igb: don't break user visible strings over multiple lines in igb_ethtool.c
[pandora-kernel.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40
41 #include "igb.h"
42
43 struct igb_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(_name, _stat) { \
50         .stat_string = _name, \
51         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52         .stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55         IGB_STAT("rx_packets", stats.gprc),
56         IGB_STAT("tx_packets", stats.gptc),
57         IGB_STAT("rx_bytes", stats.gorc),
58         IGB_STAT("tx_bytes", stats.gotc),
59         IGB_STAT("rx_broadcast", stats.bprc),
60         IGB_STAT("tx_broadcast", stats.bptc),
61         IGB_STAT("rx_multicast", stats.mprc),
62         IGB_STAT("tx_multicast", stats.mptc),
63         IGB_STAT("multicast", stats.mprc),
64         IGB_STAT("collisions", stats.colc),
65         IGB_STAT("rx_crc_errors", stats.crcerrs),
66         IGB_STAT("rx_no_buffer_count", stats.rnbc),
67         IGB_STAT("rx_missed_errors", stats.mpc),
68         IGB_STAT("tx_aborted_errors", stats.ecol),
69         IGB_STAT("tx_carrier_errors", stats.tncrs),
70         IGB_STAT("tx_window_errors", stats.latecol),
71         IGB_STAT("tx_abort_late_coll", stats.latecol),
72         IGB_STAT("tx_deferred_ok", stats.dc),
73         IGB_STAT("tx_single_coll_ok", stats.scc),
74         IGB_STAT("tx_multi_coll_ok", stats.mcc),
75         IGB_STAT("tx_timeout_count", tx_timeout_count),
76         IGB_STAT("rx_long_length_errors", stats.roc),
77         IGB_STAT("rx_short_length_errors", stats.ruc),
78         IGB_STAT("rx_align_errors", stats.algnerrc),
79         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83         IGB_STAT("tx_flow_control_xon", stats.xontxc),
84         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85         IGB_STAT("rx_long_byte_count", stats.gorc),
86         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87         IGB_STAT("tx_smbus", stats.mgptc),
88         IGB_STAT("rx_smbus", stats.mgprc),
89         IGB_STAT("dropped_smbus", stats.mgpdc),
90         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         u32 status;
142
143         if (hw->phy.media_type == e1000_media_type_copper) {
144
145                 ecmd->supported = (SUPPORTED_10baseT_Half |
146                                    SUPPORTED_10baseT_Full |
147                                    SUPPORTED_100baseT_Half |
148                                    SUPPORTED_100baseT_Full |
149                                    SUPPORTED_1000baseT_Full|
150                                    SUPPORTED_Autoneg |
151                                    SUPPORTED_TP);
152                 ecmd->advertising = (ADVERTISED_TP |
153                                      ADVERTISED_Pause);
154
155                 if (hw->mac.autoneg == 1) {
156                         ecmd->advertising |= ADVERTISED_Autoneg;
157                         /* the e1000 autoneg seems to match ethtool nicely */
158                         ecmd->advertising |= hw->phy.autoneg_advertised;
159                 }
160
161                 ecmd->port = PORT_TP;
162                 ecmd->phy_address = hw->phy.addr;
163         } else {
164                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
165                                      SUPPORTED_FIBRE |
166                                      SUPPORTED_Autoneg);
167
168                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
169                                      ADVERTISED_FIBRE |
170                                      ADVERTISED_Autoneg |
171                                      ADVERTISED_Pause);
172
173                 ecmd->port = PORT_FIBRE;
174         }
175
176         ecmd->transceiver = XCVR_INTERNAL;
177
178         status = rd32(E1000_STATUS);
179
180         if (status & E1000_STATUS_LU) {
181
182                 if ((status & E1000_STATUS_SPEED_1000) ||
183                     hw->phy.media_type != e1000_media_type_copper)
184                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
185                 else if (status & E1000_STATUS_SPEED_100)
186                         ethtool_cmd_speed_set(ecmd, SPEED_100);
187                 else
188                         ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190                 if ((status & E1000_STATUS_FD) ||
191                     hw->phy.media_type != e1000_media_type_copper)
192                         ecmd->duplex = DUPLEX_FULL;
193                 else
194                         ecmd->duplex = DUPLEX_HALF;
195         } else {
196                 ethtool_cmd_speed_set(ecmd, -1);
197                 ecmd->duplex = -1;
198         }
199
200         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201         return 0;
202 }
203
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206         struct igb_adapter *adapter = netdev_priv(netdev);
207         struct e1000_hw *hw = &adapter->hw;
208
209         /* When SoL/IDER sessions are active, autoneg/speed/duplex
210          * cannot be changed */
211         if (igb_check_reset_block(hw)) {
212                 dev_err(&adapter->pdev->dev,
213                         "Cannot change link characteristics when SoL/IDER is active.\n");
214                 return -EINVAL;
215         }
216
217         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218                 msleep(1);
219
220         if (ecmd->autoneg == AUTONEG_ENABLE) {
221                 hw->mac.autoneg = 1;
222                 hw->phy.autoneg_advertised = ecmd->advertising |
223                                              ADVERTISED_TP |
224                                              ADVERTISED_Autoneg;
225                 ecmd->advertising = hw->phy.autoneg_advertised;
226                 if (adapter->fc_autoneg)
227                         hw->fc.requested_mode = e1000_fc_default;
228         } else {
229                 u32 speed = ethtool_cmd_speed(ecmd);
230                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231                         clear_bit(__IGB_RESETTING, &adapter->state);
232                         return -EINVAL;
233                 }
234         }
235
236         /* reset the link */
237         if (netif_running(adapter->netdev)) {
238                 igb_down(adapter);
239                 igb_up(adapter);
240         } else
241                 igb_reset(adapter);
242
243         clear_bit(__IGB_RESETTING, &adapter->state);
244         return 0;
245 }
246
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249         struct igb_adapter *adapter = netdev_priv(netdev);
250         struct e1000_mac_info *mac = &adapter->hw.mac;
251
252         /*
253          * If the link is not reported up to netdev, interrupts are disabled,
254          * and so the physical link state may have changed since we last
255          * looked. Set get_link_status to make sure that the true link
256          * state is interrogated, rather than pulling a cached and possibly
257          * stale link state from the driver.
258          */
259         if (!netif_carrier_ok(netdev))
260                 mac->get_link_status = 1;
261
262         return igb_has_link(adapter);
263 }
264
265 static void igb_get_pauseparam(struct net_device *netdev,
266                                struct ethtool_pauseparam *pause)
267 {
268         struct igb_adapter *adapter = netdev_priv(netdev);
269         struct e1000_hw *hw = &adapter->hw;
270
271         pause->autoneg =
272                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273
274         if (hw->fc.current_mode == e1000_fc_rx_pause)
275                 pause->rx_pause = 1;
276         else if (hw->fc.current_mode == e1000_fc_tx_pause)
277                 pause->tx_pause = 1;
278         else if (hw->fc.current_mode == e1000_fc_full) {
279                 pause->rx_pause = 1;
280                 pause->tx_pause = 1;
281         }
282 }
283
284 static int igb_set_pauseparam(struct net_device *netdev,
285                               struct ethtool_pauseparam *pause)
286 {
287         struct igb_adapter *adapter = netdev_priv(netdev);
288         struct e1000_hw *hw = &adapter->hw;
289         int retval = 0;
290
291         adapter->fc_autoneg = pause->autoneg;
292
293         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294                 msleep(1);
295
296         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297                 hw->fc.requested_mode = e1000_fc_default;
298                 if (netif_running(adapter->netdev)) {
299                         igb_down(adapter);
300                         igb_up(adapter);
301                 } else {
302                         igb_reset(adapter);
303                 }
304         } else {
305                 if (pause->rx_pause && pause->tx_pause)
306                         hw->fc.requested_mode = e1000_fc_full;
307                 else if (pause->rx_pause && !pause->tx_pause)
308                         hw->fc.requested_mode = e1000_fc_rx_pause;
309                 else if (!pause->rx_pause && pause->tx_pause)
310                         hw->fc.requested_mode = e1000_fc_tx_pause;
311                 else if (!pause->rx_pause && !pause->tx_pause)
312                         hw->fc.requested_mode = e1000_fc_none;
313
314                 hw->fc.current_mode = hw->fc.requested_mode;
315
316                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317                           igb_force_mac_fc(hw) : igb_setup_link(hw));
318         }
319
320         clear_bit(__IGB_RESETTING, &adapter->state);
321         return retval;
322 }
323
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326         struct igb_adapter *adapter = netdev_priv(netdev);
327         return adapter->msg_enable;
328 }
329
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332         struct igb_adapter *adapter = netdev_priv(netdev);
333         adapter->msg_enable = data;
334 }
335
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 739
339         return IGB_REGS_LEN * sizeof(u32);
340 }
341
342 static void igb_get_regs(struct net_device *netdev,
343                          struct ethtool_regs *regs, void *p)
344 {
345         struct igb_adapter *adapter = netdev_priv(netdev);
346         struct e1000_hw *hw = &adapter->hw;
347         u32 *regs_buff = p;
348         u8 i;
349
350         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351
352         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354         /* General Registers */
355         regs_buff[0] = rd32(E1000_CTRL);
356         regs_buff[1] = rd32(E1000_STATUS);
357         regs_buff[2] = rd32(E1000_CTRL_EXT);
358         regs_buff[3] = rd32(E1000_MDIC);
359         regs_buff[4] = rd32(E1000_SCTL);
360         regs_buff[5] = rd32(E1000_CONNSW);
361         regs_buff[6] = rd32(E1000_VET);
