Merge branch 'davem-next.r8169' of git://violet.fr.zoreil.com/romieu/linux
[pandora-kernel.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer,
35                                unsigned int *pkts_compl,
36                                unsigned int *bytes_compl)
37 {
38         if (buffer->unmap_len) {
39                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41                                          buffer->unmap_len);
42                 if (buffer->unmap_single)
43                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44                                          PCI_DMA_TODEVICE);
45                 else
46                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47                                        PCI_DMA_TODEVICE);
48                 buffer->unmap_len = 0;
49                 buffer->unmap_single = false;
50         }
51
52         if (buffer->skb) {
53                 (*pkts_compl)++;
54                 (*bytes_compl) += buffer->skb->len;
55                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56                 buffer->skb = NULL;
57                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58                            "TX queue %d transmission id %x complete\n",
59                            tx_queue->queue, tx_queue->read_count);
60         }
61 }
62
63 /**
64  * struct efx_tso_header - a DMA mapped buffer for packet headers
65  * @next: Linked list of free ones.
66  *      The list is protected by the TX queue lock.
67  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68  * @dma_addr: The DMA address of the header below.
69  *
70  * This controls the memory used for a TSO header.  Use TSOH_DATA()
71  * to find the packet header data.  Use TSOH_SIZE() to calculate the
72  * total size required for a given packet header length.  TSO headers
73  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74  */
75 struct efx_tso_header {
76         union {
77                 struct efx_tso_header *next;
78                 size_t unmap_len;
79         };
80         dma_addr_t dma_addr;
81 };
82
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84                                struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87                                struct efx_tso_header *tsoh);
88
89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90                           struct efx_tx_buffer *buffer)
91 {
92         if (buffer->tsoh) {
93                 if (likely(!buffer->tsoh->unmap_len)) {
94                         buffer->tsoh->next = tx_queue->tso_headers_free;
95                         tx_queue->tso_headers_free = buffer->tsoh;
96                 } else {
97                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98                 }
99                 buffer->tsoh = NULL;
100         }
101 }
102
103
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106 {
107         /* Depending on the NIC revision, we can use descriptor
108          * lengths up to 8K or 8K-1.  However, since PCI Express
109          * devices must split read requests at 4K boundaries, there is
110          * little benefit from using descriptors that cross those
111          * boundaries and we keep things simple by not doing so.
112          */
113         unsigned len = (~dma_addr & 0xfff) + 1;
114
115         /* Work around hardware bug for unaligned buffers. */
116         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118
119         return len;
120 }
121
122 /*
123  * Add a socket buffer to a TX queue
124  *
125  * This maps all fragments of a socket buffer for DMA and adds them to
126  * the TX queue.  The queue's insert pointer will be incremented by
127  * the number of fragments in the socket buffer.
128  *
129  * If any DMA mapping fails, any mapped fragments will be unmapped,
130  * the queue's insert pointer will be restored to its original value.
131  *
132  * This function is split out from efx_hard_start_xmit to allow the
133  * loopback test to direct packets via specific TX queues.
134  *
135  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136  * You must hold netif_tx_lock() to call this function.
137  */
138 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
139 {
140         struct efx_nic *efx = tx_queue->efx;
141         struct pci_dev *pci_dev = efx->pci_dev;
142         struct efx_tx_buffer *buffer;
143         skb_frag_t *fragment;
144         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
145         dma_addr_t dma_addr, unmap_addr = 0;
146         unsigned int dma_len;
147         bool unmap_single;
148         int q_space, i = 0;
149         netdev_tx_t rc = NETDEV_TX_OK;
150
151         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
152
153         if (skb_shinfo(skb)->gso_size)
154                 return efx_enqueue_skb_tso(tx_queue, skb);
155
156         /* Get size of the initial fragment */
157         len = skb_headlen(skb);
158
159         /* Pad if necessary */
160         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
161                 EFX_BUG_ON_PARANOID(skb->data_len);
162                 len = 32 + 1;
163                 if (skb_pad(skb, len - skb->len))
164                         return NETDEV_TX_OK;
165         }
166
167         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
168         q_space = efx->txq_entries - 1 - fill_level;
169
170         /* Map for DMA.  Use pci_map_single rather than pci_map_page
171          * since this is more efficient on machines with sparse
172          * memory.
