Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[pandora-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k"
57
58 #define DRV_VERSION "2.2.14" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
68
69 static const struct e1000_info *e1000_info_tbl[] = {
70         [board_82571]           = &e1000_82571_info,
71         [board_82572]           = &e1000_82572_info,
72         [board_82573]           = &e1000_82573_info,
73         [board_82574]           = &e1000_82574_info,
74         [board_82583]           = &e1000_82583_info,
75         [board_80003es2lan]     = &e1000_es2_info,
76         [board_ich8lan]         = &e1000_ich8_info,
77         [board_ich9lan]         = &e1000_ich9_info,
78         [board_ich10lan]        = &e1000_ich10_info,
79         [board_pchlan]          = &e1000_pch_info,
80         [board_pch2lan]         = &e1000_pch2_info,
81         [board_pch_lpt]         = &e1000_pch_lpt_info,
82 };
83
84 struct e1000_reg_info {
85         u32 ofs;
86         char *name;
87 };
88
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90         /* General Registers */
91         {E1000_CTRL, "CTRL"},
92         {E1000_STATUS, "STATUS"},
93         {E1000_CTRL_EXT, "CTRL_EXT"},
94
95         /* Interrupt Registers */
96         {E1000_ICR, "ICR"},
97
98         /* Rx Registers */
99         {E1000_RCTL, "RCTL"},
100         {E1000_RDLEN(0), "RDLEN"},
101         {E1000_RDH(0), "RDH"},
102         {E1000_RDT(0), "RDT"},
103         {E1000_RDTR, "RDTR"},
104         {E1000_RXDCTL(0), "RXDCTL"},
105         {E1000_ERT, "ERT"},
106         {E1000_RDBAL(0), "RDBAL"},
107         {E1000_RDBAH(0), "RDBAH"},
108         {E1000_RDFH, "RDFH"},
109         {E1000_RDFT, "RDFT"},
110         {E1000_RDFHS, "RDFHS"},
111         {E1000_RDFTS, "RDFTS"},
112         {E1000_RDFPC, "RDFPC"},
113
114         /* Tx Registers */
115         {E1000_TCTL, "TCTL"},
116         {E1000_TDBAL(0), "TDBAL"},
117         {E1000_TDBAH(0), "TDBAH"},
118         {E1000_TDLEN(0), "TDLEN"},
119         {E1000_TDH(0), "TDH"},
120         {E1000_TDT(0), "TDT"},
121         {E1000_TIDV, "TIDV"},
122         {E1000_TXDCTL(0), "TXDCTL"},
123         {E1000_TADV, "TADV"},
124         {E1000_TARC(0), "TARC"},
125         {E1000_TDFH, "TDFH"},
126         {E1000_TDFT, "TDFT"},
127         {E1000_TDFHS, "TDFHS"},
128         {E1000_TDFTS, "TDFTS"},
129         {E1000_TDFPC, "TDFPC"},
130
131         /* List Terminator */
132         {0, NULL}
133 };
134
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142         int n = 0;
143         char rname[16];
144         u32 regs[8];
145
146         switch (reginfo->ofs) {
147         case E1000_RXDCTL(0):
148                 for (n = 0; n < 2; n++)
149                         regs[n] = __er32(hw, E1000_RXDCTL(n));
150                 break;
151         case E1000_TXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_TXDCTL(n));
154                 break;
155         case E1000_TARC(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TARC(n));
158                 break;
159         default:
160                 pr_info("%-15s %08x\n",
161                         reginfo->name, __er32(hw, reginfo->ofs));
162                 return;
163         }
164
165         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170                                  struct e1000_buffer *bi)
171 {
172         int i;
173         struct e1000_ps_page *ps_page;
174
175         for (i = 0; i < adapter->rx_ps_pages; i++) {
176                 ps_page = &bi->ps_pages[i];
177
178                 if (ps_page->page) {
179                         pr_info("packet dump for ps_page %d:\n", i);
180                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181                                        16, 1, page_address(ps_page->page),
182                                        PAGE_SIZE, true);
183                 }
184         }
185 }
186
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193         struct net_device *netdev = adapter->netdev;
194         struct e1000_hw *hw = &adapter->hw;
195         struct e1000_reg_info *reginfo;
196         struct e1000_ring *tx_ring = adapter->tx_ring;
197         struct e1000_tx_desc *tx_desc;
198         struct my_u0 {
199                 __le64 a;
200                 __le64 b;
201         } *u0;
202         struct e1000_buffer *buffer_info;
203         struct e1000_ring *rx_ring = adapter->rx_ring;
204         union e1000_rx_desc_packet_split *rx_desc_ps;
205         union e1000_rx_desc_extended *rx_desc;
206         struct my_u1 {
207                 __le64 a;
208                 __le64 b;
209                 __le64 c;
210                 __le64 d;
211         } *u1;
212         u32 staterr;
213         int i = 0;
214
215         if (!netif_msg_hw(adapter))
216                 return;
217
218         /* Print netdevice Info */
219         if (netdev) {
220                 dev_info(&adapter->pdev->dev, "Net device Info\n");
221                 pr_info("Device Name     state            trans_start      last_rx\n");
222                 pr_info("%-15s %016lX %016lX %016lX\n",
223                         netdev->name, netdev->state, netdev->trans_start,
224                         netdev->last_rx);
225         }
226
227         /* Print Registers */
228         dev_info(&adapter->pdev->dev, "Register Dump\n");
229         pr_info(" Register Name   Value\n");
230         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
231              reginfo->name; reginfo++) {
232                 e1000_regdump(hw, reginfo);
233         }
234
235         /* Print Tx Ring Summary */
236         if (!netdev || !netif_running(netdev))
237                 return;
238
239         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
240         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
241         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
242         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
243                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
244                 (unsigned long long)buffer_info->dma,
245                 buffer_info->length,
246                 buffer_info->next_to_watch,
247                 (unsigned long long)buffer_info->time_stamp);
248
249         /* Print Tx Ring */
250         if (!netif_msg_tx_done(adapter))
251                 goto rx_ring_summary;
252
253         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254
255         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256          *
257          * Legacy Transmit Descriptor
258          *   +--------------------------------------------------------------+
259          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
260          *   +--------------------------------------------------------------+
261          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
262          *   +--------------------------------------------------------------+
263          *   63       48 47        36 35    32 31     24 23    16 15        0
264          *
265          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
266          *   63      48 47    40 39       32 31             16 15    8 7      0
267          *   +----------------------------------------------------------------+
268          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
269          *   +----------------------------------------------------------------+
270          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
271          *   +----------------------------------------------------------------+
272          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
273          *
274          * Extended Data Descriptor (DTYP=0x1)
275          *   +----------------------------------------------------------------+
276          * 0 |                     Buffer Address [63:0]                      |
277          *   +----------------------------------------------------------------+
278          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
279          *   +----------------------------------------------------------------+
280          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
281          */
282         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
283         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
284         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
285         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
286                 const char *next_desc;
287                 tx_desc = E1000_TX_DESC(*tx_ring, i);
288                 buffer_info = &tx_ring->buffer_info[i];
289                 u0 = (struct my_u0 *)tx_desc;
290                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
291                         next_desc = " NTC/U";
292                 else if (i == tx_ring->next_to_use)
293                         next_desc = " NTU";
294                 else if (i == tx_ring->next_to_clean)
295                         next_desc = " NTC";
296                 else
297                         next_desc = "";
298                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
299                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
300                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
301                         i,
302                         (unsigned long long)le64_to_cpu(u0->a),
303                         (unsigned long long)le64_to_cpu(u0->b),
304                         (unsigned long long)buffer_info->dma,
305                         buffer_info->length, buffer_info->next_to_watch,
306                         (unsigned long long)buffer_info->time_stamp,
307                         buffer_info->skb, next_desc);
308
309                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
310                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
311                                        16, 1, buffer_info->skb->data,
312                                        buffer_info->skb->len, true);
313         }
314
315         /* Print Rx Ring Summary */
316 rx_ring_summary:
317         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
318         pr_info("Queue [NTU] [NTC]\n");
319         pr_info(" %5d %5X %5X\n",
320                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
321
322         /* Print Rx Ring */
323         if (!netif_msg_rx_status(adapter))
324                 return;
325
326         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
327         switch (adapter->rx_ps_pages) {
328         case 1:
329         case 2:
330         case 3:
331                 /* [Extended] Packet Split Receive Descriptor Format
332                  *
333                  *    +-----------------------------------------------------+
334                  *  0 |                Buffer Address 0 [63:0]              |
335                  *    +-----------------------------------------------------+
336                  *  8 |                Buffer Address 1 [63:0]              |
337                  *    +-----------------------------------------------------+
338                  * 16 |                Buffer Address 2 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  * 24 |                Buffer Address 3 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  */
343                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
344                 /* [Extended] Receive Descriptor (Write-Back) Format
345                  *
346                  *   63       48 47    32 31     13 12    8 7    4 3        0
347                  *   +------------------------------------------------------+
348                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
349                  *   | Checksum | Ident  |         | Queue |      |  Type   |
350                  *   +------------------------------------------------------+
351                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352                  *   +------------------------------------------------------+
353                  *   63       48 47    32 31            20 19               0
354                  */
355                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
356                 for (i = 0; i < rx_ring->count; i++) {
357                         const char *next_desc;
358                         buffer_info = &rx_ring->buffer_info[i];
359                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
360                         u1 = (struct my_u1 *)rx_desc_ps;
361                         staterr =
362                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363
364                         if (i == rx_ring->next_to_use)
365                                 next_desc = " NTU";
366                         else if (i == rx_ring->next_to_clean)
367                                 next_desc = " NTC";
368                         else
369                                 next_desc = "";
370
371                         if (staterr & E1000_RXD_STAT_DD) {
372                                 /* Descriptor Done */
373                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374                                         "RWB", i,
375                                         (unsigned long long)le64_to_cpu(u1->a),
376                                         (unsigned long long)le64_to_cpu(u1->b),
377                                         (unsigned long long)le64_to_cpu(u1->c),
378                                         (unsigned long long)le64_to_cpu(u1->d),
379                                         buffer_info->skb, next_desc);
380                         } else {
381                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
382                                         "R  ", i,
383                                         (unsigned long long)le64_to_cpu(u1->a),
384                                         (unsigned long long)le64_to_cpu(u1->b),
385                                         (unsigned long long)le64_to_cpu(u1->c),
386                                         (unsigned long long)le64_to_cpu(u1->d),
387                                         (unsigned long long)buffer_info->dma,
388                                         buffer_info->skb, next_desc);
389
390                                 if (netif_msg_pktdata(adapter))
391                                         e1000e_dump_ps_pages(adapter,
392                                                              buffer_info);
393                         }
394                 }
395                 break;
396         default:
397         case 0:
398                 /* Extended Receive Descriptor (Read) Format
399                  *
400                  *   +-----------------------------------------------------+
401                  * 0 |                Buffer Address [63:0]                |
402                  *   +-----------------------------------------------------+
403                  * 8 |                      Reserved                       |
404                  *   +-----------------------------------------------------+
405                  */
406                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
407                 /* Extended Receive Descriptor (Write-Back) Format
408                  *
409                  *   63       48 47    32 31    24 23            4 3        0
410                  *   +------------------------------------------------------+
411                  *   |     RSS Hash      |        |               |         |
412                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
413                  *   | Packet   | IP     |        |               |  Type   |
414                  *   | Checksum | Ident  |        |               |         |
415                  *   +------------------------------------------------------+
416                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
417                  *   +------------------------------------------------------+
418                  *   63       48 47    32 31            20 19               0
419                  */
420                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
421
422                 for (i = 0; i < rx_ring->count; i++) {
423                         const char *next_desc;
424
425                         buffer_info = &rx_ring->buffer_info[i];
426                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
427                         u1 = (struct my_u1 *)rx_desc;
428                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429
430                         if (i == rx_ring->next_to_use)
431                                 next_desc = " NTU";
432                         else if (i == rx_ring->next_to_clean)
433                                 next_desc = " NTC";
434                         else
435                                 next_desc = "";
436
437                         if (staterr & E1000_RXD_STAT_DD) {
438                                 /* Descriptor Done */
439                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
440                                         "RWB", i,
441                                         (unsigned long long)le64_to_cpu(u1->a),
442                                         (unsigned long long)le64_to_cpu(u1->b),
443                                         buffer_info->skb, next_desc);
444                         } else {
445                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
446                                         "R  ", i,
447                                         (unsigned long long)le64_to_cpu(u1->a),
448                                         (unsigned long long)le64_to_cpu(u1->b),
449                                         (unsigned long long)buffer_info->dma,
450                                         buffer_info->skb, next_desc);
451
452                                 if (netif_msg_pktdata(adapter) &&
453                                     buffer_info->skb)
454                                         print_hex_dump(KERN_INFO, "",
455                                                        DUMP_PREFIX_ADDRESS, 16,
456                                                        1,
457                                                        buffer_info->skb->data,
458                                                        adapter->rx_buffer_len,
459                                                        true);
460                         }
461                 }
462         }
463 }
464
465 /**
466  * e1000_desc_unused - calculate if we have unused descriptors
467  **/
468 static int e1000_desc_unused(struct e1000_ring *ring)
469 {
470         if (ring->next_to_clean > ring->next_to_use)
471                 return ring->next_to_clean - ring->next_to_use - 1;
472
473         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
474 }
475
476 /**
477  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478  * @adapter: board private structure
479  * @hwtstamps: time stamp structure to update
480  * @systim: unsigned 64bit system time value.
481  *
482  * Convert the system time value stored in the RX/TXSTMP registers into a
483  * hwtstamp which can be used by the upper level time stamping functions.
484  *
485  * The 'systim_lock' spinlock is used to protect the consistency of the
486  * system time value. This is needed because reading the 64 bit time
487  * value involves reading two 32 bit registers. The first read latches the
488  * value.
489  **/
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
491                                       struct skb_shared_hwtstamps *hwtstamps,
492                                       u64 systim)
493 {
494         u64 ns;
495         unsigned long flags;
496
497         spin_lock_irqsave(&adapter->systim_lock, flags);
498         ns = timecounter_cyc2time(&adapter->tc, systim);
499         spin_unlock_irqrestore(&adapter->systim_lock, flags);
500
501         memset(hwtstamps, 0, sizeof(*hwtstamps));
502         hwtstamps->hwtstamp = ns_to_ktime(ns);
503 }
504
505 /**
506  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507  * @adapter: board private structure
508  * @status: descriptor extended error and status field
509  * @skb: particular skb to include time stamp
510  *
511  * If the time stamp is valid, convert it into the timecounter ns value
512  * and store that result into the shhwtstamps structure which is passed
513  * up the network stack.
514  **/
515 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
516                                struct sk_buff *skb)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u64 rxstmp;
520
521         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
522             !(status & E1000_RXDEXT_STATERR_TST) ||
523             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
524                 return;
525
526         /* The Rx time stamp registers contain the time stamp.  No other
527          * received packet will be time stamped until the Rx time stamp
528          * registers are read.  Because only one packet can be time stamped
529          * at a time, the register values must belong to this packet and
530          * therefore none of the other additional attributes need to be
531          * compared.
532          */
533         rxstmp = (u64)er32(RXSTMPL);
534         rxstmp |= (u64)er32(RXSTMPH) << 32;
535         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536
537         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
538 }
539
540 /**
541  * e1000_receive_skb - helper function to handle Rx indications
542  * @adapter: board private structure
543  * @staterr: descriptor extended error and status field as written by hardware
544  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545  * @skb: pointer to sk_buff to be indicated to stack
546  **/
547 static void e1000_receive_skb(struct e1000_adapter *adapter,
548                               struct net_device *netdev, struct sk_buff *skb,
549                               u32 staterr, __le16 vlan)
550 {
551         u16 tag = le16_to_cpu(vlan);
552
553         e1000e_rx_hwtstamp(adapter, staterr, skb);
554
555         skb->protocol = eth_type_trans(skb, netdev);
556
557         if (staterr & E1000_RXD_STAT_VP)
558                 __vlan_hwaccel_put_tag(skb, tag);
559
560         napi_gro_receive(&adapter->napi, skb);
561 }
562
563 /**
564  * e1000_rx_checksum - Receive Checksum Offload
565  * @adapter: board private structure
566  * @status_err: receive descriptor status and error fields
567  * @csum: receive descriptor csum field
568  * @sk_buff: socket buffer with received data
569  **/
570 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
571                               struct sk_buff *skb)
572 {
573         u16 status = (u16)status_err;
574         u8 errors = (u8)(status_err >> 24);
575
576         skb_checksum_none_assert(skb);
577
578         /* Rx checksum disabled */
579         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
580                 return;
581
582         /* Ignore Checksum bit is set */
583         if (status & E1000_RXD_STAT_IXSM)
584                 return;
585
586         /* TCP/UDP checksum error bit or IP checksum error bit is set */
587         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
588                 /* let the stack verify checksum errors */
589                 adapter->hw_csum_err++;
590                 return;
591         }
592
593         /* TCP/UDP Checksum has not been calculated */
594         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
595                 return;
596
597         /* It must be a TCP or UDP packet with a valid checksum */
598         skb->ip_summed = CHECKSUM_UNNECESSARY;
599         adapter->hw_csum_good++;
600 }
601
602 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 {
604         struct e1000_adapter *adapter = rx_ring->adapter;
605         struct e1000_hw *hw = &adapter->hw;
606         s32 ret_val = __ew32_prepare(hw);
607
608         writel(i, rx_ring->tail);
609
610         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
611                 u32 rctl = er32(RCTL);
612                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
613                 e_err("ME firmware caused invalid RDT - resetting\n");
614                 schedule_work(&adapter->reset_task);
615         }
616 }
617
618 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
619 {
620         struct e1000_adapter *adapter = tx_ring->adapter;
621         struct e1000_hw *hw = &adapter->hw;
622         s32 ret_val = __ew32_prepare(hw);
623
624         writel(i, tx_ring->tail);
625
626         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
627                 u32 tctl = er32(TCTL);
628                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
629                 e_err("ME firmware caused invalid TDT - resetting\n");
630                 schedule_work(&adapter->reset_task);
631         }
632 }
633
634 /**
635  * e1000_alloc_rx_buffers - Replace used receive buffers
636  * @rx_ring: Rx descriptor ring
637  **/
638 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
639                                    int cleaned_count, gfp_t gfp)
640 {
641         struct e1000_adapter *adapter = rx_ring->adapter;
642         struct net_device *netdev = adapter->netdev;
643         struct pci_dev *pdev = adapter->pdev;
644         union e1000_rx_desc_extended *rx_desc;
645         struct e1000_buffer *buffer_info;
646         struct sk_buff *skb;
647         unsigned int i;
648         unsigned int bufsz = adapter->rx_buffer_len;
649
650         i = rx_ring->next_to_use;
651         buffer_info = &rx_ring->buffer_info[i];
652
653         while (cleaned_count--) {
654                 skb = buffer_info->skb;
655                 if (skb) {
656                         skb_trim(skb, 0);
657                         goto map_skb;
658                 }
659
660                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
661                 if (!skb) {
662                         /* Better luck next round */
663                         adapter->alloc_rx_buff_failed++;
664                         break;
665                 }
666
667                 buffer_info->skb = skb;
668 map_skb:
669                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
670                                                   adapter->rx_buffer_len,
671                                                   DMA_FROM_DEVICE);
672                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
673                         dev_err(&pdev->dev, "Rx DMA map failed\n");
674                         adapter->rx_dma_failed++;
675                         break;
676                 }
677
678                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
679                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
680
681                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
682                         /* Force memory writes to complete before letting h/w
683                          * know there are new descriptors to fetch.  (Only
684                          * applicable for weak-ordered memory model archs,
685                          * such as IA-64).
686                          */
687                         wmb();
688                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
689                                 e1000e_update_rdt_wa(rx_ring, i);
690                         else
691                                 writel(i, rx_ring->tail);
692                 }
693                 i++;
694                 if (i == rx_ring->count)
695                         i = 0;
696                 buffer_info = &rx_ring->buffer_info[i];
697         }
698
699         rx_ring->next_to_use = i;
700 }
701
702 /**
703  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
704  * @rx_ring: Rx descriptor ring
705  **/
706 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
707                                       int cleaned_count, gfp_t gfp)
708 {
709         struct e1000_adapter *adapter = rx_ring->adapter;
710         struct net_device *netdev = adapter->netdev;
711         struct pci_dev *pdev = adapter->pdev;
712         union e1000_rx_desc_packet_split *rx_desc;
713         struct e1000_buffer *buffer_info;
714         struct e1000_ps_page *ps_page;
715         struct sk_buff *skb;
716         unsigned int i, j;
717
718         i = rx_ring->next_to_use;
719         buffer_info = &rx_ring->buffer_info[i];
720
721         while (cleaned_count--) {
722                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723
724                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
725                         ps_page = &buffer_info->ps_pages[j];
726                         if (j >= adapter->rx_ps_pages) {
727                                 /* all unused desc entries get hw null ptr */
728                                 rx_desc->read.buffer_addr[j + 1] =
729                                     ~cpu_to_le64(0);
730                                 continue;
731                         }
732                         if (!ps_page->page) {
733                                 ps_page->page = alloc_page(gfp);
734                                 if (!ps_page->page) {
735                                         adapter->alloc_rx_buff_failed++;
736                                         goto no_buffers;
737                                 }
738                                 ps_page->dma = dma_map_page(&pdev->dev,
739                                                             ps_page->page,
740                                                             0, PAGE_SIZE,
741                                                             DMA_FROM_DEVICE);
742                                 if (dma_mapping_error(&pdev->dev,
743                                                       ps_page->dma)) {
744                                         dev_err(&adapter->pdev->dev,
745                                                 "Rx DMA page map failed\n");
746                                         adapter->rx_dma_failed++;
747                                         goto no_buffers;
748                                 }
749                         }
750                         /* Refresh the desc even if buffer_addrs
751                          * didn't change because each write-back
752                          * erases this info.
753                          */
754                         rx_desc->read.buffer_addr[j + 1] =
755                             cpu_to_le64(ps_page->dma);
756                 }
757
758                 skb = __netdev_alloc_skb_ip_align(netdev,
759                                                   adapter->rx_ps_bsize0,
760                                                   gfp);
761
762                 if (!skb) {
763                         adapter->alloc_rx_buff_failed++;
764                         break;
765                 }
766
767                 buffer_info->skb = skb;
768                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
769                                                   adapter->rx_ps_bsize0,
770                                                   DMA_FROM_DEVICE);
771                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
772                         dev_err(&pdev->dev, "Rx DMA map failed\n");
773                         adapter->rx_dma_failed++;
774                         /* cleanup skb */
775                         dev_kfree_skb_any(skb);
776                         buffer_info->skb = NULL;
777                         break;
778                 }
779
780                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
781
782                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
783                         /* Force memory writes to complete before letting h/w
784                          * know there are new descriptors to fetch.  (Only
785                          * applicable for weak-ordered memory model archs,
786                          * such as IA-64).
787                          */
788                         wmb();
789                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
790                                 e1000e_update_rdt_wa(rx_ring, i << 1);
791                         else
792                                 writel(i << 1, rx_ring->tail);
793                 }
794
795                 i++;
796                 if (i == rx_ring->count)
797                         i = 0;
798                 buffer_info = &rx_ring->buffer_info[i];
799         }
800
801 no_buffers:
802         rx_ring->next_to_use = i;
803 }
804
805 /**
806  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
807  * @rx_ring: Rx descriptor ring
808  * @cleaned_count: number of buffers to allocate this pass
809  **/
810
811 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
812                                          int cleaned_count, gfp_t gfp)
813 {
814         struct e1000_adapter *adapter = rx_ring->adapter;
815         struct net_device *netdev = adapter->netdev;
816         struct pci_dev *pdev = adapter->pdev;
817         union e1000_rx_desc_extended *rx_desc;
818         struct e1000_buffer *buffer_info;
819         struct sk_buff *skb;
820         unsigned int i;
821         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
822
823         i = rx_ring->next_to_use;
824         buffer_info = &rx_ring->buffer_info[i];
825
826         while (cleaned_count--) {
827                 skb = buffer_info->skb;
828                 if (skb) {
829                         skb_trim(skb, 0);
830                         goto check_page;
831                 }
832
833                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
834                 if (unlikely(!skb)) {
835                         /* Better luck next round */
836                         adapter->alloc_rx_buff_failed++;
837                         break;
838                 }
839
840                 buffer_info->skb = skb;
841 check_page:
842                 /* allocate a new page if necessary */
843                 if (!buffer_info->page) {
844                         buffer_info->page = alloc_page(gfp);
845                         if (unlikely(!buffer_info->page)) {
846                                 adapter->alloc_rx_buff_failed++;
847                                 break;
848                         }
849                 }
850
851                 if (!buffer_info->dma)
852                         buffer_info->dma = dma_map_page(&pdev->dev,
853                                                         buffer_info->page, 0,
854                                                         PAGE_SIZE,
855                                                         DMA_FROM_DEVICE);
856
857                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
858                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
859
860                 if (unlikely(++i == rx_ring->count))
861                         i = 0;
862                 buffer_info = &rx_ring->buffer_info[i];
863         }
864
865         if (likely(rx_ring->next_to_use != i)) {
866                 rx_ring->next_to_use = i;
867                 if (unlikely(i-- == 0))
868                         i = (rx_ring->count - 1);
869
870                 /* Force memory writes to complete before letting h/w
871                  * know there are new descriptors to fetch.  (Only
872                  * applicable for weak-ordered memory model archs,
873                  * such as IA-64).
