sfc: Disable flow control during flushes
[pandora-kernel.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31
32 /* This is set to 16 for a good reason.  In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding).  This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
65         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
67         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
68                            efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
74                            (_tx_queue)->queue)
75
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83                                      unsigned int index)
84 {
85         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86                         value, index);
87 }
88
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91                                      unsigned int index)
92 {
93         return ((efx_qword_t *) (channel->eventq.addr)) +
94                 (index & channel->eventq_mask);
95 }
96
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones.  We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords.  This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114                                      const efx_oword_t *mask)
115 {
116         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119
120 int efx_nic_test_registers(struct efx_nic *efx,
121                            const struct efx_nic_register_test *regs,
122                            size_t n_regs)
123 {
124         unsigned address = 0, i, j;
125         efx_oword_t mask, imask, original, reg, buf;
126
127         /* Falcon should be in loopback to isolate the XMAC from the PHY */
128         WARN_ON(!LOOPBACK_INTERNAL(efx));
129
130         for (i = 0; i < n_regs; ++i) {
131                 address = regs[i].address;
132                 mask = imask = regs[i].mask;
133                 EFX_INVERT_OWORD(imask);
134
135                 efx_reado(efx, &original, address);
136
137                 /* bit sweep on and off */
138                 for (j = 0; j < 128; j++) {
139                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
140                                 continue;
141
142                         /* Test this testable bit can be set in isolation */
143                         EFX_AND_OWORD(reg, original, mask);
144                         EFX_SET_OWORD32(reg, j, j, 1);
145
146                         efx_writeo(efx, &reg, address);
147                         efx_reado(efx, &buf, address);
148
149                         if (efx_masked_compare_oword(&reg, &buf, &mask))
150                                 goto fail;
151
152                         /* Test this testable bit can be cleared in isolation */
153                         EFX_OR_OWORD(reg, original, mask);
154                         EFX_SET_OWORD32(reg, j, j, 0);
155
156                         efx_writeo(efx, &reg, address);
157                         efx_reado(efx, &buf, address);
158
159                         if (efx_masked_compare_oword(&reg, &buf, &mask))
160                                 goto fail;
161                 }
162
163                 efx_writeo(efx, &original, address);
164         }
165
166         return 0;
167
168 fail:
169         netif_err(efx, hw, efx->net_dev,
170                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
173         return -EIO;
174 }
175
176 /**************************************************************************
177  *
178  * Special buffer handling
179  * Special buffers are used for event queues and the TX and RX
180  * descriptor rings.
181  *
182  *************************************************************************/
183
184 /*
185  * Initialise a special buffer
186  *
187  * This will define a buffer (previously allocated via
188  * efx_alloc_special_buffer()) in the buffer table, allowing
189  * it to be used for event queues, descriptor rings etc.
190  */
191 static void
192 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193 {
194         efx_qword_t buf_desc;
195         int index;
196         dma_addr_t dma_addr;
197         int i;
198
199         EFX_BUG_ON_PARANOID(!buffer->addr);
200
201         /* Write buffer descriptors to NIC */
202         for (i = 0; i < buffer->entries; i++) {
203                 index = buffer->index + i;
204                 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
205                 netif_dbg(efx, probe, efx->net_dev,
206                           "mapping special buffer %d at %llx\n",
207                           index, (unsigned long long)dma_addr);
208                 EFX_POPULATE_QWORD_3(buf_desc,
209                                      FRF_AZ_BUF_ADR_REGION, 0,
210                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212                 efx_write_buf_tbl(efx, &buf_desc, index);
213         }
214 }
215
216 /* Unmaps a buffer and clears the buffer table entries */
217 static void
218 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219 {
220         efx_oword_t buf_tbl_upd;
221         unsigned int start = buffer->index;
222         unsigned int end = (buffer->index + buffer->entries - 1);
223
224         if (!buffer->entries)
225                 return;
226
227         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228                   buffer->index, buffer->index + buffer->entries - 1);
229
230         EFX_POPULATE_OWORD_4(buf_tbl_upd,
231                              FRF_AZ_BUF_UPD_CMD, 0,
232                              FRF_AZ_BUF_CLR_CMD, 1,
233                              FRF_AZ_BUF_CLR_END_ID, end,
234                              FRF_AZ_BUF_CLR_START_ID, start);
235         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236 }
237
238 /*
239  * Allocate a new special buffer
240  *
241  * This allocates memory for a new buffer, clears it and allocates a
242  * new buffer ID range.  It does not write into the buffer table.
243  *
244  * This call will allocate 4KB buffers, since 8KB buffers can't be
245  * used for event queues and descriptor rings.
246  */
247 static int efx_alloc_special_buffer(struct efx_nic *efx,
248                                     struct efx_special_buffer *buffer,
249                                     unsigned int len)
250 {
251         len = ALIGN(len, EFX_BUF_SIZE);
252
253         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
254                                           &buffer->dma_addr, GFP_KERNEL);
255         if (!buffer->addr)
256                 return -ENOMEM;
257         buffer->len = len;
258         buffer->entries = len / EFX_BUF_SIZE;
259         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
260
261         /* All zeros is a potentially valid event so memset to 0xff */
262         memset(buffer->addr, 0xff, len);
263
264         /* Select new buffer ID */
265         buffer->index = efx->next_buffer_table;
266         efx->next_buffer_table += buffer->entries;
267
268         netif_dbg(efx, probe, efx->net_dev,
269                   "allocating special buffers %d-%d at %llx+%x "
270                   "(virt %p phys %llx)\n", buffer->index,
271                   buffer->index + buffer->entries - 1,
272                   (u64)buffer->dma_addr, len,
273                   buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275         return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281         if (!buffer->addr)
282                 return;
283
284         netif_dbg(efx, hw, efx->net_dev,
285                   "deallocating special buffers %d-%d at %llx+%x "
286                   "(virt %p phys %llx)\n", buffer->index,
287                   buffer->index + buffer->entries - 1,
288                   (u64)buffer->dma_addr, buffer->len,
289                   buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292                           buffer->dma_addr);
293         buffer->addr = NULL;
294         buffer->entries = 0;
295 }
296
297 /**************************************************************************
298  *
299  * Generic buffer handling
300  * These buffers are used for interrupt status and MAC stats
301  *
302  **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305                          unsigned int len)
306 {
307         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
308                                             &buffer->dma_addr);
309         if (!buffer->addr)
310                 return -ENOMEM;
311         buffer->len = len;
312         memset(buffer->addr, 0, len);
313         return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318         if (buffer->addr) {
319                 pci_free_consistent(efx->pci_dev, buffer->len,
320                                     buffer->addr, buffer->dma_addr);
321                 buffer->addr = NULL;
322         }
323 }
324
325 /**************************************************************************
326  *
327  * TX path
328  *
329  **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332  * descriptor queue belonging to the specified channel.
333  */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343         unsigned write_ptr;
344         efx_dword_t reg;
345
346         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348         efx_writed_page(tx_queue->efx, &reg,
349                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354                                     const efx_qword_t *txd)
355 {
356         unsigned write_ptr;
357         efx_oword_t reg;
358
359         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364                              FRF_AZ_TX_DESC_WPTR, write_ptr);
365         reg.qword[0] = *txd;
366         efx_writeo_page(tx_queue->efx, &reg,
367                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375         if (empty_read_count == 0)
376                 return false;
377
378         tx_queue->empty_read_count = 0;
379         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
380 }
381
382 /* For each entry inserted into the software descriptor ring, create a
383  * descriptor in the hardware TX descriptor ring (in host memory), and
384  * write a doorbell.
