Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer,
35                                unsigned int *pkts_compl,
36                                unsigned int *bytes_compl)
37 {
38         if (buffer->unmap_len) {
39                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41                                          buffer->unmap_len);
42                 if (buffer->unmap_single)
43                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44                                          PCI_DMA_TODEVICE);
45                 else
46                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47                                        PCI_DMA_TODEVICE);
48                 buffer->unmap_len = 0;
49                 buffer->unmap_single = false;
50         }
51
52         if (buffer->skb) {
53                 (*pkts_compl)++;
54                 (*bytes_compl) += buffer->skb->len;
55                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56                 buffer->skb = NULL;
57                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58                            "TX queue %d transmission id %x complete\n",
59                            tx_queue->queue, tx_queue->read_count);
60         }
61 }
62
63 /**
64  * struct efx_tso_header - a DMA mapped buffer for packet headers
65  * @next: Linked list of free ones.
66  *      The list is protected by the TX queue lock.
67  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68  * @dma_addr: The DMA address of the header below.
69  *
70  * This controls the memory used for a TSO header.  Use TSOH_DATA()
71  * to find the packet header data.  Use TSOH_SIZE() to calculate the
72  * total size required for a given packet header length.  TSO headers
73  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74  */
75 struct efx_tso_header {
76         union {
77                 struct efx_tso_header *next;
78                 size_t unmap_len;
79         };
80         dma_addr_t dma_addr;
81 };
82
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84                                struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87                                struct efx_tso_header *tsoh);
88
89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90                           struct efx_tx_buffer *buffer)
91 {
92         if (buffer->tsoh) {
93                 if (likely(!buffer->tsoh->unmap_len)) {
94                         buffer->tsoh->next = tx_queue->tso_headers_free;
95                         tx_queue->tso_headers_free = buffer->tsoh;
96                 } else {
97                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98                 }
99                 buffer->tsoh = NULL;
100         }
101 }
102
103
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106 {
107         /* Depending on the NIC revision, we can use descriptor
108          * lengths up to 8K or 8K-1.  However, since PCI Express
109          * devices must split read requests at 4K boundaries, there is
110          * little benefit from using descriptors that cross those
111          * boundaries and we keep things simple by not doing so.
112          */
113         unsigned len = (~dma_addr & 0xfff) + 1;
114
115         /* Work around hardware bug for unaligned buffers. */
116         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118
119         return len;
120 }
121
122 /*
123  * Add a socket buffer to a TX queue
124  *
125  * This maps all fragments of a socket buffer for DMA and adds them to
126  * the TX queue.  The queue's insert pointer will be incremented by
127  * the number of fragments in the socket buffer.
128  *
129  * If any DMA mapping fails, any mapped fragments will be unmapped,
130  * the queue's insert pointer will be restored to its original value.
131  *
132  * This function is split out from efx_hard_start_xmit to allow the
133  * loopback test to direct packets via specific TX queues.
134  *
135  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136  * You must hold netif_tx_lock() to call this function.
137  */
138 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
139 {
140         struct efx_nic *efx = tx_queue->efx;
141         struct pci_dev *pci_dev = efx->pci_dev;
142         struct efx_tx_buffer *buffer;
143         skb_frag_t *fragment;
144         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
145         dma_addr_t dma_addr, unmap_addr = 0;
146         unsigned int dma_len;
147         bool unmap_single;
148         int q_space, i = 0;
149         netdev_tx_t rc = NETDEV_TX_OK;
150
151         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
152
153         if (skb_shinfo(skb)->gso_size)
154                 return efx_enqueue_skb_tso(tx_queue, skb);
155
156         /* Get size of the initial fragment */
157         len = skb_headlen(skb);
158
159         /* Pad if necessary */
160         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
161                 EFX_BUG_ON_PARANOID(skb->data_len);
162                 len = 32 + 1;
163                 if (skb_pad(skb, len - skb->len))
164                         return NETDEV_TX_OK;
165         }
166
167         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
168         q_space = efx->txq_entries - 1 - fill_level;
169
170         /* Map for DMA.  Use pci_map_single rather than pci_map_page
171          * since this is more efficient on machines with sparse
172          * memory.
173          */
174         unmap_single = true;
175         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
176
177         /* Process all fragments */
178         while (1) {
179                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
180                         goto pci_err;
181
182                 /* Store fields for marking in the per-fragment final
183                  * descriptor */
184                 unmap_len = len;
185                 unmap_addr = dma_addr;
186
187                 /* Add to TX queue, splitting across DMA boundaries */
188                 do {
189                         if (unlikely(q_space-- <= 0)) {
190                                 /* It might be that completions have
191                                  * happened since the xmit path last
192                                  * checked.  Update the xmit path's
193                                  * copy of read_count.