874                  */
875                 wmb();
876                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
877                         e1000e_update_rdt_wa(rx_ring, i);
878                 else
879                         writel(i, rx_ring->tail);
880         }
881 }
882
883 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
884                                  struct sk_buff *skb)
885 {
886         if (netdev->features & NETIF_F_RXHASH)
887                 skb->rxhash = le32_to_cpu(rss);
888 }
889
890 /**
891  * e1000_clean_rx_irq - Send received data up the network stack
892  * @rx_ring: Rx descriptor ring
893  *
894  * the return value indicates whether actual cleaning was done, there
895  * is no guarantee that everything was cleaned
896  **/
897 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
898                                int work_to_do)
899 {
900         struct e1000_adapter *adapter = rx_ring->adapter;
901         struct net_device *netdev = adapter->netdev;
902         struct pci_dev *pdev = adapter->pdev;
903         struct e1000_hw *hw = &adapter->hw;
904         union e1000_rx_desc_extended *rx_desc, *next_rxd;
905         struct e1000_buffer *buffer_info, *next_buffer;
906         u32 length, staterr;
907         unsigned int i;
908         int cleaned_count = 0;
909         bool cleaned = false;
910         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
911
912         i = rx_ring->next_to_clean;
913         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
914         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
915         buffer_info = &rx_ring->buffer_info[i];
916
917         while (staterr & E1000_RXD_STAT_DD) {
918                 struct sk_buff *skb;
919
920                 if (*work_done >= work_to_do)
921                         break;
922                 (*work_done)++;
923                 rmb();  /* read descriptor and rx_buffer_info after status DD */
924
925                 skb = buffer_info->skb;
926                 buffer_info->skb = NULL;
927
928                 prefetch(skb->data - NET_IP_ALIGN);
929
930                 i++;
931                 if (i == rx_ring->count)
932                         i = 0;
933                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
934                 prefetch(next_rxd);
935
936                 next_buffer = &rx_ring->buffer_info[i];
937
938                 cleaned = true;
939                 cleaned_count++;
940                 dma_unmap_single(&pdev->dev,
941                                  buffer_info->dma,
942                                  adapter->rx_buffer_len,
943                                  DMA_FROM_DEVICE);
944                 buffer_info->dma = 0;
945
946                 length = le16_to_cpu(rx_desc->wb.upper.length);
947
948                 /* !EOP means multiple descriptors were used to store a single
949                  * packet, if that's the case we need to toss it.  In fact, we
950                  * need to toss every packet with the EOP bit clear and the
951                  * next frame that _does_ have the EOP bit set, as it is by
952                  * definition only a frame fragment
953                  */
954                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
955                         adapter->flags2 |= FLAG2_IS_DISCARDING;
956
957                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
958                         /* All receives must fit into a single buffer */
959                         e_dbg("Receive packet consumed multiple buffers\n");
960                         /* recycle */
961                         buffer_info->skb = skb;
962                         if (staterr & E1000_RXD_STAT_EOP)
963                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
964                         goto next_desc;
965                 }
966
967                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
968                              !(netdev->features & NETIF_F_RXALL))) {
969                         /* recycle */
970                         buffer_info->skb = skb;
971                         goto next_desc;
972                 }
973
974                 /* adjust length to remove Ethernet CRC */
975                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
976                         /* If configured to store CRC, don't subtract FCS,
977                          * but keep the FCS bytes out of the total_rx_bytes
978                          * counter
979                          */
980                         if (netdev->features & NETIF_F_RXFCS)
981                                 total_rx_bytes -= 4;
982                         else
983                                 length -= 4;
984                 }
985
986                 total_rx_bytes += length;
987                 total_rx_packets++;
988
989                 /* code added for copybreak, this should improve
990                  * performance for small packets with large amounts
991                  * of reassembly being done in the stack
992                  */
993                 if (length < copybreak) {
994                         struct sk_buff *new_skb =
995                             netdev_alloc_skb_ip_align(netdev, length);
996                         if (new_skb) {
997                                 skb_copy_to_linear_data_offset(new_skb,
998                                                                -NET_IP_ALIGN,
999                                                                (skb->data -
1000                                                                 NET_IP_ALIGN),
1001                                                                (length +
1002                                                                 NET_IP_ALIGN));
1003                                 /* save the skb in buffer_info as good */
1004                                 buffer_info->skb = skb;
1005                                 skb = new_skb;
1006                         }
1007                         /* else just continue with the old one */
1008                 }
1009                 /* end copybreak code */
1010                 skb_put(skb, length);
1011
1012                 /* Receive Checksum Offload */
1013                 e1000_rx_checksum(adapter, staterr, skb);
1014
1015                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1016
1017                 e1000_receive_skb(adapter, netdev, skb, staterr,
1018                                   rx_desc->wb.upper.vlan);
1019
1020 next_desc:
1021                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1022
1023                 /* return some buffers to hardware, one at a time is too slow */
1024                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1025                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1026                                               GFP_ATOMIC);
1027                         cleaned_count = 0;
1028                 }
1029
1030                 /* use prefetched values */
1031                 rx_desc = next_rxd;
1032                 buffer_info = next_buffer;
1033
1034                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1035         }
1036         rx_ring->next_to_clean = i;
1037
1038         cleaned_count = e1000_desc_unused(rx_ring);
1039         if (cleaned_count)
1040                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1041
1042         adapter->total_rx_bytes += total_rx_bytes;
1043         adapter->total_rx_packets += total_rx_packets;
1044         return cleaned;
1045 }
1046
1047 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1048                             struct e1000_buffer *buffer_info)
1049 {
1050         struct e1000_adapter *adapter = tx_ring->adapter;
1051
1052         if (buffer_info->dma) {
1053                 if (buffer_info->mapped_as_page)
1054                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1055                                        buffer_info->length, DMA_TO_DEVICE);
1056                 else
1057                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1058                                          buffer_info->length, DMA_TO_DEVICE);
1059                 buffer_info->dma = 0;
1060         }
1061         if (buffer_info->skb) {
1062                 dev_kfree_skb_any(buffer_info->skb);
1063                 buffer_info->skb = NULL;
1064         }
1065         buffer_info->time_stamp = 0;
1066 }
1067
1068 static void e1000_print_hw_hang(struct work_struct *work)
1069 {
1070         struct e1000_adapter *adapter = container_of(work,
1071                                                      struct e1000_adapter,
1072                                                      print_hang_task);
1073         struct net_device *netdev = adapter->netdev;
1074         struct e1000_ring *tx_ring = adapter->tx_ring;
1075         unsigned int i = tx_ring->next_to_clean;
1076         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1077         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1078         struct e1000_hw *hw = &adapter->hw;
1079         u16 phy_status, phy_1000t_status, phy_ext_status;
1080         u16 pci_status;
1081
1082         if (test_bit(__E1000_DOWN, &adapter->state))
1083                 return;
1084
1085         if (!adapter->tx_hang_recheck &&
1086             (adapter->flags2 & FLAG2_DMA_BURST)) {
1087                 /* May be block on write-back, flush and detect again
1088                  * flush pending descriptor writebacks to memory
1089                  */
1090                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1091                 /* execute the writes immediately */
1092                 e1e_flush();
1093                 /* Due to rare timing issues, write to TIDV again to ensure
1094                  * the write is successful
1095                  */
1096                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1097                 /* execute the writes immediately */
1098                 e1e_flush();
1099                 adapter->tx_hang_recheck = true;
1100                 return;
1101         }
1102         /* Real hang detected */
1103         adapter->tx_hang_recheck = false;
1104         netif_stop_queue(netdev);
1105
1106         e1e_rphy(hw, MII_BMSR, &phy_status);
1107         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1108         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1109
1110         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1111
1112         /* detected Hardware unit hang */
1113         e_err("Detected Hardware Unit Hang:\n"
1114               "  TDH                  <%x>\n"
1115               "  TDT                  <%x>\n"
1116               "  next_to_use          <%x>\n"
1117               "  next_to_clean        <%x>\n"
1118               "buffer_info[next_to_clean]:\n"
1119               "  time_stamp           <%lx>\n"
1120               "  next_to_watch        <%x>\n"
1121               "  jiffies              <%lx>\n"
1122               "  next_to_watch.status <%x>\n"
1123               "MAC Status             <%x>\n"
1124               "PHY Status             <%x>\n"
1125               "PHY 1000BASE-T Status  <%x>\n"
1126               "PHY Extended Status    <%x>\n"
1127               "PCI Status             <%x>\n",
1128               readl(tx_ring->head),
1129               readl(tx_ring->tail),
1130               tx_ring->next_to_use,
1131               tx_ring->next_to_clean,
1132               tx_ring->buffer_info[eop].time_stamp,
1133               eop,
1134               jiffies,
1135               eop_desc->upper.fields.status,
1136               er32(STATUS),
1137               phy_status,
1138               phy_1000t_status,
1139               phy_ext_status,
1140               pci_status);
1141
1142         /* Suggest workaround for known h/w issue */
1143         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1144                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1145 }
1146
1147 /**
1148  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1149  * @work: pointer to work struct
1150  *
1151  * This work function polls the TSYNCTXCTL valid bit to determine when a
1152  * timestamp has been taken for the current stored skb.  The timestamp must
1153  * be for this skb because only one such packet is allowed in the queue.
1154  */
1155 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1156 {
1157         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1158                                                      tx_hwtstamp_work);
1159         struct e1000_hw *hw = &adapter->hw;
1160
1161         if (!adapter->tx_hwtstamp_skb)
1162                 return;
1163
1164         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1165                 struct skb_shared_hwtstamps shhwtstamps;
1166                 u64 txstmp;
1167
1168                 txstmp = er32(TXSTMPL);
1169                 txstmp |= (u64)er32(TXSTMPH) << 32;
1170
1171                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1172
1173                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1174                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1175                 adapter->tx_hwtstamp_skb = NULL;
1176         } else {
1177                 /* reschedule to check later */
1178                 schedule_work(&adapter->tx_hwtstamp_work);
1179         }
1180 }
1181
1182 /**
1183  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1184  * @tx_ring: Tx descriptor ring
1185  *
1186  * the return value indicates whether actual cleaning was done, there
1187  * is no guarantee that everything was cleaned
1188  **/
1189 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1190 {
1191         struct e1000_adapter *adapter = tx_ring->adapter;
1192         struct net_device *netdev = adapter->netdev;
1193         struct e1000_hw *hw = &adapter->hw;
1194         struct e1000_tx_desc *tx_desc, *eop_desc;
1195         struct e1000_buffer *buffer_info;
1196         unsigned int i, eop;
1197         unsigned int count = 0;
1198         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1199         unsigned int bytes_compl = 0, pkts_compl = 0;
1200
1201         i = tx_ring->next_to_clean;
1202         eop = tx_ring->buffer_info[i].next_to_watch;
1203         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1204
1205         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1206                (count < tx_ring->count)) {
1207                 bool cleaned = false;
1208                 rmb(); /* read buffer_info after eop_desc */
1209                 for (; !cleaned; count++) {
1210                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1211                         buffer_info = &tx_ring->buffer_info[i];
1212                         cleaned = (i == eop);
1213
1214                         if (cleaned) {
1215                                 total_tx_packets += buffer_info->segs;
1216                                 total_tx_bytes += buffer_info->bytecount;
1217                                 if (buffer_info->skb) {
1218                                         bytes_compl += buffer_info->skb->len;
1219                                         pkts_compl++;
1220                                 }
1221                         }
1222
1223                         e1000_put_txbuf(tx_ring, buffer_info);
1224                         tx_desc->upper.data = 0;
1225
1226                         i++;
1227                         if (i == tx_ring->count)
1228                                 i = 0;
1229                 }
1230
1231                 if (i == tx_ring->next_to_use)
1232                         break;
1233                 eop = tx_ring->buffer_info[i].next_to_watch;
1234                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1235         }
1236
1237         tx_ring->next_to_clean = i;
1238
1239         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1240
1241 #define TX_WAKE_THRESHOLD 32
1242         if (count && netif_carrier_ok(netdev) &&
1243             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1244                 /* Make sure that anybody stopping the queue after this
1245                  * sees the new next_to_clean.
1246                  */
1247                 smp_mb();
1248
1249                 if (netif_queue_stopped(netdev) &&
1250                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1251                         netif_wake_queue(netdev);
1252                         ++adapter->restart_queue;
1253                 }
1254         }
1255
1256         if (adapter->detect_tx_hung) {
1257                 /* Detect a transmit hang in hardware, this serializes the
1258                  * check with the clearing of time_stamp and movement of i
1259                  */
1260                 adapter->detect_tx_hung = false;
1261                 if (tx_ring->buffer_info[i].time_stamp &&
1262                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1263                                + (adapter->tx_timeout_factor * HZ)) &&
1264                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1265                         schedule_work(&adapter->print_hang_task);
1266                 else
1267                         adapter->tx_hang_recheck = false;
1268         }
1269         adapter->total_tx_bytes += total_tx_bytes;
1270         adapter->total_tx_packets += total_tx_packets;
1271         return count < tx_ring->count;
1272 }
1273
1274 /**
1275  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1276  * @rx_ring: Rx descriptor ring
1277  *
1278  * the return value indicates whether actual cleaning was done, there
1279  * is no guarantee that everything was cleaned
1280  **/
1281 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1282                                   int work_to_do)
1283 {
1284         struct e1000_adapter *adapter = rx_ring->adapter;
1285         struct e1000_hw *hw = &adapter->hw;
1286         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1287         struct net_device *netdev = adapter->netdev;
1288         struct pci_dev *pdev = adapter->pdev;
1289         struct e1000_buffer *buffer_info, *next_buffer;
1290         struct e1000_ps_page *ps_page;
1291         struct sk_buff *skb;
1292         unsigned int i, j;
1293         u32 length, staterr;
1294         int cleaned_count = 0;
1295         bool cleaned = false;
1296         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1297
1298         i = rx_ring->next_to_clean;
1299         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1300         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1301         buffer_info = &rx_ring->buffer_info[i];
1302
1303         while (staterr & E1000_RXD_STAT_DD) {
1304                 if (*work_done >= work_to_do)
1305                         break;
1306                 (*work_done)++;
1307                 skb = buffer_info->skb;
1308                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1309
1310                 /* in the packet split case this is header only */
1311                 prefetch(skb->data - NET_IP_ALIGN);
1312
1313                 i++;
1314                 if (i == rx_ring->count)
1315                         i = 0;
1316                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1317                 prefetch(next_rxd);
1318
1319                 next_buffer = &rx_ring->buffer_info[i];
1320
1321                 cleaned = true;
1322                 cleaned_count++;
1323                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1324                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1325                 buffer_info->dma = 0;
1326
1327                 /* see !EOP comment in other Rx routine */
1328                 if (!(staterr & E1000_RXD_STAT_EOP))
1329                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1330
1331                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1332                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1333                         dev_kfree_skb_irq(skb);
1334                         if (staterr & E1000_RXD_STAT_EOP)
1335                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1336                         goto next_desc;
1337                 }
1338
1339                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1340                              !(netdev->features & NETIF_F_RXALL))) {
1341                         dev_kfree_skb_irq(skb);
1342                         goto next_desc;
1343                 }
1344
1345                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1346
1347                 if (!length) {
1348                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1349                         dev_kfree_skb_irq(skb);
1350                         goto next_desc;
1351                 }
1352
1353                 /* Good Receive */
1354                 skb_put(skb, length);
1355
1356                 {
1357                         /* this looks ugly, but it seems compiler issues make
1358                          * it more efficient than reusing j
1359                          */
1360                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1361
1362                         /* page alloc/put takes too long and effects small
1363                          * packet throughput, so unsplit small packets and
1364                          * save the alloc/put only valid in softirq (napi)
1365                          * context to call kmap_*
1366                          */
1367                         if (l1 && (l1 <= copybreak) &&
1368                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1369                                 u8 *vaddr;
1370
1371                                 ps_page = &buffer_info->ps_pages[0];
1372
1373                                 /* there is no documentation about how to call
1374                                  * kmap_atomic, so we can't hold the mapping
1375                                  * very long
1376                                  */
1377                                 dma_sync_single_for_cpu(&pdev->dev,
1378                                                         ps_page->dma,
1379                                                         PAGE_SIZE,
1380                                                         DMA_FROM_DEVICE);
1381                                 vaddr = kmap_atomic(ps_page->page);
1382                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1383                                 kunmap_atomic(vaddr);
1384                                 dma_sync_single_for_device(&pdev->dev,
1385                                                            ps_page->dma,
1386                                                            PAGE_SIZE,
1387                                                            DMA_FROM_DEVICE);
1388
1389                                 /* remove the CRC */
1390                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1391                                         if (!(netdev->features & NETIF_F_RXFCS))
1392                                                 l1 -= 4;
1393                                 }
1394
1395                                 skb_put(skb, l1);
1396                                 goto copydone;
1397                         } /* if */
1398                 }
1399
1400                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1401                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1402                         if (!length)
1403                                 break;
1404
1405                         ps_page = &buffer_info->ps_pages[j];
1406                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1407                                        DMA_FROM_DEVICE);
1408                         ps_page->dma = 0;
1409                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1410                         ps_page->page = NULL;
1411                         skb->len += length;
1412                         skb->data_len += length;
1413                         skb->truesize += PAGE_SIZE;
1414                 }
1415
1416                 /* strip the ethernet crc, problem is we're using pages now so
1417                  * this whole operation can get a little cpu intensive
1418                  */
1419                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1420                         if (!(netdev->features & NETIF_F_RXFCS))
1421                                 pskb_trim(skb, skb->len - 4);
1422                 }
1423
1424 copydone:
1425                 total_rx_bytes += skb->len;
1426                 total_rx_packets++;
1427
1428                 e1000_rx_checksum(adapter, staterr, skb);
1429
1430                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1431
1432                 if (rx_desc->wb.upper.header_status &
1433                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1434                         adapter->rx_hdr_split++;
1435
1436                 e1000_receive_skb(adapter, netdev, skb, staterr,
1437                                   rx_desc->wb.middle.vlan);
1438
1439 next_desc:
1440                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1441                 buffer_info->skb = NULL;
1442
1443                 /* return some buffers to hardware, one at a time is too slow */
1444                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1445                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1446                                               GFP_ATOMIC);
1447                         cleaned_count = 0;
1448                 }
1449
1450                 /* use prefetched values */
1451                 rx_desc = next_rxd;
1452                 buffer_info = next_buffer;
1453
1454                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1455         }
1456         rx_ring->next_to_clean = i;
1457
1458         cleaned_count = e1000_desc_unused(rx_ring);
1459         if (cleaned_count)
1460                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1461
1462         adapter->total_rx_bytes += total_rx_bytes;
1463         adapter->total_rx_packets += total_rx_packets;
1464         return cleaned;
1465 }
1466
1467 /**
1468  * e1000_consume_page - helper function
1469  **/
1470 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1471                                u16 length)
1472 {
1473         bi->page = NULL;
1474         skb->len += length;
1475         skb->data_len += length;
1476         skb->truesize += PAGE_SIZE;
1477 }
1478
1479 /**
1480  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1481  * @adapter: board private structure
1482  *
1483  * the return value indicates whether actual cleaning was done, there
1484  * is no guarantee that everything was cleaned
1485  **/
1486 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1487                                      int work_to_do)
1488 {
1489         struct e1000_adapter *adapter = rx_ring->adapter;
1490         struct net_device *netdev = adapter->netdev;
1491         struct pci_dev *pdev = adapter->pdev;
1492         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1493         struct e1000_buffer *buffer_info, *next_buffer;
1494         u32 length, staterr;
1495         unsigned int i;
1496         int cleaned_count = 0;
1497         bool cleaned = false;
1498         unsigned int total_rx_bytes=0, total_rx_packets=0;
1499
1500         i = rx_ring->next_to_clean;
1501         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1502         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1503         buffer_info = &rx_ring->buffer_info[i];
1504
1505         while (staterr & E1000_RXD_STAT_DD) {
1506                 struct sk_buff *skb;
1507
1508                 if (*work_done >= work_to_do)
1509                         break;
1510                 (*work_done)++;
1511                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1512
1513                 skb = buffer_info->skb;
1514                 buffer_info->skb = NULL;
1515
1516                 ++i;
1517                 if (i == rx_ring->count)
1518                         i = 0;
1519                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1520                 prefetch(next_rxd);
1521
1522                 next_buffer = &rx_ring->buffer_info[i];
1523
1524                 cleaned = true;
1525                 cleaned_count++;
1526                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1527                                DMA_FROM_DEVICE);
1528                 buffer_info->dma = 0;
1529
1530                 length = le16_to_cpu(rx_desc->wb.upper.length);
1531
1532                 /* errors is only valid for DD + EOP descriptors */
1533                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1534                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1535                               !(netdev->features & NETIF_F_RXALL)))) {
1536                         /* recycle both page and skb */
1537                         buffer_info->skb = skb;
1538                         /* an error means any chain goes out the window too */
1539                         if (rx_ring->rx_skb_top)
1540                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1541                         rx_ring->rx_skb_top = NULL;
1542                         goto next_desc;
1543                 }
1544
1545 #define rxtop (rx_ring->rx_skb_top)
1546                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1547                         /* this descriptor is only the beginning (or middle) */
1548                         if (!rxtop) {
1549                                 /* this is the beginning of a chain */
1550                                 rxtop = skb;
1551                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1552                                                    0, length);
1553                         } else {
1554                                 /* this is the middle of a chain */
1555                                 skb_fill_page_desc(rxtop,
1556                                     skb_shinfo(rxtop)->nr_frags,
1557                                     buffer_info->page, 0, length);
1558                                 /* re-use the skb, only consumed the page */
1559                                 buffer_info->skb = skb;
1560                         }
1561                         e1000_consume_page(buffer_info, rxtop, length);
1562                         goto next_desc;
1563                 } else {
1564                         if (rxtop) {
1565                                 /* end of the chain */
1566                                 skb_fill_page_desc(rxtop,
1567                                     skb_shinfo(rxtop)->nr_frags,
1568                                     buffer_info->page, 0, length);
1569                                 /* re-use the current skb, we only consumed the
1570                                  * page
1571                                  */
1572                                 buffer_info->skb = skb;
1573                                 skb = rxtop;
1574                                 rxtop = NULL;
1575                                 e1000_consume_page(buffer_info, skb, length);
1576                         } else {
1577                                 /* no chain, got EOP, this buf is the packet
1578                                  * copybreak to save the put_page/alloc_page
1579                                  */
1580                                 if (length <= copybreak &&
1581                                     skb_tailroom(skb) >= length) {
1582                                         u8 *vaddr;
1583                                         vaddr = kmap_atomic(buffer_info->page);
1584                                         memcpy(skb_tail_pointer(skb), vaddr,
1585                                                length);
1586                                         kunmap_atomic(vaddr);
1587                                         /* re-use the page, so don't erase
1588                                          * buffer_info->page
1589                                          */
1590                                         skb_put(skb, length);
1591                                 } else {
1592                                         skb_fill_page_desc(skb, 0,
1593                                                            buffer_info->page, 0,
1594                                                            length);
1595                                         e1000_consume_page(buffer_info, skb,
1596                                                            length);
1597                                 }
1598                         }
1599                 }
1600
1601                 /* Receive Checksum Offload */
1602                 e1000_rx_checksum(adapter, staterr, skb);
1603
1604                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1605
1606                 /* probably a little skewed due to removing CRC */
1607                 total_rx_bytes += skb->len;
1608                 total_rx_packets++;
1609
1610                 /* eth type trans needs skb->data to point to something */
1611                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1612                         e_err("pskb_may_pull failed.\n");
1613                         dev_kfree_skb_irq(skb);
1614                         goto next_desc;
1615                 }
1616
1617                 e1000_receive_skb(adapter, netdev, skb, staterr,
1618                                   rx_desc->wb.upper.vlan);
1619
1620 next_desc:
1621                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1622
1623                 /* return some buffers to hardware, one at a time is too slow */
1624                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1625                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1626                                               GFP_ATOMIC);
1627                         cleaned_count = 0;
1628                 }
1629
1630                 /* use prefetched values */
1631                 rx_desc = next_rxd;
1632                 buffer_info = next_buffer;
1633
1634                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1635         }
1636         rx_ring->next_to_clean = i;
1637
1638         cleaned_count = e1000_desc_unused(rx_ring);
1639         if (cleaned_count)
1640                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1641
1642         adapter->total_rx_bytes += total_rx_bytes;
1643         adapter->total_rx_packets += total_rx_packets;
1644         return cleaned;
1645 }
1646
1647 /**
1648  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1649  * @rx_ring: Rx descriptor ring
1650  **/
1651 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1652 {
1653         struct e1000_adapter *adapter = rx_ring->adapter;
1654         struct e1000_buffer *buffer_info;
1655         struct e1000_ps_page *ps_page;
1656         struct pci_dev *pdev = adapter->pdev;
1657         unsigned int i, j;
1658
1659         /* Free all the Rx ring sk_buffs */
1660         for (i = 0; i < rx_ring->count; i++) {
1661                 buffer_info = &rx_ring->buffer_info[i];
1662                 if (buffer_info->dma) {
1663                         if (adapter->clean_rx == e1000_clean_rx_irq)
1664                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1665                                                  adapter->rx_buffer_len,
1666                                                  DMA_FROM_DEVICE);
1667                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1668                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1669                                                PAGE_SIZE,
1670                                                DMA_FROM_DEVICE);
1671                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1672                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1673                                                  adapter->rx_ps_bsize0,
1674                                                  DMA_FROM_DEVICE);
1675                         buffer_info->dma = 0;
1676                 }
1677
1678                 if (buffer_info->page) {
1679                         put_page(buffer_info->page);
1680                         buffer_info->page = NULL;
1681                 }
1682
1683                 if (buffer_info->skb) {
1684                         dev_kfree_skb(buffer_info->skb);
1685                         buffer_info->skb = NULL;
1686                 }
1687
1688                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1689                         ps_page = &buffer_info->ps_pages[j];
1690                         if (!ps_page->page)
1691                                 break;
1692                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1693                                        DMA_FROM_DEVICE);
1694                         ps_page->dma = 0;
1695                         put_page(ps_page->page);
1696                         ps_page->page = NULL;
1697                 }
1698         }
1699
1700         /* there also may be some cached data from a chained receive */
1701         if (rx_ring->rx_skb_top) {
1702                 dev_kfree_skb(rx_ring->rx_skb_top);
1703                 rx_ring->rx_skb_top = NULL;
1704         }
1705
1706         /* Zero out the descriptor ring */
1707         memset(rx_ring->desc, 0, rx_ring->size);
1708
1709         rx_ring->next_to_clean = 0;
1710         rx_ring->next_to_use = 0;
1711         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1712
1713         writel(0, rx_ring->head);
1714         if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1715                 e1000e_update_rdt_wa(rx_ring, 0);
1716         else
1717                 writel(0, rx_ring->tail);
1718 }
1719
1720 static void e1000e_downshift_workaround(struct work_struct *work)
1721 {
1722         struct e1000_adapter *adapter = container_of(work,
1723                                         struct e1000_adapter, downshift_task);
1724
1725         if (test_bit(__E1000_DOWN, &adapter->state))
1726                 return;
1727
1728         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1729 }
1730
1731 /**
1732  * e1000_intr_msi - Interrupt Handler
1733  * @irq: interrupt number
1734  * @data: pointer to a network interface device structure
1735  **/
1736 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1737 {
1738         struct net_device *netdev = data;
1739         struct e1000_adapter *adapter = netdev_priv(netdev);
1740         struct e1000_hw *hw = &adapter->hw;
1741         u32 icr = er32(ICR);
1742
1743         /* read ICR disables interrupts using IAM */
1744         if (icr & E1000_ICR_LSC) {
1745                 hw->mac.get_link_status = true;
1746                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1747                  * disconnect (LSC) before accessing any PHY registers
1748                  */
1749                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1750                     (!(er32(STATUS) & E1000_STATUS_LU)))
1751                         schedule_work(&adapter->downshift_task);
1752
1753                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1754                  * link down event; disable receives here in the ISR and reset
1755                  * adapter in watchdog
1756                  */
1757                 if (netif_carrier_ok(netdev) &&
1758                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1759                         /* disable receives */
1760                         u32 rctl = er32(RCTL);
1761                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1762                         adapter->flags |= FLAG_RESTART_NOW;
1763                 }
1764                 /* guard against interrupt when we're going down */
1765                 if (!test_bit(__E1000_DOWN, &adapter->state))
1766                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767         }
1768
1769         /* Reset on uncorrectable ECC error */
1770         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1771                 u32 pbeccsts = er32(PBECCSTS);
1772
1773                 adapter->corr_errors +=
1774                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1775                 adapter->uncorr_errors +=
1776                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1777                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1778
1779                 /* Do the reset outside of interrupt context */
1780                 schedule_work(&adapter->reset_task);
1781
1782                 /* return immediately since reset is imminent */
1783                 return IRQ_HANDLED;
1784         }
1785
1786         if (napi_schedule_prep(&adapter->napi)) {
1787                 adapter->total_tx_bytes = 0;
1788                 adapter->total_tx_packets = 0;
1789                 adapter->total_rx_bytes = 0;
1790                 adapter->total_rx_packets = 0;
1791                 __napi_schedule(&adapter->napi);
1792         }
1793
1794         return IRQ_HANDLED;
1795 }
1796
1797 /**
1798  * e1000_intr - Interrupt Handler
1799  * @irq: interrupt number
1800  * @data: pointer to a network interface device structure
1801  **/
1802 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1803 {
1804         struct net_device *netdev = data;
1805         struct e1000_adapter *adapter = netdev_priv(netdev);
1806         struct e1000_hw *hw = &adapter->hw;
1807         u32 rctl, icr = er32(ICR);
1808
1809         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1810                 return IRQ_NONE;  /* Not our interrupt */
1811
1812         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1813          * not set, then the adapter didn't send an interrupt
1814          */
1815         if (!(icr & E1000_ICR_INT_ASSERTED))
1816                 return IRQ_NONE;
1817
1818         /* Interrupt Auto-Mask...upon reading ICR,
1819          * interrupts are masked.  No need for the
1820          * IMC write
1821          */
1822
1823         if (icr & E1000_ICR_LSC) {
1824                 hw->mac.get_link_status = true;
1825                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1826                  * disconnect (LSC) before accessing any PHY registers
1827                  */
1828                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1829                     (!(er32(STATUS) & E1000_STATUS_LU)))
1830                         schedule_work(&adapter->downshift_task);
1831
1832                 /* 80003ES2LAN workaround--
1833                  * For packet buffer work-around on link down event;
1834                  * disable receives here in the ISR and
1835                  * reset adapter in watchdog
1836                  */
1837                 if (netif_carrier_ok(netdev) &&
1838                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1839                         /* disable receives */
1840                         rctl = er32(RCTL);
1841                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1842                         adapter->flags |= FLAG_RESTART_NOW;
1843                 }
1844                 /* guard against interrupt when we're going down */
1845                 if (!test_bit(__E1000_DOWN, &adapter->state))
1846                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1847         }
1848
1849         /* Reset on uncorrectable ECC error */
1850         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1851                 u32 pbeccsts = er32(PBECCSTS);
1852
1853                 adapter->corr_errors +=
1854                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1855                 adapter->uncorr_errors +=
1856                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1857                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1858
1859                 /* Do the reset outside of interrupt context */
1860                 schedule_work(&adapter->reset_task);
1861
1862                 /* return immediately since reset is imminent */
1863                 return IRQ_HANDLED;
1864         }
1865
1866         if (napi_schedule_prep(&adapter->napi)) {
1867                 adapter->total_tx_bytes = 0;
1868                 adapter->total_tx_packets = 0;
1869                 adapter->total_rx_bytes = 0;
1870                 adapter->total_rx_packets = 0;
1871                 __napi_schedule(&adapter->napi);
1872         }
1873
1874         return IRQ_HANDLED;
1875 }
1876
1877 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1878 {
1879         struct net_device *netdev = data;
1880         struct e1000_adapter *adapter = netdev_priv(netdev);
1881         struct e1000_hw *hw = &adapter->hw;
1882         u32 icr = er32(ICR);
1883
1884         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1885                 if (!test_bit(__E1000_DOWN, &adapter->state))
1886                         ew32(IMS, E1000_IMS_OTHER);
1887                 return IRQ_NONE;
1888         }
1889
1890         if (icr & adapter->eiac_mask)
1891                 ew32(ICS, (icr & adapter->eiac_mask));
1892
1893         if (icr & E1000_ICR_OTHER) {
1894                 if (!(icr & E1000_ICR_LSC))
1895                         goto no_link_interrupt;
1896                 hw->mac.get_link_status = true;
1897                 /* guard against interrupt when we're going down */
1898                 if (!test_bit(__E1000_DOWN, &adapter->state))
1899                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1900         }
1901
1902 no_link_interrupt:
1903         if (!test_bit(__E1000_DOWN, &adapter->state))
1904                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1905
1906         return IRQ_HANDLED;
1907 }
1908
1909 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1910 {
1911         struct net_device *netdev = data;
1912         struct e1000_adapter *adapter = netdev_priv(netdev);
1913         struct e1000_hw *hw = &adapter->hw;
1914         struct e1000_ring *tx_ring = adapter->tx_ring;
1915
1916
1917         adapter->total_tx_bytes = 0;
1918         adapter->total_tx_packets = 0;
1919
1920         if (!e1000_clean_tx_irq(tx_ring))
1921                 /* Ring was not completely cleaned, so fire another interrupt */
1922                 ew32(ICS, tx_ring->ims_val);
1923
1924         return IRQ_HANDLED;
1925 }
1926
1927 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1928 {
1929         struct net_device *netdev = data;
1930         struct e1000_adapter *adapter = netdev_priv(netdev);
1931         struct e1000_ring *rx_ring = adapter->rx_ring;
1932
1933         /* Write the ITR value calculated at the end of the
1934          * previous interrupt.