385  */
386 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
387 {
388
389         struct efx_tx_buffer *buffer;
390         efx_qword_t *txd;
391         unsigned write_ptr;
392         unsigned old_write_count = tx_queue->write_count;
393
394         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
395
396         do {
397                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
398                 buffer = &tx_queue->buffer[write_ptr];
399                 txd = efx_tx_desc(tx_queue, write_ptr);
400                 ++tx_queue->write_count;
401
402                 /* Create TX descriptor ring entry */
403                 EFX_POPULATE_QWORD_4(*txd,
404                                      FSF_AZ_TX_KER_CONT, buffer->continuation,
405                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
406                                      FSF_AZ_TX_KER_BUF_REGION, 0,
407                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
408         } while (tx_queue->write_count != tx_queue->insert_count);
409
410         wmb(); /* Ensure descriptors are written before they are fetched */
411
412         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
413                 txd = efx_tx_desc(tx_queue,
414                                   old_write_count & tx_queue->ptr_mask);
415                 efx_push_tx_desc(tx_queue, txd);
416                 ++tx_queue->pushes;
417         } else {
418                 efx_notify_tx_desc(tx_queue);
419         }
420 }
421
422 /* Allocate hardware resources for a TX queue */
423 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
424 {
425         struct efx_nic *efx = tx_queue->efx;
426         unsigned entries;
427
428         entries = tx_queue->ptr_mask + 1;
429         return efx_alloc_special_buffer(efx, &tx_queue->txd,
430                                         entries * sizeof(efx_qword_t));
431 }
432
433 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
434 {
435         struct efx_nic *efx = tx_queue->efx;
436         efx_oword_t reg;
437
438         /* Pin TX descriptor ring */
439         efx_init_special_buffer(efx, &tx_queue->txd);
440
441         /* Push TX descriptor ring to card */
442         EFX_POPULATE_OWORD_10(reg,
443                               FRF_AZ_TX_DESCQ_EN, 1,
444                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
445                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
446                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
447                               FRF_AZ_TX_DESCQ_EVQ_ID,
448                               tx_queue->channel->channel,
449                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
450                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
451                               FRF_AZ_TX_DESCQ_SIZE,
452                               __ffs(tx_queue->txd.entries),
453                               FRF_AZ_TX_DESCQ_TYPE, 0,
454                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
455
456         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
457                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
458                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
459                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
460                                     !csum);
461         }
462
463         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
464                          tx_queue->queue);
465
466         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
467                 /* Only 128 bits in this register */
468                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
469
470                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
471                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
472                         clear_bit_le(tx_queue->queue, (void *)&reg);
473                 else
474                         set_bit_le(tx_queue->queue, (void *)&reg);
475                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
476         }
477
478         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
479                 EFX_POPULATE_OWORD_1(reg,
480                                      FRF_BZ_TX_PACE,
481                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
482                                      FFE_BZ_TX_PACE_OFF :
483                                      FFE_BZ_TX_PACE_RESERVED);
484                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
485                                  tx_queue->queue);
486         }
487 }
488
489 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
490 {
491         struct efx_nic *efx = tx_queue->efx;
492         efx_oword_t tx_flush_descq;
493
494         EFX_POPULATE_OWORD_2(tx_flush_descq,
495                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
496                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
497         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
498 }
499
500 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
501 {
502         struct efx_nic *efx = tx_queue->efx;
503         efx_oword_t tx_desc_ptr;
504
505         /* Remove TX descriptor ring from card */
506         EFX_ZERO_OWORD(tx_desc_ptr);
507         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
508                          tx_queue->queue);
509
510         /* Unpin TX descriptor ring */
511         efx_fini_special_buffer(efx, &tx_queue->txd);
512 }
513
514 /* Free buffers backing TX queue */
515 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
516 {
517         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
518 }
519
520 /**************************************************************************
521  *
522  * RX path
523  *
524  **************************************************************************/
525
526 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
527 static inline efx_qword_t *
528 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
529 {
530         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
531 }
532
533 /* This creates an entry in the RX descriptor queue */
534 static inline void
535 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
536 {
537         struct efx_rx_buffer *rx_buf;
538         efx_qword_t *rxd;
539
540         rxd = efx_rx_desc(rx_queue, index);
541         rx_buf = efx_rx_buffer(rx_queue, index);
542         EFX_POPULATE_QWORD_3(*rxd,
543                              FSF_AZ_RX_KER_BUF_SIZE,
544                              rx_buf->len -
545                              rx_queue->efx->type->rx_buffer_padding,
546                              FSF_AZ_RX_KER_BUF_REGION, 0,
547                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
548 }
549
550 /* This writes to the RX_DESC_WPTR register for the specified receive
551  * descriptor ring.
552  */
553 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
554 {
555         struct efx_nic *efx = rx_queue->efx;
556         efx_dword_t reg;
557         unsigned write_ptr;
558
559         while (rx_queue->notified_count != rx_queue->added_count) {
560                 efx_build_rx_desc(
561                         rx_queue,
562                         rx_queue->notified_count & rx_queue->ptr_mask);
563                 ++rx_queue->notified_count;
564         }
565
566         wmb();
567         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
568         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
569         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
570                         efx_rx_queue_index(rx_queue));
571 }
572
573 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
574 {
575         struct efx_nic *efx = rx_queue->efx;
576         unsigned entries;
577
578         entries = rx_queue->ptr_mask + 1;
579         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
580                                         entries * sizeof(efx_qword_t));
581 }
582
583 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
584 {
585         efx_oword_t rx_desc_ptr;
586         struct efx_nic *efx = rx_queue->efx;
587         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
588         bool iscsi_digest_en = is_b0;
589
590         netif_dbg(efx, hw, efx->net_dev,
591                   "RX queue %d ring in special buffers %d-%d\n",
592                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
593                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
594
595         /* Pin RX descriptor ring */
596         efx_init_special_buffer(efx, &rx_queue->rxd);
597
598         /* Push RX descriptor ring to card */
599         EFX_POPULATE_OWORD_10(rx_desc_ptr,
600                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
601                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
602                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
603                               FRF_AZ_RX_DESCQ_EVQ_ID,
604                               efx_rx_queue_channel(rx_queue)->channel,
605                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
606                               FRF_AZ_RX_DESCQ_LABEL,
607                               efx_rx_queue_index(rx_queue),
608                               FRF_AZ_RX_DESCQ_SIZE,
609                               __ffs(rx_queue->rxd.entries),
610                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
611                               /* For >=B0 this is scatter so disable */
612                               FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
613                               FRF_AZ_RX_DESCQ_EN, 1);
614         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
615                          efx_rx_queue_index(rx_queue));
616 }
617
618 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
619 {
620         struct efx_nic *efx = rx_queue->efx;
621         efx_oword_t rx_flush_descq;
622
623         EFX_POPULATE_OWORD_2(rx_flush_descq,
624                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
625                              FRF_AZ_RX_FLUSH_DESCQ,
626                              efx_rx_queue_index(rx_queue));
627         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
628 }
629
630 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
631 {
632         efx_oword_t rx_desc_ptr;
633         struct efx_nic *efx = rx_queue->efx;
634
635         /* Remove RX descriptor ring from card */
636         EFX_ZERO_OWORD(rx_desc_ptr);
637         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
638                          efx_rx_queue_index(rx_queue));
639
640         /* Unpin RX descriptor ring */
641         efx_fini_special_buffer(efx, &rx_queue->rxd);
642 }
643
644 /* Free buffers backing RX queue */
645 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
646 {
647         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
648 }
649
650 /**************************************************************************
651  *
652  * Flush handling
653  *
654  **************************************************************************/
655
656 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
657  * or more RX flushes can be kicked off.