362         regs_buff[7] = rd32(E1000_LEDCTL);
363         regs_buff[8] = rd32(E1000_PBA);
364         regs_buff[9] = rd32(E1000_PBS);
365         regs_buff[10] = rd32(E1000_FRTIMER);
366         regs_buff[11] = rd32(E1000_TCPTIMER);
367
368         /* NVM Register */
369         regs_buff[12] = rd32(E1000_EECD);
370
371         /* Interrupt */
372         /* Reading EICS for EICR because they read the
373          * same but EICS does not clear on read */
374         regs_buff[13] = rd32(E1000_EICS);
375         regs_buff[14] = rd32(E1000_EICS);
376         regs_buff[15] = rd32(E1000_EIMS);
377         regs_buff[16] = rd32(E1000_EIMC);
378         regs_buff[17] = rd32(E1000_EIAC);
379         regs_buff[18] = rd32(E1000_EIAM);
380         /* Reading ICS for ICR because they read the
381          * same but ICS does not clear on read */
382         regs_buff[19] = rd32(E1000_ICS);
383         regs_buff[20] = rd32(E1000_ICS);
384         regs_buff[21] = rd32(E1000_IMS);
385         regs_buff[22] = rd32(E1000_IMC);
386         regs_buff[23] = rd32(E1000_IAC);
387         regs_buff[24] = rd32(E1000_IAM);
388         regs_buff[25] = rd32(E1000_IMIRVP);
389
390         /* Flow Control */
391         regs_buff[26] = rd32(E1000_FCAL);
392         regs_buff[27] = rd32(E1000_FCAH);
393         regs_buff[28] = rd32(E1000_FCTTV);
394         regs_buff[29] = rd32(E1000_FCRTL);
395         regs_buff[30] = rd32(E1000_FCRTH);
396         regs_buff[31] = rd32(E1000_FCRTV);
397
398         /* Receive */
399         regs_buff[32] = rd32(E1000_RCTL);
400         regs_buff[33] = rd32(E1000_RXCSUM);
401         regs_buff[34] = rd32(E1000_RLPML);
402         regs_buff[35] = rd32(E1000_RFCTL);
403         regs_buff[36] = rd32(E1000_MRQC);
404         regs_buff[37] = rd32(E1000_VT_CTL);
405
406         /* Transmit */
407         regs_buff[38] = rd32(E1000_TCTL);
408         regs_buff[39] = rd32(E1000_TCTL_EXT);
409         regs_buff[40] = rd32(E1000_TIPG);
410         regs_buff[41] = rd32(E1000_DTXCTL);
411
412         /* Wake Up */
413         regs_buff[42] = rd32(E1000_WUC);
414         regs_buff[43] = rd32(E1000_WUFC);
415         regs_buff[44] = rd32(E1000_WUS);
416         regs_buff[45] = rd32(E1000_IPAV);
417         regs_buff[46] = rd32(E1000_WUPL);
418
419         /* MAC */
420         regs_buff[47] = rd32(E1000_PCS_CFG0);
421         regs_buff[48] = rd32(E1000_PCS_LCTL);
422         regs_buff[49] = rd32(E1000_PCS_LSTAT);
423         regs_buff[50] = rd32(E1000_PCS_ANADV);
424         regs_buff[51] = rd32(E1000_PCS_LPAB);
425         regs_buff[52] = rd32(E1000_PCS_NPTX);
426         regs_buff[53] = rd32(E1000_PCS_LPABNP);
427
428         /* Statistics */
429         regs_buff[54] = adapter->stats.crcerrs;
430         regs_buff[55] = adapter->stats.algnerrc;
431         regs_buff[56] = adapter->stats.symerrs;
432         regs_buff[57] = adapter->stats.rxerrc;
433         regs_buff[58] = adapter->stats.mpc;
434         regs_buff[59] = adapter->stats.scc;
435         regs_buff[60] = adapter->stats.ecol;
436         regs_buff[61] = adapter->stats.mcc;
437         regs_buff[62] = adapter->stats.latecol;
438         regs_buff[63] = adapter->stats.colc;
439         regs_buff[64] = adapter->stats.dc;
440         regs_buff[65] = adapter->stats.tncrs;
441         regs_buff[66] = adapter->stats.sec;
442         regs_buff[67] = adapter->stats.htdpmc;
443         regs_buff[68] = adapter->stats.rlec;
444         regs_buff[69] = adapter->stats.xonrxc;
445         regs_buff[70] = adapter->stats.xontxc;
446         regs_buff[71] = adapter->stats.xoffrxc;
447         regs_buff[72] = adapter->stats.xofftxc;
448         regs_buff[73] = adapter->stats.fcruc;
449         regs_buff[74] = adapter->stats.prc64;
450         regs_buff[75] = adapter->stats.prc127;
451         regs_buff[76] = adapter->stats.prc255;
452         regs_buff[77] = adapter->stats.prc511;
453         regs_buff[78] = adapter->stats.prc1023;
454         regs_buff[79] = adapter->stats.prc1522;
455         regs_buff[80] = adapter->stats.gprc;
456         regs_buff[81] = adapter->stats.bprc;
457         regs_buff[82] = adapter->stats.mprc;
458         regs_buff[83] = adapter->stats.gptc;
459         regs_buff[84] = adapter->stats.gorc;
460         regs_buff[86] = adapter->stats.gotc;
461         regs_buff[88] = adapter->stats.rnbc;
462         regs_buff[89] = adapter->stats.ruc;
463         regs_buff[90] = adapter->stats.rfc;
464         regs_buff[91] = adapter->stats.roc;
465         regs_buff[92] = adapter->stats.rjc;
466         regs_buff[93] = adapter->stats.mgprc;
467         regs_buff[94] = adapter->stats.mgpdc;
468         regs_buff[95] = adapter->stats.mgptc;
469         regs_buff[96] = adapter->stats.tor;
470         regs_buff[98] = adapter->stats.tot;
471         regs_buff[100] = adapter->stats.tpr;
472         regs_buff[101] = adapter->stats.tpt;
473         regs_buff[102] = adapter->stats.ptc64;
474         regs_buff[103] = adapter->stats.ptc127;
475         regs_buff[104] = adapter->stats.ptc255;
476         regs_buff[105] = adapter->stats.ptc511;
477         regs_buff[106] = adapter->stats.ptc1023;
478         regs_buff[107] = adapter->stats.ptc1522;
479         regs_buff[108] = adapter->stats.mptc;
480         regs_buff[109] = adapter->stats.bptc;
481         regs_buff[110] = adapter->stats.tsctc;
482         regs_buff[111] = adapter->stats.iac;
483         regs_buff[112] = adapter->stats.rpthc;
484         regs_buff[113] = adapter->stats.hgptc;
485         regs_buff[114] = adapter->stats.hgorc;
486         regs_buff[116] = adapter->stats.hgotc;
487         regs_buff[118] = adapter->stats.lenerrs;
488         regs_buff[119] = adapter->stats.scvpc;
489         regs_buff[120] = adapter->stats.hrmpc;
490
491         for (i = 0; i < 4; i++)
492                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493         for (i = 0; i < 4; i++)
494                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495         for (i = 0; i < 4; i++)
496                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497         for (i = 0; i < 4; i++)
498                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499         for (i = 0; i < 4; i++)
500                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501         for (i = 0; i < 4; i++)
502                 regs_buff[141 + i] = rd32(E1000_RDH(i));
503         for (i = 0; i < 4; i++)
504                 regs_buff[145 + i] = rd32(E1000_RDT(i));
505         for (i = 0; i < 4; i++)
506                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507
508         for (i = 0; i < 10; i++)
509                 regs_buff[153 + i] = rd32(E1000_EITR(i));
510         for (i = 0; i < 8; i++)
511                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
512         for (i = 0; i < 8; i++)
513                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514         for (i = 0; i < 16; i++)
515                 regs_buff[179 + i] = rd32(E1000_RAL(i));
516         for (i = 0; i < 16; i++)
517                 regs_buff[195 + i] = rd32(E1000_RAH(i));
518
519         for (i = 0; i < 4; i++)
520                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521         for (i = 0; i < 4; i++)
522                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523         for (i = 0; i < 4; i++)
524                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525         for (i = 0; i < 4; i++)
526                 regs_buff[223 + i] = rd32(E1000_TDH(i));
527         for (i = 0; i < 4; i++)
528                 regs_buff[227 + i] = rd32(E1000_TDT(i));
529         for (i = 0; i < 4; i++)
530                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531         for (i = 0; i < 4; i++)
532                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533         for (i = 0; i < 4; i++)
534                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537
538         for (i = 0; i < 4; i++)
539                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540         for (i = 0; i < 4; i++)
541                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542         for (i = 0; i < 32; i++)
543                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544         for (i = 0; i < 128; i++)
545                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546         for (i = 0; i < 128; i++)
547                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550
551         regs_buff[547] = rd32(E1000_TDFH);
552         regs_buff[548] = rd32(E1000_TDFT);
553         regs_buff[549] = rd32(E1000_TDFHS);
554         regs_buff[550] = rd32(E1000_TDFPC);
555
556         if (hw->mac.type > e1000_82580) {
557                 regs_buff[551] = adapter->stats.o2bgptc;
558                 regs_buff[552] = adapter->stats.b2ospc;
559                 regs_buff[553] = adapter->stats.o2bspc;
560                 regs_buff[554] = adapter->stats.b2ogprc;
561         }
562
563         if (hw->mac.type != e1000_82576)
564                 return;
565         for (i = 0; i < 12; i++)
566                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567         for (i = 0; i < 4; i++)
568                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569         for (i = 0; i < 12; i++)
570                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571         for (i = 0; i < 12; i++)
572                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573         for (i = 0; i < 12; i++)
574                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575         for (i = 0; i < 12; i++)
576                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577         for (i = 0; i < 12; i++)
578                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579         for (i = 0; i < 12; i++)
580                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581
582         for (i = 0; i < 12; i++)
583                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584         for (i = 0; i < 12; i++)
585                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586         for (i = 0; i < 12; i++)
587                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588         for (i = 0; i < 12; i++)
589                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590         for (i = 0; i < 12; i++)
591                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592         for (i = 0; i < 12; i++)
593                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594         for (i = 0; i < 12; i++)
595                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596         for (i = 0; i < 12; i++)
597                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598 }
599
600 static int igb_get_eeprom_len(struct net_device *netdev)
601 {
602         struct igb_adapter *adapter = netdev_priv(netdev);