194                                  */
195                                 netif_tx_stop_queue(tx_queue->core_txq);
196                                 /* This memory barrier protects the
197                                  * change of queue state from the access
198                                  * of read_count. */
199                                 smp_mb();
200                                 tx_queue->old_read_count =
201                                         ACCESS_ONCE(tx_queue->read_count);
202                                 fill_level = (tx_queue->insert_count
203                                               - tx_queue->old_read_count);
204                                 q_space = efx->txq_entries - 1 - fill_level;
205                                 if (unlikely(q_space-- <= 0)) {
206                                         rc = NETDEV_TX_BUSY;
207                                         goto unwind;
208                                 }
209                                 smp_mb();
210                                 if (likely(!efx->loopback_selftest))
211                                         netif_tx_start_queue(
212                                                 tx_queue->core_txq);
213                         }
214
215                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
216                         buffer = &tx_queue->buffer[insert_ptr];
217                         efx_tsoh_free(tx_queue, buffer);
218                         EFX_BUG_ON_PARANOID(buffer->tsoh);
219                         EFX_BUG_ON_PARANOID(buffer->skb);
220                         EFX_BUG_ON_PARANOID(buffer->len);
221                         EFX_BUG_ON_PARANOID(!buffer->continuation);
222                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
223
224                         dma_len = efx_max_tx_len(efx, dma_addr);
225                         if (likely(dma_len >= len))
226                                 dma_len = len;
227
228                         /* Fill out per descriptor fields */
229                         buffer->len = dma_len;
230                         buffer->dma_addr = dma_addr;
231                         len -= dma_len;
232                         dma_addr += dma_len;
233                         ++tx_queue->insert_count;
234                 } while (len);
235
236                 /* Transfer ownership of the unmapping to the final buffer */
237                 buffer->unmap_single = unmap_single;
238                 buffer->unmap_len = unmap_len;
239                 unmap_len = 0;
240
241                 /* Get address and size of next fragment */
242                 if (i >= skb_shinfo(skb)->nr_frags)
243                         break;
244                 fragment = &skb_shinfo(skb)->frags[i];
245                 len = skb_frag_size(fragment);
246                 i++;
247                 /* Map for DMA */
248                 unmap_single = false;
249                 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
250                                             DMA_TO_DEVICE);
251         }
252
253         /* Transfer ownership of the skb to the final buffer */
254         buffer->skb = skb;
255         buffer->continuation = false;
256
257         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
258
259         /* Pass off to hardware */
260         efx_nic_push_buffers(tx_queue);
261
262         return NETDEV_TX_OK;
263
264  pci_err:
265         netif_err(efx, tx_err, efx->net_dev,
266                   " TX queue %d could not map skb with %d bytes %d "
267                   "fragments for DMA\n", tx_queue->queue, skb->len,
268                   skb_shinfo(skb)->nr_frags + 1);
269
270         /* Mark the packet as transmitted, and free the SKB ourselves */
271         dev_kfree_skb_any(skb);
272
273  unwind:
274         /* Work backwards until we hit the original insert pointer value */
275         while (tx_queue->insert_count != tx_queue->write_count) {
276                 unsigned int pkts_compl = 0, bytes_compl = 0;
277                 --tx_queue->insert_count;
278                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
279                 buffer = &tx_queue->buffer[insert_ptr];
280                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
281                 buffer->len = 0;
282         }
283
284         /* Free the fragment we were mid-way through pushing */
285         if (unmap_len) {
286                 if (unmap_single)
287                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
288                                          PCI_DMA_TODEVICE);
289                 else
290                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
291                                        PCI_DMA_TODEVICE);
292         }
293
294         return rc;
295 }
296
297 /* Remove packets from the TX queue
298  *
299  * This removes packets from the TX queue, up to and including the
300  * specified index.