658  */
659 static bool efx_flush_wake(struct efx_nic *efx)
660 {
661         /* Ensure that all updates are visible to efx_nic_flush_queues() */
662         smp_mb();
663
664         return (atomic_read(&efx->drain_pending) == 0 ||
665                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
666                  && atomic_read(&efx->rxq_flush_pending) > 0));
667 }
668
669 /* Flush all the transmit queues, and continue flushing receive queues until
670  * they're all flushed. Wait for the DRAIN events to be recieved so that there
671  * are no more RX and TX events left on any channel. */
672 int efx_nic_flush_queues(struct efx_nic *efx)
673 {
674         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
675         struct efx_channel *channel;
676         struct efx_rx_queue *rx_queue;
677         struct efx_tx_queue *tx_queue;
678         int rc = 0;
679
680         efx->fc_disable++;
681         efx->type->prepare_flush(efx);
682
683         efx_for_each_channel(channel, efx) {
684                 efx_for_each_channel_tx_queue(tx_queue, channel) {
685                         atomic_inc(&efx->drain_pending);
686                         efx_flush_tx_queue(tx_queue);
687                 }
688                 efx_for_each_channel_rx_queue(rx_queue, channel) {
689                         atomic_inc(&efx->drain_pending);
690                         rx_queue->flush_pending = true;
691                         atomic_inc(&efx->rxq_flush_pending);
692                 }
693         }
694
695         while (timeout && atomic_read(&efx->drain_pending) > 0) {
696                 /* The hardware supports four concurrent rx flushes, each of
697                  * which may need to be retried if there is an outstanding
698                  * descriptor fetch
699                  */
700                 efx_for_each_channel(channel, efx) {
701                         efx_for_each_channel_rx_queue(rx_queue, channel) {
702                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
703                                     EFX_RX_FLUSH_COUNT)
704                                         break;
705
706                                 if (rx_queue->flush_pending) {
707                                         rx_queue->flush_pending = false;
708                                         atomic_dec(&efx->rxq_flush_pending);
709                                         atomic_inc(&efx->rxq_flush_outstanding);
710                                         efx_flush_rx_queue(rx_queue);
711                                 }
712                         }
713                 }
714
715                 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
716                                              timeout);
717         }
718
719         if (atomic_read(&efx->drain_pending)) {
720                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
721                           "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
722                           atomic_read(&efx->rxq_flush_outstanding),
723                           atomic_read(&efx->rxq_flush_pending));
724                 rc = -ETIMEDOUT;
725
726                 atomic_set(&efx->drain_pending, 0);
727                 atomic_set(&efx->rxq_flush_pending, 0);
728                 atomic_set(&efx->rxq_flush_outstanding, 0);
729         }
730
731         efx->fc_disable--;
732
733         return rc;
734 }
735
736 /**************************************************************************
737  *
738  * Event queue processing
739  * Event queues are processed by per-channel tasklets.
740  *
741  **************************************************************************/
742
743 /* Update a channel's event queue's read pointer (RPTR) register
744  *
745  * This writes the EVQ_RPTR_REG register for the specified channel's
746  * event queue.
747  */
748 void efx_nic_eventq_read_ack(struct efx_channel *channel)
749 {
750         efx_dword_t reg;
751         struct efx_nic *efx = channel->efx;
752
753         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
754                              channel->eventq_read_ptr & channel->eventq_mask);
755         efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
756                          channel->channel);
757 }
758
759 /* Use HW to insert a SW defined event */
760 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
761                         efx_qword_t *event)
762 {
763         efx_oword_t drv_ev_reg;
764
765         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
766                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
767         drv_ev_reg.u32[0] = event->u32[0];
768         drv_ev_reg.u32[1] = event->u32[1];
769         drv_ev_reg.u32[2] = 0;
770         drv_ev_reg.u32[3] = 0;
771         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
772         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
773 }
774
775 static void efx_magic_event(struct efx_channel *channel, u32 magic)
776 {
777         efx_qword_t event;
778
779         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
780                              FSE_AZ_EV_CODE_DRV_GEN_EV,
781                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
782         efx_generate_event(channel->efx, channel->channel, &event);
783 }
784
785 /* Handle a transmit completion event
786  *
787  * The NIC batches TX completion events; the message we receive is of
788  * the form "complete all TX events up to this index".
789  */
790 static int
791 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
792 {
793         unsigned int tx_ev_desc_ptr;
794         unsigned int tx_ev_q_label;
795         struct efx_tx_queue *tx_queue;
796         struct efx_nic *efx = channel->efx;
797         int tx_packets = 0;
798
799         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
800                 return 0;
801
802         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
803                 /* Transmit completion */
804                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
805                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
806                 tx_queue = efx_channel_get_tx_queue(
807                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
808                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
809                               tx_queue->ptr_mask);
810                 channel->irq_mod_score += tx_packets;
811                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
812         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
813                 /* Rewrite the FIFO write pointer */
814                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
815                 tx_queue = efx_channel_get_tx_queue(
816                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
817
818                 netif_tx_lock(efx->net_dev);
819                 efx_notify_tx_desc(tx_queue);
820                 netif_tx_unlock(efx->net_dev);
821         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
822                    EFX_WORKAROUND_10727(efx)) {
823                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
824         } else {
825                 netif_err(efx, tx_err, efx->net_dev,
826                           "channel %d unexpected TX event "
827                           EFX_QWORD_FMT"\n", channel->channel,
828                           EFX_QWORD_VAL(*event));
829         }
830
831         return tx_packets;
832 }
833
834 /* Detect errors included in the rx_evt_pkt_ok bit. */
835 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
836                                 const efx_qword_t *event)
837 {
838         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
839         struct efx_nic *efx = rx_queue->efx;
840         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
841         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
842         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
843         bool rx_ev_other_err, rx_ev_pause_frm;
844         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
845         unsigned rx_ev_pkt_type;
846
847         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
848         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
849         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
850         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
851         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
852                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
853         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
854                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
855         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
856                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
857         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
858         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
859         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
860                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
861         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
862
863         /* Every error apart from tobe_disc and pause_frm */
864         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
865                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
866                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
867
868         /* Count errors that are not in MAC stats.  Ignore expected
869          * checksum errors during self-test. */
870         if (rx_ev_frm_trunc)
871                 ++channel->n_rx_frm_trunc;
872         else if (rx_ev_tobe_disc)
873                 ++channel->n_rx_tobe_disc;
874         else if (!efx->loopback_selftest) {
875                 if (rx_ev_ip_hdr_chksum_err)
876                         ++channel->n_rx_ip_hdr_chksum_err;
877                 else if (rx_ev_tcp_udp_chksum_err)
878                         ++channel->n_rx_tcp_udp_chksum_err;
879         }
880
881         /* TOBE_DISC is expected on unicast mismatches; don't print out an
882          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
883          * to a FIFO overflow.