1935          */
1936         if (rx_ring->set_itr) {
1937                 writel(1000000000 / (rx_ring->itr_val * 256),
1938                        rx_ring->itr_register);
1939                 rx_ring->set_itr = 0;
1940         }
1941
1942         if (napi_schedule_prep(&adapter->napi)) {
1943                 adapter->total_rx_bytes = 0;
1944                 adapter->total_rx_packets = 0;
1945                 __napi_schedule(&adapter->napi);
1946         }
1947         return IRQ_HANDLED;
1948 }
1949
1950 /**
1951  * e1000_configure_msix - Configure MSI-X hardware
1952  *
1953  * e1000_configure_msix sets up the hardware to properly
1954  * generate MSI-X interrupts.
1955  **/
1956 static void e1000_configure_msix(struct e1000_adapter *adapter)
1957 {
1958         struct e1000_hw *hw = &adapter->hw;
1959         struct e1000_ring *rx_ring = adapter->rx_ring;
1960         struct e1000_ring *tx_ring = adapter->tx_ring;
1961         int vector = 0;
1962         u32 ctrl_ext, ivar = 0;
1963
1964         adapter->eiac_mask = 0;
1965
1966         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1967         if (hw->mac.type == e1000_82574) {
1968                 u32 rfctl = er32(RFCTL);
1969                 rfctl |= E1000_RFCTL_ACK_DIS;
1970                 ew32(RFCTL, rfctl);
1971         }
1972
1973 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1974         /* Configure Rx vector */
1975         rx_ring->ims_val = E1000_IMS_RXQ0;
1976         adapter->eiac_mask |= rx_ring->ims_val;
1977         if (rx_ring->itr_val)
1978                 writel(1000000000 / (rx_ring->itr_val * 256),
1979                        rx_ring->itr_register);
1980         else
1981                 writel(1, rx_ring->itr_register);
1982         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1983
1984         /* Configure Tx vector */
1985         tx_ring->ims_val = E1000_IMS_TXQ0;
1986         vector++;
1987         if (tx_ring->itr_val)
1988                 writel(1000000000 / (tx_ring->itr_val * 256),
1989                        tx_ring->itr_register);
1990         else
1991                 writel(1, tx_ring->itr_register);
1992         adapter->eiac_mask |= tx_ring->ims_val;
1993         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1994
1995         /* set vector for Other Causes, e.g. link changes */
1996         vector++;
1997         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1998         if (rx_ring->itr_val)
1999                 writel(1000000000 / (rx_ring->itr_val * 256),
2000                        hw->hw_addr + E1000_EITR_82574(vector));
2001         else
2002                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2003
2004         /* Cause Tx interrupts on every write back */
2005         ivar |= (1 << 31);
2006
2007         ew32(IVAR, ivar);
2008
2009         /* enable MSI-X PBA support */
2010         ctrl_ext = er32(CTRL_EXT);
2011         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2012
2013         /* Auto-Mask Other interrupts upon ICR read */
2014         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2015         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2016         ew32(CTRL_EXT, ctrl_ext);
2017         e1e_flush();
2018 }
2019
2020 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2021 {
2022         if (adapter->msix_entries) {
2023                 pci_disable_msix(adapter->pdev);
2024                 kfree(adapter->msix_entries);
2025                 adapter->msix_entries = NULL;
2026         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2027                 pci_disable_msi(adapter->pdev);
2028                 adapter->flags &= ~FLAG_MSI_ENABLED;
2029         }
2030 }
2031
2032 /**
2033  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2034  *
2035  * Attempt to configure interrupts using the best available
2036  * capabilities of the hardware and kernel.
2037  **/
2038 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2039 {
2040         int err;
2041         int i;
2042
2043         switch (adapter->int_mode) {
2044         case E1000E_INT_MODE_MSIX:
2045                 if (adapter->flags & FLAG_HAS_MSIX) {
2046                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2047                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2048                                                       sizeof(struct msix_entry),
2049                                                       GFP_KERNEL);
2050                         if (adapter->msix_entries) {
2051                                 for (i = 0; i < adapter->num_vectors; i++)
2052                                         adapter->msix_entries[i].entry = i;
2053
2054                                 err = pci_enable_msix(adapter->pdev,
2055                                                       adapter->msix_entries,
2056                                                       adapter->num_vectors);
2057                                 if (err == 0)
2058                                         return;
2059                         }
2060                         /* MSI-X failed, so fall through and try MSI */
2061                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2062                         e1000e_reset_interrupt_capability(adapter);
2063                 }
2064                 adapter->int_mode = E1000E_INT_MODE_MSI;
2065                 /* Fall through */
2066         case E1000E_INT_MODE_MSI:
2067                 if (!pci_enable_msi(adapter->pdev)) {
2068                         adapter->flags |= FLAG_MSI_ENABLED;
2069                 } else {
2070                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2071                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2072                 }
2073                 /* Fall through */
2074         case E1000E_INT_MODE_LEGACY:
2075                 /* Don't do anything; this is the system default */
2076                 break;
2077         }
2078
2079         /* store the number of vectors being used */
2080         adapter->num_vectors = 1;
2081 }
2082
2083 /**
2084  * e1000_request_msix - Initialize MSI-X interrupts
2085  *
2086  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2087  * kernel.
2088  **/
2089 static int e1000_request_msix(struct e1000_adapter *adapter)
2090 {
2091         struct net_device *netdev = adapter->netdev;
2092         int err = 0, vector = 0;
2093
2094         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2095                 snprintf(adapter->rx_ring->name,
2096                          sizeof(adapter->rx_ring->name) - 1,
2097                          "%s-rx-0", netdev->name);
2098         else
2099                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2100         err = request_irq(adapter->msix_entries[vector].vector,
2101                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2102                           netdev);
2103         if (err)
2104                 return err;
2105         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2106             E1000_EITR_82574(vector);
2107         adapter->rx_ring->itr_val = adapter->itr;
2108         vector++;
2109
2110         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2111                 snprintf(adapter->tx_ring->name,
2112                          sizeof(adapter->tx_ring->name) - 1,
2113                          "%s-tx-0", netdev->name);
2114         else
2115                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2116         err = request_irq(adapter->msix_entries[vector].vector,
2117                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2118                           netdev);
2119         if (err)
2120                 return err;
2121         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2122             E1000_EITR_82574(vector);
2123         adapter->tx_ring->itr_val = adapter->itr;
2124         vector++;
2125
2126         err = request_irq(adapter->msix_entries[vector].vector,
2127                           e1000_msix_other, 0, netdev->name, netdev);
2128         if (err)
2129                 return err;
2130
2131         e1000_configure_msix(adapter);
2132
2133         return 0;
2134 }
2135
2136 /**
2137  * e1000_request_irq - initialize interrupts
2138  *
2139  * Attempts to configure interrupts using the best available
2140  * capabilities of the hardware and kernel.
2141  **/
2142 static int e1000_request_irq(struct e1000_adapter *adapter)
2143 {
2144         struct net_device *netdev = adapter->netdev;
2145         int err;
2146
2147         if (adapter->msix_entries) {
2148                 err = e1000_request_msix(adapter);
2149                 if (!err)
2150                         return err;
2151                 /* fall back to MSI */
2152                 e1000e_reset_interrupt_capability(adapter);
2153                 adapter->int_mode = E1000E_INT_MODE_MSI;
2154                 e1000e_set_interrupt_capability(adapter);
2155         }
2156         if (adapter->flags & FLAG_MSI_ENABLED) {
2157                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2158                                   netdev->name, netdev);
2159                 if (!err)
2160                         return err;
2161
2162                 /* fall back to legacy interrupt */
2163                 e1000e_reset_interrupt_capability(adapter);
2164                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2165         }
2166
2167         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2168                           netdev->name, netdev);
2169         if (err)
2170                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2171
2172         return err;
2173 }
2174
2175 static void e1000_free_irq(struct e1000_adapter *adapter)
2176 {
2177         struct net_device *netdev = adapter->netdev;
2178
2179         if (adapter->msix_entries) {
2180                 int vector = 0;
2181
2182                 free_irq(adapter->msix_entries[vector].vector, netdev);
2183                 vector++;
2184
2185                 free_irq(adapter->msix_entries[vector].vector, netdev);
2186                 vector++;
2187
2188                 /* Other Causes interrupt vector */
2189                 free_irq(adapter->msix_entries[vector].vector, netdev);
2190                 return;
2191         }
2192
2193         free_irq(adapter->pdev->irq, netdev);
2194 }
2195
2196 /**
2197  * e1000_irq_disable - Mask off interrupt generation on the NIC
2198  **/
2199 static void e1000_irq_disable(struct e1000_adapter *adapter)
2200 {
2201         struct e1000_hw *hw = &adapter->hw;
2202
2203         ew32(IMC, ~0);
2204         if (adapter->msix_entries)
2205                 ew32(EIAC_82574, 0);
2206         e1e_flush();
2207
2208         if (adapter->msix_entries) {
2209                 int i;
2210                 for (i = 0; i < adapter->num_vectors; i++)
2211                         synchronize_irq(adapter->msix_entries[i].vector);
2212         } else {
2213                 synchronize_irq(adapter->pdev->irq);
2214         }
2215 }
2216
2217 /**
2218  * e1000_irq_enable - Enable default interrupt generation settings
2219  **/
2220 static void e1000_irq_enable(struct e1000_adapter *adapter)
2221 {
2222         struct e1000_hw *hw = &adapter->hw;
2223
2224         if (adapter->msix_entries) {
2225                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2226                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2227         } else if (hw->mac.type == e1000_pch_lpt) {
2228                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2229         } else {
2230                 ew32(IMS, IMS_ENABLE_MASK);
2231         }
2232         e1e_flush();
2233 }
2234
2235 /**
2236  * e1000e_get_hw_control - get control of the h/w from f/w
2237  * @adapter: address of board private structure
2238  *
2239  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2240  * For ASF and Pass Through versions of f/w this means that
2241  * the driver is loaded. For AMT version (only with 82573)
2242  * of the f/w this means that the network i/f is open.
2243  **/
2244 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2245 {
2246         struct e1000_hw *hw = &adapter->hw;
2247         u32 ctrl_ext;
2248         u32 swsm;
2249
2250         /* Let firmware know the driver has taken over */
2251         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2252                 swsm = er32(SWSM);
2253                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2254         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2255                 ctrl_ext = er32(CTRL_EXT);
2256                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2257         }
2258 }
2259
2260 /**
2261  * e1000e_release_hw_control - release control of the h/w to f/w
2262  * @adapter: address of board private structure
2263  *
2264  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265  * For ASF and Pass Through versions of f/w this means that the
2266  * driver is no longer loaded. For AMT version (only with 82573) i
2267  * of the f/w this means that the network i/f is closed.
2268  *
2269  **/
2270 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2271 {
2272         struct e1000_hw *hw = &adapter->hw;
2273         u32 ctrl_ext;
2274         u32 swsm;
2275
2276         /* Let firmware taken over control of h/w */
2277         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278                 swsm = er32(SWSM);
2279                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2280         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281                 ctrl_ext = er32(CTRL_EXT);
2282                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2283         }
2284 }
2285
2286 /**
2287  * e1000_alloc_ring_dma - allocate memory for a ring structure
2288  **/
2289 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2290                                 struct e1000_ring *ring)
2291 {
2292         struct pci_dev *pdev = adapter->pdev;
2293
2294         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2295                                         GFP_KERNEL);
2296         if (!ring->desc)
2297                 return -ENOMEM;
2298
2299         return 0;
2300 }
2301
2302 /**
2303  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2304  * @tx_ring: Tx descriptor ring
2305  *
2306  * Return 0 on success, negative on failure
2307  **/
2308 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2309 {
2310         struct e1000_adapter *adapter = tx_ring->adapter;
2311         int err = -ENOMEM, size;
2312
2313         size = sizeof(struct e1000_buffer) * tx_ring->count;
2314         tx_ring->buffer_info = vzalloc(size);
2315         if (!tx_ring->buffer_info)
2316                 goto err;
2317
2318         /* round up to nearest 4K */
2319         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2320         tx_ring->size = ALIGN(tx_ring->size, 4096);
2321
2322         err = e1000_alloc_ring_dma(adapter, tx_ring);
2323         if (err)
2324                 goto err;
2325
2326         tx_ring->next_to_use = 0;
2327         tx_ring->next_to_clean = 0;
2328
2329         return 0;
2330 err:
2331         vfree(tx_ring->buffer_info);
2332         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2333         return err;
2334 }
2335
2336 /**
2337  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2338  * @rx_ring: Rx descriptor ring
2339  *
2340  * Returns 0 on success, negative on failure
2341  **/
2342 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2343 {
2344         struct e1000_adapter *adapter = rx_ring->adapter;
2345         struct e1000_buffer *buffer_info;
2346         int i, size, desc_len, err = -ENOMEM;
2347
2348         size = sizeof(struct e1000_buffer) * rx_ring->count;
2349         rx_ring->buffer_info = vzalloc(size);
2350         if (!rx_ring->buffer_info)
2351                 goto err;
2352
2353         for (i = 0; i < rx_ring->count; i++) {
2354                 buffer_info = &rx_ring->buffer_info[i];
2355                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2356                                                 sizeof(struct e1000_ps_page),
2357                                                 GFP_KERNEL);
2358                 if (!buffer_info->ps_pages)
2359                         goto err_pages;
2360         }
2361
2362         desc_len = sizeof(union e1000_rx_desc_packet_split);
2363
2364         /* Round up to nearest 4K */
2365         rx_ring->size = rx_ring->count * desc_len;
2366         rx_ring->size = ALIGN(rx_ring->size, 4096);
2367
2368         err = e1000_alloc_ring_dma(adapter, rx_ring);
2369         if (err)
2370                 goto err_pages;
2371
2372         rx_ring->next_to_clean = 0;
2373         rx_ring->next_to_use = 0;
2374         rx_ring->rx_skb_top = NULL;
2375
2376         return 0;
2377
2378 err_pages:
2379         for (i = 0; i < rx_ring->count; i++) {
2380                 buffer_info = &rx_ring->buffer_info[i];
2381                 kfree(buffer_info->ps_pages);
2382         }
2383 err:
2384         vfree(rx_ring->buffer_info);
2385         e_err("Unable to allocate memory for the receive descriptor ring\n");
2386         return err;
2387 }
2388
2389 /**
2390  * e1000_clean_tx_ring - Free Tx Buffers
2391  * @tx_ring: Tx descriptor ring
2392  **/
2393 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2394 {
2395         struct e1000_adapter *adapter = tx_ring->adapter;
2396         struct e1000_buffer *buffer_info;
2397         unsigned long size;
2398         unsigned int i;
2399
2400         for (i = 0; i < tx_ring->count; i++) {
2401                 buffer_info = &tx_ring->buffer_info[i];
2402                 e1000_put_txbuf(tx_ring, buffer_info);
2403         }
2404
2405         netdev_reset_queue(adapter->netdev);
2406         size = sizeof(struct e1000_buffer) * tx_ring->count;
2407         memset(tx_ring->buffer_info, 0, size);
2408
2409         memset(tx_ring->desc, 0, tx_ring->size);
2410
2411         tx_ring->next_to_use = 0;
2412         tx_ring->next_to_clean = 0;
2413
2414         writel(0, tx_ring->head);
2415         if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2416                 e1000e_update_tdt_wa(tx_ring, 0);
2417         else
2418                 writel(0, tx_ring->tail);
2419 }
2420
2421 /**
2422  * e1000e_free_tx_resources - Free Tx Resources per Queue
2423  * @tx_ring: Tx descriptor ring
2424  *
2425  * Free all transmit software resources
2426  **/
2427 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2428 {
2429         struct e1000_adapter *adapter = tx_ring->adapter;
2430         struct pci_dev *pdev = adapter->pdev;
2431
2432         e1000_clean_tx_ring(tx_ring);
2433
2434         vfree(tx_ring->buffer_info);
2435         tx_ring->buffer_info = NULL;
2436
2437         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2438                           tx_ring->dma);
2439         tx_ring->desc = NULL;
2440 }
2441
2442 /**
2443  * e1000e_free_rx_resources - Free Rx Resources
2444  * @rx_ring: Rx descriptor ring
2445  *
2446  * Free all receive software resources
2447  **/
2448 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2449 {
2450         struct e1000_adapter *adapter = rx_ring->adapter;
2451         struct pci_dev *pdev = adapter->pdev;
2452         int i;
2453
2454         e1000_clean_rx_ring(rx_ring);
2455
2456         for (i = 0; i < rx_ring->count; i++)
2457                 kfree(rx_ring->buffer_info[i].ps_pages);
2458
2459         vfree(rx_ring->buffer_info);
2460         rx_ring->buffer_info = NULL;
2461
2462         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2463                           rx_ring->dma);
2464         rx_ring->desc = NULL;
2465 }
2466
2467 /**
2468  * e1000_update_itr - update the dynamic ITR value based on statistics
2469  * @adapter: pointer to adapter
2470  * @itr_setting: current adapter->itr
2471  * @packets: the number of packets during this measurement interval
2472  * @bytes: the number of bytes during this measurement interval
2473  *
2474  *      Stores a new ITR value based on packets and byte
2475  *      counts during the last interrupt.  The advantage of per interrupt
2476  *      computation is faster updates and more accurate ITR for the current
2477  *      traffic pattern.  Constants in this function were computed
2478  *      based on theoretical maximum wire speed and thresholds were set based
2479  *      on testing data as well as attempting to minimize response time
2480  *      while increasing bulk throughput.  This functionality is controlled
2481  *      by the InterruptThrottleRate module parameter.
2482  **/
2483 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2484 {
2485         unsigned int retval = itr_setting;
2486
2487         if (packets == 0)
2488                 return itr_setting;
2489
2490         switch (itr_setting) {
2491         case lowest_latency:
2492                 /* handle TSO and jumbo frames */
2493                 if (bytes/packets > 8000)
2494                         retval = bulk_latency;
2495                 else if ((packets < 5) && (bytes > 512))
2496                         retval = low_latency;
2497                 break;
2498         case low_latency:  /* 50 usec aka 20000 ints/s */
2499                 if (bytes > 10000) {
2500                         /* this if handles the TSO accounting */
2501                         if (bytes/packets > 8000)
2502                                 retval = bulk_latency;
2503                         else if ((packets < 10) || ((bytes/packets) > 1200))
2504                                 retval = bulk_latency;
2505                         else if ((packets > 35))
2506                                 retval = lowest_latency;
2507                 } else if (bytes/packets > 2000) {
2508                         retval = bulk_latency;
2509                 } else if (packets <= 2 && bytes < 512) {
2510                         retval = lowest_latency;
2511                 }
2512                 break;
2513         case bulk_latency: /* 250 usec aka 4000 ints/s */
2514                 if (bytes > 25000) {
2515                         if (packets > 35)
2516                                 retval = low_latency;
2517                 } else if (bytes < 6000) {
2518                         retval = low_latency;
2519                 }
2520                 break;
2521         }
2522
2523         return retval;
2524 }
2525
2526 static void e1000_set_itr(struct e1000_adapter *adapter)
2527 {
2528         u16 current_itr;
2529         u32 new_itr = adapter->itr;
2530
2531         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2532         if (adapter->link_speed != SPEED_1000) {
2533                 current_itr = 0;
2534                 new_itr = 4000;
2535                 goto set_itr_now;
2536         }
2537
2538         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2539                 new_itr = 0;
2540                 goto set_itr_now;
2541         }
2542
2543         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2544                                            adapter->total_tx_packets,
2545                                            adapter->total_tx_bytes);
2546         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2547         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2548                 adapter->tx_itr = low_latency;
2549
2550         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2551                                            adapter->total_rx_packets,
2552                                            adapter->total_rx_bytes);
2553         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2554         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2555                 adapter->rx_itr = low_latency;
2556
2557         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2558
2559         switch (current_itr) {
2560         /* counts and packets in update_itr are dependent on these numbers */
2561         case lowest_latency:
2562                 new_itr = 70000;
2563                 break;
2564         case low_latency:
2565                 new_itr = 20000; /* aka hwitr = ~200 */
2566                 break;
2567         case bulk_latency:
2568                 new_itr = 4000;
2569                 break;
2570         default:
2571                 break;
2572         }
2573
2574 set_itr_now:
2575         if (new_itr != adapter->itr) {
2576                 /* this attempts to bias the interrupt rate towards Bulk
2577                  * by adding intermediate steps when interrupt rate is
2578                  * increasing
2579                  */
2580                 new_itr = new_itr > adapter->itr ?
2581                              min(adapter->itr + (new_itr >> 2), new_itr) :
2582                              new_itr;
2583                 adapter->itr = new_itr;
2584                 adapter->rx_ring->itr_val = new_itr;
2585                 if (adapter->msix_entries)
2586                         adapter->rx_ring->set_itr = 1;
2587                 else
2588                         e1000e_write_itr(adapter, new_itr);
2589         }
2590 }
2591
2592 /**
2593  * e1000e_write_itr - write the ITR value to the appropriate registers
2594  * @adapter: address of board private structure
2595  * @itr: new ITR value to program
2596  *
2597  * e1000e_write_itr determines if the adapter is in MSI-X mode
2598  * and, if so, writes the EITR registers with the ITR value.
2599  * Otherwise, it writes the ITR value into the ITR register.