603         return adapter->hw.nvm.word_size * 2;
604 }
605
606 static int igb_get_eeprom(struct net_device *netdev,
607                           struct ethtool_eeprom *eeprom, u8 *bytes)
608 {
609         struct igb_adapter *adapter = netdev_priv(netdev);
610         struct e1000_hw *hw = &adapter->hw;
611         u16 *eeprom_buff;
612         int first_word, last_word;
613         int ret_val = 0;
614         u16 i;
615
616         if (eeprom->len == 0)
617                 return -EINVAL;
618
619         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620
621         first_word = eeprom->offset >> 1;
622         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623
624         eeprom_buff = kmalloc(sizeof(u16) *
625                         (last_word - first_word + 1), GFP_KERNEL);
626         if (!eeprom_buff)
627                 return -ENOMEM;
628
629         if (hw->nvm.type == e1000_nvm_eeprom_spi)
630                 ret_val = hw->nvm.ops.read(hw, first_word,
631                                             last_word - first_word + 1,
632                                             eeprom_buff);
633         else {
634                 for (i = 0; i < last_word - first_word + 1; i++) {
635                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636                                                     &eeprom_buff[i]);
637                         if (ret_val)
638                                 break;
639                 }
640         }
641
642         /* Device's eeprom is always little-endian, word addressable */
643         for (i = 0; i < last_word - first_word + 1; i++)
644                 le16_to_cpus(&eeprom_buff[i]);
645
646         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647                         eeprom->len);
648         kfree(eeprom_buff);
649
650         return ret_val;
651 }
652
653 static int igb_set_eeprom(struct net_device *netdev,
654                           struct ethtool_eeprom *eeprom, u8 *bytes)
655 {
656         struct igb_adapter *adapter = netdev_priv(netdev);
657         struct e1000_hw *hw = &adapter->hw;
658         u16 *eeprom_buff;
659         void *ptr;
660         int max_len, first_word, last_word, ret_val = 0;
661         u16 i;
662
663         if (eeprom->len == 0)
664                 return -EOPNOTSUPP;
665
666         if (hw->mac.type == e1000_i211)
667                 return -EOPNOTSUPP;
668
669         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670                 return -EFAULT;
671
672         max_len = hw->nvm.word_size * 2;
673
674         first_word = eeprom->offset >> 1;
675         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677         if (!eeprom_buff)
678                 return -ENOMEM;
679
680         ptr = (void *)eeprom_buff;
681
682         if (eeprom->offset & 1) {
683                 /* need read/modify/write of first changed EEPROM word */
684                 /* only the second byte of the word is being modified */
685                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
686                                             &eeprom_buff[0]);
687                 ptr++;
688         }
689         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690                 /* need read/modify/write of last changed EEPROM word */
691                 /* only the first byte of the word is being modified */
692                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
693                                    &eeprom_buff[last_word - first_word]);
694         }
695
696         /* Device's eeprom is always little-endian, word addressable */
697         for (i = 0; i < last_word - first_word + 1; i++)
698                 le16_to_cpus(&eeprom_buff[i]);
699
700         memcpy(ptr, bytes, eeprom->len);
701
702         for (i = 0; i < last_word - first_word + 1; i++)
703                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704
705         ret_val = hw->nvm.ops.write(hw, first_word,
706                                      last_word - first_word + 1, eeprom_buff);
707
708         /* Update the checksum over the first part of the EEPROM if needed
709          * and flush shadow RAM for 82573 controllers */
710         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711                 hw->nvm.ops.update(hw);
712
713         igb_set_fw_version(adapter);
714         kfree(eeprom_buff);
715         return ret_val;
716 }
717
718 static void igb_get_drvinfo(struct net_device *netdev,
719                             struct ethtool_drvinfo *drvinfo)
720 {
721         struct igb_adapter *adapter = netdev_priv(netdev);
722
723         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
724         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725
726         /*
727          * EEPROM image version # is reported as firmware version # for
728          * 82575 controllers
729          */
730         strlcpy(drvinfo->fw_version, adapter->fw_version,
731                 sizeof(drvinfo->fw_version));
732         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
733                 sizeof(drvinfo->bus_info));
734         drvinfo->n_stats = IGB_STATS_LEN;
735         drvinfo->testinfo_len = IGB_TEST_LEN;
736         drvinfo->regdump_len = igb_get_regs_len(netdev);
737         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
738 }
739
740 static void igb_get_ringparam(struct net_device *netdev,
741                               struct ethtool_ringparam *ring)
742 {
743         struct igb_adapter *adapter = netdev_priv(netdev);
744
745         ring->rx_max_pending = IGB_MAX_RXD;
746         ring->tx_max_pending = IGB_MAX_TXD;
747         ring->rx_pending = adapter->rx_ring_count;
748         ring->tx_pending = adapter->tx_ring_count;
749 }
750
751 static int igb_set_ringparam(struct net_device *netdev,
752                              struct ethtool_ringparam *ring)
753 {
754         struct igb_adapter *adapter = netdev_priv(netdev);
755         struct igb_ring *temp_ring;
756         int i, err = 0;
757         u16 new_rx_count, new_tx_count;
758
759         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
760                 return -EINVAL;
761
762         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
763         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
764         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
765
766         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
767         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
768         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
769
770         if ((new_tx_count == adapter->tx_ring_count) &&
771             (new_rx_count == adapter->rx_ring_count)) {
772                 /* nothing to do */
773                 return 0;
774         }
775
776         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
777                 msleep(1);
778
779         if (!netif_running(adapter->netdev)) {
780                 for (i = 0; i < adapter->num_tx_queues; i++)
781                         adapter->tx_ring[i]->count = new_tx_count;
782                 for (i = 0; i < adapter->num_rx_queues; i++)
783                         adapter->rx_ring[i]->count = new_rx_count;
784                 adapter->tx_ring_count = new_tx_count;
785                 adapter->rx_ring_count = new_rx_count;
786                 goto clear_reset;
787         }
788
789         if (adapter->num_tx_queues > adapter->num_rx_queues)
790                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
791         else
792                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
793
794         if (!temp_ring) {
795                 err = -ENOMEM;
796                 goto clear_reset;
797         }
798
799         igb_down(adapter);
800
801         /*
802          * We can't just free everything and then setup again,
803          * because the ISRs in MSI-X mode get passed pointers
804          * to the tx and rx ring structs.
805          */
806         if (new_tx_count != adapter->tx_ring_count) {
807                 for (i = 0; i < adapter->num_tx_queues; i++) {
808                         memcpy(&temp_ring[i], adapter->tx_ring[i],
809                                sizeof(struct igb_ring));
810
811                         temp_ring[i].count = new_tx_count;
812                         err = igb_setup_tx_resources(&temp_ring[i]);
813                         if (err) {
814                                 while (i) {
815                                         i--;
816                                         igb_free_tx_resources(&temp_ring[i]);
817                                 }
818                                 goto err_setup;
819                         }
820                 }
821
822                 for (i = 0; i < adapter->num_tx_queues; i++) {
823                         igb_free_tx_resources(adapter->tx_ring[i]);
824
825                         memcpy(adapter->tx_ring[i], &temp_ring[i],
826                                sizeof(struct igb_ring));
827                 }
828
829                 adapter->tx_ring_count = new_tx_count;
830         }
831
832         if (new_rx_count != adapter->rx_ring_count) {
833                 for (i = 0; i < adapter->num_rx_queues; i++) {
834                         memcpy(&temp_ring[i], adapter->rx_ring[i],
835                                sizeof(struct igb_ring));
836
837                         temp_ring[i].count = new_rx_count;
838                         err = igb_setup_rx_resources(&temp_ring[i]);
839                         if (err) {
840                                 while (i) {
841                                         i--;
842                                         igb_free_rx_resources(&temp_ring[i]);
843                                 }
844                                 goto err_setup;
845                         }
846
847                 }
848
849                 for (i = 0; i < adapter->num_rx_queues; i++) {
850                         igb_free_rx_resources(adapter->rx_ring[i]);
851
852                         memcpy(adapter->rx_ring[i], &temp_ring[i],
853                                sizeof(struct igb_ring));
854                 }
855
856                 adapter->rx_ring_count = new_rx_count;
857         }
858 err_setup:
859         igb_up(adapter);
860         vfree(temp_ring);
861 clear_reset:
862         clear_bit(__IGB_RESETTING, &adapter->state);
863         return err;
864 }
865
866 /* ethtool register test data */
867 struct igb_reg_test {
868         u16 reg;
869         u16 reg_offset;
870         u16 array_len;
871         u16 test_type;
872         u32 mask;
873         u32 write;
874 };
875
876 /* In the hardware, registers are laid out either singly, in arrays
877  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
878  * most tests take place on arrays or single registers (handled
879  * as a single-element array) and special-case the tables.