884          */
885 #ifdef DEBUG
886         if (rx_ev_other_err && net_ratelimit()) {
887                 netif_dbg(efx, rx_err, efx->net_dev,
888                           " RX queue %d unexpected RX event "
889                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
890                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
891                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
892                           rx_ev_ip_hdr_chksum_err ?
893                           " [IP_HDR_CHKSUM_ERR]" : "",
894                           rx_ev_tcp_udp_chksum_err ?
895                           " [TCP_UDP_CHKSUM_ERR]" : "",
896                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
897                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
898                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
899                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
900                           rx_ev_pause_frm ? " [PAUSE]" : "");
901         }
902 #endif
903
904         /* The frame must be discarded if any of these are true. */
905         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
906                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
907                 EFX_RX_PKT_DISCARD : 0;
908 }
909
910 /* Handle receive events that are not in-order. */
911 static void
912 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
913 {
914         struct efx_nic *efx = rx_queue->efx;
915         unsigned expected, dropped;
916
917         expected = rx_queue->removed_count & rx_queue->ptr_mask;
918         dropped = (index - expected) & rx_queue->ptr_mask;
919         netif_info(efx, rx_err, efx->net_dev,
920                    "dropped %d events (index=%d expected=%d)\n",
921                    dropped, index, expected);
922
923         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
924                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
925 }
926
927 /* Handle a packet received event
928  *
929  * The NIC gives a "discard" flag if it's a unicast packet with the
930  * wrong destination address
931  * Also "is multicast" and "matches multicast filter" flags can be used to
932  * discard non-matching multicast packets.
933  */
934 static void
935 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
936 {
937         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
938         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
939         unsigned expected_ptr;
940         bool rx_ev_pkt_ok;
941         u16 flags;
942         struct efx_rx_queue *rx_queue;
943         struct efx_nic *efx = channel->efx;
944
945         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
946                 return;
947
948         /* Basic packet information */
949         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
950         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
951         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
952         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
953         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
954         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
955                 channel->channel);
956
957         rx_queue = efx_channel_get_rx_queue(channel);
958
959         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
960         expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
961         if (unlikely(rx_ev_desc_ptr != expected_ptr))
962                 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
963
964         if (likely(rx_ev_pkt_ok)) {
965                 /* If packet is marked as OK and packet type is TCP/IP or
966                  * UDP/IP, then we can rely on the hardware checksum.
967                  */
968                 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
969                          rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
970                         EFX_RX_PKT_CSUMMED : 0;
971         } else {
972                 flags = efx_handle_rx_not_ok(rx_queue, event);
973         }
974
975         /* Detect multicast packets that didn't match the filter */
976         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
977         if (rx_ev_mcast_pkt) {
978                 unsigned int rx_ev_mcast_hash_match =
979                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
980
981                 if (unlikely(!rx_ev_mcast_hash_match)) {
982                         ++channel->n_rx_mcast_mismatch;
983                         flags |= EFX_RX_PKT_DISCARD;
984                 }
985         }
986
987         channel->irq_mod_score += 2;
988
989         /* Handle received packet */
990         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
991 }
992
993 /* If this flush done event corresponds to a &struct efx_tx_queue, then
994  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
995  * of all transmit completions.
996  */
997 static void
998 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
999 {
1000         struct efx_tx_queue *tx_queue;
1001         int qid;
1002
1003         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1004         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1005                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1006                                             qid % EFX_TXQ_TYPES);
1007
1008                 efx_magic_event(tx_queue->channel,
1009                                 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1010         }
1011 }
1012
1013 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1014  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1015  * the RX queue back to the mask of RX queues in need of flushing.
1016  */
1017 static void
1018 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1019 {
1020         struct efx_channel *channel;
1021         struct efx_rx_queue *rx_queue;
1022         int qid;
1023         bool failed;
1024
1025         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1026         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1027         if (qid >= efx->n_channels)
1028                 return;
1029         channel = efx_get_channel(efx, qid);
1030         if (!efx_channel_has_rx_queue(channel))
1031                 return;
1032         rx_queue = efx_channel_get_rx_queue(channel);
1033
1034         if (failed) {
1035                 netif_info(efx, hw, efx->net_dev,
1036                            "RXQ %d flush retry\n", qid);
1037                 rx_queue->flush_pending = true;
1038                 atomic_inc(&efx->rxq_flush_pending);
1039         } else {
1040                 efx_magic_event(efx_rx_queue_channel(rx_queue),
1041                                 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1042         }
1043         atomic_dec(&efx->rxq_flush_outstanding);
1044         if (efx_flush_wake(efx))
1045                 wake_up(&efx->flush_wq);
1046 }
1047
1048 static void
1049 efx_handle_drain_event(struct efx_channel *channel)
1050 {
1051         struct efx_nic *efx = channel->efx;
1052
1053         WARN_ON(atomic_read(&efx->drain_pending) == 0);
1054         atomic_dec(&efx->drain_pending);
1055         if (efx_flush_wake(efx))
1056                 wake_up(&efx->flush_wq);
1057 }
1058
1059 static void
1060 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1061 {
1062         struct efx_nic *efx = channel->efx;
1063         struct efx_rx_queue *rx_queue =
1064                 efx_channel_has_rx_queue(channel) ?
1065                 efx_channel_get_rx_queue(channel) : NULL;
1066         unsigned magic, code;
1067
1068         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1069         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1070
1071         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1072                 /* ignore */
1073         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1074                 /* The queue must be empty, so we won't receive any rx
1075                  * events, so efx_process_channel() won't refill the
1076                  * queue. Refill it here */
1077                 efx_fast_push_rx_descriptors(rx_queue);
1078         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1079                 rx_queue->enabled = false;
1080                 efx_handle_drain_event(channel);
1081         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1082                 efx_handle_drain_event(channel);
1083         } else {
1084                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1085                           "generated event "EFX_QWORD_FMT"\n",
1086                           channel->channel, EFX_QWORD_VAL(*event));
1087         }
1088 }
1089
1090 static void
1091 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1092 {
1093         struct efx_nic *efx = channel->efx;
1094         unsigned int ev_sub_code;
1095         unsigned int ev_sub_data;
1096
1097         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1098         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1099
1100         switch (ev_sub_code) {
1101         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1102                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1103                            channel->channel, ev_sub_data);
1104                 efx_handle_tx_flush_done(efx, event);
1105                 break;
1106         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1107                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1108                            channel->channel, ev_sub_data);
1109                 efx_handle_rx_flush_done(efx, event);
1110                 break;
1111         case FSE_AZ_EVQ_INIT_DONE_EV:
1112                 netif_dbg(efx, hw, efx->net_dev,
1113                           "channel %d EVQ %d initialised\n",
1114                           channel->channel, ev_sub_data);
1115                 break;
1116         case FSE_AZ_SRM_UPD_DONE_EV:
1117                 netif_vdbg(efx, hw, efx->net_dev,
1118                            "channel %d SRAM update done\n", channel->channel);
1119                 break;
1120         case FSE_AZ_WAKE_UP_EV:
1121                 netif_vdbg(efx, hw, efx->net_dev,
1122                            "channel %d RXQ %d wakeup event\n",
1123                            channel->channel, ev_sub_data);
1124                 break;
1125         case FSE_AZ_TIMER_EV:
1126                 netif_vdbg(efx, hw, efx->net_dev,
1127                            "channel %d RX queue %d timer expired\n",
1128                            channel->channel, ev_sub_data);
1129                 break;
1130         case FSE_AA_RX_RECOVER_EV:
1131                 netif_err(efx, rx_err, efx->net_dev,
1132                           "channel %d seen DRIVER RX_RESET event. "
1133                         "Resetting.\n", channel->channel);
1134                 atomic_inc(&efx->rx_reset);