173          */
174         unmap_single = true;
175         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
176
177         /* Process all fragments */
178         while (1) {
179                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
180                         goto pci_err;
181
182                 /* Store fields for marking in the per-fragment final
183                  * descriptor */
184                 unmap_len = len;
185                 unmap_addr = dma_addr;
186
187                 /* Add to TX queue, splitting across DMA boundaries */
188                 do {
189                         if (unlikely(q_space-- <= 0)) {
190                                 /* It might be that completions have
191                                  * happened since the xmit path last
192                                  * checked.  Update the xmit path's
193                                  * copy of read_count.
194                                  */
195                                 netif_tx_stop_queue(tx_queue->core_txq);
196                                 /* This memory barrier protects the
197                                  * change of queue state from the access
198                                  * of read_count. */
199                                 smp_mb();
200                                 tx_queue->old_read_count =
201                                         ACCESS_ONCE(tx_queue->read_count);
202                                 fill_level = (tx_queue->insert_count
203                                               - tx_queue->old_read_count);
204                                 q_space = efx->txq_entries - 1 - fill_level;
205                                 if (unlikely(q_space-- <= 0)) {
206                                         rc = NETDEV_TX_BUSY;
207                                         goto unwind;
208                                 }
209                                 smp_mb();
210                                 if (likely(!efx->loopback_selftest))
211                                         netif_tx_start_queue(
212                                                 tx_queue->core_txq);
213                         }
214
215                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
216                         buffer = &tx_queue->buffer[insert_ptr];
217                         efx_tsoh_free(tx_queue, buffer);
218                         EFX_BUG_ON_PARANOID(buffer->tsoh);
219                         EFX_BUG_ON_PARANOID(buffer->skb);
220                         EFX_BUG_ON_PARANOID(buffer->len);
221                         EFX_BUG_ON_PARANOID(!buffer->continuation);
222                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
223
224                         dma_len = efx_max_tx_len(efx, dma_addr);
225                         if (likely(dma_len >= len))
226                                 dma_len = len;
227
228                         /* Fill out per descriptor fields */
229                         buffer->len = dma_len;
230                         buffer->dma_addr = dma_addr;
231                         len -= dma_len;
232                         dma_addr += dma_len;
233                         ++tx_queue->insert_count;
234                 } while (len);
235
236                 /* Transfer ownership of the unmapping to the final buffer */
237                 buffer->unmap_single = unmap_single;
238                 buffer->unmap_len = unmap_len;
239                 unmap_len = 0;
240
241                 /* Get address and size of next fragment */
242                 if (i >= skb_shinfo(skb)->nr_frags)
243                         break;
244                 fragment = &skb_shinfo(skb)->frags[i];
245                 len = skb_frag_size(fragment);
246                 i++;
247                 /* Map for DMA */
248                 unmap_single = false;
249                 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
250                                             DMA_TO_DEVICE);
251         }
252
253         /* Transfer ownership of the skb to the final buffer */
254         buffer->skb = skb;
255         buffer->continuation = false;
256
257         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
258
259         /* Pass off to hardware */
260         efx_nic_push_buffers(tx_queue);
261
262         return NETDEV_TX_OK;
263
264  pci_err:
265         netif_err(efx, tx_err, efx->net_dev,
266                   " TX queue %d could not map skb with %d bytes %d "
267                   "fragments for DMA\n", tx_queue->queue, skb->len,
268                   skb_shinfo(skb)->nr_frags + 1);
269
270         /* Mark the packet as transmitted, and free the SKB ourselves */
271         dev_kfree_skb_any(skb);
272
273  unwind:
274         /* Work backwards until we hit the original insert pointer value */
275         while (tx_queue->insert_count != tx_queue->write_count) {
276                 unsigned int pkts_compl = 0, bytes_compl = 0;
277                 --tx_queue->insert_count;
278                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
279                 buffer = &tx_queue->buffer[insert_ptr];
280                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
281                 buffer->len = 0;
282         }
283
284         /* Free the fragment we were mid-way through pushing */
285         if (unmap_len) {
286                 if (unmap_single)
287                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
288                                          PCI_DMA_TODEVICE);
289                 else
290                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
291                                        PCI_DMA_TODEVICE);
292         }
293
294         return rc;
295 }
296
297 /* Remove packets from the TX queue
298  *
299  * This removes packets from the TX queue, up to and including the
300  * specified index.