301  */
302 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303                                 unsigned int index,
304                                 unsigned int *pkts_compl,
305                                 unsigned int *bytes_compl)
306 {
307         struct efx_nic *efx = tx_queue->efx;
308         unsigned int stop_index, read_ptr;
309
310         stop_index = (index + 1) & tx_queue->ptr_mask;
311         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
312
313         while (read_ptr != stop_index) {
314                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
315                 if (unlikely(buffer->len == 0)) {
316                         netif_err(efx, tx_err, efx->net_dev,
317                                   "TX queue %d spurious TX completion id %x\n",
318                                   tx_queue->queue, read_ptr);
319                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
320                         return;
321                 }
322
323                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
324                 buffer->continuation = true;
325                 buffer->len = 0;
326
327                 ++tx_queue->read_count;
328                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
329         }
330 }
331
332 /* Initiate a packet transmission.  We use one channel per CPU
333  * (sharing when we have more CPUs than channels).  On Falcon, the TX
334  * completion events will be directed back to the CPU that transmitted
335  * the packet, which should be cache-efficient.
336  *
337  * Context: non-blocking.
338  * Note that returning anything other than NETDEV_TX_OK will cause the
339  * OS to free the skb.
340  */
341 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
342                                       struct net_device *net_dev)
343 {
344         struct efx_nic *efx = netdev_priv(net_dev);
345         struct efx_tx_queue *tx_queue;
346         unsigned index, type;
347
348         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
349
350         index = skb_get_queue_mapping(skb);
351         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352         if (index >= efx->n_tx_channels) {
353                 index -= efx->n_tx_channels;
354                 type |= EFX_TXQ_TYPE_HIGHPRI;
355         }
356         tx_queue = efx_get_tx_queue(efx, index, type);
357
358         return efx_enqueue_skb(tx_queue, skb);
359 }
360
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363         struct efx_nic *efx = tx_queue->efx;
364
365         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
366         tx_queue->core_txq =
367                 netdev_get_tx_queue(efx->net_dev,
368                                     tx_queue->queue / EFX_TXQ_TYPES +
369                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370                                      efx->n_tx_channels : 0));
371 }
372
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375         struct efx_nic *efx = netdev_priv(net_dev);
376         struct efx_channel *channel;
377         struct efx_tx_queue *tx_queue;
378         unsigned tc;
379         int rc;
380
381         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382                 return -EINVAL;
383
384         if (num_tc == net_dev->num_tc)
385                 return 0;
386
387         for (tc = 0; tc < num_tc; tc++) {
388                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390         }
391
392         if (num_tc > net_dev->num_tc) {
393                 /* Initialise high-priority queues as necessary */
394                 efx_for_each_channel(channel, efx) {
395                         efx_for_each_possible_channel_tx_queue(tx_queue,
396                                                                channel) {
397                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398                                         continue;
399                                 if (!tx_queue->buffer) {
400                                         rc = efx_probe_tx_queue(tx_queue);
401                                         if (rc)
402                                                 return rc;
403                                 }
404                                 if (!tx_queue->initialised)
405                                         efx_init_tx_queue(tx_queue);
406                                 efx_init_tx_queue_core_txq(tx_queue);
407                         }
408                 }
409         } else {
410                 /* Reduce number of classes before number of queues */
411                 net_dev->num_tc = num_tc;
412         }
413
414         rc = netif_set_real_num_tx_queues(net_dev,
415                                           max_t(int, num_tc, 1) *
416                                           efx->n_tx_channels);
417         if (rc)
418                 return rc;
419
420         /* Do not destroy high-priority queues when they become
421          * unused.  We would have to flush them first, and it is
422          * fairly difficult to flush a subset of TX queues.  Leave
423          * it to efx_fini_channels().
