DISABLE &&
4660             ((speed != SPEED_1000 &&
4661               speed != SPEED_100 &&
4662               speed != SPEED_10) ||
4663              (cmd->duplex != DUPLEX_HALF &&
4664               cmd->duplex != DUPLEX_FULL)))
4665                 return -EINVAL;
4666
4667         /* Apply settings and restart link process. */
4668         spin_lock_irqsave(&cp->lock, flags);
4669         cas_begin_auto_negotiation(cp, cmd);
4670         spin_unlock_irqrestore(&cp->lock, flags);
4671         return 0;
4672 }
4673
4674 static int cas_nway_reset(struct net_device *dev)
4675 {
4676         struct cas *cp = netdev_priv(dev);
4677         unsigned long flags;
4678
4679         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4680                 return -EINVAL;
4681
4682         /* Restart link process. */
4683         spin_lock_irqsave(&cp->lock, flags);
4684         cas_begin_auto_negotiation(cp, NULL);
4685         spin_unlock_irqrestore(&cp->lock, flags);
4686
4687         return 0;
4688 }
4689
4690 static u32 cas_get_link(struct net_device *dev)
4691 {
4692         struct cas *cp = netdev_priv(dev);
4693         return cp->lstate == link_up;
4694 }
4695
4696 static u32 cas_get_msglevel(struct net_device *dev)
4697 {
4698         struct cas *cp = netdev_priv(dev);
4699         return cp->msg_enable;
4700 }
4701
4702 static void cas_set_msglevel(struct net_device *dev, u32 value)
4703 {
4704         struct cas *cp = netdev_priv(dev);
4705         cp->msg_enable = value;
4706 }
4707
4708 static int cas_get_regs_len(struct net_device *dev)
4709 {
4710         struct cas *cp = netdev_priv(dev);
4711         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4712 }
4713
4714 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4715                              void *p)
4716 {
4717         struct cas *cp = netdev_priv(dev);
4718         regs->version = 0;
4719         /* cas_read_regs handles locks (cp->lock).  */
4720         cas_read_regs(cp, p, regs->len / sizeof(u32));
4721 }
4722
4723 static int cas_get_sset_count(struct net_device *dev, int sset)
4724 {
4725         switch (sset) {
4726         case ETH_SS_STATS:
4727                 return CAS_NUM_STAT_KEYS;
4728         default:
4729                 return -EOPNOTSUPP;
4730         }
4731 }
4732
4733 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4734 {
4735          memcpy(data, &ethtool_cassini_statnames,
4736                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4737 }
4738
4739 static void cas_get_ethtool_stats(struct net_device *dev,
4740                                       struct ethtool_stats *estats, u64 *data)
4741 {
4742         struct cas *cp = netdev_priv(dev);
4743         struct net_device_stats *stats = cas_get_stats(cp->dev);
4744         int i = 0;
4745         data[i++] = stats->collisions;
4746         data[i++] = stats->rx_bytes;
4747         data[i++] = stats->rx_crc_errors;
4748         data[i++] = stats->rx_dropped;
4749         data[i++] = stats->rx_errors;
4750         data[i++] = stats->rx_fifo_errors;
4751         data[i++] = stats->rx_frame_errors;
4752         data[i++] = stats->rx_length_errors;
4753         data[i++] = stats->rx_over_errors;
4754         data[i++] = stats->rx_packets;
4755         data[i++] = stats->tx_aborted_errors;
4756         data[i++] = stats->tx_bytes;
4757         data[i++] = stats->tx_dropped;
4758         data[i++] = stats->tx_errors;
4759         data[i++] = stats->tx_fifo_errors;
4760         data[i++] = stats->tx_packets;
4761         BUG_ON(i != CAS_NUM_STAT_KEYS);
4762 }
4763
4764 static const struct ethtool_ops cas_ethtool_ops = {
4765         .get_drvinfo            = cas_get_drvinfo,
4766         .get_settings           = cas_get_settings,
4767         .set_settings           = cas_set_settings,
4768         .nway_reset             = cas_nway_reset,
4769         .get_link               = cas_get_link,
4770         .get_msglevel           = cas_get_msglevel,
4771         .set_msglevel           = cas_set_msglevel,
4772         .get_regs_len           = cas_get_regs_len,
4773         .get_regs               = cas_get_regs,
4774         .get_sset_count         = cas_get_sset_count,
4775         .get_strings            = cas_get_strings,
4776         .get_ethtool_stats      = cas_get_ethtool_stats,
4777 };
4778
4779 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4780 {
4781         struct cas *cp = netdev_priv(dev);
4782         struct mii_ioctl_data *data = if_mii(ifr);
4783         unsigned long flags;
4784         int rc = -EOPNOTSUPP;
4785
4786         /* Hold the PM mutex while doing ioctl's or we may collide
4787          * with open/close and power management and oops.