301  */
302 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303                                 unsigned int index,
304                                 unsigned int *pkts_compl,
305                                 unsigned int *bytes_compl)
306 {
307         struct efx_nic *efx = tx_queue->efx;
308         unsigned int stop_index, read_ptr;
309
310         stop_index = (index + 1) & tx_queue->ptr_mask;
311         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
312
313         while (read_ptr != stop_index) {
314                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
315                 if (unlikely(buffer->len == 0)) {
316                         netif_err(efx, tx_err, efx->net_dev,
317                                   "TX queue %d spurious TX completion id %x\n",
318                                   tx_queue->queue, read_ptr);
319                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
320                         return;
321                 }
322
323                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
324                 buffer->continuation = true;
325                 buffer->len = 0;
326
327                 ++tx_queue->read_count;
328                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
329         }
330 }
331
332 /* Initiate a packet transmission.  We use one channel per CPU
333  * (sharing when we have more CPUs than channels).  On Falcon, the TX
334  * completion events will be directed back to the CPU that transmitted
335  * the packet, which should be cache-efficient.
336  *
337  * Context: non-blocking.
338  * Note that returning anything other than NETDEV_TX_OK will cause the
339  * OS to free the skb.
340  */
341 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
342                                       struct net_device *net_dev)
343 {
344         struct efx_nic *efx = netdev_priv(net_dev);
345         struct efx_tx_queue *tx_queue;
346         unsigned index, type;
347
348         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
349
350         index = skb_get_queue_mapping(skb);
351         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352         if (index >= efx->n_tx_channels) {
353                 index -= efx->n_tx_channels;
354                 type |= EFX_TXQ_TYPE_HIGHPRI;
355         }
356         tx_queue = efx_get_tx_queue(efx, index, type);
357
358         return efx_enqueue_skb(tx_queue, skb);
359 }
360
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363         struct efx_nic *efx = tx_queue->efx;
364
365         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
366         tx_queue->core_txq =
367                 netdev_get_tx_queue(efx->net_dev,
368                                     tx_queue->queue / EFX_TXQ_TYPES +
369                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370                                      efx->n_tx_channels : 0));
371 }
372
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375         struct efx_nic *efx = netdev_priv(net_dev);
376         struct efx_channel *channel;
377         struct efx_tx_queue *tx_queue;
378         unsigned tc;
379         int rc;
380
381         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382                 return -EINVAL;
383
384         if (num_tc == net_dev->num_tc)
385                 return 0;
386
387         for (tc = 0; tc < num_tc; tc++) {
388                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390         }
391
392         if (num_tc > net_dev->num_tc) {
393                 /* Initialise high-priority queues as necessary */
394                 efx_for_each_channel(channel, efx) {
395                         efx_for_each_possible_channel_tx_queue(tx_queue,
396                                                                channel) {
397                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398                                         continue;
399                                 if (!tx_queue->buffer) {
400                                         rc = efx_probe_tx_queue(tx_queue);
401                                         if (rc)
402                                                 return rc;
403                                 }
404                                 if (!tx_queue->initialised)
405                                         efx_init_tx_queue(tx_queue);
406                                 efx_init_tx_queue_core_txq(tx_queue);
407                         }
408                 }
409         } else {
410                 /* Reduce number of classes before number of queues */
411                 net_dev->num_tc = num_tc;
412         }
413
414         rc = netif_set_real_num_tx_queues(net_dev,
415                                           max_t(int, num_tc, 1) *
416                                           efx->n_tx_channels);
417         if (rc)
418                 return rc;
419
420         /* Do not destroy high-priority queues when they become
421          * unused.  We would have to flush them first, and it is
422          * fairly difficult to flush a subset of TX queues.  Leave
423          * it to efx_fini_channels().