880  * Table tests are always pattern tests.
881  *
882  * We also make provision for some required setup steps by specifying
883  * registers to be written without any read-back testing.
884  */
885
886 #define PATTERN_TEST    1
887 #define SET_READ_TEST   2
888 #define WRITE_NO_TEST   3
889 #define TABLE32_TEST    4
890 #define TABLE64_TEST_LO 5
891 #define TABLE64_TEST_HI 6
892
893 /* i210 reg test */
894 static struct igb_reg_test reg_test_i210[] = {
895         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
896         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
897         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
898         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
899         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
901         /* RDH is read-only for i210, only test RDT. */
902         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
903         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
904         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
905         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
906         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
907         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
909         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
910         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
911         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
912         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
913         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914         { E1000_RA,        0, 16, TABLE64_TEST_LO,
915                                                 0xFFFFFFFF, 0xFFFFFFFF },
916         { E1000_RA,        0, 16, TABLE64_TEST_HI,
917                                                 0x900FFFFF, 0xFFFFFFFF },
918         { E1000_MTA,       0, 128, TABLE32_TEST,
919                                                 0xFFFFFFFF, 0xFFFFFFFF },
920         { 0, 0, 0, 0, 0 }
921 };
922
923 /* i350 reg test */
924 static struct igb_reg_test reg_test_i350[] = {
925         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
927         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
928         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
929         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
930         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
931         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
932         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935         /* RDH is read-only for i350, only test RDT. */
936         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
937         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
938         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
939         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
941         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
942         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
943         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
944         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
948         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
949         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
950         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
951         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
952         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953         { E1000_RA,        0, 16, TABLE64_TEST_LO,
954                                                 0xFFFFFFFF, 0xFFFFFFFF },
955         { E1000_RA,        0, 16, TABLE64_TEST_HI,
956                                                 0xC3FFFFFF, 0xFFFFFFFF },
957         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
958                                                 0xFFFFFFFF, 0xFFFFFFFF },
959         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
960                                                 0xC3FFFFFF, 0xFFFFFFFF },
961         { E1000_MTA,       0, 128, TABLE32_TEST,
962                                                 0xFFFFFFFF, 0xFFFFFFFF },
963         { 0, 0, 0, 0 }
964 };
965
966 /* 82580 reg test */
967 static struct igb_reg_test reg_test_82580[] = {
968         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
970         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
971         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
973         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
974         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
975         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978         /* RDH is read-only for 82580, only test RDT. */
979         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
980         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
981         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
982         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
984         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
985         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
987         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
991         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
992         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
993         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
994         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
995         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996         { E1000_RA,        0, 16, TABLE64_TEST_LO,
997                                                 0xFFFFFFFF, 0xFFFFFFFF },
998         { E1000_RA,        0, 16, TABLE64_TEST_HI,
999                                                 0x83FFFFFF, 0xFFFFFFFF },
1000         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1001                                                 0xFFFFFFFF, 0xFFFFFFFF },
1002         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1003                                                 0x83FFFFFF, 0xFFFFFFFF },
1004         { E1000_MTA,       0, 128, TABLE32_TEST,
1005                                                 0xFFFFFFFF, 0xFFFFFFFF },
1006         { 0, 0, 0, 0 }
1007 };
1008
1009 /* 82576 reg test */
1010 static struct igb_reg_test reg_test_82576[] = {
1011         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1018         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021         /* Enable all RX queues before testing. */
1022         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1023         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1024         /* RDH is read-only for 82576, only test RDT. */
1025         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1027         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1028         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1029         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1030         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1031         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1032         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1039         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1040         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1041         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1043         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1044         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1045         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1046         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047         { 0, 0, 0, 0 }
1048 };
1049
1050 /* 82575 register test */
1051 static struct igb_reg_test reg_test_82575[] = {
1052         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1054         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059         /* Enable all four RX queues before testing. */
1060         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1061         /* RDH is read-only for 82575, only test RDT. */
1062         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1064         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1065         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1067         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1068         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1070         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1072         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1073         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1075         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1076         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1077         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078         { 0, 0, 0, 0 }
1079 };
1080
1081 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1082                              int reg, u32 mask, u32 write)
1083 {
1084         struct e1000_hw *hw = &adapter->hw;
1085         u32 pat, val;
1086         static const u32 _test[] =
1087                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1088         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1089                 wr32(reg, (_test[pat] & write));
1090                 val = rd32(reg) & mask;
1091                 if (val != (_test[pat] & write & mask)) {
1092                         dev_err(&adapter->pdev->dev,
1093                                 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1094                                 reg, val, (_test[pat] & write & mask));
1095                         *data = reg;
1096                         return 1;
1097                 }
1098         }
1099
1100         return 0;
1101 }
1102
1103 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1104                               int reg, u32 mask, u32 write)
1105 {
1106         struct e1000_hw *hw = &adapter->hw;
1107         u32 val;
1108         wr32(reg, write & mask);
1109         val = rd32(reg);
1110         if ((write & mask) != (val & mask)) {
1111                 dev_err(&adapter->pdev->dev,
1112                         "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1113                         (val & mask), (write & mask));
1114                 *data = reg;
1115                 return 1;
1116         }
1117
1118         return 0;
1119 }
1120
1121 #define REG_PATTERN_TEST(reg, mask, write) \
1122         do { \
1123                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1124                         return 1; \
1125         } while (0)
1126
1127 #define REG_SET_AND_CHECK(reg, mask, write) \
1128         do { \
1129                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1130                         return 1; \
1131         } while (0)
1132
1133 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1134 {
1135         struct e1000_hw *hw = &adapter->hw;
1136         struct igb_reg_test *test;
1137         u32 value, before, after;
1138         u32 i, toggle;
1139
1140         switch (adapter->hw.mac.type) {
1141         case e1000_i350:
1142                 test = reg_test_i350;
1143                 toggle = 0x7FEFF3FF;
1144                 break;
1145         case e1000_i210:
1146         case e1000_i211:
1147                 test = reg_test_i210;
1148                 toggle = 0x7FEFF3FF;
1149                 break;
1150         case e1000_82580:
1151                 test = reg_test_82580;
1152                 toggle = 0x7FEFF3FF;
1153                 break;
1154         case e1000_82576:
1155                 test = reg_test_82576;
1156                 toggle = 0x7FFFF3FF;
1157                 break;
1158         default:
1159                 test = reg_test_82575;
1160                 toggle = 0x7FFFF3FF;
1161                 break;
1162         }
1163
1164         /* Because the status register is such a special case,
1165          * we handle it separately from the rest of the register
1166          * tests.  Some bits are read-only, some toggle, and some
1167          * are writable on newer MACs.
1168          */
1169         before = rd32(E1000_STATUS);
1170         value = (rd32(E1000_STATUS) & toggle);
1171         wr32(E1000_STATUS, toggle);
1172         after = rd32(E1000_STATUS) & toggle;
1173         if (value != after) {
1174                 dev_err(&adapter->pdev->dev,
1175                         "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1176                         after, value);
1177                 *data = 1;
1178                 return 1;
1179         }
1180         /* restore previous status */
1181         wr32(E1000_STATUS, before);
1182
1183         /* Perform the remainder of the register test, looping through
1184          * the test table until we either fail or reach the null entry.