424          */
425
426         net_dev->num_tc = num_tc;
427         return 0;
428 }
429
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432         unsigned fill_level;
433         struct efx_nic *efx = tx_queue->efx;
434         unsigned int pkts_compl = 0, bytes_compl = 0;
435
436         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
437
438         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
439         netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
440
441         /* See if we need to restart the netif queue.  This barrier
442          * separates the update of read_count from the test of the
443          * queue state. */
444         smp_mb();
445         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446             likely(efx->port_enabled) &&
447             likely(netif_device_present(efx->net_dev))) {
448                 fill_level = tx_queue->insert_count - tx_queue->read_count;
449                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
450                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
451                         netif_tx_wake_queue(tx_queue->core_txq);
452                 }
453         }
454
455         /* Check whether the hardware queue is now empty */
456         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
457                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
458                 if (tx_queue->read_count == tx_queue->old_write_count) {
459                         smp_mb();
460                         tx_queue->empty_read_count =
461                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
462                 }
463         }
464 }
465
466 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
467 {
468         struct efx_nic *efx = tx_queue->efx;
469         unsigned int entries;
470         int i, rc;
471
472         /* Create the smallest power-of-two aligned ring */
473         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
474         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
475         tx_queue->ptr_mask = entries - 1;
476
477         netif_dbg(efx, probe, efx->net_dev,
478                   "creating TX queue %d size %#x mask %#x\n",
479                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
480
481         /* Allocate software ring */
482         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
483                                    GFP_KERNEL);
484         if (!tx_queue->buffer)
485                 return -ENOMEM;
486         for (i = 0; i <= tx_queue->ptr_mask; ++i)
487                 tx_queue->buffer[i].continuation = true;
488
489         /* Allocate hardware ring */
490         rc = efx_nic_probe_tx(tx_queue);
491         if (rc)
492                 goto fail;
493
494         return 0;
495
496  fail:
497         kfree(tx_queue->buffer);
498         tx_queue->buffer = NULL;
499         return rc;
500 }
501
502 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
503 {
504         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
505                   "initialising TX queue %d\n", tx_queue->queue);
506
507         tx_queue->insert_count = 0;
508         tx_queue->write_count = 0;
509         tx_queue->old_write_count = 0;
510         tx_queue->read_count = 0;
511         tx_queue->old_read_count = 0;
512         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
513
514         /* Set up TX descriptor ring */
515         efx_nic_init_tx(tx_queue);
516
517         tx_queue->initialised = true;
518 }
519
520 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
521 {
522         struct efx_tx_buffer *buffer;
523
524         if (!tx_queue->buffer)
525                 return;
526
527         /* Free any buffers left in the ring */
528         while (tx_queue->read_count != tx_queue->write_count) {
529                 unsigned int pkts_compl = 0, bytes_compl = 0;
530                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
531                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
532                 buffer->continuation = true;
533                 buffer->len = 0;
534
535                 ++tx_queue->read_count;
536         }
537         netdev_tx_reset_queue(tx_queue->core_txq);
538 }
539
540 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
541 {
542         if (!tx_queue->initialised)
543                 return;
544
545         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
546                   "shutting down TX queue %d\n", tx_queue->queue);
547
548         tx_queue->initialised = false;
549
550         /* Flush TX queue, remove descriptor ring */
551         efx_nic_fini_tx(tx_queue);
552
553         efx_release_tx_buffers(tx_queue);
554
555         /* Free up TSO header cache */
556         efx_fini_tso(tx_queue);
557 }
558
559 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
560 {
561         if (!tx_queue->buffer)
562                 return;
563
564         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
565                   "destroying TX queue %d\n", tx_queue->queue);
566         efx_nic_remove_tx(tx_queue);
567
568         kfree(tx_queue->buffer);
569         tx_queue->buffer = NULL;
570 }
571
572
573 /* Efx TCP segmentation acceleration.
574  *
575  * Why?  Because by doing it here in the driver we can go significantly
576  * faster than the GSO.
577  *
578  * Requires TX checksum offload support.
579  */
580
581 /* Number of bytes inserted at the start of a TSO header buffer,
582  * similar to NET_IP_ALIGN.
583  */
584 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
585 #define TSOH_OFFSET     0
586 #else
587 #define TSOH_OFFSET     NET_IP_ALIGN
588 #endif
589
590 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
591
592 /* Total size of struct efx_tso_header, buffer and padding */
593 #define TSOH_SIZE(hdr_len)                                      \
594         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
595
596 /* Size of blocks on free list.  Larger blocks must be allocated from
597  * the heap.
598  */
599 #define TSOH_STD_SIZE           128
600
601 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
602 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
603 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
604 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
605 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
606
607 /**
608  * struct tso_state - TSO state for an SKB
609  * @out_len: Remaining length in current segment
610  * @seqnum: Current sequence number
611  * @ipv4_id: Current IPv4 ID, host endian
612  * @packet_space: Remaining space in current packet
613  * @dma_addr: DMA address of current position
614  * @in_len: Remaining length in current SKB fragment
615  * @unmap_len: Length of SKB fragment
616  * @unmap_addr: DMA address of SKB fragment
617  * @unmap_single: DMA single vs page mapping flag
618  * @protocol: Network protocol (after any VLAN header)
619  * @header_len: Number of bytes of header
620  * @full_packet_size: Number of bytes to put in each outgoing segment
621  *
622  * The state used during segmentation.  It is put into this data structure
623  * just to make it easy to pass into inline functions.