424          */
425
426         net_dev->num_tc = num_tc;
427         return 0;
428 }
429
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432         unsigned fill_level;
433         struct efx_nic *efx = tx_queue->efx;
434         unsigned int pkts_compl = 0, bytes_compl = 0;
435
436         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
437
438         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
439         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
440
441         /* See if we need to restart the netif queue.  This barrier
442          * separates the update of read_count from the test of the
443          * queue state. */
444         smp_mb();
445         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446             likely(efx->port_enabled) &&
447             likely(netif_device_present(efx->net_dev))) {
448                 fill_level = tx_queue->insert_count - tx_queue->read_count;
449                 if (fill_level < EFX_TXQ_THRESHOLD(efx))
450                         netif_tx_wake_queue(tx_queue->core_txq);
451         }
452
453         /* Check whether the hardware queue is now empty */
454         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
455                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
456                 if (tx_queue->read_count == tx_queue->old_write_count) {
457                         smp_mb();
458                         tx_queue->empty_read_count =
459                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
460                 }
461         }
462 }
463
464 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
465 {
466         struct efx_nic *efx = tx_queue->efx;
467         unsigned int entries;
468         int i, rc;
469
470         /* Create the smallest power-of-two aligned ring */
471         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
472         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
473         tx_queue->ptr_mask = entries - 1;
474
475         netif_dbg(efx, probe, efx->net_dev,
476                   "creating TX queue %d size %#x mask %#x\n",
477                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
478
479         /* Allocate software ring */
480         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
481                                    GFP_KERNEL);
482         if (!tx_queue->buffer)
483                 return -ENOMEM;
484         for (i = 0; i <= tx_queue->ptr_mask; ++i)
485                 tx_queue->buffer[i].continuation = true;
486
487         /* Allocate hardware ring */
488         rc = efx_nic_probe_tx(tx_queue);
489         if (rc)
490                 goto fail;
491
492         return 0;
493
494  fail:
495         kfree(tx_queue->buffer);
496         tx_queue->buffer = NULL;
497         return rc;
498 }
499
500 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
501 {
502         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
503                   "initialising TX queue %d\n", tx_queue->queue);
504
505         tx_queue->insert_count = 0;
506         tx_queue->write_count = 0;
507         tx_queue->old_write_count = 0;
508         tx_queue->read_count = 0;
509         tx_queue->old_read_count = 0;
510         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
511
512         /* Set up TX descriptor ring */
513         efx_nic_init_tx(tx_queue);
514
515         tx_queue->initialised = true;
516 }
517
518 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
519 {
520         struct efx_tx_buffer *buffer;
521
522         if (!tx_queue->buffer)
523                 return;
524
525         /* Free any buffers left in the ring */
526         while (tx_queue->read_count != tx_queue->write_count) {
527                 unsigned int pkts_compl = 0, bytes_compl = 0;
528                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
529                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
530                 buffer->continuation = true;
531                 buffer->len = 0;
532
533                 ++tx_queue->read_count;
534         }
535         netdev_tx_reset_queue(tx_queue->core_txq);
536 }
537
538 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
539 {
540         if (!tx_queue->initialised)
541                 return;
542
543         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
544                   "shutting down TX queue %d\n", tx_queue->queue);
545
546         tx_queue->initialised = false;
547
548         /* Flush TX queue, remove descriptor ring */
549         efx_nic_fini_tx(tx_queue);
550
551         efx_release_tx_buffers(tx_queue);
552
553         /* Free up TSO header cache */
554         efx_fini_tso(tx_queue);
555 }
556
557 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
558 {
559         if (!tx_queue->buffer)
560                 return;
561
562         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
563                   "destroying TX queue %d\n", tx_queue->queue);
564         efx_nic_remove_tx(tx_queue);
565
566         kfree(tx_queue->buffer);
567         tx_queue->buffer = NULL;
568 }
569
570
571 /* Efx TCP segmentation acceleration.
572  *
573  * Why?  Because by doing it here in the driver we can go significantly
574  * faster than the GSO.
575  *
576  * Requires TX checksum offload support.
577  */
578
579 /* Number of bytes inserted at the start of a TSO header buffer,
580  * similar to NET_IP_ALIGN.
581  */
582 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
583 #define TSOH_OFFSET     0
584 #else
585 #define TSOH_OFFSET     NET_IP_ALIGN
586 #endif
587
588 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
589
590 /* Total size of struct efx_tso_header, buffer and padding */
591 #define TSOH_SIZE(hdr_len)                                      \
592         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
593
594 /* Size of blocks on free list.  Larger blocks must be allocated from
595  * the heap.
596  */
597 #define TSOH_STD_SIZE           128
598
599 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
600 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
601 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
602 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
603 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
604
605 /**
606  * struct tso_state - TSO state for an SKB
607  * @out_len: Remaining length in current segment
608  * @seqnum: Current sequence number
609  * @ipv4_id: Current IPv4 ID, host endian
610  * @packet_space: Remaining space in current packet
611  * @dma_addr: DMA address of current position
612  * @in_len: Remaining length in current SKB fragment
613  * @unmap_len: Length of SKB fragment
614  * @unmap_addr: DMA address of SKB fragment
615  * @unmap_single: DMA single vs page mapping flag
616  * @protocol: Network protocol (after any VLAN header)
617  * @header_len: Number of bytes of header
618  * @full_packet_size: Number of bytes to put in each outgoing segment
619  *
620  * The state used during segmentation.  It is put into this data structure
621  * just to make it easy to pass into inline functions.