1135                 efx_schedule_reset(efx,
1136                                    EFX_WORKAROUND_6555(efx) ?
1137                                    RESET_TYPE_RX_RECOVERY :
1138                                    RESET_TYPE_DISABLE);
1139                 break;
1140         case FSE_BZ_RX_DSC_ERROR_EV:
1141                 netif_err(efx, rx_err, efx->net_dev,
1142                           "RX DMA Q %d reports descriptor fetch error."
1143                           " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1144                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1145                 break;
1146         case FSE_BZ_TX_DSC_ERROR_EV:
1147                 netif_err(efx, tx_err, efx->net_dev,
1148                           "TX DMA Q %d reports descriptor fetch error."
1149                           " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1150                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1151                 break;
1152         default:
1153                 netif_vdbg(efx, hw, efx->net_dev,
1154                            "channel %d unknown driver event code %d "
1155                            "data %04x\n", channel->channel, ev_sub_code,
1156                            ev_sub_data);
1157                 break;
1158         }
1159 }
1160
1161 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1162 {
1163         struct efx_nic *efx = channel->efx;
1164         unsigned int read_ptr;
1165         efx_qword_t event, *p_event;
1166         int ev_code;
1167         int tx_packets = 0;
1168         int spent = 0;
1169
1170         read_ptr = channel->eventq_read_ptr;
1171
1172         for (;;) {
1173                 p_event = efx_event(channel, read_ptr);
1174                 event = *p_event;
1175
1176                 if (!efx_event_present(&event))
1177                         /* End of events */
1178                         break;
1179
1180                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1181                            "channel %d event is "EFX_QWORD_FMT"\n",
1182                            channel->channel, EFX_QWORD_VAL(event));
1183
1184                 /* Clear this event by marking it all ones */
1185                 EFX_SET_QWORD(*p_event);
1186
1187                 ++read_ptr;
1188
1189                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1190
1191                 switch (ev_code) {
1192                 case FSE_AZ_EV_CODE_RX_EV:
1193                         efx_handle_rx_event(channel, &event);
1194                         if (++spent == budget)
1195                                 goto out;
1196                         break;
1197                 case FSE_AZ_EV_CODE_TX_EV:
1198                         tx_packets += efx_handle_tx_event(channel, &event);
1199                         if (tx_packets > efx->txq_entries) {
1200                                 spent = budget;
1201                                 goto out;
1202                         }
1203                         break;
1204                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1205                         efx_handle_generated_event(channel, &event);
1206                         break;
1207                 case FSE_AZ_EV_CODE_DRIVER_EV:
1208                         efx_handle_driver_event(channel, &event);
1209                         break;
1210                 case FSE_CZ_EV_CODE_MCDI_EV:
1211                         efx_mcdi_process_event(channel, &event);
1212                         break;
1213                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1214                         if (efx->type->handle_global_event &&
1215                             efx->type->handle_global_event(channel, &event))
1216                                 break;
1217                         /* else fall through */
1218                 default:
1219                         netif_err(channel->efx, hw, channel->efx->net_dev,
1220                                   "channel %d unknown event type %d (data "
1221                                   EFX_QWORD_FMT ")\n", channel->channel,
1222                                   ev_code, EFX_QWORD_VAL(event));
1223                 }
1224         }
1225
1226 out:
1227         channel->eventq_read_ptr = read_ptr;
1228         return spent;
1229 }
1230
1231 /* Check whether an event is present in the eventq at the current
1232  * read pointer.  Only useful for self-test.
1233  */
1234 bool efx_nic_event_present(struct efx_channel *channel)
1235 {
1236         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1237 }
1238
1239 /* Allocate buffer table entries for event queue */
1240 int efx_nic_probe_eventq(struct efx_channel *channel)
1241 {
1242         struct efx_nic *efx = channel->efx;
1243         unsigned entries;
1244
1245         entries = channel->eventq_mask + 1;
1246         return efx_alloc_special_buffer(efx, &channel->eventq,
1247                                         entries * sizeof(efx_qword_t));
1248 }
1249
1250 void efx_nic_init_eventq(struct efx_channel *channel)
1251 {
1252         efx_oword_t reg;
1253         struct efx_nic *efx = channel->efx;
1254
1255         netif_dbg(efx, hw, efx->net_dev,
1256                   "channel %d event queue in special buffers %d-%d\n",
1257                   channel->channel, channel->eventq.index,
1258                   channel->eventq.index + channel->eventq.entries - 1);
1259
1260         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1261                 EFX_POPULATE_OWORD_3(reg,
1262                                      FRF_CZ_TIMER_Q_EN, 1,
1263                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1264                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1265                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1266         }
1267
1268         /* Pin event queue buffer */
1269         efx_init_special_buffer(efx, &channel->eventq);
1270
1271         /* Fill event queue with all ones (i.e. empty events) */
1272         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1273
1274         /* Push event queue to card */
1275         EFX_POPULATE_OWORD_3(reg,
1276                              FRF_AZ_EVQ_EN, 1,
1277                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1278                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1279         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1280                          channel->channel);
1281
1282         efx->type->push_irq_moderation(channel);
1283 }
1284
1285 void efx_nic_fini_eventq(struct efx_channel *channel)
1286 {
1287         efx_oword_t reg;
1288         struct efx_nic *efx = channel->efx;
1289
1290         /* Remove event queue from card */
1291         EFX_ZERO_OWORD(reg);
1292         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1293                          channel->channel);
1294         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1295                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1296
1297         /* Unpin event queue */
1298         efx_fini_special_buffer(efx, &channel->eventq);
1299 }
1300
1301 /* Free buffers backing event queue */
1302 void efx_nic_remove_eventq(struct efx_channel *channel)
1303 {
1304         efx_free_special_buffer(channel->efx, &channel->eventq);
1305 }
1306
1307
1308 void efx_nic_generate_test_event(struct efx_channel *channel)
1309 {
1310         efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1311 }
1312
1313 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1314 {
1315         efx_magic_event(efx_rx_queue_channel(rx_queue),
1316                         EFX_CHANNEL_MAGIC_FILL(rx_queue));
1317 }
1318
1319 /**************************************************************************
1320  *
1321  * Hardware interrupts
1322  * The hardware interrupt handler does very little work; all the event
1323  * queue processing is carried out by per-channel tasklets.