2600  **/
2601 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2602 {
2603         struct e1000_hw *hw = &adapter->hw;
2604         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2605
2606         if (adapter->msix_entries) {
2607                 int vector;
2608
2609                 for (vector = 0; vector < adapter->num_vectors; vector++)
2610                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2611         } else {
2612                 ew32(ITR, new_itr);
2613         }
2614 }
2615
2616 /**
2617  * e1000_alloc_queues - Allocate memory for all rings
2618  * @adapter: board private structure to initialize
2619  **/
2620 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2621 {
2622         int size = sizeof(struct e1000_ring);
2623
2624         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2625         if (!adapter->tx_ring)
2626                 goto err;
2627         adapter->tx_ring->count = adapter->tx_ring_count;
2628         adapter->tx_ring->adapter = adapter;
2629
2630         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2631         if (!adapter->rx_ring)
2632                 goto err;
2633         adapter->rx_ring->count = adapter->rx_ring_count;
2634         adapter->rx_ring->adapter = adapter;
2635
2636         return 0;
2637 err:
2638         e_err("Unable to allocate memory for queues\n");
2639         kfree(adapter->rx_ring);
2640         kfree(adapter->tx_ring);
2641         return -ENOMEM;
2642 }
2643
2644 /**
2645  * e1000e_poll - NAPI Rx polling callback
2646  * @napi: struct associated with this polling callback
2647  * @weight: number of packets driver is allowed to process this poll
2648  **/
2649 static int e1000e_poll(struct napi_struct *napi, int weight)
2650 {
2651         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2652                                                      napi);
2653         struct e1000_hw *hw = &adapter->hw;
2654         struct net_device *poll_dev = adapter->netdev;
2655         int tx_cleaned = 1, work_done = 0;
2656
2657         adapter = netdev_priv(poll_dev);
2658
2659         if (!adapter->msix_entries ||
2660             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2661                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2662
2663         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2664
2665         if (!tx_cleaned)
2666                 work_done = weight;
2667
2668         /* If weight not fully consumed, exit the polling mode */
2669         if (work_done < weight) {
2670                 if (adapter->itr_setting & 3)
2671                         e1000_set_itr(adapter);
2672                 napi_complete(napi);
2673                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2674                         if (adapter->msix_entries)
2675                                 ew32(IMS, adapter->rx_ring->ims_val);
2676                         else
2677                                 e1000_irq_enable(adapter);
2678                 }
2679         }
2680
2681         return work_done;
2682 }
2683
2684 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2685 {
2686         struct e1000_adapter *adapter = netdev_priv(netdev);
2687         struct e1000_hw *hw = &adapter->hw;
2688         u32 vfta, index;
2689
2690         /* don't update vlan cookie if already programmed */
2691         if ((adapter->hw.mng_cookie.status &
2692              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2693             (vid == adapter->mng_vlan_id))
2694                 return 0;
2695
2696         /* add VID to filter table */
2697         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2698                 index = (vid >> 5) & 0x7F;
2699                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2700                 vfta |= (1 << (vid & 0x1F));
2701                 hw->mac.ops.write_vfta(hw, index, vfta);
2702         }
2703
2704         set_bit(vid, adapter->active_vlans);
2705
2706         return 0;
2707 }
2708
2709 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2710 {
2711         struct e1000_adapter *adapter = netdev_priv(netdev);
2712         struct e1000_hw *hw = &adapter->hw;
2713         u32 vfta, index;
2714
2715         if ((adapter->hw.mng_cookie.status &
2716              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2717             (vid == adapter->mng_vlan_id)) {
2718                 /* release control to f/w */
2719                 e1000e_release_hw_control(adapter);
2720                 return 0;
2721         }
2722
2723         /* remove VID from filter table */
2724         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725                 index = (vid >> 5) & 0x7F;
2726                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727                 vfta &= ~(1 << (vid & 0x1F));
2728                 hw->mac.ops.write_vfta(hw, index, vfta);
2729         }
2730
2731         clear_bit(vid, adapter->active_vlans);
2732
2733         return 0;
2734 }
2735
2736 /**
2737  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2738  * @adapter: board private structure to initialize
2739  **/
2740 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2741 {
2742         struct net_device *netdev = adapter->netdev;
2743         struct e1000_hw *hw = &adapter->hw;
2744         u32 rctl;
2745
2746         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747                 /* disable VLAN receive filtering */
2748                 rctl = er32(RCTL);
2749                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2750                 ew32(RCTL, rctl);
2751
2752                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2753                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2754                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2755                 }
2756         }
2757 }
2758
2759 /**
2760  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2761  * @adapter: board private structure to initialize
2762  **/
2763 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2764 {
2765         struct e1000_hw *hw = &adapter->hw;
2766         u32 rctl;
2767
2768         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769                 /* enable VLAN receive filtering */
2770                 rctl = er32(RCTL);
2771                 rctl |= E1000_RCTL_VFE;
2772                 rctl &= ~E1000_RCTL_CFIEN;
2773                 ew32(RCTL, rctl);
2774         }
2775 }
2776
2777 /**
2778  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2779  * @adapter: board private structure to initialize
2780  **/
2781 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2782 {
2783         struct e1000_hw *hw = &adapter->hw;
2784         u32 ctrl;
2785
2786         /* disable VLAN tag insert/strip */
2787         ctrl = er32(CTRL);
2788         ctrl &= ~E1000_CTRL_VME;
2789         ew32(CTRL, ctrl);
2790 }
2791
2792 /**
2793  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2794  * @adapter: board private structure to initialize
2795  **/
2796 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2797 {
2798         struct e1000_hw *hw = &adapter->hw;
2799         u32 ctrl;
2800
2801         /* enable VLAN tag insert/strip */
2802         ctrl = er32(CTRL);
2803         ctrl |= E1000_CTRL_VME;
2804         ew32(CTRL, ctrl);
2805 }
2806
2807 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2808 {
2809         struct net_device *netdev = adapter->netdev;
2810         u16 vid = adapter->hw.mng_cookie.vlan_id;
2811         u16 old_vid = adapter->mng_vlan_id;
2812
2813         if (adapter->hw.mng_cookie.status &
2814             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2815                 e1000_vlan_rx_add_vid(netdev, vid);
2816                 adapter->mng_vlan_id = vid;
2817         }
2818
2819         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2820                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2821 }
2822
2823 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2824 {
2825         u16 vid;
2826
2827         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2828
2829         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2830                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2831 }
2832
2833 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2834 {
2835         struct e1000_hw *hw = &adapter->hw;
2836         u32 manc, manc2h, mdef, i, j;
2837
2838         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2839                 return;
2840
2841         manc = er32(MANC);
2842
2843         /* enable receiving management packets to the host. this will probably
2844          * generate destination unreachable messages from the host OS, but
2845          * the packets will be handled on SMBUS
2846          */
2847         manc |= E1000_MANC_EN_MNG2HOST;
2848         manc2h = er32(MANC2H);
2849
2850         switch (hw->mac.type) {
2851         default:
2852                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2853                 break;
2854         case e1000_82574:
2855         case e1000_82583:
2856                 /* Check if IPMI pass-through decision filter already exists;
2857                  * if so, enable it.
2858                  */
2859                 for (i = 0, j = 0; i < 8; i++) {
2860                         mdef = er32(MDEF(i));
2861
2862                         /* Ignore filters with anything other than IPMI ports */
2863                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2864                                 continue;
2865
2866                         /* Enable this decision filter in MANC2H */
2867                         if (mdef)
2868                                 manc2h |= (1 << i);
2869
2870                         j |= mdef;
2871                 }
2872
2873                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2874                         break;
2875
2876                 /* Create new decision filter in an empty filter */
2877                 for (i = 0, j = 0; i < 8; i++)
2878                         if (er32(MDEF(i)) == 0) {
2879                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2880                                                E1000_MDEF_PORT_664));
2881                                 manc2h |= (1 << 1);
2882                                 j++;
2883                                 break;
2884                         }
2885
2886                 if (!j)
2887                         e_warn("Unable to create IPMI pass-through filter\n");
2888                 break;
2889         }
2890
2891         ew32(MANC2H, manc2h);
2892         ew32(MANC, manc);
2893 }
2894
2895 /**
2896  * e1000_configure_tx - Configure Transmit Unit after Reset
2897  * @adapter: board private structure
2898  *
2899  * Configure the Tx unit of the MAC after a reset.
2900  **/
2901 static void e1000_configure_tx(struct e1000_adapter *adapter)
2902 {
2903         struct e1000_hw *hw = &adapter->hw;
2904         struct e1000_ring *tx_ring = adapter->tx_ring;
2905         u64 tdba;
2906         u32 tdlen, tarc;
2907
2908         /* Setup the HW Tx Head and Tail descriptor pointers */
2909         tdba = tx_ring->dma;
2910         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2911         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2912         ew32(TDBAH(0), (tdba >> 32));
2913         ew32(TDLEN(0), tdlen);
2914         ew32(TDH(0), 0);
2915         ew32(TDT(0), 0);
2916         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2917         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2918
2919         /* Set the Tx Interrupt Delay register */
2920         ew32(TIDV, adapter->tx_int_delay);
2921         /* Tx irq moderation */
2922         ew32(TADV, adapter->tx_abs_int_delay);
2923
2924         if (adapter->flags2 & FLAG2_DMA_BURST) {
2925                 u32 txdctl = er32(TXDCTL(0));
2926                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2927                             E1000_TXDCTL_WTHRESH);
2928                 /* set up some performance related parameters to encourage the
2929                  * hardware to use the bus more efficiently in bursts, depends
2930                  * on the tx_int_delay to be enabled,
2931                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2932                  * hthresh = 1 ==> prefetch when one or more available
2933                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2934                  * BEWARE: this seems to work but should be considered first if
2935                  * there are Tx hangs or other Tx related bugs
2936                  */
2937                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2938                 ew32(TXDCTL(0), txdctl);
2939         }
2940         /* erratum work around: set txdctl the same for both queues */
2941         ew32(TXDCTL(1), er32(TXDCTL(0)));
2942
2943         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2944                 tarc = er32(TARC(0));
2945                 /* set the speed mode bit, we'll clear it if we're not at
2946                  * gigabit link later
2947                  */
2948 #define SPEED_MODE_BIT (1 << 21)
2949                 tarc |= SPEED_MODE_BIT;
2950                 ew32(TARC(0), tarc);
2951         }
2952
2953         /* errata: program both queues to unweighted RR */
2954         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2955                 tarc = er32(TARC(0));
2956                 tarc |= 1;
2957                 ew32(TARC(0), tarc);
2958                 tarc = er32(TARC(1));
2959                 tarc |= 1;
2960                 ew32(TARC(1), tarc);
2961         }
2962
2963         /* Setup Transmit Descriptor Settings for eop descriptor */
2964         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2965
2966         /* only set IDE if we are delaying interrupts using the timers */
2967         if (adapter->tx_int_delay)
2968                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2969
2970         /* enable Report Status bit */
2971         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2972
2973         hw->mac.ops.config_collision_dist(hw);
2974 }
2975
2976 /**
2977  * e1000_setup_rctl - configure the receive control registers
2978  * @adapter: Board private structure
2979  **/
2980 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2981                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2982 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2983 {
2984         struct e1000_hw *hw = &adapter->hw;
2985         u32 rctl, rfctl;
2986         u32 pages = 0;
2987
2988         /* Workaround Si errata on PCHx - configure jumbo frame flow */
2989         if (hw->mac.type >= e1000_pch2lan) {
2990                 s32 ret_val;
2991
2992                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2993                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2994                 else
2995                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2996
2997                 if (ret_val)
2998                         e_dbg("failed to enable jumbo frame workaround mode\n");
2999         }
3000
3001         /* Program MC offset vector base */
3002         rctl = er32(RCTL);
3003         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3004         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3005                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3006                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3007
3008         /* Do not Store bad packets */
3009         rctl &= ~E1000_RCTL_SBP;
3010
3011         /* Enable Long Packet receive */
3012         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3013                 rctl &= ~E1000_RCTL_LPE;
3014         else
3015                 rctl |= E1000_RCTL_LPE;
3016
3017         /* Some systems expect that the CRC is included in SMBUS traffic. The
3018          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3019          * host memory when this is enabled
3020          */
3021         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3022                 rctl |= E1000_RCTL_SECRC;
3023
3024         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3025         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3026                 u16 phy_data;
3027
3028                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3029                 phy_data &= 0xfff8;
3030                 phy_data |= (1 << 2);
3031                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3032
3033                 e1e_rphy(hw, 22, &phy_data);
3034                 phy_data &= 0x0fff;
3035                 phy_data |= (1 << 14);
3036                 e1e_wphy(hw, 0x10, 0x2823);
3037                 e1e_wphy(hw, 0x11, 0x0003);
3038                 e1e_wphy(hw, 22, phy_data);
3039         }
3040
3041         /* Setup buffer sizes */
3042         rctl &= ~E1000_RCTL_SZ_4096;
3043         rctl |= E1000_RCTL_BSEX;
3044         switch (adapter->rx_buffer_len) {
3045         case 2048:
3046         default:
3047                 rctl |= E1000_RCTL_SZ_2048;
3048                 rctl &= ~E1000_RCTL_BSEX;
3049                 break;
3050         case 4096:
3051                 rctl |= E1000_RCTL_SZ_4096;
3052                 break;
3053         case 8192:
3054                 rctl |= E1000_RCTL_SZ_8192;
3055                 break;
3056         case 16384:
3057                 rctl |= E1000_RCTL_SZ_16384;
3058                 break;
3059         }
3060
3061         /* Enable Extended Status in all Receive Descriptors */
3062         rfctl = er32(RFCTL);
3063         rfctl |= E1000_RFCTL_EXTEN;
3064         ew32(RFCTL, rfctl);
3065
3066         /* 82571 and greater support packet-split where the protocol
3067          * header is placed in skb->data and the packet data is
3068          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3069          * In the case of a non-split, skb->data is linearly filled,
3070          * followed by the page buffers.  Therefore, skb->data is
3071          * sized to hold the largest protocol header.
3072          *
3073          * allocations using alloc_page take too long for regular MTU
3074          * so only enable packet split for jumbo frames
3075          *
3076          * Using pages when the page size is greater than 16k wastes
3077          * a lot of memory, since we allocate 3 pages at all times
3078          * per packet.
3079          */
3080         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3081         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3082                 adapter->rx_ps_pages = pages;
3083         else
3084                 adapter->rx_ps_pages = 0;
3085
3086         if (adapter->rx_ps_pages) {
3087                 u32 psrctl = 0;
3088
3089                 /* Enable Packet split descriptors */
3090                 rctl |= E1000_RCTL_DTYP_PS;
3091
3092                 psrctl |= adapter->rx_ps_bsize0 >>
3093                         E1000_PSRCTL_BSIZE0_SHIFT;
3094
3095                 switch (adapter->rx_ps_pages) {
3096                 case 3:
3097                         psrctl |= PAGE_SIZE <<
3098                                 E1000_PSRCTL_BSIZE3_SHIFT;
3099                 case 2:
3100                         psrctl |= PAGE_SIZE <<
3101                                 E1000_PSRCTL_BSIZE2_SHIFT;
3102                 case 1:
3103                         psrctl |= PAGE_SIZE >>
3104                                 E1000_PSRCTL_BSIZE1_SHIFT;
3105                         break;
3106                 }
3107
3108                 ew32(PSRCTL, psrctl);
3109         }
3110
3111         /* This is useful for sniffing bad packets. */
3112         if (adapter->netdev->features & NETIF_F_RXALL) {
3113                 /* UPE and MPE will be handled by normal PROMISC logic
3114                  * in e1000e_set_rx_mode
3115                  */
3116                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3117                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3118                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3119
3120                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3121                           E1000_RCTL_DPF | /* Allow filtered pause */
3122                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3123                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3124                  * and that breaks VLANs.
3125                  */
3126         }
3127
3128         ew32(RCTL, rctl);
3129         /* just started the receive unit, no need to restart */
3130         adapter->flags &= ~FLAG_RESTART_NOW;
3131 }
3132
3133 /**
3134  * e1000_configure_rx - Configure Receive Unit after Reset
3135  * @adapter: board private structure
3136  *
3137  * Configure the Rx unit of the MAC after a reset.
3138  **/
3139 static void e1000_configure_rx(struct e1000_adapter *adapter)
3140 {
3141         struct e1000_hw *hw = &adapter->hw;
3142         struct e1000_ring *rx_ring = adapter->rx_ring;
3143         u64 rdba;
3144         u32 rdlen, rctl, rxcsum, ctrl_ext;
3145
3146         if (adapter->rx_ps_pages) {
3147                 /* this is a 32 byte descriptor */
3148                 rdlen = rx_ring->count *
3149                     sizeof(union e1000_rx_desc_packet_split);
3150                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3151                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3152         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3153                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3154                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3155                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3156         } else {
3157                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3158                 adapter->clean_rx = e1000_clean_rx_irq;
3159                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3160         }
3161
3162         /* disable receives while setting up the descriptors */
3163         rctl = er32(RCTL);
3164         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3165                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3166         e1e_flush();
3167         usleep_range(10000, 20000);
3168
3169         if (adapter->flags2 & FLAG2_DMA_BURST) {
3170                 /* set the writeback threshold (only takes effect if the RDTR
3171                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3172                  * enable prefetching of 0x20 Rx descriptors
3173                  * granularity = 01
3174                  * wthresh = 04,
3175                  * hthresh = 04,
3176                  * pthresh = 0x20
3177                  */
3178                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3179                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3180
3181                 /* override the delay timers for enabling bursting, only if
3182                  * the value was not set by the user via module options
3183                  */
3184                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3185                         adapter->rx_int_delay = BURST_RDTR;
3186                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3187                         adapter->rx_abs_int_delay = BURST_RADV;
3188         }
3189
3190         /* set the Receive Delay Timer Register */
3191         ew32(RDTR, adapter->rx_int_delay);
3192
3193         /* irq moderation */
3194         ew32(RADV, adapter->rx_abs_int_delay);
3195         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3196                 e1000e_write_itr(adapter, adapter->itr);
3197
3198         ctrl_ext = er32(CTRL_EXT);
3199         /* Auto-Mask interrupts upon ICR access */
3200         ctrl_ext |= E1000_CTRL_EXT_IAME;
3201         ew32(IAM, 0xffffffff);
3202         ew32(CTRL_EXT, ctrl_ext);
3203         e1e_flush();
3204
3205         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3206          * the Base and Length of the Rx Descriptor Ring
3207          */
3208         rdba = rx_ring->dma;
3209         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3210         ew32(RDBAH(0), (rdba >> 32));
3211         ew32(RDLEN(0), rdlen);
3212         ew32(RDH(0), 0);
3213         ew32(RDT(0), 0);
3214         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3215         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3216
3217         /* Enable Receive Checksum Offload for TCP and UDP */
3218         rxcsum = er32(RXCSUM);
3219         if (adapter->netdev->features & NETIF_F_RXCSUM)
3220                 rxcsum |= E1000_RXCSUM_TUOFL;
3221         else
3222                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3223         ew32(RXCSUM, rxcsum);
3224
3225         /* With jumbo frames, excessive C-state transition latencies result
3226          * in dropped transactions.
3227          */
3228         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3229                 u32 lat =
3230                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3231                      adapter->max_frame_size) * 8 / 1000;
3232
3233                 if (adapter->flags & FLAG_IS_ICH) {
3234                         u32 rxdctl = er32(RXDCTL(0));
3235                         ew32(RXDCTL(0), rxdctl | 0x3);
3236                 }
3237
3238                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3239         } else {
3240                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3241                                       PM_QOS_DEFAULT_VALUE);
3242         }
3243
3244         /* Enable Receives */
3245         ew32(RCTL, rctl);
3246 }
3247
3248 /**
3249  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3250  * @netdev: network interface device structure
3251  *
3252  * Writes multicast address list to the MTA hash table.
3253  * Returns: -ENOMEM on failure
3254  *                0 on no addresses written
3255  *                X on writing X addresses to MTA
3256  */
3257 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3258 {
3259         struct e1000_adapter *adapter = netdev_priv(netdev);
3260         struct e1000_hw *hw = &adapter->hw;
3261         struct netdev_hw_addr *ha;
3262         u8 *mta_list;
3263         int i;
3264
3265         if (netdev_mc_empty(netdev)) {
3266                 /* nothing to program, so clear mc list */
3267                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3268                 return 0;
3269         }
3270
3271         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3272         if (!mta_list)
3273                 return -ENOMEM;
3274
3275         /* update_mc_addr_list expects a packed array of only addresses. */
3276         i = 0;
3277         netdev_for_each_mc_addr(ha, netdev)
3278                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3279
3280         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3281         kfree(mta_list);
3282
3283         return netdev_mc_count(netdev);
3284 }
3285
3286 /**
3287  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3288  * @netdev: network interface device structure
3289  *
3290  * Writes unicast address list to the RAR table.
3291  * Returns: -ENOMEM on failure/insufficient address space
3292  *                0 on no addresses written
3293  *                X on writing X addresses to the RAR table
3294  **/
3295 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3296 {
3297         struct e1000_adapter *adapter = netdev_priv(netdev);
3298         struct e1000_hw *hw = &adapter->hw;
3299         unsigned int rar_entries = hw->mac.rar_entry_count;
3300         int count = 0;
3301
3302         /* save a rar entry for our hardware address */
3303         rar_entries--;
3304
3305         /* save a rar entry for the LAA workaround */
3306         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3307                 rar_entries--;
3308
3309         /* return ENOMEM indicating insufficient memory for addresses */
3310         if (netdev_uc_count(netdev) > rar_entries)
3311                 return -ENOMEM;
3312
3313         if (!netdev_uc_empty(netdev) && rar_entries) {
3314                 struct netdev_hw_addr *ha;
3315
3316                 /* write the addresses in reverse order to avoid write
3317                  * combining
3318                  */
3319                 netdev_for_each_uc_addr(ha, netdev) {
3320                         if (!rar_entries)
3321                                 break;
3322                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3323                         count++;
3324                 }
3325         }
3326
3327         /* zero out the remaining RAR entries not used above */
3328         for (; rar_entries > 0; rar_entries--) {
3329                 ew32(RAH(rar_entries), 0);
3330                 ew32(RAL(rar_entries), 0);
3331         }
3332         e1e_flush();
3333
3334         return count;
3335 }
3336
3337 /**
3338  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3339  * @netdev: network interface device structure
3340  *
3341  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3342  * address list or the network interface flags are updated.  This routine is
3343  * responsible for configuring the hardware for proper unicast, multicast,
3344  * promiscuous mode, and all-multi behavior.
3345  **/
3346 static void e1000e_set_rx_mode(struct net_device *netdev)
3347 {
3348         struct e1000_adapter *adapter = netdev_priv(netdev);
3349         struct e1000_hw *hw = &adapter->hw;
3350         u32 rctl;
3351
3352         /* Check for Promiscuous and All Multicast modes */
3353         rctl = er32(RCTL);
3354
3355         /* clear the affected bits */
3356         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3357
3358         if (netdev->flags & IFF_PROMISC) {
3359                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3360                 /* Do not hardware filter VLANs in promisc mode */
3361                 e1000e_vlan_filter_disable(adapter);
3362         } else {
3363                 int count;
3364
3365                 if (netdev->flags & IFF_ALLMULTI) {
3366                         rctl |= E1000_RCTL_MPE;
3367                 } else {
3368                         /* Write addresses to the MTA, if the attempt fails
3369                          * then we should just turn on promiscuous mode so
3370                          * that we can at least receive multicast traffic
3371                          */
3372                         count = e1000e_write_mc_addr_list(netdev);
3373                         if (count < 0)
3374                                 rctl |= E1000_RCTL_MPE;
3375                 }
3376                 e1000e_vlan_filter_enable(adapter);
3377                 /* Write addresses to available RAR registers, if there is not
3378                  * sufficient space to store all the addresses then enable
3379                  * unicast promiscuous mode
3380                  */
3381                 count = e1000e_write_uc_addr_list(netdev);
3382                 if (count < 0)
3383                         rctl |= E1000_RCTL_UPE;
3384         }
3385
3386         ew32(RCTL, rctl);
3387
3388         if (netdev->features & NETIF_F_HW_VLAN_RX)
3389                 e1000e_vlan_strip_enable(adapter);
3390         else
3391                 e1000e_vlan_strip_disable(adapter);
3392 }
3393
3394 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3395 {
3396         struct e1000_hw *hw = &adapter->hw;
3397         u32 mrqc, rxcsum;
3398         int i;
3399         static const u32 rsskey[10] = {
3400                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3401                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3402         };
3403
3404         /* Fill out hash function seed */
3405         for (i = 0; i < 10; i++)
3406                 ew32(RSSRK(i), rsskey[i]);
3407
3408         /* Direct all traffic to queue 0 */
3409         for (i = 0; i < 32; i++)
3410                 ew32(RETA(i), 0);
3411
3412         /* Disable raw packet checksumming so that RSS hash is placed in
3413          * descriptor on writeback.
3414          */
3415         rxcsum = er32(RXCSUM);
3416         rxcsum |= E1000_RXCSUM_PCSD;
3417
3418         ew32(RXCSUM, rxcsum);
3419
3420         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3421                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3422                 E1000_MRQC_RSS_FIELD_IPV6 |
3423                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3424                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3425
3426         ew32(MRQC, mrqc);
3427 }
3428
3429 /**
3430  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3431  * @adapter: board private structure
3432  * @timinca: pointer to returned time increment attributes
3433  *
3434  * Get attributes for incrementing the System Time Register SYSTIML/H at
3435  * the default base frequency, and set the cyclecounter shift value.
3436  **/
3437 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3438 {
3439         struct e1000_hw *hw = &adapter->hw;
3440         u32 incvalue, incperiod, shift;
3441
3442         /* Make sure clock is enabled on I217 before checking the frequency */
3443         if ((hw->mac.type == e1000_pch_lpt) &&
3444             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3445             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3446                 u32 fextnvm7 = er32(FEXTNVM7);
3447
3448                 if (!(fextnvm7 & (1 << 0))) {
3449                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3450                         e1e_flush();
3451                 }
3452         }
3453
3454         switch (hw->mac.type) {
3455         case e1000_pch2lan:
3456         case e1000_pch_lpt:
3457                 /* On I217, the clock frequency is 25MHz or 96MHz as
3458                  * indicated by the System Clock Frequency Indication
3459                  */
3460                 if ((hw->mac.type != e1000_pch_lpt) ||
3461                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3462                         /* Stable 96MHz frequency */
3463                         incperiod = INCPERIOD_96MHz;
3464                         incvalue = INCVALUE_96MHz;
3465                         shift = INCVALUE_SHIFT_96MHz;
3466                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3467                         break;
3468                 }
3469                 /* fall-through */
3470         case e1000_82574:
3471         case e1000_82583:
3472                 /* Stable 25MHz frequency */
3473                 incperiod = INCPERIOD_25MHz;
3474                 incvalue = INCVALUE_25MHz;
3475                 shift = INCVALUE_SHIFT_25MHz;
3476                 adapter->cc.shift = shift;
3477                 break;
3478         default:
3479                 return -EINVAL;
3480         }
3481
3482         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3483                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3484
3485         return 0;
3486 }
3487
3488 /**
3489  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3490  * @adapter: board private structure
3491  *
3492  * Outgoing time stamping can be enabled and disabled. Play nice and
3493  * disable it when requested, although it shouldn't cause any overhead
3494  * when no packet needs it. At most one packet in the queue may be
3495  * marked for time stamping, otherwise it would be impossible to tell
3496  * for sure to which packet the hardware time stamp belongs.
3497  *
3498  * Incoming time stamping has to be configured via the hardware filters.
3499  * Not all combinations are supported, in particular event type has to be
3500  * specified. Matching the kind of event packet is not supported, with the
3501  * exception of "all V2 events regardless of level 2 or 4".
3502  **/
3503 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3504 {
3505         struct e1000_hw *hw = &adapter->hw;
3506         struct hwtstamp_config *config = &adapter->hwtstamp_config;
3507         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3508         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3509         u32 rxmtrl = 0;
3510         u16 rxudp = 0;
3511         bool is_l4 = false;
3512         bool is_l2 = false;
3513         u32 regval;
3514         s32 ret_val;
3515
3516         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3517                 return -EINVAL;
3518
3519         /* flags reserved for future extensions - must be zero */
3520         if (config->flags)
3521                 return -EINVAL;
3522
3523         switch (config->tx_type) {
3524         case HWTSTAMP_TX_OFF:
3525                 tsync_tx_ctl = 0;
3526                 break;
3527         case HWTSTAMP_TX_ON:
3528                 break;
3529         default:
3530                 return -ERANGE;
3531         }
3532
3533         switch (config->rx_filter) {
3534         case HWTSTAMP_FILTER_NONE:
3535                 tsync_rx_ctl = 0;
3536                 break;
3537         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3538                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3539                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3540                 is_l4 = true;
3541                 break;
3542         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3543                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3544                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3545                 is_l4 = true;
3546                 break;
3547         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3548                 /* Also time stamps V2 L2 Path Delay Request/Response */
3549                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3550                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3551                 is_l2 = true;
3552                 break;
3553         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3554                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3555                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3556                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3557                 is_l2 = true;
3558                 break;
3559         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3560                 /* Hardware cannot filter just V2 L4 Sync messages;
3561                  * fall-through to V2 (both L2 and L4) Sync.