1185          */
1186         while (test->reg) {
1187                 for (i = 0; i < test->array_len; i++) {
1188                         switch (test->test_type) {
1189                         case PATTERN_TEST:
1190                                 REG_PATTERN_TEST(test->reg +
1191                                                 (i * test->reg_offset),
1192                                                 test->mask,
1193                                                 test->write);
1194                                 break;
1195                         case SET_READ_TEST:
1196                                 REG_SET_AND_CHECK(test->reg +
1197                                                 (i * test->reg_offset),
1198                                                 test->mask,
1199                                                 test->write);
1200                                 break;
1201                         case WRITE_NO_TEST:
1202                                 writel(test->write,
1203                                     (adapter->hw.hw_addr + test->reg)
1204                                         + (i * test->reg_offset));
1205                                 break;
1206                         case TABLE32_TEST:
1207                                 REG_PATTERN_TEST(test->reg + (i * 4),
1208                                                 test->mask,
1209                                                 test->write);
1210                                 break;
1211                         case TABLE64_TEST_LO:
1212                                 REG_PATTERN_TEST(test->reg + (i * 8),
1213                                                 test->mask,
1214                                                 test->write);
1215                                 break;
1216                         case TABLE64_TEST_HI:
1217                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1218                                                 test->mask,
1219                                                 test->write);
1220                                 break;
1221                         }
1222                 }
1223                 test++;
1224         }
1225
1226         *data = 0;
1227         return 0;
1228 }
1229
1230 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1231 {
1232         *data = 0;
1233
1234         /* Validate eeprom on all parts but i211 */
1235         if (adapter->hw.mac.type != e1000_i211) {
1236                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1237                         *data = 2;
1238         }
1239
1240         return *data;
1241 }
1242
1243 static irqreturn_t igb_test_intr(int irq, void *data)
1244 {
1245         struct igb_adapter *adapter = (struct igb_adapter *) data;
1246         struct e1000_hw *hw = &adapter->hw;
1247
1248         adapter->test_icr |= rd32(E1000_ICR);
1249
1250         return IRQ_HANDLED;
1251 }
1252
1253 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1254 {
1255         struct e1000_hw *hw = &adapter->hw;
1256         struct net_device *netdev = adapter->netdev;
1257         u32 mask, ics_mask, i = 0, shared_int = true;
1258         u32 irq = adapter->pdev->irq;
1259
1260         *data = 0;
1261
1262         /* Hook up test interrupt handler just for this test */
1263         if (adapter->msix_entries) {
1264                 if (request_irq(adapter->msix_entries[0].vector,
1265                                 igb_test_intr, 0, netdev->name, adapter)) {
1266                         *data = 1;
1267                         return -1;
1268                 }
1269         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1270                 shared_int = false;
1271                 if (request_irq(irq,
1272                                 igb_test_intr, 0, netdev->name, adapter)) {
1273                         *data = 1;
1274                         return -1;
1275                 }
1276         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1277                                 netdev->name, adapter)) {
1278                 shared_int = false;
1279         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1280                  netdev->name, adapter)) {
1281                 *data = 1;
1282                 return -1;
1283         }
1284         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1285                 (shared_int ? "shared" : "unshared"));
1286
1287         /* Disable all the interrupts */
1288         wr32(E1000_IMC, ~0);
1289         wrfl();
1290         msleep(10);
1291
1292         /* Define all writable bits for ICS */
1293         switch (hw->mac.type) {
1294         case e1000_82575:
1295                 ics_mask = 0x37F47EDD;
1296                 break;
1297         case e1000_82576:
1298                 ics_mask = 0x77D4FBFD;
1299                 break;
1300         case e1000_82580:
1301                 ics_mask = 0x77DCFED5;
1302                 break;
1303         case e1000_i350:
1304         case e1000_i210:
1305         case e1000_i211:
1306                 ics_mask = 0x77DCFED5;
1307                 break;
1308         default:
1309                 ics_mask = 0x7FFFFFFF;
1310                 break;
1311         }
1312
1313         /* Test each interrupt */
1314         for (; i < 31; i++) {
1315                 /* Interrupt to test */
1316                 mask = 1 << i;
1317
1318                 if (!(mask & ics_mask))
1319                         continue;
1320
1321                 if (!shared_int) {
1322                         /* Disable the interrupt to be reported in
1323                          * the cause register and then force the same
1324                          * interrupt and see if one gets posted.  If
1325                          * an interrupt was posted to the bus, the
1326                          * test failed.
1327                          */
1328                         adapter->test_icr = 0;
1329
1330                         /* Flush any pending interrupts */
1331                         wr32(E1000_ICR, ~0);
1332
1333                         wr32(E1000_IMC, mask);
1334                         wr32(E1000_ICS, mask);
1335                         wrfl();
1336                         msleep(10);
1337
1338                         if (adapter->test_icr & mask) {
1339                                 *data = 3;
1340                                 break;
1341                         }
1342                 }
1343
1344                 /* Enable the interrupt to be reported in
1345                  * the cause register and then force the same
1346                  * interrupt and see if one gets posted.  If
1347                  * an interrupt was not posted to the bus, the
1348                  * test failed.
1349                  */
1350                 adapter->test_icr = 0;
1351
1352                 /* Flush any pending interrupts */
1353                 wr32(E1000_ICR, ~0);
1354
1355                 wr32(E1000_IMS, mask);
1356                 wr32(E1000_ICS, mask);
1357                 wrfl();
1358                 msleep(10);
1359
1360                 if (!(adapter->test_icr & mask)) {
1361                         *data = 4;
1362                         break;
1363                 }
1364
1365                 if (!shared_int) {
1366                         /* Disable the other interrupts to be reported in
1367                          * the cause register and then force the other
1368                          * interrupts and see if any get posted.  If
1369                          * an interrupt was posted to the bus, the
1370                          * test failed.
1371                          */
1372                         adapter->test_icr = 0;
1373
1374                         /* Flush any pending interrupts */
1375                         wr32(E1000_ICR, ~0);
1376
1377                         wr32(E1000_IMC, ~mask);
1378                         wr32(E1000_ICS, ~mask);
1379                         wrfl();
1380                         msleep(10);
1381
1382                         if (adapter->test_icr & mask) {
1383                                 *data = 5;
1384                                 break;
1385                         }
1386                 }
1387         }
1388
1389         /* Disable all the interrupts */
1390         wr32(E1000_IMC, ~0);
1391         wrfl();
1392         msleep(10);
1393
1394         /* Unhook test interrupt handler */
1395         if (adapter->msix_entries)
1396                 free_irq(adapter->msix_entries[0].vector, adapter);
1397         else
1398                 free_irq(irq, adapter);
1399
1400         return *data;
1401 }
1402
1403 static void igb_free_desc_rings(struct igb_adapter *adapter)
1404 {
1405         igb_free_tx_resources(&adapter->test_tx_ring);
1406         igb_free_rx_resources(&adapter->test_rx_ring);
1407 }
1408
1409 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1410 {
1411         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1412         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1413         struct e1000_hw *hw = &adapter->hw;
1414         int ret_val;
1415
1416         /* Setup Tx descriptor ring and Tx buffers */
1417         tx_ring->count = IGB_DEFAULT_TXD;
1418         tx_ring->dev = &adapter->pdev->dev;
1419         tx_ring->netdev = adapter->netdev;
1420         tx_ring->reg_idx = adapter->vfs_allocated_count;
1421
1422         if (igb_setup_tx_resources(tx_ring)) {
1423                 ret_val = 1;
1424                 goto err_nomem;
1425         }
1426
1427         igb_setup_tctl(adapter);
1428         igb_configure_tx_ring(adapter, tx_ring);
1429
1430         /* Setup Rx descriptor ring and Rx buffers */
1431         rx_ring->count = IGB_DEFAULT_RXD;
1432         rx_ring->dev = &adapter->pdev->dev;
1433         rx_ring->netdev = adapter->netdev;
1434         rx_ring->reg_idx = adapter->vfs_allocated_count;
1435
1436         if (igb_setup_rx_resources(rx_ring)) {
1437                 ret_val = 3;
1438                 goto err_nomem;
1439         }
1440
1441         /* set the default queue to queue 0 of PF */
1442         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1443
1444         /* enable receive ring */
1445         igb_setup_rctl(adapter);
1446         igb_configure_rx_ring(adapter, rx_ring);
1447
1448         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1449
1450         return 0;
1451
1452 err_nomem:
1453         igb_free_desc_rings(adapter);
1454         return ret_val;
1455 }
1456
1457 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1458 {
1459         struct e1000_hw *hw = &adapter->hw;
1460
1461         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1462         igb_write_phy_reg(hw, 29, 0x001F);
1463         igb_write_phy_reg(hw, 30, 0x8FFC);
1464         igb_write_phy_reg(hw, 29, 0x001A);
1465         igb_write_phy_reg(hw, 30, 0x8FF0);
1466 }
1467
1468 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1469 {
1470         struct e1000_hw *hw = &adapter->hw;
1471         u32 ctrl_reg = 0;
1472         u16 phy_reg = 0;
1473
1474         hw->mac.autoneg = false;
1475
1476         switch (hw->phy.type) {
1477         case e1000_phy_m88:
1478                 /* Auto-MDI/MDIX Off */
1479                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1480                 /* reset to update Auto-MDI/MDIX */
1481                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1482                 /* autoneg off */
1483                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1484                 break;
1485         case e1000_phy_82580:
1486                 /* enable MII loopback */
1487                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1488                 break;