624  */
625 struct tso_state {
626         /* Output position */
627         unsigned out_len;
628         unsigned seqnum;
629         unsigned ipv4_id;
630         unsigned packet_space;
631
632         /* Input position */
633         dma_addr_t dma_addr;
634         unsigned in_len;
635         unsigned unmap_len;
636         dma_addr_t unmap_addr;
637         bool unmap_single;
638
639         __be16 protocol;
640         unsigned header_len;
641         int full_packet_size;
642 };
643
644
645 /*
646  * Verify that our various assumptions about sk_buffs and the conditions
647  * under which TSO will be attempted hold true.  Return the protocol number.
648  */
649 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
650 {
651         __be16 protocol = skb->protocol;
652
653         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
654                             protocol);
655         if (protocol == htons(ETH_P_8021Q)) {
656                 /* Find the encapsulated protocol; reset network header
657                  * and transport header based on that. */
658                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
659                 protocol = veh->h_vlan_encapsulated_proto;
660                 skb_set_network_header(skb, sizeof(*veh));
661                 if (protocol == htons(ETH_P_IP))
662                         skb_set_transport_header(skb, sizeof(*veh) +
663                                                  4 * ip_hdr(skb)->ihl);
664                 else if (protocol == htons(ETH_P_IPV6))
665                         skb_set_transport_header(skb, sizeof(*veh) +
666                                                  sizeof(struct ipv6hdr));
667         }
668
669         if (protocol == htons(ETH_P_IP)) {
670                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
671         } else {
672                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
673                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
674         }
675         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
676                              + (tcp_hdr(skb)->doff << 2u)) >
677                             skb_headlen(skb));
678
679         return protocol;
680 }
681
682
683 /*
684  * Allocate a page worth of efx_tso_header structures, and string them
685  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
686  */
687 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
688 {
689
690         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
691         struct efx_tso_header *tsoh;
692         dma_addr_t dma_addr;
693         u8 *base_kva, *kva;
694
695         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
696         if (base_kva == NULL) {
697                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
698                           "Unable to allocate page for TSO headers\n");
699                 return -ENOMEM;
700         }
701
702         /* pci_alloc_consistent() allocates pages. */
703         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
704
705         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
706                 tsoh = (struct efx_tso_header *)kva;
707                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
708                 tsoh->next = tx_queue->tso_headers_free;
709                 tx_queue->tso_headers_free = tsoh;
710         }
711
712         return 0;
713 }
714
715
716 /* Free up a TSO header, and all others in the same page. */
717 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
718                                 struct efx_tso_header *tsoh,
719                                 struct pci_dev *pci_dev)
720 {
721         struct efx_tso_header **p;
722         unsigned long base_kva;
723         dma_addr_t base_dma;
724
725         base_kva = (unsigned long)tsoh & PAGE_MASK;
726         base_dma = tsoh->dma_addr & PAGE_MASK;
727
728         p = &tx_queue->tso_headers_free;
729         while (*p != NULL) {
730                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
731                         *p = (*p)->next;
732                 else
733                         p = &(*p)->next;
734         }
735
736         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
737 }
738
739 static struct efx_tso_header *
740 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
741 {
742         struct efx_tso_header *tsoh;
743
744         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
745         if (unlikely(!tsoh))
746                 return NULL;
747
748         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
749                                         TSOH_BUFFER(tsoh), header_len,
750                                         PCI_DMA_TODEVICE);
751         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
752                                            tsoh->dma_addr))) {
753                 kfree(tsoh);
754                 return NULL;
755         }
756
757         tsoh->unmap_len = header_len;
758         return tsoh;
759 }
760
761 static void
762 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
763 {
764         pci_unmap_single(tx_queue->efx->pci_dev,
765                          tsoh->dma_addr, tsoh->unmap_len,
766                          PCI_DMA_TODEVICE);
767         kfree(tsoh);
768 }
769
770 /**
771  * efx_tx_queue_insert - push descriptors onto the TX queue
772  * @tx_queue:           Efx TX queue
773  * @dma_addr:           DMA address of fragment
774  * @len:                Length of fragment
775  * @final_buffer:       The final buffer inserted into the queue
776  *
777  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
778  * @tx_queue full.
779  */
780 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
781                                dma_addr_t dma_addr, unsigned len,
782                                struct efx_tx_buffer **final_buffer)
783 {
784         struct efx_tx_buffer *buffer;
785         struct efx_nic *efx = tx_queue->efx;
786         unsigned dma_len, fill_level, insert_ptr;
787         int q_space;
788
789         EFX_BUG_ON_PARANOID(len <= 0);
790
791         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
792         /* -1 as there is no way to represent all descriptors used */
793         q_space = efx->txq_entries - 1 - fill_level;
794
795         while (1) {
796                 if (unlikely(q_space-- <= 0)) {
797                         /* It might be that completions have happened
798                          * since the xmit path last checked.  Update
799                          * the xmit path's copy of read_count.