3562                  */
3563         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3564                 /* Also time stamps V2 Path Delay Request/Response. */
3565                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3566                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3567                 is_l2 = true;
3568                 is_l4 = true;
3569                 break;
3570         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3571                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3572                  * fall-through to V2 (both L2 and L4) Delay Request.
3573                  */
3574         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3575                 /* Also time stamps V2 Path Delay Request/Response. */
3576                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3577                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3578                 is_l2 = true;
3579                 is_l4 = true;
3580                 break;
3581         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3582         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3583                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3584                  * fall-through to all V2 (both L2 and L4) Events.
3585                  */
3586         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3587                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3588                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3589                 is_l2 = true;
3590                 is_l4 = true;
3591                 break;
3592         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3593                 /* For V1, the hardware can only filter Sync messages or
3594                  * Delay Request messages but not both so fall-through to
3595                  * time stamp all packets.
3596                  */
3597         case HWTSTAMP_FILTER_ALL:
3598                 is_l2 = true;
3599                 is_l4 = true;
3600                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3601                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3602                 break;
3603         default:
3604                 return -ERANGE;
3605         }
3606
3607         /* enable/disable Tx h/w time stamping */
3608         regval = er32(TSYNCTXCTL);
3609         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3610         regval |= tsync_tx_ctl;
3611         ew32(TSYNCTXCTL, regval);
3612         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3613             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3614                 e_err("Timesync Tx Control register not set as expected\n");
3615                 return -EAGAIN;
3616         }
3617
3618         /* enable/disable Rx h/w time stamping */
3619         regval = er32(TSYNCRXCTL);
3620         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3621         regval |= tsync_rx_ctl;
3622         ew32(TSYNCRXCTL, regval);
3623         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3624                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3625             (regval & (E1000_TSYNCRXCTL_ENABLED |
3626                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3627                 e_err("Timesync Rx Control register not set as expected\n");
3628                 return -EAGAIN;
3629         }
3630
3631         /* L2: define ethertype filter for time stamped packets */
3632         if (is_l2)
3633                 rxmtrl |= ETH_P_1588;
3634
3635         /* define which PTP packets get time stamped */
3636         ew32(RXMTRL, rxmtrl);
3637
3638         /* Filter by destination port */
3639         if (is_l4) {
3640                 rxudp = PTP_EV_PORT;
3641                 cpu_to_be16s(&rxudp);
3642         }
3643         ew32(RXUDP, rxudp);
3644
3645         e1e_flush();
3646
3647         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3648         er32(RXSTMPH);
3649         er32(TXSTMPH);
3650
3651         /* Get and set the System Time Register SYSTIM base frequency */
3652         ret_val = e1000e_get_base_timinca(adapter, &regval);
3653         if (ret_val)
3654                 return ret_val;
3655         ew32(TIMINCA, regval);
3656
3657         /* reset the ns time counter */
3658         timecounter_init(&adapter->tc, &adapter->cc,
3659                          ktime_to_ns(ktime_get_real()));
3660
3661         return 0;
3662 }
3663
3664 /**
3665  * e1000_configure - configure the hardware for Rx and Tx
3666  * @adapter: private board structure
3667  **/
3668 static void e1000_configure(struct e1000_adapter *adapter)
3669 {
3670         struct e1000_ring *rx_ring = adapter->rx_ring;
3671
3672         e1000e_set_rx_mode(adapter->netdev);
3673
3674         e1000_restore_vlan(adapter);
3675         e1000_init_manageability_pt(adapter);
3676
3677         e1000_configure_tx(adapter);
3678
3679         if (adapter->netdev->features & NETIF_F_RXHASH)
3680                 e1000e_setup_rss_hash(adapter);
3681         e1000_setup_rctl(adapter);
3682         e1000_configure_rx(adapter);
3683         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3684 }
3685
3686 /**
3687  * e1000e_power_up_phy - restore link in case the phy was powered down
3688  * @adapter: address of board private structure
3689  *
3690  * The phy may be powered down to save power and turn off link when the
3691  * driver is unloaded and wake on lan is not enabled (among others)
3692  * *** this routine MUST be followed by a call to e1000e_reset ***
3693  **/
3694 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3695 {
3696         if (adapter->hw.phy.ops.power_up)
3697                 adapter->hw.phy.ops.power_up(&adapter->hw);
3698
3699         adapter->hw.mac.ops.setup_link(&adapter->hw);
3700 }
3701
3702 /**
3703  * e1000_power_down_phy - Power down the PHY
3704  *
3705  * Power down the PHY so no link is implied when interface is down.
3706  * The PHY cannot be powered down if management or WoL is active.
3707  */
3708 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3709 {
3710         /* WoL is enabled */
3711         if (adapter->wol)
3712                 return;
3713
3714         if (adapter->hw.phy.ops.power_down)
3715                 adapter->hw.phy.ops.power_down(&adapter->hw);
3716 }
3717
3718 /**
3719  * e1000e_reset - bring the hardware into a known good state
3720  *
3721  * This function boots the hardware and enables some settings that
3722  * require a configuration cycle of the hardware - those cannot be
3723  * set/changed during runtime. After reset the device needs to be
3724  * properly configured for Rx, Tx etc.
3725  */
3726 void e1000e_reset(struct e1000_adapter *adapter)
3727 {
3728         struct e1000_mac_info *mac = &adapter->hw.mac;
3729         struct e1000_fc_info *fc = &adapter->hw.fc;
3730         struct e1000_hw *hw = &adapter->hw;
3731         u32 tx_space, min_tx_space, min_rx_space;
3732         u32 pba = adapter->pba;
3733         u16 hwm;
3734
3735         /* reset Packet Buffer Allocation to default */
3736         ew32(PBA, pba);
3737
3738         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3739                 /* To maintain wire speed transmits, the Tx FIFO should be
3740                  * large enough to accommodate two full transmit packets,
3741                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3742                  * the Rx FIFO should be large enough to accommodate at least
3743                  * one full receive packet and is similarly rounded up and
3744                  * expressed in KB.
3745                  */
3746                 pba = er32(PBA);
3747                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3748                 tx_space = pba >> 16;
3749                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3750                 pba &= 0xffff;
3751                 /* the Tx fifo also stores 16 bytes of information about the Tx
3752                  * but don't include ethernet FCS because hardware appends it
3753                  */
3754                 min_tx_space = (adapter->max_frame_size +
3755                                 sizeof(struct e1000_tx_desc) -
3756                                 ETH_FCS_LEN) * 2;
3757                 min_tx_space = ALIGN(min_tx_space, 1024);
3758                 min_tx_space >>= 10;
3759                 /* software strips receive CRC, so leave room for it */
3760                 min_rx_space = adapter->max_frame_size;
3761                 min_rx_space = ALIGN(min_rx_space, 1024);
3762                 min_rx_space >>= 10;
3763
3764                 /* If current Tx allocation is less than the min Tx FIFO size,
3765                  * and the min Tx FIFO size is less than the current Rx FIFO
3766                  * allocation, take space away from current Rx allocation
3767                  */
3768                 if ((tx_space < min_tx_space) &&
3769                     ((min_tx_space - tx_space) < pba)) {
3770                         pba -= min_tx_space - tx_space;
3771
3772                         /* if short on Rx space, Rx wins and must trump Tx
3773                          * adjustment
3774                          */
3775                         if (pba < min_rx_space)
3776                                 pba = min_rx_space;
3777                 }
3778
3779                 ew32(PBA, pba);
3780         }
3781
3782         /* flow control settings
3783          *
3784          * The high water mark must be low enough to fit one full frame
3785          * (or the size used for early receive) above it in the Rx FIFO.
3786          * Set it to the lower of:
3787          * - 90% of the Rx FIFO size, and
3788          * - the full Rx FIFO size minus one full frame
3789          */
3790         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3791                 fc->pause_time = 0xFFFF;
3792         else
3793                 fc->pause_time = E1000_FC_PAUSE_TIME;
3794         fc->send_xon = true;
3795         fc->current_mode = fc->requested_mode;
3796
3797         switch (hw->mac.type) {
3798         case e1000_ich9lan:
3799         case e1000_ich10lan:
3800                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3801                         pba = 14;
3802                         ew32(PBA, pba);
3803                         fc->high_water = 0x2800;
3804                         fc->low_water = fc->high_water - 8;
3805                         break;
3806                 }
3807                 /* fall-through */
3808         default:
3809                 hwm = min(((pba << 10) * 9 / 10),
3810                           ((pba << 10) - adapter->max_frame_size));
3811
3812                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3813                 fc->low_water = fc->high_water - 8;
3814                 break;
3815         case e1000_pchlan:
3816                 /* Workaround PCH LOM adapter hangs with certain network
3817                  * loads.  If hangs persist, try disabling Tx flow control.
3818                  */
3819                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3820                         fc->high_water = 0x3500;
3821                         fc->low_water  = 0x1500;
3822                 } else {
3823                         fc->high_water = 0x5000;
3824                         fc->low_water  = 0x3000;
3825                 }
3826                 fc->refresh_time = 0x1000;
3827                 break;
3828         case e1000_pch2lan:
3829         case e1000_pch_lpt:
3830                 fc->refresh_time = 0x0400;
3831
3832                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3833                         fc->high_water = 0x05C20;
3834                         fc->low_water = 0x05048;
3835                         fc->pause_time = 0x0650;
3836                         break;
3837                 }
3838
3839                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3840                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3841                 break;
3842         }
3843
3844         /* Alignment of Tx data is on an arbitrary byte boundary with the
3845          * maximum size per Tx descriptor limited only to the transmit
3846          * allocation of the packet buffer minus 96 bytes with an upper
3847          * limit of 24KB due to receive synchronization limitations.
3848          */
3849         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3850                                        24 << 10);
3851
3852         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3853          * fit in receive buffer.
3854          */
3855         if (adapter->itr_setting & 0x3) {
3856                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3857                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3858                                 dev_info(&adapter->pdev->dev,
3859                                         "Interrupt Throttle Rate turned off\n");
3860                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3861                                 e1000e_write_itr(adapter, 0);
3862                         }
3863                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3864                         dev_info(&adapter->pdev->dev,
3865                                  "Interrupt Throttle Rate turned on\n");
3866                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3867                         adapter->itr = 20000;
3868                         e1000e_write_itr(adapter, adapter->itr);
3869                 }
3870         }
3871
3872         /* Allow time for pending master requests to run */
3873         mac->ops.reset_hw(hw);
3874
3875         /* For parts with AMT enabled, let the firmware know
3876          * that the network interface is in control
3877          */
3878         if (adapter->flags & FLAG_HAS_AMT)
3879                 e1000e_get_hw_control(adapter);
3880
3881         ew32(WUC, 0);
3882
3883         if (mac->ops.init_hw(hw))
3884                 e_err("Hardware Error\n");
3885
3886         e1000_update_mng_vlan(adapter);
3887
3888         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3889         ew32(VET, ETH_P_8021Q);
3890
3891         e1000e_reset_adaptive(hw);
3892
3893         /* initialize systim and reset the ns time counter */
3894         e1000e_config_hwtstamp(adapter);
3895
3896         if (!netif_running(adapter->netdev) &&
3897             !test_bit(__E1000_TESTING, &adapter->state)) {
3898                 e1000_power_down_phy(adapter);
3899                 return;
3900         }
3901
3902         e1000_get_phy_info(hw);
3903
3904         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3905             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3906                 u16 phy_data = 0;
3907                 /* speed up time to link by disabling smart power down, ignore
3908                  * the return value of this function because there is nothing
3909                  * different we would do if it failed
3910                  */
3911                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3912                 phy_data &= ~IGP02E1000_PM_SPD;
3913                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3914         }
3915 }
3916
3917 int e1000e_up(struct e1000_adapter *adapter)
3918 {
3919         struct e1000_hw *hw = &adapter->hw;
3920
3921         /* hardware has been reset, we need to reload some things */
3922         e1000_configure(adapter);
3923
3924         clear_bit(__E1000_DOWN, &adapter->state);
3925
3926         if (adapter->msix_entries)
3927                 e1000_configure_msix(adapter);
3928         e1000_irq_enable(adapter);
3929
3930         netif_start_queue(adapter->netdev);
3931
3932         /* fire a link change interrupt to start the watchdog */
3933         if (adapter->msix_entries)
3934                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3935         else
3936                 ew32(ICS, E1000_ICS_LSC);
3937
3938         return 0;
3939 }
3940
3941 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3942 {
3943         struct e1000_hw *hw = &adapter->hw;
3944
3945         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3946                 return;
3947
3948         /* flush pending descriptor writebacks to memory */
3949         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3950         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3951
3952         /* execute the writes immediately */
3953         e1e_flush();
3954
3955         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3956          * write is successful
3957          */
3958         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3959         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3960
3961         /* execute the writes immediately */
3962         e1e_flush();
3963 }
3964
3965 static void e1000e_update_stats(struct e1000_adapter *adapter);
3966
3967 void e1000e_down(struct e1000_adapter *adapter)
3968 {
3969         struct net_device *netdev = adapter->netdev;
3970         struct e1000_hw *hw = &adapter->hw;
3971         u32 tctl, rctl;
3972
3973         /* signal that we're down so the interrupt handler does not
3974          * reschedule our watchdog timer
3975          */
3976         set_bit(__E1000_DOWN, &adapter->state);
3977
3978         /* disable receives in the hardware */
3979         rctl = er32(RCTL);
3980         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3981                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3982         /* flush and sleep below */
3983
3984         netif_stop_queue(netdev);
3985
3986         /* disable transmits in the hardware */
3987         tctl = er32(TCTL);
3988         tctl &= ~E1000_TCTL_EN;
3989         ew32(TCTL, tctl);
3990
3991         /* flush both disables and wait for them to finish */
3992         e1e_flush();
3993         usleep_range(10000, 20000);
3994
3995         e1000_irq_disable(adapter);
3996
3997         del_timer_sync(&adapter->watchdog_timer);
3998         del_timer_sync(&adapter->phy_info_timer);
3999
4000         netif_carrier_off(netdev);
4001
4002         spin_lock(&adapter->stats64_lock);
4003         e1000e_update_stats(adapter);
4004         spin_unlock(&adapter->stats64_lock);
4005
4006         e1000e_flush_descriptors(adapter);
4007         e1000_clean_tx_ring(adapter->tx_ring);
4008         e1000_clean_rx_ring(adapter->rx_ring);
4009
4010         adapter->link_speed = 0;
4011         adapter->link_duplex = 0;
4012
4013         if (!pci_channel_offline(adapter->pdev))
4014                 e1000e_reset(adapter);
4015
4016         /* TODO: for power management, we could drop the link and
4017          * pci_disable_device here.
4018          */
4019 }
4020
4021 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4022 {
4023         might_sleep();
4024         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4025                 usleep_range(1000, 2000);
4026         e1000e_down(adapter);
4027         e1000e_up(adapter);
4028         clear_bit(__E1000_RESETTING, &adapter->state);
4029 }
4030
4031 /**
4032  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4033  * @cc: cyclecounter structure
4034  **/
4035 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4036 {
4037         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4038                                                      cc);
4039         struct e1000_hw *hw = &adapter->hw;
4040         cycle_t systim;
4041
4042         /* latch SYSTIMH on read of SYSTIML */
4043         systim = (cycle_t)er32(SYSTIML);
4044         systim |= (cycle_t)er32(SYSTIMH) << 32;
4045
4046         return systim;
4047 }
4048
4049 /**
4050  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4051  * @adapter: board private structure to initialize
4052  *
4053  * e1000_sw_init initializes the Adapter private data structure.
4054  * Fields are initialized based on PCI device information and
4055  * OS network device settings (MTU size).
4056  **/
4057 static int e1000_sw_init(struct e1000_adapter *adapter)
4058 {
4059         struct net_device *netdev = adapter->netdev;
4060
4061         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4062         adapter->rx_ps_bsize0 = 128;
4063         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4064         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4065         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4066         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4067
4068         spin_lock_init(&adapter->stats64_lock);
4069
4070         e1000e_set_interrupt_capability(adapter);
4071
4072         if (e1000_alloc_queues(adapter))
4073                 return -ENOMEM;
4074
4075         /* Setup hardware time stamping cyclecounter */
4076         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4077                 adapter->cc.read = e1000e_cyclecounter_read;
4078                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4079                 adapter->cc.mult = 1;
4080                 /* cc.shift set in e1000e_get_base_tininca() */
4081
4082                 spin_lock_init(&adapter->systim_lock);
4083                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4084         }
4085
4086         /* Explicitly disable IRQ since the NIC can be in any state. */
4087         e1000_irq_disable(adapter);
4088
4089         set_bit(__E1000_DOWN, &adapter->state);
4090         return 0;
4091 }
4092
4093 /**
4094  * e1000_intr_msi_test - Interrupt Handler
4095  * @irq: interrupt number
4096  * @data: pointer to a network interface device structure
4097  **/
4098 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4099 {
4100         struct net_device *netdev = data;
4101         struct e1000_adapter *adapter = netdev_priv(netdev);
4102         struct e1000_hw *hw = &adapter->hw;
4103         u32 icr = er32(ICR);
4104
4105         e_dbg("icr is %08X\n", icr);
4106         if (icr & E1000_ICR_RXSEQ) {
4107                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4108                 /* Force memory writes to complete before acknowledging the
4109                  * interrupt is handled.
4110                  */
4111                 wmb();
4112         }
4113
4114         return IRQ_HANDLED;
4115 }
4116
4117 /**
4118  * e1000_test_msi_interrupt - Returns 0 for successful test
4119  * @adapter: board private struct
4120  *
4121  * code flow taken from tg3.c
4122  **/
4123 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4124 {
4125         struct net_device *netdev = adapter->netdev;
4126         struct e1000_hw *hw = &adapter->hw;
4127         int err;
4128
4129         /* poll_enable hasn't been called yet, so don't need disable */
4130         /* clear any pending events */
4131         er32(ICR);
4132
4133         /* free the real vector and request a test handler */
4134         e1000_free_irq(adapter);
4135         e1000e_reset_interrupt_capability(adapter);
4136
4137         /* Assume that the test fails, if it succeeds then the test
4138          * MSI irq handler will unset this flag
4139          */
4140         adapter->flags |= FLAG_MSI_TEST_FAILED;
4141
4142         err = pci_enable_msi(adapter->pdev);
4143         if (err)
4144                 goto msi_test_failed;
4145
4146         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4147                           netdev->name, netdev);
4148         if (err) {
4149                 pci_disable_msi(adapter->pdev);
4150                 goto msi_test_failed;
4151         }
4152
4153         /* Force memory writes to complete before enabling and firing an
4154          * interrupt.
4155          */
4156         wmb();
4157
4158         e1000_irq_enable(adapter);
4159
4160         /* fire an unusual interrupt on the test handler */
4161         ew32(ICS, E1000_ICS_RXSEQ);
4162         e1e_flush();
4163         msleep(100);
4164
4165         e1000_irq_disable(adapter);
4166
4167         rmb();                  /* read flags after interrupt has been fired */
4168
4169         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4170                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4171                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4172         } else {
4173                 e_dbg("MSI interrupt test succeeded!\n");
4174         }
4175
4176         free_irq(adapter->pdev->irq, netdev);
4177         pci_disable_msi(adapter->pdev);
4178
4179 msi_test_failed:
4180         e1000e_set_interrupt_capability(adapter);
4181         return e1000_request_irq(adapter);
4182 }
4183
4184 /**
4185  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4186  * @adapter: board private struct
4187  *
4188  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4189  **/
4190 static int e1000_test_msi(struct e1000_adapter *adapter)
4191 {
4192         int err;
4193         u16 pci_cmd;
4194
4195         if (!(adapter->flags & FLAG_MSI_ENABLED))
4196                 return 0;
4197
4198         /* disable SERR in case the MSI write causes a master abort */
4199         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4200         if (pci_cmd & PCI_COMMAND_SERR)
4201                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4202                                       pci_cmd & ~PCI_COMMAND_SERR);
4203
4204         err = e1000_test_msi_interrupt(adapter);
4205
4206         /* re-enable SERR */
4207         if (pci_cmd & PCI_COMMAND_SERR) {
4208                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4209                 pci_cmd |= PCI_COMMAND_SERR;
4210                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4211         }
4212
4213         return err;
4214 }
4215
4216 /**
4217  * e1000_open - Called when a network interface is made active
4218  * @netdev: network interface device structure
4219  *
4220  * Returns 0 on success, negative value on failure
4221  *
4222  * The open entry point is called when a network interface is made
4223  * active by the system (IFF_UP).  At this point all resources needed
4224  * for transmit and receive operations are allocated, the interrupt
4225  * handler is registered with the OS, the watchdog timer is started,
4226  * and the stack is notified that the interface is ready.
4227  **/
4228 static int e1000_open(struct net_device *netdev)
4229 {
4230         struct e1000_adapter *adapter = netdev_priv(netdev);
4231         struct e1000_hw *hw = &adapter->hw;
4232         struct pci_dev *pdev = adapter->pdev;
4233         int err;
4234
4235         /* disallow open during test */
4236         if (test_bit(__E1000_TESTING, &adapter->state))
4237                 return -EBUSY;
4238
4239         pm_runtime_get_sync(&pdev->dev);
4240
4241         netif_carrier_off(netdev);
4242
4243         /* allocate transmit descriptors */
4244         err = e1000e_setup_tx_resources(adapter->tx_ring);
4245         if (err)
4246                 goto err_setup_tx;
4247
4248         /* allocate receive descriptors */
4249         err = e1000e_setup_rx_resources(adapter->rx_ring);
4250         if (err)
4251                 goto err_setup_rx;
4252
4253         /* If AMT is enabled, let the firmware know that the network
4254          * interface is now open and reset the part to a known state.
4255          */
4256         if (adapter->flags & FLAG_HAS_AMT) {
4257                 e1000e_get_hw_control(adapter);
4258                 e1000e_reset(adapter);
4259         }
4260
4261         e1000e_power_up_phy(adapter);
4262
4263         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4264         if ((adapter->hw.mng_cookie.status &
4265              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4266                 e1000_update_mng_vlan(adapter);
4267
4268         /* DMA latency requirement to workaround jumbo issue */
4269         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4270                            PM_QOS_DEFAULT_VALUE);
4271
4272         /* before we allocate an interrupt, we must be ready to handle it.
4273          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4274          * as soon as we call pci_request_irq, so we have to setup our
4275          * clean_rx handler before we do so.
4276          */
4277         e1000_configure(adapter);
4278
4279         err = e1000_request_irq(adapter);
4280         if (err)
4281                 goto err_req_irq;
4282
4283         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4284          * ignore e1000e MSI messages, which means we need to test our MSI
4285          * interrupt now
4286          */
4287         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4288                 err = e1000_test_msi(adapter);
4289                 if (err) {
4290                         e_err("Interrupt allocation failed\n");
4291                         goto err_req_irq;
4292                 }
4293         }
4294
4295         /* From here on the code is the same as e1000e_up() */
4296         clear_bit(__E1000_DOWN, &adapter->state);
4297
4298         napi_enable(&adapter->napi);
4299
4300         e1000_irq_enable(adapter);
4301
4302         adapter->tx_hang_recheck = false;
4303         netif_start_queue(netdev);
4304
4305         adapter->idle_check = true;
4306         pm_runtime_put(&pdev->dev);
4307
4308         /* fire a link status change interrupt to start the watchdog */
4309         if (adapter->msix_entries)
4310                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4311         else
4312                 ew32(ICS, E1000_ICS_LSC);
4313
4314         return 0;
4315
4316 err_req_irq:
4317         e1000e_release_hw_control(adapter);
4318         e1000_power_down_phy(adapter);
4319         e1000e_free_rx_resources(adapter->rx_ring);
4320 err_setup_rx:
4321         e1000e_free_tx_resources(adapter->tx_ring);
4322 err_setup_tx:
4323         e1000e_reset(adapter);
4324         pm_runtime_put_sync(&pdev->dev);
4325
4326         return err;
4327 }
4328
4329 /**
4330  * e1000_close - Disables a network interface
4331  * @netdev: network interface device structure
4332  *
4333  * Returns 0, this is not allowed to fail
4334  *
4335  * The close entry point is called when an interface is de-activated
4336  * by the OS.  The hardware is still under the drivers control, but
4337  * needs to be disabled.  A global MAC reset is issued to stop the
4338  * hardware, and all transmit and receive resources are freed.
4339  **/
4340 static int e1000_close(struct net_device *netdev)
4341 {
4342         struct e1000_adapter *adapter = netdev_priv(netdev);
4343         struct pci_dev *pdev = adapter->pdev;
4344         int count = E1000_CHECK_RESET_COUNT;
4345
4346         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4347                 usleep_range(10000, 20000);
4348
4349         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4350
4351         pm_runtime_get_sync(&pdev->dev);
4352
4353         napi_disable(&adapter->napi);
4354
4355         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4356                 e1000e_down(adapter);
4357                 e1000_free_irq(adapter);
4358         }
4359         e1000_power_down_phy(adapter);
4360
4361         e1000e_free_tx_resources(adapter->tx_ring);
4362         e1000e_free_rx_resources(adapter->rx_ring);
4363
4364         /* kill manageability vlan ID if supported, but not if a vlan with
4365          * the same ID is registered on the host OS (let 8021q kill it)
4366          */
4367         if (adapter->hw.mng_cookie.status &
4368             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4369                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4370
4371         /* If AMT is enabled, let the firmware know that the network
4372          * interface is now closed
4373          */
4374         if ((adapter->flags & FLAG_HAS_AMT) &&
4375             !test_bit(__E1000_TESTING, &adapter->state))
4376                 e1000e_release_hw_control(adapter);
4377
4378         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4379
4380         pm_runtime_put_sync(&pdev->dev);
4381
4382         return 0;
4383 }
4384 /**
4385  * e1000_set_mac - Change the Ethernet Address of the NIC
4386  * @netdev: network interface device structure
4387  * @p: pointer to an address structure
4388  *
4389  * Returns 0 on success, negative on failure
4390  **/
4391 static int e1000_set_mac(struct net_device *netdev, void *p)
4392 {
4393         struct e1000_adapter *adapter = netdev_priv(netdev);
4394         struct e1000_hw *hw = &adapter->hw;
4395         struct sockaddr *addr = p;
4396
4397         if (!is_valid_ether_addr(addr->sa_data))
4398                 return -EADDRNOTAVAIL;
4399
4400         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4401         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4402
4403         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4404
4405         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4406                 /* activate the work around */
4407                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4408
4409                 /* Hold a copy of the LAA in RAR[14] This is done so that
4410                  * between the time RAR[0] gets clobbered  and the time it
4411                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4412                  * of the RARs and no incoming packets directed to this port
4413                  * are dropped. Eventually the LAA will be in RAR[0] and
4414                  * RAR[14]
4415                  */
4416                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4417                                     adapter->hw.mac.rar_entry_count - 1);
4418         }
4419
4420         return 0;
4421 }
4422
4423 /**
4424  * e1000e_update_phy_task - work thread to update phy
4425  * @work: pointer to our work struct
4426  *
4427  * this worker thread exists because we must acquire a
4428  * semaphore to read the phy, which we could msleep while
4429  * waiting for it, and we can't msleep in a timer.