622  */
623 struct tso_state {
624         /* Output position */
625         unsigned out_len;
626         unsigned seqnum;
627         unsigned ipv4_id;
628         unsigned packet_space;
629
630         /* Input position */
631         dma_addr_t dma_addr;
632         unsigned in_len;
633         unsigned unmap_len;
634         dma_addr_t unmap_addr;
635         bool unmap_single;
636
637         __be16 protocol;
638         unsigned header_len;
639         int full_packet_size;
640 };
641
642
643 /*
644  * Verify that our various assumptions about sk_buffs and the conditions
645  * under which TSO will be attempted hold true.  Return the protocol number.
646  */
647 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
648 {
649         __be16 protocol = skb->protocol;
650
651         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
652                             protocol);
653         if (protocol == htons(ETH_P_8021Q)) {
654                 /* Find the encapsulated protocol; reset network header
655                  * and transport header based on that. */
656                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
657                 protocol = veh->h_vlan_encapsulated_proto;
658                 skb_set_network_header(skb, sizeof(*veh));
659                 if (protocol == htons(ETH_P_IP))
660                         skb_set_transport_header(skb, sizeof(*veh) +
661                                                  4 * ip_hdr(skb)->ihl);
662                 else if (protocol == htons(ETH_P_IPV6))
663                         skb_set_transport_header(skb, sizeof(*veh) +
664                                                  sizeof(struct ipv6hdr));
665         }
666
667         if (protocol == htons(ETH_P_IP)) {
668                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
669         } else {
670                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
671                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
672         }
673         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
674                              + (tcp_hdr(skb)->doff << 2u)) >
675                             skb_headlen(skb));
676
677         return protocol;
678 }
679
680
681 /*
682  * Allocate a page worth of efx_tso_header structures, and string them
683  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
684  */
685 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
686 {
687
688         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
689         struct efx_tso_header *tsoh;
690         dma_addr_t dma_addr;
691         u8 *base_kva, *kva;
692
693         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
694         if (base_kva == NULL) {
695                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
696                           "Unable to allocate page for TSO headers\n");
697                 return -ENOMEM;
698         }
699
700         /* pci_alloc_consistent() allocates pages. */
701         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
702
703         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
704                 tsoh = (struct efx_tso_header *)kva;
705                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
706                 tsoh->next = tx_queue->tso_headers_free;
707                 tx_queue->tso_headers_free = tsoh;
708         }
709
710         return 0;
711 }
712
713
714 /* Free up a TSO header, and all others in the same page. */
715 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
716                                 struct efx_tso_header *tsoh,
717                                 struct pci_dev *pci_dev)
718 {
719         struct efx_tso_header **p;
720         unsigned long base_kva;
721         dma_addr_t base_dma;
722
723         base_kva = (unsigned long)tsoh & PAGE_MASK;
724         base_dma = tsoh->dma_addr & PAGE_MASK;
725
726         p = &tx_queue->tso_headers_free;
727         while (*p != NULL) {
728                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
729                         *p = (*p)->next;
730                 else
731                         p = &(*p)->next;
732         }
733
734         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
735 }
736
737 static struct efx_tso_header *
738 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
739 {
740         struct efx_tso_header *tsoh;
741
742         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
743         if (unlikely(!tsoh))
744                 return NULL;
745
746         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
747                                         TSOH_BUFFER(tsoh), header_len,
748                                         PCI_DMA_TODEVICE);
749         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
750                                            tsoh->dma_addr))) {
751                 kfree(tsoh);
752                 return NULL;
753         }
754
755         tsoh->unmap_len = header_len;
756         return tsoh;
757 }
758
759 static void
760 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
761 {
762         pci_unmap_single(tx_queue->efx->pci_dev,
763                          tsoh->dma_addr, tsoh->unmap_len,
764                          PCI_DMA_TODEVICE);
765         kfree(tsoh);
766 }
767
768 /**
769  * efx_tx_queue_insert - push descriptors onto the TX queue
770  * @tx_queue:           Efx TX queue
771  * @dma_addr:           DMA address of fragment
772  * @len:                Length of fragment
773  * @final_buffer:       The final buffer inserted into the queue
774  *
775  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
776  * @tx_queue full.
777  */
778 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
779                                dma_addr_t dma_addr, unsigned len,
780                                struct efx_tx_buffer **final_buffer)
781 {
782         struct efx_tx_buffer *buffer;
783         struct efx_nic *efx = tx_queue->efx;
784         unsigned dma_len, fill_level, insert_ptr;
785         int q_space;
786
787         EFX_BUG_ON_PARANOID(len <= 0);
788
789         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
790         /* -1 as there is no way to represent all descriptors used */
791         q_space = efx->txq_entries - 1 - fill_level;
792
793         while (1) {
794                 if (unlikely(q_space-- <= 0)) {
795                         /* It might be that completions have happened
796                          * since the xmit path last checked.  Update
797                          * the xmit path's copy of read_count.