4788          */
4789         mutex_lock(&cp->pm_mutex);
4790         switch (cmd) {
4791         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4792                 data->phy_id = cp->phy_addr;
4793                 /* Fallthrough... */
4794
4795         case SIOCGMIIREG:               /* Read MII PHY register. */
4796                 spin_lock_irqsave(&cp->lock, flags);
4797                 cas_mif_poll(cp, 0);
4798                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4799                 cas_mif_poll(cp, 1);
4800                 spin_unlock_irqrestore(&cp->lock, flags);
4801                 rc = 0;
4802                 break;
4803
4804         case SIOCSMIIREG:               /* Write MII PHY register. */
4805                 spin_lock_irqsave(&cp->lock, flags);
4806                 cas_mif_poll(cp, 0);
4807                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4808                 cas_mif_poll(cp, 1);
4809                 spin_unlock_irqrestore(&cp->lock, flags);
4810                 break;
4811         default:
4812                 break;
4813         }
4814
4815         mutex_unlock(&cp->pm_mutex);
4816         return rc;
4817 }
4818
4819 /* When this chip sits underneath an Intel 31154 bridge, it is the
4820  * only subordinate device and we can tweak the bridge settings to
4821  * reflect that fact.
4822  */
4823 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4824 {
4825         struct pci_dev *pdev = cas_pdev->bus->self;
4826         u32 val;
4827
4828         if (!pdev)
4829                 return;
4830
4831         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4832                 return;
4833
4834         /* Clear bit 10 (Bus Parking Control) in the Secondary
4835          * Arbiter Control/Status Register which lives at offset
4836          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4837          * is much simpler so that's how we do this.
4838          */
4839         pci_read_config_dword(pdev, 0x40, &val);
4840         val &= ~0x00040000;
4841         pci_write_config_dword(pdev, 0x40, val);
4842
4843         /* Max out the Multi-Transaction Timer settings since
4844          * Cassini is the only device present.
4845          *
4846          * The register is 16-bit and lives at 0x50.  When the
4847          * settings are enabled, it extends the GRANT# signal
4848          * for a requestor after a transaction is complete.  This
4849          * allows the next request to run without first needing
4850          * to negotiate the GRANT# signal back.
4851          *
4852          * Bits 12:10 define the grant duration:
4853          *
4854          *      1       --      16 clocks
4855          *      2       --      32 clocks
4856          *      3       --      64 clocks
4857          *      4       --      128 clocks
4858          *      5       --      256 clocks
4859          *
4860          * All other values are illegal.
4861          *
4862          * Bits 09:00 define which REQ/GNT signal pairs get the
4863          * GRANT# signal treatment.  We set them all.
4864          */
4865         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4866
4867         /* The Read Prefecth Policy register is 16-bit and sits at
4868          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4869          * enable it and max out all of the settings since only one
4870          * device is sitting underneath and thus bandwidth sharing is
4871          * not an issue.
4872          *
4873          * The register has several 3 bit fields, which indicates a
4874          * multiplier applied to the base amount of prefetching the
4875          * chip would do.  These fields are at:
4876          *
4877          *      15:13   ---     ReRead Primary Bus
4878          *      12:10   ---     FirstRead Primary Bus
4879          *      09:07   ---     ReRead Secondary Bus
4880          *      06:04   ---     FirstRead Secondary Bus
4881          *
4882          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4883          * get enabled on.  Bit 3 is a grouped enabler which controls
4884          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4885          * the individual REQ/GNT pairs [2:0].
4886          */
4887         pci_write_config_word(pdev, 0x52,
4888                               (0x7 << 13) |
4889                               (0x7 << 10) |
4890                               (0x7 <<  7) |
4891                               (0x7 <<  4) |
4892                               (0xf <<  0));
4893
4894         /* Force cacheline size to 0x8 */
4895         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4896
4897         /* Force latency timer to maximum setting so Cassini can
4898          * sit on the bus as long as it likes.