1324  *
1325  **************************************************************************/
1326
1327 /* Enable/disable/generate interrupts */
1328 static inline void efx_nic_interrupts(struct efx_nic *efx,
1329                                       bool enabled, bool force)
1330 {
1331         efx_oword_t int_en_reg_ker;
1332
1333         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1334                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1335                              FRF_AZ_KER_INT_KER, force,
1336                              FRF_AZ_DRV_INT_EN_KER, enabled);
1337         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1338 }
1339
1340 void efx_nic_enable_interrupts(struct efx_nic *efx)
1341 {
1342         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1343         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1344
1345         efx_nic_interrupts(efx, true, false);
1346 }
1347
1348 void efx_nic_disable_interrupts(struct efx_nic *efx)
1349 {
1350         /* Disable interrupts */
1351         efx_nic_interrupts(efx, false, false);
1352 }
1353
1354 /* Generate a test interrupt
1355  * Interrupt must already have been enabled, otherwise nasty things
1356  * may happen.
1357  */
1358 void efx_nic_generate_interrupt(struct efx_nic *efx)
1359 {
1360         efx_nic_interrupts(efx, true, true);
1361 }
1362
1363 /* Process a fatal interrupt
1364  * Disable bus mastering ASAP and schedule a reset
1365  */
1366 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1367 {
1368         struct falcon_nic_data *nic_data = efx->nic_data;
1369         efx_oword_t *int_ker = efx->irq_status.addr;
1370         efx_oword_t fatal_intr;
1371         int error, mem_perr;
1372
1373         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1374         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1375
1376         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1377                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1378                   EFX_OWORD_VAL(fatal_intr),
1379                   error ? "disabling bus mastering" : "no recognised error");
1380
1381         /* If this is a memory parity error dump which blocks are offending */
1382         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1383                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1384         if (mem_perr) {
1385                 efx_oword_t reg;
1386                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1387                 netif_err(efx, hw, efx->net_dev,
1388                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1389                           EFX_OWORD_VAL(reg));
1390         }
1391
1392         /* Disable both devices */
1393         pci_clear_master(efx->pci_dev);
1394         if (efx_nic_is_dual_func(efx))
1395                 pci_clear_master(nic_data->pci_dev2);
1396         efx_nic_disable_interrupts(efx);
1397
1398         /* Count errors and reset or disable the NIC accordingly */
1399         if (efx->int_error_count == 0 ||
1400             time_after(jiffies, efx->int_error_expire)) {
1401                 efx->int_error_count = 0;
1402                 efx->int_error_expire =
1403                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1404         }
1405         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1406                 netif_err(efx, hw, efx->net_dev,
1407                           "SYSTEM ERROR - reset scheduled\n");
1408                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1409         } else {
1410                 netif_err(efx, hw, efx->net_dev,
1411                           "SYSTEM ERROR - max number of errors seen."
1412                           "NIC will be disabled\n");
1413                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1414         }
1415
1416         return IRQ_HANDLED;
1417 }
1418
1419 /* Handle a legacy interrupt
1420  * Acknowledges the interrupt and schedule event queue processing.
1421  */
1422 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1423 {
1424         struct efx_nic *efx = dev_id;
1425         efx_oword_t *int_ker = efx->irq_status.addr;
1426         irqreturn_t result = IRQ_NONE;
1427         struct efx_channel *channel;
1428         efx_dword_t reg;
1429         u32 queues;
1430         int syserr;
1431
1432         /* Could this be ours?  If interrupts are disabled then the
1433          * channel state may not be valid.
1434          */
1435         if (!efx->legacy_irq_enabled)
1436                 return result;
1437
1438         /* Read the ISR which also ACKs the interrupts */
1439         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1440         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1441
1442         /* Handle non-event-queue sources */
1443         if (queues & (1U << efx->irq_level)) {
1444                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1445                 if (unlikely(syserr))
1446                         return efx_nic_fatal_interrupt(efx);
1447                 efx->last_irq_cpu = raw_smp_processor_id();
1448         }
1449
1450         if (queues != 0) {
1451                 if (EFX_WORKAROUND_15783(efx))
1452                         efx->irq_zero_count = 0;
1453
1454                 /* Schedule processing of any interrupting queues */
1455                 efx_for_each_channel(channel, efx) {
1456                         if (queues & 1)
1457                                 efx_schedule_channel_irq(channel);
1458                         queues >>= 1;
1459                 }
1460                 result = IRQ_HANDLED;
1461
1462         } else if (EFX_WORKAROUND_15783(efx)) {
1463                 efx_qword_t *event;
1464
1465                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1466                  * because this might be a shared interrupt. */
1467                 if (efx->irq_zero_count++ == 0)
1468                         result = IRQ_HANDLED;
1469
1470                 /* Ensure we schedule or rearm all event queues */
1471                 efx_for_each_channel(channel, efx) {
1472                         event = efx_event(channel, channel->eventq_read_ptr);
1473                         if (efx_event_present(event))
1474                                 efx_schedule_channel_irq(channel);
1475                         else
1476                                 efx_nic_eventq_read_ack(channel);
1477                 }
1478         }
1479
1480         if (result == IRQ_HANDLED)
1481                 netif_vdbg(efx, intr, efx->net_dev,
1482                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1483                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1484
1485         return result;
1486 }
1487
1488 /* Handle an MSI interrupt
1489  *
1490  * Handle an MSI hardware interrupt.  This routine schedules event
1491  * queue processing.  No interrupt acknowledgement cycle is necessary.
1492  * Also, we never need to check that the interrupt is for us, since
1493  * MSI interrupts cannot be shared.
1494  */
1495 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1496 {
1497         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1498         struct efx_nic *efx = channel->efx;
1499         efx_oword_t *int_ker = efx->irq_status.addr;
1500         int syserr;
1501
1502         netif_vdbg(efx, intr, efx->net_dev,
1503                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1504                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1505
1506         /* Handle non-event-queue sources */
1507         if (channel->channel == efx->irq_level) {
1508                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1509                 if (unlikely(syserr))
1510                         return efx_nic_fatal_interrupt(efx);
1511                 efx->last_irq_cpu = raw_smp_processor_id();
1512         }
1513
1514         /* Schedule processing of the channel */
1515         efx_schedule_channel_irq(channel);
1516
1517         return IRQ_HANDLED;
1518 }
1519
1520
1521 /* Setup RSS indirection table.
1522  * This maps from the hash value of the packet to RXQ
1523  */
1524 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1525 {
1526         size_t i = 0;
1527         efx_dword_t dword;
1528
1529         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1530                 return;
1531
1532         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1533                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1534
1535         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1536                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1537                                      efx->rx_indir_table[i]);
1538                 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1539         }
1540 }
1541
1542 /* Hook interrupt handler(s)
1543  * Try MSI and then legacy interrupts.