1489         case e1000_phy_i210:
1490                 /* set loopback speed in PHY */
1491                 igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1492                                         &phy_reg);
1493                 phy_reg |= GS40G_MAC_SPEED_1G;
1494                 igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1495                                         phy_reg);
1496                 ctrl_reg = rd32(E1000_CTRL_EXT);
1497         default:
1498                 break;
1499         }
1500
1501         /* force 1000, set loopback */
1502         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1503
1504         /* Now set up the MAC to the same speed/duplex as the PHY. */
1505         ctrl_reg = rd32(E1000_CTRL);
1506         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1507         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1508                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1509                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1510                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1511                      E1000_CTRL_SLU);    /* Set link up enable bit */
1512
1513         if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1514                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1515
1516         wr32(E1000_CTRL, ctrl_reg);
1517
1518         /* Disable the receiver on the PHY so when a cable is plugged in, the
1519          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1520          */
1521         if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1522                 igb_phy_disable_receiver(adapter);
1523
1524         udelay(500);
1525
1526         return 0;
1527 }
1528
1529 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1530 {
1531         return igb_integrated_phy_loopback(adapter);
1532 }
1533
1534 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1535 {
1536         struct e1000_hw *hw = &adapter->hw;
1537         u32 reg;
1538
1539         reg = rd32(E1000_CTRL_EXT);
1540
1541         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1542         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1543                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1544                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1545                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1546                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1547
1548                         /* Enable DH89xxCC MPHY for near end loopback */
1549                         reg = rd32(E1000_MPHY_ADDR_CTL);
1550                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1551                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1552                         wr32(E1000_MPHY_ADDR_CTL, reg);
1553
1554                         reg = rd32(E1000_MPHY_DATA);
1555                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1556                         wr32(E1000_MPHY_DATA, reg);
1557                 }
1558
1559                 reg = rd32(E1000_RCTL);
1560                 reg |= E1000_RCTL_LBM_TCVR;
1561                 wr32(E1000_RCTL, reg);
1562
1563                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1564
1565                 reg = rd32(E1000_CTRL);
1566                 reg &= ~(E1000_CTRL_RFCE |
1567                          E1000_CTRL_TFCE |
1568                          E1000_CTRL_LRST);
1569                 reg |= E1000_CTRL_SLU |
1570                        E1000_CTRL_FD;
1571                 wr32(E1000_CTRL, reg);
1572
1573                 /* Unset switch control to serdes energy detect */
1574                 reg = rd32(E1000_CONNSW);
1575                 reg &= ~E1000_CONNSW_ENRGSRC;
1576                 wr32(E1000_CONNSW, reg);
1577
1578                 /* Set PCS register for forced speed */
1579                 reg = rd32(E1000_PCS_LCTL);
1580                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1581                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1582                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1583                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1584                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1585                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1586                 wr32(E1000_PCS_LCTL, reg);
1587
1588                 return 0;
1589         }
1590
1591         return igb_set_phy_loopback(adapter);
1592 }
1593
1594 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1595 {
1596         struct e1000_hw *hw = &adapter->hw;
1597         u32 rctl;
1598         u16 phy_reg;
1599
1600         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1601         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1602         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1603         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1604                 u32 reg;
1605
1606                 /* Disable near end loopback on DH89xxCC */
1607                 reg = rd32(E1000_MPHY_ADDR_CTL);
1608                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1609                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1610                 wr32(E1000_MPHY_ADDR_CTL, reg);
1611
1612                 reg = rd32(E1000_MPHY_DATA);
1613                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1614                 wr32(E1000_MPHY_DATA, reg);
1615         }
1616
1617         rctl = rd32(E1000_RCTL);
1618         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1619         wr32(E1000_RCTL, rctl);
1620
1621         hw->mac.autoneg = true;
1622         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1623         if (phy_reg & MII_CR_LOOPBACK) {
1624                 phy_reg &= ~MII_CR_LOOPBACK;
1625                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1626                 igb_phy_sw_reset(hw);
1627         }
1628 }
1629
1630 static void igb_create_lbtest_frame(struct sk_buff *skb,
1631                                     unsigned int frame_size)
1632 {
1633         memset(skb->data, 0xFF, frame_size);
1634         frame_size /= 2;
1635         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1636         memset(&skb->data[frame_size + 10], 0xBE, 1);
1637         memset(&skb->data[frame_size + 12], 0xAF, 1);
1638 }
1639
1640 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1641 {
1642         frame_size /= 2;
1643         if (*(skb->data + 3) == 0xFF) {
1644                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1645                    (*(skb->data + frame_size + 12) == 0xAF)) {
1646                         return 0;
1647                 }
1648         }
1649         return 13;
1650 }
1651
1652 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1653                                 struct igb_ring *tx_ring,
1654                                 unsigned int size)
1655 {
1656         union e1000_adv_rx_desc *rx_desc;
1657         struct igb_rx_buffer *rx_buffer_info;
1658         struct igb_tx_buffer *tx_buffer_info;
1659         struct netdev_queue *txq;
1660         u16 rx_ntc, tx_ntc, count = 0;
1661         unsigned int total_bytes = 0, total_packets = 0;
1662
1663         /* initialize next to clean and descriptor values */
1664         rx_ntc = rx_ring->next_to_clean;
1665         tx_ntc = tx_ring->next_to_clean;
1666         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1667
1668         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1669                 /* check rx buffer */
1670                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1671
1672                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1673                 dma_unmap_single(rx_ring->dev,
1674                                  rx_buffer_info->dma,
1675                                  IGB_RX_HDR_LEN,
1676                                  DMA_FROM_DEVICE);
1677                 rx_buffer_info->dma = 0;
1678
1679                 /* verify contents of skb */
1680                 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1681                         count++;
1682
1683                 /* unmap buffer on tx side */
1684                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1685                 total_bytes += tx_buffer_info->bytecount;
1686                 total_packets += tx_buffer_info->gso_segs;
1687                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1688
1689                 /* increment rx/tx next to clean counters */
1690                 rx_ntc++;
1691                 if (rx_ntc == rx_ring->count)
1692                         rx_ntc = 0;
1693                 tx_ntc++;
1694                 if (tx_ntc == tx_ring->count)
1695                         tx_ntc = 0;
1696
1697                 /* fetch next descriptor */
1698                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1699         }
1700
1701         txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1702         netdev_tx_completed_queue(txq, total_packets, total_bytes);
1703
1704         /* re-map buffers to ring, store next to clean values */
1705         igb_alloc_rx_buffers(rx_ring, count);
1706         rx_ring->next_to_clean = rx_ntc;
1707         tx_ring->next_to_clean = tx_ntc;
1708
1709         return count;
1710 }
1711
1712 static int igb_run_loopback_test(struct igb_adapter *adapter)
1713 {
1714         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1715         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1716         u16 i, j, lc, good_cnt;
1717         int ret_val = 0;
1718         unsigned int size = IGB_RX_HDR_LEN;
1719         netdev_tx_t tx_ret_val;
1720         struct sk_buff *skb;
1721
1722         /* allocate test skb */
1723         skb = alloc_skb(size, GFP_KERNEL);
1724         if (!skb)
1725                 return 11;
1726
1727         /* place data into test skb */
1728         igb_create_lbtest_frame(skb, size);
1729         skb_put(skb, size);
1730
1731         /*
1732          * Calculate the loop count based on the largest descriptor ring
1733          * The idea is to wrap the largest ring a number of times using 64
1734          * send/receive pairs during each loop
1735          */
1736
1737         if (rx_ring->count <= tx_ring->count)
1738                 lc = ((tx_ring->count / 64) * 2) + 1;
1739         else
1740                 lc = ((rx_ring->count / 64) * 2) + 1;
1741
1742         for (j = 0; j <= lc; j++) { /* loop count loop */
1743                 /* reset count of good packets */
1744                 good_cnt = 0;
1745
1746                 /* place 64 packets on the transmit queue*/
1747                 for (i = 0; i < 64; i++) {
1748                         skb_get(skb);
1749                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1750                         if (tx_ret_val == NETDEV_TX_OK)
1751                                 good_cnt++;
1752                 }
1753
1754                 if (good_cnt != 64) {
1755                         ret_val = 12;
1756                         break;
1757                 }
1758
1759                 /* allow 200 milliseconds for packets to go from tx to rx */
1760                 msleep(200);
1761
1762                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1763                 if (good_cnt != 64) {
1764                         ret_val = 13;
1765                         break;
1766                 }
1767         } /* end loop count loop */
1768
1769         /* free the original skb */
1770         kfree_skb(skb);
1771
1772         return ret_val;
1773 }
1774
1775 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1776 {