4899          */
4900         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4901 }
4902
4903 static const struct net_device_ops cas_netdev_ops = {
4904         .ndo_open               = cas_open,
4905         .ndo_stop               = cas_close,
4906         .ndo_start_xmit         = cas_start_xmit,
4907         .ndo_get_stats          = cas_get_stats,
4908         .ndo_set_rx_mode        = cas_set_multicast,
4909         .ndo_do_ioctl           = cas_ioctl,
4910         .ndo_tx_timeout         = cas_tx_timeout,
4911         .ndo_change_mtu         = cas_change_mtu,
4912         .ndo_set_mac_address    = eth_mac_addr,
4913         .ndo_validate_addr      = eth_validate_addr,
4914 #ifdef CONFIG_NET_POLL_CONTROLLER
4915         .ndo_poll_controller    = cas_netpoll,
4916 #endif
4917 };
4918
4919 static int __devinit cas_init_one(struct pci_dev *pdev,
4920                                   const struct pci_device_id *ent)
4921 {
4922         static int cas_version_printed = 0;
4923         unsigned long casreg_len;
4924         struct net_device *dev;
4925         struct cas *cp;
4926         int i, err, pci_using_dac;
4927         u16 pci_cmd;
4928         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4929
4930         if (cas_version_printed++ == 0)
4931                 pr_info("%s", version);
4932
4933         err = pci_enable_device(pdev);
4934         if (err) {
4935                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4936                 return err;
4937         }
4938
4939         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4940                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4941                        "base address, aborting\n");
4942                 err = -ENODEV;
4943                 goto err_out_disable_pdev;
4944         }
4945
4946         dev = alloc_etherdev(sizeof(*cp));
4947         if (!dev) {
4948                 err = -ENOMEM;
4949                 goto err_out_disable_pdev;
4950         }
4951         SET_NETDEV_DEV(dev, &pdev->dev);
4952
4953         err = pci_request_regions(pdev, dev->name);
4954         if (err) {
4955                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4956                 goto err_out_free_netdev;
4957         }
4958         pci_set_master(pdev);
4959
4960         /* we must always turn on parity response or else parity
4961          * doesn't get generated properly. disable SERR/PERR as well.
4962          * in addition, we want to turn MWI on.
4963          */
4964         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4965         pci_cmd &= ~PCI_COMMAND_SERR;
4966         pci_cmd |= PCI_COMMAND_PARITY;
4967         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4968         if (pci_try_set_mwi(pdev))
4969                 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4970
4971         cas_program_bridge(pdev);
4972
4973         /*
4974          * On some architectures, the default cache line size set
4975          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4976          * it for this case.  To start, we'll print some configuration
4977          * data.
4978          */
4979 #if 1
4980         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4981                              &orig_cacheline_size);
4982         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4983                 cas_cacheline_size =
4984                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4985                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4986                 if (pci_write_config_byte(pdev,
4987                                           PCI_CACHE_LINE_SIZE,
4988                                           cas_cacheline_size)) {
4989                         dev_err(&pdev->dev, "Could not set PCI cache "
4990                                "line size\n");
4991                         goto err_write_cacheline;
4992                 }
4993         }
4994 #endif
4995
4996
4997         /* Configure DMA attributes. */
4998         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4999                 pci_using_dac = 1;
5000                 err = pci_set_consistent_dma_mask(pdev,
5001                                                   DMA_BIT_MASK(64));
5002                 if (err < 0) {
5003                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5004                                "for consistent allocations\n");
5005                         goto err_out_free_res;
5006                 }
5007
5008         } else {
5009                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5010                 if (err) {
5011                         dev_err(&pdev->dev, "No usable DMA configuration, "
5012                                "aborting\n");
5013                         goto err_out_free_res;
5014                 }
5015                 pci_using_dac = 0;
5016         }
5017
5018         casreg_len = pci_resource_len(pdev, 0);
5019
5020         cp = netdev_priv(dev);
5021         cp->pdev = pdev;
5022 #if 1
5023         /* A value of 0 indicates we never explicitly set it */
5024         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5025 #endif
5026         cp->dev = dev;
5027         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5028           cassini_debug;
5029
5030 #if defined(CONFIG_SPARC)
5031         cp->of_node = pci_device_to_OF_node(pdev);
5032 #endif
5033
5034         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5035         cp->link_transition_jiffies_valid = 0;
5036
5037         spin_lock_init(&cp->lock);
5038         spin_lock_init(&cp->rx_inuse_lock);
5039         spin_lock_init(&cp->rx_spare_lock);
5040         for (i = 0; i < N_TX_RINGS; i++) {
5041                 spin_lock_init(&cp->stat_lock[i]);
5042                 spin_lock_init(&cp->tx_lock[i]);
5043         }
5044         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5045         mutex_init(&cp->pm_mutex);
5046
5047         init_timer(&cp->link_timer);
5048         cp->link_timer.function = cas_link_timer;
5049         cp->link_timer.data = (unsigned long) cp;
5050
5051 #if 1
5052         /* Just in case the implementation of atomic operations
5053          * change so that an explicit initialization is necessary.