798                          */
799                         netif_tx_stop_queue(tx_queue->core_txq);
800                         /* This memory barrier protects the change of
801                          * queue state from the access of read_count. */
802                         smp_mb();
803                         tx_queue->old_read_count =
804                                 ACCESS_ONCE(tx_queue->read_count);
805                         fill_level = (tx_queue->insert_count
806                                       - tx_queue->old_read_count);
807                         q_space = efx->txq_entries - 1 - fill_level;
808                         if (unlikely(q_space-- <= 0)) {
809                                 *final_buffer = NULL;
810                                 return 1;
811                         }
812                         smp_mb();
813                         netif_tx_start_queue(tx_queue->core_txq);
814                 }
815
816                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
817                 buffer = &tx_queue->buffer[insert_ptr];
818                 ++tx_queue->insert_count;
819
820                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
821                                     tx_queue->read_count >=
822                                     efx->txq_entries);
823
824                 efx_tsoh_free(tx_queue, buffer);
825                 EFX_BUG_ON_PARANOID(buffer->len);
826                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
827                 EFX_BUG_ON_PARANOID(buffer->skb);
828                 EFX_BUG_ON_PARANOID(!buffer->continuation);
829                 EFX_BUG_ON_PARANOID(buffer->tsoh);
830
831                 buffer->dma_addr = dma_addr;
832
833                 dma_len = efx_max_tx_len(efx, dma_addr);
834
835                 /* If there is enough space to send then do so */
836                 if (dma_len >= len)
837                         break;
838
839                 buffer->len = dma_len; /* Don't set the other members */
840                 dma_addr += dma_len;
841                 len -= dma_len;
842         }
843
844         EFX_BUG_ON_PARANOID(!len);
845         buffer->len = len;
846         *final_buffer = buffer;
847         return 0;
848 }
849
850
851 /*
852  * Put a TSO header into the TX queue.
853  *
854  * This is special-cased because we know that it is small enough to fit in
855  * a single fragment, and we know it doesn't cross a page boundary.  It
856  * also allows us to not worry about end-of-packet etc.
857  */
858 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
859                                struct efx_tso_header *tsoh, unsigned len)
860 {
861         struct efx_tx_buffer *buffer;
862
863         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
864         efx_tsoh_free(tx_queue, buffer);
865         EFX_BUG_ON_PARANOID(buffer->len);
866         EFX_BUG_ON_PARANOID(buffer->unmap_len);
867         EFX_BUG_ON_PARANOID(buffer->skb);
868         EFX_BUG_ON_PARANOID(!buffer->continuation);
869         EFX_BUG_ON_PARANOID(buffer->tsoh);
870         buffer->len = len;
871         buffer->dma_addr = tsoh->dma_addr;
872         buffer->tsoh = tsoh;
873
874         ++tx_queue->insert_count;
875 }
876
877
878 /* Remove descriptors put into a tx_queue. */
879 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
880 {
881         struct efx_tx_buffer *buffer;
882         dma_addr_t unmap_addr;
883
884         /* Work backwards until we hit the original insert pointer value */
885         while (tx_queue->insert_count != tx_queue->write_count) {
886                 --tx_queue->insert_count;
887                 buffer = &tx_queue->buffer[tx_queue->insert_count &
888                                            tx_queue->ptr_mask];
889                 efx_tsoh_free(tx_queue, buffer);
890                 EFX_BUG_ON_PARANOID(buffer->skb);
891                 if (buffer->unmap_len) {
892                         unmap_addr = (buffer->dma_addr + buffer->len -
893                                       buffer->unmap_len);
894                         if (buffer->unmap_single)
895                                 pci_unmap_single(tx_queue->efx->pci_dev,
896                                                  unmap_addr, buffer->unmap_len,
897                                                  PCI_DMA_TODEVICE);
898                         else
899                                 pci_unmap_page(tx_queue->efx->pci_dev,
900                                                unmap_addr, buffer->unmap_len,
901                                                PCI_DMA_TODEVICE);
902                         buffer->unmap_len = 0;
903                 }
904                 buffer->len = 0;
905                 buffer->continuation = true;
906         }
907 }
908
909
910 /* Parse the SKB header and initialise state. */
911 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
912 {
913         /* All ethernet/IP/TCP headers combined size is TCP header size
914          * plus offset of TCP header relative to start of packet.