4430  **/
4431 static void e1000e_update_phy_task(struct work_struct *work)
4432 {
4433         struct e1000_adapter *adapter = container_of(work,
4434                                         struct e1000_adapter, update_phy_task);
4435
4436         if (test_bit(__E1000_DOWN, &adapter->state))
4437                 return;
4438
4439         e1000_get_phy_info(&adapter->hw);
4440 }
4441
4442 /**
4443  * e1000_update_phy_info - timre call-back to update PHY info
4444  * @data: pointer to adapter cast into an unsigned long
4445  *
4446  * Need to wait a few seconds after link up to get diagnostic information from
4447  * the phy
4448  **/
4449 static void e1000_update_phy_info(unsigned long data)
4450 {
4451         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4452
4453         if (test_bit(__E1000_DOWN, &adapter->state))
4454                 return;
4455
4456         schedule_work(&adapter->update_phy_task);
4457 }
4458
4459 /**
4460  * e1000e_update_phy_stats - Update the PHY statistics counters
4461  * @adapter: board private structure
4462  *
4463  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4464  **/
4465 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4466 {
4467         struct e1000_hw *hw = &adapter->hw;
4468         s32 ret_val;
4469         u16 phy_data;
4470
4471         ret_val = hw->phy.ops.acquire(hw);
4472         if (ret_val)
4473                 return;
4474
4475         /* A page set is expensive so check if already on desired page.
4476          * If not, set to the page with the PHY status registers.
4477          */
4478         hw->phy.addr = 1;
4479         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4480                                            &phy_data);
4481         if (ret_val)
4482                 goto release;
4483         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4484                 ret_val = hw->phy.ops.set_page(hw,
4485                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4486                 if (ret_val)
4487                         goto release;
4488         }
4489
4490         /* Single Collision Count */
4491         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4492         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4493         if (!ret_val)
4494                 adapter->stats.scc += phy_data;
4495
4496         /* Excessive Collision Count */
4497         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4498         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4499         if (!ret_val)
4500                 adapter->stats.ecol += phy_data;
4501
4502         /* Multiple Collision Count */
4503         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4504         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4505         if (!ret_val)
4506                 adapter->stats.mcc += phy_data;
4507
4508         /* Late Collision Count */
4509         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4510         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4511         if (!ret_val)
4512                 adapter->stats.latecol += phy_data;
4513
4514         /* Collision Count - also used for adaptive IFS */
4515         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4516         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4517         if (!ret_val)
4518                 hw->mac.collision_delta = phy_data;
4519
4520         /* Defer Count */
4521         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4522         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4523         if (!ret_val)
4524                 adapter->stats.dc += phy_data;
4525
4526         /* Transmit with no CRS */
4527         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4528         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4529         if (!ret_val)
4530                 adapter->stats.tncrs += phy_data;
4531
4532 release:
4533         hw->phy.ops.release(hw);
4534 }
4535
4536 /**
4537  * e1000e_update_stats - Update the board statistics counters
4538  * @adapter: board private structure
4539  **/
4540 static void e1000e_update_stats(struct e1000_adapter *adapter)
4541 {
4542         struct net_device *netdev = adapter->netdev;
4543         struct e1000_hw *hw = &adapter->hw;
4544         struct pci_dev *pdev = adapter->pdev;
4545
4546         /* Prevent stats update while adapter is being reset, or if the pci
4547          * connection is down.
4548          */
4549         if (adapter->link_speed == 0)
4550                 return;
4551         if (pci_channel_offline(pdev))
4552                 return;
4553
4554         adapter->stats.crcerrs += er32(CRCERRS);
4555         adapter->stats.gprc += er32(GPRC);
4556         adapter->stats.gorc += er32(GORCL);
4557         er32(GORCH); /* Clear gorc */
4558         adapter->stats.bprc += er32(BPRC);
4559         adapter->stats.mprc += er32(MPRC);
4560         adapter->stats.roc += er32(ROC);
4561
4562         adapter->stats.mpc += er32(MPC);
4563
4564         /* Half-duplex statistics */
4565         if (adapter->link_duplex == HALF_DUPLEX) {
4566                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4567                         e1000e_update_phy_stats(adapter);
4568                 } else {
4569                         adapter->stats.scc += er32(SCC);
4570                         adapter->stats.ecol += er32(ECOL);
4571                         adapter->stats.mcc += er32(MCC);
4572                         adapter->stats.latecol += er32(LATECOL);
4573                         adapter->stats.dc += er32(DC);
4574
4575                         hw->mac.collision_delta = er32(COLC);
4576
4577                         if ((hw->mac.type != e1000_82574) &&
4578                             (hw->mac.type != e1000_82583))
4579                                 adapter->stats.tncrs += er32(TNCRS);
4580                 }
4581                 adapter->stats.colc += hw->mac.collision_delta;
4582         }
4583
4584         adapter->stats.xonrxc += er32(XONRXC);
4585         adapter->stats.xontxc += er32(XONTXC);
4586         adapter->stats.xoffrxc += er32(XOFFRXC);
4587         adapter->stats.xofftxc += er32(XOFFTXC);
4588         adapter->stats.gptc += er32(GPTC);
4589         adapter->stats.gotc += er32(GOTCL);
4590         er32(GOTCH); /* Clear gotc */
4591         adapter->stats.rnbc += er32(RNBC);
4592         adapter->stats.ruc += er32(RUC);
4593
4594         adapter->stats.mptc += er32(MPTC);
4595         adapter->stats.bptc += er32(BPTC);
4596
4597         /* used for adaptive IFS */
4598
4599         hw->mac.tx_packet_delta = er32(TPT);
4600         adapter->stats.tpt += hw->mac.tx_packet_delta;
4601
4602         adapter->stats.algnerrc += er32(ALGNERRC);
4603         adapter->stats.rxerrc += er32(RXERRC);
4604         adapter->stats.cexterr += er32(CEXTERR);
4605         adapter->stats.tsctc += er32(TSCTC);
4606         adapter->stats.tsctfc += er32(TSCTFC);
4607
4608         /* Fill out the OS statistics structure */
4609         netdev->stats.multicast = adapter->stats.mprc;
4610         netdev->stats.collisions = adapter->stats.colc;
4611
4612         /* Rx Errors */
4613
4614         /* RLEC on some newer hardware can be incorrect so build
4615          * our own version based on RUC and ROC
4616          */
4617         netdev->stats.rx_errors = adapter->stats.rxerrc +
4618                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4619                 adapter->stats.ruc + adapter->stats.roc +
4620                 adapter->stats.cexterr;
4621         netdev->stats.rx_length_errors = adapter->stats.ruc +
4622                                               adapter->stats.roc;
4623         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4624         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4625         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4626
4627         /* Tx Errors */
4628         netdev->stats.tx_errors = adapter->stats.ecol +
4629                                        adapter->stats.latecol;
4630         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4631         netdev->stats.tx_window_errors = adapter->stats.latecol;
4632         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4633
4634         /* Tx Dropped needs to be maintained elsewhere */
4635
4636         /* Management Stats */
4637         adapter->stats.mgptc += er32(MGTPTC);
4638         adapter->stats.mgprc += er32(MGTPRC);
4639         adapter->stats.mgpdc += er32(MGTPDC);
4640
4641         /* Correctable ECC Errors */
4642         if (hw->mac.type == e1000_pch_lpt) {
4643                 u32 pbeccsts = er32(PBECCSTS);
4644                 adapter->corr_errors +=
4645                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4646                 adapter->uncorr_errors +=
4647                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4648                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4649         }
4650 }
4651
4652 /**
4653  * e1000_phy_read_status - Update the PHY register status snapshot
4654  * @adapter: board private structure
4655  **/
4656 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4657 {
4658         struct e1000_hw *hw = &adapter->hw;
4659         struct e1000_phy_regs *phy = &adapter->phy_regs;
4660
4661         if ((er32(STATUS) & E1000_STATUS_LU) &&
4662             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4663                 int ret_val;
4664
4665                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4666                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4667                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4668                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4669                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4670                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4671                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4672                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4673                 if (ret_val)
4674                         e_warn("Error reading PHY register\n");
4675         } else {
4676                 /* Do not read PHY registers if link is not up
4677                  * Set values to typical power-on defaults
4678                  */
4679                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4680                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4681                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4682                              BMSR_ERCAP);
4683                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4684                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4685                 phy->lpa = 0;
4686                 phy->expansion = EXPANSION_ENABLENPAGE;
4687                 phy->ctrl1000 = ADVERTISE_1000FULL;
4688                 phy->stat1000 = 0;
4689                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4690         }
4691 }
4692
4693 static void e1000_print_link_info(struct e1000_adapter *adapter)
4694 {
4695         struct e1000_hw *hw = &adapter->hw;
4696         u32 ctrl = er32(CTRL);
4697
4698         /* Link status message must follow this format for user tools */
4699         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4700                 adapter->netdev->name, adapter->link_speed,
4701                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4702                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4703                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4704                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4705 }
4706
4707 static bool e1000e_has_link(struct e1000_adapter *adapter)
4708 {
4709         struct e1000_hw *hw = &adapter->hw;
4710         bool link_active = false;
4711         s32 ret_val = 0;
4712
4713         /* get_link_status is set on LSC (link status) interrupt or
4714          * Rx sequence error interrupt.  get_link_status will stay
4715          * false until the check_for_link establishes link
4716          * for copper adapters ONLY
4717          */
4718         switch (hw->phy.media_type) {
4719         case e1000_media_type_copper:
4720                 if (hw->mac.get_link_status) {
4721                         ret_val = hw->mac.ops.check_for_link(hw);
4722                         link_active = !hw->mac.get_link_status;
4723                 } else {
4724                         link_active = true;
4725                 }
4726                 break;
4727         case e1000_media_type_fiber:
4728                 ret_val = hw->mac.ops.check_for_link(hw);
4729                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4730                 break;
4731         case e1000_media_type_internal_serdes:
4732                 ret_val = hw->mac.ops.check_for_link(hw);
4733                 link_active = adapter->hw.mac.serdes_has_link;
4734                 break;
4735         default:
4736         case e1000_media_type_unknown:
4737                 break;
4738         }
4739
4740         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4741             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4742                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4743                 e_info("Gigabit has been disabled, downgrading speed\n");
4744         }
4745
4746         return link_active;
4747 }
4748
4749 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4750 {
4751         /* make sure the receive unit is started */
4752         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4753             (adapter->flags & FLAG_RESTART_NOW)) {
4754                 struct e1000_hw *hw = &adapter->hw;
4755                 u32 rctl = er32(RCTL);
4756                 ew32(RCTL, rctl | E1000_RCTL_EN);
4757                 adapter->flags &= ~FLAG_RESTART_NOW;
4758         }
4759 }
4760
4761 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4762 {
4763         struct e1000_hw *hw = &adapter->hw;
4764
4765         /* With 82574 controllers, PHY needs to be checked periodically
4766          * for hung state and reset, if two calls return true
4767          */
4768         if (e1000_check_phy_82574(hw))
4769                 adapter->phy_hang_count++;
4770         else
4771                 adapter->phy_hang_count = 0;
4772
4773         if (adapter->phy_hang_count > 1) {
4774                 adapter->phy_hang_count = 0;
4775                 schedule_work(&adapter->reset_task);
4776         }
4777 }
4778
4779 /**
4780  * e1000_watchdog - Timer Call-back
4781  * @data: pointer to adapter cast into an unsigned long
4782  **/
4783 static void e1000_watchdog(unsigned long data)
4784 {
4785         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4786
4787         /* Do the rest outside of interrupt context */
4788         schedule_work(&adapter->watchdog_task);
4789
4790         /* TODO: make this use queue_delayed_work() */
4791 }
4792
4793 static void e1000_watchdog_task(struct work_struct *work)
4794 {
4795         struct e1000_adapter *adapter = container_of(work,
4796                                         struct e1000_adapter, watchdog_task);
4797         struct net_device *netdev = adapter->netdev;
4798         struct e1000_mac_info *mac = &adapter->hw.mac;
4799         struct e1000_phy_info *phy = &adapter->hw.phy;
4800         struct e1000_ring *tx_ring = adapter->tx_ring;
4801         struct e1000_hw *hw = &adapter->hw;
4802         u32 link, tctl;
4803
4804         if (test_bit(__E1000_DOWN, &adapter->state))
4805                 return;
4806
4807         link = e1000e_has_link(adapter);
4808         if ((netif_carrier_ok(netdev)) && link) {
4809                 /* Cancel scheduled suspend requests. */
4810                 pm_runtime_resume(netdev->dev.parent);
4811
4812                 e1000e_enable_receives(adapter);
4813                 goto link_up;
4814         }
4815
4816         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4817             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4818                 e1000_update_mng_vlan(adapter);
4819
4820         if (link) {
4821                 if (!netif_carrier_ok(netdev)) {
4822                         bool txb2b = true;
4823
4824                         /* Cancel scheduled suspend requests. */
4825                         pm_runtime_resume(netdev->dev.parent);
4826
4827                         /* update snapshot of PHY registers on LSC */
4828                         e1000_phy_read_status(adapter);
4829                         mac->ops.get_link_up_info(&adapter->hw,
4830                                                    &adapter->link_speed,
4831                                                    &adapter->link_duplex);
4832                         e1000_print_link_info(adapter);
4833
4834                         /* check if SmartSpeed worked */
4835                         e1000e_check_downshift(hw);
4836                         if (phy->speed_downgraded)
4837                                 netdev_warn(netdev,
4838                                             "Link Speed was downgraded by SmartSpeed\n");
4839
4840                         /* On supported PHYs, check for duplex mismatch only
4841                          * if link has autonegotiated at 10/100 half
4842                          */
4843                         if ((hw->phy.type == e1000_phy_igp_3 ||
4844                              hw->phy.type == e1000_phy_bm) &&
4845                             (hw->mac.autoneg == true) &&
4846                             (adapter->link_speed == SPEED_10 ||
4847                              adapter->link_speed == SPEED_100) &&
4848                             (adapter->link_duplex == HALF_DUPLEX)) {
4849                                 u16 autoneg_exp;
4850
4851                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4852
4853                                 if (!(autoneg_exp & EXPANSION_NWAY))
4854                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4855                         }
4856
4857                         /* adjust timeout factor according to speed/duplex */
4858                         adapter->tx_timeout_factor = 1;
4859                         switch (adapter->link_speed) {
4860                         case SPEED_10:
4861                                 txb2b = false;
4862                                 adapter->tx_timeout_factor = 16;
4863                                 break;
4864                         case SPEED_100:
4865                                 txb2b = false;
4866                                 adapter->tx_timeout_factor = 10;
4867                                 break;
4868                         }
4869
4870                         /* workaround: re-program speed mode bit after
4871                          * link-up event
4872                          */
4873                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4874                             !txb2b) {
4875                                 u32 tarc0;
4876                                 tarc0 = er32(TARC(0));
4877                                 tarc0 &= ~SPEED_MODE_BIT;
4878                                 ew32(TARC(0), tarc0);
4879                         }
4880
4881                         /* disable TSO for pcie and 10/100 speeds, to avoid
4882                          * some hardware issues
4883                          */
4884                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4885                                 switch (adapter->link_speed) {
4886                                 case SPEED_10:
4887                                 case SPEED_100:
4888                                         e_info("10/100 speed: disabling TSO\n");
4889                                         netdev->features &= ~NETIF_F_TSO;
4890                                         netdev->features &= ~NETIF_F_TSO6;
4891                                         break;
4892                                 case SPEED_1000:
4893                                         netdev->features |= NETIF_F_TSO;
4894                                         netdev->features |= NETIF_F_TSO6;
4895                                         break;
4896                                 default:
4897                                         /* oops */
4898                                         break;
4899                                 }
4900                         }
4901
4902                         /* enable transmits in the hardware, need to do this
4903                          * after setting TARC(0)
4904                          */
4905                         tctl = er32(TCTL);
4906                         tctl |= E1000_TCTL_EN;
4907                         ew32(TCTL, tctl);
4908
4909                         /* Perform any post-link-up configuration before
4910                          * reporting link up.
4911                          */
4912                         if (phy->ops.cfg_on_link_up)
4913                                 phy->ops.cfg_on_link_up(hw);
4914
4915                         netif_carrier_on(netdev);
4916
4917                         if (!test_bit(__E1000_DOWN, &adapter->state))
4918                                 mod_timer(&adapter->phy_info_timer,
4919                                           round_jiffies(jiffies + 2 * HZ));
4920                 }
4921         } else {
4922                 if (netif_carrier_ok(netdev)) {
4923                         adapter->link_speed = 0;
4924                         adapter->link_duplex = 0;
4925                         /* Link status message must follow this format */
4926                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4927                         netif_carrier_off(netdev);
4928                         if (!test_bit(__E1000_DOWN, &adapter->state))
4929                                 mod_timer(&adapter->phy_info_timer,
4930                                           round_jiffies(jiffies + 2 * HZ));
4931
4932                         /* The link is lost so the controller stops DMA.
4933                          * If there is queued Tx work that cannot be done
4934                          * or if on an 8000ES2LAN which requires a Rx packet
4935                          * buffer work-around on link down event, reset the
4936                          * controller to flush the Tx/Rx packet buffers.
4937                          * (Do the reset outside of interrupt context).
4938                          */
4939                         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4940                             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4941                                 adapter->flags |= FLAG_RESTART_NOW;
4942                         else
4943                                 pm_schedule_suspend(netdev->dev.parent,
4944                                                         LINK_TIMEOUT);
4945                 }
4946         }
4947
4948 link_up:
4949         spin_lock(&adapter->stats64_lock);
4950         e1000e_update_stats(adapter);
4951
4952         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4953         adapter->tpt_old = adapter->stats.tpt;
4954         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4955         adapter->colc_old = adapter->stats.colc;
4956
4957         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4958         adapter->gorc_old = adapter->stats.gorc;
4959         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4960         adapter->gotc_old = adapter->stats.gotc;
4961         spin_unlock(&adapter->stats64_lock);
4962
4963         if (adapter->flags & FLAG_RESTART_NOW) {
4964                 schedule_work(&adapter->reset_task);
4965                 /* return immediately since reset is imminent */
4966                 return;
4967         }
4968
4969         e1000e_update_adaptive(&adapter->hw);
4970
4971         /* Simple mode for Interrupt Throttle Rate (ITR) */
4972         if (adapter->itr_setting == 4) {
4973                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
4974                  * Total asymmetrical Tx or Rx gets ITR=8000;
4975                  * everyone else is between 2000-8000.
4976                  */
4977                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4978                 u32 dif = (adapter->gotc > adapter->gorc ?
4979                             adapter->gotc - adapter->gorc :
4980                             adapter->gorc - adapter->gotc) / 10000;
4981                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4982
4983                 e1000e_write_itr(adapter, itr);
4984         }
4985
4986         /* Cause software interrupt to ensure Rx ring is cleaned */
4987         if (adapter->msix_entries)
4988                 ew32(ICS, adapter->rx_ring->ims_val);
4989         else
4990                 ew32(ICS, E1000_ICS_RXDMT0);
4991
4992         /* flush pending descriptors to memory before detecting Tx hang */
4993         e1000e_flush_descriptors(adapter);
4994
4995         /* Force detection of hung controller every watchdog period */
4996         adapter->detect_tx_hung = true;
4997
4998         /* With 82571 controllers, LAA may be overwritten due to controller
4999          * reset from the other port. Set the appropriate LAA in RAR[0]
5000          */
5001         if (e1000e_get_laa_state_82571(hw))
5002                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5003
5004         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5005                 e1000e_check_82574_phy_workaround(adapter);
5006
5007         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5008         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5009                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5010                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5011                         er32(RXSTMPH);
5012                         adapter->rx_hwtstamp_cleared++;
5013                 } else {
5014                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5015                 }
5016         }
5017
5018         /* Reset the timer */
5019         if (!test_bit(__E1000_DOWN, &adapter->state))
5020                 mod_timer(&adapter->watchdog_timer,
5021                           round_jiffies(jiffies + 2 * HZ));
5022 }
5023
5024 #define E1000_TX_FLAGS_CSUM             0x00000001
5025 #define E1000_TX_FLAGS_VLAN             0x00000002
5026 #define E1000_TX_FLAGS_TSO              0x00000004
5027 #define E1000_TX_FLAGS_IPV4             0x00000008
5028 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5029 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5030 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5031 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5032
5033 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5034 {
5035         struct e1000_context_desc *context_desc;
5036         struct e1000_buffer *buffer_info;
5037         unsigned int i;
5038         u32 cmd_length = 0;
5039         u16 ipcse = 0, mss;
5040         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5041
5042         if (!skb_is_gso(skb))
5043                 return 0;
5044
5045         if (skb_header_cloned(skb)) {
5046                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5047
5048                 if (err)
5049                         return err;
5050         }
5051
5052         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5053         mss = skb_shinfo(skb)->gso_size;
5054         if (skb->protocol == htons(ETH_P_IP)) {
5055                 struct iphdr *iph = ip_hdr(skb);
5056                 iph->tot_len = 0;
5057                 iph->check = 0;
5058                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5059                                                          0, IPPROTO_TCP, 0);
5060                 cmd_length = E1000_TXD_CMD_IP;
5061                 ipcse = skb_transport_offset(skb) - 1;
5062         } else if (skb_is_gso_v6(skb)) {
5063                 ipv6_hdr(skb)->payload_len = 0;
5064                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5065                                                        &ipv6_hdr(skb)->daddr,
5066                                                        0, IPPROTO_TCP, 0);
5067                 ipcse = 0;
5068         }
5069         ipcss = skb_network_offset(skb);
5070         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5071         tucss = skb_transport_offset(skb);
5072         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5073
5074         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5075                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5076
5077         i = tx_ring->next_to_use;
5078         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5079         buffer_info = &tx_ring->buffer_info[i];
5080
5081         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
5082         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
5083         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
5084         context_desc->upper_setup.tcp_fields.tucss = tucss;
5085         context_desc->upper_setup.tcp_fields.tucso = tucso;
5086         context_desc->upper_setup.tcp_fields.tucse = 0;
5087         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
5088         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5089         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5090
5091         buffer_info->time_stamp = jiffies;
5092         buffer_info->next_to_watch = i;
5093
5094         i++;
5095         if (i == tx_ring->count)
5096                 i = 0;
5097         tx_ring->next_to_use = i;
5098
5099         return 1;
5100 }
5101
5102 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5103 {
5104         struct e1000_adapter *adapter = tx_ring->adapter;
5105         struct e1000_context_desc *context_desc;
5106         struct e1000_buffer *buffer_info;
5107         unsigned int i;
5108         u8 css;
5109         u32 cmd_len = E1000_TXD_CMD_DEXT;
5110         __be16 protocol;
5111
5112         if (skb->ip_summed != CHECKSUM_PARTIAL)
5113                 return 0;
5114
5115         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5116                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5117         else
5118                 protocol = skb->protocol;
5119
5120         switch (protocol) {
5121         case cpu_to_be16(ETH_P_IP):
5122                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5123                         cmd_len |= E1000_TXD_CMD_TCP;
5124                 break;
5125         case cpu_to_be16(ETH_P_IPV6):
5126                 /* XXX not handling all IPV6 headers */
5127                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5128                         cmd_len |= E1000_TXD_CMD_TCP;
5129                 break;
5130         default:
5131                 if (unlikely(net_ratelimit()))
5132                         e_warn("checksum_partial proto=%x!\n",
5133                                be16_to_cpu(protocol));
5134                 break;
5135         }
5136
5137         css = skb_checksum_start_offset(skb);
5138
5139         i = tx_ring->next_to_use;
5140         buffer_info = &tx_ring->buffer_info[i];
5141         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5142
5143         context_desc->lower_setup.ip_config = 0;
5144         context_desc->upper_setup.tcp_fields.tucss = css;
5145         context_desc->upper_setup.tcp_fields.tucso =
5146                                 css + skb->csum_offset;
5147         context_desc->upper_setup.tcp_fields.tucse = 0;
5148         context_desc->tcp_seg_setup.data = 0;
5149         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5150
5151         buffer_info->time_stamp = jiffies;
5152         buffer_info->next_to_watch = i;
5153
5154         i++;
5155         if (i == tx_ring->count)
5156                 i = 0;
5157         tx_ring->next_to_use = i;
5158
5159         return 1;
5160 }
5161
5162 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5163                         unsigned int first, unsigned int max_per_txd,
5164                         unsigned int nr_frags)
5165 {
5166         struct e1000_adapter *adapter = tx_ring->adapter;
5167         struct pci_dev *pdev = adapter->pdev;
5168         struct e1000_buffer *buffer_info;
5169         unsigned int len = skb_headlen(skb);
5170         unsigned int offset = 0, size, count = 0, i;
5171         unsigned int f, bytecount, segs;
5172
5173         i = tx_ring->next_to_use;
5174
5175         while (len) {
5176                 buffer_info = &tx_ring->buffer_info[i];
5177                 size = min(len, max_per_txd);
5178
5179                 buffer_info->length = size;
5180                 buffer_info->time_stamp = jiffies;
5181                 buffer_info->next_to_watch = i;
5182                 buffer_info->dma = dma_map_single(&pdev->dev,
5183                                                   skb->data + offset,
5184                                                   size, DMA_TO_DEVICE);
5185                 buffer_info->mapped_as_page = false;
5186                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5187                         goto dma_error;
5188
5189                 len -= size;
5190                 offset += size;
5191                 count++;
5192
5193                 if (len) {
5194                         i++;
5195                         if (i == tx_ring->count)
5196                                 i = 0;
5197                 }
5198         }
5199
5200         for (f = 0; f < nr_frags; f++) {
5201                 const struct skb_frag_struct *frag;
5202
5203                 frag = &skb_shinfo(skb)->frags[f];
5204                 len = skb_frag_size(frag);
5205                 offset = 0;
5206
5207                 while (len) {
5208                         i++;
5209                         if (i == tx_ring->count)
5210                                 i = 0;
5211
5212                         buffer_info = &tx_ring->buffer_info[i];
5213                         size = min(len, max_per_txd);
5214
5215                         buffer_info->length = size;
5216                         buffer_info->time_stamp = jiffies;
5217                         buffer_info->next_to_watch = i;
5218                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5219                                                 offset, size, DMA_TO_DEVICE);
5220                         buffer_info->mapped_as_page = true;
5221                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5222                                 goto dma_error;
5223
5224                         len -= size;
5225                         offset += size;
5226                         count++;
5227                 }
5228         }
5229
5230         segs = skb_shinfo(skb)->gso_segs ? : 1;
5231         /* multiply data chunks by size of headers */
5232         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5233
5234         tx_ring->buffer_info[i].skb = skb;
5235         tx_ring->buffer_info[i].segs = segs;
5236         tx_ring->buffer_info[i].bytecount = bytecount;
5237         tx_ring->buffer_info[first].next_to_watch = i;
5238
5239         return count;
5240
5241 dma_error:
5242         dev_err(&pdev->dev, "Tx DMA map failed\n");
5243         buffer_info->dma = 0;
5244         if (count)
5245                 count--;
5246
5247         while (count--) {
5248                 if (i == 0)
5249                         i += tx_ring->count;
5250                 i--;
5251                 buffer_info = &tx_ring->buffer_info[i];
5252                 e1000_put_txbuf(tx_ring, buffer_info);
5253         }
5254
5255         return 0;
5256 }
5257
5258 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5259 {
5260         struct e1000_adapter *adapter = tx_ring->adapter;
5261         struct e1000_tx_desc *tx_desc = NULL;
5262         struct e1000_buffer *buffer_info;
5263         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5264         unsigned int i;
5265
5266         if (tx_flags & E1000_TX_FLAGS_TSO) {
5267                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5268                              E1000_TXD_CMD_TSE;
5269                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5270
5271                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5272                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5273         }
5274
5275         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5276                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5277                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5278         }
5279
5280         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5281                 txd_lower |= E1000_TXD_CMD_VLE;
5282                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5283         }
5284
5285         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5286                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5287
5288         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5289                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5290                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5291         }
5292
5293         i = tx_ring->next_to_use;
5294
5295         do {
5296                 buffer_info = &tx_ring->buffer_info[i];
5297                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5298                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5299                 tx_desc->lower.data =
5300                         cpu_to_le32(txd_lower | buffer_info->length);
5301                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5302
5303                 i++;
5304                 if (i == tx_ring->count)
5305                         i = 0;
5306         } while (--count > 0);
5307
5308         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5309
5310         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5311         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5312                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5313
5314         /* Force memory writes to complete before letting h/w
5315          * know there are new descriptors to fetch.  (Only
5316          * applicable for weak-ordered memory model archs,
5317          * such as IA-64).