5054          */
5055         atomic_set(&cp->reset_task_pending, 0);
5056         atomic_set(&cp->reset_task_pending_all, 0);
5057         atomic_set(&cp->reset_task_pending_spare, 0);
5058         atomic_set(&cp->reset_task_pending_mtu, 0);
5059 #endif
5060         INIT_WORK(&cp->reset_task, cas_reset_task);
5061
5062         /* Default link parameters */
5063         if (link_mode >= 0 && link_mode < 6)
5064                 cp->link_cntl = link_modes[link_mode];
5065         else
5066                 cp->link_cntl = BMCR_ANENABLE;
5067         cp->lstate = link_down;
5068         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5069         netif_carrier_off(cp->dev);
5070         cp->timer_ticks = 0;
5071
5072         /* give us access to cassini registers */
5073         cp->regs = pci_iomap(pdev, 0, casreg_len);
5074         if (!cp->regs) {
5075                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5076                 goto err_out_free_res;
5077         }
5078         cp->casreg_len = casreg_len;
5079
5080         pci_save_state(pdev);
5081         cas_check_pci_invariants(cp);
5082         cas_hard_reset(cp);
5083         cas_reset(cp, 0);
5084         if (cas_check_invariants(cp))
5085                 goto err_out_iounmap;
5086         if (cp->cas_flags & CAS_FLAG_SATURN)
5087                 if (cas_saturn_firmware_init(cp))
5088                         goto err_out_iounmap;
5089
5090         cp->init_block = (struct cas_init_block *)
5091                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5092                                      &cp->block_dvma);
5093         if (!cp->init_block) {
5094                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5095                 goto err_out_iounmap;
5096         }
5097
5098         for (i = 0; i < N_TX_RINGS; i++)
5099                 cp->init_txds[i] = cp->init_block->txds[i];
5100
5101         for (i = 0; i < N_RX_DESC_RINGS; i++)
5102                 cp->init_rxds[i] = cp->init_block->rxds[i];
5103
5104         for (i = 0; i < N_RX_COMP_RINGS; i++)
5105                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5106
5107         for (i = 0; i < N_RX_FLOWS; i++)
5108                 skb_queue_head_init(&cp->rx_flows[i]);
5109
5110         dev->netdev_ops = &cas_netdev_ops;
5111         dev->ethtool_ops = &cas_ethtool_ops;
5112         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5113
5114 #ifdef USE_NAPI
5115         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5116 #endif
5117         dev->irq = pdev->irq;
5118         dev->dma = 0;
5119
5120         /* Cassini features. */
5121         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5122                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5123
5124         if (pci_using_dac)
5125                 dev->features |= NETIF_F_HIGHDMA;
5126
5127         if (register_netdev(dev)) {
5128                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5129                 goto err_out_free_consistent;
5130         }
5131
5132         i = readl(cp->regs + REG_BIM_CFG);
5133         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5134                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5135                     (i & BIM_CFG_32BIT) ? "32" : "64",
5136                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5137                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5138                     dev->dev_addr);
5139
5140         pci_set_drvdata(pdev, dev);
5141         cp->hw_running = 1;
5142         cas_entropy_reset(cp);
5143         cas_phy_init(cp);
5144         cas_begin_auto_negotiation(cp, NULL);
5145         return 0;
5146
5147 err_out_free_consistent:
5148         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5149                             cp->init_block, cp->block_dvma);
5150
5151 err_out_iounmap:
5152         mutex_lock(&cp->pm_mutex);
5153         if (cp->hw_running)
5154                 cas_shutdown(cp);
5155         mutex_unlock(&cp->pm_mutex);
5156
5157         pci_iounmap(pdev, cp->regs);
5158
5159
5160 err_out_free_res:
5161         pci_release_regions(pdev);
5162
5163 err_write_cacheline:
5164         /* Try to restore it in case the error occurred after we
5165          * set it.