800                          */
801                         netif_tx_stop_queue(tx_queue->core_txq);
802                         /* This memory barrier protects the change of
803                          * queue state from the access of read_count. */
804                         smp_mb();
805                         tx_queue->old_read_count =
806                                 ACCESS_ONCE(tx_queue->read_count);
807                         fill_level = (tx_queue->insert_count
808                                       - tx_queue->old_read_count);
809                         q_space = efx->txq_entries - 1 - fill_level;
810                         if (unlikely(q_space-- <= 0)) {
811                                 *final_buffer = NULL;
812                                 return 1;
813                         }
814                         smp_mb();
815                         netif_tx_start_queue(tx_queue->core_txq);
816                 }
817
818                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
819                 buffer = &tx_queue->buffer[insert_ptr];
820                 ++tx_queue->insert_count;
821
822                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
823                                     tx_queue->read_count >=
824                                     efx->txq_entries);
825
826                 efx_tsoh_free(tx_queue, buffer);
827                 EFX_BUG_ON_PARANOID(buffer->len);
828                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
829                 EFX_BUG_ON_PARANOID(buffer->skb);
830                 EFX_BUG_ON_PARANOID(!buffer->continuation);
831                 EFX_BUG_ON_PARANOID(buffer->tsoh);
832
833                 buffer->dma_addr = dma_addr;
834
835                 dma_len = efx_max_tx_len(efx, dma_addr);
836
837                 /* If there is enough space to send then do so */
838                 if (dma_len >= len)
839                         break;
840
841                 buffer->len = dma_len; /* Don't set the other members */
842                 dma_addr += dma_len;
843                 len -= dma_len;
844         }
845
846         EFX_BUG_ON_PARANOID(!len);
847         buffer->len = len;
848         *final_buffer = buffer;
849         return 0;
850 }
851
852
853 /*
854  * Put a TSO header into the TX queue.
855  *
856  * This is special-cased because we know that it is small enough to fit in
857  * a single fragment, and we know it doesn't cross a page boundary.  It
858  * also allows us to not worry about end-of-packet etc.
859  */
860 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
861                                struct efx_tso_header *tsoh, unsigned len)
862 {
863         struct efx_tx_buffer *buffer;
864
865         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
866         efx_tsoh_free(tx_queue, buffer);
867         EFX_BUG_ON_PARANOID(buffer->len);
868         EFX_BUG_ON_PARANOID(buffer->unmap_len);
869         EFX_BUG_ON_PARANOID(buffer->skb);
870         EFX_BUG_ON_PARANOID(!buffer->continuation);
871         EFX_BUG_ON_PARANOID(buffer->tsoh);
872         buffer->len = len;
873         buffer->dma_addr = tsoh->dma_addr;
874         buffer->tsoh = tsoh;
875
876         ++tx_queue->insert_count;
877 }
878
879
880 /* Remove descriptors put into a tx_queue. */
881 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
882 {
883         struct efx_tx_buffer *buffer;
884         dma_addr_t unmap_addr;
885
886         /* Work backwards until we hit the original insert pointer value */
887         while (tx_queue->insert_count != tx_queue->write_count) {
888                 --tx_queue->insert_count;
889                 buffer = &tx_queue->buffer[tx_queue->insert_count &
890                                            tx_queue->ptr_mask];
891                 efx_tsoh_free(tx_queue, buffer);
892                 EFX_BUG_ON_PARANOID(buffer->skb);
893                 if (buffer->unmap_len) {
894                         unmap_addr = (buffer->dma_addr + buffer->len -
895                                       buffer->unmap_len);
896                         if (buffer->unmap_single)
897                                 pci_unmap_single(tx_queue->efx->pci_dev,
898                                                  unmap_addr, buffer->unmap_len,
899                                                  PCI_DMA_TODEVICE);
900                         else
901                                 pci_unmap_page(tx_queue->efx->pci_dev,
902                                                unmap_addr, buffer->unmap_len,
903                                                PCI_DMA_TODEVICE);
904                         buffer->unmap_len = 0;
905                 }
906                 buffer->len = 0;
907                 buffer->continuation = true;
908         }
909 }
910
911
912 /* Parse the SKB header and initialise state. */
913 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
914 {
915         /* All ethernet/IP/TCP headers combined size is TCP header size
916          * plus offset of TCP header relative to start of packet.