1777         /* PHY loopback cannot be performed if SoL/IDER
1778          * sessions are active */
1779         if (igb_check_reset_block(&adapter->hw)) {
1780                 dev_err(&adapter->pdev->dev,
1781                         "Cannot do PHY loopback test when SoL/IDER is active.\n");
1782                 *data = 0;
1783                 goto out;
1784         }
1785         if ((adapter->hw.mac.type == e1000_i210)
1786                 || (adapter->hw.mac.type == e1000_i211)) {
1787                 dev_err(&adapter->pdev->dev,
1788                         "Loopback test not supported on this part at this time.\n");
1789                 *data = 0;
1790                 goto out;
1791         }
1792         *data = igb_setup_desc_rings(adapter);
1793         if (*data)
1794                 goto out;
1795         *data = igb_setup_loopback_test(adapter);
1796         if (*data)
1797                 goto err_loopback;
1798         *data = igb_run_loopback_test(adapter);
1799         igb_loopback_cleanup(adapter);
1800
1801 err_loopback:
1802         igb_free_desc_rings(adapter);
1803 out:
1804         return *data;
1805 }
1806
1807 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1808 {
1809         struct e1000_hw *hw = &adapter->hw;
1810         *data = 0;
1811         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1812                 int i = 0;
1813                 hw->mac.serdes_has_link = false;
1814
1815                 /* On some blade server designs, link establishment
1816                  * could take as long as 2-3 minutes */
1817                 do {
1818                         hw->mac.ops.check_for_link(&adapter->hw);
1819                         if (hw->mac.serdes_has_link)
1820                                 return *data;
1821                         msleep(20);
1822                 } while (i++ < 3750);
1823
1824                 *data = 1;
1825         } else {
1826                 hw->mac.ops.check_for_link(&adapter->hw);
1827                 if (hw->mac.autoneg)
1828                         msleep(4000);
1829
1830                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1831                         *data = 1;
1832         }
1833         return *data;
1834 }
1835
1836 static void igb_diag_test(struct net_device *netdev,
1837                           struct ethtool_test *eth_test, u64 *data)
1838 {
1839         struct igb_adapter *adapter = netdev_priv(netdev);
1840         u16 autoneg_advertised;
1841         u8 forced_speed_duplex, autoneg;
1842         bool if_running = netif_running(netdev);
1843
1844         set_bit(__IGB_TESTING, &adapter->state);
1845         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1846                 /* Offline tests */
1847
1848                 /* save speed, duplex, autoneg settings */
1849                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1850                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1851                 autoneg = adapter->hw.mac.autoneg;
1852
1853                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1854
1855                 /* power up link for link test */
1856                 igb_power_up_link(adapter);
1857
1858                 /* Link test performed before hardware reset so autoneg doesn't
1859                  * interfere with test result */
1860                 if (igb_link_test(adapter, &data[4]))
1861                         eth_test->flags |= ETH_TEST_FL_FAILED;
1862
1863                 if (if_running)
1864                         /* indicate we're in test mode */
1865                         dev_close(netdev);
1866                 else
1867                         igb_reset(adapter);
1868
1869                 if (igb_reg_test(adapter, &data[0]))
1870                         eth_test->flags |= ETH_TEST_FL_FAILED;
1871
1872                 igb_reset(adapter);
1873                 if (igb_eeprom_test(adapter, &data[1]))
1874                         eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876                 igb_reset(adapter);
1877                 if (igb_intr_test(adapter, &data[2]))
1878                         eth_test->flags |= ETH_TEST_FL_FAILED;
1879
1880                 igb_reset(adapter);
1881                 /* power up link for loopback test */
1882                 igb_power_up_link(adapter);
1883                 if (igb_loopback_test(adapter, &data[3]))
1884                         eth_test->flags |= ETH_TEST_FL_FAILED;
1885
1886                 /* restore speed, duplex, autoneg settings */
1887                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1888                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1889                 adapter->hw.mac.autoneg = autoneg;
1890
1891                 /* force this routine to wait until autoneg complete/timeout */
1892                 adapter->hw.phy.autoneg_wait_to_complete = true;
1893                 igb_reset(adapter);
1894                 adapter->hw.phy.autoneg_wait_to_complete = false;
1895
1896                 clear_bit(__IGB_TESTING, &adapter->state);
1897                 if (if_running)
1898                         dev_open(netdev);
1899         } else {
1900                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1901
1902                 /* PHY is powered down when interface is down */
1903                 if (if_running && igb_link_test(adapter, &data[4]))
1904                         eth_test->flags |= ETH_TEST_FL_FAILED;
1905                 else
1906                         data[4] = 0;
1907
1908                 /* Online tests aren't run; pass by default */
1909                 data[0] = 0;
1910                 data[1] = 0;
1911                 data[2] = 0;
1912                 data[3] = 0;
1913
1914                 clear_bit(__IGB_TESTING, &adapter->state);
1915         }
1916         msleep_interruptible(4 * 1000);
1917 }
1918
1919 static int igb_wol_exclusion(struct igb_adapter *adapter,
1920                              struct ethtool_wolinfo *wol)
1921 {
1922         struct e1000_hw *hw = &adapter->hw;
1923         int retval = 1; /* fail by default */
1924
1925         switch (hw->device_id) {
1926         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1927                 /* WoL not supported */
1928                 wol->supported = 0;
1929                 break;
1930         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1931         case E1000_DEV_ID_82576_FIBER:
1932         case E1000_DEV_ID_82576_SERDES:
1933                 /* Wake events not supported on port B */
1934                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1935                         wol->supported = 0;
1936                         break;
1937                 }
1938                 /* return success for non excluded adapter ports */
1939                 retval = 0;
1940                 break;
1941         case E1000_DEV_ID_82576_QUAD_COPPER:
1942         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1943                 /* quad port adapters only support WoL on port A */
1944                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1945                         wol->supported = 0;
1946                         break;
1947                 }
1948                 /* return success for non excluded adapter ports */
1949                 retval = 0;
1950                 break;
1951         default:
1952                 /* dual port cards only support WoL on port A from now on
1953                  * unless it was enabled in the eeprom for port B
1954                  * so exclude FUNC_1 ports from having WoL enabled */
1955                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1956                     !adapter->eeprom_wol) {
1957                         wol->supported = 0;
1958                         break;
1959                 }
1960
1961                 retval = 0;
1962         }
1963
1964         return retval;
1965 }
1966
1967 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1968 {
1969         struct igb_adapter *adapter = netdev_priv(netdev);
1970
1971         wol->supported = WAKE_UCAST | WAKE_MCAST |
1972                          WAKE_BCAST | WAKE_MAGIC |
1973                          WAKE_PHY;
1974         wol->wolopts = 0;
1975
1976         /* this function will set ->supported = 0 and return 1 if wol is not
1977          * supported by this hardware */
1978         if (igb_wol_exclusion(adapter, wol) ||
1979             !device_can_wakeup(&adapter->pdev->dev))
1980                 return;
1981
1982         /* apply any specific unsupported masks here */
1983         switch (adapter->hw.device_id) {
1984         default:
1985                 break;
1986         }
1987
1988         if (adapter->wol & E1000_WUFC_EX)
1989                 wol->wolopts |= WAKE_UCAST;
1990         if (adapter->wol & E1000_WUFC_MC)
1991                 wol->wolopts |= WAKE_MCAST;
1992         if (adapter->wol & E1000_WUFC_BC)
1993                 wol->wolopts |= WAKE_BCAST;
1994         if (adapter->wol & E1000_WUFC_MAG)
1995                 wol->wolopts |= WAKE_MAGIC;
1996         if (adapter->wol & E1000_WUFC_LNKC)
1997                 wol->wolopts |= WAKE_PHY;
1998 }
1999
2000 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2001 {
2002         struct igb_adapter *adapter = netdev_priv(netdev);
2003
2004         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2005                 return -EOPNOTSUPP;
2006
2007         if (igb_wol_exclusion(adapter, wol) ||
2008             !device_can_wakeup(&adapter->pdev->dev))
2009                 return wol->wolopts ? -EOPNOTSUPP : 0;
2010
2011         /* these settings will always override what we currently have */
2012         adapter->wol = 0;
2013
2014         if (wol->wolopts & WAKE_UCAST)
2015                 adapter->wol |= E1000_WUFC_EX;
2016         if (wol->wolopts & WAKE_MCAST)
2017                 adapter->wol |= E1000_WUFC_MC;
2018         if (wol->wolopts & WAKE_BCAST)
2019                 adapter->wol |= E1000_WUFC_BC;
2020         if (wol->wolopts & WAKE_MAGIC)
2021                 adapter->wol |= E1000_WUFC_MAG;
2022         if (wol->wolopts & WAKE_PHY)
2023                 adapter->wol |= E1000_WUFC_LNKC;
2024         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2025
2026         return 0;
2027 }
2028
2029 /* bit defines for adapter->led_status */
2030 #define IGB_LED_ON              0
2031
2032 static int igb_set_phys_id(struct net_device *netdev,
2033                            enum ethtool_phys_id_state state)
2034 {
2035         struct igb_adapter *adapter = netdev_priv(netdev);
2036         struct e1000_hw *hw = &adapter->hw;
2037
2038         switch (state) {
2039         case ETHTOOL_ID_ACTIVE:
2040                 igb_blink_led(hw);
2041                 return 2;
2042         case ETHTOOL_ID_ON:
2043                 igb_blink_led(hw);
2044                 break;
2045         case ETHTOOL_ID_OFF:
2046                 igb_led_off(hw);
2047                 break;
2048         case ETHTOOL_ID_INACTIVE:
2049                 igb_led_off(hw);
2050                 clear_bit(IGB_LED_ON, &adapter->led_status);
2051                 igb_cleanup_led(hw);
2052                 break;
2053         }
2054
2055         return 0;
2056 }
2057
2058 static int igb_set_coalesce(struct net_device *netdev,
2059                             struct ethtool_coalesce *ec)
2060 {
2061         struct igb_adapter *adapter = netdev_priv(netdev);
2062         int i;
2063
2064         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2065             ((ec->rx_coalesce_usecs > 3) &&
2066              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2067             (ec->rx_coalesce_usecs == 2))