1544  */
1545 int efx_nic_init_interrupt(struct efx_nic *efx)
1546 {
1547         struct efx_channel *channel;
1548         int rc;
1549
1550         if (!EFX_INT_MODE_USE_MSI(efx)) {
1551                 irq_handler_t handler;
1552                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1553                         handler = efx_legacy_interrupt;
1554                 else
1555                         handler = falcon_legacy_interrupt_a1;
1556
1557                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1558                                  efx->name, efx);
1559                 if (rc) {
1560                         netif_err(efx, drv, efx->net_dev,
1561                                   "failed to hook legacy IRQ %d\n",
1562                                   efx->pci_dev->irq);
1563                         goto fail1;
1564                 }
1565                 return 0;
1566         }
1567
1568         /* Hook MSI or MSI-X interrupt */
1569         efx_for_each_channel(channel, efx) {
1570                 rc = request_irq(channel->irq, efx_msi_interrupt,
1571                                  IRQF_PROBE_SHARED, /* Not shared */
1572                                  efx->channel_name[channel->channel],
1573                                  &efx->channel[channel->channel]);
1574                 if (rc) {
1575                         netif_err(efx, drv, efx->net_dev,
1576                                   "failed to hook IRQ %d\n", channel->irq);
1577                         goto fail2;
1578                 }
1579         }
1580
1581         return 0;
1582
1583  fail2:
1584         efx_for_each_channel(channel, efx)
1585                 free_irq(channel->irq, &efx->channel[channel->channel]);
1586  fail1:
1587         return rc;
1588 }
1589
1590 void efx_nic_fini_interrupt(struct efx_nic *efx)
1591 {
1592         struct efx_channel *channel;
1593         efx_oword_t reg;
1594
1595         /* Disable MSI/MSI-X interrupts */
1596         efx_for_each_channel(channel, efx) {
1597                 if (channel->irq)
1598                         free_irq(channel->irq, &efx->channel[channel->channel]);
1599         }
1600
1601         /* ACK legacy interrupt */
1602         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1603                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1604         else
1605                 falcon_irq_ack_a1(efx);
1606
1607         /* Disable legacy interrupt */
1608         if (efx->legacy_irq)
1609                 free_irq(efx->legacy_irq, efx);
1610 }
1611
1612 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1613 {
1614         efx_oword_t altera_build;
1615         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1616         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1617 }
1618
1619 void efx_nic_init_common(struct efx_nic *efx)
1620 {
1621         efx_oword_t temp;
1622
1623         /* Set positions of descriptor caches in SRAM. */
1624         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1625                              efx->type->tx_dc_base / 8);
1626         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1627         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1628                              efx->type->rx_dc_base / 8);
1629         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1630
1631         /* Set TX descriptor cache size. */
1632         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1633         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1634         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1635
1636         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1637          * this allows most efficient prefetching.
1638          */
1639         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1640         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1641         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1642         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1643         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1644
1645         /* Program INT_KER address */
1646         EFX_POPULATE_OWORD_2(temp,
1647                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1648                              EFX_INT_MODE_USE_MSI(efx),
1649                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1650         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1651
1652         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1653                 /* Use an interrupt level unused by event queues */
1654                 efx->irq_level = 0x1f;
1655         else
1656                 /* Use a valid MSI-X vector */
1657                 efx->irq_level = 0;
1658
1659         /* Enable all the genuinely fatal interrupts.  (They are still
1660          * masked by the overall interrupt mask, controlled by
1661          * falcon_interrupts()).
1662          *
1663          * Note: All other fatal interrupts are enabled
1664          */
1665         EFX_POPULATE_OWORD_3(temp,
1666                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1667                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1668                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1669         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1670                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1671         EFX_INVERT_OWORD(temp);
1672         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1673
1674         efx_nic_push_rx_indir_table(efx);
1675
1676         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1677          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1678          */
1679         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1680         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1681         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1682         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1683         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1684         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1685         /* Enable SW_EV to inherit in char driver - assume harmless here */
1686         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1687         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1688         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1689         /* Disable hardware watchdog which can misfire */
1690         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1691         /* Squash TX of packets of 16 bytes or less */
1692         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1693                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1694         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1695
1696         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1697                 EFX_POPULATE_OWORD_4(temp,
1698                                      /* Default values */
1699                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1700                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1701                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1702                                      /* Allow large pace values in the
1703                                       * fast bin. */
1704                                      FRF_BZ_TX_PACE_BIN_TH,
1705                                      FFE_BZ_TX_PACE_RESERVED);
1706                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1707         }
1708 }
1709
1710 /* Register dump */
1711
1712 #define REGISTER_REVISION_A     1
1713 #define REGISTER_REVISION_B     2
1714 #define REGISTER_REVISION_C     3
1715 #define REGISTER_REVISION_Z     3       /* latest revision */
1716
1717 struct efx_nic_reg {
1718         u32 offset:24;
1719         u32 min_revision:2, max_revision:2;
1720 };
1721
1722 #define REGISTER(name, min_rev, max_rev) {                              \
1723         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1724         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1725 }
1726 #define REGISTER_AA(name) REGISTER(name, A, A)
1727 #define REGISTER_AB(name) REGISTER(name, A, B)
1728 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1729 #define REGISTER_BB(name) REGISTER(name, B, B)
1730 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1731 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1732
1733 static const struct efx_nic_reg efx_nic_regs[] = {
1734         REGISTER_AZ(ADR_REGION),
1735         REGISTER_AZ(INT_EN_KER),
1736         REGISTER_BZ(INT_EN_CHAR),
1737         REGISTER_AZ(INT_ADR_KER),
1738         REGISTER_BZ(INT_ADR_CHAR),
1739         /* INT_ACK_KER is WO */
1740         /* INT_ISR0 is RC */
1741         REGISTER_AZ(HW_INIT),
1742         REGISTER_CZ(USR_EV_CFG),
1743         REGISTER_AB(EE_SPI_HCMD),
1744         REGISTER_AB(EE_SPI_HADR),
1745         REGISTER_AB(EE_SPI_HDATA),
1746         REGISTER_AB(EE_BASE_PAGE),
1747         REGISTER_AB(EE_VPD_CFG0),
1748         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1749         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1750         /* PCIE_CORE_INDIRECT is indirect */
1751         REGISTER_AB(NIC_STAT),
1752         REGISTER_AB(GPIO_CTL),
1753         REGISTER_AB(GLB_CTL),
1754         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1755         REGISTER_BZ(DP_CTRL),
1756         REGISTER_AZ(MEM_STAT),
1757         REGISTER_AZ(CS_DEBUG),
1758         REGISTER_AZ(ALTERA_BUILD),
1759         REGISTER_AZ(CSR_SPARE),
1760         REGISTER_AB(PCIE_SD_CTL0123),
1761         REGISTER_AB(PCIE_SD_CTL45),
1762         REGISTER_AB(PCIE_PCS_CTL_STAT),