5166          */
5167         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5168
5169 err_out_free_netdev:
5170         free_netdev(dev);
5171
5172 err_out_disable_pdev:
5173         pci_disable_device(pdev);
5174         pci_set_drvdata(pdev, NULL);
5175         return -ENODEV;
5176 }
5177
5178 static void __devexit cas_remove_one(struct pci_dev *pdev)
5179 {
5180         struct net_device *dev = pci_get_drvdata(pdev);
5181         struct cas *cp;
5182         if (!dev)
5183                 return;
5184
5185         cp = netdev_priv(dev);
5186         unregister_netdev(dev);
5187
5188         if (cp->fw_data)
5189                 vfree(cp->fw_data);
5190
5191         mutex_lock(&cp->pm_mutex);
5192         cancel_work_sync(&cp->reset_task);
5193         if (cp->hw_running)
5194                 cas_shutdown(cp);
5195         mutex_unlock(&cp->pm_mutex);
5196
5197 #if 1
5198         if (cp->orig_cacheline_size) {
5199                 /* Restore the cache line size if we had modified
5200                  * it.
5201                  */
5202                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5203                                       cp->orig_cacheline_size);
5204         }
5205 #endif
5206         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5207                             cp->init_block, cp->block_dvma);
5208         pci_iounmap(pdev, cp->regs);
5209         free_netdev(dev);
5210         pci_release_regions(pdev);
5211         pci_disable_device(pdev);
5212         pci_set_drvdata(pdev, NULL);
5213 }
5214
5215 #ifdef CONFIG_PM
5216 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5217 {
5218         struct net_device *dev = pci_get_drvdata(pdev);
5219         struct cas *cp = netdev_priv(dev);
5220         unsigned long flags;
5221
5222         mutex_lock(&cp->pm_mutex);
5223
5224         /* If the driver is opened, we stop the DMA */
5225         if (cp->opened) {
5226                 netif_device_detach(dev);
5227
5228                 cas_lock_all_save(cp, flags);
5229
5230                 /* We can set the second arg of cas_reset to 0
5231                  * because on resume, we'll call cas_init_hw with
5232                  * its second arg set so that autonegotiation is
5233                  * restarted.
5234                  */
5235                 cas_reset(cp, 0);
5236                 cas_clean_rings(cp);
5237                 cas_unlock_all_restore(cp, flags);
5238         }
5239
5240         if (cp->hw_running)
5241                 cas_shutdown(cp);
5242         mutex_unlock(&cp->pm_mutex);
5243
5244         return 0;
5245 }
5246
5247 static int cas_resume(struct pci_dev *pdev)
5248 {
5249         struct net_device *dev = pci_get_drvdata(pdev);
5250         struct cas *cp = netdev_priv(dev);
5251
5252         netdev_info(dev, "resuming\n");
5253
5254         mutex_lock(&cp->pm_mutex);
5255         cas_hard_reset(cp);
5256         if (cp->opened) {
5257                 unsigned long flags;
5258                 cas_lock_all_save(cp, flags);
5259                 cas_reset(cp, 0);
5260                 cp->hw_running = 1;
5261                 cas_clean_rings(cp);
5262                 cas_init_hw(cp, 1);
5263                 cas_unlock_all_restore(cp, flags);
5264
5265                 netif_device_attach(dev);
5266         }
5267         mutex_unlock(&cp->pm_mutex);
5268         return 0;
5269 }
5270 #endif /* CONFIG_PM */
5271
5272 static struct pci_driver cas_driver = {
5273         .name           = DRV_MODULE_NAME,
5274         .id_table       = cas_pci_tbl,
5275         .probe          = cas_init_one,
5276         .remove         = __devexit_p(cas_remove_one),
5277 #ifdef CONFIG_PM
5278         .suspend        = cas_suspend,
5279         .resume         = cas_resume
5280 #endif
5281 };
5282
5283 static int __init cas_init(void)
5284 {
5285         if (linkdown_timeout > 0)
5286                 link_transition_timeout = linkdown_timeout * HZ;
5287         else
5288                 link_transition_timeout = 0;
5289
5290         return pci_register_driver(&cas_driver);
5291 }
5292
5293 static void __exit cas_cleanup(void)
5294 {
5295         pci_unregister_driver(&cas_driver);
5296 }
5297
5298 module_init(cas_init);
5299 module_exit(cas_cleanup);