917          */
918         st->header_len = ((tcp_hdr(skb)->doff << 2u)
919                           + PTR_DIFF(tcp_hdr(skb), skb->data));
920         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
921
922         if (st->protocol == htons(ETH_P_IP))
923                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
924         else
925                 st->ipv4_id = 0;
926         st->seqnum = ntohl(tcp_hdr(skb)->seq);
927
928         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
929         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
930         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
931
932         st->packet_space = st->full_packet_size;
933         st->out_len = skb->len - st->header_len;
934         st->unmap_len = 0;
935         st->unmap_single = false;
936 }
937
938 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
939                             skb_frag_t *frag)
940 {
941         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
942                                           skb_frag_size(frag), DMA_TO_DEVICE);
943         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
944                 st->unmap_single = false;
945                 st->unmap_len = skb_frag_size(frag);
946                 st->in_len = skb_frag_size(frag);
947                 st->dma_addr = st->unmap_addr;
948                 return 0;
949         }
950         return -ENOMEM;
951 }
952
953 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
954                                  const struct sk_buff *skb)
955 {
956         int hl = st->header_len;
957         int len = skb_headlen(skb) - hl;
958
959         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
960                                         len, PCI_DMA_TODEVICE);
961         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
962                 st->unmap_single = true;
963                 st->unmap_len = len;
964                 st->in_len = len;
965                 st->dma_addr = st->unmap_addr;
966                 return 0;
967         }
968         return -ENOMEM;
969 }
970
971
972 /**
973  * tso_fill_packet_with_fragment - form descriptors for the current fragment
974  * @tx_queue:           Efx TX queue
975  * @skb:                Socket buffer
976  * @st:                 TSO state
977  *
978  * Form descriptors for the current fragment, until we reach the end
979  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
980  * space in @tx_queue.
981  */
982 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
983                                          const struct sk_buff *skb,
984                                          struct tso_state *st)
985 {
986         struct efx_tx_buffer *buffer;
987         int n, end_of_packet, rc;
988
989         if (st->in_len == 0)
990                 return 0;
991         if (st->packet_space == 0)
992                 return 0;
993
994         EFX_BUG_ON_PARANOID(st->in_len <= 0);
995         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
996
997         n = min(st->in_len, st->packet_space);
998
999         st->packet_space -= n;
1000         st->out_len -= n;
1001         st->in_len -= n;
1002
1003         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1004         if (likely(rc == 0)) {
1005                 if (st->out_len == 0)
1006                         /* Transfer ownership of the skb */
1007                         buffer->skb = skb;
1008
1009                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1010                 buffer->continuation = !end_of_packet;
1011
1012                 if (st->in_len == 0) {
1013                         /* Transfer ownership of the pci mapping */
1014                         buffer->unmap_len = st->unmap_len;
1015                         buffer->unmap_single = st->unmap_single;
1016                         st->unmap_len = 0;
1017                 }
1018         }
1019
1020         st->dma_addr += n;
1021         return rc;
1022 }
1023
1024
1025 /**
1026  * tso_start_new_packet - generate a new header and prepare for the new packet
1027  * @tx_queue:           Efx TX queue
1028  * @skb:                Socket buffer
1029  * @st:                 TSO state
1030  *
1031  * Generate a new header and prepare for the new packet.  Return 0 on
1032  * success, or -1 if failed to alloc header.