1763         /* DEBUG_DATA_OUT is not used */
1764         /* DRV_EV is WO */
1765         REGISTER_AZ(EVQ_CTL),
1766         REGISTER_AZ(EVQ_CNT1),
1767         REGISTER_AZ(EVQ_CNT2),
1768         REGISTER_AZ(BUF_TBL_CFG),
1769         REGISTER_AZ(SRM_RX_DC_CFG),
1770         REGISTER_AZ(SRM_TX_DC_CFG),
1771         REGISTER_AZ(SRM_CFG),
1772         /* BUF_TBL_UPD is WO */
1773         REGISTER_AZ(SRM_UPD_EVQ),
1774         REGISTER_AZ(SRAM_PARITY),
1775         REGISTER_AZ(RX_CFG),
1776         REGISTER_BZ(RX_FILTER_CTL),
1777         /* RX_FLUSH_DESCQ is WO */
1778         REGISTER_AZ(RX_DC_CFG),
1779         REGISTER_AZ(RX_DC_PF_WM),
1780         REGISTER_BZ(RX_RSS_TKEY),
1781         /* RX_NODESC_DROP is RC */
1782         REGISTER_AA(RX_SELF_RST),
1783         /* RX_DEBUG, RX_PUSH_DROP are not used */
1784         REGISTER_CZ(RX_RSS_IPV6_REG1),
1785         REGISTER_CZ(RX_RSS_IPV6_REG2),
1786         REGISTER_CZ(RX_RSS_IPV6_REG3),
1787         /* TX_FLUSH_DESCQ is WO */
1788         REGISTER_AZ(TX_DC_CFG),
1789         REGISTER_AA(TX_CHKSM_CFG),
1790         REGISTER_AZ(TX_CFG),
1791         /* TX_PUSH_DROP is not used */
1792         REGISTER_AZ(TX_RESERVED),
1793         REGISTER_BZ(TX_PACE),
1794         /* TX_PACE_DROP_QID is RC */
1795         REGISTER_BB(TX_VLAN),
1796         REGISTER_BZ(TX_IPFIL_PORTEN),
1797         REGISTER_AB(MD_TXD),
1798         REGISTER_AB(MD_RXD),
1799         REGISTER_AB(MD_CS),
1800         REGISTER_AB(MD_PHY_ADR),
1801         REGISTER_AB(MD_ID),
1802         /* MD_STAT is RC */
1803         REGISTER_AB(MAC_STAT_DMA),
1804         REGISTER_AB(MAC_CTRL),
1805         REGISTER_BB(GEN_MODE),
1806         REGISTER_AB(MAC_MC_HASH_REG0),
1807         REGISTER_AB(MAC_MC_HASH_REG1),
1808         REGISTER_AB(GM_CFG1),
1809         REGISTER_AB(GM_CFG2),
1810         /* GM_IPG and GM_HD are not used */
1811         REGISTER_AB(GM_MAX_FLEN),
1812         /* GM_TEST is not used */
1813         REGISTER_AB(GM_ADR1),
1814         REGISTER_AB(GM_ADR2),
1815         REGISTER_AB(GMF_CFG0),
1816         REGISTER_AB(GMF_CFG1),
1817         REGISTER_AB(GMF_CFG2),
1818         REGISTER_AB(GMF_CFG3),
1819         REGISTER_AB(GMF_CFG4),
1820         REGISTER_AB(GMF_CFG5),
1821         REGISTER_BB(TX_SRC_MAC_CTL),
1822         REGISTER_AB(XM_ADR_LO),
1823         REGISTER_AB(XM_ADR_HI),
1824         REGISTER_AB(XM_GLB_CFG),
1825         REGISTER_AB(XM_TX_CFG),
1826         REGISTER_AB(XM_RX_CFG),
1827         REGISTER_AB(XM_MGT_INT_MASK),
1828         REGISTER_AB(XM_FC),
1829         REGISTER_AB(XM_PAUSE_TIME),
1830         REGISTER_AB(XM_TX_PARAM),
1831         REGISTER_AB(XM_RX_PARAM),
1832         /* XM_MGT_INT_MSK (note no 'A') is RC */
1833         REGISTER_AB(XX_PWR_RST),
1834         REGISTER_AB(XX_SD_CTL),
1835         REGISTER_AB(XX_TXDRV_CTL),
1836         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1837         /* XX_CORE_STAT is partly RC */
1838 };
1839
1840 struct efx_nic_reg_table {
1841         u32 offset:24;
1842         u32 min_revision:2, max_revision:2;
1843         u32 step:6, rows:21;
1844 };
1845
1846 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1847         offset,                                                         \
1848         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
1849         step, rows                                                      \
1850 }
1851 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
1852         REGISTER_TABLE_DIMENSIONS(                                      \
1853                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
1854                 min_rev, max_rev,                                       \
1855                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
1856                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1857 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1858 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1859 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1860 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1861 #define REGISTER_TABLE_BB_CZ(name)                                      \
1862         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
1863                                   FR_BZ_ ## name ## _STEP,              \
1864                                   FR_BB_ ## name ## _ROWS),             \
1865         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
1866                                   FR_BZ_ ## name ## _STEP,              \
1867                                   FR_CZ_ ## name ## _ROWS)
1868 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1869
1870 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1871         /* DRIVER is not used */
1872         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1873         REGISTER_TABLE_BB(TX_IPFIL_TBL),
1874         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1875         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1876         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1877         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1878         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1879         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1880         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1881         /* We can't reasonably read all of the buffer table (up to 8MB!).
1882          * However this driver will only use a few entries.  Reading
1883          * 1K entries allows for some expansion of queue count and
1884          * size before we need to change the version. */
1885         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1886                                   A, A, 8, 1024),
1887         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1888                                   B, Z, 8, 1024),
1889         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1890         REGISTER_TABLE_BB_CZ(TIMER_TBL),
1891         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1892         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1893         /* TX_FILTER_TBL0 is huge and not used by this driver */
1894         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1895         REGISTER_TABLE_CZ(MC_TREG_SMEM),
1896         /* MSIX_PBA_TABLE is not mapped */
1897         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1898         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1899 };
1900
1901 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1902 {
1903         const struct efx_nic_reg *reg;
1904         const struct efx_nic_reg_table *table;
1905         size_t len = 0;
1906
1907         for (reg = efx_nic_regs;
1908              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1909              reg++)
1910                 if (efx->type->revision >= reg->min_revision &&
1911                     efx->type->revision <= reg->max_revision)
1912                         len += sizeof(efx_oword_t);
1913
1914         for (table = efx_nic_reg_tables;
1915              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1916              table++)
1917                 if (efx->type->revision >= table->min_revision &&
1918                     efx->type->revision <= table->max_revision)
1919                         len += table->rows * min_t(size_t, table->step, 16);
1920
1921         return len;
1922 }
1923
1924 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1925 {
1926         const struct efx_nic_reg *reg;
1927         const struct efx_nic_reg_table *table;
1928
1929         for (reg = efx_nic_regs;
1930              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1931              reg++) {
1932                 if (efx->type->revision >= reg->min_revision &&
1933                     efx->type->revision <= reg->max_revision) {
1934                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1935                         buf += sizeof(efx_oword_t);
1936                 }
1937         }
1938
1939         for (table = efx_nic_reg_tables;
1940              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1941              table++) {
1942                 size_t size, i;
1943
1944                 if (!(efx->type->revision >= table->min_revision &&
1945                       efx->type->revision <= table->max_revision))
1946                         continue;
1947
1948                 size = min_t(size_t, table->step, 16);
1949
1950                 for (i = 0; i < table->rows; i++) {
1951                         switch (table->step) {
1952                         case 4: /* 32-bit register or SRAM */
1953                                 efx_readd_table(efx, buf, table->offset, i);
1954                                 break;
1955                         case 8: /* 64-bit SRAM */
1956                                 efx_sram_readq(efx,
1957                                                efx->membase + table->offset,
1958                                                buf, i);
1959                                 break;
1960                         case 16: /* 128-bit register */
1961                                 efx_reado_table(efx, buf, table->offset, i);
1962                                 break;
1963                         case 32: /* 128-bit register, interleaved */
1964                                 efx_reado_table(efx, buf, table->offset, 2 * i);
1965                                 break;
1966                         default:
1967                                 WARN_ON(1);
1968                                 return;
1969                         }
1970                         buf += size;
1971                 }
1972         }
1973 }