5318          */
5319         wmb();
5320
5321         tx_ring->next_to_use = i;
5322
5323         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5324                 e1000e_update_tdt_wa(tx_ring, i);
5325         else
5326                 writel(i, tx_ring->tail);
5327
5328         /* we need this if more than one processor can write to our tail
5329          * at a time, it synchronizes IO on IA64/Altix systems
5330          */
5331         mmiowb();
5332 }
5333
5334 #define MINIMUM_DHCP_PACKET_SIZE 282
5335 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5336                                     struct sk_buff *skb)
5337 {
5338         struct e1000_hw *hw =  &adapter->hw;
5339         u16 length, offset;
5340
5341         if (vlan_tx_tag_present(skb) &&
5342             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5343               (adapter->hw.mng_cookie.status &
5344                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5345                 return 0;
5346
5347         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5348                 return 0;
5349
5350         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
5351                 return 0;
5352
5353         {
5354                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
5355                 struct udphdr *udp;
5356
5357                 if (ip->protocol != IPPROTO_UDP)
5358                         return 0;
5359
5360                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5361                 if (ntohs(udp->dest) != 67)
5362                         return 0;
5363
5364                 offset = (u8 *)udp + 8 - skb->data;
5365                 length = skb->len - offset;
5366                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5367         }
5368
5369         return 0;
5370 }
5371
5372 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5373 {
5374         struct e1000_adapter *adapter = tx_ring->adapter;
5375
5376         netif_stop_queue(adapter->netdev);
5377         /* Herbert's original patch had:
5378          *  smp_mb__after_netif_stop_queue();
5379          * but since that doesn't exist yet, just open code it.
5380          */
5381         smp_mb();
5382
5383         /* We need to check again in a case another CPU has just
5384          * made room available.
5385          */
5386         if (e1000_desc_unused(tx_ring) < size)
5387                 return -EBUSY;
5388
5389         /* A reprieve! */
5390         netif_start_queue(adapter->netdev);
5391         ++adapter->restart_queue;
5392         return 0;
5393 }
5394
5395 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5396 {
5397         BUG_ON(size > tx_ring->count);
5398
5399         if (e1000_desc_unused(tx_ring) >= size)
5400                 return 0;
5401         return __e1000_maybe_stop_tx(tx_ring, size);
5402 }
5403
5404 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5405                                     struct net_device *netdev)
5406 {
5407         struct e1000_adapter *adapter = netdev_priv(netdev);
5408         struct e1000_ring *tx_ring = adapter->tx_ring;
5409         unsigned int first;
5410         unsigned int tx_flags = 0;
5411         unsigned int len = skb_headlen(skb);
5412         unsigned int nr_frags;
5413         unsigned int mss;
5414         int count = 0;
5415         int tso;
5416         unsigned int f;
5417
5418         if (test_bit(__E1000_DOWN, &adapter->state)) {
5419                 dev_kfree_skb_any(skb);
5420                 return NETDEV_TX_OK;
5421         }
5422
5423         if (skb->len <= 0) {
5424                 dev_kfree_skb_any(skb);
5425                 return NETDEV_TX_OK;
5426         }
5427
5428         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5429          * pad skb in order to meet this minimum size requirement
5430          */
5431         if (unlikely(skb->len < 17)) {
5432                 if (skb_pad(skb, 17 - skb->len))
5433                         return NETDEV_TX_OK;
5434                 skb->len = 17;
5435                 skb_set_tail_pointer(skb, 17);
5436         }
5437
5438         mss = skb_shinfo(skb)->gso_size;
5439         if (mss) {
5440                 u8 hdr_len;
5441
5442                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5443                  * points to just header, pull a few bytes of payload from
5444                  * frags into skb->data
5445                  */
5446                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5447                 /* we do this workaround for ES2LAN, but it is un-necessary,
5448                  * avoiding it could save a lot of cycles
5449                  */
5450                 if (skb->data_len && (hdr_len == len)) {
5451                         unsigned int pull_size;
5452
5453                         pull_size = min_t(unsigned int, 4, skb->data_len);
5454                         if (!__pskb_pull_tail(skb, pull_size)) {
5455                                 e_err("__pskb_pull_tail failed.\n");
5456                                 dev_kfree_skb_any(skb);
5457                                 return NETDEV_TX_OK;
5458                         }
5459                         len = skb_headlen(skb);
5460                 }
5461         }
5462
5463         /* reserve a descriptor for the offload context */
5464         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5465                 count++;
5466         count++;
5467
5468         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5469
5470         nr_frags = skb_shinfo(skb)->nr_frags;
5471         for (f = 0; f < nr_frags; f++)
5472                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5473                                       adapter->tx_fifo_limit);
5474
5475         if (adapter->hw.mac.tx_pkt_filtering)
5476                 e1000_transfer_dhcp_info(adapter, skb);
5477
5478         /* need: count + 2 desc gap to keep tail from touching
5479          * head, otherwise try next time
5480          */
5481         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5482                 return NETDEV_TX_BUSY;
5483
5484         if (vlan_tx_tag_present(skb)) {
5485                 tx_flags |= E1000_TX_FLAGS_VLAN;
5486                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5487         }
5488
5489         first = tx_ring->next_to_use;
5490
5491         tso = e1000_tso(tx_ring, skb);
5492         if (tso < 0) {
5493                 dev_kfree_skb_any(skb);
5494                 return NETDEV_TX_OK;
5495         }
5496
5497         if (tso)
5498                 tx_flags |= E1000_TX_FLAGS_TSO;
5499         else if (e1000_tx_csum(tx_ring, skb))
5500                 tx_flags |= E1000_TX_FLAGS_CSUM;
5501
5502         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5503          * 82571 hardware supports TSO capabilities for IPv6 as well...
5504          * no longer assume, we must.
5505          */
5506         if (skb->protocol == htons(ETH_P_IP))
5507                 tx_flags |= E1000_TX_FLAGS_IPV4;
5508
5509         if (unlikely(skb->no_fcs))
5510                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5511
5512         /* if count is 0 then mapping error has occurred */
5513         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5514                              nr_frags);
5515         if (count) {
5516                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5517                              !adapter->tx_hwtstamp_skb)) {
5518                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5519                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5520                         adapter->tx_hwtstamp_skb = skb_get(skb);
5521                         schedule_work(&adapter->tx_hwtstamp_work);
5522                 } else {
5523                         skb_tx_timestamp(skb);
5524                 }
5525
5526                 netdev_sent_queue(netdev, skb->len);
5527                 e1000_tx_queue(tx_ring, tx_flags, count);
5528                 /* Make sure there is space in the ring for the next send. */
5529                 e1000_maybe_stop_tx(tx_ring,
5530                                     (MAX_SKB_FRAGS *
5531                                      DIV_ROUND_UP(PAGE_SIZE,
5532                                                   adapter->tx_fifo_limit) + 2));
5533         } else {
5534                 dev_kfree_skb_any(skb);
5535                 tx_ring->buffer_info[first].time_stamp = 0;
5536                 tx_ring->next_to_use = first;
5537         }
5538
5539         return NETDEV_TX_OK;
5540 }
5541
5542 /**
5543  * e1000_tx_timeout - Respond to a Tx Hang
5544  * @netdev: network interface device structure
5545  **/
5546 static void e1000_tx_timeout(struct net_device *netdev)
5547 {
5548         struct e1000_adapter *adapter = netdev_priv(netdev);
5549
5550         /* Do the reset outside of interrupt context */
5551         adapter->tx_timeout_count++;
5552         schedule_work(&adapter->reset_task);
5553 }
5554
5555 static void e1000_reset_task(struct work_struct *work)
5556 {
5557         struct e1000_adapter *adapter;
5558         adapter = container_of(work, struct e1000_adapter, reset_task);
5559
5560         /* don't run the task if already down */
5561         if (test_bit(__E1000_DOWN, &adapter->state))
5562                 return;
5563
5564         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5565                 e1000e_dump(adapter);
5566                 e_err("Reset adapter unexpectedly\n");
5567         }
5568         e1000e_reinit_locked(adapter);
5569 }
5570
5571 /**
5572  * e1000_get_stats64 - Get System Network Statistics
5573  * @netdev: network interface device structure
5574  * @stats: rtnl_link_stats64 pointer
5575  *
5576  * Returns the address of the device statistics structure.
5577  **/
5578 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5579                                              struct rtnl_link_stats64 *stats)
5580 {
5581         struct e1000_adapter *adapter = netdev_priv(netdev);
5582
5583         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5584         spin_lock(&adapter->stats64_lock);
5585         e1000e_update_stats(adapter);
5586         /* Fill out the OS statistics structure */
5587         stats->rx_bytes = adapter->stats.gorc;
5588         stats->rx_packets = adapter->stats.gprc;
5589         stats->tx_bytes = adapter->stats.gotc;
5590         stats->tx_packets = adapter->stats.gptc;
5591         stats->multicast = adapter->stats.mprc;
5592         stats->collisions = adapter->stats.colc;
5593
5594         /* Rx Errors */
5595
5596         /* RLEC on some newer hardware can be incorrect so build
5597          * our own version based on RUC and ROC
5598          */
5599         stats->rx_errors = adapter->stats.rxerrc +
5600                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5601                 adapter->stats.ruc + adapter->stats.roc +
5602                 adapter->stats.cexterr;
5603         stats->rx_length_errors = adapter->stats.ruc +
5604                                               adapter->stats.roc;
5605         stats->rx_crc_errors = adapter->stats.crcerrs;
5606         stats->rx_frame_errors = adapter->stats.algnerrc;
5607         stats->rx_missed_errors = adapter->stats.mpc;
5608
5609         /* Tx Errors */
5610         stats->tx_errors = adapter->stats.ecol +
5611                                        adapter->stats.latecol;
5612         stats->tx_aborted_errors = adapter->stats.ecol;
5613         stats->tx_window_errors = adapter->stats.latecol;
5614         stats->tx_carrier_errors = adapter->stats.tncrs;
5615
5616         /* Tx Dropped needs to be maintained elsewhere */
5617
5618         spin_unlock(&adapter->stats64_lock);
5619         return stats;
5620 }
5621
5622 /**
5623  * e1000_change_mtu - Change the Maximum Transfer Unit
5624  * @netdev: network interface device structure
5625  * @new_mtu: new value for maximum frame size
5626  *
5627  * Returns 0 on success, negative on failure
5628  **/
5629 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5630 {
5631         struct e1000_adapter *adapter = netdev_priv(netdev);
5632         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5633
5634         /* Jumbo frame support */
5635         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5636             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5637                 e_err("Jumbo Frames not supported.\n");
5638                 return -EINVAL;
5639         }
5640
5641         /* Supported frame sizes */
5642         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5643             (max_frame > adapter->max_hw_frame_size)) {
5644                 e_err("Unsupported MTU setting\n");
5645                 return -EINVAL;
5646         }
5647
5648         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5649         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5650             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5651             (new_mtu > ETH_DATA_LEN)) {
5652                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5653                 return -EINVAL;
5654         }
5655
5656         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5657                 usleep_range(1000, 2000);
5658         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5659         adapter->max_frame_size = max_frame;
5660         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5661         netdev->mtu = new_mtu;
5662         if (netif_running(netdev))
5663                 e1000e_down(adapter);
5664
5665         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5666          * means we reserve 2 more, this pushes us to allocate from the next
5667          * larger slab size.
5668          * i.e. RXBUFFER_2048 --> size-4096 slab
5669          * However with the new *_jumbo_rx* routines, jumbo receives will use
5670          * fragmented skbs
5671          */
5672
5673         if (max_frame <= 2048)
5674                 adapter->rx_buffer_len = 2048;
5675         else
5676                 adapter->rx_buffer_len = 4096;
5677
5678         /* adjust allocation if LPE protects us, and we aren't using SBP */
5679         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5680              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5681                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5682                                          + ETH_FCS_LEN;
5683
5684         if (netif_running(netdev))
5685                 e1000e_up(adapter);
5686         else
5687                 e1000e_reset(adapter);
5688
5689         clear_bit(__E1000_RESETTING, &adapter->state);
5690
5691         return 0;
5692 }
5693
5694 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5695                            int cmd)
5696 {
5697         struct e1000_adapter *adapter = netdev_priv(netdev);
5698         struct mii_ioctl_data *data = if_mii(ifr);
5699
5700         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5701                 return -EOPNOTSUPP;
5702
5703         switch (cmd) {
5704         case SIOCGMIIPHY:
5705                 data->phy_id = adapter->hw.phy.addr;
5706                 break;
5707         case SIOCGMIIREG:
5708                 e1000_phy_read_status(adapter);
5709
5710                 switch (data->reg_num & 0x1F) {
5711                 case MII_BMCR:
5712                         data->val_out = adapter->phy_regs.bmcr;
5713                         break;
5714                 case MII_BMSR:
5715                         data->val_out = adapter->phy_regs.bmsr;
5716                         break;
5717                 case MII_PHYSID1:
5718                         data->val_out = (adapter->hw.phy.id >> 16);
5719                         break;
5720                 case MII_PHYSID2:
5721                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5722                         break;
5723                 case MII_ADVERTISE:
5724                         data->val_out = adapter->phy_regs.advertise;
5725                         break;
5726                 case MII_LPA:
5727                         data->val_out = adapter->phy_regs.lpa;
5728                         break;
5729                 case MII_EXPANSION:
5730                         data->val_out = adapter->phy_regs.expansion;
5731                         break;
5732                 case MII_CTRL1000:
5733                         data->val_out = adapter->phy_regs.ctrl1000;
5734                         break;
5735                 case MII_STAT1000:
5736                         data->val_out = adapter->phy_regs.stat1000;
5737                         break;
5738                 case MII_ESTATUS:
5739                         data->val_out = adapter->phy_regs.estatus;
5740                         break;
5741                 default:
5742                         return -EIO;
5743                 }
5744                 break;
5745         case SIOCSMIIREG:
5746         default:
5747                 return -EOPNOTSUPP;
5748         }
5749         return 0;
5750 }
5751
5752 /**
5753  * e1000e_hwtstamp_ioctl - control hardware time stamping
5754  * @netdev: network interface device structure
5755  * @ifreq: interface request
5756  *
5757  * Outgoing time stamping can be enabled and disabled. Play nice and
5758  * disable it when requested, although it shouldn't cause any overhead
5759  * when no packet needs it. At most one packet in the queue may be
5760  * marked for time stamping, otherwise it would be impossible to tell
5761  * for sure to which packet the hardware time stamp belongs.
5762  *
5763  * Incoming time stamping has to be configured via the hardware filters.
5764  * Not all combinations are supported, in particular event type has to be
5765  * specified. Matching the kind of event packet is not supported, with the
5766  * exception of "all V2 events regardless of level 2 or 4".
5767  **/
5768 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5769 {
5770         struct e1000_adapter *adapter = netdev_priv(netdev);
5771         struct hwtstamp_config config;
5772         int ret_val;
5773
5774         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5775                 return -EFAULT;
5776
5777         adapter->hwtstamp_config = config;
5778
5779         ret_val = e1000e_config_hwtstamp(adapter);
5780         if (ret_val)
5781                 return ret_val;
5782
5783         config = adapter->hwtstamp_config;
5784
5785         switch (config.rx_filter) {
5786         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5787         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5788         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5789         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5790         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5791         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5792                 /* With V2 type filters which specify a Sync or Delay Request,
5793                  * Path Delay Request/Response messages are also time stamped
5794                  * by hardware so notify the caller the requested packets plus
5795                  * some others are time stamped.
5796                  */
5797                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5798                 break;
5799         default:
5800                 break;
5801         }
5802
5803         return copy_to_user(ifr->ifr_data, &config,
5804                             sizeof(config)) ? -EFAULT : 0;
5805 }
5806
5807 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5808 {
5809         switch (cmd) {
5810         case SIOCGMIIPHY:
5811         case SIOCGMIIREG:
5812         case SIOCSMIIREG:
5813                 return e1000_mii_ioctl(netdev, ifr, cmd);
5814         case SIOCSHWTSTAMP:
5815                 return e1000e_hwtstamp_ioctl(netdev, ifr);
5816         default:
5817                 return -EOPNOTSUPP;
5818         }
5819 }
5820
5821 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5822 {
5823         struct e1000_hw *hw = &adapter->hw;
5824         u32 i, mac_reg;
5825         u16 phy_reg, wuc_enable;
5826         int retval;
5827
5828         /* copy MAC RARs to PHY RARs */
5829         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5830
5831         retval = hw->phy.ops.acquire(hw);
5832         if (retval) {
5833                 e_err("Could not acquire PHY\n");
5834                 return retval;
5835         }
5836
5837         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5838         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5839         if (retval)
5840                 goto release;
5841
5842         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5843         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5844                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5845                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5846                                            (u16)(mac_reg & 0xFFFF));
5847                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5848                                            (u16)((mac_reg >> 16) & 0xFFFF));
5849         }
5850
5851         /* configure PHY Rx Control register */
5852         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5853         mac_reg = er32(RCTL);
5854         if (mac_reg & E1000_RCTL_UPE)
5855                 phy_reg |= BM_RCTL_UPE;
5856         if (mac_reg & E1000_RCTL_MPE)
5857                 phy_reg |= BM_RCTL_MPE;
5858         phy_reg &= ~(BM_RCTL_MO_MASK);
5859         if (mac_reg & E1000_RCTL_MO_3)
5860                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5861                                 << BM_RCTL_MO_SHIFT);
5862         if (mac_reg & E1000_RCTL_BAM)
5863                 phy_reg |= BM_RCTL_BAM;
5864         if (mac_reg & E1000_RCTL_PMCF)
5865                 phy_reg |= BM_RCTL_PMCF;
5866         mac_reg = er32(CTRL);
5867         if (mac_reg & E1000_CTRL_RFCE)
5868                 phy_reg |= BM_RCTL_RFCE;
5869         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5870
5871         /* enable PHY wakeup in MAC register */
5872         ew32(WUFC, wufc);
5873         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5874
5875         /* configure and enable PHY wakeup in PHY registers */
5876         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5877         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5878
5879         /* activate PHY wakeup */
5880         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5881         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5882         if (retval)
5883                 e_err("Could not set PHY Host Wakeup bit\n");
5884 release:
5885         hw->phy.ops.release(hw);
5886
5887         return retval;
5888 }
5889
5890 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5891                             bool runtime)
5892 {
5893         struct net_device *netdev = pci_get_drvdata(pdev);
5894         struct e1000_adapter *adapter = netdev_priv(netdev);
5895         struct e1000_hw *hw = &adapter->hw;
5896         u32 ctrl, ctrl_ext, rctl, status;
5897         /* Runtime suspend should only enable wakeup for link changes */
5898         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5899         int retval = 0;
5900
5901         netif_device_detach(netdev);
5902
5903         if (netif_running(netdev)) {
5904                 int count = E1000_CHECK_RESET_COUNT;
5905
5906                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5907                         usleep_range(10000, 20000);
5908
5909                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5910                 e1000e_down(adapter);
5911                 e1000_free_irq(adapter);
5912         }
5913         e1000e_reset_interrupt_capability(adapter);
5914
5915         retval = pci_save_state(pdev);
5916         if (retval)
5917                 return retval;
5918
5919         status = er32(STATUS);
5920         if (status & E1000_STATUS_LU)
5921                 wufc &= ~E1000_WUFC_LNKC;
5922
5923         if (wufc) {
5924                 e1000_setup_rctl(adapter);
5925                 e1000e_set_rx_mode(netdev);
5926
5927                 /* turn on all-multi mode if wake on multicast is enabled */
5928                 if (wufc & E1000_WUFC_MC) {
5929                         rctl = er32(RCTL);
5930                         rctl |= E1000_RCTL_MPE;
5931                         ew32(RCTL, rctl);
5932                 }
5933
5934                 ctrl = er32(CTRL);
5935                 /* advertise wake from D3Cold */
5936                 #define E1000_CTRL_ADVD3WUC 0x00100000
5937                 /* phy power management enable */
5938                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5939                 ctrl |= E1000_CTRL_ADVD3WUC;
5940                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5941                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5942                 ew32(CTRL, ctrl);
5943
5944                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5945                     adapter->hw.phy.media_type ==
5946                     e1000_media_type_internal_serdes) {
5947                         /* keep the laser running in D3 */
5948                         ctrl_ext = er32(CTRL_EXT);
5949                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5950                         ew32(CTRL_EXT, ctrl_ext);
5951                 }
5952
5953                 if (adapter->flags & FLAG_IS_ICH)
5954                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5955
5956                 /* Allow time for pending master requests to run */
5957                 e1000e_disable_pcie_master(&adapter->hw);
5958
5959                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5960                         /* enable wakeup by the PHY */
5961                         retval = e1000_init_phy_wakeup(adapter, wufc);
5962                         if (retval)
5963                                 return retval;
5964                 } else {
5965                         /* enable wakeup by the MAC */
5966                         ew32(WUFC, wufc);
5967                         ew32(WUC, E1000_WUC_PME_EN);
5968                 }
5969         } else {
5970                 ew32(WUC, 0);
5971                 ew32(WUFC, 0);
5972         }
5973
5974         *enable_wake = !!wufc;
5975
5976         /* make sure adapter isn't asleep if manageability is enabled */
5977         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5978             (hw->mac.ops.check_mng_mode(hw)))
5979                 *enable_wake = true;
5980
5981         if (adapter->hw.phy.type == e1000_phy_igp_3)
5982                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5983
5984         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5985          * would have already happened in close and is redundant.
5986          */
5987         e1000e_release_hw_control(adapter);
5988
5989         pci_disable_device(pdev);
5990
5991         return 0;
5992 }
5993
5994 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5995 {
5996         if (sleep && wake) {
5997                 pci_prepare_to_sleep(pdev);
5998                 return;
5999         }
6000
6001         pci_wake_from_d3(pdev, wake);
6002         pci_set_power_state(pdev, PCI_D3hot);
6003 }
6004
6005 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
6006                                     bool wake)
6007 {
6008         struct net_device *netdev = pci_get_drvdata(pdev);
6009         struct e1000_adapter *adapter = netdev_priv(netdev);
6010
6011         /* The pci-e switch on some quad port adapters will report a
6012          * correctable error when the MAC transitions from D0 to D3.  To
6013          * prevent this we need to mask off the correctable errors on the
6014          * downstream port of the pci-e switch.
6015          */
6016         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6017                 struct pci_dev *us_dev = pdev->bus->self;
6018                 u16 devctl;
6019
6020                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6021                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6022                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6023
6024                 e1000_power_off(pdev, sleep, wake);
6025
6026                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6027         } else {
6028                 e1000_power_off(pdev, sleep, wake);
6029         }
6030 }
6031
6032 #ifdef CONFIG_PCIEASPM
6033 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6034 {
6035         pci_disable_link_state_locked(pdev, state);
6036 }
6037 #else
6038 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6039 {
6040         u16 aspm_ctl = 0;
6041
6042         if (state & PCIE_LINK_STATE_L0S)
6043                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6044         if (state & PCIE_LINK_STATE_L1)
6045                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6046
6047         /* Both device and parent should have the same ASPM setting.
6048          * Disable ASPM in downstream component first and then upstream.
6049          */
6050         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6051
6052         if (pdev->bus->self)
6053                 pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6054                                            aspm_ctl);
6055 }
6056 #endif
6057 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6058 {
6059         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6060                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6061                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6062
6063         __e1000e_disable_aspm(pdev, state);
6064 }
6065
6066 #ifdef CONFIG_PM
6067 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6068 {
6069         return !!adapter->tx_ring->buffer_info;
6070 }
6071
6072 static int __e1000_resume(struct pci_dev *pdev)
6073 {
6074         struct net_device *netdev = pci_get_drvdata(pdev);
6075         struct e1000_adapter *adapter = netdev_priv(netdev);
6076         struct e1000_hw *hw = &adapter->hw;
6077         u16 aspm_disable_flag = 0;
6078         u32 err;
6079
6080         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6081                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6082         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6083                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6084         if (aspm_disable_flag)
6085                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6086
6087         pci_set_power_state(pdev, PCI_D0);
6088         pci_restore_state(pdev);
6089         pci_save_state(pdev);
6090
6091         e1000e_set_interrupt_capability(adapter);
6092         if (netif_running(netdev)) {
6093                 err = e1000_request_irq(adapter);
6094                 if (err)
6095                         return err;
6096         }
6097
6098         if (hw->mac.type >= e1000_pch2lan)
6099                 e1000_resume_workarounds_pchlan(&adapter->hw);
6100
6101         e1000e_power_up_phy(adapter);
6102
6103         /* report the system wakeup cause from S3/S4 */
6104         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6105                 u16 phy_data;
6106
6107                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6108                 if (phy_data) {
6109                         e_info("PHY Wakeup cause - %s\n",
6110                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6111                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6112                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6113                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6114                                 phy_data & E1000_WUS_LNKC ?
6115                                 "Link Status Change" : "other");
6116                 }
6117                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6118         } else {
6119                 u32 wus = er32(WUS);
6120                 if (wus) {
6121                         e_info("MAC Wakeup cause - %s\n",
6122                                 wus & E1000_WUS_EX ? "Unicast Packet" :
6123                                 wus & E1000_WUS_MC ? "Multicast Packet" :
6124                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
6125                                 wus & E1000_WUS_MAG ? "Magic Packet" :
6126                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
6127                                 "other");
6128                 }
6129                 ew32(WUS, ~0);
6130         }
6131
6132         e1000e_reset(adapter);
6133
6134         e1000_init_manageability_pt(adapter);
6135
6136         if (netif_running(netdev))
6137                 e1000e_up(adapter);
6138
6139         netif_device_attach(netdev);
6140
6141         /* If the controller has AMT, do not set DRV_LOAD until the interface
6142          * is up.  For all other cases, let the f/w know that the h/w is now
6143          * under the control of the driver.