915          */
916         st->header_len = ((tcp_hdr(skb)->doff << 2u)
917                           + PTR_DIFF(tcp_hdr(skb), skb->data));
918         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
919
920         if (st->protocol == htons(ETH_P_IP))
921                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
922         else
923                 st->ipv4_id = 0;
924         st->seqnum = ntohl(tcp_hdr(skb)->seq);
925
926         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
927         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
928         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
929
930         st->packet_space = st->full_packet_size;
931         st->out_len = skb->len - st->header_len;
932         st->unmap_len = 0;
933         st->unmap_single = false;
934 }
935
936 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
937                             skb_frag_t *frag)
938 {
939         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
940                                           skb_frag_size(frag), DMA_TO_DEVICE);
941         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
942                 st->unmap_single = false;
943                 st->unmap_len = skb_frag_size(frag);
944                 st->in_len = skb_frag_size(frag);
945                 st->dma_addr = st->unmap_addr;
946                 return 0;
947         }
948         return -ENOMEM;
949 }
950
951 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
952                                  const struct sk_buff *skb)
953 {
954         int hl = st->header_len;
955         int len = skb_headlen(skb) - hl;
956
957         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
958                                         len, PCI_DMA_TODEVICE);
959         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
960                 st->unmap_single = true;
961                 st->unmap_len = len;
962                 st->in_len = len;
963                 st->dma_addr = st->unmap_addr;
964                 return 0;
965         }
966         return -ENOMEM;
967 }
968
969
970 /**
971  * tso_fill_packet_with_fragment - form descriptors for the current fragment
972  * @tx_queue:           Efx TX queue
973  * @skb:                Socket buffer
974  * @st:                 TSO state
975  *
976  * Form descriptors for the current fragment, until we reach the end
977  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
978  * space in @tx_queue.
979  */
980 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
981                                          const struct sk_buff *skb,
982                                          struct tso_state *st)
983 {
984         struct efx_tx_buffer *buffer;
985         int n, end_of_packet, rc;
986
987         if (st->in_len == 0)
988                 return 0;
989         if (st->packet_space == 0)
990                 return 0;
991
992         EFX_BUG_ON_PARANOID(st->in_len <= 0);
993         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
994
995         n = min(st->in_len, st->packet_space);
996
997         st->packet_space -= n;
998         st->out_len -= n;
999         st->in_len -= n;
1000
1001         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1002         if (likely(rc == 0)) {
1003                 if (st->out_len == 0)
1004                         /* Transfer ownership of the skb */
1005                         buffer->skb = skb;
1006
1007                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1008                 buffer->continuation = !end_of_packet;
1009
1010                 if (st->in_len == 0) {
1011                         /* Transfer ownership of the pci mapping */
1012                         buffer->unmap_len = st->unmap_len;
1013                         buffer->unmap_single = st->unmap_single;
1014                         st->unmap_len = 0;
1015                 }
1016         }
1017
1018         st->dma_addr += n;
1019         return rc;
1020 }
1021
1022
1023 /**
1024  * tso_start_new_packet - generate a new header and prepare for the new packet
1025  * @tx_queue:           Efx TX queue
1026  * @skb:                Socket buffer
1027  * @st:                 TSO state
1028  *
1029  * Generate a new header and prepare for the new packet.  Return 0 on
1030  * success, or -1 if failed to alloc header.