2068                 return -EINVAL;
2069
2070         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2071             ((ec->tx_coalesce_usecs > 3) &&
2072              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2073             (ec->tx_coalesce_usecs == 2))
2074                 return -EINVAL;
2075
2076         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2077                 return -EINVAL;
2078
2079         /* If ITR is disabled, disable DMAC */
2080         if (ec->rx_coalesce_usecs == 0) {
2081                 if (adapter->flags & IGB_FLAG_DMAC)
2082                         adapter->flags &= ~IGB_FLAG_DMAC;
2083         }
2084
2085         /* convert to rate of irq's per second */
2086         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2087                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2088         else
2089                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2090
2091         /* convert to rate of irq's per second */
2092         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2093                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2094         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2095                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2096         else
2097                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2098
2099         for (i = 0; i < adapter->num_q_vectors; i++) {
2100                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2101                 q_vector->tx.work_limit = adapter->tx_work_limit;
2102                 if (q_vector->rx.ring)
2103                         q_vector->itr_val = adapter->rx_itr_setting;
2104                 else
2105                         q_vector->itr_val = adapter->tx_itr_setting;
2106                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2107                         q_vector->itr_val = IGB_START_ITR;
2108                 q_vector->set_itr = 1;
2109         }
2110
2111         return 0;
2112 }
2113
2114 static int igb_get_coalesce(struct net_device *netdev,
2115                             struct ethtool_coalesce *ec)
2116 {
2117         struct igb_adapter *adapter = netdev_priv(netdev);
2118
2119         if (adapter->rx_itr_setting <= 3)
2120                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2121         else
2122                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2123
2124         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2125                 if (adapter->tx_itr_setting <= 3)
2126                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2127                 else
2128                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2129         }
2130
2131         return 0;
2132 }
2133
2134 static int igb_nway_reset(struct net_device *netdev)
2135 {
2136         struct igb_adapter *adapter = netdev_priv(netdev);
2137         if (netif_running(netdev))
2138                 igb_reinit_locked(adapter);
2139         return 0;
2140 }
2141
2142 static int igb_get_sset_count(struct net_device *netdev, int sset)
2143 {
2144         switch (sset) {
2145         case ETH_SS_STATS:
2146                 return IGB_STATS_LEN;
2147         case ETH_SS_TEST:
2148                 return IGB_TEST_LEN;
2149         default:
2150                 return -ENOTSUPP;
2151         }
2152 }
2153
2154 static void igb_get_ethtool_stats(struct net_device *netdev,
2155                                   struct ethtool_stats *stats, u64 *data)
2156 {
2157         struct igb_adapter *adapter = netdev_priv(netdev);
2158         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2159         unsigned int start;
2160         struct igb_ring *ring;
2161         int i, j;
2162         char *p;
2163
2164         spin_lock(&adapter->stats64_lock);
2165         igb_update_stats(adapter, net_stats);
2166
2167         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2168                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2169                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2170                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2171         }
2172         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2173                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2174                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2175                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2176         }
2177         for (j = 0; j < adapter->num_tx_queues; j++) {
2178                 u64     restart2;
2179
2180                 ring = adapter->tx_ring[j];
2181                 do {
2182                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2183                         data[i]   = ring->tx_stats.packets;
2184                         data[i+1] = ring->tx_stats.bytes;
2185                         data[i+2] = ring->tx_stats.restart_queue;
2186                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2187                 do {
2188                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2189                         restart2  = ring->tx_stats.restart_queue2;
2190                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2191                 data[i+2] += restart2;
2192
2193                 i += IGB_TX_QUEUE_STATS_LEN;
2194         }
2195         for (j = 0; j < adapter->num_rx_queues; j++) {
2196                 ring = adapter->rx_ring[j];
2197                 do {
2198                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2199                         data[i]   = ring->rx_stats.packets;
2200                         data[i+1] = ring->rx_stats.bytes;
2201                         data[i+2] = ring->rx_stats.drops;
2202                         data[i+3] = ring->rx_stats.csum_err;
2203                         data[i+4] = ring->rx_stats.alloc_failed;
2204                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2205                 i += IGB_RX_QUEUE_STATS_LEN;
2206         }
2207         spin_unlock(&adapter->stats64_lock);
2208 }
2209
2210 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2211 {
2212         struct igb_adapter *adapter = netdev_priv(netdev);
2213         u8 *p = data;
2214         int i;
2215
2216         switch (stringset) {
2217         case ETH_SS_TEST:
2218                 memcpy(data, *igb_gstrings_test,
2219                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2220                 break;
2221         case ETH_SS_STATS:
2222                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2223                         memcpy(p, igb_gstrings_stats[i].stat_string,
2224                                ETH_GSTRING_LEN);
2225                         p += ETH_GSTRING_LEN;
2226                 }
2227                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2228                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2229                                ETH_GSTRING_LEN);
2230                         p += ETH_GSTRING_LEN;
2231                 }
2232                 for (i = 0; i < adapter->num_tx_queues; i++) {
2233                         sprintf(p, "tx_queue_%u_packets", i);
2234                         p += ETH_GSTRING_LEN;
2235                         sprintf(p, "tx_queue_%u_bytes", i);
2236                         p += ETH_GSTRING_LEN;
2237                         sprintf(p, "tx_queue_%u_restart", i);
2238                         p += ETH_GSTRING_LEN;
2239                 }
2240                 for (i = 0; i < adapter->num_rx_queues; i++) {
2241                         sprintf(p, "rx_queue_%u_packets", i);
2242                         p += ETH_GSTRING_LEN;
2243                         sprintf(p, "rx_queue_%u_bytes", i);
2244                         p += ETH_GSTRING_LEN;
2245                         sprintf(p, "rx_queue_%u_drops", i);
2246                         p += ETH_GSTRING_LEN;
2247                         sprintf(p, "rx_queue_%u_csum_err", i);
2248                         p += ETH_GSTRING_LEN;
2249                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2250                         p += ETH_GSTRING_LEN;
2251                 }
2252 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2253                 break;
2254         }
2255 }
2256
2257 static int igb_ethtool_begin(struct net_device *netdev)
2258 {
2259         struct igb_adapter *adapter = netdev_priv(netdev);
2260         pm_runtime_get_sync(&adapter->pdev->dev);
2261         return 0;
2262 }
2263
2264 static void igb_ethtool_complete(struct net_device *netdev)
2265 {
2266         struct igb_adapter *adapter = netdev_priv(netdev);
2267         pm_runtime_put(&adapter->pdev->dev);
2268 }
2269
2270 #ifdef CONFIG_IGB_PTP
2271 static int igb_ethtool_get_ts_info(struct net_device *dev,
2272                                    struct ethtool_ts_info *info)
2273 {
2274         struct igb_adapter *adapter = netdev_priv(dev);
2275
2276         info->so_timestamping =
2277                 SOF_TIMESTAMPING_TX_HARDWARE |
2278                 SOF_TIMESTAMPING_RX_HARDWARE |
2279                 SOF_TIMESTAMPING_RAW_HARDWARE;
2280
2281         if (adapter->ptp_clock)
2282                 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2283         else
2284                 info->phc_index = -1;
2285
2286         info->tx_types =
2287                 (1 << HWTSTAMP_TX_OFF) |
2288                 (1 << HWTSTAMP_TX_ON);
2289
2290         info->rx_filters =
2291                 (1 << HWTSTAMP_FILTER_NONE) |
2292                 (1 << HWTSTAMP_FILTER_ALL) |
2293                 (1 << HWTSTAMP_FILTER_SOME) |
2294                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2295                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2296                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2297
2298         return 0;
2299 }
2300
2301 #endif
2302 static const struct ethtool_ops igb_ethtool_ops = {
2303         .get_settings           = igb_get_settings,
2304         .set_settings           = igb_set_settings,
2305         .get_drvinfo            = igb_get_drvinfo,
2306         .get_regs_len           = igb_get_regs_len,
2307         .get_regs               = igb_get_regs,
2308         .get_wol                = igb_get_wol,
2309         .set_wol                = igb_set_wol,
2310         .get_msglevel           = igb_get_msglevel,
2311         .set_msglevel           = igb_set_msglevel,
2312         .nway_reset             = igb_nway_reset,
2313         .get_link               = igb_get_link,
2314         .get_eeprom_len         = igb_get_eeprom_len,
2315         .get_eeprom             = igb_get_eeprom,
2316         .set_eeprom             = igb_set_eeprom,
2317         .get_ringparam          = igb_get_ringparam,
2318         .set_ringparam          = igb_set_ringparam,
2319         .get_pauseparam         = igb_get_pauseparam,
2320         .set_pauseparam         = igb_set_pauseparam,
2321         .self_test              = igb_diag_test,
2322         .get_strings            = igb_get_strings,
2323         .set_phys_id            = igb_set_phys_id,
2324         .get_sset_count         = igb_get_sset_count,
2325         .get_ethtool_stats      = igb_get_ethtool_stats,
2326         .get_coalesce           = igb_get_coalesce,
2327         .set_coalesce           = igb_set_coalesce,
2328         .begin                  = igb_ethtool_begin,
2329         .complete               = igb_ethtool_complete,
2330 #ifdef CONFIG_IGB_PTP
2331         .get_ts_info            = igb_ethtool_get_ts_info,
2332 #endif
2333 };
2334
2335 void igb_set_ethtool_ops(struct net_device *netdev)
2336 {
2337         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2338 }