6144          */
6145         if (!(adapter->flags & FLAG_HAS_AMT))
6146                 e1000e_get_hw_control(adapter);
6147
6148         return 0;
6149 }
6150
6151 #ifdef CONFIG_PM_SLEEP
6152 static int e1000_suspend(struct device *dev)
6153 {
6154         struct pci_dev *pdev = to_pci_dev(dev);
6155         int retval;
6156         bool wake;
6157
6158         retval = __e1000_shutdown(pdev, &wake, false);
6159         if (!retval)
6160                 e1000_complete_shutdown(pdev, true, wake);
6161
6162         return retval;
6163 }
6164
6165 static int e1000_resume(struct device *dev)
6166 {
6167         struct pci_dev *pdev = to_pci_dev(dev);
6168         struct net_device *netdev = pci_get_drvdata(pdev);
6169         struct e1000_adapter *adapter = netdev_priv(netdev);
6170
6171         if (e1000e_pm_ready(adapter))
6172                 adapter->idle_check = true;
6173
6174         return __e1000_resume(pdev);
6175 }
6176 #endif /* CONFIG_PM_SLEEP */
6177
6178 #ifdef CONFIG_PM_RUNTIME
6179 static int e1000_runtime_suspend(struct device *dev)
6180 {
6181         struct pci_dev *pdev = to_pci_dev(dev);
6182         struct net_device *netdev = pci_get_drvdata(pdev);
6183         struct e1000_adapter *adapter = netdev_priv(netdev);
6184
6185         if (e1000e_pm_ready(adapter)) {
6186                 bool wake;
6187
6188                 __e1000_shutdown(pdev, &wake, true);
6189         }
6190
6191         return 0;
6192 }
6193
6194 static int e1000_idle(struct device *dev)
6195 {
6196         struct pci_dev *pdev = to_pci_dev(dev);
6197         struct net_device *netdev = pci_get_drvdata(pdev);
6198         struct e1000_adapter *adapter = netdev_priv(netdev);
6199
6200         if (!e1000e_pm_ready(adapter))
6201                 return 0;
6202
6203         if (adapter->idle_check) {
6204                 adapter->idle_check = false;
6205                 if (!e1000e_has_link(adapter))
6206                         pm_schedule_suspend(dev, MSEC_PER_SEC);
6207         }
6208
6209         return -EBUSY;
6210 }
6211
6212 static int e1000_runtime_resume(struct device *dev)
6213 {
6214         struct pci_dev *pdev = to_pci_dev(dev);
6215         struct net_device *netdev = pci_get_drvdata(pdev);
6216         struct e1000_adapter *adapter = netdev_priv(netdev);
6217
6218         if (!e1000e_pm_ready(adapter))
6219                 return 0;
6220
6221         adapter->idle_check = !dev->power.runtime_auto;
6222         return __e1000_resume(pdev);
6223 }
6224 #endif /* CONFIG_PM_RUNTIME */
6225 #endif /* CONFIG_PM */
6226
6227 static void e1000_shutdown(struct pci_dev *pdev)
6228 {
6229         bool wake = false;
6230
6231         __e1000_shutdown(pdev, &wake, false);
6232
6233         if (system_state == SYSTEM_POWER_OFF)
6234                 e1000_complete_shutdown(pdev, false, wake);
6235 }
6236
6237 #ifdef CONFIG_NET_POLL_CONTROLLER
6238
6239 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6240 {
6241         struct net_device *netdev = data;
6242         struct e1000_adapter *adapter = netdev_priv(netdev);
6243
6244         if (adapter->msix_entries) {
6245                 int vector, msix_irq;
6246
6247                 vector = 0;
6248                 msix_irq = adapter->msix_entries[vector].vector;
6249                 disable_irq(msix_irq);
6250                 e1000_intr_msix_rx(msix_irq, netdev);
6251                 enable_irq(msix_irq);
6252
6253                 vector++;
6254                 msix_irq = adapter->msix_entries[vector].vector;
6255                 disable_irq(msix_irq);
6256                 e1000_intr_msix_tx(msix_irq, netdev);
6257                 enable_irq(msix_irq);
6258
6259                 vector++;
6260                 msix_irq = adapter->msix_entries[vector].vector;
6261                 disable_irq(msix_irq);
6262                 e1000_msix_other(msix_irq, netdev);
6263                 enable_irq(msix_irq);
6264         }
6265
6266         return IRQ_HANDLED;
6267 }
6268
6269 /**
6270  * e1000_netpoll
6271  * @netdev: network interface device structure
6272  *
6273  * Polling 'interrupt' - used by things like netconsole to send skbs
6274  * without having to re-enable interrupts. It's not called while
6275  * the interrupt routine is executing.
6276  */
6277 static void e1000_netpoll(struct net_device *netdev)
6278 {
6279         struct e1000_adapter *adapter = netdev_priv(netdev);
6280
6281         switch (adapter->int_mode) {
6282         case E1000E_INT_MODE_MSIX:
6283                 e1000_intr_msix(adapter->pdev->irq, netdev);
6284                 break;
6285         case E1000E_INT_MODE_MSI:
6286                 disable_irq(adapter->pdev->irq);
6287                 e1000_intr_msi(adapter->pdev->irq, netdev);
6288                 enable_irq(adapter->pdev->irq);
6289                 break;
6290         default: /* E1000E_INT_MODE_LEGACY */
6291                 disable_irq(adapter->pdev->irq);
6292                 e1000_intr(adapter->pdev->irq, netdev);
6293                 enable_irq(adapter->pdev->irq);
6294                 break;
6295         }
6296 }
6297 #endif
6298
6299 /**
6300  * e1000_io_error_detected - called when PCI error is detected
6301  * @pdev: Pointer to PCI device
6302  * @state: The current pci connection state
6303  *
6304  * This function is called after a PCI bus error affecting
6305  * this device has been detected.
6306  */
6307 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6308                                                 pci_channel_state_t state)
6309 {
6310         struct net_device *netdev = pci_get_drvdata(pdev);
6311         struct e1000_adapter *adapter = netdev_priv(netdev);
6312
6313         netif_device_detach(netdev);
6314
6315         if (state == pci_channel_io_perm_failure)
6316                 return PCI_ERS_RESULT_DISCONNECT;
6317
6318         if (netif_running(netdev))
6319                 e1000e_down(adapter);
6320         pci_disable_device(pdev);
6321
6322         /* Request a slot slot reset. */
6323         return PCI_ERS_RESULT_NEED_RESET;
6324 }
6325
6326 /**
6327  * e1000_io_slot_reset - called after the pci bus has been reset.
6328  * @pdev: Pointer to PCI device
6329  *
6330  * Restart the card from scratch, as if from a cold-boot. Implementation
6331  * resembles the first-half of the e1000_resume routine.
6332  */
6333 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6334 {
6335         struct net_device *netdev = pci_get_drvdata(pdev);
6336         struct e1000_adapter *adapter = netdev_priv(netdev);
6337         struct e1000_hw *hw = &adapter->hw;
6338         u16 aspm_disable_flag = 0;
6339         int err;
6340         pci_ers_result_t result;
6341
6342         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6343                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6344         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6345                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6346         if (aspm_disable_flag)
6347                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6348
6349         err = pci_enable_device_mem(pdev);
6350         if (err) {
6351                 dev_err(&pdev->dev,
6352                         "Cannot re-enable PCI device after reset.\n");
6353                 result = PCI_ERS_RESULT_DISCONNECT;
6354         } else {
6355                 pci_set_master(pdev);
6356                 pdev->state_saved = true;
6357                 pci_restore_state(pdev);
6358
6359                 pci_enable_wake(pdev, PCI_D3hot, 0);
6360                 pci_enable_wake(pdev, PCI_D3cold, 0);
6361
6362                 e1000e_reset(adapter);
6363                 ew32(WUS, ~0);
6364                 result = PCI_ERS_RESULT_RECOVERED;
6365         }
6366
6367         pci_cleanup_aer_uncorrect_error_status(pdev);
6368
6369         return result;
6370 }
6371
6372 /**
6373  * e1000_io_resume - called when traffic can start flowing again.
6374  * @pdev: Pointer to PCI device
6375  *
6376  * This callback is called when the error recovery driver tells us that
6377  * its OK to resume normal operation. Implementation resembles the
6378  * second-half of the e1000_resume routine.
6379  */
6380 static void e1000_io_resume(struct pci_dev *pdev)
6381 {
6382         struct net_device *netdev = pci_get_drvdata(pdev);
6383         struct e1000_adapter *adapter = netdev_priv(netdev);
6384
6385         e1000_init_manageability_pt(adapter);
6386
6387         if (netif_running(netdev)) {
6388                 if (e1000e_up(adapter)) {
6389                         dev_err(&pdev->dev,
6390                                 "can't bring device back up after reset\n");
6391                         return;
6392                 }
6393         }
6394
6395         netif_device_attach(netdev);
6396
6397         /* If the controller has AMT, do not set DRV_LOAD until the interface
6398          * is up.  For all other cases, let the f/w know that the h/w is now
6399          * under the control of the driver.
6400          */
6401         if (!(adapter->flags & FLAG_HAS_AMT))
6402                 e1000e_get_hw_control(adapter);
6403 }
6404
6405 static void e1000_print_device_info(struct e1000_adapter *adapter)
6406 {
6407         struct e1000_hw *hw = &adapter->hw;
6408         struct net_device *netdev = adapter->netdev;
6409         u32 ret_val;
6410         u8 pba_str[E1000_PBANUM_LENGTH];
6411
6412         /* print bus type/speed/width info */
6413         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6414                /* bus width */
6415                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6416                 "Width x1"),
6417                /* MAC address */
6418                netdev->dev_addr);
6419         e_info("Intel(R) PRO/%s Network Connection\n",
6420                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6421         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6422                                                 E1000_PBANUM_LENGTH);
6423         if (ret_val)
6424                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6425         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6426                hw->mac.type, hw->phy.type, pba_str);
6427 }
6428
6429 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6430 {
6431         struct e1000_hw *hw = &adapter->hw;
6432         int ret_val;
6433         u16 buf = 0;
6434
6435         if (hw->mac.type != e1000_82573)
6436                 return;
6437
6438         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6439         le16_to_cpus(&buf);
6440         if (!ret_val && (!(buf & (1 << 0)))) {
6441                 /* Deep Smart Power Down (DSPD) */
6442                 dev_warn(&adapter->pdev->dev,
6443                          "Warning: detected DSPD enabled in EEPROM\n");
6444         }
6445 }
6446
6447 static int e1000_set_features(struct net_device *netdev,
6448                               netdev_features_t features)
6449 {
6450         struct e1000_adapter *adapter = netdev_priv(netdev);
6451         netdev_features_t changed = features ^ netdev->features;
6452
6453         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6454                 adapter->flags |= FLAG_TSO_FORCE;
6455
6456         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6457                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6458                          NETIF_F_RXALL)))
6459                 return 0;
6460
6461         if (changed & NETIF_F_RXFCS) {
6462                 if (features & NETIF_F_RXFCS) {
6463                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6464                 } else {
6465                         /* We need to take it back to defaults, which might mean
6466                          * stripping is still disabled at the adapter level.
6467                          */
6468                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6469                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6470                         else
6471                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6472                 }
6473         }
6474
6475         netdev->features = features;
6476
6477         if (netif_running(netdev))
6478                 e1000e_reinit_locked(adapter);
6479         else
6480                 e1000e_reset(adapter);
6481
6482         return 0;
6483 }
6484
6485 static const struct net_device_ops e1000e_netdev_ops = {
6486         .ndo_open               = e1000_open,
6487         .ndo_stop               = e1000_close,
6488         .ndo_start_xmit         = e1000_xmit_frame,
6489         .ndo_get_stats64        = e1000e_get_stats64,
6490         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6491         .ndo_set_mac_address    = e1000_set_mac,
6492         .ndo_change_mtu         = e1000_change_mtu,
6493         .ndo_do_ioctl           = e1000_ioctl,
6494         .ndo_tx_timeout         = e1000_tx_timeout,
6495         .ndo_validate_addr      = eth_validate_addr,
6496
6497         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6498         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6499 #ifdef CONFIG_NET_POLL_CONTROLLER
6500         .ndo_poll_controller    = e1000_netpoll,
6501 #endif
6502         .ndo_set_features = e1000_set_features,
6503 };
6504
6505 /**
6506  * e1000_probe - Device Initialization Routine
6507  * @pdev: PCI device information struct
6508  * @ent: entry in e1000_pci_tbl
6509  *
6510  * Returns 0 on success, negative on failure
6511  *
6512  * e1000_probe initializes an adapter identified by a pci_dev structure.
6513  * The OS initialization, configuring of the adapter private structure,
6514  * and a hardware reset occur.
6515  **/
6516 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6517 {
6518         struct net_device *netdev;
6519         struct e1000_adapter *adapter;
6520         struct e1000_hw *hw;
6521         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6522         resource_size_t mmio_start, mmio_len;
6523         resource_size_t flash_start, flash_len;
6524         static int cards_found;
6525         u16 aspm_disable_flag = 0;
6526         int i, err, pci_using_dac;
6527         u16 eeprom_data = 0;
6528         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6529
6530         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6531                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6532         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6533                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6534         if (aspm_disable_flag)
6535                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6536
6537         err = pci_enable_device_mem(pdev);
6538         if (err)
6539                 return err;
6540
6541         pci_using_dac = 0;
6542         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6543         if (!err) {
6544                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6545                 if (!err)
6546                         pci_using_dac = 1;
6547         } else {
6548                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6549                 if (err) {
6550                         err = dma_set_coherent_mask(&pdev->dev,
6551                                                     DMA_BIT_MASK(32));
6552                         if (err) {
6553                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6554                                 goto err_dma;
6555                         }
6556                 }
6557         }
6558
6559         err = pci_request_selected_regions_exclusive(pdev,
6560                                           pci_select_bars(pdev, IORESOURCE_MEM),
6561                                           e1000e_driver_name);
6562         if (err)
6563                 goto err_pci_reg;
6564
6565         /* AER (Advanced Error Reporting) hooks */
6566         pci_enable_pcie_error_reporting(pdev);
6567
6568         pci_set_master(pdev);
6569         /* PCI config space info */
6570         err = pci_save_state(pdev);
6571         if (err)
6572                 goto err_alloc_etherdev;
6573
6574         err = -ENOMEM;
6575         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6576         if (!netdev)
6577                 goto err_alloc_etherdev;
6578
6579         SET_NETDEV_DEV(netdev, &pdev->dev);
6580
6581         netdev->irq = pdev->irq;
6582
6583         pci_set_drvdata(pdev, netdev);
6584         adapter = netdev_priv(netdev);
6585         hw = &adapter->hw;
6586         adapter->netdev = netdev;
6587         adapter->pdev = pdev;
6588         adapter->ei = ei;
6589         adapter->pba = ei->pba;
6590         adapter->flags = ei->flags;
6591         adapter->flags2 = ei->flags2;
6592         adapter->hw.adapter = adapter;
6593         adapter->hw.mac.type = ei->mac;
6594         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6595         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6596
6597         mmio_start = pci_resource_start(pdev, 0);
6598         mmio_len = pci_resource_len(pdev, 0);
6599
6600         err = -EIO;
6601         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6602         if (!adapter->hw.hw_addr)
6603                 goto err_ioremap;
6604
6605         if ((adapter->flags & FLAG_HAS_FLASH) &&
6606             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6607                 flash_start = pci_resource_start(pdev, 1);
6608                 flash_len = pci_resource_len(pdev, 1);
6609                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6610                 if (!adapter->hw.flash_address)
6611                         goto err_flashmap;
6612         }
6613
6614         /* construct the net_device struct */
6615         netdev->netdev_ops              = &e1000e_netdev_ops;
6616         e1000e_set_ethtool_ops(netdev);
6617         netdev->watchdog_timeo          = 5 * HZ;
6618         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6619         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6620
6621         netdev->mem_start = mmio_start;
6622         netdev->mem_end = mmio_start + mmio_len;
6623
6624         adapter->bd_number = cards_found++;
6625
6626         e1000e_check_options(adapter);
6627
6628         /* setup adapter struct */
6629         err = e1000_sw_init(adapter);
6630         if (err)
6631                 goto err_sw_init;
6632
6633         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6634         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6635         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6636
6637         err = ei->get_variants(adapter);
6638         if (err)
6639                 goto err_hw_init;
6640
6641         if ((adapter->flags & FLAG_IS_ICH) &&
6642             (adapter->flags & FLAG_READ_ONLY_NVM))
6643                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6644
6645         hw->mac.ops.get_bus_info(&adapter->hw);
6646
6647         adapter->hw.phy.autoneg_wait_to_complete = 0;
6648
6649         /* Copper options */
6650         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6651                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6652                 adapter->hw.phy.disable_polarity_correction = 0;
6653                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6654         }
6655
6656         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6657                 dev_info(&pdev->dev,
6658                          "PHY reset is blocked due to SOL/IDER session.\n");
6659
6660         /* Set initial default active device features */
6661         netdev->features = (NETIF_F_SG |
6662                             NETIF_F_HW_VLAN_RX |
6663                             NETIF_F_HW_VLAN_TX |
6664                             NETIF_F_TSO |
6665                             NETIF_F_TSO6 |
6666                             NETIF_F_RXHASH |
6667                             NETIF_F_RXCSUM |
6668                             NETIF_F_HW_CSUM);
6669
6670         /* Set user-changeable features (subset of all device features) */
6671         netdev->hw_features = netdev->features;
6672         netdev->hw_features |= NETIF_F_RXFCS;
6673         netdev->priv_flags |= IFF_SUPP_NOFCS;
6674         netdev->hw_features |= NETIF_F_RXALL;
6675
6676         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6677                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6678
6679         netdev->vlan_features |= (NETIF_F_SG |
6680                                   NETIF_F_TSO |
6681                                   NETIF_F_TSO6 |
6682                                   NETIF_F_HW_CSUM);
6683
6684         netdev->priv_flags |= IFF_UNICAST_FLT;
6685
6686         if (pci_using_dac) {
6687                 netdev->features |= NETIF_F_HIGHDMA;
6688                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6689         }
6690
6691         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6692                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6693
6694         /* before reading the NVM, reset the controller to
6695          * put the device in a known good starting state
6696          */
6697         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6698
6699         /* systems with ASPM and others may see the checksum fail on the first
6700          * attempt. Let's give it a few tries
6701          */
6702         for (i = 0;; i++) {
6703                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6704                         break;
6705                 if (i == 2) {
6706                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6707                         err = -EIO;
6708                         goto err_eeprom;
6709                 }
6710         }
6711
6712         e1000_eeprom_checks(adapter);
6713
6714         /* copy the MAC address */
6715         if (e1000e_read_mac_addr(&adapter->hw))
6716                 dev_err(&pdev->dev,
6717                         "NVM Read Error while reading MAC address\n");
6718
6719         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6720
6721         if (!is_valid_ether_addr(netdev->dev_addr)) {
6722                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6723                         netdev->dev_addr);
6724                 err = -EIO;
6725                 goto err_eeprom;
6726         }
6727
6728         init_timer(&adapter->watchdog_timer);
6729         adapter->watchdog_timer.function = e1000_watchdog;
6730         adapter->watchdog_timer.data = (unsigned long) adapter;
6731
6732         init_timer(&adapter->phy_info_timer);
6733         adapter->phy_info_timer.function = e1000_update_phy_info;
6734         adapter->phy_info_timer.data = (unsigned long) adapter;
6735
6736         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6737         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6738         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6739         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6740         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6741
6742         /* Initialize link parameters. User can change them with ethtool */
6743         adapter->hw.mac.autoneg = 1;
6744         adapter->fc_autoneg = true;
6745         adapter->hw.fc.requested_mode = e1000_fc_default;
6746         adapter->hw.fc.current_mode = e1000_fc_default;
6747         adapter->hw.phy.autoneg_advertised = 0x2f;
6748
6749         /* ring size defaults */
6750         adapter->rx_ring->count = E1000_DEFAULT_RXD;
6751         adapter->tx_ring->count = E1000_DEFAULT_TXD;
6752
6753         /* Initial Wake on LAN setting - If APM wake is enabled in
6754          * the EEPROM, enable the ACPI Magic Packet filter
6755          */
6756         if (adapter->flags & FLAG_APME_IN_WUC) {
6757                 /* APME bit in EEPROM is mapped to WUC.APME */
6758                 eeprom_data = er32(WUC);
6759                 eeprom_apme_mask = E1000_WUC_APME;
6760                 if ((hw->mac.type > e1000_ich10lan) &&
6761                     (eeprom_data & E1000_WUC_PHY_WAKE))
6762                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6763         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6764                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6765                     (adapter->hw.bus.func == 1))
6766                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6767                                        1, &eeprom_data);
6768                 else
6769                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6770                                        1, &eeprom_data);
6771         }
6772
6773         /* fetch WoL from EEPROM */
6774         if (eeprom_data & eeprom_apme_mask)
6775                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6776
6777         /* now that we have the eeprom settings, apply the special cases
6778          * where the eeprom may be wrong or the board simply won't support
6779          * wake on lan on a particular port
6780          */
6781         if (!(adapter->flags & FLAG_HAS_WOL))
6782                 adapter->eeprom_wol = 0;
6783
6784         /* initialize the wol settings based on the eeprom settings */
6785         adapter->wol = adapter->eeprom_wol;
6786         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6787
6788         /* save off EEPROM version number */
6789         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6790
6791         /* reset the hardware with the new settings */
6792         e1000e_reset(adapter);
6793
6794         /* If the controller has AMT, do not set DRV_LOAD until the interface
6795          * is up.  For all other cases, let the f/w know that the h/w is now
6796          * under the control of the driver.
6797          */
6798         if (!(adapter->flags & FLAG_HAS_AMT))
6799                 e1000e_get_hw_control(adapter);
6800
6801         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6802         err = register_netdev(netdev);
6803         if (err)
6804                 goto err_register;
6805
6806         /* carrier off reporting is important to ethtool even BEFORE open */
6807         netif_carrier_off(netdev);
6808
6809         /* init PTP hardware clock */
6810         e1000e_ptp_init(adapter);
6811
6812         e1000_print_device_info(adapter);
6813
6814         if (pci_dev_run_wake(pdev))
6815                 pm_runtime_put_noidle(&pdev->dev);
6816
6817         return 0;
6818
6819 err_register:
6820         if (!(adapter->flags & FLAG_HAS_AMT))
6821                 e1000e_release_hw_control(adapter);
6822 err_eeprom:
6823         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6824                 e1000_phy_hw_reset(&adapter->hw);
6825 err_hw_init:
6826         kfree(adapter->tx_ring);
6827         kfree(adapter->rx_ring);
6828 err_sw_init:
6829         if (adapter->hw.flash_address)
6830                 iounmap(adapter->hw.flash_address);
6831         e1000e_reset_interrupt_capability(adapter);
6832 err_flashmap:
6833         iounmap(adapter->hw.hw_addr);
6834 err_ioremap:
6835         free_netdev(netdev);
6836 err_alloc_etherdev:
6837         pci_release_selected_regions(pdev,
6838                                      pci_select_bars(pdev, IORESOURCE_MEM));
6839 err_pci_reg:
6840 err_dma:
6841         pci_disable_device(pdev);
6842         return err;
6843 }
6844
6845 /**
6846  * e1000_remove - Device Removal Routine
6847  * @pdev: PCI device information struct
6848  *
6849  * e1000_remove is called by the PCI subsystem to alert the driver
6850  * that it should release a PCI device.  The could be caused by a
6851  * Hot-Plug event, or because the driver is going to be removed from
6852  * memory.
6853  **/
6854 static void e1000_remove(struct pci_dev *pdev)
6855 {
6856         struct net_device *netdev = pci_get_drvdata(pdev);
6857         struct e1000_adapter *adapter = netdev_priv(netdev);
6858         bool down = test_bit(__E1000_DOWN, &adapter->state);
6859
6860         e1000e_ptp_remove(adapter);
6861
6862         /* The timers may be rescheduled, so explicitly disable them
6863          * from being rescheduled.
6864          */
6865         if (!down)
6866                 set_bit(__E1000_DOWN, &adapter->state);
6867         del_timer_sync(&adapter->watchdog_timer);
6868         del_timer_sync(&adapter->phy_info_timer);
6869
6870         cancel_work_sync(&adapter->reset_task);
6871         cancel_work_sync(&adapter->watchdog_task);
6872         cancel_work_sync(&adapter->downshift_task);
6873         cancel_work_sync(&adapter->update_phy_task);
6874         cancel_work_sync(&adapter->print_hang_task);
6875
6876         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6877                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6878                 if (adapter->tx_hwtstamp_skb) {
6879                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6880                         adapter->tx_hwtstamp_skb = NULL;
6881                 }
6882         }
6883
6884         if (!(netdev->flags & IFF_UP))
6885                 e1000_power_down_phy(adapter);
6886
6887         /* Don't lie to e1000_close() down the road. */
6888         if (!down)
6889                 clear_bit(__E1000_DOWN, &adapter->state);
6890         unregister_netdev(netdev);
6891
6892         if (pci_dev_run_wake(pdev))
6893                 pm_runtime_get_noresume(&pdev->dev);
6894
6895         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6896          * would have already happened in close and is redundant.
6897          */
6898         e1000e_release_hw_control(adapter);
6899
6900         e1000e_reset_interrupt_capability(adapter);
6901         kfree(adapter->tx_ring);
6902         kfree(adapter->rx_ring);
6903
6904         iounmap(adapter->hw.hw_addr);
6905         if (adapter->hw.flash_address)
6906                 iounmap(adapter->hw.flash_address);
6907         pci_release_selected_regions(pdev,
6908                                      pci_select_bars(pdev, IORESOURCE_MEM));
6909
6910         free_netdev(netdev);
6911
6912         /* AER disable */
6913         pci_disable_pcie_error_reporting(pdev);
6914
6915         pci_disable_device(pdev);
6916 }
6917
6918 /* PCI Error Recovery (ERS) */
6919 static const struct pci_error_handlers e1000_err_handler = {
6920         .error_detected = e1000_io_error_detected,
6921         .slot_reset = e1000_io_slot_reset,
6922         .resume = e1000_io_resume,
6923 };
6924
6925 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6926         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6927         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6928         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6929         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6930         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6931         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6932         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6934         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6935
6936         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6940
6941         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6942         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6943         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6944
6945         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6946         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6947         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6948
6949         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6950           board_80003es2lan },
6951         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6952           board_80003es2lan },
6953         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6954           board_80003es2lan },
6955         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6956           board_80003es2lan },
6957
6958         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6959         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6960         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6961         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6962         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6963         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6964         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6965         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6966
6967         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6968         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6969         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6970         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6971         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6972         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6973         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6974         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6975         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6976
6977         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6978         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6979         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6980
6981         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6982         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6983         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6984
6985         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6986         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6987         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6988         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6989
6990         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6991         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6992
6993         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6994         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6995         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6996         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6997
6998         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6999 };
7000 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7001
7002 #ifdef CONFIG_PM
7003 static const struct dev_pm_ops e1000_pm_ops = {
7004         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
7005         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
7006                                 e1000_runtime_resume, e1000_idle)
7007 };
7008 #endif
7009
7010 /* PCI Device API Driver */
7011 static struct pci_driver e1000_driver = {
7012         .name     = e1000e_driver_name,
7013         .id_table = e1000_pci_tbl,
7014         .probe    = e1000_probe,
7015         .remove   = e1000_remove,
7016 #ifdef CONFIG_PM
7017         .driver   = {
7018                 .pm = &e1000_pm_ops,
7019         },
7020 #endif
7021         .shutdown = e1000_shutdown,
7022         .err_handler = &e1000_err_handler
7023 };
7024
7025 /**
7026  * e1000_init_module - Driver Registration Routine
7027  *
7028  * e1000_init_module is the first routine called when the driver is
7029  * loaded. All it does is register with the PCI subsystem.
7030  **/
7031 static int __init e1000_init_module(void)
7032 {
7033         int ret;
7034         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7035                 e1000e_driver_version);
7036         pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7037         ret = pci_register_driver(&e1000_driver);
7038
7039         return ret;
7040 }
7041 module_init(e1000_init_module);
7042
7043 /**
7044  * e1000_exit_module - Driver Exit Cleanup Routine
7045  *
7046  * e1000_exit_module is called just before the driver is removed
7047  * from memory.
7048  **/
7049 static void __exit e1000_exit_module(void)
7050 {
7051         pci_unregister_driver(&e1000_driver);
7052 }
7053 module_exit(e1000_exit_module);
7054
7055
7056 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7057 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7058 MODULE_LICENSE("GPL");
7059 MODULE_VERSION(DRV_VERSION);
7060
7061 /* netdev.c */