1033  */
1034 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1035                                 const struct sk_buff *skb,
1036                                 struct tso_state *st)
1037 {
1038         struct efx_tso_header *tsoh;
1039         struct tcphdr *tsoh_th;
1040         unsigned ip_length;
1041         u8 *header;
1042
1043         /* Allocate a DMA-mapped header buffer. */
1044         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1045                 if (tx_queue->tso_headers_free == NULL) {
1046                         if (efx_tsoh_block_alloc(tx_queue))
1047                                 return -1;
1048                 }
1049                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1050                 tsoh = tx_queue->tso_headers_free;
1051                 tx_queue->tso_headers_free = tsoh->next;
1052                 tsoh->unmap_len = 0;
1053         } else {
1054                 tx_queue->tso_long_headers++;
1055                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1056                 if (unlikely(!tsoh))
1057                         return -1;
1058         }
1059
1060         header = TSOH_BUFFER(tsoh);
1061         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1062
1063         /* Copy and update the headers. */
1064         memcpy(header, skb->data, st->header_len);
1065
1066         tsoh_th->seq = htonl(st->seqnum);
1067         st->seqnum += skb_shinfo(skb)->gso_size;
1068         if (st->out_len > skb_shinfo(skb)->gso_size) {
1069                 /* This packet will not finish the TSO burst. */
1070                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1071                 tsoh_th->fin = 0;
1072                 tsoh_th->psh = 0;
1073         } else {
1074                 /* This packet will be the last in the TSO burst. */
1075                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1076                 tsoh_th->fin = tcp_hdr(skb)->fin;
1077                 tsoh_th->psh = tcp_hdr(skb)->psh;
1078         }
1079
1080         if (st->protocol == htons(ETH_P_IP)) {
1081                 struct iphdr *tsoh_iph =
1082                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1083
1084                 tsoh_iph->tot_len = htons(ip_length);
1085
1086                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1087                 tsoh_iph->id = htons(st->ipv4_id);
1088                 st->ipv4_id++;
1089         } else {
1090                 struct ipv6hdr *tsoh_iph =
1091                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1092
1093                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1094         }
1095
1096         st->packet_space = skb_shinfo(skb)->gso_size;
1097         ++tx_queue->tso_packets;
1098
1099         /* Form a descriptor for this header. */
1100         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1101
1102         return 0;
1103 }
1104
1105
1106 /**
1107  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1108  * @tx_queue:           Efx TX queue
1109  * @skb:                Socket buffer
1110  *
1111  * Context: You must hold netif_tx_lock() to call this function.
1112  *
1113  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1114  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1115  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1116  */
1117 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1118                                struct sk_buff *skb)
1119 {
1120         struct efx_nic *efx = tx_queue->efx;
1121         int frag_i, rc, rc2 = NETDEV_TX_OK;
1122         struct tso_state state;
1123
1124         /* Find the packet protocol and sanity-check it */
1125         state.protocol = efx_tso_check_protocol(skb);
1126
1127         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1128
1129         tso_start(&state, skb);
1130
1131         /* Assume that skb header area contains exactly the headers, and
1132          * all payload is in the frag list.
1133          */
1134         if (skb_headlen(skb) == state.header_len) {
1135                 /* Grab the first payload fragment. */
1136                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1137                 frag_i = 0;
1138                 rc = tso_get_fragment(&state, efx,
1139                                       skb_shinfo(skb)->frags + frag_i);
1140                 if (rc)
1141                         goto mem_err;
1142         } else {
1143                 rc = tso_get_head_fragment(&state, efx, skb);
1144                 if (rc)
1145                         goto mem_err;
1146                 frag_i = -1;
1147         }
1148
1149         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1150                 goto mem_err;
1151
1152         while (1) {
1153                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1154                 if (unlikely(rc)) {
1155                         rc2 = NETDEV_TX_BUSY;
1156                         goto unwind;
1157                 }
1158
1159                 /* Move onto the next fragment? */
1160                 if (state.in_len == 0) {
1161                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1162                                 /* End of payload reached. */
1163                                 break;
1164                         rc = tso_get_fragment(&state, efx,
1165                                               skb_shinfo(skb)->frags + frag_i);
1166                         if (rc)
1167                                 goto mem_err;
1168                 }
1169
1170                 /* Start at new packet? */
1171                 if (state.packet_space == 0 &&
1172                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1173                         goto mem_err;
1174         }
1175
1176         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1177
1178         /* Pass off to hardware */
1179         efx_nic_push_buffers(tx_queue);
1180
1181         tx_queue->tso_bursts++;
1182         return NETDEV_TX_OK;
1183
1184  mem_err:
1185         netif_err(efx, tx_err, efx->net_dev,
1186                   "Out of memory for TSO headers, or PCI mapping error\n");
1187         dev_kfree_skb_any(skb);
1188
1189  unwind:
1190         /* Free the DMA mapping we were in the process of writing out */
1191         if (state.unmap_len) {
1192                 if (state.unmap_single)
1193                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1194                                          state.unmap_len, PCI_DMA_TODEVICE);
1195                 else
1196                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1197                                        state.unmap_len, PCI_DMA_TODEVICE);
1198         }
1199
1200         efx_enqueue_unwind(tx_queue);
1201         return rc2;
1202 }
1203
1204
1205 /*
1206  * Free up all TSO datastructures associated with tx_queue. This
1207  * routine should be called only once the tx_queue is both empty and
1208  * will no longer be used.
1209  */
1210 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1211 {
1212         unsigned i;
1213
1214         if (tx_queue->buffer) {
1215                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1216                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1217         }
1218
1219         while (tx_queue->tso_headers_free != NULL)
1220                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1221                                     tx_queue->efx->pci_dev);
1222 }