1031  */
1032 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1033                                 const struct sk_buff *skb,
1034                                 struct tso_state *st)
1035 {
1036         struct efx_tso_header *tsoh;
1037         struct tcphdr *tsoh_th;
1038         unsigned ip_length;
1039         u8 *header;
1040
1041         /* Allocate a DMA-mapped header buffer. */
1042         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1043                 if (tx_queue->tso_headers_free == NULL) {
1044                         if (efx_tsoh_block_alloc(tx_queue))
1045                                 return -1;
1046                 }
1047                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1048                 tsoh = tx_queue->tso_headers_free;
1049                 tx_queue->tso_headers_free = tsoh->next;
1050                 tsoh->unmap_len = 0;
1051         } else {
1052                 tx_queue->tso_long_headers++;
1053                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1054                 if (unlikely(!tsoh))
1055                         return -1;
1056         }
1057
1058         header = TSOH_BUFFER(tsoh);
1059         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1060
1061         /* Copy and update the headers. */
1062         memcpy(header, skb->data, st->header_len);
1063
1064         tsoh_th->seq = htonl(st->seqnum);
1065         st->seqnum += skb_shinfo(skb)->gso_size;
1066         if (st->out_len > skb_shinfo(skb)->gso_size) {
1067                 /* This packet will not finish the TSO burst. */
1068                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1069                 tsoh_th->fin = 0;
1070                 tsoh_th->psh = 0;
1071         } else {
1072                 /* This packet will be the last in the TSO burst. */
1073                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1074                 tsoh_th->fin = tcp_hdr(skb)->fin;
1075                 tsoh_th->psh = tcp_hdr(skb)->psh;
1076         }
1077
1078         if (st->protocol == htons(ETH_P_IP)) {
1079                 struct iphdr *tsoh_iph =
1080                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1081
1082                 tsoh_iph->tot_len = htons(ip_length);
1083
1084                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1085                 tsoh_iph->id = htons(st->ipv4_id);
1086                 st->ipv4_id++;
1087         } else {
1088                 struct ipv6hdr *tsoh_iph =
1089                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1090
1091                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1092         }
1093
1094         st->packet_space = skb_shinfo(skb)->gso_size;
1095         ++tx_queue->tso_packets;
1096
1097         /* Form a descriptor for this header. */
1098         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1099
1100         return 0;
1101 }
1102
1103
1104 /**
1105  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1106  * @tx_queue:           Efx TX queue
1107  * @skb:                Socket buffer
1108  *
1109  * Context: You must hold netif_tx_lock() to call this function.
1110  *
1111  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1112  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1113  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1114  */
1115 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1116                                struct sk_buff *skb)
1117 {
1118         struct efx_nic *efx = tx_queue->efx;
1119         int frag_i, rc, rc2 = NETDEV_TX_OK;
1120         struct tso_state state;
1121
1122         /* Find the packet protocol and sanity-check it */
1123         state.protocol = efx_tso_check_protocol(skb);
1124
1125         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1126
1127         tso_start(&state, skb);
1128
1129         /* Assume that skb header area contains exactly the headers, and
1130          * all payload is in the frag list.
1131          */
1132         if (skb_headlen(skb) == state.header_len) {
1133                 /* Grab the first payload fragment. */
1134                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1135                 frag_i = 0;
1136                 rc = tso_get_fragment(&state, efx,
1137                                       skb_shinfo(skb)->frags + frag_i);
1138                 if (rc)
1139                         goto mem_err;
1140         } else {
1141                 rc = tso_get_head_fragment(&state, efx, skb);
1142                 if (rc)
1143                         goto mem_err;
1144                 frag_i = -1;
1145         }
1146
1147         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1148                 goto mem_err;
1149
1150         while (1) {
1151                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1152                 if (unlikely(rc)) {
1153                         rc2 = NETDEV_TX_BUSY;
1154                         goto unwind;
1155                 }
1156
1157                 /* Move onto the next fragment? */
1158                 if (state.in_len == 0) {
1159                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1160                                 /* End of payload reached. */
1161                                 break;
1162                         rc = tso_get_fragment(&state, efx,
1163                                               skb_shinfo(skb)->frags + frag_i);
1164                         if (rc)
1165                                 goto mem_err;
1166                 }
1167
1168                 /* Start at new packet? */
1169                 if (state.packet_space == 0 &&
1170                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1171                         goto mem_err;
1172         }
1173
1174         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1175
1176         /* Pass off to hardware */
1177         efx_nic_push_buffers(tx_queue);
1178
1179         tx_queue->tso_bursts++;
1180         return NETDEV_TX_OK;
1181
1182  mem_err:
1183         netif_err(efx, tx_err, efx->net_dev,
1184                   "Out of memory for TSO headers, or PCI mapping error\n");
1185         dev_kfree_skb_any(skb);
1186
1187  unwind:
1188         /* Free the DMA mapping we were in the process of writing out */
1189         if (state.unmap_len) {
1190                 if (state.unmap_single)
1191                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1192                                          state.unmap_len, PCI_DMA_TODEVICE);
1193                 else
1194                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1195                                        state.unmap_len, PCI_DMA_TODEVICE);
1196         }
1197
1198         efx_enqueue_unwind(tx_queue);
1199         return rc2;
1200 }
1201
1202
1203 /*
1204  * Free up all TSO datastructures associated with tx_queue. This
1205  * routine should be called only once the tx_queue is both empty and
1206  * will no longer be used.
1207  */
1208 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1209 {
1210         unsigned i;
1211
1212         if (tx_queue->buffer) {
1213                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1214                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1215         }
1216
1217         while (tx_queue->tso_headers_free != NULL)
1218                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1219                                     tx_queue->efx->pci_dev);
1220 }